WorldWideScience

Sample records for carbon products precursors

  1. Production of carbon-14 and preparation of some key precursors for labeling organic molecules

    International Nuclear Information System (INIS)

    Moriya, T.; Motoishi, S.

    1992-01-01

    Production of carbon-14 on 50 GBq scale has been performed by neutron irradiation of aluminium nitride target in the JMTR. This nuclide is separated in carbon dioxide form by combustion of the irradiated target at 1100degC with oxygen. The [ 14 C] carbon dioxide liberated thus is trapped in caustic solution and finally recovered as [ 14 C] barium carbonate. Some precursors useful for incorporating carbon-14 into a given organic molecule have been prepared. Precursors such as [1- 14 C] sodium acetate, [ 14 C] methanol and [ 14 C] potassium cyanide are prepared by rather conventional methods involving carbonation of methyl magnesium iodine, reduction of carbon dioxide with lithium aluminium hydride and reduction of carbonate with metallic potassium in the presence of ammonium salt, respectively. A catalytic polymerization of acetylene is used to prepare benzene. (author)

  2. Preparation and evaluation of coal extracts as precursors for carbon and graphite products

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1996-08-01

    A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.

  3. Production and screening of carbon products precursors from coal. Quarterly progress report, July 1, 1996--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.; Stiller, A.

    1996-10-25

    This quarterly report covers activities during the period from July 1, 1996 through September 30, 1996 on the development of carbon products precursor materials from coal. The first year of the project ended in February, 1996; however, the WVU research effort continued through August 14, 1997 on a no-cost extension of the original contract. PETC chose to exercise the option for continuation of the projects and $100,000 became available on August 9, 1996. The objective for year two is to focus on development of those carbon products from coal-based solvent extract precursors which have the greatest possibility for commercial success.

  4. Production of Prebiotic Molecule Precursors from Hypervelocity Impact Simulation Experiments on Carbonate Sediments

    Science.gov (United States)

    Farcy, B. J.; Grubisic, A.; Li, X.; Pinnick, V. T.; Sutton, M.; Pavlov, A.; Brinckerhoff, W. B.

    2017-12-01

    Organic molecules, including amino acids and other biotic precursors, have been shown to form in the cooling and expanding plasma plume generated from hypervelocity impacts through the processes of atomization, ionization, and molecular recombination of impactor and impact surface. Various sources of carbon, such as atmospheric methane and carbonaceous material from meteorites, are known to yield cyano-bearing molecules and simple amino acids from impact plasmas. However, the role of mineralogical carbon has not yet been investigated in this process. We have performed experiments using laser ablation mass spectrometry (LA-MS) to study the negative ion yield of plasma-produced prebiotic molecules. A mixture of 10% NH4Cl and 90% CaCO3 was pressed into a pellet and ablated with a 1064 nm Nd:YAG laser, and the resultant negative ions were measured by a plasma analyzer quadrupole MS. Mass spectra show characteristic peaks at m/z = 26 and m/z = 42, indicating the presence of CN- and CNO- ions. When isotopically labeled 15NH4Cl and Ca13CO3 were used in the sample ablation pellet, the purported CN- and CNO- peaks shifted according to their added isotopic mass. Indeed, comparison of resulting ion formation from momentum-based techniques, such as massive cluster secondary ion mass spectrometry, show comparable fragmentation and recombination of CN- and CNO- ions. These findings show that CN- ions, as well as CN radicals and thus HCN, can be formed during meteoritic bombardment of carbonate minerals. During the late heavy bombardment of the earth from 4.1-3.8 Ga, impact-driven chemistry could have played a dominant role in shaping the earth's early prebiotic inventory and sources of chemical energy. As carbonate sediments are common in the Archean, carbonate deposits are most likely an important contributor of carbon for this process, along with atmospheric and meteoritic carbon sources.

  5. PEEK: An excellent precursor for activated carbon production for high temperature application

    International Nuclear Information System (INIS)

    Cansado, I.P.P.; Goncalves, F.A.M.M.; Nabais, J.M.V.; Ribeiro Carrott, M.M.L.; Carrott, P.J.M.

    2009-01-01

    A series of activated carbons (AC) with high apparent surface area and very high micropore volumes were prepared from granulated PEEK (poly[oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene]) by physical activation with CO 2 at different temperatures and different activation times. The carbonisation yields at 873, 1073 and 1173 K were 57, 52 and 51%. As the activation temperature increased, between 873 and 1173 K, the burn-off, the micropore volume and mean pore size increased too. Those prepared at 1173 K, with 74% burn-off, present an extremely high apparent surface area (2874 m 2 g - 1 ) and a very high micropore volume (1.27 cm 3 g - 1 ). The presence of pyrone groups, identified by FTIR, on the AC surface corroborates the prevalence of a basic point of zero charge, always higher than 9.2. The thermal stability was checked by thermogravimetric analysis and as the carbonisation temperature increased the thermal stability of the char increased too. All AC obtained from PEEK by physical activation at 1173 K are thermally resistant, as at 1073 K the loss of the initial mass was less than 15%. The collective results confirm that PEEK is an excellent precursor for preparing AC with a high carbonisation yield, a high micropore volume and apparent surface area and a very high resistance at elevated temperature. (author)

  6. Stable-carbon isotope ratios for sourcing the nerve-agent precursor methylphosphonic dichloride and its products.

    Science.gov (United States)

    Moran, James J; Fraga, Carlos G; Nims, Megan K

    2018-08-15

    The ability to connect a chemical threat agent to a specific batch of a synthetic precursor can provide a fingerprint to contribute to effective forensic investigations. Stable isotope analysis can leverage intrinsic, natural isotopic variability within the molecules of a threat agent to unlock embedded chemical fingerprints in the material. Methylphosphonic dichloride (DC) is a chemical precursor to the nerve agent sarin. DC is converted to methylphosphonic difluoride (DF) as part of the sarin synthesis process. We used a suite of commercially available DC stocks to both evaluate the potential for δ 13 C analysis to be used as a fingerprinting tool in sarin-related investigations and to develop sample preparation techniques (using chemical hydrolysis) that can simplify isotopic analysis of DC and its synthetic products. We demonstrate that natural isotopic variability in DC results in at least three distinct, isotope-resolved clusters within the thirteen stocks we analyzed. Isotopic variability in the carbon feedstock (i.e., methanol) used for DC synthesis is likely inherited by the DC samples we measured. We demonstrate that the hydrolysis of DC and DF to methylphosphonic acid (MPA) can be used as a preparative step for isotopic analysis because the reaction does not impart a significant isotopic fractionation. MPA is more chemically stable, less toxic, and easier to handle than DC or DF. Further, the hydrolysis method we demonstrated can be applied to a suite of other precursors or to sarin itself, thereby providing a potentially valuable forensic tool. Copyright © 2018. Published by Elsevier B.V.

  7. Production and application of synthetic precursors labeled with carbon-11 and fluorine-18

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.

    2001-04-02

    It is evident from this chapter that there is enormous flexibility both in the selection of the nature of the radioisotope and ways to generate it, as well as in the selection of the labeling precursor to appropriately attach that radioisotope to some larger biomolecule of interest. The arsenal of radiolabeling precursors now available to the chemist is quite extensive, and without a doubt will continue to grow as chemists develop new ones. However, the upcoming years will perhaps reflect a greater effort in refining existing methods for preparing some of those precursors that are already available to us. For example, the use of solid-phase reactions to accomplish in a single step what would normally take several using conventional solvent-based reactions has already been shown to work in many occasions. The obvious advantage here is that processes become more amenable to system automation thus affording greater reliability in day-to-day operations. There are perhaps other technologies in science that have yet to be realized by the chemist in the PET laboratory that could provide a similar or even a greater benefit. One only needs to be open to new ideas, and imaginative enough to apply them to the problems at hand.

  8. Production and application of synthetic precursors labeled with carbon-11 and fluorine-18

    International Nuclear Information System (INIS)

    Ferrieri, R.A.

    2001-01-01

    It is evident from this chapter that there is enormous flexibility both in the selection of the nature of the radioisotope and ways to generate it, as well as in the selection of the labeling precursor to appropriately attach that radioisotope to some larger biomolecule of interest. The arsenal of radiolabeling precursors now available to the chemist is quite extensive, and without a doubt will continue to grow as chemists develop new ones. However, the upcoming years will perhaps reflect a greater effort in refining existing methods for preparing some of those precursors that are already available to us. For example, the use of solid-phase reactions to accomplish in a single step what would normally take several using conventional solvent-based reactions has already been shown to work in many occasions. The obvious advantage here is that processes become more amenable to system automation thus affording greater reliability in day-to-day operations. There are perhaps other technologies in science that have yet to be realized by the chemist in the PET laboratory that could provide a similar or even a greater benefit. One only needs to be open to new ideas, and imaginative enough to apply them to the problems at hand

  9. Pollutants removal onto novel activated carbons made from lignocellulosic precursors

    OpenAIRE

    Valente Nabais, Joao; Laginhas, Carlos; Carrott, Manuela; Carrott, Peter; Gomes, Jose; Suhas, Suhas; Ramires, Ana; Roman, Silvia

    2009-01-01

    The adsorption of phenol and mercury from dilute aqueous solutions onto new activated carbons was studied. These included activated carbons produced from novel precursors, namely rapeseed, vine shoots and kenaf, and samples oxidised with nitric acid in liquid phase. The results have shown the significant potential of rapeseed, vine shoots and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface...

  10. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil

    Science.gov (United States)

    Raziah, A. Z.; Junizah, A. R.; Saifuddin, N.

    2012-09-01

    Castor oil has long been an article of commerce due to its versatility as it is widely used as a starting material for many industrial chemical products because of its unique structure. In this study, carbon nanotubes has been synthesized by thermal decomposition of castor oil in nitrogen atmosphere at 300-400δC using custom-made microwave processing unit. The precursor material was catalyzed by iron clusters originating from the addition of ferrocene. The morphology and characterization of the CNTs were studied and discussed by transmission electron microscopy (TEM).

  11. Iron filled carbon nanostructures from different precursors

    International Nuclear Information System (INIS)

    Costa, S.; Borowiak-Palen, E.; Bachmatiuk, A.; Ruemmeli, M.H.; Gemming, T.; Kalenczuk, R.J.

    2008-01-01

    Here, we present a study on the synthesis of different nanostructures with one single-step in situ filling (encapsulation) via carbon vapor deposition (CVD). Ferrocene, acetylferrocene and iron (II) nitrate as iron precursors were explored. The application of each of these compounds resulted in different carbon nanomaterials such as: iron filled multiwalled carbon nanotubes with a low filling ratio (Fe-MWCNT), iron filled nanocapsules and unfilled MWCNT. The as-produced samples were purified by high temperature annealing and acid treatment. The purified materials were characterised using transmission electron microscopy (TEM) and Raman spectroscopy

  12. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  13. Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal.

    Science.gov (United States)

    Watson, Kalinda; Farré, Maria José; Knight, Nicole

    2015-01-01

    The removal of both organic and inorganic disinfection by-product (DBP) precursors prior to disinfection is important in mitigating DBP formation, with halide removal being particularly important in salinity-impacted water sources. A matrix of waters of variable alkalinity, halide concentration and dissolved organic carbon (DOC) concentration were treated with enhanced coagulation (EC) followed by anion exchange (MIEX resin) or powdered activated carbon (PAC) and the subsequent disinfection by-product formation potentials (DBP-FPs) assessed and compared to DBP-FPs for untreated samples. Halide and DOC removal were also monitored for both treatment processes. Bromide and iodide adsorption by MIEX treatment ranged from 0 to 53% and 4-78%, respectively. As expected, EC and PAC treatments did not remove halides. DOC removal by EC/PAC was 70 ± 10%, while EC/MIEX enabled a DOC removal of 66 ± 12%. Despite the halide removals achieved by MIEX, increases in brominated disinfection by-product (Br-DBP) formation were observed relative to untreated samples, when favourable Br:DOC ratios were created by the treatment. However, the increases in formation were less than what was observed for the EC/PAC treated waters, which caused large increases in Br-DBP formation when high Br-DBP-forming water quality conditions occurred. The formation potential of fully chlorinated DBPs decreased after treatment in all cases.

  14. Biosequestration of carbon dioxide, biomass, calorific value and biodiesel precursors production using a novel flask culture photobioreactor

    Digital Repository Service at National Institute of Oceanography (India)

    Fulke, A.B.; Krishnamurthi, K.; Giripunje, M.D.; Devi, S.S.; Chakrabarti, T.

    Renewable, carbon neutral, economically viable alternative fuels are urgently needed to turn away the consequences of climate change Photosynthetic capability of microalgae with respect to CO2 fixation at various CO2 partial...

  15. Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties

    OpenAIRE

    Valente Nabais, Joao; Gomes, Jose; Suhas, Suhas; Carrott, Peter; Laginhas, Carlos; Roman, Silvia

    2009-01-01

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phasewere also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface...

  16. Carbon fibre as a composites materials precursor-A review

    International Nuclear Information System (INIS)

    Ismail, A.F.; Yusof, N.; Mustafa, A.

    2010-01-01

    Carbon fibers are widely used as reinforcement in composite materials such as carbon fiber reinforced plastics, carbon fiber reinforced ceramics, carbon-carbon composites and carbon fiber reinforced metals, due to their high specific strength and modulus. Carbon fiber composites are ideally suited to applications where strength, stiffness, lower weight and outstanding fatigue characteristics are critical requirements. Generally, there are two main sectors of carbon fiber applications. Application of carbon fiber in high technology sectors includes aerospace and nuclear engineering whereby the use of carbon fiber is driven by maximum performance and not significantly influenced by cost factors. Meanwhile, the application in general engineering and transportations sector is dominated by cost constraints. Carbon fibers used in composites are often coated or surface treated to improve interaction between the fiber surface and the matrix. PAN/ CNT composite fibers are good candidates for the development of next generation carbon fibers with improved tensile strength and modulus while retaining its compressive strength. This paper aims at reviewing and critically discussing the fabrication aspects of carbon fiber for composites which can be divided into several sections: precursor selection, spinning process, pretreatment of the precursor, pyrolysis process, and also surface treatment of the carbon fiber. The future direction of carbon fiber for composite is also briefly identified to further extend the boundary of science and technology in order to fully exploit its potential. (author)

  17. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Dai, Xuliang [GrafTech International Holdings Inc.; Hausner, Andrew [GrafTech International Holdings Inc.

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  18. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  19. Carbon molecular sieve membranes prepared from porous fiber precursor

    NARCIS (Netherlands)

    Barsema, J.N.; van der Vegt, N.F.A.; Koops, G.H.; Wessling, Matthias

    2002-01-01

    Carbon molecular sieve (CMS) membranes are usually prepared from dense polymeric precursors that already show intrinsic gas separation properties. The rationale behind this approach is that the occurrence of any kind of initial porosity will deteriorate the final CMS performance. We will show that

  20. Polyazidopyrimidines: High Energy Compounds and Precursors to Carbon Nanotubes (Postprint)

    National Research Council Canada - National Science Library

    Ye, Chengfeng; Gao, Haixiang; Boatz, Jerry A; Drake, Gregory W; Twamley, Brendan; Shreeve, Jean'ne M

    2006-01-01

    ...). The compound 4,4',6,6'-tetra(azido)azo-1,3,5-triazine (2), has a heat of formation of 2171 (6164 kJ kg -1) (Fig. 1). Recently it was demonstrated that 1 and 2 were good precursors to nano carbon nitride materials...

  1. Survey of perfluoroalkyl acids (PFAAs) and their precursors present in Japanese consumer products.

    Science.gov (United States)

    Ye, Feng; Zushi, Yasuyuki; Masunaga, Shigeki

    2015-05-01

    Perfluoroalkyl acids (PFAAs) and their precursors have been used in various consumer products. However, limited information regarding their occurrence and concentration levels in products is available. In this study, we investigated 18 PFAAs and 14 PFAA precursors in various categories of consumer products purchased in Japan. Relatively high total concentrations of PFAAs and their precursors were found in sprays for fabrics and textiles (car wash/coating products (precursor of perfluorooctane sulfonic acid (PFOS), N-methyl perfluorooctane sulfonamidoethanol (MeFOSE) was detected in a higher frequency (8%) and in greater concentrations (precursors in consumer products is required. Furthermore, the amount of PFAAs emitted from consumer products may be underestimated if the occurrence of PFAA precursors is not considered. In addition to PFAA precursors, long chain perfluoroalkyl carboxylic acids (PFCAs) (carbon chain length⩾7) were also detected in greater concentrations than short chain PFCAs (⩽6). This result suggests that consumer products are one of the important sources of long-chain PFCAs in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  3. High-­Performance Carbon Molecular Sieve Gas Separation Membranes Based on a Carbon-­Rich Intrinsically Microporous Polyimide Precursor

    KAUST Repository

    Hazazi, Khalid

    2018-01-01

    of the polyimide precursor using a well-defined heating protocol in a horizontal tube furnace up to 1000 °C. A nitrogen purge was kept inside the furnace to remove all the evolved by-products as the precursor started to decompose and carbonize. The microstructures

  4. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  5. Method for the preparation of carbon fiber from polyolefin fiber precursor

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  6. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan; Xie, Yue-Feng; Tang, Hao

    2014-02-15

    Water pollution by wastewater discharge can cause the problem of disinfection byproducts (DBPs) in drinking water supply. In this study, DBP formation characteristics of soluble microbial products (SMPs) as the main products of wastewater organic biodegradation were investigated. The results show that SMPs can act as DBP precursors in simulated wastewater biodegradation process. Under the experimental conditions, stabilized SMPs had DBPFP (DBP formation potential) yield of around 5.6 μmol mmol(-1)-DOC (dissolved organic carbon) and DBP speciation profile different from that of the conventional precursor, natural organic matter (NOM). SMPs contained polysaccharides, proteins, and humic-like substances, and the latter two groups can act as reactive DBP precursors. SMP fraction with molecular weight of water treatment processes, more efforts are needed to control wastewater-derived DBP problem in water resource management. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.

    Science.gov (United States)

    Nabais, J M Valente; Gomes, J A; Suhas; Carrott, P J M; Laginhas, C; Roman, S

    2009-08-15

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m(2)g(-1) and pore volume 0.5 cm(3)g(-1). The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 degrees C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g(-1) for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the pi-pi dispersion interaction between the phenol aromatic ring and the delocalised pi electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  8. Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties

    International Nuclear Information System (INIS)

    Valente Nabais, J.M.; Gomes, J.A.; Suhas; Carrott, P.J.M.; Laginhas, C.; Roman, S.

    2009-01-01

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m 2 g -1 and pore volume 0.5 cm 3 g -1 . The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 deg. C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g -1 for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the π-π dispersion interaction between the phenol aromatic ring and the delocalised π electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  9. Effect of precursors on flavonoid production by Hydrocotyle ...

    African Journals Online (AJOL)

    Callus tissue of Hydrocotyle bonariensis was initiated from the leaf of H. bonariensis treated with 2 mg/l of 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg/l kinetin. The culture was kept at 25°C, under light (cool white fluorescent tubes, 1200 lux). To optimize the precursors to increase the production of flavonoid, different ...

  10. Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal.

    Science.gov (United States)

    Rubio, Begoña; Izquierdo, M Teresa; Mayoral, M Carmen; Bona, M Teresa; Andres, Jose M

    2007-05-08

    The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900 degrees C in order to develop porosity onto the sample. Characterization of samples was performed by several techniques with a main objective: to follow the mineral matter content, composition and distribution on the samples in order to better understand how to remove it from unburnt carbon in fly ashes. To study the use of this unburnt carbon as a precursor for the preparation of activated carbons for gas cleaning, the NO removal by ammonia using activated carbon as a catalyst at low temperature was performed. Results show a good performance of activated carbon in this reaction that is in relationship with BET surface area.

  11. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli

    DEFF Research Database (Denmark)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    2017-01-01

    ). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate...

  12. Preparation and Characterization of Various Activated Carbons Derived From Mixed Precursors Using Phosphoric Acid

    International Nuclear Information System (INIS)

    Daifullah, A.A.M.; Sharaf El-Deen, S.E.A.; Elkhalafawy, A.; Shehata, F.A.; Mahmoud, W.H.

    2008-01-01

    Rice straw (RS) and rice husk (RH), a low-cost agricultural by-products, have been used as a mixed precursor (i.e., RS mixed with RH in 1:1; 1:3 and 3:1 ratios) for the production of novel carbons using phosphoric acid as chemical activation. The raw materials were impregnated with 50% and 70% H 3 PO 4 followed by activation at 500 degree C. The latter proved to be the most effective in producing active carbon with good adsorptive capacity. The resulting carbons were characterized by elemental analysis, infrared spectroscopy, density, SEM and S BET . In general, the resulting carbons showed reasonable surface areas with mainly micropore structure. The adsorption capacity was demonstrated by the isotherms of methylene blue (MB), phenol and iodine from aqueous solution. The adsorption data was found to conform with the Langmuir equation with the concentration range studied, and the monolayer coverage was determined for each of the samples. It was found that surface area is mainly attributed to micropore volume so that phenol adsorption and iodine number correspond well with surface area determined by nitrogen adsorption

  13. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Rober [ORNL; Paulauskas, Felix [ORNL; Naskar, Amit [ORNL; Kaufman, Michael [ORNL; Yarborough, Ken [ORNL; Derstine, Chris [The Dow Chemical Company

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  14. Properties of carbon nano-tubes-Cf/SiC composite by precursor infiltration and pyrolysis process

    International Nuclear Information System (INIS)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui; Sun, Ke

    2011-01-01

    Research highlights: → Carbon nanotubes (CNTs) introduced into carbon fiber reinforced silicon carbide matrix (C f /SiC) composite via the infiltration slurry. → We quantitatively investigate the effects of small quantity CNTs on flexural strength, fracture toughness and RT thermal conductivity of 3D C f /SiC composite. → We combine the advantages of commercial grade CNTs and 3D C f /SiC composite structure with a simple process; provide industry production basis for this composite. -- Abstract: Carbon nanotubes (CNTs) were introduced into the precursor infiltration and pyrolysis (PIP) carbon fiber reinforced silicon carbide matrix (C f /SiC) composite via the infiltration slurry. The weight fraction of CNTs in the composite was 0.765 per mille . The fiber-matrix interface coating was prepared through chemical vapor deposition (CVD) process using methyltrichlorosilane (MTS). Effects of the CNTs on mechanical and thermal properties of the composite were evaluated by three-point bending test, single-edge notched beam (SENB) test, and laser flash method. Attributed to the introduction of the small quantity of CNTs, flexural strength and fracture toughness of the C f /SiC composite both increased by 25%, and thermal conductivity at room temperature increased by 30%.

  15. Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon.

    Science.gov (United States)

    Xue, Runmiao; Donovan, Ariel; Zhang, Haiting; Ma, Yinfa; Adams, Craig; Yang, John; Hua, Bin; Inniss, Enos; Eichholz, Todd; Shi, Honglan

    2018-02-01

    When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. Copyright © 2017. Published by Elsevier B.V.

  16. Precursors and metabolic pathway for guaiacol production by Alicyclobacillus acidoterrestris.

    Science.gov (United States)

    Cai, Rui; Yuan, Yahong; Wang, Zhouli; Guo, Chunfeng; Liu, Bin; Liu, Laping; Wang, Yutang; Yue, Tianli

    2015-12-02

    Alicyclobacillus acidoterrestris has recently received much attention due to its implication in the spoilage of pasteurized fruit juices, which was manifested by the production of guaiacol. Vanillic acid and vanillin have been accepted as the biochemical precursors of guaiacol in fruit juices. The purpose of this study was to try to find other precursors and elucidate details about the conversion of vanillic acid and vanillin to guaiacol by A. acidoterrestris. Four potential substrates including ferulic acid, catechol, phenylalanine and tyrosine were analyzed, but they could not be metabolized to guaiacol by all the thirty A. acidoterrestris strains tested. Resting cell studies and enzyme assays demonstrated that vanillin was reduced to vanillyl alcohol by NADPH-dependent vanillin reductase and oxidized to vanillic acid by NAD(P)(+)-dependent vanillin dehydrogenases in A. acidoterrestris DSM 3923. Vanillic acid underwent a nonoxidative decarboxylation to guaiacol. The reversible vanillic acid decarboxylase involved was oxygen insensitive and pyridine nucleotide-independent. Copyright © 2015. Published by Elsevier B.V.

  17. Formation and transformation of a short range ordered iron carbonate precursor

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas

    2015-01-01

    (II) with varying pH produced broad peaks in X-ray diffraction and contained dominantly Fe and CO3 when probed with X-ray photoelectron spectroscopy. Reduced pair distribution function (PDF) analysis shows only peaks corresponding to interatomic distances below 15Å, reflecting a material with no long range...... structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase...... formed. Its coherent scattering domains determined from PDF analysis are slightly larger than for amorphous calcium carbonate, suggesting that the precursor could be nanocrystalline. Replica exchange molecular dynamics simulations of Fe-carbonate polynuclear complexes yield PDF peak positions that agree...

  18. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  19. Surface structural evolvement in the conversion of polyacrylonitrile precursors to carbon fibers

    International Nuclear Information System (INIS)

    Qian, Xin; Zou, Ruifen; OuYang, Qin; Wang, Xuefei; Zhang, Yonggang

    2015-01-01

    Highlights: • The characteristic striated topography of PAN precursors resulted from the wet spinning process could pass down to carbon fibers. • The ridges and grooves monitored became much more well-defined after the thermo-oxidation. • Both the depth and the width of longitudinal grooves decreased after the carbonization. • Carbon, nitrogen, oxygen and silicon were the governing elements on the fiber surface. - Abstract: Surface structural evolvement in the conversion of polyacrylonitrile (PAN) precursors to carbon fibers was investigated through scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). SEM results showed that the characteristic striated topography of PAN precursors resulted from the wet spinning process could pass down to carbon fibers. The fiber diameter gradually decreased from 11.3 μm to 5.5 μm and the corresponding density increased from 1.18 g/cm 3 to 1.80 g/cm 3 in the conversion of PAN precursors to carbon fibers. The ridges and grooves monitored by AFM became much more well-defined after the thermo-oxidation. However, the original longitudinal grooves were destroyed and both the depth and the width of longitudinal grooves decreased after the carbonization. XPS results revealed that carbon, nitrogen, oxygen and silicon were the governing elements on the fiber surface. The −C−C functional groups was the dominant groups and the relative contents of −C=O and −COO groups gradually increased in the process of thermo-oxidation and carbonization

  20. Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors.

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. Y.; Xiao, Z.-L.; Wang, H. H.; Lin, X.-M.; Trasobares, S.; Cook, R. E.; Richard J. Daley Coll.; Northern Illinois Univ.; Univ. de Cadiz

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  1. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    Directory of Open Access Journals (Sweden)

    Catherine Y. Han

    2009-01-01

    Full Text Available We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  2. Process Optimization and Emperical Modelling for Electrospun Polyacrylonitrile (PAN) Nanofiber Precursor of Carbon nanofibers

    NARCIS (Netherlands)

    Gu, S.Y.; Gu, S.; Ren, J.; Vancso, Gyula J.

    2005-01-01

    Ultrafine fibers were spun from polyacrylonitrile (PAN)/N,N-dimethyl formamide (DMF) solution as a precursor of carbon nanofibers using a homemade electrospinning set-up. Fibers with diameter ranging from 200 nm to 1200 nm were obtained. Morphology of fibers and distribution of fiber diameter were

  3. AN INITIAL EVALUATION OF POLY(VINYLACETYLENE) AS A CARBON-FIBER PRECURSOR

    NARCIS (Netherlands)

    MAVINKURVE, A; VISSER, S; PENNINGS, AJ

    1995-01-01

    Poly(vinylacetylene) obtained by the selective polymerization of monovinylacetylene through the vinyl group has been investigated for its use as an alternative precursor for carbon fibers. The low yield of char obtained on pyrolysis of the polymer in an inert atmosphere was improved dramatically by

  4. Polyazido Pyrimidines: High Energy Compounds and Precursors to Carbon Nanotubes (PREPRINT)

    National Research Council Canada - National Science Library

    Ye, Chengfeng; Gao, Haoxiang; Twamley, Brendan; Shreeve, Jean'ne M; Drake, Gregory W; Boatz, Jerry A

    2006-01-01

    ...). The compound 4,4',6,6'-tetra(azido)azo-1,3,5-triazine (2), has a heat of formation of 2171 (6164 kJ kg -1). Recently it was demonstrated that 1 and 4 were good precursors to nano carbon nitride materials...

  5. Metal-doped single-walled carbon nanotubes and production thereof

    Science.gov (United States)

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  6. Spider silk MASP1 and MASP2 proteins as carbon fiber precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Randolph V [Utah State Univ., Logan, UT (United States)

    2017-06-14

    The objective of this project is to develop an unconventional non-petroleum based carbon fiber precursor which has the potential to be produced in high yield and quantities. Methods will be developed to produce pilot-scale quantities of fibers from spider silk proteins with mechanical properties at least 75% that of the natural dragline silk fibers in tensile strength and elongations of less than 5%. The precursor fibers will be converted to carbon fibers, with a goal of >250Ksi strength and 1-2% elongation. Cost analysis will be performed and the process optimized. Task 1: Subtask 1. Protein production: We exceeded the go/ no go milestone of 1.0g/L of one of the spider silk protein (MSp2) purified last FY and have now increased from 5L to 500L fermentations. We have made a series of changes to the purification protocol from the initial report last FY. These led to a reduction in the time needed for the purification and reduced the purification costs by nearly 90%. Subtask 2. Fiber spinning: The major focus has been to produce more material to send 24 fiber thread to ONRL. We are still developing the methodology to successfully spin 24 fiber yarns. This involves both the spinning dope solutions as well as the methods to keep the fibers from fusing during the post spin stretch. The second area of focus has been to standardize the spin dopes for making the fibers. We now know that the conductivity (indicative of salt remaining with the protein after purification) is an important factor in successful spinning as is the pH. We now know that we need to be below 600 uS conductivity and that the most effective pH is protein dependent. Subtask 3. Silkworm silk: We have found the transgenic silkworms made using gene replacement at the fibroin light chain instead of heavy chain as we did previously have a higher tensile strength. See figures below showing the curve for the top end of the cocoon fibers. This tensile strength is the same as the average for spider dragline silk

  7. Preparation of activated carbon fabrics from cotton fabric precursor

    Science.gov (United States)

    Salehi, R.; Dadashian, F.; Abedi, M.

    2017-10-01

    The preparation of activated carbon fabrics (ACFs) from cotton fabric was performed by chemical activation with phosphoric acid (H3PO4). The operation conditions for obtaining the ACFs with the highest the adsorption capacity and process yield, proposed. Optimized conditions were: impregnation ratio of 2, the rate of temperature rising of 7.5 °C min-1, the activation temperature of 500 °C and the activation time of 30 min. The ACFs produced under optimized conditions was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The surface area and pore volume of carbon nanostructures was characterized by BET nitrogen adsorption isotherm at 77 °K. The pore size distribution calculated from the desorption branch according to BJH method. The iodine number of the prepared ACFs was determined by titration at 30 °C based on the ASTM D4607-94. The results showed the improvement of porous structure, fabric shape, surface area (690 m2/g), total pore volume (0.3216 cm3/g), and well-preserved fibers integrity.

  8. Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon.

    Science.gov (United States)

    Hanigan, David; Zhang, Jinwei; Herckes, Pierre; Krasner, Stuart W; Chen, Chao; Westerhoff, Paul

    2012-11-20

    Activated carbon (AC) has been shown to remove precursors of halogenated disinfection byproducts. Granular and powdered activated carbon (GAC, PAC) were investigated for their potential to adsorb N-nitrosodimethylamine (NDMA) precursors from blends of river water and effluent from a wastewater treatment plant (WWTP). At bench scale, waters were exposed to lignite or bituminous AC, either as PAC in bottle point experiments or as GAC in rapid small-scale column tests (RSSCTs). NDMA formation potential (FP) was used as a surrogate for precursor removal. NDMA FP was reduced by 37, 59, and 91% with 3, 8, and 75 mg/L of one PAC, respectively, with a 4-h contact time. In RSSCTs and in full-scale GAC contactors, NDMA FP removal always exceeded that of the bulk dissolved organic carbon (DOC) and UV absorbance at 254 nm. For example, whereas DOC breakthrough exceeded 90% of its influent concentration after 10,000 bed volumes of operation in an RSSCT, NDMA FP was less than 40% of influent concentration after the same bed life of the GAC. At full or pilot scale, high NDMA FP reduction ranging from >60 to >90% was achieved across GAC contactors, dependent upon the GAC bed life and/or use of a preoxidant (chlorine or ozone). In all experiments, NDMA formation was not reduced to zero, which suggests that although some precursors are strongly sorbed, others are not. This is among the first studies to show that AC is capable of adsorbing NDMA precursors, but further research is needed to better understand NDMA precursor chemical properties (e.g., hydrophobicity, molecular size) and evaluate how best to incorporate this finding into full-scale designs and practice.

  9. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption.

    Science.gov (United States)

    Parker, Mango; Capone, Dimitra L; Francis, I Leigh; Herderich, Markus J

    2018-03-14

    Pioneering investigations into precursors of fruity and floral flavors established the importance of terpenoid and C 13 -norisoprenoid glycosides to the flavor of aromatic wines. Nowadays flavor precursors in grapes and wine are known to be structurally diverse, encompassing glycosides, amino acid conjugates, odorless volatiles, hydroxycinnamic acids, and many others. Flavor precursors mainly originate in the grape berry but also from oak or other materials involved in winemaking. Flavors are released from precursors during crushing and subsequent production steps by enzymatic and nonenzymatic transformations, via microbial glycosidases, esterases, C-S lyases, and decarboxylases, and through acid-catalyzed hydrolysis and chemical rearrangements. Flavors can also be liberated from glycosides and amino acid conjugates by oral microbiota. Hence, it is increasingly likely that flavor precursors contribute to retronasal aroma formation through in-mouth release during consumption, prompting a shift in focus from identifying aroma precursors in grapes to understanding aroma precursors present in bottled wine.

  10. Method for production of carbon nanofiber mat or carbon paper

    Science.gov (United States)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  11. Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors

    International Nuclear Information System (INIS)

    Gan, Xin; Lv, Ruitao; Bai, Junfei; Zhang, Zexia; Wei, Jinquan; Huang, Zheng-Hong; Zhu, Hongwei; Kang, Feiyu; Terrones, Mauricio

    2015-01-01

    Large-area (e.g. centimeter size) graphene sheets are usually synthesized via pyrolysis of gaseous carbon precursors (e.g. methane) on metal substrates like Cu using chemical vapor deposition (CVD), but the presence of grain boundaries and the residual polymers during transfer deteriorates significantly the properties of the CVD graphene. If carbon nanotubes (CNTs) can be covalently bonded to graphene, the hybrid system could possess excellent electrical conductivity, transparency and mechanical strength. In this work, conducting and transparent CNT–graphene hybrid films were synthesized by a facile solid precursor pyrolysis method. Furthermore, the synthesized CNT–graphene hybrid films display enhanced photovoltaic conversion efficiency when compared to devices based on CNT membranes or graphene sheets. Upon chemical doping, the graphene–CNT/Si solar cells reveal power conversion efficiencies up to 8.50%. (paper)

  12. Reducing carbon dioxide to products

    Science.gov (United States)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  13. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  14. New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Nunez, G., E-mail: galonso@cnyn.unam.mx; Garza, L. Morales de la; Rogel-Hernandez, E.; Reynoso, E. [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia (Mexico); Licea-Claverie, A.; Felix-Navarro, R. M. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion (Mexico); Berhault, G. [UMR 5256 CNRS-Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon (France); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados S. C. (Mexico)

    2011-09-15

    New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl{sub 4}, (NH{sub 4}){sub 2}PtCl{sub 6}, (NH{sub 4}){sub 2}PdCl{sub 6}, or (NH{sub 4}){sub 3}RhCl{sub 6} with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA){sub n}Me{sub x}Cl{sub y} salts (with Me = Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.

  15. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  16. Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors.

    Directory of Open Access Journals (Sweden)

    Brendan T Higgins

    Full Text Available Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23-737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.

  17. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    Science.gov (United States)

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    Science.gov (United States)

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  19. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  20. Methods for conversion of lignocellulosic-derived products to transportation fuel precursors

    Science.gov (United States)

    Lilga, Michael A.; Padmaperuma, Asanga B.

    2017-10-03

    Methods are disclosed for converting a biomass-derived product containing levulinic acid and/or gamma-valerolactone to a transportation fuel precursor product containing diesel like hydrocarbons. These methods are expected to produce fuel products at a reduced cost relative to conventional approaches.

  1. Minimizing activated carbons production cost

    International Nuclear Information System (INIS)

    Stavropoulos, G.G.; Zabaniotou, A.A.

    2009-01-01

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  2. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  3. Disinfection by-products/precursor control using an innovative treatment process -- high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Sawal, K.; Millington, B.; Slifker, R.A.; Cooper, W.J.; Nickelsen, M.G.; Kurucz, C.N.; Waite, T.D.

    1993-01-01

    When waters containing naturally occurring humic substances, precursors, are chlorinated, reaction (disinfection) by-products (DBPs) that may compromise the chemical water quality of the drinking water are formed. Two options exist for the treatment of THMs and other DBPs, removal of precursor material prior to chlorination, or destruction of the by-products once they are formed. The authors have initiated a study using an innovative process, high energy electron beam irradiation, as an alternative treatment for the destruction of toxic organic compounds. Preliminary studies indicated that the process would also be effective in the removal of precursors. An added advantage of this process is that is would serve as a primary disinfectant, destroying any toxic compounds in the source water and may assist in the removal of algae and cyanobacteria toxins. This paper discusses studies in precursor removal and control of THMs

  4. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods

    Science.gov (United States)

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2012-12-04

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  5. Synthesis of hydroxyapatite with the use of calcium carbonate as of the biological precursor

    International Nuclear Information System (INIS)

    Aguilar, M.S.; Di Lello, B.C.; Queiroz, F.; Campos, N.C.; Campos, J.B.

