WorldWideScience

Sample records for carbon products precursors

  1. Production and screening of carbon products precursors from coal. Quarterly progress report, July 1, 1996--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.; Stiller, A.

    1996-10-25

    This quarterly report covers activities during the period from July 1, 1996 through September 30, 1996 on the development of carbon products precursor materials from coal. The first year of the project ended in February, 1996; however, the WVU research effort continued through August 14, 1997 on a no-cost extension of the original contract. PETC chose to exercise the option for continuation of the projects and $100,000 became available on August 9, 1996. The objective for year two is to focus on development of those carbon products from coal-based solvent extract precursors which have the greatest possibility for commercial success.

  2. Preparation and evaluation of coal extracts as precursors for carbon and graphite products

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1996-08-01

    A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.

  3. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    Science.gov (United States)

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  4. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  5. PEEK: An excellent precursor for activated carbon production for high temperature application

    International Nuclear Information System (INIS)

    A series of activated carbons (AC) with high apparent surface area and very high micropore volumes were prepared from granulated PEEK (poly[oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene]) by physical activation with CO2 at different temperatures and different activation times. The carbonisation yields at 873, 1073 and 1173 K were 57, 52 and 51%. As the activation temperature increased, between 873 and 1173 K, the burn-off, the micropore volume and mean pore size increased too. Those prepared at 1173 K, with 74% burn-off, present an extremely high apparent surface area (2874 m2 g-1) and a very high micropore volume (1.27 cm3 g-1). The presence of pyrone groups, identified by FTIR, on the AC surface corroborates the prevalence of a basic point of zero charge, always higher than 9.2. The thermal stability was checked by thermogravimetric analysis and as the carbonisation temperature increased the thermal stability of the char increased too. All AC obtained from PEEK by physical activation at 1173 K are thermally resistant, as at 1073 K the loss of the initial mass was less than 15%. The collective results confirm that PEEK is an excellent precursor for preparing AC with a high carbonisation yield, a high micropore volume and apparent surface area and a very high resistance at elevated temperature. (author)

  6. Production and application of synthetic precursors labeled with carbon-11 and fluorine-18

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.

    2001-04-02

    It is evident from this chapter that there is enormous flexibility both in the selection of the nature of the radioisotope and ways to generate it, as well as in the selection of the labeling precursor to appropriately attach that radioisotope to some larger biomolecule of interest. The arsenal of radiolabeling precursors now available to the chemist is quite extensive, and without a doubt will continue to grow as chemists develop new ones. However, the upcoming years will perhaps reflect a greater effort in refining existing methods for preparing some of those precursors that are already available to us. For example, the use of solid-phase reactions to accomplish in a single step what would normally take several using conventional solvent-based reactions has already been shown to work in many occasions. The obvious advantage here is that processes become more amenable to system automation thus affording greater reliability in day-to-day operations. There are perhaps other technologies in science that have yet to be realized by the chemist in the PET laboratory that could provide a similar or even a greater benefit. One only needs to be open to new ideas, and imaginative enough to apply them to the problems at hand.

  7. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil

    Science.gov (United States)

    Raziah, A. Z.; Junizah, A. R.; Saifuddin, N.

    2012-09-01

    Castor oil has long been an article of commerce due to its versatility as it is widely used as a starting material for many industrial chemical products because of its unique structure. In this study, carbon nanotubes has been synthesized by thermal decomposition of castor oil in nitrogen atmosphere at 300-400δC using custom-made microwave processing unit. The precursor material was catalyzed by iron clusters originating from the addition of ferrocene. The morphology and characterization of the CNTs were studied and discussed by transmission electron microscopy (TEM).

  8. Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal.

    Science.gov (United States)

    Watson, Kalinda; Farré, Maria José; Knight, Nicole

    2015-01-01

    The removal of both organic and inorganic disinfection by-product (DBP) precursors prior to disinfection is important in mitigating DBP formation, with halide removal being particularly important in salinity-impacted water sources. A matrix of waters of variable alkalinity, halide concentration and dissolved organic carbon (DOC) concentration were treated with enhanced coagulation (EC) followed by anion exchange (MIEX resin) or powdered activated carbon (PAC) and the subsequent disinfection by-product formation potentials (DBP-FPs) assessed and compared to DBP-FPs for untreated samples. Halide and DOC removal were also monitored for both treatment processes. Bromide and iodide adsorption by MIEX treatment ranged from 0 to 53% and 4-78%, respectively. As expected, EC and PAC treatments did not remove halides. DOC removal by EC/PAC was 70 ± 10%, while EC/MIEX enabled a DOC removal of 66 ± 12%. Despite the halide removals achieved by MIEX, increases in brominated disinfection by-product (Br-DBP) formation were observed relative to untreated samples, when favourable Br:DOC ratios were created by the treatment. However, the increases in formation were less than what was observed for the EC/PAC treated waters, which caused large increases in Br-DBP formation when high Br-DBP-forming water quality conditions occurred. The formation potential of fully chlorinated DBPs decreased after treatment in all cases. PMID:25462752

  9. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  10. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment.

    Science.gov (United States)

    Chu, Wenhai; Yao, Dechang; Gao, Naiyun; Bond, Tom; Templeton, Michael R

    2015-12-01

    Pilot-scale tests were performed to reduce the formation of a range of carbonaceous and nitrogenous disinfection by-products (C-, N-DBPs), by removing or transforming their precursors, with an integrated permanganate oxidation and powdered activated carbon adsorption (PM-PAC) treatment process before conventional water treatment processes (coagulation-sedimentation-filtration, abbreviated as CPs). Compared with the CPs, PM-PAC significantly enhanced the removal of DOC, DON, NH3(+)-N, and algae from 52.9%, 31.6%, 71.3%, and 83.6% to 69.5%, 61.3%, 92.5%, and 97.5%, respectively. PM pre-oxidation alone and PAC pre-adsorption alone did not substantially reduce the formation of dichloroacetonitrile, trichloroacetonitrile, N-nitrosodimethylamine and dichloroacetamide. However, the PM-PAC integrated process significantly reduced the formation of both C-DBPs and N-DBPs by 60-90% for six C-DBPs and 64-93% for six N-DBPs, because PM oxidation chemically altered the molecular structures of nitrogenous organic compounds and increased the adsorption capacity of the DBP precursors, thus highlighting a synergistic effect of PM and PAC. PM-PAC integrated process is a promising drinking water technology for the reduction of a broad spectrum of C-DBPs and N-DBPs. PMID:26065622

  11. Production and screening of carbon products precursors from coal. Quarterly technical progress report No. 5, January 1,1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Individual quarterly reports of four industrial participants of this project are included in this report. The technical emphasis continues to be the supply of coal-based feedstocks to the industrial participants. There have been several iterations of samples and feedback to meet feedstock characteristics for a wide variety of carbon products. Technology transfer and marketing of the Carbon Products Consortium (CPC) is a continual effort. Interest in the program and positive results from the research continue to grow. In several aspects, the program is ahead of schedule.

  12. Sources of Dissolved Organic Carbon and Disinfection By-Product Precursors to the McKenzie River: Use of absorbance and fluorescence spectroscopy

    Science.gov (United States)

    Kraus, T. E.; Anderson, C.; Morgenstern, K.; Downing, B. D.; Bergamaschi, B. A.

    2009-12-01

    Dissolved organic matter (DOM) is a constituent of concern with respect to drinking water quality because it reacts upon chlorination to form disinfection byproducts (DBPs). The amount of DBPs that form is a function of both the amount and type of DOM undergoing treatment. Currently, the EPA regulates two classes of DBPs - trihalomethanes and haloacetic acids. This study was initiated to determine the main sources of NOM and disinfection by-product (DBP) precursors to the McKenzie River which is the sole water source for approximately 200,000 people in Eugene, Oregon (USA). Water samples collected from upstream, reservoir, tributary inputs and mainstem sites were analyzed for dissolved organic carbon (DOC) concentration and DBP formation potential. In addition, absorbance and fluorescence properties were determined to provide insight into DOC quality and assess whether these measurements can serve as useful proxies for DOC concentration and trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively). Overall, raw water concentrations of DOC (water quality. Water exiting two flood control reservoirs from upstream tributaries, Cougar and Blue River, also had higher DOC concentrations than the upstream site, however qualitative data did not support a significant source from in situ algal production. Due to the interference in absorbance likely due to the presence of iron in downstream tributaries, absorbance was not as strong of a predictor of DOC concentration as fluorescence (R2 = 0.73 vs. 0.92). Furthermore, fluorescence data was strongly correlated to THMFP (R2 = 0.95) and HAAFP (R2 = 0.93). Findings from this study indicate that use of optical measurements has great promise in identifying watershed sources of DOC and DBP precursors. In particular, continuous in situ fluorescence data may help drinking water utilities develop effective source water monitoring and management programs.

  13. DSC Study on the Polyacrylonitrile Precursors for Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    Wangxi ZHANG; Musen LI

    2005-01-01

    Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.

  14. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Dai, Xuliang [GrafTech International Holdings Inc.; Hausner, Andrew [GrafTech International Holdings Inc.

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  15. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  16. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors.

    Science.gov (United States)

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C

    2015-12-22

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.

  17. Growth characteristics of graphene synthesized via chemical vapor deposition using carbon tetrabromide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Taejin; Jung, Hanearl; Lee, Chang Wan [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Mun, Ki-Yeung; Kim, Soo-Hyun [Nano-Devices and Process Laboratory, School of Materials Science and Engineering, Yeungnam University, Dae-Dong, Gyeongsan-Si 712-749 (Korea, Republic of); Park, Jusang [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2015-07-15

    Highlights: • Carbon tetrabromide (CBr{sub 4}) precursor and Cu foil can be used for chemical vapor deposition (CVD) of graphene. • High yield and controllable growth are possible via CVD used with a CBr{sub 4} precursor. • CBr{sub 4} precursor is a new alternative for use in the mass production of graphene. • Low bond dissociation energy of CBr{sub 4} allows lower temperature growth (800 °C) of high-quality graphene film, compared to that (1000 °C) of methane used CVD. - Abstract: A carbon tetrabromide (CBr{sub 4}) precursor was employed for the chemical vapor deposition (CVD) of graphene, and the graphene growth characteristics as functions of the following key factors were then investigated: growth time, growth temperature, and the partial pressure of the precursor. The graphene was transferred onto a SiO{sub 2}/Si substrate and characterized using transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, and the electrical properties were measured through the fabrication of field-effect transistors. Our results show that high yield and controllable growth are possible via CVD used with a CBr{sub 4} precursor. Thus, CBr{sub 4} precursor is a new alternative candidate for use in the mass production of graphene.

  18. Growth characteristics of graphene synthesized via chemical vapor deposition using carbon tetrabromide precursor

    International Nuclear Information System (INIS)

    Highlights: • Carbon tetrabromide (CBr4) precursor and Cu foil can be used for chemical vapor deposition (CVD) of graphene. • High yield and controllable growth are possible via CVD used with a CBr4 precursor. • CBr4 precursor is a new alternative for use in the mass production of graphene. • Low bond dissociation energy of CBr4 allows lower temperature growth (800 °C) of high-quality graphene film, compared to that (1000 °C) of methane used CVD. - Abstract: A carbon tetrabromide (CBr4) precursor was employed for the chemical vapor deposition (CVD) of graphene, and the graphene growth characteristics as functions of the following key factors were then investigated: growth time, growth temperature, and the partial pressure of the precursor. The graphene was transferred onto a SiO2/Si substrate and characterized using transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, and the electrical properties were measured through the fabrication of field-effect transistors. Our results show that high yield and controllable growth are possible via CVD used with a CBr4 precursor. Thus, CBr4 precursor is a new alternative candidate for use in the mass production of graphene

  19. Emprego de subprodutos da produção de piches de petróleo na síntese de nanoesferas de carbono Use of byproducts of petroleum pitch production as precursors for synthesis of carbon nanospheres

    Directory of Open Access Journals (Sweden)

    Alexandre T. de Castro

    2009-01-01

    Full Text Available Nanoesferas de carbono foram produzidas a partir de resíduos de petróleo, obtidos da produção de piches pela destilação de óleos decantados, pela técnica de deposição química de vapor a 1200 °C, sem catalisadores, em um processo contínuo. Três resíduos foram selecionados de forma a representar a faixa de propriedades tipicamente encontradas para este material. Nitrogênio e argônio foram empregados como gases de arraste. As nanoesferas obtidas apresentaram propriedades semelhantes para os três resíduos diferentes, sendo a influência do precursor menos significativa que a do gás de arraste empregado. Os rendimentos obtidos, na faixa de 40-50%, e a baixa sensibilidade do processo à composição do precursor indicam que o processo é adequado à utilização industrial.Carbon nanospheres were produced from petroleum residues obtained in the production of petroleum pitches by distillation of decant oils, using chemical vapor deposition at 1200 °C, without catalysts and in a continuous process. Three residues were selected to represent the typical variability in the properties of this material. Nitrogen and argon were used as carrier gases. The three residues yielded nanospheres of similar properties, which were more influenced by the nature of the carrier gas. The mass yields of 40-50% and the low dependence on precursor composition indicate that the process is suitable for large scale industrial use.

  20. Effect of capacitive deionization on disinfection by-product precursors.

    Science.gov (United States)

    Liu, Danyang; Wang, Xiaomao; Xie, Yuefeng F; Tang, Hao L

    2016-10-15

    Formation of brominated disinfection by-products (DBPs) from bromide and natural organic matter upon chlorination imposes health risks to drinking water users. In this study, capacitive deionization (CDI) was evaluated as a potential process for DBP precursor removal. Synthetic humic acid and bromide containing saline water was used as model water prior to CDI treatment. Batch experiments were conducted at cell voltages of 0.6-, 0.9-, and 1.2V to study the influence of CDI on the ratio of bromide and dissolved organic carbon, bromine substitution factor, and DBP formation potential (FP). Results showed beneficial aspects of CDI on reducing the levels of these parameters. A maximum DBPFP removal from 1510 to 1160μg/L was observed at the cell voltage of 0.6V. For the removed DBPFP, electro-adsorption played a greater role than physical adsorption. However, it is also noted that there could be electrochemical oxidations that led to reduction of humic content and formation of new dichloroacetic acid precursors at high cell voltages. Because of the potential of CDI on reducing health risks from the formation of less brominated DBPs upon subsequent chlorination, it can be considered as a potential technology for DBP control in drinking water treatment. PMID:27285792

  1. Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sabornie [ORNL; Jones, Eric B [ORNL; Clingenpeel, Amy [National High Magnetic Field Laboratory (Magnet Lab), Florida; McKenna, Amy [National High Magnetic Field Laboratory (Magnet Lab), Florida; Rios, Orlando [ORNL; McNutt, Nicholas W [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Johs, Alexander [ORNL

    2014-08-04

    Lignin is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fiber, monolithic structures or powders that could be used directly in the production of anodes for lithium-ion batteries. In this work, we report processing parameters relevant for the conversion of lignin precursors into electrochemically active carbon fibers, the impact of lignin precursor modification on melt processing and the microstructure of the final carbon material. The conversion process encompasses melt spinning of the lignin precursor, oxidative stabilization and a low temperature carbonization step in a nitrogen/hydrogen atmosphere. To assess electrochemical performance, we determined resistivities of individual carbon fiber samples and characterized the microstructure by scanning electron microscopy and neutron diffraction. The chemical modification and subsequent thermomechanical processing methods reported here are effective for conversion into carbon fibers while preserving the macromolecular backbone structure of lignin. Modification of softwood lignin produced functionalities and rheological properties that more closely resemble hardwood lignin thereby enabling the melt processing of softwood lignin in oxidative atmospheres (air). Structural characterization of the carbonized fibers reveals nanoscale graphitic domains that are linked to enhanced electrochemical performance.

  2. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  3. Engineering Escherichia Coli Fatty Acid Metabolism for the Production of Biofuel Precursors

    OpenAIRE

    Ford, Tyler John

    2015-01-01

    Medium chain fatty acids (MCFAs, 6-12 carbons) are potential precursors to biofuels with properties similar to gasoline and diesel fuel but are not native products of Escherichia coli fatty acid synthesis. Herein we engineer E. coli to produce, metabolize, and activate MCFAs for their future reduction into alcohols and alkanes (potential biofuels). We develop an E. coli strain with an octanoate (8-carbon MCFA) producing enzyme (a thioesterase), metabolic knockouts, and the capa...

  4. Carbon Fibers from UV-Assisted Stabilization of Lignin-Based Precursors

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2015-06-01

    Full Text Available Production of high strength carbon fibers from bio-derived precursors is of topical interest. Recently, we reported on dry-spinning of a partially acetylated softwood kraft lignin to produce carbon fibers with superior properties, but the thermo-oxidative stabilization step required a long time due to a slow heating rate needed to prevent the fibers from being heated too rapidly and sticking to each other. Here we report a rapid strategy of dual UV-thermoxidative stabilization (crosslinking of dry-spun lignin fibers that significantly reduces the stabilization time. The fibers undergo reaction close to the surface such that they can be subsequently thermally stabilized at a rapid heating rate without fibers fusing together, which reduces the total stabilization time significantly from 40 to 4 h. Consequently, the glass transition temperature of UV irradiated fibers was about 15 °C higher than that of fibers without UV treatment. Stabilized fibers were successfully carbonized at 1000 °C and resulting carbon fibers displayed a tensile strength of 900 ± 100 MPa, which is amongst the highest reported for carbon fibers derived from softwood lignin-based precursors. These results establish that UV irradiation is a rapid step that can effectively shorten the total stabilization time for production of lignin-derived carbon fibers.

  5. Strategies towards Novel Carbon Fiber Precursors: the Research Results on the Synthesis of PAN Copolymers via AGET ATRP and on Lignin as a Precursor

    Directory of Open Access Journals (Sweden)

    Spyridon Soulis

    2015-11-01

    Full Text Available The aim of this work is the presentation of two different approximations for improving the production of carbon fibers through the introduction of alternative precursors. The first approach concerns the development of novel polyacrylonitrile block copolymers through activators’ generated by electron transfer-atom transfer radical polymerization (AGET-ATRP reaction mechanism in microemulsion; the novel polymers are envisaged to contain a structure that will be more efficiently oxidatively stabilized and/or carbonized, with the ultimate target of CFs with improved properties. The second approximation aims at the introduction of lignin as efficient CFs precursor; this approach aims at reducing the cost of the process and increasing the production yield. Pyrolysis together with oxidative stabilization of lignin were investigated, as well as the effects on structure and thermal behavior of blending with thermoplastics. Thus far, both these methodologies exhibited significant potential and will be further developed towards full scale industrial application.

  6. Surface Study of Carbon Nanotubes Prepared by Thermal-CVD of Camphor Precursor

    Science.gov (United States)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Surface morphology study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature, which indirectly maybe cost effective. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HR-TEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs. The camphoric hydrocarbons not only found acts as the precursors but also enhances the production rate and the quality of CNTs.

  7. Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor.

    Science.gov (United States)

    Kruk, Michal; Dufour, Bruno; Celer, Ewa B; Kowalewski, Tomasz; Jaroniec, Mietek; Matyjaszewski, Krzysztof

    2005-05-19

    Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs. PMID:16852101

  8. DFT Thermodynamic Research of the Pyrolysis Mechanism of the Carbon Matrix Precursor Toluene for Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the experiments, the standard enthalpy △H of the possible pyrolysis reactions of the carbon matrix precursor toluene was investigated by means of DFT method UB3LYP/ 3-21G* (based on semi-empirical method UAM1 and ab initio method UHF/3-21G* ). The com putation results with UB3LYP/3-21G* coincide with the experimental values well. Then, the mechanism for all types of the pyrolysis reactions of toluene was studied by UB3LYP/3-2lG*. The geometries of the reactant and the product radicals were optimized, meanwhile, the standard thermodynamic parameters of the pyrolysis reaction at different temperatures (298, 773, 843, 963 and 1 073 K) were calculated. The thermodynamic computation result shows that when the pyrolysis temperature of toluene is lower than 963 K, the reaction path supported by thermody namics is that the C-H bond of the methyl on the benzene ring breaks and bitoluene form, while the temperature increases (about 1 073 K), the thermodynamic calculation result turns to sup port the reaction path producing phenyl radicals and methyl radicals. This mechanism is in accord with the experiments.

  9. Precursors and metabolic pathway for guaiacol production by Alicyclobacillus acidoterrestris.

    Science.gov (United States)

    Cai, Rui; Yuan, Yahong; Wang, Zhouli; Guo, Chunfeng; Liu, Bin; Liu, Laping; Wang, Yutang; Yue, Tianli

    2015-12-01

    Alicyclobacillus acidoterrestris has recently received much attention due to its implication in the spoilage of pasteurized fruit juices, which was manifested by the production of guaiacol. Vanillic acid and vanillin have been accepted as the biochemical precursors of guaiacol in fruit juices. The purpose of this study was to try to find other precursors and elucidate details about the conversion of vanillic acid and vanillin to guaiacol by A. acidoterrestris. Four potential substrates including ferulic acid, catechol, phenylalanine and tyrosine were analyzed, but they could not be metabolized to guaiacol by all the thirty A. acidoterrestris strains tested. Resting cell studies and enzyme assays demonstrated that vanillin was reduced to vanillyl alcohol by NADPH-dependent vanillin reductase and oxidized to vanillic acid by NAD(P)(+)-dependent vanillin dehydrogenases in A. acidoterrestris DSM 3923. Vanillic acid underwent a nonoxidative decarboxylation to guaiacol. The reversible vanillic acid decarboxylase involved was oxygen insensitive and pyridine nucleotide-independent. PMID:26241489

  10. Effects of catalyst precursors on carbon nanowires by using ethanol catalytic combustion technique

    Institute of Scientific and Technical Information of China (English)

    CHENG Jin; ZOU Xiao-ping; LI Fei; ZHANG Hong-dan; REN Peng-fei

    2006-01-01

    Iron nitrate,nickel nitrate and cobalt nitrate were used as catalyst precursors to study their effects on carbon nanowires synthesized by ethanol catalytic combustion (ECC) process. The as-grown carbon nanowires were characterized by means of scanning electron microscopy,transmission electron microscopy and Raman spectroscopy. The results show that relatively uniform nanowires will be formed when the catalyst precursor is iron nitrate:while helical structure or disordered structure will be formed when the catalyst precursor is nickel nitrate or cobalt nitrate.

  11. Comparative Study on Preparing Carbon Fibers Based on PAN Precursors with Different Comonomers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two different PAN precursors with various comonomers were wet-spun.The properties and struc tural changes of PAN precursors and their evolution during preoxidation and carbonization process were characterized by the use of DSC, FTIR and traditional parameters, e g, tensile strength.It is demonstrated that acrylamide( AAM) is very effective to make the DSC peak be separated compared to methyl acrylate( MA ).As a result,carbon fibers developed from AAM-contained precursors have a better tetacity compared to those developed from MAcontained ones.

  12. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Rober [ORNL; Paulauskas, Felix [ORNL; Naskar, Amit [ORNL; Kaufman, Michael [ORNL; Yarborough, Ken [ORNL; Derstine, Chris [The Dow Chemical Company

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  13. Carbon cycle relevant measurements with the TROPOMI instrument on the Sentinel 5 Precursor mission

    Science.gov (United States)

    Aben, I.; aan de Brugh, J.; Hu, H.; Borsdorff, T.; Scheepmaker, R. A.; van Hees, R.; Krijger, M.; Tol, P.; Hoogeveen, R.; Butz, A.; Frankenberg, C.; Guanter, L.; Koehler, P.; Houweling, S.; Hasekamp, O. P.; Veefkind, P.; Landgraf, J.

    2015-12-01

    In 2016 Q2 the Sentinel 5 Precursor (S5P) mission will be launched with the TROPOMI instrument as its single instrument payload. It comprises global measurements of the atmospheric composition for air quality and climate application as part of the Copernicus atmospheric services. To this purpose it will perform nadir observations in the UV-VIS (270 - 500 nm), NIR (675-725 nm), and SWIR (2305-2385 nm) measuring key species such as O3, NO2, CO, CH4, CH2O, SO2. TROPOMI is a push broom grating spectrometer combining a large swath (~2600 km) with high spatial resolution (7x7km2 in nadir) measurements, and has heritage from OMI and SCIAMACHY. The S5P will extend the data records from these missions, as well as being a preparatory (precursor) mission for the Sentinel-5 missions planned for 2020 onward. In this presentation we will address the Carbon cycle relevant SWIR products from TROPOMI (CH4, CO) as well as a fluorescence product from the NIR. In particular, this presentation will focus on the potential for CH4 measurements also in respect to other existing missions.

  14. Effect of a constructed wetland on disinfection byproducts: Removal processes and production of precursors

    Science.gov (United States)

    Rostad, C.E.; Martin, B.S.; Barber, L.B.; Leenheer, J.A.; Daniel, S.R.

    2000-01-01

    The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (TH M), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (THM), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.

  15. Sensitivity Studies For Methane And Carbon Monoxide Retrievals From Sentinel-5 Precursor

    Science.gov (United States)

    Krings, T.; Reuter, M.; Buchwitz, M.; Heymann, J.; Hilker, M.; Bovensmann, H.; Burrows, J. P.

    2013-12-01

    Carbon monoxide (CO) has a large impact on air quality and methane (CH4) is an important anthropogenic green- house gas. Detailed and continuous observations of these gases are necessary to better assess their impact on cli- mate and atmospheric pollution. Abundances of both gases can be obtained from ESA's future satellite mission Sentinel-5 Precursor (S-5P). This work shows first results from the verification activities undertaken at the University of Bremen. For this, the BESD (Bremen Optimal Estimation DOAS) retrieval algorithm is used that has already been successfully applied to CO2 retrieval from SCIAMACHY satellite data. First simulations show that the adaption of BESD to the S-5P specifications results in reasonable results, which will lead to a detailed comparison of BESD results with the operational retrieval algorithms for CO and CH4. This will contribute to achieving high quality results for the final data product of CO and CH4 from the S-5P satellite mission.

  16. Evaluation of activated carbon processes for removing trihalomethane precursors from a surface water impoundment

    OpenAIRE

    Lavinder, Steven Robert

    1987-01-01

    A pilot plant study was conducted in Newport News, Virginia to investigate the effectiveness of powdered activated carbon [PAC] and granular activated carbon [GAC], with and without preoxidation, for reducing trihalomethane [THM] precursor concentrations in Harwood's Mill Reservoir water. Preoxidation with ozone followed by GAC is referred to as the "biological activated carbonâ [BAC] process. This study showed that the GAC and BAC processes obtained the same level of organic...

  17. Toward biotechnological production of adipic acid and precursors from biorenewables.

    Science.gov (United States)

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. PMID:22824738

  18. Unveiling carbon dimers and their chains as precursor of graphene growth on Ru(0001)

    Science.gov (United States)

    Gao, Min; Zhang, Yan-Fang; Huang, Li; Pan, Yi; Wang, Yeliang; Ding, Feng; Lin, Yuan; Du, Shi-Xuan; Gao, Hong-Jun

    2016-09-01

    Carbon precursor that forms on the catalyst surface by the dissociation of feedstock gas plays an important role in the controllable growth of graphene on metal substrates. However, the configuration about the precursor has so far remained elusive. Here, we report the direct observation of uniformly structured precursor units and their chain formation at the nucleation stage of graphene growing on Ru(0001) substrate by using scanning tunneling microscopy. Combining this experimental information with density function theory calculations, the atomic-resolved structures of carbon precursor are characterized as adsorbed CH2 segments on the substrate. The dissociated carbon feedstock molecules or radicals further react to form nonplanar -[C2H4]- chains adsorbed on hexagonal-close-packed hollow sites of the Ru(0001) substrate before incorporating into the graphene island. These findings reveal that CH2 and nonplanar -[C2H4]- segments act as precursors in graphene growth and are helpful to improve the quality and the domain size of desired graphene by precursor or feedstock control.