    2014-01-01

    This work describes the synthesis of hydroxyapatite from calcium from biological materials such as shells carbonate. In the syntheses performed, the calcium carbonate of biological origin was used as the precursor and through a precipitation reaction with phosphoric acid, was converted into calcium hydroxide. Sequentially, the precipitate was aged, filtered, washed, dried and calcined, and then transformed into hydroxyapatite. The characterization of the powders was performed by X-DR (X-ray diffraction) and SEM (scanning electron microscopy). DR-X as determined hydroxyapatite calcium phosphate phase calcium. SEM revealed a morphology of finely divided particles. The method B.E.T. showed values of specific area and volume of micropores consistent with the literature. The results of the characterizations proved feasible to use for obtaining biological hydroxyapatite materials used in the reaction conditions.(author)

  6. Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit K.; Ozcan, Soydan; Eberle, Claude C.; Abdallah, Mohamed Gabr; Mackiewicz, Ludtka Gail; Ludtka, Gerard Michael; Paulauskas, Felix Leonard; Rivard, John Daniel Kennedy

    2017-08-08

    Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.

  7. Precursors of nitrogenous disinfection by-products in drinking water--A critical review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tom [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Templeton, Michael R.; Graham, Nigel [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The proportion of N-DBP formation attributable to specific precursors was calculated. Black-Right-Pointing-Pointer Precursor concentrations are typically insufficient to account for observed N-DBP formation, except CNX and NDMA. Black-Right-Pointing-Pointer Amino acid precursors are easier to remove during water treatment than suggested by laboratory studies. - Abstract: In recent years research into the formation of nitrogenous disinfection by-products (N-DBPs) in drinking water - including N-nitrosodimethylamine (NDMA), the haloacetonitriles (HANs), haloacetamides (HAcAms), cyanogen halides (CNX) and halonitromethanes (HNMs) - has proliferated. This is partly due to their high reported toxicity of N-DBPs. In this review paper information about the formation yields of N-DBPs from model precursors, and about environmental precursor occurrence, has been employed to assess the amount of N-DBP formation that is attributable to known precursors. It was calculated that for HANs and HAcAms, the concentrations of known precursors - mainly free amino acids are insufficient to account for the observed concentrations of these N-DBP groups. However, at least in some waters, a significant proportion of CNX and NDMA formation can be explained by known precursors. Identified N-DBP precursors tend to be of low molecular weight and low electrostatic charge relative to bulk natural organic matter (NOM). This makes them recalcitrant to removal by water treatment processes, notably coagulation, as confirmed by a number of bench-scale studies. However, amino acids have been found to be easier to remove during water treatment than would be suggested by the known molecular properties of the individual free amino acids.

  8. Carbon footprinting of electronic products

    International Nuclear Information System (INIS)

    Vasan, Arvind; Sood, Bhanu; Pecht, Michael

    2014-01-01

    Highlights: • Challenges in adopting existing CF standards for electronic products are discussed. • Carbon footprint of electronic products is underestimated using existing standards. • Multipronged approach is presented to overcome the identified challenges. • Multipronged approach demonstrated on commercial and military grade DC–DC converter system. - Abstract: In order to mitigate the effects of global warming, companies are being compelled by governments, investors, and customers to control their greenhouse gas (GHG) emissions. Similar to the European Union’s legislation on the airline industry, legislation is expected to require the electronics industry to assess their product’s carbon footprint before sale or use, as the electronics industry’s contribution to global GHG emissions is comparable to the airline industry’s contribution. Thus, it is necessary for members of the electronics industry to assess their current GHG emission rates and identify methods to reduce environmental impacts. Organizations use Carbon Footprint (CF) analysis methods to identify and quantify the GHG emissions associated with the life cycle stages of their product or services. This paper discusses the prevailing methods used by organizations to estimate the CF of their electronics products and identifies the challenges faced by the electronics industry when adopting these methods in an environment of decreasing product development cycles with complex and diffuse supply chains. We find that, as a result of the inconsistencies arising from the system boundary selection methods and databases, the use of outdated LCA approaches, and the lack of supplier’s emissions-related data, the CFs of electronic products are typically underestimated. To address these challenges, we present a comprehensive approach to the carbon footprinting of electronic products that involves the use of product-group-oriented standards, hybrid life cycle assessment techniques, and the

  9. Influence of oxidation process on the adsorption capacity of activated carbons from lignocellulosic precursors

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, P.A.M.; Laginhas, C.; Custodio, F.; Nabais, J.M.V.; Carrott, P.J.M.; Carrott, M.M.L. Ribeiro [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    A set of activated carbon materials non-oxidised and oxidised, were successfully prepared from two different lignocellulosic precursors, almond shell and vine shoot, by physical activation with carbon dioxide and posterior oxidation with nitric acid. All samples were characterised in relation to their structural properties and chemical composition, by different techniques, namely nitrogen adsorption at 77 K, elemental analysis (C, H, N, O and S), point of zero charge (PZC) and FTIR. A judicious choice was made to obtain carbon materials with similar structural properties (apparent BET surface area {proportional_to} 850-950 m{sup 2}g{sup -1}, micropore volume {proportional_to} 0.4 cm{sup 3}g{sup -1}, mean pore width {proportional_to} 1.2 nm and external surface area {proportional_to} 14-26 m{sup 2}g{sup -1}). After their characterisation, these microporous activated carbons were also tested for the adsorption of phenolic compounds (p-nitrophenol and phenol) in the liquid phase at room temperature. The performance in liquid phase was correlated with their structural and chemical properties. The oxidation had a major impact at a chemical level but only a moderate modification of the porous structure of the samples. The Langmuir and Freundlich equations were applied to the experimental adsorption isotherms of phenolic compounds with good agreement for the different estimated parameters. (author)

  10. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ian, E-mail: ian.holt@rjah.nhs.uk [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Gestmann, Ingo, E-mail: Ingo.Gestmann@fei.com [FEI Europe B.V., Achtseweg Noord 5, 5651 Eindhoven (Netherlands); Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Glyndwr University, Plas Coch, Mold Rd, Wrexham LL11 2AW (United Kingdom)

    2013-10-15

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth.

  11. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    International Nuclear Information System (INIS)

    Holt, Ian; Gestmann, Ingo; Wright, Andrew C.

    2013-01-01

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth

  12. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.

    Science.gov (United States)

    Izquierdo, M T; Rubio, B

    2008-06-30

    Carbon-enriched coal fly ash was evaluated in this work as a low-cost adsorbent for SO2 removal from stack gases. The unburned carbon in coal fly ash was concentrated by mechanical sieving and vegetal oil agglomeration. The carbon concentrates were activated with steam at 900 degrees C in order to develop porosity onto the samples. The performance of these samples in the SO2 abatement was tested in the following conditions: 100 degrees C, 1000 ppmv SO2, 5% O2, 6% water vapor. A good SO2 removal capacity was shown by some of the studied samples that can be related to their textural properties. Cycles of SO2 adsorption/regeneration were carried out in order to evaluate the possibility of thermal regeneration and re-use of these carbons. Regeneration of the exhausted carbons was carried out at 400 degrees C of temperature and a flow of 25 ml/min of Ar. After each cycle, the SO2 removal capacity of the sample decreases.

  13. [Nitrates and nitrites in meat products--nitrosamines precursors].

    Science.gov (United States)

    Avasilcăi, Liliana; Cuciureanu, Rodica

    2011-01-01

    To determine the content in nitrates and nitrites and the formation of two nitrosamines (N-nitrosodimethylamine--NDMA, and N-nitrosodiethylaamine--NDEA) in samples of chicken ham, dry Banat salami, dry French salami, traditional Romania sausages, and pork pastrami. Nitrites were determined by spectrophotometry with Peter-Griess reagent, and nitrates by the same method after reduction to nitrites with cadmium powder. High performance liquid chromatography with UV detection was used to determine nitrosamines. The initial concentration of nitrates, nitrites, NDMA and NDEA in the samples ranged as follows: 14.10-60.40 mg NO3/kg, 2.70-26.70 mg NO2/kg, from non-detectable to 0.90 microg NDMA/kg, and from non-detectable to 0.27 microg NDEA/kg, respectively. After 28 days the concentrations were: 3.24-17.1 mg NO3/kg, 0.04 -1.87 mg NO2/kg, 0.8-29 microg NDMA/kg, and 11.6-61.9 microg NDEA/kg, respectively. The decreased nitrate and nitrite and increased NDMA and NDEA concentrations prove that in food products nitrosamines are formed due to residual nitrite during their preservation. The determination of nitrasamines revealed levels much above the admitted maximal concentration for these food products.

  14. Poly(borosiloxanes as precursors for carbon fiber ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Renato Luiz Siqueira

    2007-06-01

    Full Text Available Ceramic matrix composites (CMCs, constituted of a silicon boron oxycarbide (SiBCO matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS or poly(borosiloxane (PBS matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence of Si-O-B bonds at 880 cm-1, due to the incorporation of the crosslinker trigonal units of BO3 in the polymeric network. X ray diffraction analyses exhibited an amorphous character of the resulting polymer-derived ceramics obtained by pyrolysis up to 1000 °C under inert atmosphere. The C/SiBCO composites showed better thermal stability than the C/SiOC materials. In addition, good adhesion between the carbon fiber and the ceramic phase was observed by SEM microscopy

  15. The effect of synthesis time on graphene growth from palm oil as green carbon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Salifairus, M. J., E-mail: salifairus-mj85@yahoo.co.uk [NANO-SciTech Centre (NST), Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-ElecTronic Centre - Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Hamid, S. B. Abd [Nanotechnology and Catalysis Research Centre (NANOCAT) Universiti Malaya - UM, 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A. H.; Khan, Haseeb A. [Department of Biochemistry, College of Science King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M., E-mail: nanouitm@gmail.com [NANO-SciTech Centre (NST), Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-ElecTronic Centre - Faculty of Electrical Engineering, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    Graphene is the new material that arises after carbon nanotubes (CNTs) era and has extraordinary optical, electronic and mechanical properties compared to CNTs. The 2D graphene is the sp{sup 2} carbon allotropes compared to other dimensionality. It also can be in three forms that are zero-dimensional, one-dimensional or three-dimensional. The different dimensionality also called fullerenes, nanotubes and graphite. Therefore, the graphene is known as centre potential materials in expanding research area than others ever. The 2 cm × 2 cm silicon wafer was seeded with nickel (Ni) at different thickness by using sputter coater. The palm oil, carbon source, was placed in the precursor furnace and the silicon was placed in the second furnace (deposition furnace). The palm oil will mix with Nitrogen gas was used as carrier gas in the CVD under certain temperature and pressure to undergo pyrolysis proses. The deposition temperature was set at 1000 °C. The deposition time varied from 3 minutes, 5 minutes and 7 minutes. The graphene was growth at ambient pressure in the CVD system. Electron microscopy and Raman Spectrometer revealed the structural properties and surface morphology of the grapheme on the substrate. The D and G band appear approximately at 1350 cm{sup −1} and 1850 cm{sup −1}. It can be concluded that the growth of graphene varies at different deposition time.

  16. Simple Microwave-Assisted Synthesis of Carbon Nanotubes Using Polyethylene as Carbon Precursor

    Directory of Open Access Journals (Sweden)

    N. Kure

    2017-01-01

    Full Text Available In this work, a quick and effective method to synthesize carbon nanotubes (CNTs is reported; a commercial microwave oven of 600 W at 2.45 GHz was utilized to synthesize CNTs from plasma catalytic decomposition of polyethylene. Polyethylene and silicon substrate coated with iron (III nitrate were placed in the reaction chamber to form the synthesis stock. The CNTs were synthesized at 750°C under atmospheric pressure of 0.81 mbar. Raman spectroscopy and field emission scanning electron microscope revealed the quality and entangled bundles of mixed CNTs from which the diameters of the CNTs were calculated to be between 1.03 and 25.00 nm. High resolution transmission electron microscope further showed that the CNTs obtained by this method are graphitized. Energy dispersive X-ray analysis and thermogravimetric analysis revealed above 98% carbon purity.

  17. Biochar production for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  18. Glucose homeostasis in children with falciparum malaria: precursor supply limits gluconeogenesis and glucose production

    NARCIS (Netherlands)

    Dekker, E.; Hellerstein, M. K.; Romijn, J. A.; Neese, R. A.; Peshu, N.; Endert, E.; Marsh, K.; Sauerwein, H. P.

    1997-01-01

    To evaluate glucose kinetics in children with falciparum malaria, basal glucose production and gluconeogenesis and an estimate of the flux of the gluconeogenic precursors were measured in Kenyan children with uncomplicated falciparum malaria before (n = 11) and during infusion of alanine (1.5

  19. "Design and application of a data-independent precursor and product ion repository."

    NARCIS (Netherlands)

    Thalassinos, K.; Vissers, J.P.; Tenzer, S.; Levin, Y.; Thompson, J.W.; Daniel, D.; Mann, D.; Delong, M.R.; Moseley, M.A.; America, A.H.P.; Ottens, A.K.; Cavey, G.S.; Efstathiou, G.; Scrivens, J.H.; Langridge, J.I.; Geromanos, S.J.

    2012-01-01

    The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments

  20. Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol-formaldehyde precursor microspheres and applications in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haijiao, E-mail: seaboyfang@163.com [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China); Xu Huifang, E-mail: xuhf@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 (China); Zhao Can [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Resorcinol-formaldehyde hollow particles could be obtained by inverse suspension method. Black-Right-Pointing-Pointer The morphologies of RF carbon precursor particles could be controlled by adjusting the pH values of the RF precursor. Black-Right-Pointing-Pointer The prepared carbon hollow particles, which derived from resorcinol-formaldehyde, exhibited microporous properties. Black-Right-Pointing-Pointer The RF carbon microcapsules displayed excellent power property and cycle durability. - Abstract: The morphology-controlled carbon hollow particles, derived from resorcinol-formaldehyde (RF) particles, were prepared by using an (oil phase) O/(water phase) W/(oil phase) O inverse-emulsion system which was formed by adding RF precursor (water phase) to n-hexane (oil phase) with Span-80 as surfactant and the following carbonization. This simple method led to the formation of various morphologies of RF carbon precursor particles such as hollow spheres, bowl-like hollow structures, microcapsules, or solid microspheres by adjusting the pH values of the RF precursor. The synthesized carbon particles exhibited porous characters with the surface area of 659 m{sup 2} g{sup -1} and the total pore volume of 0.44 cm{sup 3} g{sup -1}. Additionally, the electrochemical behavior of the typical RF carbon particles in lithium-ion batteries revealed that the RF carbon microcapsules displayed a high initial discharge capacity of 1059 mAh g{sup -1} and stabilized at about 330 mAh g{sup -1}, indicating its excellent power property and cycle durability.

  1. Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Pingping He

    2018-04-01

    Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.

  2. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2011-01-01

    Full Text Available Abstract Practical application of aligned carbon nanotubes (ACNTs would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  3. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents.

    Science.gov (United States)

    Witkiewicz, Zygfryd; Neffe, Slawomir; Sliwka, Ewa; Quagliano, Javier

    2018-09-03

    Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.

  4. Effect of temperature on the reaction pathway of calcium carbonate formation via precursor phases

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Konrad, Florian; Dietzel, Martin

    2016-04-01

    It has been earlier postulated that some biogenic and sedimentary calcium carbonate (CaCO3) minerals (e.g. calcite and aragonite) are secondary in origin and have originally formed via a metastable calcium carbonate precursor phase (e.g. amorphous CaCO3, [1-2]). Such formation pathways are likely affected by various physicochemical parameters including aqueous Mg and temperature. In an effort to improve our understanding on the formation mechanism of CaCO3 minerals, precipitation experiments were carried out by the addition of a 0.6 M (Ca,Mg)Cl2 solution at distinct Mg/Ca ratios (1/4 and 1/8) into a 1 M NaHCO3 solution under constant pH conditions(8.3 ±0.1). The formation of CaCO3 was systematically examined as a function of temperature (6, 12, 18 and 25 ±0.3° C). During the experimental runs mineral precipitation was monitored by in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. The results revealed two pathways of CaCO3 formation depending on the initial Mg/Ca ratio and temperature: (i) In experiments with a Mg/Ca ratio of 1/4 at ≤ 12° C as well as in experiments with a Mg/Ca ratio of 1/8 at ≤ 18° C, ikaite (CaCO3 6H2O) acts as a precursor phase for aragonite formation. (ii) In contrast higher temperatures induced the formation of Mg-rich amorphous CaCO3 (Mg-ACC) which was subsequently transformed to Mg-rich calcite. In situ Raman spectra showed that the transformation of Mg-ACC to Mg-calcite occurs at a higher rate (˜ 8 min) compared to that of ikaite to aragonite (> 2 h). Thus, the formation of aragonite rather than of Mg-calcite occurs due to the slower release of Ca2+and CO32- ions into the Mg-rich reactive solution during retarded ikaite dissolution. This behavior is generally consistent with the observation that calcite precipitation is inhibited at elevated aqueous Mg/Ca ratios. [1] Addadi L., Raz S. and Weiner S. (2003) Advanced Materials 15, 959-970. [2] Rodriguez-Blanco J. D

  5. Effects of Chemical Curing Temperature and Time on the Properties of Liquefied Wood based As-cured Precursors and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Junbo Shang

    2015-09-01

    Full Text Available Liquefied wood based as-cured precursors and carbon fibers prepared by different chemical curing processes were carried out to investigate the effects of curing temperature and time on the thermostability and microstructure of liquefied wood based precursors, the tensile strength of carbon fibers as well. The primary fibers can be converted into precursors with high performance by directly heating at target curing temperature. With the temperature and duration increasing, the numbers of methylene bonds in precursors increased, resulting in the enhancement of cross-linkages among molecular chains and then the improvement of thermostability of precursors. Carbon fibers prepared from as-cured precursors (curing temperature 95 oC, curing time 3h had the minimum value of the average interlayer spacing (d002, it also showed the highest tensile strength, almost 800 MPa, which can be classified as fibers of general grade.

  6. Precursor/product studies of macrophage synthesis of nitrite, nitrate and N-nitrosamines

    International Nuclear Information System (INIS)

    Iyengar, R.; Marletta, M.A.

    1987-01-01

    Previous experiments showed that nitrite, nitrate and N-nitrosamine synthesis was carried out by both stimulated macrophages (M phi) and a number of M phi cell lines. Here the authors report the precursor to NO 2 - , NO 3 - , and the source of the nitrosating agent. Previous kinetic studies established a time lag for NO 2 - /NO 3 - synthesis during which protein synthesis required for product formation occurred. Medium change after the protein synthesis phase showed that L-arginine was the only amino acid essential for the synthesis. Other precursors were homoarginine, arginine methyl ester, arginine infinity-hydroxamate, argininamide and the peptide arginine-aspartate. Glutamine, citrulline, ornithine, hydroxylamine and D-arginine were among some of the non-precursors. Canavanine though not a precursor inhibited arginine-derived NO 2 -/NO 3 - synthesis while D-arginine had no effect. When 15 N-arginine (guanido- 15 N 2 , 95%) was used, GC/MS results showed that all the NO 2 - /NO 3 - synthesized was derived exclusively from these two guanido nitrogens. Similar labeling experiments carried out in the presence of morpholine showed that the isotopic enrichment of N-nitrosomorpholine was the same as that of NO 2 - /NO 3 - synthesized, suggesting that the nitrosating agent is a common intermediate. In conclusion, NO 2 - /NO 3 - and N-nitrosomorpholine synthesis by stimulated macrophages is derived specifically from the two guanido nitrogens of arginine

  7. Functionalised Oximes: Emergent Precursors for Carbon-, Nitrogen- and Oxygen-Centred Radicals

    Directory of Open Access Journals (Sweden)

    John C. Walton

    2016-01-01

    Full Text Available Oxime derivatives are easily made, are non-hazardous and have long shelf lives. They contain weak N–O bonds that undergo homolytic scission, on appropriate thermal or photochemical stimulus, to initially release a pair of N- and O-centred radicals. This article reviews the use of these precursors for studying the structures, reactions and kinetics of the released radicals. Two classes have been exploited for radical generation; one comprises carbonyl oximes, principally oxime esters and amides, and the second comprises oxime ethers. Both classes release an iminyl radical together with an equal amount of a second oxygen-centred radical. The O-centred radicals derived from carbonyl oximes decarboxylate giving access to a variety of carbon-centred and nitrogen-centred species. Methods developed for homolytically dissociating the oxime derivatives include UV irradiation, conventional thermal and microwave heating. Photoredox catalytic methods succeed well with specially functionalised oximes and this aspect is also reviewed. Attention is also drawn to the key contributions made by EPR spectroscopy, aided by DFT computations, in elucidating the structures and dynamics of the transient intermediates.

  8. Domain growth of carbon nanotubes assisted by dewetting of thin catalyst precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Alok Kumar [Defence Materials and Stores R and D Establishment (DRDO), GT Road, Kanpur 208013 (India); Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016 (India); Sachan, Priyanka; Samanta, Chandan [Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016 (India); Mukhopadhyay, Kingsuk [Defence Materials and Stores R and D Establishment (DRDO), GT Road, Kanpur 208013 (India); Sharma, Ashutosh, E-mail: ashutos@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2014-01-01

    We explore self-organized dewetting of ultrathin films of a novel metal complex as a one step surface patterning method to create nanoislands of iron, using which spatially separated carbon nanostructures were synthesized. Dewetting of ultrathin metal complex films was induced by two different methods: liquid solvent exposure and thermal annealing to engender surface patterning. For thermal dewetting, thin films of the iron oleate complex were dewetted at high temperature. In the case of liquid solvent assisted dewetting, the metal complex, mixed with a sacrificial polymer (polystyrene) was spin coated as thin films (<40 nm) and then dewetted under an optimal solution mixture consisting of methyl ethyl ketone, acetone and water. The carrier polymer was then selectively removed to produce the iron metal islands. These metal islands were used for selective growth of discrete patches of multiwall CNTs and CNFs by a chemical vapor deposition (CVD) process. Solvent induced dewetting showed clear advantages over thermal dewetting owing to reduced size of catalyst domains formed by dewetting, an improved control over CNT growth as well as in its ability to immobilize the seed particles. The generic solution mediated dewetting and pattern generation in thin films of various catalytic precursors can thus be a powerful method for selective domain growth of a variety of functional nanomaterials.

  9. Structural characterization and frictional properties of carbon nanotube/alumina composites prepared by precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Go [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai 980-8577 (Japan); Fracture and Reliability Research Institute, Tohoku University, 6-6-11-707 Aza-Aoba, Aramaki, Aobaku, Sendai 980-8579 (Japan)], E-mail: gyamamoto@rift.mech.tohoku.ac.jp; Omori, Mamoru; Yokomizo, Kenji; Hashida, Toshiyuki [Fracture and Reliability Research Institute, Tohoku University, 6-6-11-707 Aza-Aoba, Aramaki, Aobaku, Sendai 980-8579 (Japan); Adachi, Koshi [Graduate School of Engineering, Tohoku University, 6-6-01 Aza-Aoba, Aramaki, Aobaku, Sendai 980-8579 (Japan)

    2008-02-25

    Multi-walled carbon nanotube (MWCNT)/Al{sub 2}O{sub 3} composites with MWCNTs content up to 10 mass% were prepared by precursor method. XRD analysis revealed that MWCNT/Al{sub 2}O{sub 3} composites were successfully synthesized by the dehydration of aluminum hydroxide-MWCNTs mixture at 1500 deg. C in vacuum. The steady-state friction coefficient ({mu}) of the composites decreased with increasing up to 4 mass% MWCNT and stayed constant ({mu} = 0.33) with further addition of MWCNT, which value was substantially lower than that of MWCNT-free monolithic Al{sub 2}O{sub 3} ({mu} = 0.57). Microstructural observations showed that resultant friction behavior may be related to the smearing of transferred film over the contact area, which was expected to permit easy shear and then help to achieve a lubricating effect during sliding. However, fracture property tests have shown that no improvement of the fracture strength and fracture toughness of the composites was achieved by addition of MWCNTs. It may be mainly due to the agglomeration of MWCNTs and the weak interface between MWCNTs and the Al{sub 2}O{sub 3} matrix.

  10. Structural characterization and frictional properties of carbon nanotube/alumina composites prepared by precursor method

    International Nuclear Information System (INIS)

    Yamamoto, Go; Omori, Mamoru; Yokomizo, Kenji; Hashida, Toshiyuki; Adachi, Koshi

    2008-01-01

    Multi-walled carbon nanotube (MWCNT)/Al 2 O 3 composites with MWCNTs content up to 10 mass% were prepared by precursor method. XRD analysis revealed that MWCNT/Al 2 O 3 composites were successfully synthesized by the dehydration of aluminum hydroxide-MWCNTs mixture at 1500 deg. C in vacuum. The steady-state friction coefficient (μ) of the composites decreased with increasing up to 4 mass% MWCNT and stayed constant (μ = 0.33) with further addition of MWCNT, which value was substantially lower than that of MWCNT-free monolithic Al 2 O 3 (μ = 0.57). Microstructural observations showed that resultant friction behavior may be related to the smearing of transferred film over the contact area, which was expected to permit easy shear and then help to achieve a lubricating effect during sliding. However, fracture property tests have shown that no improvement of the fracture strength and fracture toughness of the composites was achieved by addition of MWCNTs. It may be mainly due to the agglomeration of MWCNTs and the weak interface between MWCNTs and the Al 2 O 3 matrix

  11. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, A. Manuel [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Central Electrochemical Research Institute, Karaikudi 630006 (India); Kumar, T. Prem [Central Electrochemical Research Institute, Karaikudi 630006 (India); Ramesh, R. [Central Electrochemical Research Institute, Karaikudi 630006 (India); Thomas, Sabu [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560 (India); Jeong, Soo Kyung [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Nahm, Kee Suk [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of)]. E-mail: nahmks@chonbuk.ac.kr

    2006-08-25

    Disordered carbonaceous materials were synthesized by the pyrolysis of banana fibers treated with pore-forming substances such as ZnCl{sub 2} and KOH. X-ray diffraction studies indicated a carbon structure with a large number of disorganized single layer carbon sheets. Addition of porogenic agent led to remarkable changes in the structure and morphology of the carbonaceous products. The product obtained with ZnCl{sub 2} treatment gave first-cycle lithium insertion and de-insertion capacities of 3325 and 400 mAh g{sup -1}, respectively. Lower capacities only could be realized in the subsequent cycles, although the coulombic efficiency increased upon cycling, which in the 10th cycle was 95%.

  12. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries

    International Nuclear Information System (INIS)

    Stephan, A. Manuel; Kumar, T. Prem; Ramesh, R.; Thomas, Sabu; Jeong, Soo Kyung; Nahm, Kee Suk

    2006-01-01

    Disordered carbonaceous materials were synthesized by the pyrolysis of banana fibers treated with pore-forming substances such as ZnCl 2 and KOH. X-ray diffraction studies indicated a carbon structure with a large number of disorganized single layer carbon sheets. Addition of porogenic agent led to remarkable changes in the structure and morphology of the carbonaceous products. The product obtained with ZnCl 2 treatment gave first-cycle lithium insertion and de-insertion capacities of 3325 and 400 mAh g -1 , respectively. Lower capacities only could be realized in the subsequent cycles, although the coulombic efficiency increased upon cycling, which in the 10th cycle was 95%

  13. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, A K

    2014-02-01

    The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium.

  14. Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Borràs, S. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Kaufmann, A., E-mail: anton.kaufmann@klzh.ch [Official Food Control Authority, Fehrenstrasse 15, 8032 Zürich (Switzerland); Companyó, R. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain)

    2013-04-15

    Highlights: ► We are describing a technique to spot ions which are derived from each other. ► Single stage high resolution data is used. ► This “in silicon” technique is compared to conventional precursor scan. ► Some applications for this technique are presented. -- Abstract: Monitoring of common diagnostic fragments is essential for recognizing molecules which are members of a particular compound class. Up to now, unit resolving tandem quadrupole mass spectrometers, operating in the precursor ion scan mode, have been typically used to perform such analysis. By means of high-resolution mass spectrometry (HRMS) a much more sensitive and selective detection can be achieved. However, using a single-stage HRMS instrument, there is no unequivocal link to the corresponding precursor ion, since such instrumentation does not permit a previous precursor selection. Thus, to address this limitation, an in silico approach to locate precursor ions, based on diagnostic fragments, was developed. Implemented as an Excel macro, the algorithm rapidly assembles and surveys exact mass data to provide a list of feasible precursor candidates according to the correlation of the chromatographic peak shape profile and other additional filtering criteria (e.g. neutral losses and isotopes). The macro was tested with two families of veterinary drugs, sulfonamides and penicillins, which are known to yield diagnostic product ions when fragmented. Data sets obtained from different food matrices (fish and liver), both at high and low concentration of the target compounds, were investigated in order to evaluate the capabilities and limitations of the reported approach. Finally, other possible applications of this technique, such as the elucidation of elemental compositions based on product ions and corresponding neutral losses, were also presented and discussed.

  15. Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation

    International Nuclear Information System (INIS)

    Borràs, S.; Kaufmann, A.; Companyó, R.

    2013-01-01

    Highlights: ► We are describing a technique to spot ions which are derived from each other. ► Single stage high resolution data is used. ► This “in silicon” technique is compared to conventional precursor scan. ► Some applications for this technique are presented. -- Abstract: Monitoring of common diagnostic fragments is essential for recognizing molecules which are members of a particular compound class. Up to now, unit resolving tandem quadrupole mass spectrometers, operating in the precursor ion scan mode, have been typically used to perform such analysis. By means of high-resolution mass spectrometry (HRMS) a much more sensitive and selective detection can be achieved. However, using a single-stage HRMS instrument, there is no unequivocal link to the corresponding precursor ion, since such instrumentation does not permit a previous precursor selection. Thus, to address this limitation, an in silico approach to locate precursor ions, based on diagnostic fragments, was developed. Implemented as an Excel macro, the algorithm rapidly assembles and surveys exact mass data to provide a list of feasible precursor candidates according to the correlation of the chromatographic peak shape profile and other additional filtering criteria (e.g. neutral losses and isotopes). The macro was tested with two families of veterinary drugs, sulfonamides and penicillins, which are known to yield diagnostic product ions when fragmented. Data sets obtained from different food matrices (fish and liver), both at high and low concentration of the target compounds, were investigated in order to evaluate the capabilities and limitations of the reported approach. Finally, other possible applications of this technique, such as the elucidation of elemental compositions based on product ions and corresponding neutral losses, were also presented and discussed

  16. High-­Performance Carbon Molecular Sieve Gas Separation Membranes Based on a Carbon-­Rich Intrinsically Microporous Polyimide Precursor

    KAUST Repository

    Hazazi, Khalid

    2018-04-01

    The objective of this study was to investigate the transport properties and the microstructure of CMS membranes derived from a carbon-rich intrinsically microporous polyimide precursor. CMS membranes were prepared by a heat treatment of the polyimide precursor using a well-defined heating protocol in a horizontal tube furnace up to 1000 °C. A nitrogen purge was kept inside the furnace to remove all the evolved by-products as the precursor started to decompose and carbonize. The microstructures of the carbon molecular sieve membranes (CMSMs) were examined using wide-angle x-ray diffraction, Raman spectra, N2 adsorption and CO2 adsorption. The average interlayer spacing (d002) between the graphite plates was estimated using the data obtained by the WXRD. The average d002 decreased as a result of increasing the pyrolysis temperature; average d002 distances for CMS prepared at 700 and 1000 °C were estimated to be 0.40 to 0.38 nm, respectively. Raman spectra confirmed the progressive structural ordering as heat-treatment temperature increased. A substantial decrease in the intensity of the D band was observed as a function of pyrolysis temperature, indicating a decrease in the disordered structure. Graphitic structure and turbostratic carbon coexist in the as-prepared carbon membranes, of which the microcrystal size La and the stacking height Lc were increasing as a function of pyrolysis temperature. N2 adsorption showed a remarkable increase in the BET surface area as a function of pyrolysis temperature. BET surface areas for the pristine and CMSs prepared at 700 to 900 °C were in the range of 650 to 680 m2/g with a remarkable shift in the pore size distribution toward the ultra- microporous region. CO2 adsorption was used to estimate the surface area for pores with sizes of less than 1 nm. Surface areas were observed to increase from 350 m2/g at 500 °C to 857 m2/g at 800 °C, and then started dropping slightly from 857 to 650 m2/g at 800 to 1000 °C, respectively

  17. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex

    Science.gov (United States)

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  18. A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water.

    Science.gov (United States)

    Ohkouchi, Yumiko; Ly, Bich Thuy; Ishikawa, Suguru; Aoki, Yusuke; Echigo, Shinya; Itoh, Sadahiko

    2011-10-01

    In Japan, customers' concerns about chlorinous odour in drinking water have been increasing. One promising approach for reducing chlorinous odour is the minimization of residual chlorine in water distribution, which requires stricter control of organics to maintain biological stability in water supply systems. In this investigation, the levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water were surveyed to accumulate information on organics in terms of biological stability. In tap water samples purified through rapid sand filtration processes, the average AOC concentration was 174 microgC/L in winter and 60 microgC/L in summer. This difference seemed to reflect the seasonal changes of AOC in the natural aquatic environment. On the other hand, very little or no AOC could be removed after use of an ozonation-biological activated carbon (BAC) process. Especially in winter, waterworks should pay attention to BAC operating conditions to improve AOC removal. The storage of BAC effluent with residual chlorine at 0.05-0.15 mgCl2/L increased AOC drastically. This result indicated the possibility that abundant AOC precursors remaining in the finished water could contribute to newly AOC formation during water distribution with minimized residual chlorine. Combined amino acids, which remained at roughly equivalent to AOC in finished water, were identified as major AOC precursors. Prior to minimization of residual chlorine, enhancement of the removal abilities for both AOC and its precursors would be necessary.

  19. Product Distribution from Precursor Bite Angle Variation in Multitopic Alkyne Metathesis: Evidence for a Putative Kinetic Bottleneck.

    Science.gov (United States)

    Moneypenny, Timothy P; Yang, Anna; Walter, Nathan P; Woods, Toby J; Gray, Danielle L; Zhang, Yang; Moore, Jeffrey S

    2018-05-02

    In the dynamic synthesis of covalent organic frameworks and molecular cages, the typical synthetic approach involves heuristic methods of discovery. While this approach has yielded many remarkable products, the ability to predict the structural outcome of subjecting a multitopic precursor to dynamic covalent chemistry (DCC) remains a challenge in the field. The synthesis of covalent organic cages is a prime example of this phenomenon, where precursors designed with the intention of affording a specific product may deviate dramatically when the DCC synthesis is attempted. As such, rational design principles are needed to accelerate discovery in cage synthesis using DCC. Herein, we test the hypothesis that precursor bite angle contributes significantly to the energy landscape and product distribution in multitopic alkyne metathesis (AM). By subjecting a series of precursors with varying bite angles to AM, we experimentally demonstrate that the product distribution, and convergence toward product formation, is strongly dependent on this geometric attribute. Surprisingly, we discovered that precursors with the ideal bite angle (60°) do not afford the most efficient pathway to the product. The systematic study reported here illustrates how seemingly minor adjustments in precursor geometry greatly affect the outcome of DCC systems. This research illustrates the importance of fine-tuning precursor geometric parameters in order to successfully realize desirable targets.

  20. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    Science.gov (United States)

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

  1. Additions of precursors and elicitors improve geranylgeraniol production in Croton stellatopilosus callus cultures

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2015-02-01

    Full Text Available Strategies for enhancing GGOH production in Croton stellatopilosus callus culture included additions of precursors (sodium acetate-NA, sodium pyruvate-NP, mevalonic acid lactone-MVA and elicitors (methyl jasmonate-MJ, acetylsalicylic acid-ASA, yeast extract-YE. Treated cells were evaluated for their GGOH contents by GC-FID and compared with the nontreated cells as controls. Additions of NA (25 mg/L, NP (50 mg/L and MVA (100 mg/L resulted in an enhancement of GGOH productivity to 0.61 mg/g DW, 0.52 mg/g DW and 0.70 mg/g DW, respectively, compared to the control culture (0.29 mg/g DW. Callus cultures elicited with MJ at 30 mg/L for 24 h stimulated GGOH production to 0.35 mg/g DW compared to the control culture (0.07 mg/g DW. Cells also responded to ASA (20 mg/L, 2 days and YE (0.25 g/L, 4 days and produced GGOH contents of 0.46 mg/g DW and 1.37 mg/g DW, respectively. This study has shown that isoprenoid precursors and conventional elicitors enhanced GGOH production in the C. stellatopilosus callus culture.

  2. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    Science.gov (United States)

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Zinc-stearate-layered hydroxide nanohybrid material as a precursor to produce carbon nanoparticles

    International Nuclear Information System (INIS)

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S.K.

    2011-01-01

    Research highlights: → In this work, a new organic-clay nanohybrid material, in which the organic moiety is intercalated between the inorganic layers, was synthesized using stearate anion as a guest and zinc hydroxide nitrate as an inorganic layered host by ion-exchange technique. Carbon nanoparticles were obtained by heat treating of the nanohybrid material, zinc-stearate-layered hydroxide. The proposed method is very simple, the chemicals used in the synthesis are cheap and the manner is economic and suitable for a large scale production of nano-sized carbon nanoparticles. - Abstract: Zinc-stearate-layered hydroxide nanohybrid was prepared using stearate anion as an organic guest, and zinc layered hydroxide nitrate, as a layered inorganic host by the ion-exchange method. Powder X-ray diffraction patterns and Fourier transform infrared results indicated that the stearate anion was actually intercalated into the interlayer of zinc layered hydroxide nitrate and confirmed the formation of the host-guest nanohybrid material. Also, surface properties data showed that the intercalation process has changed the porosity for the as-prepared nanohybrid material in comparison with that of the parent material, zinc hydroxide nitrate. The nanohybrid material was heat-treated at 600 deg. C under argon atmosphere. Stearate anion was chosen as a carbonaceous reservoir in the nanohybrid to produce carbon nanoparticles after heat-treating of the nanohybrid and subsequently acid washing process.