  19. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply. PMID:25241751

  20. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  1. Surface structural evolvement in the conversion of polyacrylonitrile precursors to carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xin, E-mail: qx3023@nimte.ac.cn; Zou, Ruifen; OuYang, Qin; Wang, Xuefei; Zhang, Yonggang

    2015-02-01

    Highlights: • The characteristic striated topography of PAN precursors resulted from the wet spinning process could pass down to carbon fibers. • The ridges and grooves monitored became much more well-defined after the thermo-oxidation. • Both the depth and the width of longitudinal grooves decreased after the carbonization. • Carbon, nitrogen, oxygen and silicon were the governing elements on the fiber surface. - Abstract: Surface structural evolvement in the conversion of polyacrylonitrile (PAN) precursors to carbon fibers was investigated through scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). SEM results showed that the characteristic striated topography of PAN precursors resulted from the wet spinning process could pass down to carbon fibers. The fiber diameter gradually decreased from 11.3 μm to 5.5 μm and the corresponding density increased from 1.18 g/cm{sup 3} to 1.80 g/cm{sup 3} in the conversion of PAN precursors to carbon fibers. The ridges and grooves monitored by AFM became much more well-defined after the thermo-oxidation. However, the original longitudinal grooves were destroyed and both the depth and the width of longitudinal grooves decreased after the carbonization. XPS results revealed that carbon, nitrogen, oxygen and silicon were the governing elements on the fiber surface. The −C−C functional groups was the dominant groups and the relative contents of −C=O and −COO groups gradually increased in the process of thermo-oxidation and carbonization.

  2. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    Directory of Open Access Journals (Sweden)

    Catherine Y. Han

    2009-01-01

    Full Text Available We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  3. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP.

    Science.gov (United States)

    Wu, Dingcai; Li, Zhenghui; Zhong, Mingjiang; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2014-04-01

    A facile templated synthesis of functional nanocarbon materials with well-defined spherical mesopores is developed using all-organic porogenic precursors comprised of hairy nanoparticles with nitrogen-rich polyacrylonitrile shells grafted from sacrificial cross-linked poly(methyl methacrylate) cores (xPMMA-g-PAN). Such shape-persistent all-organic nanostructured precursors, prepared using atom transfer radical polymerization (ATRP), assure robust formation of template nanostructures with continuous PAN precursor matrix over wide range of compositions, and allow for removal of the sacrificial template through simple thermal decomposition. Carbon materials prepared using this method combine nitrogen enrichment with hierarchical nanostructure comprised of microporous carbon matrix interspersed with mesopores originating from sacrificial xPMMA cores, and thus perform well as CO2 adsorbents and as supercapacitor electrodes. PMID:24596246

  4. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors

    Science.gov (United States)

    Updyke, Katelyn M.; Nguyen, Tran B.; Nizkorodov, Sergey A.

    2012-12-01

    Filter samples of secondary organic aerosols (SOA) generated from the ozone (O3)- and hydroxyl radical (OH)-initiated oxidation of various biogenic (isoprene, α-pinene, limonene, α-cedrene, α-humulene, farnesene, pine leaf essential oils, cedar leaf essential oils) and anthropogenic (tetradecane, 1,3,5-trimethylbenzene, naphthalene) precursors were exposed to humid air containing approximately 100 ppb of gaseous ammonia (NH3). Reactions of SOA compounds with NH3 resulted in production of light-absorbing "brown carbon" compounds, with the extent of browning ranging from no observable change (isoprene SOA) to visible change in color (limonene SOA). The aqueous phase reactions with dissolved ammonium (NH4+) salts, such as ammonium sulfate, were equally efficient in producing brown carbon. Wavelength-dependent mass absorption coefficients (MAC) of the aged SOA were quantified by extracting known amounts of SOA material in methanol and recording its UV/Vis absorption spectra. For a given precursor, the OH-generated SOA had systematically lower MAC compared to the O3-generated SOA. The highest MAC values, for brown carbon from SOA resulting from O3 oxidation of limonene and sesquiterpenes, were comparable to MAC values for biomass burning particles but considerably smaller than MAC values for black carbon aerosols. The NH3/NH4+ + SOA brown carbon aerosol may contribute to aerosol optical density in regions with elevated concentrations of NH3 or ammonium sulfate and high photochemical activity.

  5. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers

    NARCIS (Netherlands)

    Gu, S.Y.; Ren, J.; Vancso, G.J.

    2005-01-01

    Ultrafine fibers were spun from polyacrylonitrile (PAN)/N,N-dimethyl formamide (DMF) solution as a precursor of carbon nanofibers using a homemade electrospinning set-up. Fibers with diameter ranging from 200 nm to 1200 nm were obtained. Morphology of fibers and distribution of fiber diameter were i

  6. AN INITIAL EVALUATION OF POLY(VINYLACETYLENE) AS A CARBON-FIBER PRECURSOR

    NARCIS (Netherlands)

    MAVINKURVE, A; VISSER, S; PENNINGS, AJ

    1995-01-01

    Poly(vinylacetylene) obtained by the selective polymerization of monovinylacetylene through the vinyl group has been investigated for its use as an alternative precursor for carbon fibers. The low yield of char obtained on pyrolysis of the polymer in an inert atmosphere was improved dramatically by

  7. Effect of different carbon precursors on properties of LiFePO4/C

    Institute of Scientific and Technical Information of China (English)

    肖政伟; 张英杰; 胡国荣

    2015-01-01

    The anoxic decomposition and influence of carbon precursors on the properties of LiFePO4/C prepared by using Fe2O3 were investigated. X-ray powder diffractometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and carbon content and charge–discharge tests were applied to the characterization of the as-synthesized cathodes. Partial carbon is lost in the anaerobic decomposition of organic precursors and a high hydrogen content leads to a high residual carbon rate. Pyromellitic anhydride and citric acid participate in reactions before and in ball-milling. All the chosen carbon precursors are capable of producing LiFePO4 with high degree of crystallinity and purity. The carbon derived fromα-D-glucose, pyromellitic anhydride, soluble starch, citric acid and polyacrylamide has a loose and porous texture in LiFePO4/C which forms conduction on and between LiFePO4 particles. LiFePO4/C prepared by usingα-D-glucose, pyromellitic anhydride, citric acid and sucrose exhibits appreciable electrochemical performance. Graphite alone is able to enhance the electrochemical performance of LiFePO4 to a limited extent but incapable of preparing practical cathode.

  8. Classification of carbon materials for developing structure-properties relationships based on the aggregate state of the precursors

    Institute of Scientific and Technical Information of China (English)

    Oleksiy V. Khavryuchenko; Volodymyr D.Khavryuchenko

    2014-01-01

    Modern carbon science lacks an efficient structure-related classi-fication of materials. We present an approach based on dividing carbon materials by the aggregate state of the precursor. The common features in the structure of carbon particles that allow putting them into a group are discussed, with particular attention to the potential energy stored in the carbon structure from differ-ent rates of relaxation during the synthesis and prearrangement of structural motifs due to the effect of the precursor structure.

  9. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption.

    Science.gov (United States)

    Beita-Sandí, Wilson; Ersan, Mahmut Selim; Uzun, Habibullah; Karanfil, Tanju

    2016-01-01

    The main objective of this study was to examine the roles of powdered activated carbon (PAC) characteristics (i.e., surface chemistry, pore size distribution, and surface area) in the removal of N-nitrosodimethylamine (NDMA) formation potential (FP) in surface and wastewater-impacted waters. Also, the effects of natural attenuation of NDMA precursors in surface waters, NDMA FP concentration, and carbon dose on the removal of NDMA FP by PAC were evaluated. Finally, the removal of NDMA FP by PAC at two full-scale DWTPs was monitored. Wastewater-impacted and surface water samples were collected to conduct adsorption experiments using different PACs and activated carbon fibers (ACFs) with a wide range of physicochemical characteristics. The removal efficiency of NDMA FP by PAC was significantly higher in wastewater-impacted than surface waters. Adsorbable NDMA precursors showed a size distribution in the waters tested; the adsorbable fraction included precursors accessing the pore size regions of 10-20 Å and carbons showed higher removal of NDMA FP than acidic carbons on a surface area basis. The overall removal of NDMA FP by PAC on a mass basis depended on the surface area, pore size distribution and pHPZC. Thus, PACs with hybrid characteristics (micro and mesoporous), higher surface areas, and basic surface chemistry are more likely to be effective for NDMA precursor control by PAC adsorption. The application of PAC in DWTPs for taste and odor control resulted in an additional 20% removal of NDMA FP for the PAC doses of 7-10 mg/L. The natural attenuation of NDMA precursors through a combination of processes (biodegradation, photolysis and adsorption) decreased their adsorbability and removal by PAC adsorption. PMID:26584342

  10. Effect of Post-spinning Modification on the PAN Precursors and Resulting Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wangxi; LIU Jie

    2006-01-01

    The impregnation of a special grade PAN precursor fibers was carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical structure and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers were characterized by the combination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc. KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor fiber,and transform C(=)N groups to C=N ones, meanwhile, it can decrease the crystal size increase the orientation index and the crystallinity index, furthermore it can increase the densities of modified PAN precursors and resulting thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 %, but a decrease of 16.52 % in Young's modulus.

  11. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.

    Science.gov (United States)

    Tomlinson, Adam; Drikas, Mary; Brookes, Justin D

    2016-10-01

    Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton. PMID:27348195

  12. Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon.

    Science.gov (United States)

    Hanigan, David; Zhang, Jinwei; Herckes, Pierre; Krasner, Stuart W; Chen, Chao; Westerhoff, Paul

    2012-11-20

    Activated carbon (AC) has been shown to remove precursors of halogenated disinfection byproducts. Granular and powdered activated carbon (GAC, PAC) were investigated for their potential to adsorb N-nitrosodimethylamine (NDMA) precursors from blends of river water and effluent from a wastewater treatment plant (WWTP). At bench scale, waters were exposed to lignite or bituminous AC, either as PAC in bottle point experiments or as GAC in rapid small-scale column tests (RSSCTs). NDMA formation potential (FP) was used as a surrogate for precursor removal. NDMA FP was reduced by 37, 59, and 91% with 3, 8, and 75 mg/L of one PAC, respectively, with a 4-h contact time. In RSSCTs and in full-scale GAC contactors, NDMA FP removal always exceeded that of the bulk dissolved organic carbon (DOC) and UV absorbance at 254 nm. For example, whereas DOC breakthrough exceeded 90% of its influent concentration after 10,000 bed volumes of operation in an RSSCT, NDMA FP was less than 40% of influent concentration after the same bed life of the GAC. At full or pilot scale, high NDMA FP reduction ranging from >60 to >90% was achieved across GAC contactors, dependent upon the GAC bed life and/or use of a preoxidant (chlorine or ozone). In all experiments, NDMA formation was not reduced to zero, which suggests that although some precursors are strongly sorbed, others are not. This is among the first studies to show that AC is capable of adsorbing NDMA precursors, but further research is needed to better understand NDMA precursor chemical properties (e.g., hydrophobicity, molecular size) and evaluate how best to incorporate this finding into full-scale designs and practice.

  13. Influence of hydrogen on chemical vapour synthesis of different carbon nanostructures using propane as precursor and nickel as catalyst

    Indian Academy of Sciences (India)

    R K Sahoo; H Mamgain; C Jacob

    2014-10-01

    The role of hydrogen in the catalytic chemical vapour deposition of carbon nanotubes using sputtered nickel thin film as a catalyst is explained in this work. The growth of different carbon nanostructures with the variation in the precursor gas content was studied by keeping all other process parameters constant and using sputtered Ni thin film as a catalyst. The catalyst granule size, its external morphology and the resulting products were analysed. Carbon nanotubes (CNTs), carbon nanofibres (CNFs) and carbon nanoribbons (CNRs) were observed under different growth conditions. The different conditions of growth leading to form tubes, fibres or ribbons were analysed by varying the flow ratio of propane and hydrogen gas during the high temperature growth. Scanning and transmission electron microscopies confirmed the above structures under different growth conditions. The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its correlative effect on the growth of carbon nanostructures is analysed. This direct approach can, in principle, be used to synthesize different types of carbon nanostructures by tailoring the hydrogen concentration.

  14. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    Science.gov (United States)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  15. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations.

    Science.gov (United States)

    Köhler, Inga; Konhauser, Kurt O; Papineau, Dominic; Bekker, Andrey; Kappler, Andreas

    2013-01-01

    During deposition of Precambrian iron formation, the combined sedimentation of ferrihydrite and phytoplankton biomass should have facilitated Fe(III) reduction during diagenesis. However, the only evidence for this reaction in iron formations is the iron and carbon isotope values preserved in the authigenic ferrous iron-containing minerals. Here we show experimentally that spheroidal siderite, which is preserved in many iron formation and could have been precursor to rhombohedral or massive siderite, forms by reacting ferrihydrite with glucose (a proxy for microbial biomass) at pressure and temperature conditions typical of diagenesis (170 °C and 1.2 kbar). Depending on the abundance of siderite, we found that it is also possible to draw conclusions about the Fe(III):C ratio of the initial ferrihydrite-biomass sediment. Our results suggest that spherical to rhombohedral siderite structures in deep-water, Fe-oxide iron formation can be used as a biosignature for photoferrotrophy, whereas massive siderite reflects high cyanobacterial biomass loading in highly productive shallow-waters.

  16. Effect of Post Spinning Modification on the PAN Precursors and Resulting Carbon Fibres

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-zhi; ZHANG Wang-xi; SUN Chun-feng

    2007-01-01

    The impregnation of a special grade polyacrylonitrile(PAN) precursor fibres was carried out in a 8 wt.% KMnO4 aqueous solution to obtain modified PAN precusor fibres.The focus is primarily on the effects of modification on the structure and the pbysical properties of precursor fibres,thermal stabilised and their resulting carbon fibres,which were characterized by the combination use of densities,wide-angle X-ray diffraction(WAXD),X-ray photoelectron spectroscopy(XPS),Elemental analysis(EA),Fourier transform infrared(FT-IR) and seaming electron microscope(SEM),etc.KMnO4 as a strong oxidizer can swell,oxidize and corrode the skin of a precursor ibre,transform partly C≡N groups to C=N ones,decrease the crystal size,increase the orientation index,increase the crystallinity irdex,furthemore ircrease the densities of modified PAN precursors and resulting thermal stabilised fibres.As a result,the carbon fibres dcveloped from modified PAN fibres show,an improvment in tensile strength of 31.25% and an improvement in elongation of 77.78%,but a decrease of 16.52% in Young's modulus.

  17. Method for production of carbon nanofiber mat or carbon paper

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  18. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  19. A novel leady oxide combined with porous carbon skeleton synthesized from lead citrate precursor recovered from spent lead-acid battery paste

    Science.gov (United States)

    Hu, Yuchen; Yang, Jiakuan; Zhang, Wei; Xie, Yanlin; Wang, Junxiong; Yuan, Xiqing; Vasant Kumar, R.; Liang, Sha; Hu, Jingping; Wu, Xu

    2016-02-01

    A novel nanostructured leady oxides comprising porous carbon skeleton has been synthesized by thermal decomposition of lead citrate precursor, recovered from spent lead-acid battery paste. The influences of O2 percentage in the calcination atmosphere (O2/N2 mixture) and the temperature on leady oxide product characteristics are studied by chemical analysis, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The major crystalline phases of the products are identified as lead oxides, metallic Pb, and carbon. Porous carbon is observed as skeletons within the leady oxide (PbO containing some Pb metal) particles. Mass percentage of Pb metal in the leady oxide increases with increasing the proportion of oxygen in the calcination atmosphere. However, the amount of carbon decreases from approximately 8.0 to 0.3 wt%, and the porous carbon skeleton structure is gradually damaged with oxygen concentration increasing. A model about the thermal decomposition of lead citrate precursor is firstly proposed to elucidate these observations. The nanostructured leady oxides combined with porous carbon can be directly used as precursor of active materials in a new lead acid battery.

  20. Characterization of the nanopore structures of PAN-based carbon fiber precursors by small angle X-ray scattering

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hong; HAO Jun-Jie; XING Xue-Qing; MO Guang; GONG Yu; L(U) Chun-Xiang; WU Zhong-Hua

    2011-01-01

    The nanopore structures in precursors are crucial to the performance of PAN-based carbon fibers.hot-stretching filaments(C)and drying-densification filaments(D).Synchrotron radiation small angle X-ray scattering is used to probe and compare the nanopore structures of the four fibers.The nanopore size,discrete volume distribution,nanopore orientation degree along the fiber axis and the porosity are obtained.The results demonstrate that the nanopores are mainly formed in the water-washing stage.During the processes of the subsequent production technologies,the slenderness ratio of nanopores and their orientation degree along the fiber axis increase further and simultaneously,the porosity decreases.These results are helpful for improving the performance of the final carbon fibers.

  1. Densification and microstructure of carbon/carbon composites prepared by chemical vapor infiltration using ethanol as precursor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chemical vapor infiltration of carbon fiber felts with uniform initial bulk density of 0.47 g·cm-3 was investigated at the ethanol partial pressures of 5-20 kPa,as well as the temperatures of 1050,1100,1150 and 1200°C.Ethanol,diluted by nitrogen,was employed as the precursor of pyrolytic carbon.Polarized light microscopy(PLM),scanning electron microscopy and X-ray diffraction were adopted to study the texture of pyrolytic carbon deposited at various temperatures.A change from medium-to high-textured pyrolytic carbon was observed in the sample infiltrated at 1050°C.Whereas,homogeneous high-textured pyrolytic carbons were deposited at the temperatures of 1100,1150 and 1200°C.Extinction angles of 19°-21° were determined for different regions in the samples densified at the temperatures ranging from 1100 to 1200°C.Scanning electron microscopy of the fracture surface after bending test indicated that the prepared carbon/carbon composite samples exhibited a pseudo-plastic fracture behavior.In addition,fracture behavior of the carbon/carbon samples was obviously effected by their infiltration temperature.The fracture mode of C/C composites was transformed from shearing failure to tensile breakage with increasing infiltration temperature. Results of this study show that ethanol is a promising carbon source to synthesize carbon/carbon composites with homogeneously high-textured pyrolytic carbon over a wide range of temperatures(from 1100 to 1200°C).

  2. Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors.

    Directory of Open Access Journals (Sweden)

    Brendan T Higgins

    Full Text Available Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23-737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.

  3. New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Nunez, G., E-mail: galonso@cnyn.unam.mx; Garza, L. Morales de la; Rogel-Hernandez, E.; Reynoso, E. [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia (Mexico); Licea-Claverie, A.; Felix-Navarro, R. M. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion (Mexico); Berhault, G. [UMR 5256 CNRS-Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon (France); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados S. C. (Mexico)

    2011-09-15

    New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl{sub 4}, (NH{sub 4}){sub 2}PtCl{sub 6}, (NH{sub 4}){sub 2}PdCl{sub 6}, or (NH{sub 4}){sub 3}RhCl{sub 6} with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA){sub n}Me{sub x}Cl{sub y} salts (with Me = Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.

  4. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  5. Fluorescent Comparison of Sr2CeO4 Prepared from Carbonate and Oxalate Precursor

    Institute of Scientific and Technical Information of China (English)

    石士考; 栗俊敏; 王继业; 王瑞芬; 周济

    2004-01-01

    A blue-emitting phosphor powder, Sr2CeO4, was synthesized after heat-treatment to carbonate and oxalate precursors, which were obtained by co-precipitation reactions with respective ammonium compounds as precipitants. The phase formation and chemical purity of Sr2CeO4 powders were studied on XRD, TGA and XPS techniques. Their fluorescent performances were investigated and compared. The photoluminescence emission spectra for the phosphor prepared from respective precursors are similar, having a broad band with the peak at about 470 nm. However, their fluorescent intensities are different after heat-treatment at same conditions. The optimum condition to achieve superior Sr2CeO4 phosphor is confirmed.

  6. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.

    Science.gov (United States)

    Cui, Yanbin; Zhang, Mei

    2013-08-28

    Individual carbon nanotube (CNT) exhibits extraordinary mechanics. However, the properties of the macroscopic CNT-based structure, such as CNT fibers and films, are far lower than that of individual CNT. One of the main reasons is the weak interaction between tubes and bundles in the CNT assemblies. It is understood that the cross-links in CNT assembly play a key role to improve the performance of CNT-based structure. Different approaches have been taken to create CNT joints. Most of these approaches focus on connecting CNTs by generating new covalent bonding between tubes. In this work, we intend to reinforce the CNT network by locking the contacted CNTs. Polyacrylonitrile (PAN) was used as precursor because PAN can form graphitic structures after carbonization. The freestanding superthin CNT sheet and CNT yarn were used to evaluate the effects of the PAN precursor to form cross-links between CNTs. The tensile strength of CNT yarn is improved when the yarn is partially infiltrated with PAN and consequently carbonated. High-resolution transmission electron microscopy observation of the sheets shows that graphite structures are formed and cross-link CNTs in CNT assembly. PMID:23901778

  7. Electrochemistry of Layered Graphitic Carbon Nitride Synthesised from Various Precursors: Searching for Catalytic Effects.

    Science.gov (United States)

    Yew, Ying Teng; Lim, Chee Shan; Eng, Alex Yong Sheng; Oh, Junghoon; Park, Sungjin; Pumera, Martin

    2016-02-16

    Graphitic carbon nitride (g-C3 N4 ), synthesised by pyrolysis of different precursors (dicyandiamide, melamine and urea) under varying reaction conditions (air and nitrogen gas) is subjected to electrochemical studies for the elucidation of the inherent catalytic efficiency of the pristine material. Contrary to popular belief, pristine g-C3 N4 shows negligible, if any, enhancement in its electrochemical behaviour in this comprehensive study. Voltammetric analysis reveals g-C3 N4 to display similar catalytic efficiency to the unmodified glassy carbon electrode surface on which the bulk material was deposited. This highlights the non-catalytic nature of the pristine material and challenges the feasibility of using g-C3 N4 as a heterogeneous catalyst to deliver numerous promised applications.

  8. The Multiple Effects of Precursors on the Properties of Polymeric Carbon Nitride

    Directory of Open Access Journals (Sweden)

    Wendong Zhang

    2013-01-01

    Full Text Available Polymeric graphitic carbon nitride (g-C3N4 materials were prepared by direct pyrolysis of thiourea, dicyandiamide, melamine, and urea under the same conditions, respectively. In order to investigate the effects of precursors on the intrinsic physicochemical properties of g-C3N4, a variety of characterization tools were employed to analyze the samples. The photocatalytic activity of the samples was evaluated by the removal of NO in gas phase under visible light irradiation. The results showed that the as-prepared CN-T (from thiourea, CN-D (from dicyandiamide, CN-M (from melamine, and CN-U (from urea exhibited significantly different morphologies and microstructures. The band gaps of CN-T, CN-D, CN-M, and CN-U were 2.51, 2.58, 2.56, and 2.88 eV, respectively. Both thermal stability and yield are in the following order: CN-M > CN-D > CN-T > CN-U. The photoactivity of CN-U (31.9% is higher than that of CN-T (29.6%, CN-D (22.2%, and CN-M (26.8%. Considering the cost, toxicity, and yield of the precursors and the properties of g-C3N4, the best precursor for preparation of g-C3N4 was melamine. The present work could provide new insights into the selection of suitable precursor for g-C3N4 synthesis and in-depth understanding of the microstructure-dependent photocatalytic activity of g-C3N4.

  9. Carbon footprinting of electronic products

    International Nuclear Information System (INIS)

    Highlights: • Challenges in adopting existing CF standards for electronic products are discussed. • Carbon footprint of electronic products is underestimated using existing standards. • Multipronged approach is presented to overcome the identified challenges. • Multipronged approach demonstrated on commercial and military grade DC–DC converter system. - Abstract: In order to mitigate the effects of global warming, companies are being compelled by governments, investors, and customers to control their greenhouse gas (GHG) emissions. Similar to the European Union’s legislation on the airline industry, legislation is expected to require the electronics industry to assess their product’s carbon footprint before sale or use, as the electronics industry’s contribution to global GHG emissions is comparable to the airline industry’s contribution. Thus, it is necessary for members of the electronics industry to assess their current GHG emission rates and identify methods to reduce environmental impacts. Organizations use Carbon Footprint (CF) analysis methods to identify and quantify the GHG emissions associated with the life cycle stages of their product or services. This paper discusses the prevailing methods used by organizations to estimate the CF of their electronics products and identifies the challenges faced by the electronics industry when adopting these methods in an environment of decreasing product development cycles with complex and diffuse supply chains. We find that, as a result of the inconsistencies arising from the system boundary selection methods and databases, the use of outdated LCA approaches, and the lack of supplier’s emissions-related data, the CFs of electronic products are typically underestimated. To address these challenges, we present a comprehensive approach to the carbon footprinting of electronic products that involves the use of product-group-oriented standards, hybrid life cycle assessment techniques, and the

  10. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.

    Science.gov (United States)

    Chin, A; Bérubé, P R

    2005-05-01

    The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.

  11. The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition

    Science.gov (United States)

    Liu, Wei-Wen; Aziz, Azizan; Chai, Siang-Piao; Mohamed, Abdul Rahman; Tye, Ching-Thian

    2011-06-01

    The effect of carbon precursors on carbon nanotube (CNT) formation was studied. The catalyst used was Fe 3O 4/MgO without prior reduction by hydrogen. Methane, benzene and camphor were used to produce CNTs at 600, 700, 800, 900 and 1000 °C. The results show that the types of carbon precursors greatly affect the quality of CNTs produced. The CNTs obtained from the decomposition of methane had the lowest intensity of D band to G band ratio ( ID/ IG) compared to the ID/ IG ratios of CNTs produced using benzene and camphor at 900 and 1000 °C, respectively. This low ID/ IG ratio is due to the difference in the molecule structures between methane, benzene and camphor, which resulted in different CNT growth mechanism. Raman analysis showed that single-walled carbon nanotubes of high quality were formed at 900 °C using methane as carbon precursor.

  12. Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin

    Science.gov (United States)

    Sobiesiak, M.

    2016-04-01

    The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.

  13. Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor

    Science.gov (United States)

    Avci, Ercan

    2014-12-01

    Herein we report a facile and efficient solid state synthesis of carbon coated lithium iron phosphate (LiFePO4/C) cathode material achieved through the pyrolysis of polytetrafluoroethylene (PTFE). The current investigation is comparatively analyzed with the results of the composites of LiFePO4/C (LFP/C) synthesized using polystyrene-block-polybutadiene (PS-b-PBD), polyethyhylene (PE) and sucrose as carbon precursors. The optimized LFP/CPTFE composite is synthesized at 700 °C using 10 wt.% PTFE. The composite exhibits remarkable improvement in capacity, cyclability and rate capability compared to those of LFP/C synthesized using (PS-b-PBD), PE and sucrose. The specific discharge capacities as high as 166 mA h g-1 (theoretical capacity: 170 mA h g-1) at 0.2 C and 114 mA h g-1 at 10 C rates were achieved with LFP/CPTFE. In addition, the composite exhibits a long-term cycling stability with the capacity loss of only 11.4% after 1000 cycles. PTFE shifts the size distribution of the composite to nanometer scale (approximately 120 nm), however the addition of sucrose and other polymers do not have such an effect. According to TEM and XPS analysis, LFP/CPTFE particles are mostly coated with a few nanometers thick carbon layer forming a core-shell structure. Residual carbon does not contain fluorine.

  14. Biochar production for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  15. "Design and application of a data-independent precursor and product ion repository."

    NARCIS (Netherlands)

    Thalassinos, K.; Vissers, J.P.; Tenzer, S.; Levin, Y.; Thompson, J.W.; Daniel, D.; Mann, D.; Delong, M.R.; Moseley, M.A.; America, A.H.P.; Ottens, A.K.; Cavey, G.S.; Efstathiou, G.; Scrivens, J.H.; Langridge, J.I.; Geromanos, S.J.

    2012-01-01

    The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments i

  16. Mechanisms of Carbon Nanotube Production by Laser Ablation Process

    Science.gov (United States)

    Scott, Carl D.; Arepalli, Sivaram; Nikolaev, Pavel; Smalley, Richard E.; Nocholson, Leonard S. (Technical Monitor)

    2000-01-01

    We will present possible mechanisms for nanotube production by laser oven process. Spectral emission of excited species during laser ablation of a composite graphite target is compared with that of laser irradiated C60 vapor. The similarities in the transient and spectral data suggest that fullerenes are intermediate precursors for nanotube formation. The confinement of the ablation products by means of a 25-mm diameter tube placed upstream of the target seems to improve the production and purity of nanotubes. Repeated laser pulses vaporize the amorphous/graphitic carbon and possibly catalyst particles, and dissociate fullerenes yielding additional feedstock for SWNT growth.