  4. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    cellars are emptied regularly in a four weeks interval. Due to a high and variable carbon dioxide production in deep straw litter houses and houses with indoor storage of manure longer than four weeks, we do not recommend to calculate the ventilation flow based on the carbon dioxide concentration......This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o...

  5. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies.

    Science.gov (United States)

    De Mey, Eveline; De Maere, Hannelore; Paelinck, Hubert; Fraeye, Ilse

    2017-09-02

    Meat products can be contaminated with carcinogenic N-nitrosamines, which is ascribed to the reaction between a nitrosating agent, originating from nitrite or smoke, and a secondary amine, derived from protein and lipid degradation. Although in model systems it is demonstrated that many amine containing compounds can be converted to N-nitrosamines, the yield is dependent of reaction conditions (e.g., low pH and high temperature). In this article, the influence of the composition of the meat products (e.g., pH, a w , spices) and processing (e.g., ageing, ripening, fermentation, smoking, heat treatment and storage) on the presence and availability of the amine precursors and the N-nitrosamine formation mechanism is discussed. In addition, this article explores the current N-nitrosamine mitigation strategies in order to obtain healthier and more natural meat products.

  6. Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.

    2018-04-01

    Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.

  7. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family

    Directory of Open Access Journals (Sweden)

    Mitchell Douglas A

    2010-05-01

    Full Text Available Abstract Background A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM. As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor. Results Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P, but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery. Conclusions This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for

  8. Caveolin-1 interacts with the Gag precursor of murine leukaemia virus and modulates virus production

    Directory of Open Access Journals (Sweden)

    Koester Mario

    2006-09-01

    Full Text Available Abstract Background Retroviral Gag determines virus assembly at the plasma membrane and the formation of virus-like particles in intracellular multivesicular bodies. Thereby, retroviruses exploit by interaction with cellular partners the cellular machineries for vesicular transport in various ways. Results The retroviral Gag precursor protein drives assembly of murine leukaemia viruses (MLV at the plasma membrane (PM and the formation of virus like particles in multivesicular bodies (MVBs. In our study we show that caveolin-1 (Cav-1, a multifunctional membrane-associated protein, co-localizes with Gag in a punctate pattern at the PM of infected NIH 3T3 cells. We provide evidence that Cav-1 interacts with the matrix protein (MA of the Gag precursor. This interaction is mediated by a Cav-1 binding domain (CBD within the N-terminus of MA. Interestingly, the CBD motif identified within MA is highly conserved among most other γ-retroviruses. Furthermore, Cav-1 is incorporated into MLV released from NIH 3T3 cells. Overexpression of a GFP fusion protein containing the putative CBD of the retroviral MA resulted in a considerable decrease in production of infectious retrovirus. Moreover, expression of a dominant-negative Cav-1 mutant affected retroviral titres significantly. Conclusion This study demonstrates that Cav-1 interacts with MLV Gag, co-localizes with Gag at the PM and affects the production of infectious virus. The results strongly suggest a role for Cav-1 in the process of virus assembly.

  9. Design and application of a data-independent precursor and product ion repository.

    Science.gov (United States)

    Thalassinos, Konstantinos; Vissers, Johannes P C; Tenzer, Stefan; Levin, Yishai; Thompson, J Will; Daniel, David; Mann, Darrin; DeLong, Mark R; Moseley, M Arthur; America, Antoine H; Ottens, Andrew K; Cavey, Greg S; Efstathiou, Georgios; Scrivens, James H; Langridge, James I; Geromanos, Scott J

    2012-10-01

    The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.

  10. Influence of fission product transport on delayed neutron precursors and decay heat sources in LMFBR accidents

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1981-01-01

    A method is presented for studying the influence of fission product transpot on delayed neutron precursors and decay heat sources during Liquid Metal Fast Breeder Reactor (LMFBR) unprotected accidents. The model represents the LMFBR core as a closed homogeneous cell. Thermodynamic phase equilibrium theory is used to predict fission product mobility. Reactor kinetics behavior is analyzed by an extension of point kinetics theory. Group dependent delayed neutron precursor and decay heat source retention factors, which represent the fraction of each group retained in the fuel, are developed to link the kinetics and thermodynamics analysis. Application of the method to a highly simplified model of an unprotected loss-of-flow accident shows a time delay on the order of 10 ms is introduced in the predisassembly power history if fission product motion is considered when compared to the traditional transient solution. The post-transient influence of fission product transport calculated by the present model is a 24 percent reduction in the decay heat level in the fuel material which is similar to traditional approximations. Isotopes of the noble gases, Kr and Xe, and the elements I and Br are shown to be very mobile and are responsible for a major part of the observed effects. Isotopes of the elements Cs, Se, Rb, and Te were found to be moderately mobile and contribute to a lesser extent to the observed phenomena. These results obtained from the application of the described model confirm the initial hypothesis that sufficient fission product transport can occur to influence a transient. For these reasons, it is concluded that extension of this model into a multi-cell transient analysis code is warranted

  11. Overview of the carbon products consortium (CPC)

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, C.L. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    The Carbon Products Consortium (CPC) is an industry, university, government cooperative research team which has evolved over the past seven years to produce and evaluate coal-derived feedstocks for carbon products. The members of the Carbon Products Consortium are UCAR Carbon Company, Koppers Industries, CONOCO, Aluminum Company of America, AMOCO Polymers, and West Virginia University. The Carbon and Insulation Materials Technology Group at Oak Ridge National Laboratory, Fiber Materials Inc., and BASF Corporation are affiliates of the CPC. The initial work on coal-derived nuclear graphites was supported by a grant to WVU, UCAR Carbon, and ORNL from the U.S. DOE New Production Reactor program. More recently, the CPC program has been supported through the Fossil Energy Materials program and through PETC`s Liquefaction program. The coal processing technologies involve hydrogenation, extraction by solvents such as N-methyl pyrolidone and toluene, material blending, and calcination. The breadth of carbon science expertise and manufacturing capability available in the CPC enables it to address virtually all research and development issues of importance to the carbon products industry.

  12. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Belmont M, E.

    1979-01-01

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  13. Continuous-Flow O-Alkylation of Biobased Derivatives with Dialkyl Carbonates in the Presence of Magnesium-Aluminium Hydrotalcites as Catalyst Precursors.

    Science.gov (United States)

    Cattelan, Lisa; Perosa, Alvise; Riello, Piero; Maschmeyer, Thomas; Selva, Maurizio

    2017-04-10

    The base-catalysed reactions of OH-bearing biobased derivatives (BBDs) including glycerol formal, solketal, glycerol carbonate, furfuryl alcohol and tetrahydrofurfuryl alcohol with non-toxic dialkyl carbonates (dimethyl and diethyl carbonate) were explored under continuous-flow (CF) conditions in the presence of three Na-exchanged Y- and X-faujasites (FAUs) and four Mg-Al hydrotalcites (HTs). Compared to previous etherification protocols mediated by dialkyl carbonates, the reported procedure offers substantial improvements not only in terms of (chemo)selectivity but also for the recyclability of the catalysts, workup, ease of product purification and, importantly, process intensification. Characterisation studies proved that both HT30 and KW2000 hydrotalcites acted as catalyst precursors: during the thermal activation pre-treatments, the typical lamellar structure of the hydrotalcite was broken down gradually into a MgO-like phase (periclase) or rather a magnesia-alumina solid solution, which was the genuine catalytic phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-02-15

    Highlights: • The CNTs were distributed uniformly on the SiC fibers in the fabric by CVD process. • The microstructural evolution of the CNTs interface coating was studied. • The closed porosity was investigated by X-ray tomography. • The liquid precursor LPVCS exhibited high densification efficiency. - Abstract: Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied as promising candidate materials for nuclear applications. Three-dimensional SiC/SiC composite was fabricated via polymer impregnation and pyrolysis (PIP) process using carbon nanotubes (CNTs) as the interface layer and LPVCS as the polymer precursor. The microstructural evolution of the fiber/matrix interface was studied. The porosity, mechanical properties, thermal and electrical conductivities of the SiC/SiC composite were investigated. The results indicated that the high densification efficiency of the liquid precursor LPVCS resulted in a low porosity of the SiC/SiC composite. The SiC/SiC composite exhibited non-brittle fracture behavior, however, bending strength and fracture toughness of the composite were relatively low because of the absence of CNTs as the interface layer. The thermal and electrical conductivities of the SiC/SiC composite were low enough to meet the requirements desired for flow channel insert (FCI) applications.

  15. Precursors of nitrogenous disinfection by-products in drinking water––A critical review and analysis

    International Nuclear Information System (INIS)

    Bond, Tom; Templeton, Michael R.; Graham, Nigel

    2012-01-01

    Highlights: ► The proportion of N-DBP formation attributable to specific precursors was calculated. ► Precursor concentrations are typically insufficient to account for observed N-DBP formation, except CNX and NDMA. ► Amino acid precursors are easier to remove during water treatment than suggested by laboratory studies. - Abstract: In recent years research into the formation of nitrogenous disinfection by-products (N-DBPs) in drinking water – including N-nitrosodimethylamine (NDMA), the haloacetonitriles (HANs), haloacetamides (HAcAms), cyanogen halides (CNX) and halonitromethanes (HNMs) – has proliferated. This is partly due to their high reported toxicity of N-DBPs. In this review paper information about the formation yields of N-DBPs from model precursors, and about environmental precursor occurrence, has been employed to assess the amount of N-DBP formation that is attributable to known precursors. It was calculated that for HANs and HAcAms, the concentrations of known precursors – mainly free amino acids are insufficient to account for the observed concentrations of these N-DBP groups. However, at least in some waters, a significant proportion of CNX and NDMA formation can be explained by known precursors. Identified N-DBP precursors tend to be of low molecular weight and low electrostatic charge relative to bulk natural organic matter (NOM). This makes them recalcitrant to removal by water treatment processes, notably coagulation, as confirmed by a number of bench-scale studies. However, amino acids have been found to be easier to remove during water treatment than would be suggested by the known molecular properties of the individual free amino acids.

  16. Artichoke as a non-conventional precursor for activated carbon: Role of the activation process

    Directory of Open Access Journals (Sweden)

    Gamal M.S. ElShafei

    2017-09-01

    Full Text Available Artichoke peels were used to produce activated carbon using chemical activation methods. Two activation protocols were compared: a two-step method A and a one-step method B. As newly used activating agents, KCl, CrCl3 and TiCl4 were compared. The results show that method B is superior to A. KOH with method B had an area of 2321 m2/g and a total pore volume 1.0071 cm3/g, of which 0.9794 cm3/g was confined to micropores. The corresponding values for KCl are 1731, 0.6925 and 0.6718. TiCl4 had lower but comparable values with those of KCl. CrCl3 appeared to be the least successful among the three newly used activating agents. The post-activation washing step strongly affects the characteristics of the final product. The differences among the effects of Zn, Cr and Ti are discussed in terms of the differences in polarizing power.

  17. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe

    Science.gov (United States)

    Oikonomakis, Emmanouil; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Baltensperger, Urs; Prévôt, André Stephan Henry

    2018-02-01

    High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone-temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10-20 ppb and overestimates the lower ones (degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone-temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter, suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than from other sectors. The impact of meteorology was examined with three sensitivity tests: (i) increased surface temperature by 4 °C, (ii) reduced wind speed by 50 % and (iii) doubled wind speed. The first two scenarios led to a consistent increase in all surface ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the low ozone values, while the third scenario had exactly the

  18. Carbon footprint of grain production in China.

    Science.gov (United States)

    Zhang, Dan; Shen, Jianbo; Zhang, Fusuo; Li, Yu'e; Zhang, Weifeng

    2017-06-29

    Due to the increasing environmental impact of food production, carbon footprint as an indicator can guide farmland management. This study established a method and estimated the carbon footprint of grain production in China based on life cycle analysis (LCA). The results showed that grain production has a high carbon footprint in 2013, i.e., 4052 kg ce/ha or 0.48 kg ce/kg for maize, 5455 kg ce/ha or 0.75 kg ce/kg for wheat and 11881 kg ce/ha or 1.60 kg ce/kg for rice. These footprints are higher than that of other countries, such as the United States, Canada and India. The most important factors governing carbon emissions were the application of nitrogen fertiliser (8-49%), straw burning (0-70%), energy consumption by machinery (6-40%), energy consumption for irrigation (0-44%) and CH 4 emissions from rice paddies (15-73%). The most important carbon sequestration factors included returning of crop straw (41-90%), chemical nitrogen fertiliser application (10-59%) and no-till farming practices (0-10%). Different factors dominated in different crop systems in different regions. To identity site-specific key factors and take countermeasures could significantly lower carbon footprint, e.g., ban straw burning in northeast and south China, stopping continuous flooding irrigation in wheat and rice production system.

  19. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  20. Metabolomics Analysis of the Toxic Effects of the Production of Lycopene and Its Precursors

    Directory of Open Access Journals (Sweden)

    April M. Miguez

    2018-05-01

    Full Text Available Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells’ metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting

  1. Cooked Food Waste-An Efficient and Less Expensive Precursor for the Generation of Activated Carbon.

    Science.gov (United States)

    Krithiga, Thangavelu; Sabina, Xavier Janet; Rajesh, Baskaran; Ilbeygi, Hamid; Shetty, Adka Nityananda; Reddy, Ramanjaneya; Karthikeyan, Jayabalan

    2018-06-01

    Activated carbon was synthesized from cooked food waste, especially dehydrated rice kernels, by chemical activation method using NaOH and KOH as activating agents. It was then characterized by ultimate and proximate analysis, BET surface analysis, XRD, FTIR, Raman and SEM. The XRD patterns and Raman spectra confirmed the amorphous nature of the prepared activated carbons. Ultimate analysis showed an increase in the carbon content after activation of the raw carbon samples. Upon activation with NaOH and KOH, the surface area of the carbon sample was found to have increased from 0.3424 to 539.78 and 306.83 m2g-1 respectively. The SEM images revealed the formation of heterogeneous pores on the surface of the activated samples. The samples were then tested for their adsorption activity using acetic acid and methylene blue. Based on the regression coefficients, the adsorption kinetics of methylene blue dye were fitted with pseudo-second order model for both samples. Similarly, the Freundlich isotherm was found to be a better fit than Langmuir isotherm for both samples. The activity of thus prepared activated carbons was found to be comparable with the commercial carbon.

  2. PRESTO: online calculation of carbon in harvested wood products

    Science.gov (United States)

    Coeli M. Hoover; Sarah J. Beukema; Donald C.E. Robinson; Katherine M. Kellock; Diana A. Abraham

    2014-01-01

    Carbon stored in harvested wood products is recognized under international carbon accounting protocols, and some crediting systems may permit the inclusion of harvested wood products when calculating carbon sequestration. For managers and landowners, however, estimating carbon stored in harvested wood products may be difficult. PRESTO (PRoduct EStimation Tool Online)...

  3. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  4. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    International Nuclear Information System (INIS)

    Jimenez, Vicente; Sanchez, Paula; Valverde, Jose Luis; Romero, Amaya

    2010-01-01

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N 2 /77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H 2 and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  5. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Vicente, E-mail: vicente.jimenez@uclm.es [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Sanchez, Paula; Valverde, Jose Luis [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Romero, Amaya [Escuela Tecnica Agricola, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2010-11-01

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N{sub 2}/77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H{sub 2} and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  6. Harmful impact on presynaptic glutamate and GABA transport by carbon dots synthesized from sulfur-containing carbohydrate precursor.

    Science.gov (United States)

    Borisova, Tatiana; Dekaliuk, Mariia; Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Vari, Sandor G; Demchenko, Alexander P

    2017-07-01

    Carbon nanoparticles that may be potent air pollutants with adverse effects on human health often contain heteroatoms including sulfur. In order to study in detail their effects on different physiological and biochemical processes, artificially produced carbon dots (CDs) with well-controlled composition that allows fluorescence detection may be of great use. Having been prepared from different types of organic precursors, CDs expose different atoms at their surface suggesting a broad variation of functional groups. Recently, we demonstrated neurotoxic properties of CDs synthesized from the amino acid β-alanine, and it is of importance to analyze whether CDs obtained from different precursors and particularly those exposing sulfur atoms induce similar neurotoxic effects. This study focused on synthesis of CDs from the sulfur-containing precursor thiourea-CDs (TU-CDs) with a size less than 10 nm, their characterization, and neuroactivity assessment. Neuroactive properties of TU-CDs were analyzed based on their effects on the key characteristics of glutamatergic and γ-aminobutyric acid (GABA) neurotransmission in isolated rat brain nerve terminals. It was observed that TU-CDs (0.5-1.0 mg/ml) attenuated the initial velocity of Na + -dependent transporter-mediated uptake and accumulation of L-[ 14 C]glutamate and [ 3 H]GABA by nerve terminals in a dose-dependent manner and increased the ambient level of the neurotransmitters. Starting from the concentration of 0.2 mg/ml, TU-CDs evoked a gradual dose-dependent depolarization of the plasma membrane of nerve terminals measured with the cationic potentiometric dye rhodamine 6G. Within the concentration range of 0.1-0.5 mg/ml, TU-CDs caused an "unphysiological" step-like increase in fluorescence intensity of the рН-sensitive fluorescent dye acridine orange accumulated by synaptic vesicles. Therefore, despite different surface properties and fluorescent features of CDs prepared from different starting materials

  7. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    Directory of Open Access Journals (Sweden)

    Ya-Li Du

    2017-02-01

    Full Text Available As a favorably clean fuel, syngas (synthesis gas production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature reporting syngas production with Ni-based catalysts from HTLc precursors via methane or ethanol reforming. The discussion was initiated with catalyst preparation (including conventional and novel means, followed by subsequent thermal treatment processes, then composition design and the addition of promoters in these catalysts. As Ni-based catalysts have thermodynamic potential to deactivate because of carbon deposition or metal sintering, measures for dealing with these problems were finally summarized. To obtain optimal catalytic performances and resultantly better syngas production, based on analyzing the achievements of the references, some perspectives were finally proposed.

  8. STATEMENT OF THE OPTIMIZATION PROBLEM OF CARBON PRODUCTS PRODUCTION

    Directory of Open Access Journals (Sweden)

    O. A. Zhuchenko

    2016-08-01

    Full Text Available The paper formulated optimization problem formulation production of carbon products. The analysis of technical and economic parameters that can be used to optimize the production of carbonaceous products had been done by the author. To evaluate the efficiency of the energy-intensive production uses several technical and economic indicators. In particular, the specific cost, productivity, income and profitability of production. Based on a detailed analysis had been formulated optimality criterion that takes into account the technological components of profitability. The components in detail the criteria and the proposed method of calculating non-trivial, one of them - the production cost of each product. When solving the optimization problem of technological modes of production into account constraints on the variables are optimized. Thus, restrictions may be expressed on the number of each product produced. Have been formulated the method of calculating the cost per unit of product. Attention is paid to the quality indices of finished products as an additional constraint in the optimization problem. As a result have been formulated the general problem of optimizing the production of carbon products, which includes the optimality criterion and restrictions.

  9. Synthesis, Structure, Characterization, and Decomposition of Nickel Dithiocarbamates: Effect of Precursor Structure and Processing Conditions on Solid-State Products

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; McNatt, Jeremiah S.; Duffy, Norman V.; Hoops, Michael D.; Gorse, Elizabeth; Fanwick, Philip E.; Masnovi, John; Cowen, Jonathan E.; Dominey, Raymond N.

    2016-01-01

    Single-crystal X-ray structures of four nickel dithiocarbamate complexes, the homoleptic mixed-organic bis-dithiocarbamates Ni[S2CN(isopropyl)(benzyl)]2, Ni[S2CN(ethyl)(n-butyl)]2, and Ni[S2CN(phenyl)(benzyl)]2, as well as the heteroleptic mixed-ligand complex NiCl[P(phenyl)3][(S2CN(phenyl)(benzyl)], were determined. Synthetic, spectroscopic, structural, thermal, and sulfide materials studies are discussed in light of prior literature. The spectroscopic results are routine. A slightly distorted square-planar nickel coordination environment was observed for all four complexes. The organic residues adopt conformations to minimize steric interactions. Steric effects also may determine puckering, if any, about the nickel and nitrogen atoms, both of which are planar or nearly so. A trans-influence affects the Ni-S bond distances. Nitrogen atoms interact with the CS2 carbons with a bond order of about 1.5, and the other substituents on nitrogen display transoid conformations. There are no strong intermolecular interactions, consistent with prior observations of the volatility of nickel dithiocarbamate complexes. Thermogravimetric analysis of the homoleptic species under inert atmosphere is consistent with production of 1:1 nickel sulfide phases. Thermolysis of nickel dithiocarbamates under flowing nitrogen produced hexagonal or -NiS as the major phase; thermolysis under flowing forming gas produced millerite (-NiS) at 300 C, godlevskite (Ni9S8) at 325 and 350 C, and heazlewoodite (Ni3S2) at 400 and 450 C. Failure to exclude oxygen results in production of nickel oxide. Nickel sulfide phases produced seem to be primarily influenced by processing conditions, in agreement with prior literature. Nickel dithiocarbamate complexes demonstrate significant promise to serve as single-source precursors to nickel sulfides, a quite interesting family of materials with numerous potential applications.

  10. Organophosphonic acid as precursor to prepare LiFePO4/carbon nanocomposites for high-power lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Ming; Shao, Leng-Leng; Yang, Hua-Bin; Zhao, Qian-Yong; Yuan, Zhong-Yong

    2015-01-01

    Graphical abstract: LiFePO4/C nanocomposites were prepared by a quasi-sol–gel method with the use of organophosphonic acid, exhibiting improved electrochemical performance with excellent cycle stability. Display Omitted -- Highlights: •Amino tris(methylene phosphonic acid) is served as a novel precursor for LiFePO 4 /C. •Nano-sized and high-purity LiFePO 4 /C composites are obtained by a quasi-sol–gel route. •Core-shell structured LiFePO 4 /C nanocomposites are fabricated by further introducing sucrose. •Superior electrochemical performance is observed in the organophosphorus-synthesized LiFePO 4 /C. -- Abstract: Amino tris(methylene phosphonic acid) (ATMP) is selected as phosphorus and carbon co-source for the synthesis of uniformly nano-sized LiFePO 4 /C by a quasi-sol–gel method. This strategy using ATMP instead of conventional NH 4 H 2 PO 4 supplies two advantages: firstly, ATMP in situ chelates Li + onto its framework and subsequently binds with FeC 2 O 4 in aqueous solution, forming a molecule-scale homogeneous precursor which can obviously improve the purity of LiFePO 4 . Secondly, the organic carbon contained in ATMP can form uniformly distributed conductive carbon networks among LiFePO 4 particles after calcination, which improves the electrical conductivity. The resultant LiFePO 4 /C with 1.1 wt.% carbon achieves a higher discharge capacity than those of LiFePO 4 and LiFePO 4 /C prepared with inorganic NH 4 H 2 PO 4 . Moreover, core-shell structured LiFePO 4 /C nanocomposites are also fabricated by further introducing sucrose into the synthesis system. The high-quality carbon shell effectively hinders the LiFePO 4 particle growth and aggregation under high-temperature treatment, which further enhances the electrical conductivity and lithium-ion diffusion, resulting in the improved electrochemical performance with excellent cycle stability (the optimum discharge capacity of 158.6 mAh g −1 at 0.1 C and 138.4 mAh g −1 at 2 C). The high

  11. Design and development of fluidized bed reactor system for production of trichlorosilane as a precursor for high purity silicon

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Mohan, Sadhana; Bhanja, K.; Nayak, S.; Bhattacharya, S.K.

    2009-01-01

    Trichlorosilane is widely used as precursor material for production of high purity silicon. It is mainly produced by reaction of metallurgical grade silicon with anhydrous HCl gas in a fluidized bed reactor. To develop this process on commercial scale a pilot size fluidized bed reactor system was designed and developed and successfully operated. This paper discusses the critical issues related to these activities. (author)

  12. Activated carbon from thermo-compressed wood and other lignocellulosic precursors

    Directory of Open Access Journals (Sweden)

    Capart, R.

    2007-05-01

    Full Text Available The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%, a high surface area (>1700 m2.g-1, and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon.

  13. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances

    International Nuclear Information System (INIS)

    Fiorentino, Giuseppe; Vollebregt, Sten; Ishihara, Ryoichi; Sarro, Pasqualina M; Tichelaar, F D

    2015-01-01

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al 2 O 3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm 2 to 2500 μm 2 ) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism. (paper)

  14. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances

    Science.gov (United States)

    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, F. D.; Ishihara, Ryoichi; Sarro, Pasqualina M.

    2015-02-01

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm2 to 2500 μm2) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism.

  15. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption.

    Science.gov (United States)

    Rashidi, Nor Adilla; Yusup, Suzana

    2018-05-09

    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO 2 ) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO 2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO 2 flow rate of 450 cm 3 /min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N 2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO 2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.

  16. Synthesis of an A'B' Precursor to Angelmicin B: Product Diversification in the Suárez Lactol Fragmentation.

    Science.gov (United States)

    Li, Jialiang; Todaro, Louis; Mootoo, David R

    2011-11-01

    We describe a synthetic strategy for the angelimicin family of anthraquinoid natural products that involves converting a central highly oxygenated decalin intermediate to the AB and A'B' subunits. Herein, we report the synthesis of the bicyclic A'B' subunit that complements our earlier route to the tricyclic AB framework. The differentiating tact in the two syntheses focused on controlling the Suárez radical fragmentation of lactol precursors by modulating the substrate's structural rigidity. A more flexible lactol gave the tricyclic AB framework, whereas a more rigid substrate led to the bicyclic A'B' precursor, presumably through divergent pathways from the radical produced in the initial fragmentation step. These results establish a versatile advanced synthetic precursor for the angelimicins, and on a more general note, illustrate strategies for applying the Suárez fragmentation to diverse and complex molecular frameworks.

  17. Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui

    NARCIS (Netherlands)

    Rivadeneyra, María Angustias; Martín-Algarra, Agustín; Sánchez-Román, Mónica; Sánchez-Navas, Antonio; Martín-Ramos, José Daniel

    Although diverse microbial metabolisms are known to induce the precipitation of carbonate minerals, the mechanisms involved in the bacterial mediation, in particular nucleation, are still debated. The study of aragonite precipitation by Chromohalobacter marismortui during the early stages (3-7 days)

  18. A furnace for firing carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Sudavskii, A M

    1979-12-05

    A furnace for firing carbon products is patented that consists of several chambers with a perforated hearth, which are interconnected by a lower and an upper reservoir with a locking fixture, and a flue. In order to intensify the firing process by increasing the specific hearth productivity, the flue is connected to the upper reservoir. A block diagram of the patented furnace is given, together with a description of its operation.

  19. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx in Europe

    Directory of Open Access Journals (Sweden)

    E. Oikonomakis

    2018-02-01

    Full Text Available High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone–temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx. The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥  60 ppb by 10–20 ppb and overestimates the lower ones (<  40 ppb by 5–15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also underestimates the ozone–temperature regression slope by about a factor of 2 for most of the measurement stations. To investigate the impact of emissions, four scenarios were tested: (i increased volatile organic compound (VOC emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii increased nitrogen oxide (NOx emissions by a factor of 2, (iii a combination of the first two scenarios and (iv increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone–temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario

  20. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  1. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.

    Science.gov (United States)

    Yang, Shubin; Bachman, Robert E; Feng, Xinliang; Müllen, Klaus

    2013-01-15

    The development of high-performance electrochemical energy storage and conversion devices, including supercapacitors, lithium-ion batteries, and fuel cells, is an important step on the road to alternative energy technologies. Carbon-containing nanomaterials (CCNMs), defined here as pure carbon materials and carbon/metal (oxide, hydroxide) hybrids with structural features on the nanometer scale, show potential application in such devices. Because of their pronounced electrochemical activity, high chemical and thermal stability and low cost, researchers are interested in CCNMs to serve as electrodes in energy-related devices. Various all-carbon materials are candidates for electrochemical energy storage and conversion devices. Furthermore, carbon-based hybrid materials, which consist of a carbon component with metal oxide- or metal hydroxide-based nanostructures, offer the opportunity to combine the attractive properties of these two components and tune the behavior of the resulting materials. As such, the design and synthesis of CCNMs provide an attractive route for the construction of high-performance electrode materials. Studies in these areas have revealed that both the composition and the fabrication protocol employed in preparing CCNMs influence the morphology and microstructure of the resulting material and its electrochemical performance. Consequently, researchers have developed several synthesis strategies, including hard-templated, soft-templated, and template-free synthesis of CCNMs. In this Account, we focus on recent advances in the controlled synthesis of such CCNMs and the potential of the resulting materials for energy storage or conversion applications. The Account is divided into four major categories based on the carbon precursor employed in the synthesis: low molecular weight organic or organometallic molecules, hyperbranched or cross-linked polymers consisting of aromatic subunits, self-assembling discotic molecules, and graphenes. In each case

  2. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor

    International Nuclear Information System (INIS)

    Talib, Abou; Pandey, Sunil; Thakur, Mukeshchand; Wu, Hui-Fen

    2015-01-01

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5–30 nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD 50 : 50 mg/ml) and could be used for bioimaging even at lower concentration (0.5 mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors. - Highlights: • Synthesis of hydrophobic carbon dots from polymer based Paraplast • Deep blue color under the influence of UV light • Typical optical properties used for biological imaging • Biological imaging of breast cancer stem cells revealing potential of carbon dots

  3. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Talib, Abou [Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Pandey, Sunil [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Thakur, Mukeshchand [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Wu, Hui-Fen, E-mail: hui@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan (China); Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan (China)

    2015-03-01

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5–30 nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD{sub 50}: 50 mg/ml) and could be used for bioimaging even at lower concentration (0.5 mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors. - Highlights: • Synthesis of hydrophobic carbon dots from polymer based Paraplast • Deep blue color under the influence of UV light • Typical optical properties used for biological imaging • Biological imaging of breast cancer stem cells revealing potential of carbon dots.

  4. Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products

    International Nuclear Information System (INIS)

    Nieto-Delgado, C.; Terrones, M.; Rangel-Mendez, J.R.

    2011-01-01

    This work has the aim to employ the agave bagasse, a waste from Tequila and Mescal industries, to obtain a product of high commercial value such as activated carbon. The activated carbon production methodology was based on a chemical activation, by using ZnCl 2 and H 3 PO 4 as activating agent and agave bagasse as a natural source of carbon. The activation temperature (150-450 o C), activation time (0-60 min) and weight ratio of activating agent to precursor (0.2-4) were studied. The produced carbon materials were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and nitrogen physisorption at -196 o C. In addition, the activating agent recovery was evaluated. We were able to obtain highly microporous activated carbons with micropore volumes between 0.24 and 1.20 cm 3 /g and a surface area within 300 and 2139 m 2 /g. These results demonstrated the feasibility to treat the industrial wastes of the Tequila and Mescal industries, being this wastes an excellent precursor to produce highly microporous activated carbons that can be processed at low activation temperatures in short times, with the possibility of recycling the activating agent.

  5. Lichenysin production is improved in codY null Bacillus licheniformis by addition of precursor amino acids.

    Science.gov (United States)

    Zhu, Chengjun; Xiao, Fang; Qiu, Yimin; Wang, Qin; He, Zhili; Chen, Shouwen

    2017-08-01

    Lichenysin is categorized into the family of lipopeptide biosurfactants and has a variety of applications in the petroleum industry, bioremediation, pharmaceuticals, and the food industry. Currently, large-scale production is limited due to the low yield. This study found that lichenysin production was repressed by supplementation of extracellular amino acids. The global transcriptional factor CodY was hypothesized to prevent lichenysin biosynthesis under an amino acid-rich condition in Bacillus licheniformis. Thus, the codY null strain was constructed, and lichenysin production was increased by 31.0% to 2356 mg/L with the addition of precursor amino acids, and the lichenysin production efficiency was improved by 42.8% to 98.2 mg/L• h. Correspondingly, the transcription levels of the lichenysin synthetase gene lchAA, and its corresponding regulator genes comA, degQ, and degU, were upregulated. Also, the codY deletion enhanced biosynthesis of lichenysin precursor amino acids (Gln, Ile, Leu, and Val) and reduced the formation of byproducts, acetate, acetoin, and 2,3-butanediol. This study firstly reported that lichenysin biosynthesis was negatively regulated by CodY and lichenysin production could be further improved with the precursor amino acid amendment in the codY null strain.

  6. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage

    Science.gov (United States)

    Pérez del Pino, A.; György, E.; Alshaikh, I.; Pantoja-Suárez, F.; Andújar, J. L.; Pascual, E.; Amade, R.; Bertran-Serra, E.

    2017-09-01

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT’s long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO2-VACNT system (100 F g-1) as compared to the initial VACNT one (21 F g-1).

  7. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  8. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides - relevance to biomineralization

    NARCIS (Netherlands)

    Schenk, A.S.; Zope, H.; Kim, Y.; Kros, A.; Sommerdijk, N.A.J.M.; Meldrum, F.C.

    2012-01-01

    Polymer-induced liquid precursor (PILP) phases of calcium carbonate have attracted significant interest due to possible applications in materials synthesis, and their resemblance to intermediates seen in biogenic mineralisation processes. Further, these PILP phases have been formed in vitro using

  9. CH4, CO, and H2O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements

    NARCIS (Netherlands)

    Galli, A.; Butz, A.; Scheepmaker, R.A.; Hasekamp, O.; Landgraf, J.; Tol, P.J.J.; Wunch, D.; Deutscher, N.M.; Toon, G.C.; Wennberg, P.O.; Griffith, D.W.T.; Aben, E.A.A.

    2012-01-01

    The TROPOspheric Monitoring Instrument (TROPOMI) will be part of ESA's Sentinel-5 Precursor (S5P) satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the

  10. High-performance zno transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80-180 °c

    KAUST Repository

    Lin, Yenhung; Faber, Hendrik; Zhao, Kui; Wang, Qingxiao; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.

    2013-01-01

    An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm2/Vs at temperatures <

  11. Production of anatoxin-a and a novel biosynthetic precursor by the cyanobacterium Aphanizomenon issatschenkoi.

    Science.gov (United States)

    Selwood, Andrew I; Holland, Patrick T; Wood, Susanna A; Smith, Kirsty F; McNabb, Paul S

    2007-01-15

    Cyanobacterial blooms in New Zealand surface water resources have been surveyed and, in response to strict new standards for drinking water, more intensive monitoring for cyanotoxins has been initiated. Aphanizomenon issatschenkoi was recently identified in a New Zealand lake and was found to produce the potent neurotoxin anatoxin-a (ATX). A strain of Aph. issatschenkoi (CAWBG02) was cultured for ATX production and a novel derivative of ATX was found to account for a high proportion of the toxin content in the Aph. issatschenkoi cells. Spectroscopic data (LC-UV, liquid chromatography with ultraviolet absorption detection; LC-MS/MS, liquid chromatography with tandem mass spectrometry; LC-HRMS, liquid chromatography with high resolution mass spectrometry) identified this derivative as 11-carboxyl anatoxin-a. Although precursors with a carboxyl group on C11 have been postulated in the biosynthetic pathway for ATX from amino acids and acetate, this is the first identification of a specific intermediate. The production of ATX and the intermediate by Aph. issatschenkoi was studied under different growth conditions. Concentrations of ATX and the intermediate increased in the aerated culture to 170 microg/L and 330 microg/L, respectively, at 21 days (18 x 10(9) cells/L). Cell concentrations did not markedly increase during subsequent growth to 37 days. ATX concentrations decreased, and 11-carboxyl ATX concentrations continued to increase during this period. Toxin production by Aph. issatschenkoi cells was maximal at 6 days of growth (0.08-0.09 pg/cell each; 2.3 x 10(8) cells/L). Other ATX analogues and metabolites were not detected in the cultures. Freeze-thawing of cultures resulted in complete conversion of the intermediate to ATX with a half-life of 5 min, and this conversion was inhibited by acidification, heating of the culture to 100 degrees C, or addition of methanol. The implications of the findings for mechanisms of biosynthesis of anatoxins by cyanobacteria and

  12. Low temperature stabilization process for production of carbon fiber having structural order

    Science.gov (United States)

    Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie; Tenhaeff, Wyatt Evan; Menchhofer, Paul A.; Paulauskas, Felix Leonard

    2017-08-15

    A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presence of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.

  13. Enhancement of Echinocandin B Production by a UV- and Microwave-Induced Mutant of Aspergillus nidulans with Precursor- and Biotin-Supplying Strategy.

    Science.gov (United States)

    Hu, Zhong-Ce; Peng, Li-Yuan; Zheng, Yu-Guo

    2016-08-01

    Echinocandin B belongs to lipopeptide antifungal antibiotic bearing five types of direct precursor amino acids including proline, ornithine, tyrosine, threonine, and leucine. The objective of this study is to screen over-producing mutant in order to improve echinocandin B production; a stable mutant Aspergillus nidulans ZJB12073, which can use fructose as optimal carbon source instead of expensive mannitol, was selected from thousand isolates after several cycles of UV and microwave irradiation in turn. The results showed that mutant strain ZJB12073 exhibited 1.9-fold improvement in echinocandin B production to 1656.3 ± 40.3 mg/L when compared with the parent strain. Furthermore, the effects of precursor amino acids and some chemicals on echinocandin B biosynthesis in A. nidulans were investigated, respectively. Tyrosine, leucine, and biotin were selected as key factors to optimize the medium employing uniform design method. The results showed that the optimized fermentation medium provided another 63.1 % increase to 2701.6 ± 31.7 mg/L in final echinocandin B concentration compared to that of unoptimized medium.

  14. Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process.

    Science.gov (United States)

    Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter

    2015-12-15

    This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.

  15. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor

    KAUST Repository

    Ma, Xiaohua

    2013-10-01

    We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 C, respectively. At 440 C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530 C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040 Barrer with a high selectivity over CH4 of 38. Above 600 C, the strong emergence of ultramicroporosity (<7 Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. © 2013 Elsevier Ltd. All rights reserved.

  16. Cyclopentanone: A raw material for production of C15 and C17 fuel precursors

    International Nuclear Information System (INIS)

    Hronec, Milan; Fulajtárova, Katarína; Liptaj, Tibor; Štolcová, Magdaléna; Prónayová, Naďa; Soták, Tomáš

    2014-01-01

    The synthesis of diesel or jet fuels intermediates from furfural or 5-hydroxymethylfurfural (HMF) via aqueous aldol-condensation with cyclopentanone was studied. Cyclopentanone is the product of furfural rearrangement in an aqueous system. Since the aldol-condensation reaction is conducted in an aqueous solution all these biomass-derived reactants can be applied as water solutions formed in the processes of their preparation. The aldol condensation of furfural with cyclopentanone is at low concentration of base and molar ratio of reactants 2:1 highly selective and after 40–80 min of reaction at a temperature of 40–100 °C more than 95 mol% yield of 2,5-bis (2-furylmethylidene) cyclopentan-1-one (F 2 C) was obtained. When instead of furfural as a reactant HMF was used higher than 98 mol% yield of 2,5-bis (5-hydroxymethyl-2-furylmethylidene) cyclopentan-1-one was achieved. The final products of aldol condensation of furfural and HMF are exclusively corresponding dimers, what enables to obtain after subsequent hydrogenation/hydrodeoxygenation step dialkylcyclopentane type of diesel or jet fuels having C 15 or C 17 molecules. - Highlights: • The aldol condensation of biomass derived cyclopentanone with furfural and HMF. • More than 95 mol % yields of products are achieved. • The products are compounds having exclusively 15 or 17 carbon atoms in molecule. • Reactants can be used as diluted aqueous solutions. • The products are separated as solids insoluble in water

  17. Continuous production of fullerenes and other carbon nanomaterials on a semi-industrial scale using plasma technology

    International Nuclear Information System (INIS)

    Gruenberger, T.M.; Gonzalez-Aguilar, J.; Fulcheri, L.; Fabry, F.; Grivei, E.; Probst, N.; Flamant, G.; Charlier, J.-C.

    2002-01-01

    A new production method is presented allowing the production of bulk quantities of fullerenes and other carbon nanomaterials using a 3-phase thermal plasma (260 kW). The main characteristics of this method lie in the independent control of the carbon throughput by injection of a solid carbon feedstock, and the immediate extraction of the synthesised product from the reactor, allowing production on a continuous basis. The currently investigated plasma facility is of an intermediate scale between lab-size and an industrial pilot plant, ready for further up scaling to an industrial size. The influence of a large number of different carbon precursors, plasma gases and operating conditions on the fullerene yield has been studied. At this state, quantities of up to 1 kg of carbon can be processed per hour with further scope for increase, leading to production rates for this type of materials not achievable with any other technology at present

  18. Production of activated carbons from almond shell

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, Joao M. Valente; Laginhas, Carlos Eduardo C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    The production of activated carbons from almond shell, using physical activation by CO{sub 2} is reported in this work. The used method has produced activated carbons with apparent BET surface areas and micropore volume as high as 1138 m{sup 2} g{sup -1} and 0.49 cm{sup 3} g{sup -1}, respectively. The activated carbons produced have essentially primary micropores and only a small volume of wider micropores. By FTIR analysis it was possible to identify, in the surface of the activated carbons, several functional groups, namely hydroxyls (free and phenol), ethers, esters, lactones, pyrones and Si-H bonds. By the analysis of the XRD patterns it was possible to calculate the microcrystallites dimensions with height between 1.178 and 1.881 nm and width between 3.106 and 5.917 nm. From the XRD it was also possible to identify the presence of traces of inorganic heteroatoms such as Si, Pb, K, Fe and P. All activated carbons showed basic characteristics with point of zero charge between 9.42 and 10.43. (author)

  19. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  20. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Melo, W. S.; Guerini, S.; Diniz, E. M.

    2015-01-01

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  1. Carbon-13 nuclear magnetic resonance of heterocyclic salts and its precursors

    International Nuclear Information System (INIS)

    Freire, H.R.

    1989-01-01

    The synthesis of 1,2,3,6 - tetrahydro - 1, 1 dimethyl - 3 - oxo - 5 phenylpyridinium bromides containing the substituents: H, Me, Cl, Br, OMe and NO 2 is described. The phenacyl bromides (8a-f) were characterized by their melting points and by their I.r. and 1 H n.m.r. spectra. Some studies on 13 C n.m.r. spectra of the phenacyl bromides (8a-f), the quartenary ammonium salts (7a-f) and the cyclic salts(6a-f) are shown. The effect of substituents on the eletronic structure of these compounds and on the chemical shifts of the different carbon atoms in terms of electronic and steric effects are discussed. (M.J.C.) [pt

  2. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  3. Thermal decomposition behavior of the co-precipitated carbonate precursor for La0.84Sr0.16MnO3

    International Nuclear Information System (INIS)

    Sankaranarayanan, A.; Kalekar, B.B.; Ramanathan, S.

    2004-01-01

    A carbonate precursor for lanthanum strontium manganite powder (La 0.84 Sr 0.16 MnO 3 - LSM) was obtained by addition of an aqueous solution of nitrates of lanthanum, strontium and manganese into a bath of ammonium carbonate solution. The precipitate was filtered, washed, dried and dry ground for homogenization. The thermal decomposition behavior of the precursor was studied by simultaneous TG-DTA-EGA technique while the precursor and intermediates formed at different temperatures were characterized by FTIR and XRD techniques for decomposition of carbonate and compound formation. It exhibited a loss in weight and endotherms in stages in the temperature ranges of 20 to 260 deg C, 260 deg to 500 deg C, 500 deg to 600 deg C, 600 deg to 900 deg C. The loss of carbon dioxide was exhibited in the EGA data and FTIR spectra while phase formation was confirmed by XRD. A comparative study of all these results showed that the processes occurring at various temperature ranges (20 deg to 260 deg C, 260 deg to 500 deg C, 500 deg to 600 deg C, 600 deg to 900 deg C) are dehydration of adsorbed moisture and water of crystallization, decomposition of manganese hydroxycarbonate to manganese dioxide, lanthanum carbonate to lanthanum oxy-carbonate and interaction between lanthanum oxy-carbonate, manganese dioxide and strontium carbonate to form finally LSM. Even though decomposition of carbonates into oxides was complete at 900 deg C, phase pure compound formation occurred at 1100 deg C, under the conditions used. (author)

  4. Technique for production of graphite-carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Bentsianovskaya, I.A.; Filatova, V.A.; Nabokov, V.S.; Nestor, V.P.; Zil' bergleyt, I.M.

    1982-01-01

    The technique for producing carbon-graphite products that includes filtration under a pressure of 0.1-015 MPa (through graphite stock) of an aqueous carbon material with the addition of surfactant, drying, and subsequent thermal treatment, is simplified and made less lengthy. Oxidized graphite is utilized with a prior addition of 1-10% water-soluble organic substance into the suspension -molasses, hemicellulose, sugar or polyacrylamide. A 0.03-1.5% suspension of oxidized graphite is utilized, with a particle size of 0.02-0.1 mkm. Thermal processing is done in a carbon fill, at a rate of 10-20 degrees/hour to 700-800/sup 0/, maintained 2-3 hours.

  5. PROCESSED PRODUCTS OF THE HEVEIN PRECURSOR IN THE LATEX OF THE RUBBER TREE (HEVEN BRASILIENSIS)

    NARCIS (Netherlands)

    SOEDJANAATMADJA, UMS; SUBROTO, T; BEINTEMA, JJ

    1995-01-01

    The 20 kDa precursor of hevein and its C-terminal 14 kDa domain have been isolated. Sequence analysis of the C-terminal tryptic peptides of these proteins and comparison with the cDNA sequence indicate that they represent mature forms from which a C-terminal propeptide, possibly involved in vacuolar

  6. Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth.

    Science.gov (United States)

    Gwak, Yu Shin; Han, Jung Yeon; Adhikari, Prakash Babu; Ahn, Chang Ho; Choi, Yong Eui

    2017-06-01

    Production of compound K (a ginsenoside saponin) and its precursors in transgenic tobacco resulted in stunted growth and seed set failure, which may be caused by strong autotoxicity of heterologously produced phytochemicals against the tobacco itself. Panax ginseng roots contain various saponins (ginsenosides), which are major bioactive compounds. A monoglucosylated saponin, compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol), has high medicinal and cosmetic values but is present in undetectable amounts in naturally grown ginseng roots. The production of compound K (CK) requires complicated deglycosylation of ginsenosides using physicochemical and/or enzymatic degradation. In this work, we report the production of CK in transgenic tobacco by co-overexpressing three genes (PgDDS, CYP716A47 and UGT71A28) isolated from P. ginseng. Introduction and expression of the transgenes in tobacco lines were confirmed by genomic PCR and RT-PCR. All the lines of transgenic tobacco produced CK including its precursors, protopanaxadiol and dammarenediol-II (DD). The concentrations of CK in the leaves ranged from 1.55 to 2.64 µg/g dry weight, depending on the transgenic line. Interestingly, production of CK in tobacco brought stunted plant growth and gave rise to seed set failure. This seed set failure was caused by both long-styled flowers and abnormal pollen development in transgenic tobacco. Both CK and DD treatments highly suppressed in vitro germination and tube growth in wild-type pollens. Based on these results, metabolic engineering for CK production in transgenic tobacco was successfully achieved, but the production of CK and its precursors in tobacco severely affects vegetative and reproductive growth due to the cytotoxicity of phytochemicals that are heterologously produced in transgenic tobacco.

  7. Production of activated carbons from coffee endocarp by CO2 and steam activation

    International Nuclear Information System (INIS)

    Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J.M.; Ribeiro Carrott, M. Manuela L.; Garcia, A. Macias; Diaz-Diez, M.A.

    2008-01-01

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO 2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO 2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  8. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Czarnotta, Eik; Dianat, Mariam; Korf, Marcel

    2017-01-01

    from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into S. cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling...... a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg...

  9. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  10. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources

    DEFF Research Database (Denmark)

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov

    2017-01-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate...... production was examined. When substrate concentration was controlled at 100 mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11 g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio...... ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700 mM, which inhibited the fermentation process. The highest caproate concentration of 8.42 g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550 m...

  11. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  12. Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications

    Science.gov (United States)

    Bhandavat, Romil

    Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 mum 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents

  13. Activated carbon preparation with pore nanosized from biomass precursors; Preparacao de carvoes ativados com poros de dimensoes nanometricas a partir de precursores de biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Capobianco, Gino [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Planejamento de Sistemas Energeticos; Coutinho, Aparecido dos Reis [Universidade Metodista de Piracicaba, SP (Brazil). Lab. de Materiais Carbonosos; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Grupo Combustiveis Alternativos

    2004-07-01

    Here are reported preliminary tests using pinnus wood, mesocarpo of green coconut and macadamia shell. They are carbonized and later physically activated with CO{sub 2} or chemically with ZnCl{sub 2}. The resulting activated carbons (AC) are characterized with scanning electronic microscopy, the BET method for determination of the specific surface area-ASE, real density-DR, helium picnometry among others. The results indicate macadamia shell originates better AC, with average micropores in the range of 1,2-1,6 nm, apparent density of 1,08 g/cm{sup 3}, and ASE-BET 1400m{sup 2}/g. Then, these AC have the possibility to be applied in NG storage. (author)

  14. Product carbon footprint developments and gaps

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper

    2012-01-01

    Purpose - Over the last decade, multiple initiatives have been undertaken to learn how to capture the carbon footprint of a supply chain at a product level. The purpose of this paper is to focus on the process of standardization to secure consistency of product carbon footprinting (PCF) and to ou....../value - Papers that outline the standardization process for PCF have been examined, but this paper adds value by categorizing the field, outlining the latest standards, and by being the first paper to compare standards for PCF on selected criteria and identify gaps....... when conducting a PCF, and a paradox exists concerning methods for securing future standardization of PCF. Research limitations/implications - Standards for evaluating emission of greenhouse gases (GHGs) in supply chains are evaluated without consideration of other environmental impacts. In addition......, the research only compares international standards, thereby excluding national initiatives. Practical implications - Standardization efforts can be expected to shape the future practice of measuring emission of GHGs in companies and supply chains which provides a framework for reducing impacts. Originality...

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  16. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    extraction products indicated that they had the requisite properties of viable carbon-product precursors.

  17. Carbon sequestration from boreal wildfires via Pyrogenic Carbon production

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan; Preston, Caroline

    2014-05-01

    Fire releases important quantities of carbon (C) to the atmosphere. Every year, an average of 460 Million ha burn around the globe, generating C emissions equivalent to a third of the current annual contribution from fossil fuel combustion. Over the longer-term wildfires are widely considered as 'net zero C emission events', because C emissions from fires, excluding those associated with deforestation and peatland fires, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the production of pyrogenic C (PyC). During fire, part of the biomass C burnt is emitted to the atmosphere but part is transformed into PyC (i.e. charcoal). The enhanced resistance of PyC to environmental degradation compared to unburnt biomass gives it the potential to sequester C over the medium/long term. Therefore, after complete regeneration of the vegetation, the PyC generated may represent an additional C pool and, hence, recurring fire-regrowth cycles could represent net sinks of atmospheric C. To estimate the quantitative importance of PyC production, accurate data on PyC generation with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and pools (i.e. PyC in soil, ash, downed wood and standing vegetation). To address this research gap, we utilized the globally unique FireSmart experimental forest fires in Northwest Canada. They are aimed to reproduce wildfire conditions typical for boreal forest and, at the same time, allow pre-fire fuel assessment, fire behaviour monitoring and immediate post-fire fuel and PyC inventory. This

  18. The carbon footprint of indoor Cannabis production

    International Nuclear Information System (INIS)

    Mills, Evan

    2012-01-01

    The emergent industry of indoor Cannabis production – legal in some jurisdictions and illicit in others – utilizes highly energy intensive processes to control environmental conditions during cultivation. This article estimates the energy consumption for this practice in the United States at 1% of national electricity use, or $6 billion each year. One average kilogram of final product is associated with 4600 kg of carbon dioxide emissions to the atmosphere, or that of 3 million average U.S. cars when aggregated across all national production. The practice of indoor cultivation is driven by criminalization, pursuit of security, pest and disease management, and the desire for greater process control and yields. Energy analysts and policymakers have not previously addressed this use of energy. The unchecked growth of electricity demand in this sector confounds energy forecasts and obscures savings from energy efficiency programs and policies. While criminalization has contributed to the substantial energy intensity, legalization would not change the situation materially without ancillary efforts to manage energy use, provide consumer information via labeling, and other measures. Were product prices to fall as a result of legalization, indoor production using current practices could rapidly become non-viable. - Highlights: ► The emergent industry of indoor Cannabis production utilizes highly energy intensive processes and is highly inefficient. ► In the United States, this represents an annual energy expenditure of $6 billion. ► One kg of final product is associated with emissions of 4600 kg of CO 2 emissions to the atmosphere. ► Aggregate U.S. emissions are equivalent those of 3 million cars. ► Energy analysts and policymakers have not previously addressed this use of energy.

  19. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  20. Light quality influences indigo precursors production and seed germination in Isatis tinctoria L. and Isatis indigotica Fort.

    Science.gov (United States)

    Tozzi, Sabrina; Lercari, Bartolomeo; Angelini, Luciana G

    2005-01-01

    Isatis tinctoria L. and Isatis indigotica Fort. are biennial herbaceous plants belonging to the family of Cruciferae that are used as a source of natural indigo and show several morphological and genetic differences. Production of indigo (indigotin) precursors, indican (indoxyl beta-D glucoside) and isatan B (indoxyl ketogluconate), together with seed germination ability were compared in Isatis tinctoria and Isatis indigotica grown under six different light conditions (darkness, white, red, far red, blue, yellow light) at 25 degrees C. Light quality influenced both germination and production of indigo precursors in the two Isatis species. Different responsiveness to far red and blue light was observed. Indeed, a detrimental effect on germination by blue and far red light was found in I. tinctoria only. Different amounts of isatan B were produced under red and far red light in the two Isatis species. In I. tinctoria, the level of main indigo precursor isatan B was maximal under red light and minimal under far red light. Whereas in I. indigotica far red light promoted a large accumulation of isatan B. The photon fluence rate dependency for white and yellow light responses showed that the accumulation of indigo precursors was differently influenced in the two Isatis species. In particular, both white and yellow light enhanced above 40 micromol m(-2) s(-1) the production of isatan B in I. indigotica while only white light showed a photon fluence dependency in I. tinctoria. These results suggest a different role played by the labile and stable phytochrome species (phyA and phyB) in the isatan B production in I. tinctoria and I. indigotica. I. indigotica, whose germination percentage was not influenced by light quality, demonstrated higher germination capability compared with I. tinctoria. In fact, I. tinctoria showed high frequency of germination in darkness and under light sources that establish high phytochrome photoequilibrium (red, white and yellow light

  1. Engineering metabolic pathways in Amycolatopsis japonicum for the optimization of the precursor supply for heterologous brasilicardin congeners production

    Directory of Open Access Journals (Sweden)

    Paul N. Schwarz

    2018-03-01

    Full Text Available The isoprenoid brasilicardin A is a promising immunosuppressant compound with a unique mode of action, high potency and reduced toxicity compared to today's standard drugs. However, production of brasilicardin has been hampered since the producer strain Nocardia terpenica IFM0406 synthesizes brasilicardin in only low amounts and is a biosafety level 2 organism. Previously, we were able to heterologously express the brasilicardin gene cluster in the nocardioform actinomycete Amycolatopsis japonicum. Four brasilicardin congeners, intermediates of the BraA biosynthesis, were produced. Since chemical synthesis of the brasilicardin core structure has remained elusive we intended to produce high amounts of the brasilicardin backbone for semi synthesis and derivatization. Therefore, we used a metabolic engineering approach to increase heterologous production of brasilicardin in A. japonicum. Simultaneous heterologous expression of genes encoding the MVA pathway and expression of diterpenoid specific prenyltransferases were used to increase the provision of the isoprenoid precursor isopentenyl diphosphate (IPP and to channel the precursor into the direction of diterpenoid biosynthesis. Both approaches contributed to an elevated heterologous production of the brasilicardin backbone, which can now be used as a starting point for semi synthesis of new brasilicardin congeners with better properties.

  2. The production of activated carbon from nigerian mineral coal via steam activation

    International Nuclear Information System (INIS)

    Nwosu, F.O.; Owolabi, B.I.O.; Adebowale, O.

    2010-01-01

    Activated carbon was produced from Okpara sub-bituminous coal and Ogwashi brown lignite coal of Nigeria through steam activation at 900 degree C and 960 degree C each for 30 min and 60 min. Okpara and Ogwashi precursor coals had carbon content of 67.41 and 64.47%, respectively, whereas the bulk density and the ash content were 0.59 - 0.68 g/mL and 2.56-9.91%, respectively. The former exhibited up to 901.0 mg/g iodine number and Brunauer Emmett Teller (BET) surface area of 604 m/sup 2/g while the latter, iodine number of 998.0 mg/g and 669 m/sup 2/g BET surface area. Both showed adequate porosity indicative of their potential for utilization for commercial production of active carbons. (author)

  3. Taxation of carbon intensive imported products

    International Nuclear Information System (INIS)

    De La Fuente Sanchez, C.; Dubilly, A.L.; Lescal, N.

    2010-01-01

    It is one of the greatest challenges of our time to make the link between development issues and climate change actions. The EU has committed itself, throughout the Kyoto Protocol and the current negotiation mechanisms, to reduce its emissions of greenhouse gas, but the question is still pending on the possible ways to have those efforts harmonized globally, and in particular with developing countries. Why not set taxation on carbon intensive products imported, ted, in the European Union, from countries that do not provide 'green' guarantees in their fabrication process? We begin this study with a thorough analysis of the ins and outs of the carbon tax. On the one hand, it is a good way of adjusting prices and rectifying a competition distortion between those paying or their emissions and those exempted of constraints. On the other hand, one can ask oneself if it is fair to discriminate developing countries when they need growth and better living standards. After going through the legal issues in which this debate is imbricated, the third and last part of this study investigates the possible implementation issues in terms of tax level and of benefits' generation and use. This study illustrates the complexity of reuniting particular interests and global interests on global warming, as well as the complexity of sharing responsibilities on a fair way between industrialized and developing countries on climate change issues. The challenge is big and complex yet it is worth the effort. (authors)

  4. Differential regulation of amyloid precursor protein sorting with pathological mutations results in a distinct effect on amyloid-β production.

    Science.gov (United States)

    Lin, Yen-Chen; Wang, Jia-Yi; Wang, Kai-Chen; Liao, Jhih-Ying; Cheng, Irene H

    2014-11-01

    The deposition of amyloid-β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal-lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis. The internalization of amyloid precursor protein (APP) increases its opportunity to be processed by β-secretase and to produce Amyloid-β (Aβ) that causes Alzheimer's disease (AD). We report a pathogenic APPD678H mutant that enhances APP internalization into the endosomal-lysosomal pathway and thus promotes the β-secretase cleavage and Aβ production. This study provides genetic evidence for the importance of APP sorting in AD pathogenesis. © 2014 International Society for Neurochemistry.

  5. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    Science.gov (United States)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  6. Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors.

    Science.gov (United States)

    Gomez, Federico José Vicente; Martín, Aída; Silva, María Fernanda; Escarpa, Alberto

    2015-08-01

    In the current work, single-wall carbon nanotube press-transferred electrodes (SW-PTEs) were used for detection of melatonin (MT) and its precursors tryptophan (Trp) and serotonin (5-HT) on microchip electrophoresis (ME). SW-PTEs were simply fabricated by press transferring a filtered dispersion of single-wall carbon nanotubes on a nonconductive PMMA substrate, where single-wall carbon nanotubes act as exclusive transducers. The coupling of ME-SW-PTEs allowed the fast detection of MT, Trp, and 5-HT in less than 150 s with excellent analytical features. It exhibited an impressive antifouling performance with RSD values of ≤2 and ≤4% for migration times and peak heights, respectively (n = 12). In addition, sample analysis was also investigated by analysis of 5-HT, MT, and Trp in commercial samples obtaining excellent quantitative and reproducible recoveries with values of 96.2 ± 1.8%, 101.3 ± 0.2%, and 95.6 ± 1.2% for 5-HT, MT, and Trp, respectively. The current novel application reveals the analytical power of the press-transfer technology where the fast and reliable determination of MT and its precursors were performed directly on the nanoscale carbon nanotube detectors without the help of any other electrochemical transducer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of Varium and a pre-cursor formula on cytokine production in broiler chickens challenged with Eimeria maxima and Clostridium perfringens

    Science.gov (United States)

    Two studies were conducted to evaluate the ability of new products with toxin binding properties on cytokine production during a necrotic enteritis challenge. A precursor (PV) formula to the product Varium (V) was tested in experiment one, and PV and V formulas were included in the second experimen...

  8. Microwave plasma enhanced chemical vapor deposition growth of few-walled carbon nanotubes using catalyst derived from an iron-containing block copolymer precursor

    International Nuclear Information System (INIS)

    Wang Peng; Lu, Jennifer; Zhou, Otto

    2008-01-01

    The microwave plasma enhanced chemical vapor deposition (MPECVD) method is now commonly used for directional and conformal growth of carbon nanotubes (CNTs) on supporting substrates. One of the shortcomings of the current process is the lack of control of the diameter and diameter distribution of the CNTs due to difficulties in synthesizing well-dispersed catalysts. Recently, block copolymer derived catalysts have been developed which offer the potential of fine control of both the size of and the spacing between the metal clusters. In this paper we report the successful growth of CNTs with narrow diameter distribution using polystyrene-block-polyferrocenylethylmethylsilane (PS-b-PFEMS) as the catalyst precursor. The study shows that higher growth pressure leads to better CNT growth. Besides the pressure, the effects on the growth of CNTs of the growth parameters, such as temperature and precursor gas ratio, are also studied

  9. Influence of Cobalt Precursor on Efficient Production of Commercial Fuels over FTS Co/SiC Catalyst

    Directory of Open Access Journals (Sweden)

    Ana Raquel de la Osa

    2016-07-01

    Full Text Available β-SiC-supported cobalt catalysts have been prepared from nitrate, acetate, chloride and citrate salts to study the dependence of Fischer–Tropsch synthesis (FTS on the type of precursor. Com/SiC catalysts were synthetized by vacuum-assisted impregnation while N2 adsorption/desorption, XRD, TEM, TPR, O2 pulses and acid/base titrations were used as characterization techniques. FTS catalytic performance was carried out at 220 °C and 250 °C while keeping constant the pressure (20 bar, space velocity (6000 Ncm3/g·h and syngas composition (H2/CO:2. The nature of cobalt precursor was found to influence basic behavior, extent of reduction and metallic particle size. For β-SiC-supported catalysts, the use of cobalt nitrate resulted in big Co crystallites, an enhanced degree of reduction and higher basicity compared to acetate, chloride and citrate-based catalysts. Consequently, cobalt nitrate provided a better activity and selectivity to C5+ (less than 10% methane was formed, which was centered in kerosene-diesel fraction (α = 0.90. On the contrary, catalyst from cobalt citrate, characterized by the highest viscosity and acidity values, presented a highly dispersed distribution of Co nanoparticles leading to a lower reducibility. Therefore, a lower FTS activity was obtained and chain growth probability was shortened as observed from methane and gasoline-kerosene (α = 0.76 production when using cobalt citrate.

  10. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Sabine A.E. Heider

    2014-08-01

    Full Text Available The biotechnologically relevant bacterium C. glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP and its isomer dimethylallyl pyrophosphate (DMAPP, are synthesized in this organism via the methylerythritol phosphate (MEP or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various nonnative C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP astaxanthin could be produced in the mg per g cell dry weight range when the endogenous genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4 oxygenase from Brevundimonas aurantiaca.

  11. Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum

    International Nuclear Information System (INIS)

    Heider, Sabine A. E.; Wolf, Natalie; Hofemeier, Arne; Peters-Wendisch, Petra; Wendisch, Volker F.

    2014-01-01

    The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.

  12. Problems of metrological supply of carbon materials production

    International Nuclear Information System (INIS)

    Belov, G.V.; Bazilevskij, L.P.; Cherkashina, N.V.

    1989-01-01

    Carbon materials and products contain internal residual stresses and have an anisotropy of properties therefore special methods of tests are required to control their quality. The main metrological problems during development, production and application of carbon products are: metrological supply of production forms and records during the development of production conditions; metrological supply of quality control of the product; metrological supply of methods for the tests of products and the methods to forecast the characteristics of product quality for the period of quaranteed service life

  13. Plasma glutamine is a minor precursor for the synthesis of citrulline: A multispecies study

    Science.gov (United States)

    Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2[15N]-glutamine to citrulline has been used as evidence for this precursor-product relationship. However, work in mice has shown that nitrogen and carbon tracers follow di...

  14. RESEARCH OF LIMY AND CARBONATE SYSTEM OF SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2012-01-01

    Full Text Available Influence of рН and temperature on activity of suspension of lime and carbonate in sugar production is investigated. Possibility of decrease in a consumption of reagents on purification of production sugar solutions is established.

  15. The effect of linker of electrodes prepared from sol–gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis

    International Nuclear Information System (INIS)

    Szot, Katarzyna; Lynch, Robert P.; Lesniewski, Adam; Majewska, Ewa; Sirieix-Plenet, Juliette; Gaillon, Laurent; Opallo, Marcin

    2011-01-01

    The effect of linker of three-dimensional, hydrophilic-carbon-nanoparticle film-electrodes prepared by layer-by-layer method on redox probe accumulation and bioelectrocatalytic dioxygen reduction was studied and compared for two different electrode scaffolds. The linker in both of these scaffolds was based on the same ionic liquid sol–gel precursor, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium bis(trifluoromethyl-sulfonyl)imide. The first electrode type was prepared by alternative immersion of tin doped indium oxide substrate in an aqueous suspension of carbon nanoparticles modified with phenyl sulphonic groups and a sol composed of ionic liquid sol–gel precursor and tetramethoxysilane. For the second electrode type sol was replaced by a methanolic suspension of silicate submicroparticles with appended imidazolium functional groups. In both films 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) anions accumulate irreversibly. In the case of the first electrode electrostatic attraction plays the more important role in comparison to the case of the second where stable adsorption of the redox probe takes place. After adsorption of bilirubin oxidase, electrodes obtained from sol and carbon nanoparticles exhibit modest bioelectrocatalytic activity towards dioxygen reduction at pH 4.8, however those obtained from oppositely charged particles are much more efficient. The magnitude of the associated catalytic current in both cases depends on the number of immersion and withdrawal steps. Interestingly, mediatorless catalysis at electrodes obtained from oppositely charged particles is more efficient than mediated catalysis.

  16. Production and characterization of activated carbon using indigenous waste materials

    International Nuclear Information System (INIS)

    Shahid, M.; Ibrahim, F.

    2011-01-01

    Activated carbon was produced from shisham wood and coconut shell through chemical activation, using phosphoric acid and low temperature carbonization. Proximate analysis and characterization of the product were carried out and Brunauer Emmett Teller (BET) surface area, total ash content, moisture content, pH value and iodine number were determined. The product characteristics were well comparable with those of the commercially available activated carbon. (author)

  17. Product carbon footprints and their uncertainties in comparative decision contexts.

    Directory of Open Access Journals (Sweden)

    Patrik J G Henriksson

    Full Text Available In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp. farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance.

  18. Three-dimensional decomposition models for carbon productivity

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2012-01-01

    This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO 2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.

  19. Reductive coupling of carbon monoxide to C sub 2 products

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, J.L.

    1991-08-01

    We first prepared Tp{prime}(CO){sub 2}W{equivalent to}CH from a conversion of the cationic phosphonium carbyne Tp{prime}(CO){sub 2}W{equivalent to}CPMe{sub 3}+ to a neutral carbene by hydride addition at carbon. Removal of PMe{sub 3} with a Lewis acid trap yielded milligram quantities of the desired terminal carbyne. More recently we have prepared a silylcarbyne precursor which reacts with Bu{sub 4}NF in wet THF to form substantial amounts of the CH carbyne. Dimerization to form an unusual vinylidene bridged complex is a facile decomposition route which consumes the Tp{prime}(CO){sub 2}M{equivalent to}CH monometer for both M=MO and M=W,. Preparation of other carbyne complexes has been achieved using Tp{prime}(CO){sub 2}W{equivalent to}C-Cl as a reagent. Another carbyne derivative was synthesized from Tp{prime}(CO){sub 2}M{equivalent to}C-Cl by adding K(CpFe(Co){sub 2}) to displace the chloride. Organometallic products formed from the reaction of an electrophilic iron carbene complex with nitrosoarenes or azobenzene reflect net insertion of the ArN-X moiety into the Fe=CHAr bond. Cp(CO){sub 2}Fe-O-N(Ar{prime})=CHAr+ and Cp(CO){sub 2}FeN(Ph)-N(Pha)=CHAr+ have been isolated and spectroscopically characterized. More promising results for long term progress in building electrophilic nitrene complexes have been achieved with Group VI reagents. Simple methods for generating Tp{prime}(CO){sub 2}W=NHR for R= Ar and Bu{sup t} are encouraging. Furthermore, removal of H{sup minus} from the amido ligand with either I{sub 2} or (Ph{sub 3}C)(BF{sub 4}) provides access to cationic nitrene complexes.

  20. High-performance zno transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80-180 °c

    KAUST Repository

    Lin, Yenhung

    2013-06-25

    An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm2/Vs at temperatures <180°C. Because of its low temperature requirements the method allows processing of high-performance transistors onto temperature sensitive substrates such as plastic. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  2. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance.

    Science.gov (United States)

    Heisterkamp, Ines M; Schramm, Andreas; Larsen, Lone H; Svenningsen, Nanna B; Lavik, Gaute; de Beer, Dirk; Stief, Peter

    2013-07-01

    Emission of the greenhouse gas nitrous oxide (N2 O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2 O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces are important sites of N2 O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2 O emission. Nitrification and denitrification were equally important sources of N2 O in shell biofilms as revealed by (15) N-stable isotope experiments with dissected shells. Microsensor measurements confirmed that both nitrification and denitrification can occur in shell biofilms due to a heterogeneous oxygen distribution. Accordingly, ammonium, nitrite and nitrate were important drivers of N2 O production in the shell biofilm of the three mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2 O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2 O production of the shell biofilm. This animal-induced stimulation was demonstrated in a long-term microcosm experiment with the snail H. reticulata, where shell biofilms exhibited the highest N2 O emission rates when the animal was still living inside the shell. © 2012 John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Chouinard, Y.

    2003-01-01

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  4. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene

    DEFF Research Database (Denmark)

    Hu, Yating; Zhou, Yongjin J.; Bao, Jichen

    2017-01-01

    inefficient and suffers from limited natural resources. Here, we engineered a yeast cell factory for the sustainable production of germacrene A, which can be transformed to beta-elemene by a one-step chemical reaction in vitro. Two heterologous germacrene A synthases (GASs) converting farnesyl pyrophosphate...... (FPP) to germacrene A were evaluated in yeast for their ability to produce germacrene A. Thereafter, several metabolic engineering strategies were used to improve the production level. Overexpression of truncated 3-hydroxyl-3-methylglutaryl-CoA reductase and fusion of FPP synthase with GAS, led...

  5. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  6. Optimization of engineered production of the glucoraphanin precursor dihomomethionine in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Crocoll, Christoph; Mirza, Nadia Muhammad Akram; Reichelt, Michael

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our...

  7. Reductions of dissolved organic matter and disinfection by-product precursors in full-scale wastewater treatment plants in winter.

    Science.gov (United States)

    Xue, Shuang; Jin, Wujisiguleng; Zhang, Zhaohong; Liu, Hong

    2017-07-01

    The reductions of dissolved organic matter (DOM) and disinfection byproduct precursors in four full-scale wastewater treatment plants (WWTPs) (Liaoning Province, China) where different biological treatment processes were employed in winter were investigated. The total removal efficiencies of dissolved organic carbon (DOC), ultraviolet light at 254 nm (UV-254), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) were in the range of 70.3-76.0%, 49.6-57.3%, 54.4-65.0%, and 53.7-63.8% in the four WWTPs, respectively. The biological treatment was the predominant process responsible for the removal of DOC, THMFP, and HAAFP in WWTPs. Differences in the reduction of UV-254 were not significant (p > 0.05) among biochemical reaction pool, secondary sedimentation tank, and disinfection tank. Biological aerated filter and suspended carrier activated sludge processes achieved higher DOM removal than the conventional active sludge and anaerobic-anoxic-oxic processes. Hydrophobic neutral and hydrophilic fraction were removed to a higher degree through biological treatment than the other three DOM fractions. HAAFP removal was more efficient than THMFP reduction during biological treatment. During primary treatment, fluorescent materials in secondary sedimentation tanks were preferentially removed, as compared to the bulk DOM. Humic-like fluorescent compounds were not readily eliminated during biological treatment. The fluorescent materials were more susceptible to chlorine than nonfluorescent compounds. Copyright © 2017. Published by Elsevier Ltd.

  8. Solubility Products of M(II) - Carbonates

    International Nuclear Information System (INIS)

    Grauer, Rolf; Berner, Urs

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author)

  9. Carbon sequestration in wood and paper products

    Science.gov (United States)

    Kenneth E. Skog; Geraldine A. Nicholson

    2000-01-01

    Recognition that increasing levels of CO2 in the atmosphere will affect the global climate has spurred research into reduction global carbon emissions and increasing carbon sequestration. The main nonhuman sources of atmospheric CO2 are animal respiration and decay of biomass. However, increases in atmospheric levels are...

  10. Evaluation of Production and Carbon Benefit of Different Vegetables

    Directory of Open Access Journals (Sweden)

    HU Liang

    2016-01-01

    Full Text Available This study analyzed environmental and economic benefits of 8 types of vegetables in 4 different farms over 3 years. The specific results were as follows:(1The input-output ratio and carbon footprint of organic production mode was 18.5% and 87.4% of that of pollution-free mode, respectively; (2Fertilizer and power consumption was the main source of carbon emissions, accounting for 58.76% and 16.67% of total carbon emissions, respectively; (3There were positive correlations between N fertilizer and both carbon emissions and carbon footprint. In other words, higher use of N fertilizer resulted in higher carbon emissions and carbon footprint; (4 When organic fertilizers use reached 122 352 kg·hm-2, the crop production could reach the maximum under organic mode. Under the mode of pollution-free production, when agricultural chemicals input reached 20 103 yuan·hm-2, leafy vegetable production could reach the maximum. Therefore, to increase production and reduce carbon emissions in the process of vegetable production, the main approach was to use organic mode, increase the quantity of organic fertilizer, instead of the use of inorganic N fertilizer and other agricultural chemicals and establish water-saving irrigation system for electricity efficiency.

  11. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes.

    Science.gov (United States)

    Tang, Weihao; Tam, Joshua H K; Seah, Claudia; Chiu, Justin; Tyrer, Andrea; Cregan, Sean P; Meakin, Susan O; Pasternak, Stephen H

    2015-07-14

    Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.