  17. The effect of synthesis time on graphene growth from palm oil as green carbon precursor

    Science.gov (United States)

    Salifairus, M. J.; Hamid, S. B. Abd; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Graphene is the new material that arises after carbon nanotubes (CNTs) era and has extraordinary optical, electronic and mechanical properties compared to CNTs. The 2D graphene is the sp2 carbon allotropes compared to other dimensionality. It also can be in three forms that are zero-dimensional, one-dimensional or three-dimensional. The different dimensionality also called fullerenes, nanotubes and graphite. Therefore, the graphene is known as centre potential materials in expanding research area than others ever. The 2cm × 2cm silicon wafer was seeded with nickel (Ni) at different thickness by using sputter coater. The palm oil, carbon source, was placed in the precursor furnace and the silicon was placed in the second furnace (deposition furnace). The palm oil will mix with Nitrogen gas was used as carrier gas in the CVD under certain temperature and pressure to undergo pyrolysis proses. The deposition temperature was set at 1000 °C. The deposition time varied from 3 minutes, 5 minutes and 7 minutes. The graphene was growth at ambient pressure in the CVD system. Electron microscopy and Raman Spectrometer revealed the structural properties and surface morphology of the grapheme on the substrate. The D and G band appear approximately at 1350 cm-1 and 1850 cm-1. It can be concluded that the growth of graphene varies at different deposition time.

  18. Removal of precursors for disinfection by-products (Dbps)--differences between ozone- and OH-radical-induced oxidation.

    Science.gov (United States)

    Kleiser, G; Frimmel, F H

    2000-06-22

    Pre-oxidation is often applied to reduce the formation of disinfection by-products (DBPs). The aim of pre-oxidation is to remove the centers of natural organic matter (NOM) which are responsible for the formation of DBPs. In this paper, the differences between ozone- and OH-radical-induced oxidation to remove DBP-precursors are compared. The experiments were done with water of the River Ruhr (Germany) with a concentration of dissolved organic carbon (DOC) of 2 mg/l. Ozonation was able to remove DBP precursors selectively. After application of an absorbed ozone mass of 1.5 mg/mg DOC, a reduction in the formation potential for (THM-FP) and in the formation potential for organic halogen adsorbable on activated carbon (AOX-FP) down to 68 and 73% of the initial concentration was achieved, respectively. A removal of NOM was not achieved using absorbed ozone masses between 0.5 and 1.5 mg/mg DOC. In the hydrogen peroxide/UV process, in which OH-radicals are the reactive species, an increase in the THM concentration was measured after application of this process with short irradiation times. The maximum value of the THM-FP was 20% higher than the initial THM-FP. After an irradiation time of 1,050 min and a hydrogen peroxide consumption of 5.6 mg/l, the THM-FP and AOX-FP decreased to 75 and 71% of the initial formation potential, respectively. There was no selective removal of DBP precursors because the DOC concentration decreased also to 75% of the initial DOC-concentration after 1,050 min of irradiation.

  19. Novel technological strategies to enhance tropical thiol precursors in winemaking by-products.

    Science.gov (United States)

    Román Villegas, Tomás; Tonidandel, Loris; Fedrizzi, Bruno; Larcher, Roberto; Nicolini, Giorgio

    2016-09-15

    Grape pomace is a winemaking by-product that can be used to extract oenological tannins. Recently, some grape skin tannins were shown to contain very high amounts of two polyfunctional thiol precursors (3-S-glutathionylhexan-1-ol, 3-S-cysteinylhexan-1-ol) whose free forms are responsible for appreciated tropical-like flavours. This study shows that an oxidative treatment (no SO2) of white grape pomace and the presence of grape leaves and stems can increase the content of the above mentioned precursors. Moreover, it shows significant differences between Sauvignon Blanc, Gewuerztraminer and Mueller-Thurgau grape pomace for the 3-mercaptohexan-1-ol precursors and 4-S-cysteinyl-4-methylpentan-2-one. The grape cultivar is crucial, but the technological ability of enhancing the level of the volatile thiol precursors simply by treating the grape marc in different ways is a promising and powerful tool for the production of potentially flavouring tannins intended for food and beverage industry. PMID:27080874

  20. Pre-hydrolysed ethyl silicate as an alternative precursor for SiO{sub 2}-coated carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Barrena, M.I., E-mail: ibarrena@quim.ucm.es [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid (Spain); Gomez de Salazar, J.M.; Soria, A.; Matesanz, L. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid (Spain)

    2011-11-15

    This work reported basically aims at understanding the extent of SiO{sub 2}-coated carbon nanofibers using two different sol-gel precursors for the silicate glass. The silicate precursors employed were tetraethoxysilane (TEOS) and pre-hydrolysed ethyl silicate. The first route consisted in an acid hydrolysis and polycondensation of the TEOS and the second one in a polycondensation of the pre-hydrolysed ethyl silicate. The techniques of Fourier Infra Red spectroscopy, thermogravimetric analysis, scanning electron microscopy and X-ray diffraction were used to characterize the materials obtained. Both kinds of SiO{sub 2} precursor can coat the CNF effectively. However, the use of pre-hydrolysed ethyl silicate (faster gelation times and higher surface areas) can be considered a low-cost and facile alternative with respect to the use of TEOS, to obtain industrially silica-coated carbon nanofibers.

  1. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    Science.gov (United States)

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-12-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem-- Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  2. Insights into properties of activated carbons prepared from different raw precursors by pyrophosphoric acid activation.

    Science.gov (United States)

    Gao, Yuan; Yue, Qinyan; Gao, Baoyu

    2016-03-01

    Low-cost activated carbons (ACs) were prepared from four kinds of solid wastes: petroleum coke, Enteromorpha prolifera, lignin from papermaking black liquid and hair, by pyrophosphoric acid (H4P2O7) activation. Thermo-gravimetric analysis of the pyrolysis of H4P2O7-precursor mixtures implied that H4P2O7 had different influences on the pyrolysis behavior of the four raw materials. N2 adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons. AC derived from E. prolifera exhibited the highest surface area (1094m(2)/g) and maximum monolayer adsorption capacity for malachite green (1250mg/g). Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model. The adsorption isotherms were well described by the Langmuir isotherm model, indicating the adsorption of dye onto the ACs proceeded by monolayers. PMID:26969070

  3. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2011-01-01

    Full Text Available Abstract Practical application of aligned carbon nanotubes (ACNTs would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  4. Synthesis of Nitrogen-Doped Carbon Nanocoils with Adjustable Morphology using Ni–Fe Layered Double Hydroxides as Catalyst Precursors

    OpenAIRE

    Tomohiro Iwasaki; Masashi Tomisawa; Takuma Yoshimura; Hideya Nakamura; Masao Ohyama; Katsuya Asao; Satoru Watano

    2015-01-01

    Nitrogen-doped carbon nanocoils (CNCs) with adjusted morphologies were synthesized in a one-step catalytic chemical vapour deposition (CVD) process using acetoni‐ trile as the carbon and nitrogen source. The nickel iron oxide/nickel oxide nanocomposites, which were derived from nickel–iron layered double hydroxide (LDH) precur‐ sors, were employed as catalysts for the synthesis of CNCs. In this method, precursor-to-catalyst transformation, catalyst activation, formation of CNCs, and nitrogen ...

  5. Nano-SiC implantation into the structure of carbon/graphite materials made by pyrolysis (carbonization) of the precursor system coal tar pitch/poly(dimethylsiloxane)

    Energy Technology Data Exchange (ETDEWEB)

    Czosnek, C.; Wolszczak, J.; Drygas, M.; Gora, M.; Janik, J.F. [AGH University of Science & Technology, Krakow (Poland). Faculty of Fuels & Energy

    2004-03-01

    Conversion of the air-cured poly(dimethylsiloxane) to SiC during co-pyrolysis with a coal tar pitch is studied with reference to the related SiO{sub 2}/pitch system. Each binary mixture is first homogenized at 160{sup o}C followed by carbonization at 500{sup o}C under argon to afford initial carbonizates. In both cases, one part of the initial carbonizate is further pyrolyzed at 1300{sup o}C and another part at 1650{sup o}C under an argon flow resulting in composite products. All products are studied with FT-IR, XRD, and XPS spectroscopic methods supplemented with SEM and 'wet' Si-analyses, when applicable. Carbothermally assisted conversion of both silicon precursors to nanocrystalline SiC embedded in the evolving C-matrix, i.e. nano-SiC/C composites, is evident only after the 1650{sup o}C carbonization stage.

  6. Debottlenecking recombinant protein production in Bacillus megaterium under large-scale conditions--targeted precursor feeding designed from metabolomics.

    Science.gov (United States)

    Korneli, Claudia; Bolten, Christoph Josef; Godard, Thibault; Franco-Lara, Ezequiel; Wittmann, Christoph

    2012-06-01

    In the present work the impact of large production scale was investigated for Bacillus megaterium expressing green fluorescent protein (GFP). Specifically designed scale-down studies, mimicking the intermittent and continuous nutrient supply of large- and small-scale processes, were carried out for this purpose. The recombinant strain revealed a 40% reduced GFP yield for the large-scale conditions. In line with extended carbon loss via formation of acetate and carbon dioxide, this indicated obvious limitations in the underlying metabolism of B. megaterium under the large-scale conditions. Quantitative analysis of intracellular amino acids via validated fast filtration protocols revealed that their level strongly differed between the two scenarios. During cultivation in large-scale set-up, the availability of most amino acids, serving as key building blocks of the recombinant protein, was substantially reduced. This was most pronounced for tryptophan, aspartate, histidine, glutamine, and lysine. In contrast alanine was increased, probably related to a bottleneck at the level of pyruvate which also triggered acetate overflow metabolism. The pre-cursor quantifications could then be exploited to verify the presumed bottlenecks and improve recombinant protein production under large-scale conditions. Addition of only 5 mM tryptophan, aspartate, histidine, glutamine, and lysine to the feed solution increased the GFP yield by 100%. This rational concept of driving the lab scale productivity of recombinant microorganisms under suboptimal feeding conditions emulating large scale can easily be extended to other processes and production hosts. PMID:22252649

  7. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Scalcinati Gionata

    2012-08-01

    Full Text Available Abstract Background Sesquiterpenes are a class of natural products with a diverse range of attractive industrial proprieties. Due to economic difficulties of sesquiterpene production via extraction from plants or chemical synthesis there is interest in developing alternative and cost efficient bioprocesses. The hydrocarbon α-santalene is a precursor of sesquiterpenes with relevant commercial applications. Here, we construct an efficient Saccharomyces cerevisiae cell factory for α-santalene production. Results A multistep metabolic engineering strategy targeted to increase precursor and cofactor supply was employed to manipulate the yeast metabolic network in order to redirect carbon toward the desired product. To do so, genetic modifications were introduced acting to optimize the farnesyl diphosphate branch point, modulate the mevalonate pathway, modify the ammonium assimilation pathway and enhance the activity of a transcriptional activator. The approach employed resulted in an overall α-santalene yield of a 0.0052 Cmmol (Cmmol glucose-1 corresponding to a 4-fold improvement over the reference strain. This strategy, combined with a specifically developed continuous fermentation process, led to a final α-santalene productivity of 0.036 Cmmol (g biomass-1 h-1. Conclusions The results reported in this work illustrate how the combination of a metabolic engineering strategy with fermentation technology optimization can be used to obtain significant amounts of the high-value sesquiterpene α-santalene. This represents a starting point toward the construction of a yeast “sesquiterpene factory” and for the development of an economically viable bio-based process that has the potential to replace the current production methods.

  8. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products.

    Directory of Open Access Journals (Sweden)

    Brett K Kaiser

    Full Text Available We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.

  9. Removing of Disinfection By-Product Precursors from Surface Water by Using Magnetic Graphene Oxide.

    Directory of Open Access Journals (Sweden)

    Zhongmou Liu

    Full Text Available The magnetic graphene oxide (MGO was successfully synthesised by the in situ chemical co-precipitation method with Fe3+, Fe2+ and graphene oxide (GO in laboratory and, was used as an adsorbent for disinfection by-product (DBP precursors removing from four natural surface water samples. The results indicate that various DBPs formation significantly decreased by 7-19% to 78-98% for the four samples after MGO treatment and, the treatment process was rapidly reached equilibrium within 20 minutes. The DBP precursors removal efficiency decreased with the increasing pH value from 4 to 10. Hydrophobic compounds (humic acid and fulvic acid are more sensitive to MGO, whereas hydrophilic and nitrogenous compounds (aromatic proteins are more insensitive. MGO could be regenerated by using 20% (v/v ethanol and, the DBP precursors removal efficiency can stay stable after five cycles. These results indicate that MGO can be utilized as a promising adsorbent for the removal of DBP precursors from natural surface water.

  10. DFT Thermodynamic Research of the Pyrolysis Mechanism of the Carbon Matrix Precursor Toluene for Carbon Material

    Institute of Scientific and Technical Information of China (English)

    WANG; Hui

    2001-01-01

    [1]Deutsch S. , Keieger K. A. , J. Phy. Chem, 66(19), 1 569(1962)[2]Ooya sugirou, Kobayashi Hiroshi. , Inoue Masahide, et al. , Chem. Technology, 72, 1 300(1969)[3]Ruden A. P. , Vestnik Ko. , Moskov Univ. Ser, 15(5), 69(1969)[4]WANG Yi-Gui, SUN Chang-Jun, DENG Cong-Hao. Science in China (Series B), 28(5), 431(1998)[5]YANG Ming-Li, SUN Ze-Min, YAN Guo-Sen. Chemical Journal of Chinese Universities, 20(3). 450(1999)[6]WANG Hui, ZHAI Gao-hong, YANG Hai-feng, et al. , Chem. J. of Chinese Universities, 22(5), 800(2001)[7]WANG Hui, LUO Rui-Ying, YANG Yan-Qing, et al. , Chinese Journal of Materials Research, 18(4), 10(2000)[8]ZHAI Gao-Hong, WANG Hui, RAN Xing-Quan, et al. , Materials Science and Engineering, (2000)[9]WANG Hui, ZHAI Gao-Hong, RAN Xing-Quan, et al., Chinese Journal of Inorganic Chemistry, 16(6), 879(2000)[10]Ljubisa R. R. , Murthy Karra., Kristina Skokova. , et al. , Carbon. , 36(12), 1 841(1998)[11]Becke D., Density-functional Thermochemistry. Ⅲ. The Role of Exact Exchange, J. Chem. Phys. , 98, 5 648(1993)[12]Bicout D. , Field M. , Quantum Mechanical Simulation Method For Studing Biological System(Les Houches Workship). Springer-Verlag, Berlin, 1 (1995)[13]Frisch M. J.,Trucks G. W. , Schlegel H. B., et al. , Gaussian 98, Revision A. 6, Gaussian, Inc., Pittsburgh PA, 1998[14]Eugene S., Domalski and Elizalzeth D. H. , J. Phys. Chem. , 17, 1 637 (1988)[15]Sharon G. L. , Joel F. L. and Rhoda D. L. , J. Phys. Chem. , 13, 695(1984)[16]Cleveland, David, R. L. (Editor-in-Chief), CRC. Handbook of Chem. and Phy. , (77th Edition), CEC Press INC, 1996-1997:9-27[17]FU Xian-Cai, CHEN Rui-Hua. Physical Chemistry, People Education Press, Beijing, a. 132; b. 191; c. 366(1982)[18]WANG Hui, YANG Hai-fegng, ZHAI Gao-hong, et al. , Acta Chemica Sinca, (1), 17(2001)

  11. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, A K

    2014-02-01

    The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium. PMID:24357500

  12. Reduction of Precursors of Chlorination By-products in Drinking Water Using Fluidized-bed Biofilm Reactor at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    SHU-GUANG XIE; DONG-HUI WEN; DONG-WEN SHI; XIAO-YAN TANG

    2006-01-01

    Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofilm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), trihalomethane (THM)formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3℃, however, it could quickly rise to over 50% above 3℃. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.

  13. Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Borràs, S. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Kaufmann, A., E-mail: anton.kaufmann@klzh.ch [Official Food Control Authority, Fehrenstrasse 15, 8032 Zürich (Switzerland); Companyó, R. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain)

    2013-04-15

    Highlights: ► We are describing a technique to spot ions which are derived from each other. ► Single stage high resolution data is used. ► This “in silicon” technique is compared to conventional precursor scan. ► Some applications for this technique are presented. -- Abstract: Monitoring of common diagnostic fragments is essential for recognizing molecules which are members of a particular compound class. Up to now, unit resolving tandem quadrupole mass spectrometers, operating in the precursor ion scan mode, have been typically used to perform such analysis. By means of high-resolution mass spectrometry (HRMS) a much more sensitive and selective detection can be achieved. However, using a single-stage HRMS instrument, there is no unequivocal link to the corresponding precursor ion, since such instrumentation does not permit a previous precursor selection. Thus, to address this limitation, an in silico approach to locate precursor ions, based on diagnostic fragments, was developed. Implemented as an Excel macro, the algorithm rapidly assembles and surveys exact mass data to provide a list of feasible precursor candidates according to the correlation of the chromatographic peak shape profile and other additional filtering criteria (e.g. neutral losses and isotopes). The macro was tested with two families of veterinary drugs, sulfonamides and penicillins, which are known to yield diagnostic product ions when fragmented. Data sets obtained from different food matrices (fish and liver), both at high and low concentration of the target compounds, were investigated in order to evaluate the capabilities and limitations of the reported approach. Finally, other possible applications of this technique, such as the elucidation of elemental compositions based on product ions and corresponding neutral losses, were also presented and discussed.

  14. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, A. Manuel [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Central Electrochemical Research Institute, Karaikudi 630006 (India); Kumar, T. Prem [Central Electrochemical Research Institute, Karaikudi 630006 (India); Ramesh, R. [Central Electrochemical Research Institute, Karaikudi 630006 (India); Thomas, Sabu [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560 (India); Jeong, Soo Kyung [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Nahm, Kee Suk [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of)]. E-mail: nahmks@chonbuk.ac.kr

    2006-08-25

    Disordered carbonaceous materials were synthesized by the pyrolysis of banana fibers treated with pore-forming substances such as ZnCl{sub 2} and KOH. X-ray diffraction studies indicated a carbon structure with a large number of disorganized single layer carbon sheets. Addition of porogenic agent led to remarkable changes in the structure and morphology of the carbonaceous products. The product obtained with ZnCl{sub 2} treatment gave first-cycle lithium insertion and de-insertion capacities of 3325 and 400 mAh g{sup -1}, respectively. Lower capacities only could be realized in the subsequent cycles, although the coulombic efficiency increased upon cycling, which in the 10th cycle was 95%.

  15. STUDIES ON MOLECULAR WEIGHT DISTRIBUTION OF CARBON FIBER POLYMER PRECURSORS SYNTHESIZED USING MIXED SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    G.Santhana Krishnan; A.Burkanudeen; N.Murali; Hemant Phadnis

    2012-01-01

    The molecular weight distributions were estimated for carbon fiber polymer precursors such as poly(acrylonitrileco-itaconic acid) synthesized by semi batch solution polymerization in mixed solvents media with the azonitrile compounds as initiator under the different ratios of solvent and non solvent from 0.75 to 2.5 in weight.The copolymer was characterized by using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR) analyses.The molecular weight distributions were evaluated by Mv/Mn ratios estimated from viscosity and osmotic measurements,and Mw/Mn estimated from size exclusion chromatography.The molecular weight distributions of these polymers as determined from Mv/Mn and Mw/Mn are 2.9 to 3.2 and 2.0 to 2.5 respectively.The molecular distributions were close to a narrow distribution of 2.0 when the solvent/non-solvent ratio was varied between 1.4 and 2.0.Intrinsic viscosity [η] as a function of molecular weight of poly(acrylonitrile-co-itaconic acid) was evaluated by means of low angle laser light scattering with size exclusion chromatography (SEC-LALLS) and viscometry with SEC (SEC-VISCO).The relationship between [η] and Mw for poly(acrylonitrile-co-itaconic acid) in DMF at 50℃ was [η] =1.1 × 10-5 Mw0.79,where [η] is obtained in dL/g.

  16. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.;

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  17. Ozone production in four major cities of China: sensitivity to ozone precursors and heterogeneous processes

    Directory of Open Access Journals (Sweden)

    L. K. Xue

    2013-10-01

    Full Text Available Despite a large volume of research over a number of years, our understandings of the key precursors that control tropospheric ozone production and the impacts of heterogeneous processes remain incomplete. In this study, we analyze measurements of ozone and its precursors made at rural/suburban sites downwind of four large Chinese cities – Beijing, Shanghai, Guangzhou and Lanzhou. At each site the same measurement techniques were utilized and a photochemical box model based on the Master Chemical Mechanism (v3.2 was applied, to minimize uncertainties in comparison of the results due to differences in methodology. All four cities suffered from severe ozone pollution. At the rural site of Beijing, export of the well-processed urban plumes contributed to the extremely high ozone levels (up to an hourly value of 286 ppbv, while the pollution observed at the suburban sites of Shanghai, Guangzhou and Lanzhou was characterized by intense in-situ ozone production. The major anthropogenic hydrocarbons were alkenes and aromatics in Beijing and Shanghai, aromatics in Guangzhou, and alkenes in Lanzhou. The ozone production was found to be in a VOCs-limited regime in both Shanghai and Guangzhou, and a mixed regime in Lanzhou. In Shanghai, the ozone formation was most sensitive to aromatics and alkenes, while in Guangzhou aromatics were the predominant ozone precursors. In Lanzhou, either controlling NOx or reducing emissions of olefins from the petrochemical industry would mitigate the local ozone production. The potential impacts of several heterogeneous processes on the ozone formation were assessed. The hydrolysis of dinitrogen pentoxide (N2O5, uptake of the hydroperoxyl radical (HO2 on particles, and surface reactions of NO2 forming nitrous acid (HONO present considerable sources of uncertainty in the current studies of ozone chemistry. Further efforts are urgently required to better understand these processes and refine atmospheric models.

  18. Additions of precursors and elicitors improve geranylgeraniol production in Croton stellatopilosus callus cultures

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2015-02-01

    Full Text Available Strategies for enhancing GGOH production in Croton stellatopilosus callus culture included additions of precursors (sodium acetate-NA, sodium pyruvate-NP, mevalonic acid lactone-MVA and elicitors (methyl jasmonate-MJ, acetylsalicylic acid-ASA, yeast extract-YE. Treated cells were evaluated for their GGOH contents by GC-FID and compared with the nontreated cells as controls. Additions of NA (25 mg/L, NP (50 mg/L and MVA (100 mg/L resulted in an enhancement of GGOH productivity to 0.61 mg/g DW, 0.52 mg/g DW and 0.70 mg/g DW, respectively, compared to the control culture (0.29 mg/g DW. Callus cultures elicited with MJ at 30 mg/L for 24 h stimulated GGOH production to 0.35 mg/g DW compared to the control culture (0.07 mg/g DW. Cells also responded to ASA (20 mg/L, 2 days and YE (0.25 g/L, 4 days and produced GGOH contents of 0.46 mg/g DW and 1.37 mg/g DW, respectively. This study has shown that isoprenoid precursors and conventional elicitors enhanced GGOH production in the C. stellatopilosus callus culture.

  19. Production Scale-Up or Activated Carbons for Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  20. Product carbon footprint developments and gaps

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper

    2012-01-01

    Purpose - Over the last decade, multiple initiatives have been undertaken to learn how to capture the carbon footprint of a supply chain at a product level. The purpose of this paper is to focus on the process of standardization to secure consistency of product carbon footprinting (PCF...

  1. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhibo Xu; Zhenquan Lin; Zhiwen Wang; Tao Chen

    2015-01-01

    3,4-Dihydroxy-2-butanone 4-phosphate (DHBP) and GTP are the precursors for riboflavin biosynthesis. In this research, improving the precursor supply for riboflavin production was attempted by overexpressing ribB and engineering purine pathway in a riboflavin-producing Escherichia coli strain. Initially, ribB gene was overexpressed to increase the flux from ribulose 5-phosphate (Ru-5-P) to DHBP. Then ndk and gmk genes were overexpressed to enhance GTP supply. Subsequently, a R419L mutation was introduced into purA to reduce the flux from IMP to AMP. Finally, co-overexpression of mutant purF and prs genes further increased riboflavin production. The final strain RF18S produced 387.6 mg riboflavin · L−1 with a yield of 44.8 mg riboflavin per gram glucose in shake-flask fermentations. The final titer and yield were 72.2%and 55.6%higher than those of RF01S, respectively. It was concluded that simultaneously engineering the DHBP synthase and GTP biosynthetic pathway by rational metabolic engineering can efficiently boost riboflavin production in E. coli.

  2. A Novel Partially Biobased PAN-Lignin Blend as a Potential Carbon Fiber Precursor

    Directory of Open Access Journals (Sweden)

    M. Özgür Seydibeyoğlu

    2012-01-01

    Full Text Available Blends of polyacrylonitrile (PAN and lignin were prepared with three different lignin types by solution blending and solution casting. Among three types of lignin, one type was chosen and different blend concentrations were prepared and casted. The casted blend films were characterized chemically with fourier transform infrared spectroscopy (FTIR, and thermally with thermogravimetric analysis (TGA. The mechanical properties of the blends were measured using dynamic mechanical analysis (DMA. FTIR analysis shows an excellent interaction of PAN and lignin. The interaction of the lignins and PAN was confirmed by TGA analysis. The DMA results reveal that the lignin enhance the mechanical properties of PAN at room temperature and elevated temperatures. The blend structure and morphology were observed using scanning electron microscopy (SEM. SEM images show that excellent polymer blends were prepared. The results show that it is possible to develop a new precursor material with a blend of lignin and PAN. These studies show that the side product of paper and cellulosic bioethanol industries, namely, lignin can be used for new application areas.

  3. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    Science.gov (United States)

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time. PMID:27427723

  4. A carbon sink pathway increases carbon productivity in cyanobacteria.

    Science.gov (United States)

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity.

  5. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family

    Directory of Open Access Journals (Sweden)

    Mitchell Douglas A

    2010-05-01

    Full Text Available Abstract Background A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM. As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor. Results Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P, but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery. Conclusions This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for

  6. Pyrolysis of furfural-acetone resin as matrix precursor for new carbon materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to increase the understanding of the pyrolysis mechanism,Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-mass spectrometric coupling technique (TG-MS) were used to study the pyrolysis behavior of furfural-acetone resin used for new carbon materials.The curing and carbonization mechanisms of furfural-acetone resin were mainly investigated;structural changes and volatile products evolved during pyrolysis were analyzed.The results indicate that,during pyrolysis of furfural-acetone resin adding 7% (mass fraction) phosphorous acid as curing agent,the rupture of C-O bond in the five-membered heterocycle firstly takes place to release oxygen atoms and then does the C--H bond,which enable the molecular chain to cross-link and condense,then lead to the formation of three dimensional networking structure.With the increase of pyrolyzing temperature,the scission of methyl and the opening of furan ring are generated.As a result,the recomposition of molecular chain structure isgenerated and a hexatomic fused ring containing double bonds is built.The main volatile products during pyrolysis of furfuralacetone resin are H2O,and a small mount of CO,CO2 and CH4.At elevated temperatures,dehydrogenation takes place and hydrogen gas is evolved.

  7. Caveolin-1 interacts with the Gag precursor of murine leukaemia virus and modulates virus production

    Directory of Open Access Journals (Sweden)

    Koester Mario

    2006-09-01

    Full Text Available Abstract Background Retroviral Gag determines virus assembly at the plasma membrane and the formation of virus-like particles in intracellular multivesicular bodies. Thereby, retroviruses exploit by interaction with cellular partners the cellular machineries for vesicular transport in various ways. Results The retroviral Gag precursor protein drives assembly of murine leukaemia viruses (MLV at the plasma membrane (PM and the formation of virus like particles in multivesicular bodies (MVBs. In our study we show that caveolin-1 (Cav-1, a multifunctional membrane-associated protein, co-localizes with Gag in a punctate pattern at the PM of infected NIH 3T3 cells. We provide evidence that Cav-1 interacts with the matrix protein (MA of the Gag precursor. This interaction is mediated by a Cav-1 binding domain (CBD within the N-terminus of MA. Interestingly, the CBD motif identified within MA is highly conserved among most other γ-retroviruses. Furthermore, Cav-1 is incorporated into MLV released from NIH 3T3 cells. Overexpression of a GFP fusion protein containing the putative CBD of the retroviral MA resulted in a considerable decrease in production of infectious retrovirus. Moreover, expression of a dominant-negative Cav-1 mutant affected retroviral titres significantly. Conclusion This study demonstrates that Cav-1 interacts with MLV Gag, co-localizes with Gag at the PM and affects the production of infectious virus. The results strongly suggest a role for Cav-1 in the process of virus assembly.

  8. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    Science.gov (United States)

    Kraus, T.E.C.; Anderson, C.A.; Morgenstern, K.; Downing, B.D.; Pellerin, B.A.; Bergamaschi, B.A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  9. Overview of the carbon products consortium (CPC)

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, C.L. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    The Carbon Products Consortium (CPC) is an industry, university, government cooperative research team which has evolved over the past seven years to produce and evaluate coal-derived feedstocks for carbon products. The members of the Carbon Products Consortium are UCAR Carbon Company, Koppers Industries, CONOCO, Aluminum Company of America, AMOCO Polymers, and West Virginia University. The Carbon and Insulation Materials Technology Group at Oak Ridge National Laboratory, Fiber Materials Inc., and BASF Corporation are affiliates of the CPC. The initial work on coal-derived nuclear graphites was supported by a grant to WVU, UCAR Carbon, and ORNL from the U.S. DOE New Production Reactor program. More recently, the CPC program has been supported through the Fossil Energy Materials program and through PETC`s Liquefaction program. The coal processing technologies involve hydrogenation, extraction by solvents such as N-methyl pyrolidone and toluene, material blending, and calcination. The breadth of carbon science expertise and manufacturing capability available in the CPC enables it to address virtually all research and development issues of importance to the carbon products industry.

  10. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  11. Natural products that inhibit carbonic anhydrase.

    Science.gov (United States)

    Poulsen, Sally-Ann; Davis, Rohan A

    2014-01-01

    The chemical diversity, binding specificity and propensity to interact with biological targets has inspired many researchers to utilize natural products as molecular probes. Almost all reported carbonic anhydrase inhibitors comprise a zinc binding group in their structure of which the primary sulfonamide moiety (-SO2NH2) is the foremost example and to a lesser extent the primary sulfamate (-O-SO2NH2) and sulfamide (-NH-SO2NH2) groups. Natural products that comprise these zinc binding groups in their structure are however rare and relatively few natural products have been explored as a source for novel carbonic anhydrase inhibitors. This chapter will highlight the recent and growing interest in carbonic anhydrase inhibitors sourced from nature, demonstrating that natural product chemical space presents a rich source of potential alternate chemotypes for the discovery of novel drug-like carbonic anhydrase inhibitors. PMID:24146386

  12. Fatty acids and algal lipids as precursors of chlorination by-products

    Institute of Scientific and Technical Information of China (English)

    Yan Liang; Yuen Shan Lui; Huachang Hong

    2012-01-01

    Six common algal fatty acids (FAs) with different numbers of double bonds,lipophilic fractions and proteins extracted from the diatom Navicula pelliculosa and algal cells were chlorinated to evaluate their potential in generating disinfection by-products (DBPs).The result showed that the more double bonds in the FAs,the higher the amounts of chloroform and dichloroacetic acid (DCAA) produced,but such a pattern was not observed for trichloroacetic acid (TCAA).Based on the previously reported composition of fatty acids in algal lipids,the DBP generation potentials of algal lipids were calculated.These predicted values were much lower than those measured in the chlorinated algal lipophilic fraction,suggesting unknown lipophilic fraction(s) served as potent DBPs precursors.Another calculation attempted to predict DBP production in algal cells based on algal lipid and protein composition,given quantified measured DBP production per unit algal lipid and proteins.The analysis showed that the observed DBP production was similar to that predicted (< 35% difference),suggesting that algal biochemical compositions may serve as a bioindicator for preliminary estimation of chloroform,DCAA and TCAA formation upon chlorinating algae.

  13. Silicate production and availability for mineral carbonation.

    Science.gov (United States)

    Renforth, P; Washbourne, C-L; Taylder, J; Manning, D A C

    2011-03-15

    Atmospheric carbon dioxide sequestered as carbonates through the accelerated weathering of silicate minerals is proposed as a climate change mitigation technology with the potential to capture billions of tonnes of carbon per year. Although these materials can be mined expressly for carbonation, they are also produced by human activities (cement, iron and steel making, coal combustion, etc.). Despite their potential, there is poor global accounting of silicates produced in this way. This paper presents production estimates (by proxy) of various silicate materials including aggregate and mine waste, cement kiln dust, construction and demolition waste, iron and steel slag, and fuel ash. Approximately 7-17 billion tonnes are produced globally each year with an approximate annual sequestration potential of 190-332 million tonnes C. These estimates provide justification for additional research to accurately quantify the contemporary production of silicate minerals and to determine the location and carbon capture potential of historic material accumulations. PMID:21332128

  14. The production of carbon nanotubes from carbon dioxide: challenges and opportunities

    Institute of Scientific and Technical Information of China (English)

    Geoffrey S. Simate; Sunny E. Iyuke; Sehliselo Ndlovu; Clarence S. Yah; Lubinda F. Walubita

    2010-01-01

    Recent advances in the production of carbon nanotubes (CNTs) are reviewed with an emphasis on the use of carbon dioxide (CO2) as a sole source of carbon. Compared to the most widely used carbon precursors such as graphite, methane, acetylene, ethanol, ethylene,and coal-derived hydrocarbons, CO2 is competitively cheaper with relatively high carbon yield content. However, CNT synthesis from CO2 is a newly emerging technology, and hence it needs to be explored further. A theoretical and analytical comparison of the currently existing CNT-CO2 synthesis techniques is given including a review of some of the process parameters (i.e., temperature, pressure, catalyst, etc.) that affect the CO2 reduction rate. Such analysis indicates that there is still a fundamental need to further explore the following aspects so as to realize the full potential of CO2 based CNT technology: (1) the CNT-CO2 synthesis and formation mechanism,(2) catalytic effects of transitional metals and mechanisms, (3) utilization of metallocenes in the CNT-CO2 reactions, (4) applicability of ferrite-organometallic compounds in the CNT-CO2 synthesis reactions, and (5) the effects of process parameters such as temperature,etc.

  15. Catalytic synthesis of nitrogen-doped multi-walled carbon nanotubes using layered double hydroxides as catalyst precursors

    Indian Academy of Sciences (India)

    Yong Cao; Yun Zhao; Qingxia Li; Qingze Jiao

    2009-03-01

    The nitrogen (N)-doped carbon (CN) nanotubes were synthesized by pyrolysis of ethylenediamine with Ni1.07Mg1.01AlO3.58, Ni1.99Mg0.29AlO3.78, and Ni2.31Mg0.08AlO3.89 mixed oxides as catalysts at 650°C. Those mixed oxides were obtained by calcination of corresponding layered double hydroxide precursors (LDHs). Structure and composition of LDHs and mixed oxides were characterized by X-ray diffraction (XRD) and Inductively coupled plasma spectrum. X-ray photoelectron spectroscopy and transmission electron microscope were used to characterize the N content, proportion of pyridine-like N structure and morphology of CN nanotubes. The results showed that the tubes grown with Ni2.31Mg0.08AlO3.89 as catalysts had more obvious bamboo-like structure, larger diameter than those grown with Ni1.07Mg1.01AlO3.58 and Ni1.99Mg0.29AlO3.78. The N content and proportion of graphitic-like N structures increased with the content of Ni2+ increasing in LDH precursors. The morphology, N content and pyridine-like N structures for CN nanotubes can be controlled to a certain extent by varying the content of Ni2+ in LDH precursors.

  16. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  17. Nickel-carbon nanocomposites prepared using castor oil as precursor: A novel catalyst for ethanol steam reforming

    Science.gov (United States)

    Carreño, Neftalí L. V.; Garcia, Irene T. S.; Raubach, Cristiane W.; Krolow, Mateus; Santos, Cláudia C. G.; Probst, Luiz F. D.; Fajardo, Humberto V.

    A novel and simple method to prepare nickel-based catalysts for ethanol steam reforming is proposed. The present method was developed using castor oil as a precursor. The results clarify that the nickel-carbon (Ni/C) catalyst has a high activity for ethanol steam reforming. It was observed that the catalytic behavior could be modified according to the experimental conditions employed. Moreover, it is interesting to note that the increase in the catalytic activity of the Ni/C nanocomposite over time, at 500 and 600 °C of reaction temperature, may be associated with the formation of filamentous carbon. The preliminary results indicate that the novel methodology used, led to the obtainment of materials with important properties that can be extended to applications in different catalytic process.

  18. Synthesis of Nitrogen-Doped Carbon Nanocoils with Adjustable Morphology using Ni–Fe Layered Double Hydroxides as Catalyst Precursors

    Directory of Open Access Journals (Sweden)

    Tomohiro Iwasaki

    2015-01-01

    Full Text Available Nitrogen-doped carbon nanocoils (CNCs with adjusted morphologies were synthesized in a one-step catalytic chemical vapour deposition (CVD process using acetoni‐ trile as the carbon and nitrogen source. The nickel iron oxide/nickel oxide nanocomposites, which were derived from nickel–iron layered double hydroxide (LDH precur‐ sors, were employed as catalysts for the synthesis of CNCs. In this method, precursor-to-catalyst transformation, catalyst activation, formation of CNCs, and nitrogen doping were all performed in situ in a single process. The morphology (coil diameter, coil pitch, and fibre diameter and nitrogen content of the synthesized CNCs was indi‐ vidually adjusted by modulation of the catalyst composi‐ tion and CVD reaction temperature, respectively. The adjustable ranges of the coil diameter, coil pitch, fibre diameter, and nitrogen content were confirmed to be approximately 500±100 nm, 600±100 nm, 100±20 nm, and 1.1±0.3 atom%, respectively.

  19. Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase.

    Science.gov (United States)

    Volk, R; Bacher, A

    1990-11-15

    The formation of the riboflavin precursor, 6,7-dimethyl-8-ribityllumazine, from 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione requires a phosphorylated 4-carbon intermediate which has been designated as Compound X (Neuberger, G., and Bacher, A. (1985) Biochem. Biophys. Res. Commun. 127, 175-181). The enzyme catalyzing the formation of Compound X has been purified about 600-fold from the cell extract of the flavinogenic yeast Candida guilliermondii by chromatographic procedures. The purified protein appeared homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and consisted of a single polypeptide of 24 kDa. The committed substrate of the enzyme was identified as D-ribulose 5-phosphate. The enzyme yields two products which were identified as L-3,4-dihydroxy-2-butanone 4-phosphate and formate by NMR and CD spectroscopy. Mg2+ is required for activity. PMID:2246238

  20. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  1. Integrated electricity and carbon monoxide production

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, J.

    1994-03-23

    In a process for the production of carbon monoxide and electric power in an IGCC with the removal of sulphur compounds, between the outlet of quenched gas from a partial oxidation unit and a fuel inlet to a combined cycle gas turbine there is a permeable membrane unit to separate a non-permeable stream, which is utilised as a source of carbon monoxide, and a permeate stream, which is used as fuel for the gas turbine of the combined cycle unit. (author)

  2. Formation and transformation of a short range ordered iron carbonate precursor

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas;

    2015-01-01

    Fe(II)-carbonates, such as siderite, form in environments where O2 is scarce, e.g., during marine sediment diagenesis, corrosion and possibly CO2 sequestration, but little is known about their formation pathways. We show that early precipitates from carbonate solutions containing 0.1M Fe(II) with...

  3. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  4. Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment.

    Science.gov (United States)

    Amirsardari, Y; Yu, Q; Willams, P

    2001-09-01

    Pilot plant studies were conducted to evaluate the effect of pre-ozonation and ultraviolet irradiation on disinfection, disinfection by-product precursors and water quality in a direct filtration water treatment system. Disinfection parameters including total coliforms, faecal coliforms and heterotrophic plate count were investigated. Total organic carbon (TOC), trihalomethanes (THMs), total organic halides (TOX), filtered water turbidity and colour were also evaluated. It was found that advanced pre-oxidation processes (ozonation and UV irradiation) significantly increase the level of disinfection of raw water. Removal of total trihalomethanes and total organic halides precursors improved with ozonation and UV irradiation, compared to no oxidation treatment in direct filtration and/or in conventional water treatment. All coliforms (total and faecal) were completely destroyed by ozonation alone, and also with ozonation in conjunction with UV irradiation. However, the heterotrophic plate count was not significantly reduced at an ozone residual concentration of 0.1 mg l(-1). This suggests that disinfection efficiency is strongly influenced by competition reactions of organic and inorganic compounds with ozone. Precursors of total trihalomethanes and total organic halides were reduced by 90% and 98%, respectively, with advanced pre-oxidation processes. Water quality parameters were improved by the pre-ozonation and UV irradiation treatment system.

  5. ON THE IMPROVEMENT OF THE PODOPHYLLOTOXIN PRODUCTION BY PHENYLPROPANOID PRECURSOR FEEDING TO CELL-CULTURES OF PODOPHYLLUM-HEXANDRUM ROYLE

    NARCIS (Netherlands)

    VANUDEN, W; PRAS, N; MALINGRE, TM

    1990-01-01

    In order to improve the production of the cytotoxic lignan podophyllotoxin, seven precursors from the phenylpropanoid-routing and one related compound were fed to cell suspension cultures derived from the rhizomes of Podophyllum hexandrum Royle. These cell cultures were able to convert only coniferi

  6. Modeling of HiPco Process for Carbon Nanotube Production

    Science.gov (United States)

    Gokcen, T.; Dateo, C. E.; Meyyappan, M.; Colbert, D. T.; Smith, D. T.; Smith, K.; Smalley, R. E.; Arnold, James O. (Technical Monitor)

    2000-01-01

    High-pressure carbon monoxide (HiPco) reactor, developed at Rice University, is used to produce single-walled carbon nanotubes (SWNT) from gas-phase reactions of iron carbonyl and nickel carbonyl in carbon monoxide at high pressures (10 - 100 atm). Computational modeling is used to better understand the HiPco process. In the present model, decomposition of the precursor, metal cluster formation and growth, and carbon nanotube growth are addressed. Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. Diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by Boudouard reaction (2CO ---> C(s) + CO2) with metal catalysts. The growth kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance.

  7. Mass spectrometric study of selected precursors and degradation products of chemical warfare agents.

    Science.gov (United States)

    Papousková, Barbora; Bednár, Petr; Frysová, Iveta; Stýskala, Jakub; Hlavác, Jan; Barták, Petr; Ulrichová, Jitka; Jirkovský, Jaromír; Lemr, Karel

    2007-12-01

    Selected precursors and degradation products of chemical warfare agents namely N,N-dialkylaminoethane-2-ols, N,N-dialkylaminoethyl-2-chlorides and some of related N-quaternary salts were studied by means of electrospray ionization-multiple tandem mass spectrometry (ESI-MS(n)). Proposed structures were confirmed with accurate mass measurement. General fragmentation patterns of these compounds are discussed in detail and suggested processes are confirmed using deuterated standards. The typical processes are elimination of alkene, hydrogen chloride, or water, respectively. Besides, elimination of ethene from propyl chain under specific conditions was observed and unambiguously confirmed using exact mass measurement and labelled standard. The potential of mass spectrometry to distinguish the positional isomers occurring among the studied compounds is reviewed in detail using two different MS instruments (i.e. ion trap and hybrid quadrupole-time of flight (Q-TOF) analyzer). A new microcolumn liquid chromatography (microLC)/MS(n) method was designed for the cases where the resolution based solely on differences in fragmentation is not sufficient. Low retention of the derivatives on reversed phase (RP) was overcome by using addition of less typical ion pairing agent (1 mM/l, 3,5-dinitrobenzoic acid) to the mobile phase (mixture water : acetonitrile). PMID:18085550

  8. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    International Nuclear Information System (INIS)

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N2/77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H2 and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  9. Synthesis of an A'B' Precursor to Angelmicin B: Product Diversification in the Suárez Lactol Fragmentation.

    Science.gov (United States)

    Li, Jialiang; Todaro, Louis; Mootoo, David R

    2011-11-01

    We describe a synthetic strategy for the angelimicin family of anthraquinoid natural products that involves converting a central highly oxygenated decalin intermediate to the AB and A'B' subunits. Herein, we report the synthesis of the bicyclic A'B' subunit that complements our earlier route to the tricyclic AB framework. The differentiating tact in the two syntheses focused on controlling the Suárez radical fragmentation of lactol precursors by modulating the substrate's structural rigidity. A more flexible lactol gave the tricyclic AB framework, whereas a more rigid substrate led to the bicyclic A'B' precursor, presumably through divergent pathways from the radical produced in the initial fragmentation step. These results establish a versatile advanced synthetic precursor for the angelimicins, and on a more general note, illustrate strategies for applying the Suárez fragmentation to diverse and complex molecular frameworks.

  10. Organophosphonic acid as precursor to prepare LiFePO4/carbon nanocomposites for high-power lithium ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: LiFePO4/C nanocomposites were prepared by a quasi-sol–gel method with the use of organophosphonic acid, exhibiting improved electrochemical performance with excellent cycle stability. Display Omitted -- Highlights: •Amino tris(methylene phosphonic acid) is served as a novel precursor for LiFePO4/C. •Nano-sized and high-purity LiFePO4/C composites are obtained by a quasi-sol–gel route. •Core-shell structured LiFePO4/C nanocomposites are fabricated by further introducing sucrose. •Superior electrochemical performance is observed in the organophosphorus-synthesized LiFePO4/C. -- Abstract: Amino tris(methylene phosphonic acid) (ATMP) is selected as phosphorus and carbon co-source for the synthesis of uniformly nano-sized LiFePO4/C by a quasi-sol–gel method. This strategy using ATMP instead of conventional NH4H2PO4 supplies two advantages: firstly, ATMP in situ chelates Li+ onto its framework and subsequently binds with FeC2O4 in aqueous solution, forming a molecule-scale homogeneous precursor which can obviously improve the purity of LiFePO4. Secondly, the organic carbon contained in ATMP can form uniformly distributed conductive carbon networks among LiFePO4 particles after calcination, which improves the electrical conductivity. The resultant LiFePO4/C with 1.1 wt.% carbon achieves a higher discharge capacity than those of LiFePO4 and LiFePO4/C prepared with inorganic NH4H2PO4. Moreover, core-shell structured LiFePO4/C nanocomposites are also fabricated by further introducing sucrose into the synthesis system. The high-quality carbon shell effectively hinders the LiFePO4 particle growth and aggregation under high-temperature treatment, which further enhances the electrical conductivity and lithium-ion diffusion, resulting in the improved electrochemical performance with excellent cycle stability (the optimum discharge capacity of 158.6 mAh g−1 at 0.1 C and 138.4 mAh g−1 at 2 C). The high purity, nanosize and core-shell structure

  11. Activated carbon from thermo-compressed wood and other lignocellulosic precursors

    Directory of Open Access Journals (Sweden)

    Capart, R.

    2007-05-01

    Full Text Available The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%, a high surface area (>1700 m2.g-1, and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon.

  12. Surface area and pore size distribution of activated carbon produced from low cost precursors

    International Nuclear Information System (INIS)

    Fast growing wood (Paulownia tomentos-PT, Ailanthus altissima-AA. Salvadara oleoides-SO) and animal bones were utilized for the preparation of activated carbon. The carbon samples were activated by thermal means (400-1000 degree C). The samples were characterized by surface area (Langmuir and BJH) with micropore and meso pores volume (BJH). The surface area of other carbon samples activated at 800 degree C was found in the sequence: 654.9 for Salvadora oleoides > 615.8 for Ailanthus altissima > 346.3 for Paulownia tomentosa > 300.0 for animal bones. BJH surface area (m/sup 2/g/sup -l/) analysis of the carbon samples activated at 800 degree C was found in the sequence: 274.6 for Salvadora oleoides > 261.76 for animal bones> 224.8 for Paulownia tomentosa > 200.2 for Ailanthus altissima. The micropore volume (BJH method) of 800 degree C activated carbon samples were in the sequence: 0.15 for Ailanthus altissima > 0.13 for Salvadora oleoides > 0.08 for animal bones. (author)

  13. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances

    International Nuclear Information System (INIS)

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm2 to 2500 μm2) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism. (paper)

  14. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis

    Science.gov (United States)

    Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.

  15. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  16. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films.

    Science.gov (United States)

    Holt, Ian; Gestmann, Ingo; Wright, Andrew C

    2013-10-01

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (>0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells.

  17. Investigation of isotopic linkages between precursor materials and the improvised high explosive product hexamethylene triperoxide diamine

    NARCIS (Netherlands)

    Lock, C.M.; Brust, G.M.H.; Breukelen, M. van; Dalmolen, J.; Koeberg, M.; Stoker, D.A.

    2012-01-01

    The results of isotope ratio mass spectrometry (IRMS) on hexamethylene triperoxide diamine (HMTD) and its precursor hexamethylenetetramine (hexamine) is presented. HMTD was prepared from hexamine using several different sources of hexamine under both controlled laboratory conditions and in field exp

  18. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    Science.gov (United States)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  19. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    OpenAIRE

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-01-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided t...

  20. CONVENTIONAL WATER TREATMENT AND DIRECT FILTRATION: TREATMENT AND REMOVAL OF TOTAL ORGANIC CARBON AND TRIHALOMETHANE PRECURSORS

    Science.gov (United States)

    After describing the fundamentals of coagulation of humic substances for alum and cationic polyelectrolytes, field studies of two conventional-type water treatment plants are discussed. THM formation through the plants is examined, and removals of total organic carbon (TOC) and T...

  1. Production of templated carbon nano materials, carbon nanofibers and super capasitors

    OpenAIRE

    Sakintuna, Billur; Dumanlı, Ahu Gümrah; Dumanli, Ahu Gumrah; Nalbant, Aslı; Nalbant, Asli; Erden, Ayça; Erden, Ayca; Yürüm, Yuda; Yurum, Yuda

    2008-01-01

    i. Porous carbons are usually obtained via carbonization of precursors of natural or synthetic origin, followed by activation. To meet the requirements, a novel approach, the template carbonization method, has been proposed. Replication, the process of filling the external and / or internal pores of a solid with a different material, physically or chemically separating the resulting material from the template, is a technique that is widely used in microporosity and printing. Th...

  2. Science verification of operational aerosol and cloud products for TROPOMI on Sentinel-5 precursor

    Science.gov (United States)

    Lelli, Luca; Gimeno-Garcia, Sebastian; Sanders, Abram; Sneep, Maarten; Rozanov, Vladimir V.; Kokhanvosky, Alexander A.; Loyola, Diego; Burrows, John P.

    2016-04-01

    With the approaching launch of the Sentinel-5 precursor (S-5P) satellite, scheduled by mid 2016, one preparatory task of the L2 working group (composed by the Institute of Environmental Physics IUP Bremen, the Royal Netherlands Meteorological Institute KNMI De Bilt, and the German Aerospace Center DLR Oberpfaffenhofen) has been the assessment of biases among aerosol and cloud products, that are going to be inferred by the respective algorithms from measurements of the platform's payload TROPOspheric Monitoring Instrument (TROPOMI). The instrument will measure terrestrial radiance with varying moderate spectral resolutions from the ultraviolet throughout the shortwave infrared. Specifically, all the operational and verification algorithms involved in this comparison exploit the sensitivity of molecular oxygen absorption (the A-band, 755-775 nm, with a resolution of 0.54 nm) to changes in optical and geometrical parameters of tropospheric scattering layers. Therefore, aerosol layer height (ALH) and thickness (AOT), cloud top height (CTH), thickness (COT) and albedo (CA) are the targeted properties. First, the verification of these properties has been accomplished upon synchronisation of the respective forward radiative transfer models for a variety of atmospheric scenarios. Then, biases against independent techniques have been evaluated with real measurements of selected GOME-2 orbits. Global seasonal bias assessment has been carried out for CTH, CA and COT, whereas the verification of ALH and AOT is based on the analysis of the ash plume emitted by the icelandic volcanic eruption Eyjafjallajökull in May 2010 and selected dust scenes off the Saharan west coast sensed by SCIAMACHY in year 2009.

  3. Facile synthesis of stereoregular carbon fiber precursor polymers by template assisted solid phase polymerization

    Directory of Open Access Journals (Sweden)

    G. Santhana Krishnan

    2012-09-01

    Full Text Available Predominantly isotactic stereoregular polyacrylonitrile copolymers (PAC were prepared by solid phase polymerization techniques using hexagonal crystalline metal salts as template compounds. Stereoregular distributions of the prepared polymer were studied using high resolution 13C nuclear magnetic resonance spectroscopy (13C NMR spectra. The extent of isotacticity was directly determined from the peak intensity of the methine carbon (CH. The triad tacticity from the intensities of methine carbon peaks were examined by statistical methods. It was found that the PAC was predominantly isotactic in stereoregularity, and its sequence distribution obeys Bernoulli statistics. The optimum polymerization conditions ensuring isotactic content over 50% were disclosed experimentally. The chemical composition of PAC was confirmed with 1H NMR data. The obtained polyacrylonitrile copolymers were also characterized for molecular parameters such as viscosity average molecular weight (Mv, number average molecular weight (Mn, weight average molecular weight (Mw and polydispersity index.

  4. Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study.

    Science.gov (United States)

    Liu, Peng; Farré, Maria José; Keller, Jurg; Gernjak, Wolfgang

    2016-09-15

    Riverbank filtration (RBF) with days to months of residence time has been successfully used as treatment or pre-treatment process to improve water quality for decades. However, its feasibility depends on the local hydrogeological conditions. Therefore, for sites unsuitable to traditional RBF, a smaller engineered RBF may be an option. This study evaluates the performance of engineered short residence time RBF on improving water quality, focusing on the removal of natural organic matter (NOM) and the reduction of precursors of carbon and nitrogen disinfection by-products (DBP). Lab-scale experiments were conducted with surface feed water from a drinking water plant. The results showed that within 6days hydraulic retention time (HRT), 60-70% dissolved organic carbon (DOC) and 70-80% ultraviolet absorbance at 254nm (UV254) could be removed. During the whole filtration process, biodegradation was responsible for the removal of organic matter, and it was found that alternating redox condition between oxic and anoxic was beneficial for the overall performance of the RBF. Dissolved oxygen (DO) had a substantial impact on the removal of DBP precursors. For carbon-containing DBP (C-DBP) precursors' removal, re-aeration after a sequence of oxic and anoxic conditions could further increase the removal efficiencies from 50%, 60%, and 60% to 80%, 90%, and 80% for trihalomethanes (THMs), chloral hydrate (CH), and haloketones (HKs). Prolonged anoxic conditions were however beneficial for the removal of nitrogen-containing DBP (N-DBP) precursors. PMID:27203522

  5. Metal and Precursor Effect during 1-Heptyne Selective Hydrogenation Using an Activated Carbon as Support

    OpenAIRE

    Lederhos, Cecilia R.; Badano, Juan M.; Nicolas Carrara; Fernando Coloma-Pascual; M. Cristina Almansa; Domingo Liprandi; Mónica Quiroga

    2013-01-01

    Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are g...

  6. Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber

    OpenAIRE

    Hendrik Mainka; Olaf Täger; Enrico Körner; Liane Hilfert; Sabine Busse; Edelmann, Frank T.; Axel S. Herrmann

    2015-01-01

    Lightweight design is an essential part of the overall Volkswagen strategy for reducing the CO2 emission. The use of carbon fiber reinforced polymers (CFRP) offers an enormous lightweight potential in comparison to aluminum, enabling a weight reduction, if a load-adapted (unidirectional) CFRP-design is used, of up to 60% in automobile parts without a degradation of the functionalities. Today, the use of CFRP is limited in mass series applications of the automotive industry by the cost of the ...