  12. Synthesis of a basket-shaped C56H38 hydrocarbon as a precursor toward an end-cap template for carbon [6,6]nanotubes.

    Science.gov (United States)

    Cui, Hu; Akhmedov, Novruz G; Petersen, Jeffrey L; Wang, Kung K

    2010-03-19

    A basket-shaped C(56)H(38) hydrocarbon (3) possessing a 30-carbon difluorenonaphthacenyl core that can be mapped onto the surface of C(78) was synthesized from 4-bromo-1-indanone. The first stage of the synthesis involved the preparation of tetraketone 10 as a key intermediate. The use of cascade cyclization reactions of benzannulated enyne-allenes as key features in the next stage of the synthetic sequence provides an efficient route to 3 from 4-bromo-1-indanone in 12 steps. The all-cis relationship among the methyl groups and the methine hydrogens causes the two benzofluorenyl units in 3 to be in an essentially perpendicular orientation to each other. Hydrocarbon 3 and its derivatives could serve as attractive precursors leading to a geodesic C(68)H(26) end-cap template for carbon [6,6]nanotubes.

  13. The commercial production of compounds of the lanthanides and yttrium as CRT phosphor precursors

    International Nuclear Information System (INIS)

    Kilbourn, B.T.

    1987-01-01

    The consumer acceptance of color television at the start of the 60's was triggered by the phosphor industry's discovery and production of a satisfactory red phosphor using the element europium. This element, in the middle of the lanthanide series, had until that time been an academic curiosity, prepared only in gram quantities for research. The large-scale production by the lanthanide industry, in order to meet the demand for commercial quantities of high purity europium oxide, required the introduction of new technology. Lanthanide elements other than europium, such as cerium and terbium, are also needed as the active ions for many phosphors. In addition, the inert host lattice for those emitting ions can be provided by compounds of yttrium, the element above the lanthanides in the periodic table, with comparable properties. The lanthanide industry has developed processes to produce compounds of such elements in the required quantities and purities. For commercial separation of these elements a technology known as counter-current liquid-liquid extraction has been developed. This technique, commonly called solvent extraction, is illustrated and described. The initial ore preparation steps, together with the final high purity oxide production is also mentioned

  14. Optical monitoring of Disinfection By-product Precursors with Fluorescence Excitation-Emission Mapping (F-EEM): Practical Application Issues for Drinking, Waste and Reuse Water Industry

    Science.gov (United States)

    Gilmore, A. M.

    2012-12-01

    Drinking water, wastewater and reuse plants must deal with regulations associated with bacterial contamination and halogen disinfection procedures that can generate harmful disinfection by-products (DBPs) including trihalomethanes (THMs), haloacetic acids (HOAAs) and other compounds. The natural fluorescent chromophoric dissolved organic matter (CDOM) is regulated as the major DBP precursor. This study outlines the advantages and current limitations associated with optical monitoring of water treatment processes using tcontemporary Fluorescence Excitation-Emission Mapping (F-EEM). The F-EEM method coupled with practical peak indexing and multi-variate analyses is potentially superior in terms of cost, speed and sensitivity over conventional total organic carbon (TOC) meters and specific UV-absorbance (SUVA) measurements. Hence there is strong interest in developing revised environmental regulations around the F-EEM technique instruments which can incidentally simultaneously measure the SUVA and DOC parameters. Importantly, the F-EEM technique, compared to the single-point TOC and SUVA signals can resolve CDOM classes distinguishing those that strongly cause DBPs. The F-EEM DBP prediction method can be applied to surface water sources to evaluate DBP potential as a function of the point sources and reservoir depth profiles. It can also be applied in-line to rapidly adjust DOC removal processes including sedimentation-flocculation, microfiltration, reverse-osmosis, and ozonation. Limitations and interferences for F-EEMs are discussed including those common to SUVA and TOC in contrast to the advantages including that F-EEMs are less prone to interferences from inorganic carbon and metal contaminations and require little if any chemical preparation. In conclusion, the F-EEM method is discussed in terms of not only the DBP problem but also as a means of predicting (concurrent to DBP monitoring) organic membrane fouling in water-reuse and desalination plants.

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  16. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    Science.gov (United States)

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  18. Solubility Products of M(II) - Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Grauer, Rolf; Berner, Urs [ed.

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author) translated from a PSI internal report written in German in 1994 (TM-44-94-05). 5 figs., 1 tab., 68 refs.

  19. Process for the production of sodium carbonate anhydrate

    OpenAIRE

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of sodium carbonate and sodium bicarbonate, in a mixture containing water and an organic, water miscible or partly water miscible solvent, which solvent influences the transition temperature below which sodium...

  20. Carbon Dissolution Using Waste Biomass—A Sustainable Approach for Iron-Carbon Alloy Production

    Directory of Open Access Journals (Sweden)

    Irshad Mansuri

    2018-04-01

    Full Text Available This paper details the characterisation of char obtained by high-temperature pyrolysis of waste macadamia shell biomass and its application as carbon source in iron-carbon alloy production. The obtained char was characterised by ultimate and proximate analysis, X-ray diffraction (XRD, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS, Brunauer-Emmett-Teller (BET surface area via N2 isothermal adsorption and scanning electron microscopy (SEM. The results indicated that obtained char is less porous, low in ash content, and high in carbon content. Investigation of iron-carbon alloy formation through carbon dissolution at 1550 °C was carried out using sessile drop method by using obtained char as a carbon source. Rapid carbon pickup by iron was observed during first two minutes of contact and reached a saturation value of ~5.18 wt % of carbon after 30 min. The carbon dissolution rate using macadamia char as a source of carbon was comparatively higher using than other carbonaceous materials such as metallurgical coke, coal chars, and waste compact discs, due to its high percentage of carbon and low ash content. This research shows that macadamia shell waste, which has a low content of ash, is a valuable supplementary carbon source for iron-carbon alloy industries.

  1. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  2. Production and characterization of activated carbon from a ...

    African Journals Online (AJOL)

    In this study, the use of a bituminous coal for the production of activated carbons with chemical activation was investigated. The effects of process variables such as chemical reagents, activation temperature, impregnation ratio and carbonization temperature were investigated to optimize these parameters. The resultant ...

  3. Process for the production of sodium carbonate anhydrate

    NARCIS (Netherlands)

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m<3>, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of sodium

  4. Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities

    International Nuclear Information System (INIS)

    Newell, Joshua P.; Vos, Robert O.

    2012-01-01

    Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a ‘carbon neutral’ flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: ► Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. ► The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. ► Life cycle inventories and product carbon footprint protocols need more comprehensive land use-related accounting. ► Interdisciplinary collaboration linking the LCA and

  5. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  6. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  7. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  8. Carbon and environmental footprinting of global biofuel production

    OpenAIRE

    Hammond, Geoff P.; Seth, S.M.

    2013-01-01

    The carbon and environmental footprints associated with the global production of biofuels have been computed from a baseline of 2007-2009 out until 2019. Estimates of future global biofuel production were adopted from OECD-FAO and related projections. In order to determine the footprints associated with these (essentially 'first generation') biofuel resources, the overall environmental footprint was disaggregated into bioproductive land, built land, carbon, embodied energy, materials and wast...

  9. CRADA Carbon Sequestration in Soils and Commercial Products

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  10. In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding.

    Science.gov (United States)

    Patil, Jitendra Gopichand; Ahire, Mahendra Laxman; Nitnaware, Kirti Manik; Panda, Sayantan; Bhatt, Vijay P; Kishor, Polavarapu B Kavi; Nikam, Tukaram Dayaram

    2013-03-01

    Digitalis purpurea L. (Scrophulariaceae; Foxglove) is a source of cardiotonic glycosides such as digitoxin and digoxin which are commercially applied in the treatment to strengthen cardiac diffusion and to regulate heart rhythm. This investigation deals with in vitro propagation and elicited production of cardiotonic glycosides digitoxin and digoxin in shoot cultures of D. purpurea L. In vitro germinated seedlings were used as a primary source of explants. Multiple shoot formation was achieved for three explant types (nodal, internodal, and leaf) cultured on Murashige and Skoog (MS) medium with several treatments of cytokinins (6-benzyladenine-BA; kinetin-Kin; and thidiazuron-TDZ) and auxins (indole-3-acetic acid-IAA; α-naphthaleneacetic acid-NAA; and 2,4-dichlorophenoxy acetic acid-2,4-D). Maximum multiple shoots (12.7 ± 0.6) were produced from nodal explants on MS + 7.5 μM BA. Shoots were rooted in vitro on MS containing 15 μM IAA. Rooted plantlets were successfully acclimatized. To further maintain the multiple shoot induction, mother tissue was cut into four equal parts and repeatedly sub-cultured on fresh shoot induction liquid medium after each harvest. On adaptation of this strategy, an average of 18 shoots per explant could be produced. This strategy was applied for the production of biomass and glycosides digitoxin and digoxin in shoot cultures on MS medium supplemented with 7.5 μM BA and several treatments with plant growth regulators, incubation period, abiotic (salicylic acid, mannitol, sorbitol, PEG-6000, NaCl, and KCl), biotic (Aspergillus niger, Helminthosporium sp., Alternaria sp., chitin, and yeast extract) elicitors, and precursors (progesterone, cholesterol, and squalene). The treatment of KCl, mycelial mass of Helminthosporium sp., and progesterone were highly effective for the production of cardenolides. In the presence of progesterone (200 to 300 mg/l), digitoxin and digoxin accumulation was enhanced by 9.1- and 11.9-folds

  11. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production.

    Science.gov (United States)

    Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain

    2010-11-24

    Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.

  12. Carbon sequestration in harvested wood products

    Science.gov (United States)

    K. Skog

    2013-01-01

    Carbon is continuously cycled among these storage pools and between forest ecosystems and the atmosphere as a result of biological processes in forests (e.g., photosynthesis, respiration, growth, mortality, decomposition, and disturbances such as fires or pest outbreaks) and anthropogenic activities (e.g., harvesting, thinning, clearing, and replanting). As trees...

  13. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  14. Carbon debt and carbon sequestration parity in forest bioenergy production

    Science.gov (United States)

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  15. Capacity and production planning with carbon emission constraints

    DEFF Research Database (Denmark)

    Govindan, Kannan; Song, Shuang; Xu, Lei

    2017-01-01

    This paper builds a two-stage, stochastic model to study capacity expansion problem in logistics under cap-and-trade and carbon tax regulations. The optimal capacity expansion and production decisions are obtained, and the effects of carbon emission regulations on capacity expansion are studied....... Through analytical study and a real case numerical analysis, we find that the carbon tax exhibits different impacts on optimal capacity expansion decisions in low tax rate and high tax rate, and the volatility of capacity investment cost has a larger impact on optimal capacity expansion than...... that of production cost....

  16. Acute Exposure to a Precursor of Advanced Glycation End Products Induces a Dual Effect on the Rat Pancreatic Islet Function

    Directory of Open Access Journals (Sweden)

    Ghada Elmhiri

    2014-01-01

    Full Text Available Aim. Chronic diseases are the leading cause of death worldwide. Advanced glycation end products, known as AGEs, are a major risk factor for diabetes onset and maintenance. Methylglyoxal (MG, a highly reactive metabolite of glucose, is a precursor for the generation of endogenous AGEs. Methods. In this current study we incubated in vitro pancreatic islets from adult rats in absence or presence of MG (10 μmol/l with different concentrations of glucose and different metabolic components (acetylcholine, epinephrine, potassium, forskolin, and leucine. Results. Different effects of MG on insulin secretion were evidenced. In basal glucose stimulation (5.6 mM, MG induced a significant (P<0.05 increase of insulin secretion. By contrast, in higher glucose concentrations (8.3 mM and 16.7 mM, MG significantly inhibited insulin secretion (P<0.05. In the presence of potassium, forskolin, and epinephrine, MG enhanced insulin secretion (P<0.05, while when it was incubated with acetylcholine and leucine, MG resulted in a decrease of insulin secretion (P<0.05. Conclusion. We suggest that MG modulates the secretion activity of beta-cell depending on its level of stimulation by other metabolic factors. These results provide insights on a dual acute effect of MG on the pancreatic cells.

  17. Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus.

    Science.gov (United States)

    Huang, Xuenian; Liang, Yajing; Yang, Yong; Lu, Xuefeng

    2017-07-01

    Monacolin J is a key precursor for the synthesis of simvastatin (Zocor), an important drug for treating hypercholesterolemia. Industrially, monacolin J is manufactured through alkaline hydrolysis of lovastatin, a fungal polyketide produced by Aspergillus terreus. Multistep chemical processes for the conversion of lovastatin to simvastatin are laborious, cost expensive and environmentally unfriendly. A biocatalysis process for monacolin J conversion to simvastatin has been developed. However, direct bioproduction of monacolin J has not yet been achieved. Here, we identified a lovastatin hydrolase from Penicillium chrysogenum, which displays a 232-fold higher catalytic efficiency for the in vitro hydrolysis of lovastatin compared to a previously patented hydrolase, but no activity for simvastatin. Furthermore, we showed that an industrial A. terreus strain heterologously expressing this lovastatin hydrolase can produce monacolin J through single-step fermentation with high efficiency, approximately 95% of the biosynthesized lovastatin was hydrolyzed to monacolin J. Our results demonstrate a simple and green technical route for the production of monacolin J, which makes complete bioproduction of the cholesterol-lowering drug simvastatin feasible and promising. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Divito, Jason R; Stevenson, Jesse A; Romano, Donna; Dong, Yuanlin; Xie, Zhongcong; Tanzi, Rudolph E

    2010-01-01

    Mounting evidence suggests that Alzheimer's disease (AD) is caused by the accumulation of the small peptide, amyloid-β (Aβ), a proteolytic cleavage product of amyloid-β protein precursor (AβPP). Aβ is generated through a serial cleavage of AβPP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. AβPP can also be processed by α-secretase, which cleaves AβPP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on AβPP processing and Aβ generation. Here we assessed the effects of cell density on AβPP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42: Aβ40. These results also indicate that cell density is a significant modulator of AβPP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g., novel drugs on AβPP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect AβPP processing and Aβ levels in the AD brain.

  19. Carbon composite manufacturing in automotive volume production

    DEFF Research Database (Denmark)

    Geiger, Raphael; Pahl, Julia

    2017-01-01

    Lightweight constructions are a continuously increasing trend in the automotive industry. Main drivers for that trend are the challenging emission reduction targets regarding combustion engines and increasing ranges in electric mobility. This article presents different composite production methods...... and discusses their ability within mass production giving also an example within the automotive production....

  20. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2010-01-01

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 o C by the chlorides route, whereas alkoxide precursors needed firing over 900 o C and nitrates even over 1100 o C. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 o C with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  1. Production of sorption-active polypropylene fibers by radiation-induced grafting of glycidyl methacrylate as a precursor monomer

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Kim, H.J.; Lim, Y.J.

    2006-01-01

    The design and development of sorption-active natural and synthetic polymer fibers and textile materials is of great scientific and practical interest. The advantages of that type of polymeric adsorbents, as their highly developed specific surface, excellent ion-exchange and adsorption parameters and ease of their use especially under continuous conditions, allow them to find a great application in the chemical, biomedical, ecological and industrial fields. To obtain functional polymer materials with the desired performance, the non-active polymer surface have to be modified. Among different innovative techniques used for the introduction of graft chains, the radiation-chemical method of initiation has some economical and ecological preferences over others. It allows to introduce into inert polymeric matrix chains of a monomer already containing a desirable functional group, or to graft chains of a precursor-monomer and subsequently its chemical modification to form required functional groups. At present an epoxy-group containing monomer, glycidyl methacrylate (GMA), is successfully used as a precursor-monomer for production of polymeric adsorbents of variety applications on the base of membranes, films, fibers and fabrics. Two types of sorption-active polypropylene fiber carrying strong-acid sulfonate groups and amino groups have been synthesized by radiation-induced graft polymerization of GMA, with subsequent chemical modification of the epoxy groups of poly-GMA graft chains. The effect of various polymerization parameters on the GMA grafting degree was investigated in detail. The epoxy ring-opening of poly-GMA graft chains with introduction of strong-acid sulfonate groups was carried out with sodium hydrogen sulfite in water-dimethylformamide solution at 70 deg C. The main peculiarities of the sulfonation reaction in depending on the reaction time and GMA grafting degree have been investigated. Amine groups were incorporated by treatment of the GMA

  2. Production of activated carbon from cellulosic fibers for environment protection

    International Nuclear Information System (INIS)

    Le Coq, L.; Faur, C.; Le Cloirec, P.; Phan Ngoc, H.

    2005-01-01

    Activated carbon fibers (ACF) have received an increasing attention in recent years as an adsorbent for purifying polluted gaseous and aqueous streams. Their preparation, characterization and application have been reported in many studies [1], which show that the porosity of ACF is dependent on activation conditions, as temperature, time or gas. ACF provide adsorption rates 2 to 50 times higher than Granular Activated Carbon [2], because of their low diameter (∼10 m) providing a larger external surface area in contact with the fluid compared with that of granules. Furthermore, their potential for the removal of various pollutants from water was demonstrated towards micro-organics like phenols [3], pesticides or dyes [4]. Generally, fibrous activated carbons are produced from natural or synthetic precursors by carbonization at 600-1000 C followed by an activation step by CO 2 oe steam at higher temperature [2]. Another way to produce the fibrous activated carbons is chemical activation with H 3 PO 4 , HNO 3 , KOH...[5]. Different types of synthetic or natural fibers have been used as precursors of fibrous activated carbons since 1970: polyacrylonitrile (PAN), polyphenol, rayon, cellulose phosphate, pitch, etc. Each of them has its own applications and limitations. The synthetic fibers being generally expensive, it would be interesting to find out low-cost precursors from local material resources. This work is a part of a research exchange program between the Vietnamese National Center of Natural Sciences and Technology (Vietnam) and the Ecole des Mines de Nantes (Gepea, France), with the aim to find some economical solutions for water treatment. Fibrous activated carbons are produced from natural cellulose fibers, namely jute and coconut fibers, which are abundant in Vietnam as well as in other tropical countries, have a low ash content and a low cost in comparison with synthetic fibers. Two methods are compared to produce activated carbons: 1) a physical

  3. Organic Carbon and Disinfection Byproduct Precursor Loads from a Constructed, Non-Tidal Wetland in California's Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Jacob A. Fleck

    2007-05-01

    Full Text Available Wetland restoration on peat islands in the Sacramento-San Joaquin Delta will change the quality of island drainage waters entering the Delta, a primary source of drinking water in California. Peat island drainage waters contain high concentrations of dissolved and particulate organic carbon (DOC and POC and organic precursors to drinking water disinfection byproducts, such as trihalomethanes (THMs. We quantified the net loads of DOC, POC, and THM-precursors from a constructed subsidence mitigation wetland on Twitchell Island in the Delta to determine the change in drainage water quality that may be caused by conversion of agricultural land on peat islands to permanently flooded, non-tidal wetlands. Creation of permanently flooded wetlands halts oxidative loss of the peat soils and thereby may mitigate the extensive land-surface subsidence of the islands that threatens levee stability in the Delta. Net loads from the wetland were dominated by DOC flushed from the oxidized shallow peat soil layer by seepage flow out of the wetland. The permanently flooded conditions in the overlying wetland resulted in a gradual evolution to anaerobic conditions in the shallow soil layer and a concomitant decrease in the flow could be minimized by reducing the hydraulic gradient between the wetland and the adjacent drainage ditch. Estimates of net loads from the wetland assuming efflux of surface water only were comparable in magnitude to net loads from nearby agricultural fields, but the wetland and agricultural net loads had opposite seasonal variations. Wetland surface water net loads of DOC, POC, and THM-precursors were lower during the winter months when the greatest amounts of water are available for diversion from the Delta to drinking water reservoirs.

  4. Comparison of methods for estimating carbon in harvested wood products

    International Nuclear Information System (INIS)

    Claudia Dias, Ana; Louro, Margarida; Arroja, Luis; Capela, Isabel

    2009-01-01

    There is a great diversity of methods for estimating carbon storage in harvested wood products (HWP) and, therefore, it is extremely important to agree internationally on the methods to be used in national greenhouse gas inventories. This study compares three methods for estimating carbon accumulation in HWP: the method suggested by Winjum et al. (Winjum method), the tier 2 method proposed by the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG LULUCF) (GPG tier 2 method) and a method consistent with GPG LULUCF tier 3 methods (GPG tier 3 method). Carbon accumulation in HWP was estimated for Portugal under three accounting approaches: stock-change, production and atmospheric-flow. The uncertainty in the estimates was also evaluated using Monte Carlo simulation. The estimates of carbon accumulation in HWP obtained with the Winjum method differed substantially from the estimates obtained with the other methods, because this method tends to overestimate carbon accumulation with the stock-change and the production approaches and tends to underestimate carbon accumulation with the atmospheric-flow approach. The estimates of carbon accumulation provided by the GPG methods were similar, but the GPG tier 3 method reported the lowest uncertainties. For the GPG methods, the atmospheric-flow approach produced the largest estimates of carbon accumulation, followed by the production approach and the stock-change approach, by this order. A sensitivity analysis showed that using the ''best'' available data on production and trade of HWP produces larger estimates of carbon accumulation than using data from the Food and Agriculture Organization. (author)

  5. Effect of surface area of substrates aiming the optimization of carbon nanotube production from ferrocene

    International Nuclear Information System (INIS)

    Osorio, A.G.; Bergmann, C.P.

    2013-01-01

    Highlights: ► An optimized synthesis of CNTs by ferrocene is proposed. ► The surface area of substrates influences the nucleation of CNTs. ► The higher the surface area of substrates the lower the temperature of synthesis. ► Chemical composition of substrates has no influence on the growth of CNTs. - Abstract: Ferrocene is widely used for the synthesis of carbon nanotubes due to its ability to act as catalyst and precursor of the synthesis. This paper proposes an optimization of the synthesis of carbon nanotubes from ferrocene, using a substrate with high surface area for their nucleation. Four different surface areas of silica powder were tested: 0.5, 50, 200 and 300 m 2 /g. Raman spectroscopy and microscopy were used to characterize the product obtained and X-ray diffraction and thermal analysis were also performed to evaluate the phases of the material. It was observed that the silica powder with the highest surface area allowed the synthesis of carbon nanotubes to occur at a lower temperature (600 °C), whereas substrates with a surface area lower than 50 m 2 /g will only form carbon nanotubes at temperatures higher than 750 °C. In order to evaluate the influence of chemical composition of the substrate, three different ceramic powders were analyzed: alumina, silica and zirconia. carbon black and previously synthesized carbon nanotubes were also used as substrate for the synthesis and the results showed that the chemical composition of the substrate does not play a relevant role in the synthesis of carbon nanotubes, only the surface area showed an influence.

  6. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  7. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    OpenAIRE

    Ya-Li Du; Xu Wu; Qiang Cheng; Yan-Li Huang; Wei Huang

    2017-01-01

    As a favorably clean fuel, syngas (synthesis gas) production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs) precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature r...

  8. Carbon-14 production in nuclear reactors

    International Nuclear Information System (INIS)

    Davis, W. Jr.

    1977-01-01

    The radioactive nuclide 14 C is formed in all nuclear reactors due to absorption of neutrons by carbon, nitrogen, or oxygen. These may be present as components of the fuel, moderator, or structural hardware, or they may be present as impurities. Most of the 14 C formed in the fuels or in the graphite of HTGRs will be converted to a gaseous form at the fuel reprocessing plant, primarily as carbon dioxide; this will be released to the environment unless special equipment is installed to collect it and convert it to a solid for essentially permanent storage. If the 14 C is released as carbon dioxide or in any other chemical form, it will enter the biosphere, be inhaled or ingested as food by nearly all living organisms including man, and will thus contribute to the radiation burden of these organisms. Detailed estimates are presented of the amounts of 14 C formed in LWRs, HTGR, and LMFBR with emphasis on those pathways that are likely to lead to the release of this nuclide, either at the reactor site or at the fuel reprocessing plant. 83 references

  9. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    Fadhi, A.B.

    2006-01-01

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  10. Carbon Footprint Analysis for a GRAPE Production Case Study

    Science.gov (United States)

    Sirca, C.; Marras, S.; Masia, S.; Duce, P.; Zara, P.; Spano, D.

    2013-12-01

    Agriculture activities can play a double role in emitting or sequestering carbon from the atmosphere. Mitigation of greenhouse gas (GHG) emissions in agriculture is one of the most urgent research subjects in the framework of enhancing environmental stewardship. However, little is known about the role of the agriculture in the global carbon balance, since most of the studies applied the Eddy Covariance technique in natural or semi-natural ecosystems to investigate their role in mitigate the anthropogenic carbon release. The application of the Eddy Covariance technique in agricultural systems could greatly improve our knowledge about their role on the global carbon budget and help in modeling the related processes. In addition, there is a growing request from producers, trade companies, and customers on the assessment of the environmental impact of a production process related to agricultural high quality products. In recent years, particular attention was put on the estimation of GHG emissions deriving from productive processes. In this context, a useful tool is the Life Cycle Assessment (LCA), which represents a methodology to estimate GHG emissions related to the entire life cycle of a product. The Carbon Footprint (CF) analysis represents a subset of the LCA, which only considers CO2 emissions with an impact on climate change. With respect to the wine industry, most of studies focused on the CF analysis related to the wine making process in the cellar, while a few studies analyzed the GHG emissions related to the grape production. The aim of this work was to quantify the CO2 emissions due to the grape production and emphasize the double role of a vineyard as a carbon sink or source. An Eddy Covariance station was set up in a representative vineyard located in the Mediterranean Basin (Sardinia, Italy) to measure the net carbon exchange between the surface and the atmosphere. The CF analysis was also conducted to compute the carbon balance of the grape production

  11. CARBON CRYOGEL MICROSPHERE FOR ETHYL LEVULINATE PRODUCTION: EFFECT OF CARBONIZATION TEMPERATURE AND TIME

    Directory of Open Access Journals (Sweden)

    MUZAKKIR M. ZAINOL

    2016-07-01

    Full Text Available The side products of biomass and bio-fuel industry have shown potential in producing carbon catalyst. The carbon cryogel was synthesized from ligninfurfural mixture based on the following details: 1.0 of lignin to furfural (L/F ratio, 1.0 of lignin to water (L/W ratio, and 8M of acid concentration. The lignin-furfural sol-gel mixture, initially prepared via polycondensation reaction at 90 °C for 30 min, was followed by freeze drying and carbonization process. Effects of carbonization temperature and time were investigated on the total acidity and surface area of the carbon cryogel. Furthermore, the effects of these parameters were studied on the ethyl levulinate yield through esterification reaction of levulinic acid in ethanol. The esterification reaction was conducted at reflux temperature, 10 h of reaction time, 19 molar ratio of ethanol to levulinic acid, and 15.0 wt.% carbon cryogel loading. Based on the carbonization temperature and time studies, the carbon cryogel carbonized at 500 °C and 4 h exhibited good performance as solid acid catalyst. Large total surface area and acidity significantly influenced the catalytic activity of carbon cryogel with 80.0 wt.% yield of ethyl levulinate. Thus, carbon cryogel is highly potential as acid catalyst for the esterification of levulinic acid with ethanol.

  12. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying; Xu, Weilin; Liu, Dijia; Zhuang, Lin

    2017-12-01

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives of Pt-based catalysts with best performance/price.

  13. The Carbon Impacts of Wood Products

    Science.gov (United States)

    Richard Bergman; Maureen Puettmann; Adam Taylor; Kenneth E. Skog

    2014-01-01

    Wood products have many environmental advantages over nonwood alternatives. Documenting and publicizing these merits helps the future competitiveness of wood when climate change impacts are being considered. The manufacture of wood products requires less fossil fuel than nonwood alternative building materials such as concrete, metals, or plastics. By nature, wood is...

  14. Early Age Carbonation Heat and Products of Tricalcium Silicate Paste Subject to Carbon Dioxide Curing

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-05-01

    Full Text Available This paper presents a study on the carbonation reaction heat and products of tricalcium silicate (C3S paste exposed to carbon dioxide (CO2 for rapid curing. Reaction heat was measured using a retrofitted micro-calorimeter. The highest heat flow of a C3S paste subject to carbonation curing was 200 times higher than that by hydration, and the cumulative heat released by carbonation was three times higher. The compressive strength of a C3S paste carbonated for 2 h and 24 h was 27.5 MPa and 62.9 MPa, respectively. The 24-h carbonation strength had exceeded the hydration strength at 28 days. The CO2 uptake of a C3S paste carbonated for 2 h and 24 h was 17% and 26%, respectively. The X-ray diffraction (XRD, transmission electron microscope coupled with energy dispersive spectrometer (TEM-EDS, and 29Si magic angle spinning–nuclear magnetic resonance (29Si MAS-NMR results showed that the products of a carbonated C3S paste were amorphous silica (SiO2 and calcite crystal. There was no trace of calcium silicate hydrate (C–S–H or other polymorphs of calcium carbonate (CaCO3 detected.

  15. Production of dissolved organic carbon in aquatic sediment suspensions

    NARCIS (Netherlands)

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  16. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation

    DEFF Research Database (Denmark)

    Tian, Gui-Li; Zhao, Meng-Qiang; Zhang, Bingsen

    2014-01-01

    . When the areal density was increased from 0.039 to 0.55, and to 2.1 x 10(15) m(-2), the Fe NPs embedded on the LDO flakes exhibited good catalytic performance for the growth of entangled carbon nanotubes (CNTs), aligned CNTs, and double helical CNTs, respectively. This work provides not only new...

  17. Cu/Cu{sub 2}O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoli, E-mail: zhaoxiaoli_zxl@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Tan, Yixin [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wu, Fengchang, E-mail: wu_fengchang@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Niu, Hongyun [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Tang, Zhi [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Cai, Yaqi [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Giesy, John P. [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-11-15

    A simple, novel method for synthesis of Cu/Cu{sub 2}O/CuO on surfaces of carbon (Cu/Cu{sub 2}O/CuO@C) as a non-noble-metal catalyst for reduction of organic compounds is presented. Compared with noble metals, Cu/Cu{sub 2}O/CuO@C particles are more efficient and less expensive. Characterization of the Cu/Cu{sub 2}O/CuO@C composites by high-resolution transmission electron microscope (HRTEM), x-ray diffraction (XRD), infrared spectroscopy and Raman analysis, revealed that it was composed of graphitized carbon with numerous nanoparticles (100 nm in diameter) of Cu/CuO/Cu{sub 2}O that were uniformly distributed on internal and external surfaces of the carbon support. Gallic acid (GA) has been used as both organic ligand and carbon precursor with metal organic frameworks (MOFs) as the sacrificial template and metal oxide precursor in this green synthesis. The material combined the advantages of MOFs and Cu-containing materials, the porous structure provided a large contact area and channels for the pollutions, which results in more rapid catalytic degradation of pollutants and leads to greater efficiency of catalysis. The material gave excellent catalytic performance for organic dyes and phenols. In this study, Cu/Cu{sub 2}O/CuO@C was used as catalytic to reduce 4-NP, which has been usually adopted as a model reaction to check the catalytic ability. Catalytic experiment results show that 4-NP was degraded approximately 3 min by use of 0.04 mg of catalyst and the conversion of pollutants can reach more than 99%. The catalyst exhibited little change in efficacy after being utilized five times. Rates of degradation of dyes, such as Methylene blue (MB) and Rhodamine B (RhB) and phenolic compounds such as O-Nitrophenol (O-NP) and 2-Nitroaniline (2-NA) were all similar. - Highlights: • We present an effective catalyst for reductive degradation of organic dyes and phenols in water. • Compared with noble metals, Cu/Cu{sub 2}O/CuO@C particles are more efficient and less

  18. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... for such systems. In this work, we examine the electrocatalytic performance and properties of seven commercially available carbon materials for H2O2 production by oxygen electroreduction. We show that the faradaic efficiencies for the reaction lie in a wide range of 18-82% for different carbon catalysts. In order...

  19. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  20. Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water-A full factorial design.

    Science.gov (United States)

    Jaria, Guilaine; Silva, Carla Patrícia; Oliveira, João A B P; Santos, Sérgio M; Gil, María Victoria; Otero, Marta; Calisto, Vânia; Esteves, Valdemar I

    2018-02-26

    The wide occurrence of pharmaceuticals in aquatic environments urges the development of cost-effective solutions for their removal from water. In a circular economy context, primary paper mill sludge (PS) was used to produce activated carbon (AC) aiming the adsorptive removal of these contaminants. The use of low-cost precursors for the preparation of ACs capable of competing with commercial ACs continues to be a challenge. A full factorial design of four factors (pyrolysis temperature, residence time, precursor/activating agent ratio, and type of activating agent) at two levels was applied to the production of AC using PS as precursor. The responses analysed were the yield of production, percentage of adsorption for three pharmaceuticals (sulfamethoxazole, carbamazepine, and paroxetine), specific surface area (S BET ), and total organic carbon (TOC). Statistical analysis was performed to evaluate influencing factors in the responses and to determine the most favourable production conditions. Four ACs presented very good responses, namely on the adsorption of the pharmaceuticals under study (average adsorption percentage around 78%, which is above that of commercial AC), and S BET between 1389 and 1627 m 2  g -1 . A desirability analysis pointed out 800 °C for 60 min and a precursor/KOH ratio of 1:1 (w/w) as the optimal production conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  2. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    Science.gov (United States)

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. © 2013 John Wiley & Sons Ltd.

  3. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  4. Hydrothermal Carbonization of Seaweed For Advanced Biochar Production

    Directory of Open Access Journals (Sweden)

    Prakoso Tirto

    2018-01-01

    Full Text Available Seaweed such as Eucheuma Cottonii is a potential source of biomaterialIts high moisture content makes it suitable for hydrothermal conversion process since it doesn’t need to utilize dry feedstock. The aim of this study is to convert the biomass of red seaweed Eucheuma Cottonii into alternative fuels and high value biomaterials using hydrothermal process. The hydrothermal process seaweed Eucheuma Cottonii produce two types of products, liquid product and char (solid. This research focus on the char product. The char from hydrothermal process was then activated using the tubular furnace. The yield for activated char is 7.5 % and results of SEM analysis of activated char showed the formation of allotropes carbon include carbon micro spheres, carbon micro fibres and graphene. These structures have encountered application in a wide range of technological fields, such as adsorption, catalysis, hydrogen storage or electronics.

  5. Carbon nano structures: Production and characterization

    Science.gov (United States)

    Beig Agha, Rosa

    L'objectif de ce memoire est de preparer et de caracteriser des nanostructures de carbone (CNS -- Carbon Nanostructures, en licence a l'Institut de recherche sur l'hydrogene, Quebec, Canada), un carbone avec un plus grand degre de graphitisation et une meilleure porosite. Le Chapitre 1 est une description generale des PEMFCs (PEMFC -- Polymer Electrolyte Membrane Fuel Cell) et plus particulierement des CNS comme support de catalyseurs, leur synthese et purification. Le Chapitre 2 decrit plus en details la methode de synthese et la purification des CNS, la theorie de formation des nanostructures et les differentes techniques de caracterisation que nous avons utilises telles que la diffraction aux rayons-X (XRD -- X-ray diffraction), la microscopie electronique a transmission (TEM -- transmission electron microscope ), la spectroscopie Raman, les isothermes d'adsorption d'azote a 77 K (analyse BET, t-plot, DFT), l'intrusion au mercure, et l'analyse thermogravimetrique (TGA -- thermogravimetric analysis). Le Chapitre 3 presente les resultats obtenus a chaque etape de la synthese des CNS et avec des echantillons produits a l'aide d'un broyeur de type SPEXRTM (SPEX/CertiPrep 8000D) et d'un broyeur de type planetaire (Fritsch Pulverisette 5). La difference essentielle entre ces deux types de broyeur est la facon avec laquelle les materiaux sont broyes. Le broyeur de type SPEX secoue le creuset contenant les materiaux et des billes d'acier selon 3 axes produisant ainsi des impacts de tres grande energie. Le broyeur planetaire quant a lui fait tourner et deplace le creuset contenant les materiaux et des billes d'acier selon 2 axes (plan). Les materiaux sont donc broyes differemment et l'objectif est de voir si les CNS produits ont les memes structures et proprietes. Lors de nos travaux nous avons ete confrontes a un probleme majeur. Nous n'arrivions pas a reproduire les CNS dont la methode de synthese a originellement ete developpee dans les laboratoires de l'Institut de

  6. Influence of temperature on products yield of Eucalyptus microcorys carbonization

    Directory of Open Access Journals (Sweden)

    Renato da Silva Vieira

    2013-03-01

    Full Text Available During charcoal production different products are formed. These products are influenced primarily by the temperature of carbonization. Given that charcoal is the main input in the production of pig iron in Brazil, this study evaluated the influence of final temperature of carbonization of the products generated and also the influence of the radial and longitudinal sampling on the yield of each product. Samples were taken from internal and external position along the radius and also from three different heights from four Eucalyptus microcorys trees. The samples were carbonized in an electric furnace with an experimental water-cooled condenser and a collecting bottle of condensable volatile materials. The final temperatures of carbonization were 500, 600, 700, 800 and 900°C. The gravimetric yield, tar and non-condensable gases were calculated. The results showed no difference in the gravimetric yield in the longitudinal and radial positions studied, while the tar yield and non-condensable gases showed temperature variations of 700°C and 800°C and the variation of the gravimetric yield temperatures between 500°C to 900°C was 15%, the change of yield of tar from the radial direction of sampling was on average 8%, the variation of the yield of non-condensable gases in a radial sampling was on average 16%.

  7. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  8. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  9. Characterization of products from hydrothermal carbonization of pine.