  7. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor

    International Nuclear Information System (INIS)

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5–30 nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD50: 50 mg/ml) and could be used for bioimaging even at lower concentration (0.5 mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors. - Highlights: • Synthesis of hydrophobic carbon dots from polymer based Paraplast • Deep blue color under the influence of UV light • Typical optical properties used for biological imaging • Biological imaging of breast cancer stem cells revealing potential of carbon dots

  8. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Talib, Abou [Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Pandey, Sunil [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Thakur, Mukeshchand [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Wu, Hui-Fen, E-mail: hui@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan (China); Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan (China)

    2015-03-01

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5–30 nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD{sub 50}: 50 mg/ml) and could be used for bioimaging even at lower concentration (0.5 mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors. - Highlights: • Synthesis of hydrophobic carbon dots from polymer based Paraplast • Deep blue color under the influence of UV light • Typical optical properties used for biological imaging • Biological imaging of breast cancer stem cells revealing potential of carbon dots.

  9. Nitrogen catabolite repression modulates the production of aromatic thiols characteristic of Sauvignon Blanc at the level of precursor transport.

    Science.gov (United States)

    Subileau, Maeva; Schneider, Rémy; Salmon, Jean-Michel; Degryse, Eric

    2008-08-01

    The free thiols 3-mercapto-hexanol (3MH) and its acetate, practically absent from musts, are liberated by yeast during fermentation from a cysteinylated precursor [S-3-(hexan-1-ol)-l-cysteine (Cys-3MH)] present in the grape must and contribute favorably to the flavor of Sauvignon white wines. Production of 3MH is increased when urea is substituted for diammonium phosphate (DAP) as the sole nitrogen source on a synthetic medium. On grape must, complementation with DAP induces a decrease of 3MH production. This observation is reminiscent of nitrogen catabolite repression (NCR). The production of 3MH is significantly lower for a gap1Delta mutant compared with the wild type, during fermentation of a synthetic medium containing Cys-3MH as the precursor and urea as the sole nitrogen source. Mutants isolated from an enological strain with a relief of NCR on GAP1 produce significantly higher amounts of 3MH on synthetic medium than the parental strain. These phenotypes were not confirmed on grape must. It is concluded that on synthetic medium, Cys-3MH enters the cell through at least one identified transporter, GAP1p, whose activity is limiting the release of volatile thiols. On grape must, the uptake of the precursor through GAP1p is not confirmed, but the effect of addition of DAP, eventually prolonging NCR, is shown to decrease thiol production. PMID:18549408

  10. Simulations of the Dynamics of Precursor Organic and Prebiotic Carbon-rich Moleculess

    Science.gov (United States)

    Marshall, David William; Sadeghpour, Hossein

    2015-01-01

    Not only has mid-IR imaging revealed an extraordinary variety of carbon-rich molecules present in the galaxy, but also that they can be seen in a host of different astronomical bodies; from HII regions to planetary nebula, and from young stellar objects to old post-AGB sources. The range of organic species discovered so far include PAHs, fullerenes, long chain hydrocarbons and carbonaceous clusters, some of which are biologically important. There's strong evidence that much of the terrestrial water was delivered to Earth during the Late Heavy Bombardment (LHB) approximately 3.8 - 4.1 Gyr ago [1]. Comparisons of the deuterium-hydrogen ratio of the Vienna Mean Standard Ocean Water and comets like Harley 2, have revealed a striking similarity​ [2]​​. It's not without reason to assume that prebiotic molecules may have been delivered to Earth​, too. ​In this work, reactive molecular dynamics simulations ​[3] are performed to probe the formation of carbon-rich molecules and clusters on graphitic surfaces. The simulations are run over a range of temperatures, densities and carbonaceous surfaces and a comparison is made of the distribution of chain and cluster formation in the gas and condensed phases. Results from these simulations will be presented.[1]. Hartmann, W. K., Ryder, G., Dones, L. & Grinspoon, D. in Origin of the Earth and Moon (eds Canup, R. & Righter, K.) 493--512 (Univ. Arizona Press, Tucson, 2000).[​2]. Hartogh P. et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218-220 (2011).[3]. Patra N. P. Kral, and H. R. Sadeghpour. Nucleation and stabilization of carbon-rich structures in interstellar media', Astrophysical Journal 785, 6(2014); doi:10.1088/0004-637X/785/1/6.​

  11. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  12. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  13. Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber

    Directory of Open Access Journals (Sweden)

    Hendrik Mainka

    2015-07-01

    Furthermore, the process ability and demonstrators as well as the suitability for high volume production of the developed processes are main issues for successful implementation in future lightweight vehicle concepts.

  14. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor

    KAUST Repository

    Ma, Xiaohua

    2013-10-01

    We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 C, respectively. At 440 C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530 C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040 Barrer with a high selectivity over CH4 of 38. Above 600 C, the strong emergence of ultramicroporosity (<7 Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. © 2013 Elsevier Ltd. All rights reserved.

  15. Preferred carbon precursors for lipid labelling in the heterotrophic endosperm of developing oat (Avena sativa L.) grains.

    Science.gov (United States)

    Grimberg, Åsa

    2014-10-01

    Oat (Avena sativa L.) is unusual among the cereal grains in storing high amounts of oil in the endosperm; up to 90% of total grain oil. By using oat as a model species for oil metabolism in the cereal endosperm, we can learn how to develop strategies to redirect carbon from starch to achieve high-oil yielding cereal crops. Carbon precursors for lipid synthesis were compared in two genetically close oat cultivars with different endosperm oil content (about 6% and 10% of grain dw, medium-oil; MO, and high-oil; HO cultivar, respectively) by supplying a variety of (14)C-labelled substrates to the grain from both up- and downstream parts of glycolysis, either through detached oat panicles in vitro or by direct injection in planta. When supplied by direct injection, (14)C from acetate was identified to label the lipid fraction of the grain to the highest extent among substrates tested; 46% of net accumulated (14)C, demonstrating its applicability as a marker for lipids in the endosperm. Time course analyses of injected (14)C acetate during grain development suggested a more efficient transfer of fatty acids from polar lipids to triacylglycerol in the HO as compared to the MO cultivar, and turnover of triacylglycerol was suggested to not play a major role for the final oil content of oat grain endosperm despite the low amount of protective oleosins in this tissue. Moreover, availability of light was shown to drastically affect grain net carbon accumulation from (14)C-sucrose when supplied through detached panicles for the HO cultivar.

  16. Enhanced photocatalytic ability from carbon-doped ZnO photocatalyst synthesized without an external carbon precursor

    Science.gov (United States)

    Zhang, Dong En; Wang, Ming Yan; Ma, Juan Juan; Han, Gui Quan; Li, Shu An; Zhao, Hong; Zhao, Bin Yuan; Tong, Zhi Wei

    2014-03-01

    We report a simple synthesis of C-doped ZnO composite nanoparticles by a solvothermal treatment of Zn(OAc)2 ṡ 2H2O that provides a source of both zinc and carbon. The photocatalytic activities of the composites were evaluated by the degree of degradation rhodamine B in aqueous solutions at room temperature with near UV light irradiation. These nanocomposites exhibit higher photocatalytic activity compared with pure ZnO nanoparticles. The enhancement of photocatalytic activity of C-doped ZnO nanoparticles is mainly attributed to their absorbed more photons and reduced electron hole pair recombination.

  17. Switching to carbon-free production processes: Implications for carbon leakage and border carbon adjustment

    International Nuclear Information System (INIS)

    Climate policy under partial global compliance raises concerns regarding carbon leakage. While border carbon adjustment (BCA) measures are a potential remedy, they have also been criticised on various grounds. This paper therefore investigates whether a policy fostering the switch to carbon-free technologies can substitute for BCAs. A reason for the effectiveness of a targeted technology policy is that major leakage prone sectors (such as iron and steel), have two main sources of carbon emissions, combustion of fossil fuels and industrial processes. While combustion emissions can be reduced relatively easy by increasing energy efficiency, reducing process emissions requires a switch to low-carbon production processes, e.g. in steel production by deploying electrolysis based on large-scale solar electricity. We show by means of a multi-regional computable general equilibrium analysis that such a switch in steel production technology can eliminate a significant fraction of carbon leakage and also increase sectoral output and welfare. Since the necessary technologies are not available at large scale yet (however, are likely to be by 2020), a transitional BCA scheme may be a crucial supportive instrument to foster such technology switches. Yet, in the long run BCA should be phased out to preserve the incentive for carbon-free innovation. - Highlights: • A carbon-free technology switch in iron production considerably reduces total leakage. • Border carbon adjustment (BCA) may impede domestic industrial decarbonisation. • A targeted technology policy is superior to BCA in fostering low-carbon investments. • But implemented as a transitory instrument, BCA reinforces technology policy

  18. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  19. Metal and precursor effect during 1-heptyne selective hydrogenation using an activated carbon as support.

    Science.gov (United States)

    Lederhos, Cecilia R; Badano, Juan M; Carrara, Nicolas; Coloma-Pascual, Fernando; Almansa, M Cristina; Liprandi, Domingo; Quiroga, Mónica

    2013-01-01

    Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX>PdNRX>PtClRX≫RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX=PdNRX>RuClRX>PtClRX, and it can be mainly attributed to thermodynamic effects. PMID:24348168

  20. Metal and Precursor Effect during 1-Heptyne Selective Hydrogenation Using an Activated Carbon as Support

    Directory of Open Access Journals (Sweden)

    Cecilia R. Lederhos

    2013-01-01

    Full Text Available Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX > PdNRX > PtClRX ≫ RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX = PdNRX > RuClRX > PtClRX, and it can be mainly attributed to thermodynamic effects.

  1. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.

    Science.gov (United States)

    Friis, Stig D; Lindhardt, Anders T; Skrydstrup, Troels

    2016-04-19

    , an array of low-pressure carbonylations were developed applying only near stoichiometric amounts of carbon monoxide. Importantly, carbon isotope variants of the CO precursors, such as (13)COgen, Sila(13)COgen, or even (14)COgen, provide a simple means for performing isotope-labeling syntheses. Finally, the COware applicability has been extended to reactions with other gases, such as hydrogen, CO2, and ethylene including their deuterium and (13)C-isotopically labeled versions where relevant. The COware system has been repeatedly demonstrated to be a valuable reactor for carrying out a wide number of transition metal-catalyzed transformations, and we believe this technology will have a significant place in many organic research laboratories.

  2. The STM4195 Gene Product (PanS) Transports Coenzyme A Precursors in Salmonella enterica

    OpenAIRE

    Ernst, Dustin C.; Downs, Diana M.

    2015-01-01

    Coenzyme A (CoA) is a ubiquitous coenzyme involved in fundamental metabolic processes. CoA is synthesized from pantothenic acid by a pathway that is largely conserved among bacteria and eukaryotes and consists of five enzymatic steps. While higher organisms, including humans, must scavenge pantothenate from the environment, most bacteria and plants are capable of de novo pantothenate biosynthesis. In Salmonella enterica, precursors to pantothenate can be salvaged, but subsequent intermediates...

  3. Minocycline inhibits the production of the precursor form of nerve growth factor by retinal microglial cells

    Institute of Scientific and Technical Information of China (English)

    Xiaochun Yang; Xuanchu Duan

    2013-01-01

    A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells, glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis.

  4. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  5. Production of activated carbons from coffee endocarp by CO2 and steam activation

    International Nuclear Information System (INIS)

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  6. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  7. Restoration of a Freshwater Wetland on Subsided Peat Soils: Potential Effects on Release of Dissolved Organic Carbon and Disinfection Byproduct Precursors

    Science.gov (United States)

    Fleck, J.; Fujii, R.; Bossio, D.

    2002-12-01

    In 1997, a wetland restoration demonstration project began on Twitchell Island in the Sacramento-San Joaquin Delta (Delta), California, to examine the effects of a permanently flooded, freshwater wetland on peat soil subsidence. Conversion from agriculture to wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) production, release, and transport from the peat soils, relative to the previous agricultural land uses. This study explores the effects of agricultural and wetland management on peat soil biogeochemistry of DOC and disinfection byproduct (DBP) precursor release. DBPs [e.g. trihalomethanes (THMs)] form when chlorine reacts with the natural organic matter present in source drinking water. Many DBPs are carcinogenic and mutagenic and pose a potential threat to more than 22 million Californians whose drinking water is diverted from the Delta. Results indicate that previous drainage practices substantially affected the quantity of water-soluble DOC currently extractable from Delta peat soils and ranged from 0.40 mg C (carbon)/g soil for well-drained soils to 0.76 mg C/g soil for poorly drained soils. Present management also affects the propensity of this DOC to form DBPs. The following values for DBP formation were measured for a variety of soil types and depths (all values are medians in mmole THMs produced/mole C): well-drained agricultural field (7.7 plow layer, 7.9 below plow layer), poorly drained agricultural field (7.0 plow layer, 8.7 below plow layer), open-water wetland (12.8 sediment, 10.1 underlying soil), and vegetated wetland (11.3 sediment, 7.7 underlying soil). Sources of organic matter inputs and decomposition pathways seem to be important factors in DBP precursor formation and release when DOC loadings are of similar magnitude. These results indicate that soil conditions have a greater effect on DOC and DBP loadings than any differences caused by conversion from agriculture to wetland, which is of

  8. 5-Azacytidine acts directly on both erythroid precursors and progenitors to increase production of fetal hemoglobin.

    OpenAIRE

    Humphries, R K; Dover, G; Young, N S; Moore, J G; Charache, S.; Ley, T; Nienhuis, A W

    1985-01-01

    The effect of 5-azacytidine on erythroid precursors and progenitors was studied in nine patients with sickle cell anemia or severe thalassemia. Each patient received the drug intravenously for 5 or 7 d. 5-Azacytidine caused a four- to sixfold increase in gamma-messenger RNA concentration in bone marrow cells of eight of the nine patients and decreased the methylation frequency of a specific cytosine residue in the gamma-globin gene promoter in all nine patients. Within 2 d of the start of dru...

  9. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of 'polymer-induced liquid precursor' processes.

    Science.gov (United States)

    Wolf, Stephan E; Leiterer, Jork; Pipich, Vitaliy; Barrea, Raul; Emmerling, Franziska; Tremel, Wolfgang

    2011-08-17

    The impact of the ovo proteins ovalbumin and lysozyme--present in the first stage of egg shell formation--on the homogeneous formation of the liquid amorphous calcium carbonate (LACC) precursor, was studied by a combination of complementing methods: in situ WAXS, SANS, XANES, TEM, and immunogold labeling. Lysozyme (pI = 9.3) destabilizes the LACC emulsion whereas the glycoprotein ovalbumin (pI = 4.7) extends the lifespan of the emulsified state remarkably. In the light of the presented data: (a) Ovalbumin is shown to behave commensurable to the 'polymer-induced liquid precursor' (PILP) process proposed by Gower et al. Ovalbumin can be assumed to take a key role during eggshell formation where it serves as an effective stabilization agent for transient precursors and prevents undirected mineralization of the eggshell. (b) It is further shown that the emulsified LACC carries a negative surface charge and is electrostatically stabilized. (c) We propose that the liquid amorphous calcium carbonate is affected by polymers by depletion stabilization and de-emulsification rather than 'induced' by acidic proteins and polymers during a so-called polymer-induced liquid-precursor process. The original PILP coating effect, first reported by Gower et al., appears to be a result of a de-emulsification process of a stabilized LACC phase. The behavior of the liquid amorphous carbonate phase and the polymer-induced liquid-precursor phase itself can be well described by colloid chemical terms: electrostatic and depletion stabilization and de-emulsification by depletion destabilization. PMID:21736300

  10. Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications

    Science.gov (United States)

    Bhandavat, Romil

    Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 mum 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents

  11. The carbon footprint of indoor Cannabis production

    International Nuclear Information System (INIS)

    The emergent industry of indoor Cannabis production – legal in some jurisdictions and illicit in others – utilizes highly energy intensive processes to control environmental conditions during cultivation. This article estimates the energy consumption for this practice in the United States at 1% of national electricity use, or $6 billion each year. One average kilogram of final product is associated with 4600 kg of carbon dioxide emissions to the atmosphere, or that of 3 million average U.S. cars when aggregated across all national production. The practice of indoor cultivation is driven by criminalization, pursuit of security, pest and disease management, and the desire for greater process control and yields. Energy analysts and policymakers have not previously addressed this use of energy. The unchecked growth of electricity demand in this sector confounds energy forecasts and obscures savings from energy efficiency programs and policies. While criminalization has contributed to the substantial energy intensity, legalization would not change the situation materially without ancillary efforts to manage energy use, provide consumer information via labeling, and other measures. Were product prices to fall as a result of legalization, indoor production using current practices could rapidly become non-viable. - Highlights: ► The emergent industry of indoor Cannabis production utilizes highly energy intensive processes and is highly inefficient. ► In the United States, this represents an annual energy expenditure of $6 billion. ► One kg of final product is associated with emissions of 4600 kg of CO2 emissions to the atmosphere. ► Aggregate U.S. emissions are equivalent those of 3 million cars. ► Energy analysts and policymakers have not previously addressed this use of energy.

  12. Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors.

    Science.gov (United States)

    Akhter, Fardausi; McGarvey, Brian; Macfie, Sheila M

    2012-12-15

    Cadmium (Cd) is a non-essential trace element and its environmental concentrations are approaching toxic levels, especially in some agricultural soils. Understanding how and where Cd is stored in plants is important for ensuring food safety. In this study, we examined two plant species that differ in the distribution of Cd among roots and leaves. Lettuce and barley were grown in nutrient solution under two conditions: chronic (4 weeks) exposure to a low, environmentally relevant concentration (1.0 μM) of Cd and acute (1 h) exposure to a high concentration (5.0 mM) of Cd. Seedlings grown in solution containing 1.0 μM CdCl₂ did not show symptoms of toxicity and, at this concentration, 77% of the total Cd was translocated to leaves of lettuce, whereas only 24% of the total Cd was translocated to barley leaves. We tested the hypothesis that differential accumulation of Cd in roots and leaves is related to differential concentrations of phytochelatins (PCs), and its precursor peptides. The amounts of PCs and their precursor peptides in the roots and shoots were measured using HPLC. Each of PC₂₋₄ was synthesized in the barley root upon chronic exposure to Cd and did not increase further upon acute exposure. In the case of lettuce, no PCs were detected in the root given either Cd treatment. The high amounts of PCs produced in barley root could have contributed to preferential retention of Cd in barley roots.

  13. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    extraction products indicated that they had the requisite properties of viable carbon-product precursors.

  14. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  15. Enhancement of enterotoxin production by carbon dioxide in Vibrio cholerae.

    OpenAIRE

    Shimamura, T; Watanabe, S; Sasaki, S.

    1985-01-01

    We found that Vibrio cholerae 569B produced much more cholera enterotoxin in the presence of added carbon dioxide than in its absence. An atmosphere of 10% carbon dioxide was optimal for maximal enterotoxin production.

  16. Production of activated carbon and its catalytic application for oxidation of hydrogen sulphide

    Science.gov (United States)

    Azargohar, Ramin

    Hydrogen sulphide is an environmentally hazardous gas which is present in many gas streams associated with oil and gas industry. Oxidation of H 2S to sulphur in air produces no bulky or waste material and requires no further purification. Activated carbon is known as a catalyst for this reaction. In this research, a coal-based precursor (luscar char) and a biomass-based precursor (biochar) were used for production of activated carbons by two common methods of activation: physical and chemical activation in which steam and potassium hydroxide (KOH), respectively, were used. Experiments were designed by the statistical central composite design method. Two models were developed for the BET surface area and reaction yield of each activation process. These models showed the effects of operating conditions, such as activation temperature, mass ratio of activating agent to precursor, activation time, and nitrogen flowrate on the BET surface area and reaction yield for each activation method for each precursor. The optimum operating conditions were calculated using these models to produce activated carbons with relatively large BET surface area (> 500 m2/g) and high reaction yield (> 50 wt %). The BET surface area and reaction yield for activated carbons produced at optimum operating conditions showed maximum 7 and 7.4% difference, respectively, comparing to the values predicted by models. The activated carbons produced at optimum operating conditions were used as the base catalysts for the direct oxidation of 1 mol % hydrogen sulphide in nitrogen to sulphur at the temperature range of 160-205°C and pressure of 700 kPa. Originally activated carbons showed a good potential for oxidation of hydrogen sulphide by their selectivity for sulphur product and low amount of sulphur dioxide production. To improve the performance of steam-activated carbons, the catalysts were modified by acid-treatment followed by thermal desorption. This method increased the break-through times for

  17. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    Science.gov (United States)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  18. Optimization of engineered production of the glucoraphanin precursor dihomomethionine in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Crocoll, Christoph; Mirza, Nadia Muhammad Akram; Reichelt, Michael;

    2016-01-01

    of the large subunit (LSU1) of the heterodimeric isopropylmalate isomerase and (2) coexpression of BAT5 transporter for efficient transfer of intermediates across the chloroplast membrane. We succeeded in raising dihomomethionine (DHM) levels to a maximum of 432 nmol g(-1) fresh weight that is equivalent...... to a ninefold increase compared to the highest production of this intermediate, as previously reported (Mikkelsen et al., 2010). The increased DHM production without increasing leucine-derived side-product levels provides new metabolic engineering strategies for improved glucoraphanin production...

  19. Synthesis of carbon nanotubes by catalytic pyrolysis method with Feitknecht compound as precursor of NiZnAl catalyst

    Institute of Scientific and Technical Information of China (English)

    Yan Xiaoqi; Liu Quanrun; Zhang Songlin; Zhang Kun; Chen Jiuling; Li Yongdan

    2004-01-01

    Carbon nanotubes are synthesized by catalytic pyrolysis method with a kind of new type catalyst--nickel-zinc-alumina catalyst prepared from Feitknecht compound. Tubular carbon nanotubes, bamboo-shaped carbon naotubes, herringbone carbon nanotubues and branched carbon nanotubes are all found formed at moderate temperature. It is important for the formation of quasi-liquid state of the metal nanoparticles at the tip of carbon naotubes during the growth of carbon nanotubes to lead to different kinds of carbon nanotubes. It is likely that the addition of zinc make the activity of nickel catalyst after calcinations and reduction changed strangely.

  20. Influence of Cobalt Precursor on Efficient Production of Commercial Fuels over FTS Co/SiC Catalyst

    Directory of Open Access Journals (Sweden)

    Ana Raquel de la Osa

    2016-07-01

    Full Text Available β-SiC-supported cobalt catalysts have been prepared from nitrate, acetate, chloride and citrate salts to study the dependence of Fischer–Tropsch synthesis (FTS on the type of precursor. Com/SiC catalysts were synthetized by vacuum-assisted impregnation while N2 adsorption/desorption, XRD, TEM, TPR, O2 pulses and acid/base titrations were used as characterization techniques. FTS catalytic performance was carried out at 220 °C and 250 °C while keeping constant the pressure (20 bar, space velocity (6000 Ncm3/g·h and syngas composition (H2/CO:2. The nature of cobalt precursor was found to influence basic behavior, extent of reduction and metallic particle size. For β-SiC-supported catalysts, the use of cobalt nitrate resulted in big Co crystallites, an enhanced degree of reduction and higher basicity compared to acetate, chloride and citrate-based catalysts. Consequently, cobalt nitrate provided a better activity and selectivity to C5+ (less than 10% methane was formed, which was centered in kerosene-diesel fraction (α = 0.90. On the contrary, catalyst from cobalt citrate, characterized by the highest viscosity and acidity values, presented a highly dispersed distribution of Co nanoparticles leading to a lower reducibility. Therefore, a lower FTS activity was obtained and chain growth probability was shortened as observed from methane and gasoline-kerosene (α = 0.76 production when using cobalt citrate.

  1. Effects of humoral factors on amplification of nonrecognizable erythrocytic and granulocytic precursors. [Rats, radiation effects on blood cell production

    Energy Technology Data Exchange (ETDEWEB)

    Cronkite, E P; Carsten, A L; Cohen, R; Miller, M E; Moccia, G

    1978-01-01

    The purpose of these studies was to evaluate the effects of humoral factors on amplification of nonrecognizable erythrocytic and granulocytic precursors using the in vivo plasma clot diffusion chamber and the in vitro plasma clot culture methods. Plasma erythropoietin levels changes in the reticulocyte concentration and hematocrits of irradiated and non-irradiated Long-Evans rats exposed to hypoxia were also determined. While erythropoietin plasma levels appeared to effect BFU-E and CFU-E growth, results suggest erythropoietin may not be the sole regulator of red cell production and that inhibitors or chalone-like mechanisms may be involved. Measurements made on granulocyte precursors treated with CSF containing L-cell conditioned medium revealed granulocytic colonies and burst-like formations, similar to those seen for erythrocytic growth. There is strong evidence suggesting that CSF is a regulator of granulopoiesis; however, it is not the sole regulator and it appears that inhibitors may play an in vivo role. Growth of colonies with cell numbers not a power of 2 implies either asymmetric nitosis due to loss of genetic information required for continuing division, or differences in concentration of, or ability to recognize inhibitory factors. These possibilities are examined on the basis of results using in vivo and in vitro culture techniques.

  2. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Sabine A.E. Heider

    2014-08-01

    Full Text Available The biotechnologically relevant bacterium C. glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP and its isomer dimethylallyl pyrophosphate (DMAPP, are synthesized in this organism via the methylerythritol phosphate (MEP or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various nonnative C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP astaxanthin could be produced in the mg per g cell dry weight range when the endogenous genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4 oxygenase from Brevundimonas aurantiaca.

  3. Optimization of supercritical dimethyl carbonate method for biodiesel production

    OpenAIRE

    Ilham, Zul; Saka, Shiro

    2012-01-01

    Biodiesel could be produced from triglycerides and dimethyl carbonate, instead of the conventional methanol, in this non-catalytic supercritical dimethyl carbonate method. It was demonstrated that, supercritical dimethyl carbonate method successfully converted triglycerides as well as fatty acids to fatty acid methyl esters (FAME) with glycerol carbonate, a higher value by-product compared to the conventional glycerol. The FAME are high in yield, comparable with supercritical methanol method,...

  4. Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana.

    Science.gov (United States)

    Crocoll, Christoph; Mirza, Nadia; Reichelt, Michael; Gershenzon, Jonathan; Halkier, Barbara Ann

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our goal of creating a rich source of glucoraphanin for dietary supplements, we have previously reported the feasibility of engineering glucoraphanin in Nicotiana benthamiana through transient expression of glucoraphanin biosynthetic genes from A. thaliana (Mikkelsen et al., 2010). As side-products, we obtained fivefold to eightfold higher levels of chain-elongated leucine-derived glucosinolates, not found in the native plant. Here, we investigated two different strategies to improve engineering of the methionine chain elongation part of the glucoraphanin pathway in N. benthamiana: (1) coexpression of the large subunit (LSU1) of the heterodimeric isopropylmalate isomerase and (2) coexpression of BAT5 transporter for efficient transfer of intermediates across the chloroplast membrane. We succeeded in raising dihomomethionine (DHM) levels to a maximum of 432 nmol g(-1) fresh weight that is equivalent to a ninefold increase compared to the highest production of this intermediate, as previously reported (Mikkelsen et al., 2010). The increased DHM production without increasing leucine-derived side-product levels provides new metabolic engineering strategies for improved glucoraphanin production in a heterologous host. PMID:26909347

  5. Effects of Globalisation on Carbon Footprints of Products

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky

    2009-01-01

    of manufactured products when production is moved from United Kingdom or Denmark to China and uses environmental input-output analysis to calculate the carbon footprint in the bilateral trade between these countries. The results show that differences between the European and Chinese production systems can lead...... to substantial increases in the carbon footprint of the traded products, even without including the CO2 emissions from the associated transportation....

  6. Product carbon footprints and their uncertainties in comparative decision contexts.

    Directory of Open Access Journals (Sweden)

    Patrik J G Henriksson

    Full Text Available In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp. farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance.

  7. Intensification to reduce the carbon footprint of smallholder milk production

    NARCIS (Netherlands)

    Udo, Henk; Weiler, Viola; Modupeore, Ogun; Viets, Theo; Oosting, Simon

    2016-01-01

    Will the intensification of cattle-keeping lower the carbon footprint of milk production in resource-poor environments? The authors included the multiple functions of cattle in carbon footprint estimates of milk production in farming systems with different degrees of intensification in Kenya. The

  8. Cutting Edge: Developmental Regulation of IFN-γ Production by Mouse Neutrophil Precursor Cells.

    Science.gov (United States)

    Sturge, Carolyn R; Burger, Elise; Raetz, Megan; Hooper, Lora V; Yarovinsky, Felix

    2015-07-01

    Neutrophils are an emerging cellular source of IFN-γ, a key cytokine that mediates host defense to intracellular pathogens. Production of IFN-γ by neutrophils, in contrast to lymphoid cells, is TLR- and IL-12-independent and the events associated with IFN-γ production by neutrophils are not understood. In this study, we show that mouse neutrophils express IFN-γ during their lineage development in the bone marrow niche at the promyelocyte stage independently of microbes. IFN-γ accumulates in primary neutrophilic granules and is released upon induction of degranulation. The developmental mechanism of IFN-γ production in neutrophils arms the innate immune cells prior to infection and assures the potential for rapid release of IFN-γ upon neutrophil activation, the first step during responses to many microbial infections. PMID:26026057

  9. Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.

    Science.gov (United States)

    Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

    2013-04-01

    A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms.

  10. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin

    2014-03-31

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber‐cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long‐term durability and reduce energy and emission. For a reaction within a 24‐hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60‐80% in 4‐hour carbon dioxide curing and improve the resistance to freeze‐thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO{sub 2} in carbon utilization. By the use of self‐concentrating absorption technology, high purity CO{sub 2} can be produced at a price below $40/t. With low cost CO{sub 2} capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO{sub 2}/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  11. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  12. Production of carbon nano-tubes via CCVD method and their corrosion protection performance in epoxy based coatings

    Science.gov (United States)

    Raza, M. A.; Ghauri, F. A.; Awan, M. S.; Farooq, A.; Ahmad, R.

    2016-08-01

    Good yield of carbon products was obtained by catalytic chemical vapor deposition (CCVD) technique using 100-500mg of ferrocene catalyst at temperature of 900 °C and acetylene flow rate of 150-200cc/min. The effects of amount of ferrocene, temperature and hydrocarbons precursors on the yield of carbon nanomaterial's was calculated and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) andenergy- dispersive X-ray spectroscopy (EDS). Good yield of carbon nanomaterials primarily consisted of carbon nanotubes (CNTs) and carbon nanoparticles was obtained. CNTs obtained after purification were dispersed in epoxy resin to produce composite coatings which were coated on stainless steel 316L. The coated stainless steel samples’ corrosion behavior was studied using open circuit potential (OCP), cyclic polarization and electrochemical impedance spectroscopy (EIS) techniques. Results showed that epoxy coating containing 4 wt. % of CNTs offered improved corrosion resistance to stainless steel.

  13. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate.

    Science.gov (United States)

    Ilham, Zul; Saka, Shiro

    2016-01-01

    Conversion of glycerol from biodiesel production to glycerol carbonate was studied by esterification with dimethyl carbonate in a non-catalytic supercritical condition. It was found that in a non-catalytic supercritical condition, glycerol at higher purity gave higher yield of glycerol carbonate at 98 wt% after reaction at 300 °C/20-40 MPa/15 min. The yield of glycerol carbonate was observed to increase with molar ratio, temperature, pressure and time until a certain equilibrium limit. The existence of impurities such as water and remnants of alkaline catalyst in crude glycerol will direct the reaction to produce glycidol. Although impurities might not be desirable, the non-catalytic supercritical dimethyl carbonate could be an alternative method for conversion of glycerol from biodiesel production to value-added glycerol carbonate.Graphical abstractPlausible reaction scheme for conversion of glycerol to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. PMID:27386367

  14. Zeolite deactivation during hydrocarbon reactions: characterisation of coke precursors and acidity, product distribution

    OpenAIRE

    Wang, B.

    2008-01-01

    The catalytic conversion of hydrocarbons over zeolites has been applied in large scale petroleum-refining processes. However, there is always formation and retention of heavy by-products, called coke, which causes catalyst deactivation. This deactivation is due to the poisoning of the acid sites and/or pore blockage. The formation of coke on hydrocarbon processing catalysts is of considerable technological and economic importance and a great deal of work has been carried out to this study. Th...

  15. High-performance zno transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80-180 °c

    KAUST Repository

    Lin, Yenhung

    2013-06-25

    An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm2/Vs at temperatures <180°C. Because of its low temperature requirements the method allows processing of high-performance transistors onto temperature sensitive substrates such as plastic. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Various mechanisms in cyclopeptide production from precursors synthesized independently of non-ribosomal peptide synthetases

    Institute of Scientific and Technical Information of China (English)

    Wenyan Xu; Liling Li; Liangcheng Du; Ninghua Tan

    2011-01-01

    An increasing number of cyclopeptides have been discovered as products of ribosomal synthetic pathway.The biosynthetic study of these cyclopeptides has revealed interesting new mechanisms for cyclization.This review highlighted the recent discoveries in cyclization mechanisms for cyclopeptides synthesized independently of non-ribosomal peptide synthetases,including endopeptidase-catalyzed cyclization,intein-mediated cyclization,and peptide synthetase-catalyzed cyclization.This information may help to design hybrid ribosomal and non-ribosomal biosynthetic systems to produce novel cyclopeptides with various bioactivities.

  17. Optical monitoring of Disinfection By-product Precursors with Fluorescence Excitation-Emission Mapping (F-EEM): Practical Application Issues for Drinking, Waste and Reuse Water Industry

    Science.gov (United States)

    Gilmore, A. M.

    2012-12-01

    Drinking water, wastewater and reuse plants must deal with regulations associated with bacterial contamination and halogen disinfection procedures that can generate harmful disinfection by-products (DBPs) including trihalomethanes (THMs), haloacetic acids (HOAAs) and other compounds. The natural fluorescent chromophoric dissolved organic matter (CDOM) is regulated as the major DBP precursor. This study outlines the advantages and current limitations associated with optical monitoring of water treatment processes using tcontemporary Fluorescence Excitation-Emission Mapping (F-EEM). The F-EEM method coupled with practical peak indexing and multi-variate analyses is potentially superior in terms of cost, speed and sensitivity over conventional total organic carbon (TOC) meters and specific UV-absorbance (SUVA) measurements. Hence there is strong interest in developing revised environmental regulations around the F-EEM technique instruments which can incidentally simultaneously measure the SUVA and DOC parameters. Importantly, the F-EEM technique, compared to the single-point TOC and SUVA signals can resolve CDOM classes distinguishing those that strongly cause DBPs. The F-EEM DBP prediction method can be applied to surface water sources to evaluate DBP potential as a function of the point sources and reservoir depth profiles. It can also be applied in-line to rapidly adjust DOC removal processes including sedimentation-flocculation, microfiltration, reverse-osmosis, and ozonation. Limitations and interferences for F-EEMs are discussed including those common to SUVA and TOC in contrast to the advantages including that F-EEMs are less prone to interferences from inorganic carbon and metal contaminations and require little if any chemical preparation. In conclusion, the F-EEM method is discussed in terms of not only the DBP problem but also as a means of predicting (concurrent to DBP monitoring) organic membrane fouling in water-reuse and desalination plants.

  18. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  19. Fabrication and Properties of Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Xiaosong Huang

    2009-12-01

    Full Text Available This paper reviews the research and development activities conducted over the past few decades on carbon fibers. The two most important precursors in the carbon fiber industry are polyacrylonitrile (PAN and mesophase pitch (MP. The structure and composition of the precursor affect the properties of the resultant carbon fibers significantly. Although the essential processes for carbon fiber production are similar, different precursors require different processing conditions in order to achieve improved performance. The research efforts on process optimization are discussed in this review. The review also attempts to cover the research on other precursor materials developed mainly for the purpose of cost reduction.

  20. 一种适于碳纳米管制备的绿色前驱体%A green precursor for carbon nanotube synthesis

    Institute of Scientific and Technical Information of China (English)

    S.Paul; S.K.Samdarshi

    2011-01-01

    The present work aims to explore a natural renewable precursor for the synthesis of multiwalled carbon nanotubes ( MWCNTs), conforming to the principles of green chemistry. MWCNTs were synthesized by chemical vapor deposition using a natural renewable precursor ( coconut oil). Nitrogen gas was used as an inert atmosphere as well as a carrier for the evaporated precursor (flow rate: 100mL/min). The synthesized MWCNTs are characterized by scanning and transmission electron microscopy, electron dispersive X-ray analysis, and Raman spectroscopy. The diameters of the synthesized nanotubes are in the range of 80 nm to 90 nm under optimum conditions.%根据绿色化学原理尝试探索一种合成多壁碳纳米管的天然可再生前驱体.应用化学气相沉积(CVD)法,采用一种天然可再生前躯体(椰仁油),通过系列步骤合成了MWCNTs.氮气既作为气化前驱体载气(气体流速:100mL/min)又维持合成在惰性氛围中进行.合成的MWCNTs使用SEM、EDX、TEM和Raman表征,最佳条件下得到的碳纳米管直径为80nm~90nm.

  1. Synthesis of Ni/Mg/Al Layered Double Hydroxides and Their Use as Catalyst Precursors in the Preparation of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yun; JIAO Qing-ze; LIANG Ji; LI Chun-hua

    2005-01-01

    Ni/Mg/Al layered double hydroxides(LDHs) with different n(Ni):n(Mg):n(Al) ratio values were prepared via a coprecipitation reaction. Then Ni/Mg/Al mixed oxides were obtained by calcination of these LDHs precursors. Carbon nanotubes were produced in the catalytic decomposition of propane over the Ni/Mg/Al mixed oxide catalysts. The quality of as-made nanotubes was investigated by SEM and TEM. The nanotubes were multiwall with a high length-diameter ratio and appeared to be flexible. The catalytic activities of these mixed oxides increased with increasing the Ni content. The Ni/Mg/Al mixed oxide with the highest Ni content [n(Ni)/n(Mg)/n(Al)=1/1/1] showed the highest activity and the carbon nanotubes grown on its surface had the best quality.

  2. Solubility Products of M(II) - Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Grauer, Rolf; Berner, Urs [ed.

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author) translated from a PSI internal report written in German in 1994 (TM-44-94-05). 5 figs., 1 tab., 68 refs.

  3. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  4. High speed production of YBCO precursor films by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    YBa2Cu3O7-y (YBCO) long tapes derived from the metal-organic deposition (MOD) method using the starting solution containing trifluoroacetate (TFA) have been developed with high critical currents (Ic) over 200 A/cm-width. However, high speed production of YBCO films is simultaneously necessary to satisfy the requirements of electric power device applications in terms of cost and the amounts of the tapes. In this work, we developed a new TFA-MOD starting solution using F-free salt of Y, TFA salt of Ba and Cu-Octylate for application to the coating/calcination process and discussed several issues by using the Multi-turn (MT) Reel-to-Reel (RTR) system calcination furnace for the purpose of high throughput without degradation of the properties. The coating system was improved for uniform deposition qualities in both longitudinal and transversal directions. YBCO films using the new starting solution at the traveling rate of 10 m/h in coating/calcination by the MT-RTR calcination furnace showed the values of the critical current density of 1.6 MA/cm2 as thick as 1.5 μm at 77 K under the self fields after firing at the high heating rate in the crystallization.

  5. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    Science.gov (United States)

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure.

  6. The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors

    Science.gov (United States)

    Fujimoto, Hiroyuki; Tokumitsu, Katsuhisa; Mabuchi, Akihiro; Chinnasamy, Natarajan; Kasuh, Takahiro

    The hard carbon is attractive for the Li ion secondary battery because of its higher capacity than the theoretical value of 372 Ah kg -1 based on the composition of stage 1 Li-intercalated graphite, LiC 6. However, the structure of hard carbon as an anode has not been optimized and the reaction mechanism also has not been clarified in detail. In the present study, the structure of hard carbon derived from oxygen-containing coal tar pitch was investigated by X-ray diffraction, small angle scattering and density measurement, and the relationship between the structure of hard carbon and its anode performance was discussed.

  7. Process for the production of sodium carbonate anhydrate

    NARCIS (Netherlands)

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m<3>, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of

  8. Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Joshua P., E-mail: jpnewell@umich.edu [School of Natural Resources and Environment, University of Michigan, Ann Arbor (United States); Vos, Robert O., E-mail: vos@usc.edu [Spatial Sciences Institute, University of Southern California (United States)

    2012-11-15

    Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a 'carbon neutral' flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: Black-Right-Pointing-Pointer Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. Black-Right-Pointing-Pointer The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. Black-Right-Pointing-Pointer Life cycle inventories and product carbon footprint protocols need more comprehensive land

  9. Biomimetic synthesis for precursor of muscone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Muscone is a precious fragrant compound scarce in nature. Many attempts have been made to synthesize this unique natural product. In this work, the one- carbon unit transfer reaction of tetrahydrofolate coenzyme was initiated. Benzimidazolium salt was used as the tetrahydrofolate coenzyme model at formic acid oxidation level and di-Grignard reagent as the nucleophile to which one-carbon unit was transferred; the biomimetic synthesis of 2,15- hexade-canedione, a precursor of muscone, was successfully accomplished by using the addition-hydrolysis reaction of benzimidazolium salt with Grignard reagent. And an impor-tant useful method for the synthesis of muscone is provided.

  10. DOC, Color and Disinfection By-Product Precursor Dynamics along an Urbanization Gradient, Croton Water Supply System, New York, USA

    Science.gov (United States)

    Hassett, J. M.; Mitchell, M. J.; Burns, D. A.; Heisig, P. M.

    2005-05-01

    Hydrologic processes in suburban watersheds and their effects on water quality warrant investigation. Biweekly and storm samples were collected and analyzed for base cations, selected anions, and DOC over a one-year period at the outlet of three small (37 - 55 ha) watersheds (one forested, two with different degrees of suburban development) in the Croton Watershed, southeastern New York. Less frequent sampling for Pt/Co color and disinfection by-product precursors (DBPs) were also conducted. Median baseflow concentrations (>3 days since rainfall) of DOC were similar, ranging from 2.1 to 1.8 to 1.7 mg L -1 for the most urbanized to the forested watershed, respectively. On a unit area load basis (kg ha-1 yr-1), the range was from 8.9 to 6.4 to 5.1, again from most urbanized to forested watershed. All three watersheds showed similar storm responses, with evidence for a flushing mechanism in that DOC concentration increased with increasing discharge. Pt/Co color and DBPs (determined as both total trihalomethane and total haloacetic acid formation potentials) showed similar storm behavior, although the range of response was greater than observed for DOC, suggesting a labile DOC fraction was mobilized during storm events. The more urbanized watersheds tended to favor brominated over chlorinated forms of DBPs; the reasons for this are unclear.

  11. Acute Exposure to a Precursor of Advanced Glycation End Products Induces a Dual Effect on the Rat Pancreatic Islet Function

    Directory of Open Access Journals (Sweden)

    Ghada Elmhiri

    2014-01-01

    Full Text Available Aim. Chronic diseases are the leading cause of death worldwide. Advanced glycation end products, known as AGEs, are a major risk factor for diabetes onset and maintenance. Methylglyoxal (MG, a highly reactive metabolite of glucose, is a precursor for the generation of endogenous AGEs. Methods. In this current study we incubated in vitro pancreatic islets from adult rats in absence or presence of MG (10 μmol/l with different concentrations of glucose and different metabolic components (acetylcholine, epinephrine, potassium, forskolin, and leucine. Results. Different effects of MG on insulin secretion were evidenced. In basal glucose stimulation (5.6 mM, MG induced a significant (P<0.05 increase of insulin secretion. By contrast, in higher glucose concentrations (8.3 mM and 16.7 mM, MG significantly inhibited insulin secretion (P<0.05. In the presence of potassium, forskolin, and epinephrine, MG enhanced insulin secretion (P<0.05, while when it was incubated with acetylcholine and leucine, MG resulted in a decrease of insulin secretion (P<0.05. Conclusion. We suggest that MG modulates the secretion activity of beta-cell depending on its level of stimulation by other metabolic factors. These results provide insights on a dual acute effect of MG on the pancreatic cells.

  12. Design of a "green" one-step catalytic production of epsilon-caprolactam (precursor of nylon-6).

    Science.gov (United States)

    Thomas, John Meurig; Raja, Robert

    2005-09-27

    The ever-increasing industrial demand for nylon-6 (polycaprolactam) necessitates the development of environmentally benign methods of producing its precursor, epsilon-caprolactam, from cyclohexanone. It is currently manufactured in two popular double-step processes, each of which uses highly aggressive reagents, and each generates substantial quantities of largely unwanted ammonium sulfate as by-product. Here we describe a viable laboratory-scale, single-step, solvent-free process of producing epsilon-caprolactam using a family of designed bifunctional, heterogeneous, nanoporous catalysts containing isolated acidic and redox sites, which smoothly convert cyclohexanone to epsilon-caprolactam with selectivities in the range 65-78% in air and ammonia at 80 degrees C. The catalysts are microporous (pore diameter 7.3 A) aluminophosphates in which small fractions of the Al(III)O4(5-) and P(V)O4(3-) tetrahedra constituting the 4-connected open framework are replaced by Co(III)PO4(5-) and Si(IV)O4(4-) tetrahedra, which become the loci of the redox and acidic centers, respectively. The catalysts may be further optimized, and already may be so designed as to generate selectivities of approximately 80% for the intermediate oxime, formed from NH2OH, which is produced in situ within the pore system. The advantages of such designed heterogeneous catalysts, and their application to a range of other chemical conversions, are also adumbrated.

  13. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The...

  14. The source of carbon dioxide for gastric acid production.

    Science.gov (United States)

    Steer, Howard

    2009-01-01

    The source of carbon dioxide for the chemical reaction leading to the production of gastric acid is unknown. The decarboxylation of an amino acid releases carbon dioxide. Pepsinogens provide a rich source of the amino acid arginine. Both the source of carbon dioxide, arginine, and the consequence of arginine decarboxylation, agmatine, have been studied. The site of carbon dioxide production has been related to the survival of the parietal cell. An immunohistochemical study has been carried out on glycol methacrylate embedded gastric biopsies from the normal stomach of 38 adult patients. The sections have been stained using polyclonal antibody to pepsinogen II, polyclonal antibody to agmatine, and polyclonal antibody to Helicobacter pylori. Pepsinogen II and agmatine are found in the parietal cell canaliculi. This is consistent with the production of carbon dioxide from arginine in the parietal cell canaliculi. Evidence is presented for the decarboxylation of arginine derived from the activation segment of pepsinogen as the source of carbon dioxide for the production of gastric acid. The production of carbon dioxide by the decarboxylation of arginine in the parietal cell canaliculus enables the extracellular hydration of carbon dioxide at the known site of carbonic anhydrase activity. The extracellular production of acid in the canaliculus together with the presence of agmatine helps to explain why the parietal cells are not destroyed during the formation of gastric acid. Agmatine is found in the mucus secreting cells of the stomach and its role in acid protection of the stomach is discussed. Anat Rec, 2009. (c) 2008 Wiley-Liss, Inc. PMID:18951509

  15. Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor.

    Science.gov (United States)

    To, John W F; He, Jiajun; Mei, Jianguo; Haghpanah, Reza; Chen, Zheng; Kurosawa, Tadanori; Chen, Shucheng; Bae, Won-Gyu; Pan, Lijia; Tok, Jeffrey B-H; Wilcox, Jennifer; Bao, Zhenan

    2016-01-27

    Carbon capture and sequestration from point sources is an important component in the CO2 emission mitigation portfolio. In particular, sorbents with both high capacity and selectivity are required for reducing the cost of carbon capture. Although physisorbents have the advantage of low energy consumption for regeneration, it remains a challenge to obtain both high capacity and sufficient CO2/N2 selectivity at the same time. Here, we report the controlled synthesis of a novel N-doped hierarchical carbon that exhibits record-high Henry's law CO2/N2 selectivity among physisorptive carbons while having a high CO2 adsorption capacity. Specifically, our synthesis involves the rational design of a modified pyrrole molecule that can co-assemble with the soft Pluronic template via hydrogen bonding and electrostatic interactions to give rise to mesopores followed by carbonization. The low-temperature carbonization and activation processes allow for the development of ultrasmall pores (d carbon-based materials for various potential applications. PMID:26717034

  16. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, M., E-mail: m.suarez@cinn.e [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Fernandez, A. [Fundacion ITMA, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Menendez, J.L.; Torrecillas, R. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-03-18

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 {sup o}C by the chlorides route, whereas alkoxide precursors needed firing over 900 {sup o}C and nitrates even over 1100 {sup o}C. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 {sup o}C with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  17. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    International Nuclear Information System (INIS)

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 oC by the chlorides route, whereas alkoxide precursors needed firing over 900 oC and nitrates even over 1100 oC. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 oC with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  18. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  19. Production of activated carbon from microalgae

    OpenAIRE

    Hernández Férez, María del Remedio; Valdés Barceló, Francisco Javier; García Cortés, Ángela Nuria; Marcilla Gomis, Antonio; Chápuli Fernández, Eloy

    2008-01-01

    Presentado como póster en el 11th Mediterranean Congress of Chemical Engineering, Barcelona 2008. Resumen publicado en el libro de actas del congreso. Activated carbon is an important filter material for the removal of different compounds such as hazardous components in exhaust gases, for purification of drinking water, waste water treatment, adsorption of pollution from liquid phases, in catalysis, electrochemistry or for gas storage and present an important demand. Theoretically, activat...

  20. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  1. Carbon Footprint Analysis for a GRAPE Production Case Study

    Science.gov (United States)

    Sirca, C.; Marras, S.; Masia, S.; Duce, P.; Zara, P.; Spano, D.

    2013-12-01

    Agriculture activities can play a double role in emitting or sequestering carbon from the atmosphere. Mitigation of greenhouse gas (GHG) emissions in agriculture is one of the most urgent research subjects in the framework of enhancing environmental stewardship. However, little is known about the role of the agriculture in the global carbon balance, since most of the studies applied the Eddy Covariance technique in natural or semi-natural ecosystems to investigate their role in mitigate the anthropogenic carbon release. The application of the Eddy Covariance technique in agricultural systems could greatly improve our knowledge about their role on the global carbon budget and help in modeling the related processes. In addition, there is a growing request from producers, trade companies, and customers on the assessment of the environmental impact of a production process related to agricultural high quality products. In recent years, particular attention was put on the estimation of GHG emissions deriving from productive processes. In this context, a useful tool is the Life Cycle Assessment (LCA), which represents a methodology to estimate GHG emissions related to the entire life cycle of a product. The Carbon Footprint (CF) analysis represents a subset of the LCA, which only considers CO2 emissions with an impact on climate change. With respect to the wine industry, most of studies focused on the CF analysis related to the wine making process in the cellar, while a few studies analyzed the GHG emissions related to the grape production. The aim of this work was to quantify the CO2 emissions due to the grape production and emphasize the double role of a vineyard as a carbon sink or source. An Eddy Covariance station was set up in a representative vineyard located in the Mediterranean Basin (Sardinia, Italy) to measure the net carbon exchange between the surface and the atmosphere. The CF analysis was also conducted to compute the carbon balance of the grape production

  2. Effect of precursor on the pore structure of carbon foams%前驱体对炭泡沫孔结构的影响

    Institute of Scientific and Technical Information of China (English)

    闵振华; 曹敏; 张书; 王秀丹; 王永刚

    2007-01-01

    Carbon foams were prepared from coal tar pitch, petroleum mesophase pitch, and AR pitch. The molecular weights of the precursors were determined by gel permeation chromatography. Foam structure, average pore diameter and pore diameter distribution were investigated by scanning electron and optical microscopy. It was found that coal tar pitch could not be used as-received to prepare useful carbon foams because of their higher quinoline insoluble (QI) fraction. The carbon foams with homogeneous open pores and microscopic domains were obtained from AR pitch and petroleum mesophase pitch. Carbon foams prepared from AR pitch exhibited a smaller average pore diameter (212 μm),thinner cell walls, a narrower pore diameter distribution ( 180 -300 μm), higher open-cell ratio, and better ligaments compared with those from the other pitches. It is concluded that a precursor with low molecular weight, narrow molecular weight distribution, and low QI content is favorable for the preparation of carbon foams.%分别以煤沥青、石油中间相沥青和AR沥青为前驱体制备炭泡沫材料.采用GPC测定前驱体分子量,SEM观察所制炭泡沫的孔结构,光学显微镜测量所制炭泡沫的孔径及其分布.结果发现,由于煤焦油沥青不含中间相,且QI含量较高,导致在实验条件下不能直接制备出合格的炭泡沫.以石油中间相沥青和AR沥青为原料均能制备出具有分布均匀开孔结构,且微观各向异性的炭泡沫.由AR沥青制备的炭泡沫呈现平均孔径较小(212 μm)、孔壁较薄、孔径分布较窄(180 μm~300 μm)、开孔率较高、以及韧带排列较规整等特点,表明低QI含量、低分子量且分布较窄的前驱体有利于发泡.

  3. Net carbon flux in organic and conventional olive production systems

    Science.gov (United States)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  4. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate

    OpenAIRE

    Ilham, Zul; Saka, Shiro

    2016-01-01

    Conversion of glycerol from biodiesel production to glycerol carbonate was studied by esterification with dimethyl carbonate in a non-catalytic supercritical condition. It was found that in a non-catalytic supercritical condition, glycerol at higher purity gave higher yield of glycerol carbonate at 98 wt% after reaction at 300 °C/20–40 MPa/15 min. The yield of glycerol carbonate was observed to increase with molar ratio, temperature, pressure and time until a certain equilibrium limit. The ex...

  5. Beech carbon productivity as driver of ectomycorrhizal abundance and diversity.

    Science.gov (United States)

    Druebert, Christine; Lang, Christa; Valtanen, Kerttu; Polle, Andrea

    2009-08-01

    We tested the hypothesis that carbon productivity of beech (Fagus sylvatica) controls ectomycorrhizal colonization, diversity and community structures. Carbon productivity was limited by long-term shading or by girdling. The trees were grown in compost soil to avoid nutrient deficiencies. Despite severe limitation in photosynthesis and biomass production by shading, the concentrations of carbohydrates in roots were unaffected by the light level. Shade-acclimated plants were only 10% and sun-acclimated plants were 74% colonized by ectomycorrhiza. EM diversity was higher on roots with high than at roots with low mycorrhizal colonization. Evenness was unaffected by any treatment. Low mycorrhizal colonization had no negative effects on plant mineral nutrition. In girdled plants mycorrhizal colonization and diversity were retained although (14)C-leaf feeding showed almost complete disruption of carbon transport from leaves to roots. Carbohydrate storage pools in roots decreased upon girdling. Our results show that plant carbon productivity was the reason for and not the result of high ectomycorrhizal diversity. We suggest that ectomycorrhiza can be supplied by two carbon routes: recent photosynthate and stored carbohydrates. Storage pools may be important for ectomycorrhizal survival when photoassimilates were unavailable, probably feeding preferentially less carbon demanding EM species as shifts in community composition were found. PMID:19344334

  6. A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts.

    Science.gov (United States)

    Barman, Barun Kumar; Nanda, Karuna Kar

    2016-04-21

    Here, we demonstrate a green and environment-friendly pyrolysis route for the synthesis of metal-rich sulphide embedded in an N-doped carbon (NC) framework in the absence of sulphide ions (S(2-)). The metal-chelate complex (tris(ethylenediamine) metal(ii) sulfate) serves as a new and single source precursor for the synthesis of earth abundant and non-precious hybrid structures such as metal-rich sulphides Co9S8@NC and Ni3S2@NC when M(II) = Co(2+) and Ni(2+) and counter sulphate (SO4(2-)) ions are the source of S. Both the hybrids show superior OER activity as compared to commercial RuO2.

  7. A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts.

    Science.gov (United States)

    Barman, Barun Kumar; Nanda, Karuna Kar

    2016-04-12

    Here, we demonstrate a green and environment-friendly pyrolysis route for the synthesis of metal-rich sulphide embedded in an N-doped carbon (NC) framework in the absence of sulphide ions (S(2-)). The metal-chelate complex (tris(ethylenediamine) metal(ii) sulfate) serves as a new and single source precursor for the synthesis of earth abundant and non-precious hybrid structures such as metal-rich sulphides Co9S8@NC and Ni3S2@NC when M(II) = Co(2+) and Ni(2+) and counter sulphate (SO4(2-)) ions are the source of S. Both the hybrids show superior OER activity as compared to commercial RuO2. PMID:26999042

  8. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Rockenstein, Edward; Torrance, Magdalena; Mante, Michael; Adame, Anthony; Paulino, Amy; Rose, John B; Crews, Leslie; Moessler, Herbert; Masliah, Eliezer

    2006-05-15

    Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.