    Science.gov (United States)

    Wu, Qiong; Yu, Shitao; Hao, Naijia; Wells, Tyrone; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Liu, Shouxin; Ragauskas, Arthur J

    2017-11-01

    This study aims to reveal the structural features and reaction pathways for solid-liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240°C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon-carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensation reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. The recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tracking urban carbon footprints from production and consumption perspectives

    International Nuclear Information System (INIS)

    Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu

    2015-01-01

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO 2 e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO 2 e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO 2 e/y, 44.8 Mt CO 2 e/y, 28.4 Mt CO 2 e/y, 23.7 Mt CO 2 e/y, and 19.0 Mt CO 2 e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city. (letter)

  11. Tracking urban carbon footprints from production and consumption perspectives

    Science.gov (United States)

    Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu

    2015-05-01

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO2e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO2e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO2e/y, 44.8 Mt CO2e/y, 28.4 Mt CO2e/y, 23.7 Mt CO2e/y, and 19.0 Mt CO2e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city.

  12. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  13. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  14. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Mieno, T.; Takeguchi, M.

    2006-01-01

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  15. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Science.gov (United States)

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  16. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas.

    Science.gov (United States)

    Wang, Jiancheng; Qiu, Biao; Han, Lina; Feng, Gang; Hu, Yongfeng; Chang, Liping; Bao, Weiren

    2012-04-30

    Activated carbon (AC) supported manganese oxide sorbents were prepared by the supercritical water impregnation (SCWI) using two different precursor of Mn(NO(3))(2) (SCW(N)) and Mn(Ac)(2)·4H(2)O (SCW(A)). Their capacities of removing H(2)S from coal gas were evaluated and compared to the sorbents prepared by the pore volume impregnation (PVI) method. The structure and composition of different sorbents were characterized by XRD, SEM, TEM, XPS and XANES techniques. It is found that the precursor of active component plays the crucial role and SCW(N) sorbents show much better sulfidation performance than the SCW(A) sorbents. This is because the Mn(3)O(4) active phase of the SCW(N) sorbents are well dispersed on the AC support, while the Mn(2)SiO(4)-like species in the SCW(A) sorbent can be formed and seriously aggregated. The SCW(N) sorbents with 2.80% and 5.60% manganese are favorable for the sulfidation reaction, since the Mn species are better dispersed on the SCW(N) sorbents than those on the PV(N) sorbents and results in the better sulfidation performance of the SCW(N) sorbents. As the Mn content increases to 11.20%, the metal oxide particles on AC supports aggregate seriously, which leads to poorer sulfidation performance of the SCW(N)11.20% sorbents than that of the PV(N)11.20% sorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress

    DEFF Research Database (Denmark)

    Kjær, Anders; Verstappen, Francel; Bouwmeester, Harro

    2013-01-01

    was examined on the concentrations of AN and its immediate precursors in leaves, and these concentrations were related to densities and sizes of the glandular trichomes (GT). Plants were stress treated weekly five times by sandblasting or spraying with salicylic acid, chitosan oligosaccharide, H2O2, and Na...

  18. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  19. Hot wire production of single-wall and multi-wall carbon nanotubes

    Science.gov (United States)

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  20. Effect of neutron irradiation on the dimension and the strength of carbon fiber/carbon composite derived from thermosetting resin precursor

    International Nuclear Information System (INIS)

    Yasuda, Eiichi; Tanabe, Yasuhiro; Kimura, Shiushichi; Maruyama, Tadashi; Iseki, Takayoshi; Yano, Toyohiko.

    1988-01-01

    Unidirectionally reinforced carbon fiber/carbon composite whose matrix was derived from thermosetting resin, was prepared. The heat-treatment temperature was 2800 deg C. The change in size and 4 point bending strength of the composite was measured after neutron irradiation (640 deg C, 6 x 10 24 n/m 2 , E > 1 MeV). Shrinkage in normal to the fiber direction was larger than that in fiber direction. Increase in strength and Young's modulus of the composite was observed after irradiation. Irradiated composite showed much higher deflection to fracture than unirradiated one. (author)

  1. Application in industry and energy production of active carbon/cobalt catalyst for nitrogen oxide neutralization

    International Nuclear Information System (INIS)

    Mekhandzhiev, D.; Nikolov, R.; Lyutskanov, L.; Dushanov, D.; Lakov, L.

    1997-01-01

    A new material for neutralization of nitrogen oxides is presented. Two or three metals containing catalysts with a good activity and selectivity towards NO x have been obtained. Preparation of carbon catalysts by deposition of the active phase precursor on the initial carbon material prior to activation is considered as the most promising method. An active carbon-based catalyst (AC/Co) has been synthesized Apricot shells preliminary impregnated with a water-alcohol solution of Co nitrate have been used as initial carbon material. after drying they have been subjected to one-phase steam pyrolysis using a fix-bed reactor. The catalyst thus obtained has a specific surface area (BET) of 53 m 2 g -1 , a favorable mesopore volume/total volume ratio (about 0.85) determined by nitrogen adsorption, a suitable mesopore distribution, about 70% of the mesopores being characterized by r p larger than 25 A and a high dispersion of the Co oxide phase. In addition the catalyst possesses the necessary mechanical resistance. The catalyst has exhibited a high activity with respect to NO x reduction with CO at low temperatures (at 150-250 o C which are the temperatures of industrial flue gases, nO conversion up to 60-95% occurs) and a high selectivity. No presence of H 2 O has been established over the whole temperature range (100-300 o C). An additional advantage of the catalyst is the fact that the amount of CO above 150 o C is lower than the stoichiometric which indicates parallel participation in the process of both the active phase and the support (active carbon) It is also important that the presented catalyst has a low price due to the use of waste products from agriculture and the elimination of special thermal treatment of the supported Co nitrate. There are possibilities of using of other organic wastes from agriculture as well as wastes obtained during flotation of coal. (author)

  2. Roll-to-Roll production of carbon nanotubes based supercapacitors

    Science.gov (United States)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  3. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  4. Production of Solar Fuels by Photoelectrochemical Conversion of Carbon Dioxide

    OpenAIRE

    Irtem, Ibrahim Erdem

    2017-01-01

    Growing global emission of carbon dioxide gas (CO2) reflects the world’s energy dependence on fossil fuels. The conversion of CO2 emission into value-added products, like fuels completes a circular CO2 economy which requires a renewable energy conversion and storage system. Amongst a few, photo/electrochemistry has been particularly appealing thanks to its energy efficiency and enormous potential for industrial applications. Formic acid (HCOOH) production from CO2 reduction appears as an al...

  5. Production of Ethylene and Carbon Monoxide by Microorganisms

    Science.gov (United States)

    T. H. Filer; L. R. Brown; S. Brown-Sarobot; S. Martin

    1984-01-01

    Various quantities of ethylene and carbon monoxide were produced on PDA by Fusicladium effusum, Pestilotia nucicola, Alternaria tenuis, and Fusarium oxysporum subcultured from diseased pecan shucks. Repeated subculturing of these fungi on potato dextrose broth supplemented with iron powder produced ethylene. The production of...

  6. Changes in carbon storage and oxygen production in forest timber ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... treaties and processes, has shown itself around the world and in our country as the concept of planning and ... Key words: Carbon storage, oxygen production, forest management, geographic information systems, land cover change. .... biomass transformation factors developed for the forests in Turkey are ...

  7. Field windbreaks for bioenergy production and carbon sequestration

    Science.gov (United States)

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  8. Effects of Globalisation on Carbon Footprints of Products

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky

    2009-01-01

    Outsourcing of production from the industrialised countries to the newly industrialised economies holds the potential to increase wealth in both places, but what are the environmental costs of the globalised manufacturing systems? This paper looks into the changes in carbon footprint...

  9. SYNGAS PRODUCTION FROM CO2-REFORMING OF CH4 OVER SOL-GEL SYNTHESIZED Ni-Co/Al2O3-MgO-ZrO2 NANOCATALYST: EFFECT OF ZrO2 PRECURSOR ON CATALYST PROPERTIES AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Sajjadi

    2015-05-01

    Full Text Available Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH and zirconyl nitrate solution (ZNS, was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS. FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.

  10. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.

    Science.gov (United States)

    Lu, Xiaowei; Jordan, Beth; Berge, Nicole D

    2012-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    Science.gov (United States)

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  12. The impact of a carbon tax on Greek electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Vassos, S [Strategy and Planning Dept., Public Power Corp., Athens (Greece); Vlachou, A [Department of Economics, Athens Univ. of Economics and Business, Athens (Greece)

    1997-09-01

    The impact of proposed carbon taxes on the electric power industry, using the Greek power system as a case study, is investigated in this paper. It uses the WASP model for electric generation capacity expansion to explore the optimal expansion path under alternative carbon tax scenarios and to estimate their impact on CO{sub 2} and other types of emissions and on electricity production costs. The findings suggest that low carbon taxes would lead to a considerable reduction of the use of conventional lignite fired power plants counterbalanced predominantly by natural gas fired plants. High carbon taxes (100-200 US dollars per ton of carbon) would lead to a drastic reduction of the use of conventional lignite fired power plants which would be mainly replaced by coal or lignite fired technologies with CO{sub 2} removal capabilities, which are not available today but might become available within the time horizon of the present study. Hydropower and renewable sources would be the second least-cost alternatives to lignite under both low and high tax scenarios. The study provides evidence that carbon taxes also result in significant increases in the cost of producing electricity, implying adverse economic effects on electricity consumers and the Greek economy in general. (author). 35 refs, 1 fig., 7 tabs.

  13. The impact of a carbon tax on Greek electricity production

    International Nuclear Information System (INIS)

    Vassos, S.; Vlachou, A.

    1997-01-01

    The impact of proposed carbon taxes on the electric power industry, using the Greek power system as a case study, is investigated in this paper. It uses the WASP model for electric generation capacity expansion to explore the optimal expansion path under alternative carbon tax scenarios and to estimate their impact on CO 2 and other types of emissions and on electricity production costs. The findings suggest that low carbon taxes would lead to a considerable reduction of the use of conventional lignite fired power plants counterbalanced predominantly by natural gas fired plants. High carbon taxes (100-200 US dollars per ton of carbon) would lead to a drastic reduction of the use of conventional lignite fired power plants which would be mainly replaced by coal or lignite fired technologies with CO 2 removal capabilities, which are not available today but might become available within the time horizon of the present study. Hydropower and renewable sources would be the second least-cost alternatives to lignite under both low and high tax scenarios. The study provides evidence that carbon taxes also result in significant increases in the cost of producing electricity, implying adverse economic effects on electricity consumers and the Greek economy in general. (author). 35 refs, 1 fig., 7 tabs

  14. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Patthanaissaranukool, Withida; Polprasert, Chongchin; Englande, Andrew J.

    2013-01-01

    Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO 2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of

  15. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  16. Nrt1 and Tna1-independent export of NAD+ precursor vitamins promotes NAD+ homeostasis and allows engineering of vitamin production.

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2011-05-01

    Full Text Available NAD(+ is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+ consuming enzymes. NAD(+ biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+ is synthesized from tryptophan and the three vitamin precursors of NAD(+: nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+ precursors increases intracellular NAD(+ levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+ metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+ metabolism by balancing import and export of NAD(+ precursor vitamins.

  17. Thermoset precursor

    International Nuclear Information System (INIS)

    Yamamoto, Y.

    1983-04-01

    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  18. Coal production forecast and low carbon policies in China

    International Nuclear Information System (INIS)

    Wang Jianzhou; Dong Yao; Wu Jie; Mu Ren; Jiang He

    2011-01-01

    With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production. - Highlights: → Improved forecasting models make full use of the advantages of individual model. → Proposed models create commendable improvements for current research. → Proposed models do not make complicated decisions about the explicit form. → We forecast coal production of China from 2011 to 2015. → We suggest some policies for reducing carbon emissions.

  19. Coal production forecast and low carbon policies in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianzhou [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Dong Yao, E-mail: dongyao20051987@yahoo.cn [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Wu Jie; Mu Ren; Jiang He [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China)

    2011-10-15

    With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production. - Highlights: > Improved forecasting models make full use of the advantages of individual model. > Proposed models create commendable improvements for current research. > Proposed models do not make complicated decisions about the explicit form. > We forecast coal production of China from 2011 to 2015. > We suggest some policies for reducing carbon emissions.

  20. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays.

    Science.gov (United States)

    Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter

    2016-01-01

    Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue.

  1. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Sandra Johnen

    2016-01-01

    Full Text Available Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT, used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe or mixtures of iron-platinum (Fe-Pt and iron-titanium (Fe-Ti acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28 cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue.

  2. Synthesis of nano-sized ceria (CeO2 particles via a cerium hydroxy carbonate precursor and the effect of reaction temperature on particle morphology

    Directory of Open Access Journals (Sweden)

    Majid Farahmandjou

    2015-06-01

    Full Text Available Cerium oxide (CeO2 or ceria has been shown to be an interesting support material for noble metals in catalysts designed for emission control, mainly due to its oxygen storage capacity. Ceria nanoparticles were prepared by precipitation method. The precursor materials used in this research were cerium nitrate hexahydrate (as a basic material, potassium carbonate and potassium hydroxide (as precipitants. The morphological properties were characterized by high resolution transmission electron microscopy (HRTEM, scanning electron microscopy (SEM and X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and UV-Vis spectrophotometer. XRD results showed face centered cubic CeO2 nanoparticles for annealed nanoparticles at 1000°C. SEM measurement showed that by increasing the calcinations temperature from 200 to 600°C, the crystallite size decreased from 90 to 28 nm. The SEM results showed that the size of the CeO2 nanoparticles decreased with increasing temperature. The particle size of CeO2 was around 25 nm as estimated by XRD technique and direct HRTEM observation. SEM and TEM studies showed that the morphology of the prepared powder was sphere-like with a narrow size distribution. The sharp peaks in FTIR spectrum determined the purity of CeO2 nanoparticles and absorbance peak of UV-Vis spectrum showed the small band gap energy of 3.26 ev.

  3. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation

    KAUST Repository

    Swaidan, Ramy Jawdat

    2016-09-02

    High performance thermally-rearranged (TR) and carbon molecular sieve (CMS) membranes made from an intrinsically microporous polymer precursor PIM-6FDA-OH are reported for the separation of propylene from propane. Thermal rearrangement of PIM-6FDA-OH to the corresponding polybenzoxazole (PBO) membrane resulted in a pure-gas C3H6/C3H8 selectivity of 15 and C3H6 permeability of 14 Barrer, positioning it above the polymeric C3H6/C3H8 upper bound. For the first time, the C3H6/C3H8 mixed-gas properties of a TR polymer were investigated and showed a C3H6 permeability of 11 Barrer and C3H6/ C3H8 selectivity of 11, essentially independent of feed pressure up to 5 bar. The CMS membrane made by treatment at 600 C showed further improvement in performance as demonstrated with a pure-gas C3H8/C3H8 selectivity of 33 and a C3H6 permeability of 45 Barrer. The mixed-gas C3H6/C3H8 selectivity dropped from 24 to 17 from 2 to 5 bar feed pressure due to a decrease in C3H6 permeability most likely caused by competitive sorption without any evidence of plasticization. (C) 2016 Elsevier B.V. All rights reserved.

  4. The industrial production of dimethyl carbonate from methanol and carbon dioxide

    NARCIS (Netherlands)

    De Groot, Frank F T; Lammerink, Roy R G J; Heidemann, Casper; Van Der Werff, Michiel P M; Garcia, Taiga Cafiero; Van Der Ham, Louis A G J; Van Den Berg, Henk

    2014-01-01

    This work discusses the design of a dimethyl carbonate (DMC) production plant based on methanol and CO2 as feed materials, which are a cheap and environment-friendly feedstock. DMC is a good alternative for methyl-tert-butyl ether (MTBE) as a fuel oxygenating agent, due to its low toxicity and fast

  5. Activated Carbon by Co-pyrolysis and Steam Activation from Particle Board and Melamine Formaldehyde Resin: Production, Adsorption Properties and Techno Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Kenny Vanreppelen

    2013-03-01

    Full Text Available One of the top strategic objectives and research areas in Europe is recovering wood from processing and end of life products. However, there are still several "contaminated" wood products that are not or only partly reused/recycled. Particle board waste which is contaminated with aminoplasts is one of these products. In addition, a considerable amount of aminoplast waste resinis produced for the production of particle board that cannot be re-used or recycled. The chemical properties of these wastes (high nitrogen content of 5.9 wt% and 54.1 wt% for particle board and melamine formaldehyde respectively make them ideal precursors for the production of nitrogenised activated carbon. The profitability of the produced activated carbon is investigated by calculating the net present value, the minimum selling price and performing a Monte Carlo sensitivity analysis. Encouraging results for a profitable production are obtained even though the current assumptions start from a rather pessimistic scenario.

  6. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone.

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael; Baker, Scott E; Bruno, Kenneth S; Wang, Clay C

    2010-12-06

    The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

  7. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation.

    Science.gov (United States)

    Esquivel-Elizondo, Sofia; Miceli, Joseph; Torres, Cesar I; Krajmalnik-Brown, Rosa

    2018-02-01

    Medium-chain fatty acids (MCFA) are important biofuel precursors. Carbon monoxide (CO) is a sustainable electron and carbon donor for fatty acid elongation, since it is metabolized to MCFA precursors, it is toxic to most methanogens, and it is a waste product generated in the gasification of waste biomass. The main objective of this work was to determine if the inhibition of methanogenesis through the continuous addition of CO would lead to increased acetate or MCFA production during fermentation of ethanol. The effects of CO partial pressures (P CO ; 0.08-0.3 atm) on methanogenesis, fatty acids production, and the associated microbial communities were studied in batch cultures fed with CO and ethanol. Methanogenesis was partially inhibited at P CO  ≥ 0.11 atm. This inhibition led to increased acetate production during the first phase of fermentation (0-19 days). However, a second addition of ethanol (day 19) triggered MCFA production only at P CO  ≥ 0.11 atm, which probably occurred through the elongation of acetate with CO-derived ethanol and H 2 :CO 2 . Accordingly, during the second phase of fermentation (days 20-36), the distribution of electrons to acetate decreased at higher P CO , while electrons channeled to MCFA increased. Most probably, Acetobacterium, Clostridium, Pleomorphomonas, Oscillospira, and Blautia metabolized CO to H 2 :CO 2 , ethanol and/or fatty acids, while Peptostreptococcaceae, Lachnospiraceae, and other Clostridiales utilized these metabolites, along with the provided ethanol, for MCFA production. These results are important for biotechnological systems where fatty acids production are preferred over methanogenesis, such as in chain elongation systems and microbial fuel cells. © 2017 Wiley Periodicals, Inc.

  8. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  9. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  10. Perspectives of Single-Wall Carbon Nano-tube Production in the Arc Discharge Process

    International Nuclear Information System (INIS)

    Krestinin, A.V.; Kiselev, N.A.; Raevskii, A.V; Ryabenko, A.G.; Zakharov, D.N.; Zvereva, G.I.

    2003-01-01

    Single-wall carbon nano tubes (SWNTs) promise wide applications in many technical fields. As a result purified SWNT material is sold now on the West market at more than 1000 dollars per 1 gram. Thus developing an effective technology for SWNTs production rises to a very important sintofene problem. The perspectives of three existing methods providing raw material in the technology of SWNT production have been analyzed. They are i) pulsed laser evaporation of graphite/metal composites, ii) evaporation of graphite electrodes with metal content in the are discharge process, and iii) catalytic decomposition of the mixture of CO and metal carbonyl catalyst precursor. The observed dynamites of SWNT market points to replacing the laser method of SWNTs production by the are process. The conclusion has been made that the technology based on the are process will be the major one for the fabrication of purified SWNTs at least for the next five years. A reliable estimation of a low price limit of SWNTs was derived from a comparison of two technologies based on the are discharge process: the first one is the production of SWNTs and the second one is the production of a fullerene mixture C 6 0 + C 7 0. The main conclusion was made that the price of purified SWNTs should always be more by 2-3 times the price of fullerene mixture. The parameters of a lab-scale technology for the production of purified SWNTs are listed. A large-scale application of the developed technology is expected to reduce the price of purified SWNTs by approximately ten times. The methods now employed for the characterization of products containing SWNTs are briefly observed. It is concluded that electron microscopy, thermogravimetric analysis, absorption and Raman spectroscopy, measurement of the specific surface aria, optical microscopy - each in separation is not enough for extensive characterization of a sample containing SWNTs, and all these methods should be used together. (author)

  11. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  12. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  13. Carbon emission intensity in electricity production: A global analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Su, Bin

    2016-01-01

    We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.

  14. Technical Note: Methionine, a precursor of methane in living plants

    Science.gov (United States)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  15. Pilot Scale Production of Activated Carbon Spheres Using Fluidized Bed Reactor and Its Evaluation for the Removal of Hexavalent Chromium from Aqueous Solutions

    Science.gov (United States)

    Tripathi, Nagesh Kumar; Sathe, Manisha

    2017-12-01

    Large scale production of activated carbon is need of ongoing research due to its excellent adsorption capacity for removal of heavy metals from contaminated solutions. In the present study, polymeric precursor polystyrene beads [Brunauer Emmett Teller (BET) surface area, 46 m2/g; carbon content, 40.64%; crushing strength, 0.32 kg/sphere] were used to produce a new variant of activated carbon, Activated Carbon Spheres (ACS) in a pilot scale fluidized bed reactor. ACS were prepared by carbonization of polymeric precursor at 850 °C followed by activation of resultant material with steam. Prepared ACS were characterized using scanning electron microscope, CHNS analyzer, thermogravimetric analyzer, surface area analyzer and crushing strength tester. The produced ACS have 1009 m2/g BET surface area, 0.89 cm3/g total pore volume, 92.32% carbon content and 1.1 kg/sphere crushing strength with less than 1% of moisture and ash content. The ACS were also evaluated for its potential to remove hexavalent chromium [Cr(VI)] from contaminated solutions. The chromium removal is observed to be 99.1% at initial concentration 50 mg/l, pH 2, ACS dose 1 g/l, contact time 2 h, agitation 120 rpm and temperature 30 °C. Thus ACS can be used as an adsorbent material for the removal of Cr(VI) from contaminated solutions.

  16. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Robledo, A., E-mail: amanzor@ipn.mx [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Costa, Natália J. S. [Universidade de São Paulo, Instituto de Química (Brazil); Philippot, K. [CNRS, LCC, Laboratoire de Chimie de Coordination (France); Rossi, Liane M. [Universidade de São Paulo, Instituto de Química (Brazil); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Guerrero-Ortega, L. P. A. [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Ezquerra-Quiroga, S. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico)

    2015-12-15

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd{sub 90}Ni{sub 10}, Pd{sub 50}Ni{sub 50}, Pd{sub 10}Ni{sub 90}, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd{sub 2}(dba){sub 3}, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod){sub 2}. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  17. Carbon Footprint of Tree Nuts Based Consumer Products

    Directory of Open Access Journals (Sweden)

    Roberto Volpe

    2015-11-01

    Full Text Available This case study shows results of a calculation of carbon footprint (CFP resulting from the production of nuts added value products for a large consumer market. Nuts consumption is increasing in the world and so is the consumer awareness of the environmental impact of goods, hence the calculation of greenhouse gas (GHG emissions of food production is of growing importance for producers. Calculation of CO2eq emissions was performed for all stages of the production chain to the final retail point for flour, grains, paste, chocolate covered nuts and spreadable cream produced from almonds, pistachios and hazelnuts grown and transformed in Italy and for peanuts grown in Argentina and transformed in Italy. Data from literature was used to evaluate CFP of raw materials, emissions from transport and packing were calculated using existing models, while emissions deriving from transformation were calculated empirically by multiplying the power of production lines (electrical and/or thermal by its productivity. All values were reported in kg of CO2 equivalent for each kg of packed product (net weight. Resulting values ranged between 1.2 g of CO2/kg for a 100 g bag of almond to 4.8 g of CO2/kg for the 100 g bag of chocolate covered almond. The calculation procedure can be well used for similar cases of large consumer food productions.

  18. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor

    Directory of Open Access Journals (Sweden)

    Marya Aziz

    2015-01-01

    Full Text Available Commercial lipases, from porcine pancreas (PPL, Candida rugosa (CRL, and Thermomyces lanuginosus (Lipozyme TL IM, were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO for the liberation of free linoleic acid (LA, used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%, its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%. On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  19. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor.

    Science.gov (United States)

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  20. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-08

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  1. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  2. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  3. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V A; Kuvshinov, G G; Mogilnykh, Yu I [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A [University of Hamburg (Germany); Steinfeld, A; Weidenkaff, A; Meier, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  4. Rapid synthesis of macrocycles from diol precursors

    DEFF Research Database (Denmark)

    Wingstrand, Magnus; Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2009-01-01

    A method for the formation of synthetic macrocycles with different ring sizes from diols is presented. Reacting a simple diol precursor with electrophilic reagents leads to a cyclic carbonate, sulfite or phosphate in a single step in 25-60% yield. Converting the cyclization precursor to a bis-ele...

  5. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  6. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping

    2012-12-15

    Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Carbon fiber manufacturing via plasma technology

    Science.gov (United States)

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  9. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  10. Mineral Carbonation of Phosphogypsum Waste for Production of Useful Carbonate and Sulfate Salts

    Energy Technology Data Exchange (ETDEWEB)

    Mattila, Hannu-Petteri, E-mail: hmattila@abo.fi; Zevenhoven, Ron [Thermal and Flow Engineering Laboratory, Åbo Akademi University, Turku (Finland)

    2015-11-16

    Phosphogypsum (CaSO{sub 4}·2H{sub 2}O, PG) waste is produced in large amounts during phosphoric acid (H{sub 3}PO{sub 4}) production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred megatonnes of carbon dioxide (CO{sub 2}). For example, when gypsum is converted to ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}] with ammonia (NH{sub 3}) and CO{sub 2}, also solid calcium carbonate (CaCO{sub 3}) is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as, e.g., filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from PG to calcium carbonate are obtained. Scalenohedral, rhombohedral, and prismatic calcite particles can be produced, although the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  11. Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions

    International Nuclear Information System (INIS)

    Refait, Ph.; Bourdoiseau, J.A.; Jeannin, M.; Nguyen, D.D.

    2012-01-01

    Highlights: ► Green rust is electro-generated at low NaHCO 3 concentration (0.003 mol dm −3 ). ► Chukanovite and carbonated green rust are obtained in NaHCO 3 + Na 2 SO 4 deaerated electrolytes. ► The mechanisms of formation of carbonated corrosion products of carbon steel are specified. - Abstract: To investigate the nature and properties of carbonated rust layers, carbon steel electrodes were polarised anodically at a potential ∼100–200 mV higher than the open circuit potential in NaHCO 3 solutions (0.003, 0.1 and 1 mol dm −3 ) continuously deaerated by an argon flow. X-ray diffraction and μ-Raman spectroscopy were used to identify the electro-generated compounds. GR(CO 3 2− ) (=Fe II 4 Fe III 2 (OH) 12 CO 3 ·4H 2 O) is observed at 0.003 and 0.1 mol dm −3 NaHCO 3 whereas FeCO 3 is obtained at the largest concentration (1 mol dm −3 ). GR(CO 3 2− ) is accompanied by magnetite Fe 3 O 4 at the lowest NaHCO 3 concentration. The current density decreases to negligible values in each case, indicating that a passive film also forms independently of the nature of the carbonated compound. Experiments were performed similarly in solutions of NaHCO 3 and Na 2 SO 4 . Chukanovite Fe 2 (OH) 2 CO 3 could be obtained in solutions containing 0.03 mol dm −3 of each salt. In contrast with the results obtained in the solutions free of sulphate, the current density remains important during the formation of the rust layer

  12. Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.

    Science.gov (United States)

    Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek

    2018-07-15

    A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel.

    Science.gov (United States)

    Chakravarty, Jayashree; Brigham, Christopher J

    2018-06-01

    Microbial production of solvents like acetone and butanol was a couple of the first industrial fermentation processes to gain global importance. These solvents are important feedstocks for the chemical and biofuel industry. Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H 2 and CO 2 under aerobic conditions. This bacterium is a natural producer of polyhydroxyalkanoate biopolymers. Recently, with the advances in the development of genetic engineering tools, the range of metabolites R. eutropha can produce has enlarged. Its ability to utilize various carbon sources renders it an interesting candidate host for synthesis of renewable biofuel and solvent production. This review focuses on progress in metabolic engineering of R. eutropha for the production of alcohols, terpenes, methyl ketones, and alka(e)nes using various resources. Biological synthesis of solvents still presents the challenge of high production costs and competition from chemical synthesis. Better understanding of R. eutropha biology will support efforts to engineer and develop superior microbial strains for solvent production. Continued research on multiple fronts is required to engineer R. eutropha for truly sustainable and economical solvent production.

  14. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  15. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    Directory of Open Access Journals (Sweden)

    Mohammadi Maedeh

    2011-01-01

    Full Text Available The possibility of production of carbon molecular sieve (CMS from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (100, 200, 300 mL min-1 CH4 diluted in 500 mL min-1 N2 and deposition time (30 to 60 min were the investigated parameters. The textural characteristics of the CMSs were assessed by N2 adsorption. The largest BET surface area (752 m2 g-1, micropore surface area (902.2 m2 g-1 and micropore volume (0.3466 cm3 g-1 was obtained at the CH4 flow rate of 200 mL min-1 and deposition time of 30 min. However, prolonging the deposition time to 45 min yielded in a micropouros CMS with a narrow pore size distribution.

  16. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.

    Science.gov (United States)

    Rittmann, Simon K-M R; Lee, Hyun Sook; Lim, Jae Kyu; Kim, Tae Wan; Lee, Jung-Hyun; Kang, Sung Gyun

    2015-01-01

    Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The production of precipitated calcium carbonate from industrial gypsum wastes

    CSIR Research Space (South Africa)

    De Beer, Morris

    2014-05-01

    Full Text Available -step) process was tested. Although only a low-grade CaCO3 product (86-88 mass% as CaCO3) could be produced, experimental results on the characteristics of CaS in the presence of CO2 in the CaS-H2O-CO2 system showed that the reaction proceeded in two distinct... stages. In the first stage, CaS dissolution took place, with H2S stripping occurring in the second stage. Calcium carbonation and the resulting precipitation of CaCO3 were concurrent with the CaS dissolution and the H2S stripping reactions. Because...

  18. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    Lyn, M. Elizabeth; He Jibao; Koplitz, Brent

    2005-01-01

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C 60 , 22% C 70 ). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  19. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  20. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  1. [Carbon efficiency of double-rice production system in Hunan Province, China].

    Science.gov (United States)

    Chen, Zhong-du; Wu, Yao; Ti, Jin-song; Chen, Fu; Li, Yong

    2015-01-01

    Improving the carbon efficiency of crop production systems is one of the important ways to realize low-carbon agriculture. A life cycle assessment approach and input-output calculation method was applied for a double-rice production system in the Hunan Province. Based on statistical data of crop yield and investment in the production system in the period from 2004 to 2012, carbon emission, carbon absorption, carbon efficiency and their dynamic changes of the double rice production systems were estimated. The results showed that the average of annual carbon emission from 2004 to 2012 was 656.4 x 10(7) kg CE. Carbon emissions from production and transport of fertilizer and pesticide accounted for a majority of agricultural input carbon emissions, approximately 70.0% and 15.9%, respectively. The carbon emission showed a decreasing trend from 2004 to 2012 in the Hunan Province, with an annual reduction rate of 2.4%, but the carbon emission intensity was in a trend of increase. The average of annual carbon absorption was 1547.0 x 10(7) kg C. The annual carbon absorption also showed a decreasing trend from 2004 to 2012 in Hunan Province, with an average annual reduction rate of 1.2%, and the carbon absorption intensity showed a trend of increase. Furthermore, production efficiency of carbon showed a slow upward trend. The economic efficiency of carbon showed a larger increasing rate with time, with an average annual growth rate of 9.9%. Ecological efficiency of carbon was stable and low, maintained at about 2.4 kg C . kg-1 CE. It indicated that the integrated carbon efficiency of Hunan double rice crop production system improved slowly with time and the key to improve the carbon efficiency of double rice production systems lies in reducing the rates of nitrogen fertilizer and pesticide, and improving their use efficiencies.

  2. Production of carbon molecular sieves from Illinois coal

    Science.gov (United States)

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  3. Enhanced production of vanillin flavour metabolites by precursor feeding in cell suspension cultures of Decalepis hamiltonii Wight & Arn., in shake flask culture.

    Science.gov (United States)

    Matam, Pradeep; Parvatam, Giridhar; Shetty, Nandini P

    2017-12-01

    The flavour rich tuberous roots of Decalepis hamiltonii are known for its edible and medicinal use and have become endangered due to commercial over-exploitation. Besides 2-Hydroxy-4-methoxy benzaldehyde (2H4MB), other flavour metabolites in tuberous roots include vanillin, 4-Methoxy Cinnamic acid derivatives, aromatic alcohols etc. So far, there are no reports on the pathway of 2H4MB biosynthesis nor there is an organized work on biotransformation using normal and cell suspension cultures for obtaining these metabolites using precursors. The main aim of the study is to develop a method for enhanced production of flavour attributing metabolites through ferulic acid (FA) feeding to the D. hamiltonii callus culture medium. Biomass of D. hamiltonii cell suspension cultures was maximum (200.38 ± 1.56 g/l) by 4th week. Maximum production of 2H4MB was recorded on 4th week (0.08 ± 0.01 mg/100 g dry weight) as quantified by HPLC. Addition of 0.1-1.5 mM ferulic acid as precursor in the culture medium showed significant ( p  vanillin, 2H4MB, vanillic acid, ferulic acid were of 0.1 ± 0.02 mg/100 g, 0.44 ± 0.01 mg/100 g, 0.52 ± 0.04 mg/100 g, 0.18 ± 0.02 mg/100 g DW respectively in 4 weeks of cultured cells supplemented with 1 mM ferulic acid as a precursor. The results indicate that, substantial increase in the levels of flavour metabolites in D. hamiltonii callus suspension culture was achieved. This would be having implications in biosynthesis of respective vanilla flavour attributing metabolites at very high levels for their large scale production.

  4. Extension classification method for low-carbon product cases

    Directory of Open Access Journals (Sweden)

    Yanwei Zhao

    2016-05-01

    Full Text Available In product low-carbon design, intelligent decision systems integrated with certain classification algorithms recommend the existing design cases to designers. However, these systems mostly dependent on prior experience, and product designers not only expect to get a satisfactory case from an intelligent system but also hope to achieve assistance in modifying unsatisfactory cases. In this article, we proposed a new categorization method composed of static and dynamic classification based on extension theory. This classification method can be integrated into case-based reasoning system to get accurate classification results and to inform designers of detailed information about unsatisfactory cases. First, we establish the static classification model for cases by dependent function in a hierarchical structure. Then for dynamic classification, we make transformation for cases based on case model, attributes, attribute values, and dependent function, thus cases can take qualitative changes. Finally, the applicability of proposed method is demonstrated through a case study of screw air compressor cases.

  5. Carbon Sources Influence Fumonisin Production in Fusarium proliferatum.

    Science.gov (United States)

    Li, Taotao; Gong, Liang; Jiang, Guoxiang; Wang, Yong; Gupta, Vijai Kumar; Qu, Hongxia; Duan, Xuewu; Wang, Jiasheng; Jiang, Yueming

    2017-10-01

    Fusarium proliferatum is a worldwide fungal pathogen that produces fumonisins which are harmful to animal and human health. However, environmental factors affecting fumonisin biosynthesis in F. proliferatum are not well understood. Based on our preliminary results, in this study, we investigated the effect of sucrose or mannose as the sole carbon source on fumonisin B (FB) production by F. proliferatum and studied their underlying mechanisms via proteome and gene expression analysis. Our results showed that mannose, used as the sole carbon source, significantly blocked fumonisin B 1 and B 2 production by F. proliferatum as compared with the use of sucrose. Fifty-seven differentially expressed proteins were successfully identified. The downregulated proteins in the mannose-cultured strain were mainly involved in carbon metabolism, response to stress, and methionine metabolism, as compared with the sucrose-cultured strain. Moreover, quantitative real-time PCR analysis indicated that expression of several key genes involved in FB biosynthetic pathway and in transcription regulation were significantly downregulated in the mannose-cultured F. proliferatum, whereas expression of histone deacetylation-related genes were significantly upregulated. These results suggested that the blockage of FB biosynthesis by mannose was associated with the decreases in conversion of acetyl-CoA to polyketide, methionine biosynthesis, and NADPH regeneration. More importantly, milder oxidative stress, downregulated expression of genes involved in biosynthetic pathway and transcription regulation, and upregulated expression of genes with histone deacetylation possibly were responsible for the blockage of FB biosynthesis in F. proliferatum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Increasing carbon and material productivity through environmental tax reform

    International Nuclear Information System (INIS)

    Ekins, Paul; Pollitt, Hector; Summerton, Philip; Chewpreecha, Unnada

    2012-01-01

    Environmental tax reform (ETR), a shift in taxation towards environmental taxes, has been implemented on a small scale in a number of European countries. This paper first gives a short review of the literature about ETR. An Appendix briefly describes the model used for a modelling exercise to explore, through scenarios with low and high international energy prices, the implications of a large-scale ETR in the European Union, sufficient to reach the EU's emission reduction targets for 2020. The paper then reports the results of the exercise. The ETR results in increased carbon and materials, but reduced labour, productivity, with the emission reductions distributed across all sectors as a reduction in the demand for all fossil fuels. There are also small GDP increases for most, but not all, EU countries for all the scenarios, and for the EU as a whole. Both the environmental and macroeconomic outcomes are better with low than with high energy prices, because the former both increases the scale of the ETR required to reach the targets, and reduces the outflow of foreign exchange to pay for energy imports. ETR emerges from the exercise as an attractive and cost-effective policy for environmental improvement. - Highlights: ► European experience with environmental tax reform (ETR) is reviewed. ► Scenarios which meet EU carbon emission targets are modelled. ► The ETR results in increased carbon and materials, but reduced labour, productivity. ► There are small GDP increases for most, but not all, EU countries. ► ETR emerges as an attractive and cost-effective environmental policy.