  9. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  10. Synthesis of carbon black/carbon nitride intercalation compound composite for efficient hydrogen production.

    Science.gov (United States)

    Wu, Zhaochun; Gao, Honglin; Yan, Shicheng; Zou, Zhigang

    2014-08-21

    The photoactivity of g-C3N4 is greatly limited by its high recombination rate of photogenerated carriers. Coupling g-C3N4 with other materials has been demonstrated to be an effective way to facilitate the separation and transport of charge carriers. Herein we report a composite of conductive carbon black and carbon nitride intercalation compound synthesized through facile one-step molten salt method. The as-prepared carbon black/carbon nitride intercalation compound composite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), UV-vis absorption spectrum and photoluminescence spectroscopy (PL). The carbon black nanoparticles, homogeneously dispersed on the surface of carbon nitride intercalation compound, efficiently enhanced separation and transport of photogenerated carriers, thus improving the visible-light photocatalytic activity. The composite of 0.5 wt% carbon black and carbon nitride intercalation compound exhibited a H2 production rate of 68.9 μmol h(-1), which is about 3.2 times higher than hydrogen production on pristine carbon nitride intercalation compound.

  11. Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition.

    Science.gov (United States)

    Bulusheva, L G; Okotrub, A V; Fedoseeva, Yu V; Kurenya, A G; Asanov, I P; Vilkov, O Y; Koós, A A; Grobert, N

    2015-10-01

    Nitrogen-containing multi-wall carbon nanotubes (N-MWCNTs) were synthesized using aerosol assisted chemical vapor deposition (CVD) techniques in conjunction with benzylamine:ferrocene or acetonitrile:ferrocene mixtures. Different amounts of toluene were added to these mixtures in order to change the N/C ratio of the feedstock. X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy detected pyridinic, pyrrolic, graphitic, and molecular nitrogen forms in the N-MWCNT samples. Analysis of the spectral data indicated that whilst the nature of the nitrogen-containing precursor has little effect on the concentrations of the different forms of nitrogen in N-MWCNTs, the N/C ratio in the feedstock appeared to be the determining factor. When the N/C ratio was lower than ca. 0.01, all four forms existed in equal concentrations, for N/C ratios above 0.01, graphitic and molecular nitrogen were dominant. Furthermore, higher concentrations of pyridinic nitrogen in the outer shells and N2 molecules in the core of the as-produced N-MWCNTs suggest that the precursors were decomposed into individual atoms, which interacted with the catalyst surface to form CN and NH species or in fact diffused through the bulk of the catalyst particles. These findings are important for a better understanding of possible growth mechanisms for heteroatom-containing carbon nanotubes (CNTs) and therefore paving the way for controlling the spatial distribution of foreign elements in the CNTs using CVD processes. PMID:26104737

  12. One-Pot Method for Multifunctional Yolk Structured Nanocomposites with N-doped Carbon Shell Using Polydopamine as Precursor.

    Science.gov (United States)

    Zhang, Yanwei; Zhang, Min; Ding, Lei; Wang, Yongtao; Xu, Jingli

    2016-12-01

    Herein, we reported a facile method to prepared uniform yolk like nanocomposites with well-defined N-doped carbon shell (C), in which the cores@SiO2@polydopamine (Pdop) were used as the sacrificed template. Typically, inherited from the functional Au core, the yolk particles presented excellent catalytic activities. PMID:27094826

  13. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation

    DEFF Research Database (Denmark)

    Tian, Gui-Li; Zhao, Meng-Qiang; Zhang, Bingsen;

    2014-01-01

    . When the areal density was increased from 0.039 to 0.55, and to 2.1 x 10(15) m(-2), the Fe NPs embedded on the LDO flakes exhibited good catalytic performance for the growth of entangled carbon nanotubes (CNTs), aligned CNTs, and double helical CNTs, respectively. This work provides not only new...

  14. Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks

    OpenAIRE

    Jean-Pierre Dubé

    2004-01-01

    For several of the largest supermarket product categories, such as carbonated soft drinks, canned soups, ready-to-eat cereals, and cookies, consumers regularly purchase assortments of products. Within the category, consumers often purchase multiple products and multiple units of each alternative selected on a given trip. This multiple discreteness violates the single-unit purchase assumption of multinomial logit and probit models. The misspecification of such demand models in categories exhib...

  15. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  16. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    OpenAIRE

    Bosak, Z.; Barta, D; Zečević, N.; Šiklušić, S.

    2009-01-01

    This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV) oxide, carbon(II) oxide, hydrogen, methane, hydrogen sulfide, nitrogen...

  17. Carbon footprint of dairy production systems

    Science.gov (United States)

    Greenhouse gas (GHG) emissions and their potential impact on global warming has become an important national and international concern. Dairy production systems along with all other types of animal agriculture are recognized as a source of GHG. Although little information exists on the net GHG emiss...

  18. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T;

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  19. Carbon nano structures: Production and characterization

    Science.gov (United States)

    Beig Agha, Rosa

    L'objectif de ce memoire est de preparer et de caracteriser des nanostructures de carbone (CNS -- Carbon Nanostructures, en licence a l'Institut de recherche sur l'hydrogene, Quebec, Canada), un carbone avec un plus grand degre de graphitisation et une meilleure porosite. Le Chapitre 1 est une description generale des PEMFCs (PEMFC -- Polymer Electrolyte Membrane Fuel Cell) et plus particulierement des CNS comme support de catalyseurs, leur synthese et purification. Le Chapitre 2 decrit plus en details la methode de synthese et la purification des CNS, la theorie de formation des nanostructures et les differentes techniques de caracterisation que nous avons utilises telles que la diffraction aux rayons-X (XRD -- X-ray diffraction), la microscopie electronique a transmission (TEM -- transmission electron microscope ), la spectroscopie Raman, les isothermes d'adsorption d'azote a 77 K (analyse BET, t-plot, DFT), l'intrusion au mercure, et l'analyse thermogravimetrique (TGA -- thermogravimetric analysis). Le Chapitre 3 presente les resultats obtenus a chaque etape de la synthese des CNS et avec des echantillons produits a l'aide d'un broyeur de type SPEXRTM (SPEX/CertiPrep 8000D) et d'un broyeur de type planetaire (Fritsch Pulverisette 5). La difference essentielle entre ces deux types de broyeur est la facon avec laquelle les materiaux sont broyes. Le broyeur de type SPEX secoue le creuset contenant les materiaux et des billes d'acier selon 3 axes produisant ainsi des impacts de tres grande energie. Le broyeur planetaire quant a lui fait tourner et deplace le creuset contenant les materiaux et des billes d'acier selon 2 axes (plan). Les materiaux sont donc broyes differemment et l'objectif est de voir si les CNS produits ont les memes structures et proprietes. Lors de nos travaux nous avons ete confrontes a un probleme majeur. Nous n'arrivions pas a reproduire les CNS dont la methode de synthese a originellement ete developpee dans les laboratoires de l'Institut de

  20. Jilin Chemical Fiber Group Launches Its Largest Carbon Fiber Preject

    Institute of Scientific and Technical Information of China (English)

    Flora

    2011-01-01

    China's carbon fiber precursor production line with 5,000 tons of annual output was put into operation in Jilin Chemical Fiber Group on November 18th this year, creating the maximum production capacity currently in China, for which Jilin Chemical Fiber Group become China's largest carbon fiber precursor production base, The smooth operation of the project has laid a solid foundation for promoting China's carbon fiber industry steady, rapid, and healthy development,

  1. Analysis on Availability of the Carbon Element in Alcohol Production

    Institute of Scientific and Technical Information of China (English)

    郭素荣; 蒋大和; 寇刘秀; 陆雍森

    2006-01-01

    According to the concept of circular economy, the mass integration of alcohol production was investigated though the analysis of the carbon element contained in raw material cassava. Through the mass integration, the distillage wastewater turned into carbon resource and produced a great deal of by-product biogas while its chemical oxygen demand (COD) was reduced from 50000 mg/L to not more than 300 mg/L, the local secondary effluent standards, and other by-products such as CO2 (liquidized) and fusel oil were recovered. In the way, the consumption of raw material was only 2.2 tons cassava to produce 1 ton alcohol (96%, ψ) in the case study, much lower than the average level 2.92 t/t in China. The carbon element balance for production of alcohol was made through testing the concentrations of the carbon element of all mass flows. The results showed that the mass integration helped the availability of the carbon element increased from 44.74% to 64.75%.

  2. A simple route to making counter electrode for dye sensitized solar cells (DSSCs) using sucrose as carbon precursor.

    Science.gov (United States)

    Kumar, Rahul; More, Venumadhav; Mohanty, Shyama Prasad; Nemala, Siva Sankar; Mallick, Sudhanshu; Bhargava, Parag

    2015-12-01

    Dye sensitized solar cells (DSSCs) have attracted much attention in recent years due to low cost fabrication as compared to silicon-based and thin film solar cells. Though, platinum is an excellent catalytic material for use in preparation of counter electrodes (CEs) for DSSCs it is expensive. Alternatives to replacement of platinum (Pt) that have been examined are carbon materials, conductive polymers and hybrids. In this work, counter electrode for DSSCs was fabricated using carbon material obtained from graphitization of sucrose at high temperature. A slurry of the carbon produced from sucrose graphitization was made with polyvinylpyrrolidone (PVP) as a surfactant and a coating was obtained by doctor blading the slurry over the FTO glass substrate. The current density (Jsc) and open circuit voltage (V(OC)) of fabricated cell (area 0.25 cm(2)) was 10.28 mAc m(-2) and 0.76 V respectively. The efficiency of the cell was 4.33% which was just slightly lower than that obtained for similar cells using platinum based counter electrode. PMID:26283098

  3. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  4. Biological productivity and carbon cycling in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Primary production, bacterial production, particulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2@d) in the Chukchi shelf and was 3.8 mmolC/(m2@d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U disequilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to biogeochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2@d). Measurements of sediment excess 210Pb profile in the Chukchi shelf allowed us to estimate the amount of organic carbon buried in the bottom sediment, which ranged from 25 to 35 mmolC/(m2@d) and represented about 59%-82% of the mean primary production in the euphotic zone. Overall, our results indicated that the Arctic Ocean has active carbon cycling and is not a biological desert as previously believed. Therefore, the Arctic Ocean may play an important role in the global carbon cycle and climate change.

  5. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2004-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  6. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V. J. Fabry

    2003-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  7. CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V. J.Fabry

    2004-01-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  8. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2004-04-26

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  9. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  10. Tracking urban carbon footprints from production and consumption perspectives

    International Nuclear Information System (INIS)

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO2e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO2e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO2e/y, 44.8 Mt CO2e/y, 28.4 Mt CO2e/y, 23.7 Mt CO2e/y, and 19.0 Mt CO2e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city. (letter)

  11. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  12. Preparation of Carbon-Doped TiO2 Nanopowder Synthesized by Droplet Injection of Solution Precursor in a DC-RF Hybrid Plasma Flow System

    Science.gov (United States)

    Jang, Juyong; Takana, Hidemasa; Ando, Yasutaka; Solonenko, Oleg P.; Nishiyama, Hideya

    2013-08-01

    Carbon-doped titanium dioxide nanopowder has received much attention because of its higher photocatalytic performance, which is practically activated not only by UV, but also by visible light irradiation. In the present study, C-TiO2 nanopowder was synthesized by droplet injection of solution precursor in a DC-RF hybrid plasma flow system, resulting in higher photocatalytic performance even under visible light irradiation. In-flight C-TiO2 nanoparticles reacted with the high concentration of carbon in plasma flow and were then deposited on the surfaces of two quartz tubes in the upstream and downstream regions of this system. The collected C-TiO2 nanopowder contained anatase-rutile mixed-phase TiO2 and TiC, the contents of which depended on the location of the powder collection, the temperature, and the duration of plasma treatment. Highly functional C-TiO2 nanopowder collected in the downstream region exhibited a higher degradation rate of methylene blue than that of single-phase anatase TiO2, even under visible light irradiation, in spite of being TiC.

  13. Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress

    DEFF Research Database (Denmark)

    Kjær, Anders; Verstappen, Francel; Bouwmeester, Harro;

    2013-01-01

    was examined on the concentrations of AN and its immediate precursors in leaves, and these concentrations were related to densities and sizes of the glandular trichomes (GT). Plants were stress treated weekly five times by sandblasting or spraying with salicylic acid, chitosan oligosaccharide, H2O2, and Na...

  14. Using Carbon Isotopes in Cenozoic Soil Carbonates to Quantify Primary Productivity from Mid-Latitude Regions

    Science.gov (United States)

    Caves, J. K.; Kramer, S. H.; Ibarra, D. E.; Chamberlain, C. P.

    2015-12-01

    The carbon isotope composition of pedogenic carbonates (δ13Ccarb) from paleosols has been extensively used as a proxy to estimate atmospheric pCO2 over the Phanerozoic. However, a number of other factors - including the concentration of plant-respired CO2 and the isotopic composition of both atmospheric and plant-respired carbon - influence the δ13C of pedogenic carbonates. For example, δ13Ccarb records from the mid-latitudes in central Asia and western North America show increasing trends in δ13Ccarb despite decreasing pCO2 during the late Cenozoic, which suggests that other factors play an important role in determining the isotopic composition of pedogenic carbonates. Instead, we suggest that these records are primarily recording changes in primary productivity rather than changes in atmospheric pCO2 and therefore propose a novel use of paleosol carbonate records to understand paleo-ecosystem dynamics. Here, we compile existing paleosol carbonate records, and present three new records from Wyoming, to estimate soil respiration and primary productivity in western North America during the Paleogene and early Neogene. We observe both an overall increase in δ13Ccarb after the early Eocene, and spatially heterogeneous δ13Ccarb values across western US basins. We combine this δ13Ccarb data with compilations of atmospheric pCO2 to estimate soil respiration and plant productivity. The long-term increase in δ13Ccarb indicates a decrease in plant productivity as conditions became more arid across much of the western US, congruent with both records of regional uplift and of global cooling. Furthermore, significant spatial heterogeneity in δ13Ccarb indicates that regional factors, such as the presence of paleolakes and/or local paleotopography may have provided a second-order control on local and regional productivity. Thus, our results provide a first-order estimate linking changes in primary productivity with regional tectonics and global climatic change.

  15. Design of a “green” one-step catalytic production of ε-caprolactam (precursor of nylon-6)

    Science.gov (United States)

    Thomas, John Meurig; Raja, Robert

    2005-01-01

    The ever-increasing industrial demand for nylon-6 (polycaprolactam) necessitates the development of environmentally benign methods of producing its precursor, ε-caprolactam, from cyclohexanone. It is currently manufactured in two popular double-step processes, each of which uses highly aggressive reagents, and each generates substantial quantities of largely unwanted ammonium sulfate as by-product. Here we describe a viable laboratory-scale, single-step, solvent-free process of producing ε-caprolactam using a family of designed bifunctional, heterogeneous, nanoporous catalysts containing isolated acidic and redox sites, which smoothly convert cyclohexanone to ε-caprolactam with selectivities in the range 65–78% in air and ammonia at 80°C. The catalysts are microporous (pore diameter 7.3 Å) aluminophosphates in which small fractions of the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{Al}}^{{\\mathrm{III}}}{\\mathrm{O}}_{4}^{5-}\\end{equation*}\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{P}}^{{\\mathrm{V}}}{\\mathrm{O}}_{4}^{3-}\\end{equation*}\\end{document} tetrahedra constituting the 4-connected open framework are replaced by \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{Co}}^{{\\mathrm{III}}}{\\mathrm{PO}}_{4}^{5-}\\end{equation*}\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage

  16. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  17. Global carbon production and transport in Tore Supra

    International Nuclear Information System (INIS)

    Impurity production and transport have been studied in small Tore Supra plasmas, for which the sole source of impurities (essentially carbon) is an outboard limiter. The main diagnostic was a visible endoscope, allowing absolute intensity calibrated CCD camera images of the entire limiter to be obtained at selected wavelengths. The experimental results show that, while chemical sputtering is essential to explain the limiter images, it does not contribute much to the central impurity content (for which physical sputtering is more important). The experimental edge carbon fluxes and the core plasma carbon content were simulated by coupling the 3-D Monte Carlo edge impurity code BBQ with the 1-D Tore Supra core impurity transport code, thus modelling (for the first time) the global impurity production and transport. (Authors). 24 refs., 6 figs., 1 tab

  18. Global carbon production and transport in Tore Supra

    International Nuclear Information System (INIS)

    Impurity production and transport have been studied in small Tore Supra plasmas, for which the sole source or impurities (essentially carbon) is an outboard limiter. The main diagnostic was a visible endoscope, allowing absolute intensity calibrated CCD camera images of the entire limiter to be obtained at selected wavelengths. The experimental results show that, while chemical sputtering is essential to explain the limiter images, it does not contribute much to the central impurity content (for which physical sputtering is more important). The experimental edge carbon fluxes and the core plasma carbon content were simulated by coupling the 3D Monte Carlo edge impurity code BBQ with the 1D Tore Supra core impurity transport code, thus modelling (for the first time) the global impurity production and transport. (Author)

  19. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-12-12

    High melting temperature synthetic pitches (Synpitches) were created using coal derivatives produced from a solvent extraction technique. Solvent extraction is used to separate hydrocarbons from mineral matter as well as other insolubles. Mild hydrogenation can be used to chemically modify resultant material to produce a true pitch. There are three main techniques which can be used to tailor the softening point of the Synpitch. First, the softening point can be controlled by varying the conditions of hydrogenation, chiefly the temperature, pressure and residence time in a hydrogen overpressure. Second, by selectively distilling light hydrocarbons, the softening point of the remaining pitch can be raised. Third, the Synpitch can be blended with another mutually soluble pitch or hydrocarbon liquid. Through such techniques, spinnable isotropic Synpitches have been created from coal feedstocks. Characteristics of Synpitches include high cross-linking reactivity and high molecular weight, resulting in carbon fibers with excellent mechanical properties. To date, mechanical properties have been achieved which are comparable to the state of the art achievable with conventional coal tar pitch or petroleum pitch.

  20. Study on Product Line of PANCF Precursor Fiber%PAN基碳纤维原丝生产线的研发

    Institute of Scientific and Technical Information of China (English)

    高占勇

    2011-01-01

    简介了聚丙烯腈(PAN)基碳纤维的特点以及PAN基碳纤维原丝质量的重要性。重点分析了3个PAN基碳纤维原丝生产线流程方案的设备排布特点、部分工艺参数、总体设计要求以及单元机的结构特征。最后指出PAN基碳纤维原丝生产线上主要单元机的研发难点。%The characteristic of PAN-CF and the fundamentality of PAN-CF precursor fiber quality were introduced briefly. The arrangement feature, technological parameter, and overall design requirement of three projects about PAN-CF precursor fiber product line were analyzed. In addition, the structure feature of unit machine was also analyzed. Finally, the study difficulty of main unit machine on PAN-CF precursor fiber product line was also discussed.

  1. Trade, production fragmentation, and China's carbon dioxide emissions

    NARCIS (Netherlands)

    Dietzenbacher, Erik; Pei, Jiansuo; Yang, Cuihong

    2012-01-01

    An input-output framework is adopted to estimate China's carbon dioxide (CO2) emissions as generated by its exports in 2002. More than one half of China's exports are related to international production fragmentation. These processing exports generate relatively little value added but also relativel

  2. Ethanol production from crop residues and soil organic carbon

    NARCIS (Netherlands)

    L. Reijnders

    2008-01-01

    In decision making about the use of residues from annual crops for ethanol production, alternative applications of these residues should be considered. Especially important is the use of such residues for stabilizing and increasing levels of soil organic carbon. Such alternative use leads to a limit

  3. A luminescent supramolecular assembly composed of a single-walled carbon nanotube and a molecular magnet precursor

    Energy Technology Data Exchange (ETDEWEB)

    Safar, G. A. M., E-mail: gamsafar@yahoo.com.br; Simoes, T. R. G. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Paula, A. M. de [Universidade Federal de Minas Gerais, Departamento de Fisica (Brazil); Gratens, X.; Chitta, V. A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Stumpf, H. O. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil)

    2013-02-15

    Magnetism of supramolecular assemblies of single-walled carbon nanotubes (SWCNTS) with a magnetic dinuclear molecule is investigated. Raman, optical absorption and confocal fluorescence images are used to probe the interaction of the dinuclear compound and the SWCNT. The supramolecular assembly shows antiferromagnetism, on the contrary to the case when strong electronic doping of the SWCNT occurs, yielding a spin-glass system, and contrary to the case of the dinuclear molecular crystal, which is ferromagnetic. The SWCNT imposes the antiferromagnetic order to the dinuclear molecule, corroborating recent findings that antiferromagnetism is present in pure SWCNTs. Two theoretical models are used to fit the data, both yielding good fitting results. The nanoparticle size range is around 2-10 nm.

  4. 78 FR 35603 - Foreign-Trade Zone 83-Huntsville, Alabama; Application for Production Authority; Toray Carbon...

    Science.gov (United States)

    2013-06-13

    ...; Toray Carbon Fibers America, Inc.; (Polyacrylonitrile Fiber/Carbon Fiber Production), Decatur, Alabama... Airport Authority, grantee of FTZ 83, requesting production authority on behalf of Toray Carbon Fibers... facility is used for the production of polyacrylonitrile (PAN)-based carbon fiber, and PAN fiber,...

  5. SYNGAS PRODUCTION FROM CO2-REFORMING OF CH4 OVER SOL-GEL SYNTHESIZED Ni-Co/Al2O3-MgO-ZrO2 NANOCATALYST: EFFECT OF ZrO2 PRECURSOR ON CATALYST PROPERTIES AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Sajjadi

    2015-05-01

    Full Text Available Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH and zirconyl nitrate solution (ZNS, was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS. FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.

  6. Methodology for calculation of carbon balances for biofuel crops production

    Science.gov (United States)

    Gerlfand, I.; Hamilton, S. K.; Snapp, S. S.; Robertson, G. P.

    2012-04-01

    Understanding the carbon balance implications for different biofuel crop production systems is important for the development of decision making tools and policies. We present here a detailed methodology for assessing carbon balances in agricultural and natural ecosystems. We use 20 years of data from Long-term Ecological Research (LTER) experiments at the Kellogg Biological Station (KBS), combined with models to produce farm level CO2 balances for different management practices. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; and (5) continuous alfalfa (Medicago sativa). In addition we use an abandoned agricultural field (successionnal ecosystem) as reference system. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). In addition to measurements, we model carbon offsets associated with the use of bioenergy from agriculturally produced crops. Our analysis shows the importance of establishing appropriate system boundaries for carbon balance calculations. We explore how different assumptions regarding production methods and emission factors affect overall conclusions on carbon balances of different agricultural systems. Our results show management practices that have major the most important effects on carbon balances. Overall, agricultural management with conventional tillage was found to be a net CO2 source to the atmosphere, while agricultural management under reduced tillage, low input, or organic management sequestered carbon at rates of 93, -23, -51, and -14 g CO2e m-2 yr-1, respectively for conventionally tilled, no-till, low-input, and organically managed ecosystems. Perennial systems (alfalfa and the successionnal fields) showed net carbon

  7. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; DeLuca, Adam P; Anfinson, Kristin R; Cranston, Cathryn M; Kaalberg, Emily E; Penticoff, Jessica A; Affatigato, Louisa M; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  8. Regional carbon dioxide implications of forest bioenergy production

    Science.gov (United States)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-11-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2-14% (46-405TgC) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30-60gCm-2yr-1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.

  9. Biogenic carbon fluxes from global agricultural production and consumption

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  10. The impact of a carbon tax on Greek electricity production

    International Nuclear Information System (INIS)

    The impact of proposed carbon taxes on the electric power industry, using the Greek power system as a case study, is investigated in this paper. It uses the WASP model for electric generation capacity expansion to explore the optimal expansion path under alternative carbon tax scenarios and to estimate their impact on CO2 and other types of emissions and on electricity production costs. The findings suggest that low carbon taxes would lead to a considerable reduction of the use of conventional lignite fired power plants counterbalanced predominantly by natural gas fired plants. High carbon taxes (100-200 US dollars per ton of carbon) would lead to a drastic reduction of the use of conventional lignite fired power plants which would be mainly replaced by coal or lignite fired technologies with CO2 removal capabilities, which are not available today but might become available within the time horizon of the present study. Hydropower and renewable sources would be the second least-cost alternatives to lignite under both low and high tax scenarios. The study provides evidence that carbon taxes also result in significant increases in the cost of producing electricity, implying adverse economic effects on electricity consumers and the Greek economy in general. (author). 35 refs, 1 fig., 7 tabs

  11. Design of a Prussian Blue Analogue/Carbon Nanotube Thin-Film Nanocomposite: Tailored Precursor Preparation, Synthesis, Characterization, and Application.

    Science.gov (United States)

    Husmann, Samantha; Zarbin, Aldo J G

    2016-05-01

    Multi-walled carbon nanotubes (MWCNTs) filled with different species of cobalt (metallic cobalt, cobalt oxide) were synthesized by a chemical vapor deposition method through cobaltocene pyrolysis. A systematic study was performed to correlate different experimental conditions with the structure and characteristics of the obtained material. Thin films of Co-filled CNTs were deposited over conductive substrates through a liquid-liquid interfacial method and were used for cobalt hexacyanoferrate (CoHCFe) electrodeposition by an innovative route in which the Co species encapsulated in the CNTs were employed as reactants. The CNT/CoHCFe films were characterized by different spectroscopic, microscopic, and electrochemical techniques and presented high electrochemical stability in different media. The nanocomposites were applied as both an electrochemical sensor to H2 O2 and a cathode for ion batteries and showed limits of detection at approximately 3.7 nmol L(-1) and a capacity of 130 mAh g(-1) at a current density of 5 A g(-1) . PMID:27010671

  12. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  13. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    Science.gov (United States)

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  14. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of

  15. Thermoset precursor

    International Nuclear Information System (INIS)

    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  16. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone.

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael; Baker, Scott E; Bruno, Kenneth S; Wang, Clay C

    2010-12-06

    The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

  17. CH4, CO, and H2O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2012-03-01

    Full Text Available The TROPOspheric Monitoring Instrument (TROPOMI will be part of ESA's Sentinel-5 Precursor (S5P satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR. S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON. The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1 were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1. For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.

  18. CH4, CO, and H2O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2012-06-01

    Full Text Available The TROPOspheric Monitoring Instrument (TROPOMI will be part of ESA's Sentinel-5 Precursor (S5P satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR. S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON. The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1 were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1. For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.

  19. Activated Carbon by Co-pyrolysis and Steam Activation from Particle Board and Melamine Formaldehyde Resin: Production, Adsorption Properties and Techno Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Kenny Vanreppelen

    2013-03-01

    Full Text Available One of the top strategic objectives and research areas in Europe is recovering wood from processing and end of life products. However, there are still several "contaminated" wood products that are not or only partly reused/recycled. Particle board waste which is contaminated with aminoplasts is one of these products. In addition, a considerable amount of aminoplast waste resinis produced for the production of particle board that cannot be re-used or recycled. The chemical properties of these wastes (high nitrogen content of 5.9 wt% and 54.1 wt% for particle board and melamine formaldehyde respectively make them ideal precursors for the production of nitrogenised activated carbon. The profitability of the produced activated carbon is investigated by calculating the net present value, the minimum selling price and performing a Monte Carlo sensitivity analysis. Encouraging results for a profitable production are obtained even though the current assumptions start from a rather pessimistic scenario.

  20. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    International Nuclear Information System (INIS)

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation

  1. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays.

    Science.gov (United States)

    Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter

    2016-01-01

    Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue. PMID:27200182

  2. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Sandra Johnen

    2016-01-01

    Full Text Available Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT, used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe or mixtures of iron-platinum (Fe-Pt and iron-titanium (Fe-Ti acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28 cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue.

  3. Preparation and characterization of Cu(In,Ga)(Se,S){sub 2} thin films from electrodeposited precursors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Leisch, Jennifer E.; Bhattacharya, Raghu N.; Teeter, Glenn; Turner, John A. [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393 (United States)

    2004-02-06

    Semiconducting Cu(In,Ga)(Se,S){sub 2} thin films were made from electrodeposited Cu(In,Ga)Se{sub 2} precursors, followed by physical vapor deposition of In{sub 2}S{sub 3}, Ga, and Se. The bandgaps of these materials were found to be between 1.6 and 2.0eV, which spans the optimal bandgap necessary for application for the top junction in photovoltaic multijunction devices and for unassisted water photolysis. These films were characterized by electron-probe microanalysis, scanning Auger spectroscopy, X-ray diffraction, and photocurrent spectroscopy.

  4. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  5. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  6. MID Max: LC–MS/MS Method for Measuring the Precursor and Product Mass Isotopomer Distributions of Metabolic Intermediates and Cofactors for Metabolic Flux Analysis Applications

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Young, Jamey D.; Xu, Sibei;

    2016-01-01

    that takes advantage of additional scan types that maximizes the number of mass isotopomer distributions (MIDs) that can be acquired in a given experiment. The analytical method was found to measure the MIDs of 97 metabolites, corresponding to 74 unique metabolite-fragment pairs (32 precursor spectra...... and 42 product spectra) with accuracy and precision. The compounds measured included metabolic intermediates in central carbohydrate metabolism and cofactors of peripheral metabolism (e.g., ATP). Using only a subset of the acquired MIDs, the method was found to improve the precision of flux...

  7. CREAT A CONSORTIUM AND DEVELOP PREMIUM CARBON PRODUCTS FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    John M. Andresen

    2003-08-01

    The Consortium for Premium Carbon Products from Coal, with funding from the U.S. Department of Energy's National Energy Technology Laboratory and matching funds from industry and academic institutions continued to excel in developing innovative technologies to use coal and coal-derived feedstocks to produce premium carbon product. During Budget Period 5, eleven projects were supported and sub-contracted were awarded to seven organizations. The CPCPC held two meetings and one tutorial at various locations during the year. Budget Period 5 was a time of growth for CPCPC in terms of number of proposals and funding requested from members, projects funded and participation during meetings. Although the membership was stable during the first part of Budget Period 5 an increase in new members was registered during the last months of the performance period.

  8. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation.

  9. Ratio of Pion Kaon Production in Proton Carbon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Andrey V. [Harvard Univ., Cambridge, MA (United States)

    2007-05-01

    The ratio of pion-kaon production by 120 GeV/c protons incident on carbon target is presented. The data was recorded with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory. Production ratios of K++, K--, K-/K+, and π-+ are measured in 24 bins in longitudinal momentum from 20 to 90 GeV/c and transverse momentum up to 2 GeV/c. The measurement is compared to existing data sets, particle production Monte Carlo results from FLUKA-06, parametrization of proton-beryllium data at 400/450 GeV/c, and ratios measured by the MINOS experiment on the NuMI target.

  10. Converting poultry litter to activated carbon: optimal carbonization conditions and product sorption for benzene.

    Science.gov (United States)

    Guo, Mingxin; Song, Weiping

    2011-12-01

    To promote utilization of poultry litter as a source material for manufacturing low-cost activated carbon (AC) that can be used in wastewater treatment, this study investigated optimal production conditions and water-borne organic sorption potential of poultry litter-based AC. Pelletized broiler litter was carbonized at different temperatures for varied time periods and activated with steam at a range of flow rate and time. The AC products were examined for quality characteristics using standard methods and for organic sorption potentials using batch benzene sorption techniques. The study shows that the yield and quality of litter AC varied with production conditions. The optimal production conditions for poultry litter-based AC were carbonization at 700 degrees C for 45 min followed by activation with 2.5 ml min(-1) steam for another 45 min. The resulting AC possessed an iodine number of 454 mg g(-1) and a specific surface area of 403 m2 g(-1). It sorbed benzene in water following sigmoidal kinetic and isothermal patterns. The sorption capacity for benzene was 23.70 mg g(-1), lower than that of top-class commercial AC. The results, together with other reported research findings, suggest that poultry litter is a reasonable feedstock for low-cost AC applicable to pre-treat wastewater contaminated by organic pollutants and heavy metals. PMID:22439566

  11. Carbon Footprint of Tree Nuts Based Consumer Products

    Directory of Open Access Journals (Sweden)

    Roberto Volpe

    2015-11-01

    Full Text Available This case study shows results of a calculation of carbon footprint (CFP resulting from the production of nuts added value products for a large consumer market. Nuts consumption is increasing in the world and so is the consumer awareness of the environmental impact of goods, hence the calculation of greenhouse gas (GHG emissions of food production is of growing importance for producers. Calculation of CO2eq emissions was performed for all stages of the production chain to the final retail point for flour, grains, paste, chocolate covered nuts and spreadable cream produced from almonds, pistachios and hazelnuts grown and transformed in Italy and for peanuts grown in Argentina and transformed in Italy. Data from literature was used to evaluate CFP of raw materials, emissions from transport and packing were calculated using existing models, while emissions deriving from transformation were calculated empirically by multiplying the power of production lines (electrical and/or thermal by its productivity. All values were reported in kg of CO2 equivalent for each kg of packed product (net weight. Resulting values ranged between 1.2 g of CO2/kg for a 100 g bag of almond to 4.8 g of CO2/kg for the 100 g bag of chocolate covered almond. The calculation procedure can be well used for similar cases of large consumer food productions.

  12. 78 FR 34340 - Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Preliminary Results of...

    Science.gov (United States)

    2013-06-07

    ... Order; Welded Carbon Steel Standard Pipe and Tube Products from Turkey, 51 FR 17784 (May 15, 1986). The... International Trade Administration Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Preliminary... antidumping duty order on welded carbon steel standard pipe and tube products (welded pipe and tube)...

  13. Technical Note: Methionine, a precursor of methane in living plants

    Science.gov (United States)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  14. Technical note: Methionine, a precursor of methane in living plants

    Directory of Open Access Journals (Sweden)

    K. Lenhart

    2014-11-01

    Full Text Available When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia. Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  15. Environmental Remediation and Conversion of Carbon Dioxide (CO2 into Useful Green Products by Accelerated Carbonation Technology

    Directory of Open Access Journals (Sweden)

    Kwang-Suk You

    2010-01-01

    Full Text Available This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2, a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC. Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation.

  16. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Robledo, A., E-mail: amanzor@ipn.mx [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Costa, Natália J. S. [Universidade de São Paulo, Instituto de Química (Brazil); Philippot, K. [CNRS, LCC, Laboratoire de Chimie de Coordination (France); Rossi, Liane M. [Universidade de São Paulo, Instituto de Química (Brazil); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Guerrero-Ortega, L. P. A. [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Ezquerra-Quiroga, S. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico)

    2015-12-15

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd{sub 90}Ni{sub 10}, Pd{sub 50}Ni{sub 50}, Pd{sub 10}Ni{sub 90}, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd{sub 2}(dba){sub 3}, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod){sub 2}. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  17. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V.A.; Kuvshinov, G.G.; Mogilnykh, Yu.I. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A. [University of Hamburg (Germany); Steinfeld, A.; Weidenkaff, A.; Meier, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  18. Enzymatic production of glycerol carbonate from by-product after biodiesel manufacturing process.

    Science.gov (United States)

    Jung, Hongsub; Lee, Youngrak; Kim, Daeheum; Han, Sung Ok; Kim, Seung Wook; Lee, Jinwon; Kim, Yong Hwan; Park, Chulhwan

    2012-08-10

    Glycerol carbonate is one of the higher value-added products derived from glycerol. In this study, glycerol carbonate (GC) was synthesized by transesterification of glycerol and dimethyl carbonate (DMC) using Novozym 435 (Candida antarctica Lipase B) at various conditions. For the enzymatic production of GC, the optimum conditions were the amount of enzyme (75 g/L), DMC/glycerol molar ratio (2.00), reaction temperature (60°C) and organic solvent (acetonitrile). Experimental investigation of the effect of water content revealed that the conversion of GC was maximized with no added water. The addition of surfactant such as Tween 80 increased the GC conversion, which finally reached 96.25% under the optimum condition and with surfactant addition. PMID:22759533

  19. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2011-12-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms and thereby modifying the oceanic alkalinity cycle. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. Meanwhile, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 will ultimately increase or decrease the globally-integrated pelagic calcification rate. Here, we assess the importance of this uncertainty by introducing a variable dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in the University of Victoria Earth System Climate Model, an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of this parameterization on global ocean carbon cycling under two CO2 emissions scenarios, both integrated to the year 3500. The simulations show a significant sensitivity of the vertical and surface horizontal alkalinity gradients to the parameterization, as well as the removal of alkalinity from the ocean through CaCO3 burial. These sensitivities result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 13 % of total carbon emissions, compared to the case where calcification is insensitive to acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500, a 13 % reduction in the amplitude of warming. Narrowing these uncertainties will require better understanding of both temperature and acidification effects on pelagic calcifiers. Preliminary examination suggests that

  20. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  1. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.

    Science.gov (United States)

    Rittmann, Simon K-M R; Lee, Hyun Sook; Lim, Jae Kyu; Kim, Tae Wan; Lee, Jung-Hyun; Kang, Sung Gyun

    2015-01-01

    Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates. PMID:25461503

  2. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C60, 22% C70). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  3. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  4. Operation Mechanism of Farmers’ Professional Cooperatives from the Point of Low-Carbon Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    We firstly take a look at internal logic of cluster development of low-carbon agricultural products.In combination with operation features of farmers’ professional cooperatives and actual requirements for cluster development of low-carbon agricultural products;we elaborate establishing benefit allocation mechanism,bearing education and training functions,forming low-carbon value,building low-carbon identification system,as well as realizing low-carbon value.According to these situations,we systematically analyze operation mechanism of farmers’ professional cooperatives suitable for cluster development of low-carbon agricultural products.To promote cluster development of low-carbon agricultural products,we put forward following suggestions,including government guidance and encouragement,social acceptance and active cooperation,and integration into global low-carbon development system to share benefit of low-carbon development.

  5. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    Directory of Open Access Journals (Sweden)

    Mohammadi Maedeh

    2011-01-01

    Full Text Available The possibility of production of carbon molecular sieve (CMS from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (100, 200, 300 mL min-1 CH4 diluted in 500 mL min-1 N2 and deposition time (30 to 60 min were the investigated parameters. The textural characteristics of the CMSs were assessed by N2 adsorption. The largest BET surface area (752 m2 g-1, micropore surface area (902.2 m2 g-1 and micropore volume (0.3466 cm3 g-1 was obtained at the CH4 flow rate of 200 mL min-1 and deposition time of 30 min. However, prolonging the deposition time to 45 min yielded in a micropouros CMS with a narrow pore size distribution.

  6. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  7. Production of carbon molecular sieves from Illinois coal

    Science.gov (United States)

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  8. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  9. Fruity aroma production in solid state fermentation by Ceratocystis fimbriata : influence of the substrate type and the presence of precursors

    OpenAIRE

    CHRISTEN, Pierre; Meza, J.C.; Revah, S.

    1997-01-01

    Wheat bran, cassava bagasse and sugar cane bagasse were shown to be adequate substrates for the growth and aroma production by the mould #Ceratocystis fimbriata$. Among the nutritive media tested, sugar cane bagasse complemented with a synthetic medium containing glucose (200 g/l) gave a fruity aroma while the leucine or valine-containing medium gave a strong banana aroma. Aroma production was dependent on growth and the maximum aroma intensity was detected at about the time of the maximum re...

  10. Increasing carbon and material productivity through environmental tax reform

    International Nuclear Information System (INIS)

    Environmental tax reform (ETR), a shift in taxation towards environmental taxes, has been implemented on a small scale in a number of European countries. This paper first gives a short review of the literature about ETR. An Appendix briefly describes the model used for a modelling exercise to explore, through scenarios with low and high international energy prices, the implications of a large-scale ETR in the European Union, sufficient to reach the EU's emission reduction targets for 2020. The paper then reports the results of the exercise. The ETR results in increased carbon and materials, but reduced labour, productivity, with the emission reductions distributed across all sectors as a reduction in the demand for all fossil fuels. There are also small GDP increases for most, but not all, EU countries for all the scenarios, and for the EU as a whole. Both the environmental and macroeconomic outcomes are better with low than with high energy prices, because the former both increases the scale of the ETR required to reach the targets, and reduces the outflow of foreign exchange to pay for energy imports. ETR emerges from the exercise as an attractive and cost-effective policy for environmental improvement. - Highlights: ► European experience with environmental tax reform (ETR) is reviewed. ► Scenarios which meet EU carbon emission targets are modelled. ► The ETR results in increased carbon and materials, but reduced labour, productivity. ► There are small GDP increases for most, but not all, EU countries. ► ETR emerges as an attractive and cost-effective environmental policy.

  11. Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Recombinant Pseudomonas stutzeri 1317 from Unrelated Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    魏晓星; 刘峰; 简嘉; 王瑞妍; 陈国强

    2013-01-01

    Synthetic biology promises to simplify the construction of metabolic pathways by assembling the de-tached modules of the whole pathway. This gives new approaches for the microbial production of industrial products such as polyhydroxyalkanoates (PHA). In this study, to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by Pseudomonas stutzeri 1317 from unrelated carbon sources such as glucose, the phaC1-phaZ-phaC2 operon of P. stutzeri 1317 was knocked out to generate the PHA deficient mutant P. stutzeri 1317LF. Then three modules containing phaCAhAReBRe, phaCAhBReGPp and phaCAhPAh were introduced into P. stutzeri 1317LF separately. The shake flask results indicated that the precursor supply and PHA synthase activity were the vital factors for the PHBHHx accumulation of P. stutzeri 1317LF. Furthermore, the PHBHHx accumulation of the recombinants from different carbon resources were performed. The highest PHBHHx content was 23.7% (by mass) with 58.6% (by mole) 3HB fraction. These results provide basis for further improving the PHBHHx accumulation of P. stutzeri from unrelated carbon sources.

  12. Modeling Initial Stage of Ablation Material Pyrolysis: Graphitic Precursor Formation and Interfacial Effects

    Science.gov (United States)

    Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel

    2010-01-01

    Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.

  13. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  14. Mangrove production and carbon sinks: a revision of global budget estimates

    OpenAIRE

    BOUILLON, S; Borges, A. V.; Castañeda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N. C.; Kristensen, E.; Lee, S.; Marchand, C; Middelburg, J. J.; Rivera-Monroy, V.H.; Smith III, T.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of similar to 218 +/- 72 Tg C a(-1). When using the best available estimates of various carbon sinks (organic carbon export, s...

  15. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Science.gov (United States)

    2010-01-01

    Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP)-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant). Using immobilized metal ion affinity chromatography (IMAC) as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture. PMID:20462406

  16. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Directory of Open Access Journals (Sweden)

    Chugh Dipti

    2010-05-01

    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  17. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-08-11

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  18. Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States

    NARCIS (Netherlands)

    Jonker, Jan Gerrit Geurt; Junginger, Martin; Faaij, Andre

    2014-01-01

    This study examines the effect of methodological choices to determine the carbon payback time and the offset parity point for wood pellet production from softwood plantations in the South-eastern United States. Using the carbon accounting model GORCAM we model low-, medium-and high-intensity plantat

  19. The presence of aliphatic and aromatic amines in reservoir and canal water as precursors to disinfection by-products.

    Science.gov (United States)

    Phatthalung, Warangkana Na; Musikavong, Charongpun; Suttinun, Oramas

    2016-09-18

    This research aimed at determining the dimethylamine (DMA), diethylamine (DEA), dibutylamine (DBA), and aromatic aniline (AN) in reservoir and canal water in the U-Tapao River Basin, Songkhla, Thailand. The trihalomethane formation potential (THMFP) and N-nitrosodimethylamine formation potential (NDMA-FP) of the reservoir and canal water were analyzed. Water samples from two reservoirs and raw water from water treatment plants at upstream, midstream, and downstream locations of the canal were collected twice. The analysis of the DMA, DEA, DBA, and AN were conducted using gas chromatography and spectrofluorometry techniques. The DMA, DEA, and DBA levels in the reservoir and canal waters ranged from not detectable (ND) to 10 µg/L and from ND to 21.2 µg/L, respectively. AN was detected from 123 to 129 ng/L and from 112 to 177 ng/L in the reservoir and canal waters, respectively. The DMA, DEA, DBA, and AN exhibited two fluorescent peaks at 230nmEx/345nmEm and 280 nmEx/355nmEm. These two peaks corresponded to the peak positions of tryptophan. Detection limits of DMA, DEA, and DBA for fluorescent analysis were 500 μg/L whereas that of AN and tryptophan were 10 and 0.5 μg/L, respectively. The NDMA-FP measured in all the water samples was lower than the detection limit of 237 ng/L. THMFP ranged from 175 to 248 μg/L and 214 to 429 μg/L was detected in the reservoir and canal waters, respectively. The THMFP/dissolved organic carbon (DOC) of the reservoir and canal waters were comparable within the ranges of 73 to 131 µg THMFP/mg DOC. PMID:27314493

  20. Carbon disulphide production in laboratory cultures of marine phytoplankton

    Science.gov (United States)

    Xie, Huixiang; Scarratt, Michael G.; Moore, Robert M.

    Carbon disulphide (CS 2) data were collected from axenic monocultures of six species of marine phytoplankton. The tested species included Chaetoceros calcitrans, Phaeodactylum tricornutum, Phaeocystis sp., Porphyridium purpureum, Synechococcus sp. and Isochrysis sp. For a period of between two weeks and forty days, substantial accumulation of CS 2 was found in the cultures of C. calcitrans, P. tricornutum and Phaeocystis sp., whereas the change of CS 2 concentration in the remaining cultures was insignificant. C. calcitrans had a potential for CS 2 production about 10 times higher than P. tricornutum or Phaeocystis sp. The formation of the compound was strongly dependent on the physiological state of the cultured species. More investigation is needed to elucidate the mechanisms responsible for the formation of this sulphur compound in these cultures.

  1. Rapid Development of Carbon Fiber Industry in Jilin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In recent years, Jilin Carbon Fiber Industrial Zone in Liaoning Province has seen a rapid development, forming a complete industrial chain from precursor to carbonization, and then to products. Along with the promotion of a large number of carbon fiber in

  2. Carbon footprint of dairy goat milk production in New Zealand.

    Science.gov (United States)

    Robertson, Kimberly; Symes, Wymond; Garnham, Malcolm

    2015-07-01

    The aim of this study was to assess the cradle-to-farm gate carbon footprint of indoor and outdoor dairy goat farming systems in New Zealand, identifying hotspots and discussing variability and methodology. Our study was based on the International Organization for Standardization standards for life cycle assessment, although only results for greenhouse gas emissions are presented. Two functional units were included: tonnes of CO2-equivalents (CO2e) per hectare (ha) and kilograms of CO2e per kilogram of fat- and protein-corrected milk (FPCM). The study covered 5 farms, 2 farming systems, and 3yr. Two methods for the calculation of enteric methane emissions were assessed. The Lassey method, as used in the New Zealand greenhouse gas inventory, provided a more robust estimate of emissions from enteric fermentation and was used in the final calculations. The alternative dry matter intake method was shown to overestimate emissions due to use of anecdotal assumptions around actual consumption of feed. Economic allocation was applied to milk and co-products. Scenario analysis was performed on the allocation method, nitrogen content of manure, manure management, and supplementary feed choice. The average carbon footprint for the indoor farms (n=3) was 11.05 t of CO2e/ha and 0.81kg of CO2e/kg of FPCM. For the outdoor farms (n=2), the average was 5.38 t of CO2e/ha and 1.03kg of CO2e/kg of FPCM. The average for all 5 farms was 8.78 t of CO2e/ha and 0.90kg of CO2e/kg of FPCM. The results showed relatively high variability due to differences in management practices between farms. The 5 farms covered 10% of the total dairy goat farms but may not be representative of an average farm. Methane from enteric fermentation was a major emission source. The use of supplementary feed was highly variable but an important contributor to the carbon footprint. Nitrous oxide can contribute up to 18% of emissions. Indoor goat farming systems produced milk with a significantly higher carbon

  3. Combining UHPLC-High Resolution MS and Feeding of Stable Isotope Labeled Polyketide Intermediates for Linking Precursors to End Products

    DEFF Research Database (Denmark)

    Klitgaard, Andreas; Frandsen, Rasmus John Normand; Holm, Dorte Koefoed;

    2015-01-01

    acid (6-MSA) and 13C14-YWA1, both produced in-house, as well as commercial 13C7-benzoic acid and 2H7-cinnamic acid, in species of Fusarium, Byssochlamys, Aspergillus, and Penicillium. Incorporation of 6-MSA into terreic acid or patulin was not observed in any of six evaluated species covering three...... genera, because the 6-MSA was shunted into (2Z,4E)-2-methyl-2,4-hexadienedioic acid. This indicates that patulin and terreic acid may be produced in a closed compartment of the cell and that (2Z,4E)-2-methyl-2,4-hexadienedioic acid is a detoxification product toward terreic acid and patulin. In Fusarium...

  4. Carbon footprint calculation of Finnish greenhouse products; Kasvihuonetuotteiden ilmastovaikutuslaskenta. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaenaeinen, H.; Silvenius, F.; Kaukoranta, T.; Naekkilae, J.; Saerkkae, L.; Tuhkanen, E.-M.

    2013-02-01

    This report presents the results of climate impact calculations for five products produced in Finnish greenhouses: tomatoes, cucumbers, salad crops, tulips and Elatior begonias. The study employed 16 greenhouses for the investigation; two greenhouses each for the tulips and the begonias and four each for the tomatoes, cucumbers and salad crops. Based on these calculations a greenhouse gas calculator was developed for greenhouse cultivators. The calculator is available at internet in www.kauppapuutarhaliitto.fi {yields} hiilijalanjaelki. In terms of environmental impacts this study concentrated on the climate impacts of the investigated products, and the calculations were made for the most significant greenhouse gases: carbon dioxide, methane and nitrous oxide. The following processes were included in the system boundaries: plant growing, manufacturing of lime, fertilizers and pesticides, manufacturing and disposal of pots, carbon dioxide production, irrigation, lighting, thermal curtains and cooling systems, the production and use of electricity and heat energy, distribution of products by the growers, other transportation, end-of-life and recycling. Processes excluded from the study were: distribution by other actors, retail functions, the consumer stage, and maintenance and manufacturing of infrastructure. The study used MTT's calculation model for the climate impact of food products excluding distribution and retail processes. The greenhouses selected for the study had some variation in their energy profiles and growing seasons. In addition, scenarios were created for different energy sources by using the average figures from this study. Monthly energy consumption values were also obtained from a number of the greenhouses and these were used to assess the variations in climate impact for different seasons. According to the results of the study the use of energy is the most significant source of climate impact of greenhouse products. In the tomato farms the

  5. Carbon dioxide sequestration via olivine carbonation: Examining the formation of reaction products

    Science.gov (United States)

    King, H. E.; Plümper, O.; Putnis, A.

    2009-04-01

    Due to its abundance and natural ability to sequester CO2, olivine has been proposed as one mineral that could be used in the control of CO2 emissions into the atmosphere (Metz, 2005). Large scale peridotite deposits found in locations such as the Western Gneiss Region in Norway could provide in-situ sites for sequestration or the raw materials for ex-situ mineral carbonation. Determining the conditions under which magnesite (MgCO3) forms most efficiently is crucial to conduct a cost effective process. Understanding the development of secondary minerals is particularly important for in-situ methods as these phases can form passivating layers and affect the host rock porosity. The final solution of flow-through experiments conducted at alkaline pH have been shown to be supersaturated with respect to talc and chrysotile (Giammer et al., 2005), although these phases were not found to have precipitated the formation of a passivating, amorphous silica layer has been observed on reacted olivine surfaces (Bearat et al., 2006). By studying magnesite and other products produced during the carbonation of olivine within Teflon lined steel autoclaves we have begun to form a more comprehensive understanding of how these reactions would proceed during sequestration processes. We have performed batch experiments using carbonated saline solutions in the presence of air or gaseous CO2 from 80 to 200 ˚ C. X-ray powder diffraction was used to identify magnesite within the reaction products. Crystals of magnesite up to 20 m in diameter can be observed on olivine grain surfaces with scanning electron microscopy. Secondary reaction products formed a platy layer on olivine surfaces in reactions above 160 ˚ C and below pH 12. Energy dispersive X-ray analysis of the platy layer revealed an increase in Fe concentration. The macroscopically observable red colouration of the reaction products and Raman spectroscopy indicate that hematite is present in these layers. For experiments with

  6. An integrated new product development framework - an application on green and low-carbon products

    Science.gov (United States)

    Lin, Chun-Yu; Lee, Amy H. I.; Kang, He-Yau

    2015-03-01

    Companies need to be innovative to survive in today's competitive market; thus, new product development (NPD) has become very important. This research constructs an integrated NPD framework for developing new products. In stage one, customer attributes (CAs) and engineering characteristics (ECs) for developing products are collected, and fuzzy interpretive structural modelling (FISM) is applied to understand the relationships among these critical factors. Based on quality function deployment (QFD), a house of quality is then built, and fuzzy analytic network process (FANP) is adopted to calculate the relative importance of ECs. In stage two, fuzzy failure mode and effects analysis (FFMEA) is applied to understand the potential failures of the ECs and to determine the importance of ECs with respect to risk control. In stage three, a goal programming (GP) model is constructed to consider the outcome from the FANP-QFD, FFMEA and other objectives, in order to select the most important ECs. Due to pollution and global warming, environmental protection has become an important topic. With both governments and consumers developing environmental consciousness, successful green and low-carbon NPD provides an important competitive advantage, enabling the survival or renewal of firms. The proposed framework is implemented in a panel manufacturing firm for designing a green and low-carbon product.

  7. The Carbon Reduction Effect of the Trade of Paper Products in China

    Institute of Scientific and Technical Information of China (English)

    Feng; FENG; Heliang; HUANG; Pei; ZHANG; Siying; CHEN

    2015-01-01

    Through using the data of import and export trading of China’s paper products in 2012,we utilize the method of volume source biomass equation and net primary productivity( NPP) to calculate the carbon reduction effect of papermaking raw materials trade,and utilize the method of IPCC guidelines for inventories to calculate the carbon emission effect of paper and paper products trade. The results show that the distinctive characteristics of China’s paper products trade has resulted in the dual effects on the domestic carbon emissions. On the one hand,large imports of paper-making raw materials make China reduce domestic forest felling,with the effect of carbon emission reduction. On the other hand,net exports of paper and paper products increase the domestic carbon emissions,with the effect of carbon emission. The carbon emission reduction effect of China’s paper-making raw materials trade is obvious and up to 19. 0211 million tons. This is equal to the total volume of 180. 5709 million cubic meters forest’s annual carbon sequestration. The carbon emission effect of paper and paper products trade is only 0. 5136 million tons,which is not significant compared with the former. In general,China’s paper product trade causes the significant effect on carbon emission reduction.

  8. Thymectomized, irradiated, and bone marrow-reconstituted chimeras have normal cytolytic T lymphocyte precursors but a defect in lymphokine production

    International Nuclear Information System (INIS)

    A model system has been developed to study extrathymic T cell differentiation; mice have been thymectomized, lethally irradiated, and reconstituted with bone marrow cells depleted of Thy-1+ cells. After 8 wk, the spleen cells of these athymic, bone marrow-reconstituted chimeras contain Thy-1+ precytolytic T lymphocytes (CTL) that are able to respond to antigen only if supernatant from Con A-activated T cells is added to culture. The phenotype of these pre-CTL is similar to that of thymocytes, suggesting that they may be immature T cells. Initial evaluation of the CTL repertoire of these athymic mice demonstrated that the CTL generated to trinitrophenyl-modified syngeneic cells are H-2-restricted, and that the CTL generated to alloantigens have many of the cross-reactivities observed in normal mice but not in nude mice. In this report, the authors demonstrate a helper T cell defect in these thymectomized chimeras. These chimeras lack an Ly-1+ helper cell required for thymocytes to differentiate to CTL. Further studies revealed that when spleen cells from these thymectomized chimeras were stimulated with Con A, they produced normal levels of interleukin 2. However, these splenocytes were defective in the production of another factor needed for CTL differentiation

  9. Production of human insulin in an E. coli system with Met-Lys-human proinsulin as the expressed precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jin-Qiu Chen; Hong-Tao Zhang; Mei-Hao Hu; Jian-Guo Tang [Peking