  7. Photorespiration and carbon limitation determine productivity in temperate seagrasses.

    Science.gov (United States)

    Buapet, Pimchanok; Rasmusson, Lina M; Gullström, Martin; Björk, Mats

    2013-01-01

    The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio) at both natural and low O2 concentrations (adjusted by N2 bubbling). The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime) and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH). The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow waters.

  8. Photorespiration and carbon limitation determine productivity in temperate seagrasses.

    Directory of Open Access Journals (Sweden)

    Pimchanok Buapet

    Full Text Available The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio at both natural and low O2 concentrations (adjusted by N2 bubbling. The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH. The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow

  9. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  10. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  11. Market Intelligence Precursors for the Entrepreneurial Resilience Approach: The Case of the Romanian Eco-Label Product Retailers

    Directory of Open Access Journals (Sweden)

    Adrian Micu

    2018-01-01

    Full Text Available The entrepreneurial resilience of eco-label product retailers emphasises their adaptive capability for renewal after the economic crisis. This paper explores the resilience of the market intelligence techniques adopted by the eco-label product retailers in order to contribute to sustainable development of this market in Romania. The research, conducted on a sample of Romanian retailers of eco-label products, analyses the main sources for gathering data about their competitors, the reasons for monitoring the strategic options of their competitors and the specific market intelligence techniques employed within the entrepreneurial resilience approach, aiming to overcome the negative crisis effects. The research outlines, from an entrepreneurial resilience perspective, several positioning opportunities of the eco-label product retailers after the crisis, which have affected the Romanian economy in the period 2008–2009 and have implicitly affected the eco-label market.

  12. Production of no-carrier-added 139Pr via precursor decay in the proton bombardment of natPr

    International Nuclear Information System (INIS)

    Steyn, G.F.; Vermeulen, C.; Nortier, F.M.; Szelecsenyi, F.; Kovacs, Z.; Qaim, S.M.

    2006-01-01

    Excitation functions and production rates are presented for various Pr and Nd radionuclides formed in the bombardment of Pr with protons, from their respective thresholds up to 100 MeV. The indirect production route 141 Pr(p, 3n) 139m Nd → 139 Pr is investigated as an alternative to the direct production route 140 Ce(p, 2n) 139 Pr for producing no-carrier-added 139 Pr of high radionuclidic purity. The simultaneous production of 139 Pr and 140 Nd using Pr as target is investigated. The advantages and disadvantages of both production routes are discussed. Experimental thick-target production rates are presented for selected Pr radionuclides formed in the bombardment of nat Ce with protons at incident energies of 20, 26 and 32 MeV. All the experimental excitation functions obtained in this work are compared with theoretical predictions by means of the geometry-dependent hybrid (GDH) model as implemented in the code ALICE-IPPE. The results of this work are also compared with previous literature experimental data, if available

  13. Carbon footprint of Canadian dairy products: calculations and issues.

    Science.gov (United States)

    Vergé, X P C; Maxime, D; Dyer, J A; Desjardins, R L; Arcand, Y; Vanderzaag, A

    2013-09-01

    The Canadian dairy sector is a major industry with about 1 million cows. This industry emits about 20% of the total greenhouse gas (GHG) emissions from the main livestock sectors (beef, dairy, swine, and poultry). In 2006, the Canadian dairy herd produced about 7.7 Mt of raw milk, resulting in about 4.4 Mt of dairy products (notably 64% fluid milk and 12% cheese). An integrated cradle-to-gate model (field to processing plant) has been developed to estimate the carbon footprint (CF) of 11 Canadian dairy products. The on-farm part of the model is the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES). It considers all GHG emissions associated with livestock production but, for this study, it was run for the dairy sector specifically. Off-farm GHG emissions were estimated using the Canadian Food Carbon Footprint calculator, (cafoo)(2)-milk. It considers GHG emissions from the farm gate to the exit gate of the processing plants. The CF of the raw milk has been found lower in western provinces [0.93 kg of CO2 equivalents (CO2e)/L of milk] than in eastern provinces (1.12 kg of CO2e/L of milk) because of differences in climate conditions and dairy herd management. Most of the CF estimates of dairy products ranged between 1 and 3 kg of CO2e/kg of product. Three products were, however, significantly higher: cheese (5.3 kg of CO2e/kg), butter (7.3 kg of CO2e/kg), and milk powder (10.1 kg of CO2e/kg). The CF results depend on the milk volume needed, the co-product allocation process (based on milk solids content), and the amount of energy used to manufacture each product. The GHG emissions per kilogram of protein ranged from 13 to 40 kg of CO2e. Two products had higher values: cream and sour cream, at 83 and 78 kg of CO2e/kg, respectively. Finally, the highest CF value was for butter, at about 730 kg of CO2e/kg. This extremely high value is due to the fact that the intensity indicator per kilogram of product is high and that butter is almost exclusively

  14. Method of carbon dioxide-free hydrogen production from hydrocarbon decomposition over metal salts

    Science.gov (United States)

    Erlebacher, Jonah; Gaskey, Bernard

    2017-10-03

    A process to decompose methane into carbon (graphitic powder) and hydrogen (H.sub.2 gas) without secondary production of carbon dioxide, employing a cycle in which a secondary chemical is recycled and reused, is disclosed.

  15. Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli.

    Science.gov (United States)

    Bauer, Rolene; du Toit, Maret; Kossmann, Jens

    2010-01-31

    Lactic acid bacteria belonging to the genus Lactobacillus are known to convert glycerol into 3-hydroxypropionaldehyde (3-HPA) during anaerobic glycerol fermentation. Wine quality can be gravely compromised by the accumulation of 3-HPA, due to its spontaneous conversion to acrolein under wine making conditions. Acrolein is not only a dangerous substance for the living cell, but has been implicated in the development of unpleasant bitterness in beverages. This study evaluates the effect of individual environmental parameters on 3-HPA production by Lactobacillus reuteri DSMZ 20016, which only proved possible under conditions that allow accumulation well below the threshold concentration affecting cell viability. 3-HPA production was optimal at pH 6 and in the presence of 300 mM glycerol. Production increased with an increase in cell concentration up to an OD(600) of 50, whereas higher cell concentrations inhibited accumulation. Data presented in this study suggest that 3-HPA plays a role in regulating its own production through quorum sensing. Glycerol dehydratase possessing bacterial strains isolated from South African red wine, L. pentosus and L. brevis, tested positive for 3-HPA accumulation. 3-HPA is normally intracellularly reduced to 1,3-propanediol. This is the first study demonstrating the ability of wine lactobacilli to accumulate 3-HPA in the fermentation media. Recommendations are made on preventing the formation of acrolein and its precursor 3-HPA in wine. Copyright 2009 Elsevier B.V. All rights reserved.

  16. The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors.

    Directory of Open Access Journals (Sweden)

    Yoko Ohyama

    Full Text Available Inflammatory bone diseases, including rheumatoid arthritis, periodontitis and peri-implantitis, are associated not only with the production of inflammatory cytokines but also with local oxidative status, which is defined by intracellular reactive oxygen species (ROS. Osteoclast differentiation has been reported to be related to increased intracellular ROS levels in osteoclast lineage cells. Sudachitin, which is a polymethoxyflavone derived from Citrus sudachi, possesses antioxidant properties and regulates various functions in mammalian cells. However, the effects of sudachitin on inflammatory bone destruction and osteoclastogenesis remain unknown. In calvaria inflamed by a local lipopolysaccharide (LPS injection, inflammation-induced bone destruction and the accompanying elevated expression of osteoclastogenesis-related genes were reduced by the co-administration of sudachitin and LPS. Moreover, sudachitin inhibited osteoclast formation in cultures of isolated osteoblasts and osteoclast precursors. However, sudachitin rather increased the expression of receptor activator of NF-κB ligand (RANKL, which is an important molecule triggering osteoclast differentiation, and the mRNA ratio of RANKL/osteoprotegerin that is a decoy receptor for RANKL, in the isolated osteoblasts, suggesting the presence of additional target cells. When osteoclast formation was induced from osteoclast precursors derived from bone marrow cells in the presence of soluble RANKL and macrophage colony-stimulating factor, sudachitin inhibited osteoclastogenesis without influencing cell viability. Consistently, the expression of osteoclast differentiation-related molecules including c-fos, NFATc1, cathepsin K and osteoclast fusion proteins such as DC-STAMP and Atp6v0d2 was reduced by sudachitin. In addition, sudachitin decreased activation of MAPKs such as Erk and JNK and the ROS production evoked by RANKL in osteoclast lineage cells. Our findings suggest that sudachitin is a

  17. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1984-01-01

    The Calvin cycle of carbon dioxide fixation constitutes a biosynthetic pathway for the generation of (multi-carbon) intermediates of central metabolism from the one-carbon compound carbon dioxide. The product of this cycle can be used as a precursor for the synthesis of all components of cell

  18. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2017-01-01

    Both UV treatment and ozonation are used to reduce different types of disinfection by-products (DBPs) in swimming pools. UV treatment is the most common approach, as it is particularly efficient at removing combined chlorine. However, the UV treatment of pool water increases chlorine reactivity...

  19. Forests and wood consumption on the carbon balance. Carbon emission reduction by use of wood products

    International Nuclear Information System (INIS)

    Sikkema, R.; Nabuurs, G.J.

    1995-01-01

    Until now studies on the greenhouse effect paid much attention to carbon fixation by forests, while the entire CO2 cycle of forests and forest products remained underexposed. Utilization of wood products instead of energy-intensive materials (plastics/steel) and fossil fuels (coal) proves to play an important role as well. The effect of utilization is even greater than that of fixation. In all, additional forests together with the multiple use of trees can contribute substantially to the reduction of CO2 emissions. The contribution can run from 5.3 ton CO2/ha/yr for a mixed forest of oak/beech to 18.9 ton CO2/ha/yr for energy plantations (poplar). 2 figs., 3 tabs

  20. A Reliable Homemade Electrode Based on Glassy Polymeric Carbon

    Science.gov (United States)

    Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.

    2004-01-01

    The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…

  1. Marine bacterial transparent exopolymer particles (TEP) and TEP precursors: Characterization and RO fouling potential

    KAUST Repository

    Li, Sheng

    2015-10-31

    This paper investigated the characteristics and membrane fouling potential of bacterial transparent exopolymer particles (TEP)/TEP precursors released from two marine bacteria, Pseudidiomarina homiensis (P. homiensis) and Pseudoalteromonas atlantica (P. atlantica), isolated from the Red Sea. Results showed that both bacteria grew at the similar rate, but the production of TEP/TEP precursors from P. atlantica was higher than that from P. homiensis. During the 168. h of incubation time, production rates of TEP/TEP precursors from P. atlantica and P. homiensis were 0.30 and 0.08 xanthan gum eq. mg/L-h, respectively. Isolated bacterial TEP precursors were mainly biopolymer, and P. atlantica produced a significantly higher concentration of biopolymer than that produced by P. homiensis. TEP/TEP precursors from both marine bacteria possessed protein-like material and were very similar in composition to previously reported foulants isolated from a fouled reverse osmosis (RO) membrane. Bacterial TEP/TEP precursors mostly consisted of aliphatic hydrocarbon from amino acids and amide group carbon of proteins (around 55%). Bacterial TEP precursors caused obvious fouling on RO membranes, which may create an ideal environment for bacteria attachment and promote to biofouling.

  2. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  3. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Directory of Open Access Journals (Sweden)

    Chugh Dipti

    2010-05-01

    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  4. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, K.; Nagano, T.; Kozai, N.; Nakashima, S.; Nakayama, S.; Muraoka, S.

    1991-01-01

    The following conclusions were obtained; (1) At 40degC, the average corrosion rate of SS41 carbon steel in wet bentonite was 0.025 mm/y. This is smaller than the value of 0.042 mm/y obtained in pure water at 40degC. However, at 95degC, the corrosion rate of SS41 carbon steel in wet bentonite was 0.27 mm/y, which is much larger than that in pure water at 95degC. (2) At 95degC, γ-FeO(OH) (lepidocrocite) was formed only in wet bentonite, and it was absent in pure water. Evaporation of moisture resulted in the formation of partial covering of bentonite, which promoted local corrosion. Consequently, γ-FeO(OH) was considered to be formed. (3) In wet bentonite at 95degC, α-Fe 2 O 3 (hematite) can be identified by means of colorimetry. The color of corrosion products is orangish, indicating the contribution of α-Fe 2 O 3 in iron hydroxides. (author)

  5. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    Science.gov (United States)

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  6. Microbial production of poly(hydroxybutyrate) from C₁ carbon sources.

    Science.gov (United States)

    Khosravi-Darani, Kianoush; Mokhtari, Zahra-Beigom; Amai, Tomohito; Tanaka, Kenji

    2013-02-01

    Polyhydroxybutyrate (PHB) is an attractive substitute for petrochemical plastic due to its similar properties, biocompatibility, and biodegradability. The cost of scaled-up PHB production inhibits its widespread usage. Intensive researches are growing to reduce costs and improve thermomechanical, physical, and processing properties of this green biopolymer. Among cheap substrates which are used for reducing total cost of PHB production, some C₁ carbon sources, e.g., methane, methanol, and CO₂ have received a great deal of attention due to their serious role in greenhouse problem. This article reviews the fundamentals of strategies for reducing PHA production and moves on to the applications of several cheap substrates with a special emphasis on methane, methanol, and CO₂. Also, some explanation for involved microorganisms including the hydrogen-oxidizing bacteria and methanotrophs, their history, culture condition, and nutritional requirements are given. After description of some important strains among the hydrogen-oxidizing and methanotrophic producers of PHB, the article is focused on limitations, threats, and opportunities for application and their future trends.

  7. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  8. Efficient lactulose production from cheese whey using sodium carbonate.

    Science.gov (United States)

    Seo, Yeong Hwan; Park, Gwon Woo; Han, Jong-In

    2015-04-15

    An economical method of lactulose production from cheese whey was developed using sodium carbonate (Na2CO3). Three parameters such as temperature, reaction time, and Na2CO3 concentration were identified as experimental factors, and yield was selected as a response parameter. The experimental factors were optimised employing Response Surface Methodology (RSM). Maximum yield of 29.6% was obtained at reaction time of 20.41 min, Na2CO3 of 0.51% at 90 °C. To overcome this limited lactulose yield, due to the conversion of lactulose to galactose, fed batch system was applied using dried cheese whey as lactose source. By this system, limit was broken, and 15.8 g/L of lactulose is produced in hour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Bio-production of Baccatin III, an Important Precursor of Paclitaxel by a Cost-Effective Approach.

    Science.gov (United States)

    Lin, Shu-Ling; Wei, Tao; Lin, Jun-Fang; Guo, Li-Qiong; Wu, Guang-Pei; Wei, Jun-Bin; Huang, Jia-Jun; Ouyang, Ping-Lan

    2018-07-01

    Natural production of anti-cancer drug taxol from Taxus has proved to be environmentally unsustainable and economically unfeasible. Currently, bioengineering the biosynthetic pathway of taxol is an attractive alternative production approach. 10-deacetylbaccatin III-10-O-acetyl transferase (DBAT) was previously characterized as an acyltransferase, using 10-deacetylbaccatin III (10-DAB) and acetyl CoA as natural substrates, to form baccatin III in the taxol biosynthesis. Here, we report that other than the natural acetyl CoA (Ac-CoA) substrate, DBAT can also utilize vinyl acetate (VA), which is commercially available at very low cost, acylate quickly and irreversibly, as acetyl donor in the acyl transfer reaction to produce baccatin III. Furthermore, mutants were prepared via a semi-rational design in this work. A double mutant, I43S/D390R was constructed to combine the positive effects of the different single mutations on catalytic activity, and its catalytic efficiency towards 10-DAB and VA was successfully improved by 3.30-fold, compared to that of wild-type DBAT, while 2.99-fold higher than the catalytic efficiency of WT DBAT towards 10-DAB and Ac-CoA. These findings can provide a promising economically and environmentally friendly method for exploring novel acyl donors to engineer natural product pathways.

  10. Establishment of the carbon label mechanism of coal chemical products based oncarbon footprint

    Directory of Open Access Journals (Sweden)

    Wu Bishan

    Full Text Available ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

  11. Sustainability Concept in Decision-Making: Carbon Tax Consideration for Joint Product Mix Decision

    OpenAIRE

    Wen-Hsien Tsai; Jui-Chu Chang; Chu-Lun Hsieh; Tsen-Shu Tsaur; Chung-Wei Wang

    2016-01-01

    Carbon emissions are receiving greater scrutiny in many countries due to international forces to reduce anthropogenic global climate change. Carbon taxation is one of the most common carbon emission regulation policies, and companies must incorporate it into their production and pricing decisions. Activity-based costing (ABC) and the theory of constraints (TOC) have been applied to solve product mix problems; however, a challenging aspect of the product mix problem involves evaluating joint m...

  12. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures.

    Science.gov (United States)

    Li, Guo-Zhong; Vissers, Johannes P C; Silva, Jeffrey C; Golick, Dan; Gorenstein, Marc V; Geromanos, Scott J

    2009-03-01

    A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC-MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four-protein mixture, the same four-protein mixture spiked into a complex biological background, and a variety of other "system" type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to

  13. Carbon footprint of dairy goat milk production in New Zealand.

    Science.gov (United States)

    Robertson, Kimberly; Symes, Wymond; Garnham, Malcolm

    2015-07-01

    The aim of this study was to assess the cradle-to-farm gate carbon footprint of indoor and outdoor dairy goat farming systems in New Zealand, identifying hotspots and discussing variability and methodology. Our study was based on the International Organization for Standardization standards for life cycle assessment, although only results for greenhouse gas emissions are presented. Two functional units were included: tonnes of CO2-equivalents (CO2e) per hectare (ha) and kilograms of CO2e per kilogram of fat- and protein-corrected milk (FPCM). The study covered 5 farms, 2 farming systems, and 3yr. Two methods for the calculation of enteric methane emissions were assessed. The Lassey method, as used in the New Zealand greenhouse gas inventory, provided a more robust estimate of emissions from enteric fermentation and was used in the final calculations. The alternative dry matter intake method was shown to overestimate emissions due to use of anecdotal assumptions around actual consumption of feed. Economic allocation was applied to milk and co-products. Scenario analysis was performed on the allocation method, nitrogen content of manure, manure management, and supplementary feed choice. The average carbon footprint for the indoor farms (n=3) was 11.05 t of CO2e/ha and 0.81kg of CO2e/kg of FPCM. For the outdoor farms (n=2), the average was 5.38 t of CO2e/ha and 1.03kg of CO2e/kg of FPCM. The average for all 5 farms was 8.78 t of CO2e/ha and 0.90kg of CO2e/kg of FPCM. The results showed relatively high variability due to differences in management practices between farms. The 5 farms covered 10% of the total dairy goat farms but may not be representative of an average farm. Methane from enteric fermentation was a major emission source. The use of supplementary feed was highly variable but an important contributor to the carbon footprint. Nitrous oxide can contribute up to 18% of emissions. Indoor goat farming systems produced milk with a significantly higher carbon

  14. Carbon footprint calculation of Finnish greenhouse products; Kasvihuonetuotteiden ilmastovaikutuslaskenta. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaenaeinen, H.; Silvenius, F.; Kaukoranta, T.; Naekkilae, J.; Saerkkae, L.; Tuhkanen, E.-M.

    2013-02-01

    This report presents the results of climate impact calculations for five products produced in Finnish greenhouses: tomatoes, cucumbers, salad crops, tulips and Elatior begonias. The study employed 16 greenhouses for the investigation; two greenhouses each for the tulips and the begonias and four each for the tomatoes, cucumbers and salad crops. Based on these calculations a greenhouse gas calculator was developed for greenhouse cultivators. The calculator is available at internet in www.kauppapuutarhaliitto.fi {yields} hiilijalanjaelki. In terms of environmental impacts this study concentrated on the climate impacts of the investigated products, and the calculations were made for the most significant greenhouse gases: carbon dioxide, methane and nitrous oxide. The following processes were included in the system boundaries: plant growing, manufacturing of lime, fertilizers and pesticides, manufacturing and disposal of pots, carbon dioxide production, irrigation, lighting, thermal curtains and cooling systems, the production and use of electricity and heat energy, distribution of products by the growers, other transportation, end-of-life and recycling. Processes excluded from the study were: distribution by other actors, retail functions, the consumer stage, and maintenance and manufacturing of infrastructure. The study used MTT's calculation model for the climate impact of food products excluding distribution and retail processes. The greenhouses selected for the study had some variation in their energy profiles and growing seasons. In addition, scenarios were created for different energy sources by using the average figures from this study. Monthly energy consumption values were also obtained from a number of the greenhouses and these were used to assess the variations in climate impact for different seasons. According to the results of the study the use of energy is the most significant source of climate impact of greenhouse products. In the tomato farms the

  15. Combining UHPLC-High Resolution MS and Feeding of Stable Isotope Labeled Polyketide Intermediates for Linking Precursors to End Products

    DEFF Research Database (Denmark)

    Klitgaard, Andreas; Frandsen, Rasmus John Normand; Holm, Dorte Koefoed

    2015-01-01

    acid (6-MSA) and 13C14-YWA1, both produced in-house, as well as commercial 13C7-benzoic acid and 2H7-cinnamic acid, in species of Fusarium, Byssochlamys, Aspergillus, and Penicillium. Incorporation of 6-MSA into terreic acid or patulin was not observed in any of six evaluated species covering three...... genera, because the 6-MSA was shunted into (2Z,4E)-2-methyl-2,4-hexadienedioic acid. This indicates that patulin and terreic acid may be produced in a closed compartment of the cell and that (2Z,4E)-2-methyl-2,4-hexadienedioic acid is a detoxification product toward terreic acid and patulin. In Fusarium...

  16. Synthesis of hydroxyapatite with the use of calcium carbonate as of the biological precursor; Sintese de hidroxiapatita com o uso de carbonato de calcio de origem biologica como precurssor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, M.S.; Di Lello, B.C.; Queiroz, F.; Campos, N.C., E-mail: marilzasa@oi.com.br [Universidade Estacio de Sa (UESA), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia; Campos, J.B. [Universidade do Estado do Rio de Janeiro (PPGEM/UERJ), RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2014-07-01

    This work describes the synthesis of hydroxyapatite from calcium from biological materials such as shells carbonate. In the syntheses performed, the calcium carbonate of biological origin was used as the precursor and through a precipitation reaction with phosphoric acid, was converted into calcium hydroxide. Sequentially, the precipitate was aged, filtered, washed, dried and calcined, and then transformed into hydroxyapatite. The characterization of the powders was performed by X-DR (X-ray diffraction) and SEM (scanning electron microscopy). DR-X as determined hydroxyapatite calcium phosphate phase calcium. SEM revealed a morphology of finely divided particles. The method B.E.T. showed values of specific area and volume of micropores consistent with the literature. The results of the characterizations proved feasible to use for obtaining biological hydroxyapatite materials used in the reaction conditions.(author)

  17. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  18. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  19. An integrated new product development framework - an application on green and low-carbon products

    Science.gov (United States)

    Lin, Chun-Yu; Lee, Amy H. I.; Kang, He-Yau

    2015-03-01

    Companies need to be innovative to survive in today's competitive market; thus, new product development (NPD) has become very important. This research constructs an integrated NPD framework for developing new products. In stage one, customer attributes (CAs) and engineering characteristics (ECs) for developing products are collected, and fuzzy interpretive structural modelling (FISM) is applied to understand the relationships among these critical factors. Based on quality function deployment (QFD), a house of quality is then built, and fuzzy analytic network process (FANP) is adopted to calculate the relative importance of ECs. In stage two, fuzzy failure mode and effects analysis (FFMEA) is applied to understand the potential failures of the ECs and to determine the importance of ECs with respect to risk control. In stage three, a goal programming (GP) model is constructed to consider the outcome from the FANP-QFD, FFMEA and other objectives, in order to select the most important ECs. Due to pollution and global warming, environmental protection has become an important topic. With both governments and consumers developing environmental consciousness, successful green and low-carbon NPD provides an important competitive advantage, enabling the survival or renewal of firms. The proposed framework is implemented in a panel manufacturing firm for designing a green and low-carbon product.

  20. Magnéli phases Ti{sub 4}O{sub 7} and Ti{sub 8}O{sub 15} and their carbon nanocomposites via the thermal decomposition-precursor route

    Energy Technology Data Exchange (ETDEWEB)

    Conze, S., E-mail: susan.conze@ikts.fraunhofer.de [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany); Veremchuk, I. [Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden (Germany); Reibold, M. [Technical University of Dresden, Zum Triebenberg 50, 01328 Dresden (Zaschendorf) (Germany); Matthey, B.; Michaelis, A. [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany); Grin, Yu. [Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden (Germany); Kinski, I. [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany)

    2015-09-15

    A new synthetic approach for producing nano-powders of the Magnéli phases Ti{sub 4}O{sub 7}, Ti{sub 8}O{sub 15} and their carbon nanocomposites by thermal decomposition-precursor route is proposed. The formation mechanism of the single-phase carbon nanocomposites (Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C) from metal–organic precursors is studied using FT-IR, elemental analysis, TG, STA-MS and others. The synthesis parameters and conditions were optimized to prepare the target oxides with the desired microstructure and physical properties. The electrical and transport properties of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. These nano-materials are n-type semiconductors with relatively low thermal conductivity in contrast to the bulk species. The nanostructured carbon nanocomposites of Magnéli phases achieve a low thermal conductivity close to 1 W/m K at RT. The maximum ZT{sub 570} {sub °C} values are 0.04 for Ti{sub 4}O{sub 7}/C powder nanocomposite and 0.01 for Ti{sub 8}O{sub 15}/C bulk nanocomposite. - Graphical abstract: From the precursor to the produced titanium oxide pellet and its microstructure (SEM, TEM micrographs) as well as results of phase and thermoelectric analyses. - Highlights: • Magnéli phases Ti{sub 4}O{sub 7}/Ti{sub 8}O{sub 15} via thermal decomposition-precursor route is proposed. • The formation mechanism of the nanocomposites Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. • Microstructure of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are examined. • The electrical and transport properties of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. • The maximum figure of mertit ZT{sub 570} {sub °C} of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are 0.01 and 0.04.

  1. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity

    KAUST Repository

    Salinas, Octavio

    2017-01-13

    Ethylene is typically produced by steam cracking of various hydrocarbon feedstocks. The gaseous products are then separated in a demethanizer followed by a deethanizer unit and finally sent to a C splitter for the final purification step. Cryogenic distillation of ethylene from ethane is the most energy-intensive unit operation process in the chemical industry. Therefore, the development of more energy-efficient processes for ethylene purification is highly desirable. Membrane-based separation has been proposed as an alternative option for replacement or debottlenecking of C splitters but current polymer membrane materials exhibit insufficient mixed-gas CH/CH selectivity (<7) to be technically and economically attractive. In this work, a highly selective carbon molecular sieve (CMS) membrane derived from a novel spirobisindane-based polyimide of intrinsic microporosity (PIM-6FDA) was developed and characterized. PIM-6FDA showed a single-stage degradation process under an inert nitrogen atmosphere which commenced at ∼480 °C. The CMS formed by pyrolysis at 800 °C had a diffusion/size-sieving-controlled morphology with a mixed-gas (50% CH/50% CH) ethylene/ethane selectivity of 15.6 at 20 bar feed pressure at 35 °C. The mixed-gas ethylene/ethane selectivity is the highest reported value for CMS-type membranes to date.

  2. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  3. Thymectomized, irradiated, and bone marrow-reconstituted chimeras have normal cytolytic T lymphocyte precursors but a defect in lymphokine production

    International Nuclear Information System (INIS)

    Duprez, V.; Maziarz, R.; Weinberger, O.; Burakoff, S.J.

    1984-01-01

    A model system has been developed to study extrathymic T cell differentiation; mice have been thymectomized, lethally irradiated, and reconstituted with bone marrow cells depleted of Thy-1 + cells. After 8 wk, the spleen cells of these athymic, bone marrow-reconstituted chimeras contain Thy-1 + precytolytic T lymphocytes (CTL) that are able to respond to antigen only if supernatant from Con A-activated T cells is added to culture. The phenotype of these pre-CTL is similar to that of thymocytes, suggesting that they may be immature T cells. Initial evaluation of the CTL repertoire of these athymic mice demonstrated that the CTL generated to trinitrophenyl-modified syngeneic cells are H-2-restricted, and that the CTL generated to alloantigens have many of the cross-reactivities observed in normal mice but not in nude mice. In this report, the authors demonstrate a helper T cell defect in these thymectomized chimeras. These chimeras lack an Ly-1 + helper cell required for thymocytes to differentiate to CTL. Further studies revealed that when spleen cells from these thymectomized chimeras were stimulated with Con A, they produced normal levels of interleukin 2. However, these splenocytes were defective in the production of another factor needed for CTL differentiation

  4. Chicken eggshells (Gallus gallus domesticus) as carbonate calcium source for biomaterials production

    International Nuclear Information System (INIS)

    Junior, E.A. de O.; Bastos, J.S.B.; Silva, R.C. de S.; Macedo, H.R.A.; Macedo, M. O.C.; Bradim, A.S.

    2016-01-01

    The eggshells present high levels of calcium carbonate. Calcium carbonate obtained from eggshells has been used in the production of biomaterials with applications in bone regeneration, since it is biocompatible. In this work, calcium carbonate was obtained from eggshells to prepare a composite biomaterial. The presence of calcium carbonate bands was observed through spectrometry in the infrared region. Scanning electron microscopy showed the presence of calcium carbonate particles with different sizes and shapes. Carbonate predominance in the form of calcite was also observed through the X-ray diffraction

  5. An economical device for carbon supplement in large-scale micro-algae production.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2008-10-01

    One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly.

  6. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    OpenAIRE

    He, Longfei; Xu, Zhaoguang; Niu, Zhanwen

    2014-01-01

    We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optim...

  7. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  8. Cobalamin Deficiency Results in Increased Production of Formate Secondary to Decreased Mitochondrial Oxidation of One-Carbon Units in Rats.

    Science.gov (United States)

    MacMillan, Luke; Tingley, Garrett; Young, Sara K; Clow, Kathy A; Randell, Edward W; Brosnan, Margaret E; Brosnan, John T

    2018-03-01

    Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 μg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S

  9. Effect of applied environmental stress on growth, photosynthesis, carbon allocation, and hydrocarbon production in Euphorbia lathyris

    International Nuclear Information System (INIS)

    Taylor, S.E.; Calvin, M.

    1988-01-01

    Photosynthetic activity was reduced by salinity stress, but is was found to be less sensitive than growth. Salinity stress also caused changes in the concentrations of specific cations. Moderate water stress had little effect on growth, but large changes in hydrocarbon production were still observed. Carbon allocation experiments with radiolabeled carbon indicated that carbon for latex production was supplied by nearby leaves, with some translocation down the stem also occurring

  10. Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations

    Science.gov (United States)

    Jose Luiz Stape; Dan Binkley; Michael G. Ryan

    2008-01-01

    We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (...

  11. Sustainable forest management of tropical forests can reduce carbon emissions and stabilize timber production

    Science.gov (United States)

    N. Sasaki; G.P. Asner; Yude Pan; W. Knorr; P.B. Durst; H.O. Ma; I. Abe; A.J. Lowe; L.P. Koh

    2016-01-01

    The REDD+ scheme of the United Nations Framework Conventionon Climate Change has provided opportunities to manage tropical forests for timber production and carbon emission reductions. To determine the appropriate loggingtechniques, we analyzed potential timber production and carbon emission reductions under two logging techniques over a 40-year period of selective...

  12. Determining landscape-level carbon emissions from historically harvested forest products

    Science.gov (United States)

    Sean Healey; Todd Morgan; Jon Songster; Jason. Brandt

    2009-01-01

    Resources have been developed in the literature to enable landowners to estimate the carbon sequestration timeline of forest products derived from their land. These tools were used here to estimate sequestration and emissions related to harvests carried out in Ravalli County from 1945 to 2007. This county-level accounting of product carbon release can later be combined...

  13. Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions

    Science.gov (United States)

    Parazoo, Nicholas C.; Koven, Charles D.; Lawrence, David M.; Romanovsky, Vladimir; Miller, Charles E.

    2018-01-01

    Thaw and release of permafrost carbon (C) due to climate change is likely to offset increased vegetation C uptake in northern high-latitude (NHL) terrestrial ecosystems. Models project that this permafrost C feedback may act as a slow leak, in which case detection and attribution of the feedback may be difficult. The formation of talik, a subsurface layer of perennially thawed soil, can accelerate permafrost degradation and soil respiration, ultimately shifting the C balance of permafrost-affected ecosystems from long-term C sinks to long-term C sources. It is imperative to understand and characterize mechanistic links between talik, permafrost thaw, and respiration of deep soil C to detect and quantify the permafrost C feedback. Here, we use the Community Land Model (CLM) version 4.5, a permafrost and biogeochemistry model, in comparison to long-term deep borehole data along North American and Siberian transects, to investigate thaw-driven C sources in NHL ( > 55° N) from 2000 to 2300. Widespread talik at depth is projected across most of the NHL permafrost region (14 million km2) by 2300, 6.2 million km2 of which is projected to become a long-term C source, emitting 10 Pg C by 2100, 50 Pg C by 2200, and 120 Pg C by 2300, with few signs of slowing. Roughly half of the projected C source region is in predominantly warm sub-Arctic permafrost following talik onset. This region emits only 20 Pg C by 2300, but the CLM4.5 estimate may be biased low by not accounting for deep C in yedoma. Accelerated decomposition of deep soil C following talik onset shifts the ecosystem C balance away from surface dominant processes (photosynthesis and litter respiration), but sink-to-source transition dates are delayed by 20-200 years by high ecosystem productivity, such that talik peaks early ( ˜ 2050s, although borehole data suggest sooner) and C source transition peaks late ( ˜ 2150-2200). The remaining C source region in cold northern Arctic permafrost, which shifts to a net

  14. Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions

    Directory of Open Access Journals (Sweden)

    N. C. Parazoo

    2018-01-01

    Full Text Available Thaw and release of permafrost carbon (C due to climate change is likely to offset increased vegetation C uptake in northern high-latitude (NHL terrestrial ecosystems. Models project that this permafrost C feedback may act as a slow leak, in which case detection and attribution of the feedback may be difficult. The formation of talik, a subsurface layer of perennially thawed soil, can accelerate permafrost degradation and soil respiration, ultimately shifting the C balance of permafrost-affected ecosystems from long-term C sinks to long-term C sources. It is imperative to understand and characterize mechanistic links between talik, permafrost thaw, and respiration of deep soil C to detect and quantify the permafrost C feedback. Here, we use the Community Land Model (CLM version 4.5, a permafrost and biogeochemistry model, in comparison to long-term deep borehole data along North American and Siberian transects, to investigate thaw-driven C sources in NHL ( >  55° N from 2000 to 2300. Widespread talik at depth is projected across most of the NHL permafrost region (14 million km2 by 2300, 6.2 million km2 of which is projected to become a long-term C source, emitting 10 Pg C by 2100, 50 Pg C by 2200, and 120 Pg C by 2300, with few signs of slowing. Roughly half of the projected C source region is in predominantly warm sub-Arctic permafrost following talik onset. This region emits only 20 Pg C by 2300, but the CLM4.5 estimate may be biased low by not accounting for deep C in yedoma. Accelerated decomposition of deep soil C following talik onset shifts the ecosystem C balance away from surface dominant processes (photosynthesis and litter respiration, but sink-to-source transition dates are delayed by 20–200 years by high ecosystem productivity, such that talik peaks early ( ∼  2050s, although borehole data suggest sooner and C source transition peaks late ( ∼  2150–2200. The

  15. Production of β-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients

    Science.gov (United States)

    Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2013-01-01

    In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations. PMID:19810011

  16. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3. Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r2 = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m−2) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (ΔNPP/ΔN) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2. Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  17. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  18. Activated carbon from biomass

    Science.gov (United States)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  19. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    Science.gov (United States)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the

  20. Fungal nanoscale metal carbonates and production of electrochemical materials.

    Science.gov (United States)

    Li, Qianwei; Gadd, Geoffrey Michael

    2017-09-01

    Fungal biomineralization of carbonates results in metal removal from solution or immobilization within a solid matrix. Such a system provides a promising method for removal of toxic or valuable metals from solution, such as Co, Ni, and La, with some carbonates being of nanoscale dimensions. A fungal Mn carbonate biomineralization process can be applied for the synthesis of novel electrochemical materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Production of polyol carbonates and their intercalation into Smectite clays

    OpenAIRE

    Shaheen, Uzma

    2017-01-01

    In hyper-saline conditions, clays in geosynthetic clay liners contract and fail to form a hydraulic barrier due to removal of water from the interlayer spaces of smectite, which is the swelling mineral component of bentonites used in geosynthetic clay liners. Five-membered cyclic carbonates such as propylene carbonate have been reported to form stable intercalated complexes with hydrated Na-smectite, which maintain swollen states at 1M). Glycerol carbonate was selected as an alternative c...

  2. Methods for forming particles from single source precursors

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  3. Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Flysjoe, A.M.

    2012-11-01

    The present PhD project has focused on some of the most critical methodological aspects influencing GHG emission estimates of milk and dairy products and how the methodology can be improved. In addition, the Carbon Footprint (CF) for different types of dairy products has been analysed. Based on these results, mitigation options have been identified along the entire dairy value chain. The key methodological challenges analysed in the present study are: estimation of CH{sub 4} and N{sub 2}O emissions, assessment of CO{sub 2} emissions from land use change (LUC), co-product handling, and definition of the functional unit. Estimates of the biogenic emissions CH{sub 4} and N{sub 2}O are associated with large uncertainties due to the complexity and natural variation in biological processes. Accounting for these variations resulted in a {+-}30-50% variation in the CF for milk in Sweden and New Zealand (excluding emissions from LUC). The inclusion of emissions from LUC can drastically affect the CF of dairy products, and different models can even provide contradictory results. Thus, it is suggested that emissions associated with LUC are reported separately and that underlying assumptions are clearly explained. Accounting for the by-product beef is decisive for the CF of milk, and when designing future strategies for the dairy sector, milk and meat production needs to be addressed in an integrated approach. It is shown that an increase in milk yield per cow does not necessarily result in a lower CF of milk, when taking into account the alternative production of the by-product beef. This demonstrates that it is important to investigate interactions between different product chains, i.e. to apply system thinking. The CF of dairy products from Arla Foods analysed in the present study range from: 1.2-5.5 kg CO{sub 2}e per kg fresh dairy products, 7.3-10.9 kg CO{sub 2}e per kg butter and butter blends, 4.5-9.9 kg CO{sub 2}e per kg cheese, and 1.0-17.4 kg CO{sub 2}e per kg milk

  4. Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Flysjoe, A M

    2012-11-01

    The present PhD project has focused on some of the most critical methodological aspects influencing GHG emission estimates of milk and dairy products and how the methodology can be improved. In addition, the Carbon Footprint (CF) for different types of dairy products has been analysed. Based on these results, mitigation options have been identified along the entire dairy value chain. The key methodological challenges analysed in the present study are: estimation of CH{sub 4} and N{sub 2}O emissions, assessment of CO{sub 2} emissions from land use change (LUC), co-product handling, and definition of the functional unit. Estimates of the biogenic emissions CH{sub 4} and N{sub 2}O are associated with large uncertainties due to the complexity and natural variation in biological processes. Accounting for these variations resulted in a {+-}30-50% variation in the CF for milk in Sweden and New Zealand (excluding emissions from LUC). The inclusion of emissions from LUC can drastically affect the CF of dairy products, and different models can even provide contradictory results. Thus, it is suggested that emissions associated with LUC are reported separately and that underlying assumptions are clearly explained. Accounting for the by-product beef is decisive for the CF of milk, and when designing future strategies for the dairy sector, milk and meat production needs to be addressed in an integrated approach. It is shown that an increase in milk yield per cow does not necessarily result in a lower CF of milk, when taking into account the alternative production of the by-product beef. This demonstrates that it is important to investigate interactions between different product chains, i.e. to apply system thinking. The CF of dairy products from Arla Foods analysed in the present study range from: 1.2-5.5 kg CO{sub 2}e per kg fresh dairy products, 7.3-10.9 kg CO{sub 2}e per kg butter and butter blends, 4.5-9.9 kg CO{sub 2}e per kg cheese, and 1.0-17.4 kg CO{sub 2}e per kg milk

  5. Product carbon footprint assessment supporting the green supply chain construction in household appliance manufacturers

    Science.gov (United States)

    Chen, Jianhua; Sun, Liang; Guo, Huiting

    2017-11-01

    Supply chain carbon emission is one of the factors considered in the green supply chain management. A method was designed to support the green supply chain measures based on the carbon footprint assessment for products. A research for 3 typical household appliances carbon footprint assessment was conducted to explore using product carbon footprint assessment method to guide the green supply chain management of the manufacturers. The result could reflect the differences directions on green supply chain management of manufacturers of washing machine, air conditioner and microwave, respectively That is, the washing machine manufacturer should pay attention to the low carbon activities in upstream suppliers in highest priority, and also the promotion of product energy efficiency. The air conditioner manufacturer should pay attention to the product energy efficiency increasing in highest priority, and the improvement of refrigerant to decrease its GWP. And the microwave manufacture could only focus on the energy efficiency increasing because it contributes most of the carbon emission to its carbon footprint. Besides, the representativeness of product and the applicability of the method were also discussed. As the manufacturer could master the technical information on raw material and components of its products to conduct the product carbon footprint assessment, this method could help the manufacturer to identify the effective green supply chain measures in the preliminary stage.

  6. Calcium carbonate synthesis with prescribed properties based on liquid waste of soda production

    Directory of Open Access Journals (Sweden)

    E.O. Mikhailova

    2016-09-01

    Full Text Available A promising direction in solving of environmental problems of soda industry is the development of low-waste resource-saving technologies, which consist in recycling of valuable waste components with obtaining the commercial products. Aim: The aim is to establish the optimal conditions for obtaining calcium carbonate with prescribed properties from liquid waste of soda production. Materials and Methods: Chemically deposited calcium carbonate is used as filler and should have certain physical and chemical properties. To obtain a product of prescribed quality the process of calcium carbonate deposition was performed of still waste liquid, that is the waste of calcium carbonate production and contain significant amount of calcium ions, and excessive production of the purified stock solution of sodium bicarbonate, which is composed of carbonate and hydrocarbonate ions. Results: The dependence of bulk density and specific surface area of calcium carbonate sediments and degree of deposition from such technological parameters are established: method of mixing the stock solutions, the concentration and molar ratio of reactants, temperature and reaction time. Conclusions: The optimal mode of deposition process is determined and the concept of production of calcium carbonate is developed. The quality of calcium carbonate meets the modern requirements of high dispersion, low bulk density and evolved specific surface of the product.

  7. Same Precursor, Two Different Products

    DEFF Research Database (Denmark)

    Wood, Suzannah R.; Woods, Keenan N.; Plassmeyer, Paul N.

    2017-01-01

    with significantly larger coherence lengths. This amorphous β-Ga2O3 phase could not be identified using the conventional Bragg diffraction techniques traditionally used to study crystalline metal oxide thin films. The combination of Bragg diffraction and tfPDF provides a much more complete description of film...... with temperature, forming mixtures of Ga-substituted In2O3 and In-substituted β-Ga2O3 with different degrees of substitution. X-ray total scattering and PDF analysis indicate that the majority phase for both the powders and films is an amorphous/nanocrystalline β-Ga2O3 phase, with a minor constituent of In2O3...

  8. Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis.

    Science.gov (United States)

    Hartley, Carol J; French, Nigel G; Scoble, Judith A; Williams, Charlotte C; Churches, Quentin I; Frazer, Andrew R; Taylor, Matthew C; Coia, Greg; Simpson, Gregory; Turner, Nicholas J; Scott, Colin

    2017-01-01

    Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP) is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.

  9. Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis.

    Directory of Open Access Journals (Sweden)

    Carol J Hartley

    Full Text Available Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.

  10. Regional carbon dioxide implications of forest bioenergy production

    NARCIS (Netherlands)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest

  11. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.

    Science.gov (United States)

    Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F

    2015-12-01

    Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.

  12. Production and characterization of supersonic carbon cluster beams

    International Nuclear Information System (INIS)

    Rohlfing, E.A.; Cox, D.M.; Kaldor, A.

    1984-01-01

    Laser vaporization of a substrate within the throat of a pulsed nozzle is used to generate a supersonic beam of carbon clusters. The neutral cluster beam is probed downstream by UV laser photoionization with time-of-flight mass analysis of the resulting photoions. Using graphite as the substrate, carbon clusters C/sub n/ for n = 1--190 have been produced having a distinctly bimodal cluster size distribution: (i) Both even and odd clusters for C/sub n/, 1 + /sub n/ signals are interpreted on the basis of cluster formation and stability arguments. Ionizing laser power dependences taken at several different photon energies are used to roughly bracket the carbon cluster ionization potentials, and, at high laser intensity, to observe the onset of multiphoton fragmentation. By treating the graphite rod with KOH, a greatly altered carbon cluster distribution with mixed carbon/potassium clusters of formula K 2 C/sub 2n/ is produced

  13. Production of activated carbon from Victorian brown coal and its application in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jobson, G.; Swinbourne, D.

    1985-01-01

    A research grant was awarded by the Coal Council of Victoria to support investigations into the manufacture of a Victorian brown coal-based activated carbon suitable for Carbon-in-Pulp (CIP) gold recovery operations. This project was started on 31.1.84 and was completed by 27.9.85. The general aim of this study was to develop the technology needed for production of an indigenous activated carbon which could be a substitute for the carbons presently imported for use in CIP operations. There was a considerable economic incentive to achieve a carbon based on an inexpensive resource such as Victorian brown coal.

  14. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    OpenAIRE

    Guo, Hong-xia; Shao, Ming

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products, we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent. We apply the development idea of low-carbon economy, introduce the third-party logistics companies, establish distribution center of cold chain logistics of agricultural products, and strengthen information sharing, to reengineer the process of cold chain logistics of agricultural produc...

  15. Production of thin carbon stripper foils using heated-substrates in a cathodic arc deposition system

    International Nuclear Information System (INIS)

    Merchant, A.R.; Lobanov, N.; Elliman, R.G.; Ophel, T.R.; Rode, A.; Weisser, D.C.; Turkentine, R.B.

    1998-01-01

    The lifetime of carbon stripper foil can have a marked impact on the successful running of a beam line. Standard techniques for production of carbon stripper foils include evaporation of carbon (ec) and laser-pulsed ablation (Ipa). Recent work by a using Ipa has been successful in substantially increasing the lifetime of a very thin foil. The suspected mechanism for the increased lifetime of the foil is that the amorphous carbon foil is density-matched to that of graphite (around 2.26g/cc). In this work, we attempt to reproduce this result by producing carbon stripper foils with a mass-density similar to graphite using a cathodic arc deposition system. The cathodic arc is well known for the production of tetrahedral amorphous carbon: a high density, high stress form of carbon with over 90% sp 3 -like bonds; to reduce the density of the carbon and promote more graphitic structure, a high bias was initially attempted but this proved unsuccessful. Another method is to use a heated-substrate holder to reduce compressive stress within the deposited film. The performance of the density-matched carbon stripper foils and the implications for future production of high-quality carbon stripper foils in our laboratory will be discussed. (authors)

  16. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    Science.gov (United States)

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  17. Cross-linking of cell surface amyloid precursor protein leads to increased β-amyloid peptide production in hippocampal neurons: implications for Alzheimer's disease.

    Science.gov (United States)

    Lefort, Roger; Pozueta, Julio; Shelanski, Michael

    2012-08-01

    The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.

  18. An In Vivo Characterization of Trophic Factor Production Following Neural Precursor Cell or Bone Marrow Stromal Cell Transplantation for Spinal Cord Injury

    Science.gov (United States)

    Hawryluk, Gregory W.J.; Mothe, Andrea; Wang, Jian; Wang, Shelly; Tator, Charles

    2012-01-01

    Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion

  19. The cleavage product of amyloid-β protein precursor sAβPPα modulates BAG3-dependent aggresome formation and enhances cellular proteasomal activity.

    Science.gov (United States)

    Renziehausen, Jana; Hiebel, Christof; Nagel, Heike; Kundu, Arpita; Kins, Stefan; Kögel, Donat; Behl, Christian; Hajieva, Parvana

    2015-01-01

    Alzheimer's disease (AD) is the major age-associated form of dementia characterized by gradual cognitive decline. Aberrant cleavage of the amyloid-β protein precursor (AβPP) is thought to play an important role in the pathology of this disease. Two principal AβPP processing pathways exist: amyloidogenic cleavage of AβPP resulting in production of the soluble N-terminal fragment sAβPPβ, amyloid-β (Aβ), which accumulates in AD brain, and the AβPP intracellular domain (AICD) sAβPPα, p3 and AICD are generated in the non-amyloidogenic pathway. Prevalence of amyloidogenic versus non-amyloidogenic processing leads to depletion of sAβPPα and an increase in Aβ. Although sAβPPα is a well-accepted neurotrophic protein, molecular effects of this fragment remains unknown. Different studies reported impaired protein degradation pathways in AD brain, pointing to a role of disturbed proteasomal activity in the pathogenesis of this disease. Here we studied the possible role of sAβPPα in Bag3-mediated selective macroautophagy and proteasomal degradation. Employing human IMR90 cells, HEK 293 cells, and primary neurons, we demonstrate that sAβPPα prevents the proteotoxic stress-induced increase of Bag3 at the protein and at the mRNA level indicating a transcriptional regulation. Intriguingly, p62 and LC3, two other key players of autophagy, were not affected. Moreover, the formation and the accumulation of disease-related protein aggregates were significantly reduced by sAβPPα. Interestingly, there was a significant increase of proteasomal activity by sAβPPα as demonstrated by using various proteasome substrates. Our findings demonstrate that sAβPPα modulates Bag3 expression, aggresome formation, and proteasomal activity, thereby providing first evidence for a function of sAβPPα in the regulation of proteostasis.

  20. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters

    International Nuclear Information System (INIS)

    Teng, Wai Keng; Ngoh, Gek Cheng; Yusoff, Rozita; Aroua, Mohamed Kheireddine

    2014-01-01

    Highlights: • Utilization of glycerol to synthesize glycerol carbonate through various routes. • Different types of carbonates and catalysts used for glycerol carbonate production via transesterification are elucidated. • Important factors influencing glycerol carbonate production performances are detailed. • Future research needs of glycerol carbonate production are proposed. - Abstract: Driven by high energy demand and environmental concerns, biodiesel as a substitute for fossil fuels is recognized to be promising renewable and clean energy. The increase in the biodiesel plant dramatically leads to the oversupply of its by-product glycerol in the biodiesel industries. Developing new industrial uses for glycerol is essential to increase the net energy and sustainability of biodiesel. Moreover, glycerol has great potential to be converted into marketable and valuable chemicals. The conversion of glycerol to glycerol carbonate (GC) has been extensively studied and transesterification of glycerol to GC has been proven to be the most promising route. Aimed to reveal the underlying mechanism of this successful conversion path, this paper reviews the chemo- and biocatalytic transesterification of glycerol with different carbonates sources. Also, a detail elucidation of the influence of the catalysts and operating conditions on the GC yield is included to provide an insight into the process. In addition, the future direction of glycerol carbonate production via catalytic transesterification is provided in this review

  1. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  2. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  3. production and characterization of activated carbon from leather

    African Journals Online (AJOL)

    dell

    Powdered activated carbon (PAC) was prepared from leather buffing waste, sawdust and lignite by ... soil, air or water. (Baksi et al., 2006; ... anthracite and bituminous coal, lignite, lignocellulosic materials ..... waste water treatment: A review.

  4. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  5. Carbon emissions from U.S. ethylene production under climate change policies.

    Science.gov (United States)

    Ruth, Matthias; Amato, Anthony D; Davidsdottir, Brynhildur

    2002-01-15

    This paper presents the results from a dynamic computer model of U.S. ethylene production, designed to explore implications of alternative climate change policies for the industry's energy use and carbon emissions profiles. The model applies to the aggregate ethylene industry but distinguishes its main cracker types, fuels used as feedstocks and for process energy, as well as the industry's capital vintage structure and vintage-specific efficiencies. Results indicate that policies which increase the cost of carbon of process energy-such as carbon taxes or carbon permit systems-are relatively blunt instruments for cutting carbon emissions from ethylene production. In contrast, policies directly affecting the relative efficiencies of new to old capital-such as R&D stimuli or accelerated depreciation schedules-may be more effective in leveraging the industry's potential for carbon emissions reductions.

  6. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms.

    Science.gov (United States)

    Büschleb, Martin; Dorich, Stéphane; Hanessian, Stephen; Tao, Daniel; Schenthal, Kyle B; Overman, Larry E

    2016-03-18

    Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sustainable bioenergy production with little carbon debt in the Loess Plateau of China.

    Science.gov (United States)

    Liu, Wei; Peng, Cheng; Chen, Zhifen; Liu, Yue; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a key strategy for mitigating global climate change, bioenergy production by reducing CO2 emissions plays an important role in ensuring sustainable development. However, land-use change by converting natural ecosystems into energy crop field could create a carbon debt at the beginning. Thus, the potential carbon debt calculation is necessary for determining a promising bioenergy crop production, especially in the region rich of marginal land. Here, we used high-resolution historical land-use data to identify the marginal land available and to evaluate the carbon debt of planting Miscanthus in the Loess Plateau, China. We found that there were 27.6 Mha for energy production and 9.7 Mha for ecological restoration, with total annual production of 0.41 billion tons of biomass. We also found that soil carbon sequestration and total CO2 mitigation were 9.3 Mt C year(-1) and 542 Mt year(-1), respectively. More importantly, the result showed that planting Miscanthus on marginal land in the Loess Plateau only took 0.97 years on average to repay the carbon debt. Our study demonstrated that Miscanthus production in suitable marginal land in the Loess Plateau can offer considerable renewable energy and mitigate climate change with little carbon debt. These results suggested that bioenergy production in the similar arid and semiarid region worldwide would contribute to carbon sequestration in the context of rapid climate change.

  8. Global socioeconomic carbon stocks in long-lived products 1900–2008

    International Nuclear Information System (INIS)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-01-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900–2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr −1 in 1900 to a maximum of 247 MtC yr −1 in 2007, corresponding to 2.2%–3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks. (letter)

  9. Global socioeconomic carbon stocks in long-lived products 1900-2008

    Science.gov (United States)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-09-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks.

  10. Green synthesis of sulfur- and nitrogen-co-doped carbon dots using ionic liquid as a precursor and their application in Hg2+ detection

    International Nuclear Information System (INIS)

    Zhuo, Kelei; Sun, Dong; Xu, Panpan; Wang, Chunfeng; Cao, Yingying; Chen, Yujuan; Liu, Jianming

    2017-01-01

    A facile and environment-friendly method was developed to synthesize sulfur- and nitrogen-co-doped carbon dots (S/N-CDs) via one step hydrothermal treatment of 1-butyl-3-methylimidazolium 2-amino-3-mercaptopropionic acid salt ionic liquid and polyethylene glycol. It was found that the prepared S/N-CDs were nearly spherical nanoparticles. And then the size of the as-prepared S/N-CDs became smaller with the extension of reaction time, the amorphous carbon was gradually transformed into a crystal structure of carbon dots and a higher reaction temperature favors the formation of carbon dots with higher quantum yields. It was also found that sulfur atoms in the S/N-CDs change the surface structures of CDs to some extent. Higher quantum yield of the S/N-CDs should attribute to the synergistic effect of co-doped nitrogen and sulfur atoms. The S/N-CDs display stable and strong florescence, high water solubility, excitation-dependent emission behavior, particularly the up-conversion photoluminescence performance. Furthermore, the as-prepared S/N-CDs were used as a sensitive probe for Hg 2+ detection in aqueous solutions, with high selectivity and sensitivity. Particularly, the detection limit could reach as low as 0.6 nM (S/N=3).

  11. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    Directory of Open Access Journals (Sweden)

    Gelayol Golkarnarenji

    2018-03-01

    Full Text Available To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR and Artificial Neural Network (ANN, were studied and compared, with a limited dataset obtained to predict physical property (density of oxidative stabilized PAN fiber (OPF in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  12. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Science.gov (United States)

    2010-09-14

    ... Products covered by this order are certain corrosion-resistant carbon steel flat products from Korea. These... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE...

  13. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    Science.gov (United States)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  14. Mangrove production and carbon sinks: A revision of global budget estimates

    Science.gov (United States)

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  15. Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production

    Science.gov (United States)

    Background: Although the association between rising levels of carbon dioxide, the principle anthropogenic greenhouse gas, and pollen production has been established, few data are available regarding the function of rising carbon dioxide on quantitative or qualitative changes in allergenic fungal sp...

  16. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Science.gov (United States)

    Fabien H. Wagner; Bruno Herault; Damien Bonal; Clement Stahl; Liana O. Anderson; Timothy R. Baker; Gabriel Sebastian Becker; Hans Beeckman; Danilo Boanerges Souza; Paulo Cesar Botosso; David M. J. S. Bowman; Achim Brauning; Benjamin Brede; Foster Irving Brown; Jesus Julio Camarero; Plinio Barbosa Camargo; Fernanda C. G. Cardoso; Fabricio Alvim Carvalho; Wendeson Castro; Rubens Koloski Chagas; Jerome Chave; Emmanuel N. Chidumayo; Deborah A. Clark; Flavia Regina Capellotto Costa; Camille Couralet; Paulo Henrique da Silva Mauricio; Helmut Dalitz; Vinicius Resende de Castro; Jacanan Eloisa de Freitas Milani; Edilson Consuelo de Oliveira; Luciano de Souza Arruda; Jean-Louis Devineau; David M. Drew; Oliver Dunisch; Giselda Durigan; Elisha Elifuraha; Marcio Fedele; Ligia Ferreira Fedele; Afonso Figueiredo Filho; Cesar Augusto Guimaraes Finger; Augusto Cesar Franco; Joao Lima Freitas Junior; Franklin Galvao; Aster Gebrekirstos; Robert Gliniars; Paulo Mauricio Lima de Alencastro Graca; Anthony D. Griffiths; James Grogan; Kaiyu Guan; Jurgen Homeier; Maria Raquel Kanieski; Lip Khoon Kho; Jennifer Koenig; Sintia Valerio Kohler; Julia Krepkowski; Jose Pires Lemos-Filho; Diana Lieberman; Milton Eugene Lieberman; Claudio Sergio Lisi; Tomaz Longhi Santos; Jose Luis Lopez Ayala; Eduardo Eijji Maeda; Yadvinder Malhi; Vivian R. B. Maria; Marcia C. M. Marques; Renato Marques; Hector Maza Chamba; Lawrence Mbwambo; Karina Liana Lisboa Melgaco; Hooz Angela Mendivelso; Brett P. Murphy; Joseph O' Brien; Steven F. Oberbauer; Naoki Okada; Raphael Pelissier; Lynda D. Prior; Fidel Alejandro Roig; Michael Ross; Davi Rodrigo Rossatto; Vivien Rossi; Lucy Rowland; Ervan Rutishauser; Hellen Santana; Mark Schulze; Diogo Selhorst; Williamar Rodrigues Silva; Marcos Silveira; Susanne Spannl; Michael D. Swaine; Jose Julio Toledo; Marcos Miranda Toledo; Marisol Toledo; Takeshi Toma; Mario Tomazello Filho; Juan Ignacio Valdez Hernandez; Jan Verbesselt; Simone Aparecida Vieira; Gregoire Vincent; Carolina Volkmer de Castilho; Franziska Volland; Martin Worbes; Magda Lea Bolzan Zanon; Luiz E. O. C. Aragao

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter...

  17. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture

    NARCIS (Netherlands)

    Salvador, Andreia F.; Martins, Gilberto; Melle-Franco, Manuel; Serpa, Ricardo; Stams, Alfons J.M.; Cavaleiro, Ana J.; Pereira, M.A.; Alves, M.M.

    2017-01-01

    Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of

  18. The kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas

    International Nuclear Information System (INIS)

    Khamroev, F.B.

    2016-01-01

    The purpose of the present work is to study the kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas. The experimental equation of steam-carbon methane conversion, heat stability increasing and catalyst efficiency, decreasing of hydrodynamical resistance of catalyst layer were determined.

  19. The Environmental Impact of Industrial Bamboo Products : Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an

  20. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhuise gas emissions

    NARCIS (Netherlands)

    Cayuela, M.L.; Oenema, O.; Kuikman, P.J.; Bakker, R.R.; Groenigen, van J.W.

    2010-01-01

    An important but little understood aspect of bioenergy production is its overall impact on soil carbon (C) and nitrogen (N) cycling. Increased energy production from biomass will inevitably lead to higher input of its by-products to the soil as amendments or fertilizers. However, it is still unclear

  1. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  2. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata.

    Science.gov (United States)

    Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke

    2011-05-27

    The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on

  3. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  4. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Directory of Open Access Journals (Sweden)

    Vanessa Moura Dos Reis

    Full Text Available The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  5. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Science.gov (United States)

    Reis, Vanessa Moura Dos; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  6. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.

    Science.gov (United States)

    Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Bresser, Dominic; Lieberwirth, Ingo; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2015-06-01

    The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Calcium carbonate synthesis with prescribed properties based on liquid waste of soda production

    OpenAIRE

    E.O. Mikhailova; V.O. Panasenko; N.B. Markova

    2016-01-01

    A promising direction in solving of environmental problems of soda industry is the development of low-waste resource-saving technologies, which consist in recycling of valuable waste components with obtaining the commercial products. Aim: The aim is to establish the optimal conditions for obtaining calcium carbonate with prescribed properties from liquid waste of soda production. Materials and Methods: Chemically deposited calcium carbonate is used as filler and should have certain physical a...

  8. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-12-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.

  9. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  10. A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings

    International Nuclear Information System (INIS)

    Gerlagh, Reyer

    2008-01-01

    We develop an endogenous growth model with capital, labor and carbon-energy as production factors and three technology variables that measure accumulated innovations for carbon-energy production, carbon-energy savings, and neutral growth. All markets are complete and perfect, except for research, for which we assume that the marginal social benefits exceed the marginal private benefits by factor four. The model constants are calibrated so that the model reproduces the relevant global trends over the 1970-2000 period. The model contains a simple climate module, and is used to assess the impact of Induced Technological Change (ITC) for a policy that aims at a maximum level of atmospheric CO 2 concentration (450 ppmv). ITC is shown to reduce the required carbon tax by more than a factor 2, and to reduce costs of such a policy by half. When we do not constrain aggregate R and D expenditures to benchmark levels, costs are further reduced. Numerical simulations show that knowledge accumulation shifts from energy production to energy saving technology. We discuss reasons for differences between our results and earlier results reported in the literature. (author)

  11. Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors

    Directory of Open Access Journals (Sweden)

    Jianchang Lu

    2015-04-01

    Full Text Available Based on the international community’s analysis of the present CO2 emissions situation, a Log Mean Divisia Index (LMDI decomposition model is proposed in this paper, aiming to reflect the decomposition of carbon productivity. The model is designed by analyzing the factors that affect carbon productivity. China’s contribution to carbon productivity is analyzed from the dimensions of influencing factors, regional structure and industrial structure. It comes to the conclusions that: (a economic output, the provincial carbon productivity and energy structure are the most influential factors, which are consistent with China’s current actual policy; (b the distribution patterns of economic output, carbon productivity and energy structure in different regions have nothing to do with the Chinese traditional sense of the regional economic development patterns; (c considering the regional protectionism, regional actual situation need to be considered at the same time; (d in the study of the industrial structure, the contribution value of industry is the most prominent factor for China’s carbon productivity, while the industrial restructuring has not been done well enough.

  12. Enhanced production of green tide algal biomass through additional carbon supply.

    Science.gov (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  13. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  14. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  15. Changes in carbon storage and oxygen production in forest timber ...

    African Journals Online (AJOL)

    Decrease in forest areas world wide and the damaging of its structures is hazardous to human health, hinders and dries up the spread of oxygen in the air and also destroys carbon storage. In recent years, global warming and changes in climates depending on the increase in the green house gases have been affecting the ...

  16. Ethylene and Carbon Monoxide Production by Septoria musiva

    Science.gov (United States)

    S. Brown-Skrobot; L. R. Brown; T. H. Filer

    1984-01-01

    An investigation into the mechanism by which Septoria musiva causes the premature defoliation of cottonwood trees was undertaken. Gas-chromatograpic analysis of the atmosphere overlying the original culture indicated that this fungus produced significant quantities of ethylene and carbon monoxide. Subcultures failed to produce either gas on a variety...

  17. Carbon pools and flux in U.S. forest products

    Science.gov (United States)

    Linda S. Heath; Richard A. Birdsey; Clark Row; Andrew J. Plantinga

    1996-01-01

    Increasing recognition that anthropogenic CO2 and other greenhouse gas emissions may effect climate change has prompted research studies on global carbon (C) budgets and international agreements for action. At the United Nations Conference on Environment and Development in 1992, world leaders and citizens gathered and initiated the Framework...

  18. Sustainability Concept in Decision-Making: Carbon Tax Consideration for Joint Product Mix Decision

    Directory of Open Access Journals (Sweden)

    Wen-Hsien Tsai

    2016-11-01

    Full Text Available Carbon emissions are receiving greater scrutiny in many countries due to international forces to reduce anthropogenic global climate change. Carbon taxation is one of the most common carbon emission regulation policies, and companies must incorporate it into their production and pricing decisions. Activity-based costing (ABC and the theory of constraints (TOC have been applied to solve product mix problems; however, a challenging aspect of the product mix problem involves evaluating joint manufactured products, while reducing carbon emissions and environmental pollution to fulfill social responsibility. The aim of this paper is to apply ABC and TOC to analyze green product mix decision-making for joint products using a mathematical programming model and the joint production data of pharmaceutical industry companies for the processing of active pharmaceutical ingredients (APIs in drugs for medical use. This paper illustrates that the time-driven ABC model leads to optimal joint product mix decisions and performs sensitivity analysis to study how the optimal solution will change with the carbon tax. Our findings provide insight into ‘sustainability decisions’ and are beneficial in terms of environmental management in a competitive pharmaceutical industry.

  19. Production of activated carbon from peat. A techno-economic feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Asplund, D; Ekman, E

    1984-05-01

    The production of activated carbon from peat was studied both with laboratory and pilot plant experiments in a fluidized-bed furnace. Peat coke was mainly used as raw material, and it was gasified partially with steam to granular activated carbon. The activated carbon grades produced were evaluated on the basis of physical characteristics, for example, volume weight, hardness, specific surface, and pore structure. The proximated analysis of activated carbon crush produced from peat coke: volume weight 220-260 g/l, specific surface 700-1100 msup/g, ash content 13-15%. The physical properties of the produced activated carbon grades were equal to those of commercial carbon brands. On the basis of these trial runs, an activated carbon plant for capacities of 400 t/a and 1500 t/a was preliminary designed adn the use of the fluidized-bed furnace for regenerating activated carbon was evaluated. The initial investment in the production plant was estimated to amount to FIM 3.5 mill. and FIM 5.9 mill. The refund periods of the basic alternatives would be 26 and 2 years, and the minimum capacity of profitable production 900 t/a.

  20. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants

    DEFF Research Database (Denmark)

    Madsen, Jørgen; Bjerg, Bjarne Schmidt; Hvelplund, Torben

    2010-01-01

    This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake of metab......This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake...

  1. Organic carbon production, mineralization and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  2. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  3. Sustainable production of cannabinoids with supercritical carbon dioxide technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all

  4. Sustainable Production of Cannabinoids with Supercritical Carbon Dioxide Technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all

  5. A brief review on activated carbon derived from agriculture by-product

    Science.gov (United States)

    Yahya, Mohd Adib; Mansor, Muhammad Humaidi; Zolkarnaini, Wan Amani Auji Wan; Rusli, Nurul Shahnim; Aminuddin, Anisah; Mohamad, Khalidah; Sabhan, Fatin Aina Mohamad; Atik, Arif Abdallah Aboubaker; Ozair, Lailatun Nazirah

    2018-06-01

    A brief review focusing on preparation of the activated carbon derived from agriculture by-products is presented. The physical and chemical activation of activated carbon were also reviewed. The effects of various parameters including types of activating agents, temperature, impregnation ratio, were also discussed. The applications of activated carbon from agricultural by products were briefly reviewed. It is provenly evident in this review, the relatively inexpensive and renewable resources of the agricultural waste were found to be effectively being converted into wealth materials.

  6. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  7. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  8. Deposition of nano-size particles on reticulated vitreous carbon using colloidal precursors : three-dimensional anodes for borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2006-07-01

    In addition to their inherently larger specific surface area, mesoscopic materials also possess a higher density of surface constrained sites, which could serve as active sites in catalysis as well as facilitate the surface diffusion of small molecules and ions relevant to various catalytic steps. This study investigated the organosol method for the deposition of platinum (Pt), iridium (Ir), gold (Au) and nickel (Ni) nano-particles on reticulated vitreous carbon to evaluate the electrocatalytic activity for BH{sub 4} oxidation by both fundamental electrochemical studies and fuel cell experiments. The application of the organosol nanometal preparation technique was based on the quaternary ammonium compound N(C{sub 8}H{sub 17}){sub 4}B(C{sub 2}H{sub 5}){sub 3}H acting as both reductant and colloid stabilizer. A current assisted variant was also studied where the reticulated vitreous carbon substrate served as the cathode operating at superficial current densities between 1.0 and 2.5 mA per cm{sup 2}. The organosol method produced a low catalyst load on reticulated vitreous carbons between 0.01 and 0.12 mg per cm{sup 2}. The electrodes were evaluated for catalytic activity toward the electro-oxidation of BH{sub 4} by cyclic voltammetry, chronopotentiometry and fuel cell experiments. Borohydride fuel cells with liquid electrolyte (2 M NaOH) were assembled using a 3-dimensional anode, a cation exchange membrane and a commercial oxygen cathode. Results showed that the anode catalyst mass activity was higher for the 3-D design compared to the case when a gas diffusion electrode served as the anode. It was concluded that the extended reaction zone of the three-dimensional anode with liquid electrolyte improved the catalyst utilization efficiency by allowing the reduction of the catalyst load. 6 refs., 1 fig.

  9. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  10. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis

    International Nuclear Information System (INIS)

    Wang, Qunwei; Chiu, Yung-Ho; Chiu, Ching-Ren

    2015-01-01

    Research on the driving factors behind carbon dioxide emission changes in China can inform better carbon emission reduction policies and help develop a low-carbon economy. As one of important methods, production-theoretical decomposition analysis (PDA) has been widely used to understand these driving factors. To avoid the infeasibility issue in solving the linear programming, this study proposed a modified PDA approach to decompose carbon dioxide emission changes into seven drivers. Using 2005–2010 data, the study found that economic development was the largest factor of increasing carbon dioxide emissions. The second factor was energy structure (reflecting potential carbon), and the third factor was low energy efficiency. Technological advances, energy intensity reductions, and carbon dioxide emission efficiency improvements were the negative driving factors reducing carbon dioxide emission growth rates. Carbon dioxide emissions and driving factors varied significantly across east, central and west China. - Highlights: • A modified PDA used to decompose carbon dioxide emission changes into seven drivers. • Two models were proposed to ameliorate the infeasible occasions. • Economic development was the largest factor of increasing CO_2 emissions in China.

  11. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    Directory of Open Access Journals (Sweden)

    Antonia Nette

    2016-03-01

    Full Text Available Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq (31% per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  12. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    Science.gov (United States)

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-01-01

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta. PMID:28231112

  13. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour.

    Science.gov (United States)

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-03-04

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein-based pasta products proved to cause 0.57 kg CO₂ equivalents (CO₂eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  14. Estimates of carbon stored in harvested wood products from United States Forest Service Northern Region, 1906-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  15. Estimates of carbon stored in harvested wood products from United States Forest Service Rocky Mountain Region, 1906-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  16. Estimates of carbon stored in harvested wood products from United States Forest Service Southern Region, 1911-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  17. Estimates of carbon stored in harvested wood products from United States Forest Service Intermountain Region, 1911-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  18. Estimates of carbon stored in harvested wood products from United States Forest Service Pacific Northwest Region, 1909-2012

    Science.gov (United States)

    Edward Butler; Keith Stockmann; Nathaniel Anderson; Ken Skog; Sean Healey; Dan Loeffler; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  19. Estimates of carbon stored in harvested wood products from United States Forest Service Pacific Southwest Region, 1909-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  20. Estimates of carbon stored in harvested wood products from United States Forest Service Eastern Region, 1911-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  1. Estimates of carbon stored in harvested wood products from United States Forest Service Alaska Region, 1910-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  2. Estimates of carbon stored in harvested wood products from United States Forest Service Southwestern Region, 1909-2012

    Science.gov (United States)

    Edward Butler; Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  3. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  4. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  5. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada

    Science.gov (United States)

    Vergé, Xavier P.C.; Dyer, James A.; Worth, Devon E.; Smith, Ward N.; Desjardins, Raymond L.; McConkey, Brian G.

    2012-01-01

    Simple Summary We developed a model to estimate the carbon footprint of Canadian livestock production. To include long term soil carbon storage and loss potential we introduced a payback period concept. The model was tested by reallocating 10% only of the protein production from a ruminant to a non ruminant source to minimize the risk of including rangeland or marginal lands. This displacement generated residual land which was found to play a major role in the potential mitigation of GHG emissions. The model will allow land use policies aimed at reducing the agricultural GHG emissions to be assessed. Abstract To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture. PMID:26487032

  6. Syngas production from CO{sub 2}-reforming of CH{sub 4} over sol-gel synthesized Ni-Co/Al{sub 2}O{sub 3}-MgOZrO{sub 2} nanocatalyst: effect of ZrO{sub 2} precursor on catalyst properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Sajjadi, Seyed Mehdi; Haghighi, Mohammad; Rahmani, Farhad, E-mail: haghighi@sut.ac.ir [Reactor and Catalysis Research Center, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Ni-Co/Al{sub 2}O{sub 3}-MgO-ZrO{sub 2} nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH) and zirconyl nitrate solution (ZNS), was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO{sub 2}-reforming of CH{sub 4}. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS). FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH{sub 4} and CO{sub 2} conversions were 97.2 and 99% at 850 °C, respectively. Furthermore, NCAMZZNS demonstrated a stable yield with H{sub 2}/CO close to unit value during the 1440 min stability test. (author)

  7. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity

    KAUST Repository

    Salinas, Octavio; Ma, Xiaohua; Wang, Yingge; Han, Yu; Pinnau, Ingo

    2017-01-01

    Ethylene is typically produced by steam cracking of various hydrocarbon feedstocks. The gaseous products are then separated in a demethanizer followed by a deethanizer unit and finally sent to a C splitter for the final purification step. Cryogenic

  8. Production and Properties of Carbon Nanotube/Cellulose Composite Paper

    OpenAIRE

    Maria, Kazi Hanium; Mieno, Tetsu

    2017-01-01

    Multiwalled carbon nanotube/cellulose composite papers have been prepared by mixing the cellulose with MWNT/gelatin solution and drying at room temperature. The CNTs form an interconnected network on the cellulose paper and as a result CNT paper sheet exhibits enhanced electrical properties and thermal stabilities. It is found that both sides of CNT paper sheet have the uniform electrical conductivities. The sheet exhibits strong microwave absorption in the microwave range of 10.5 GHz. The CN...

  9. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue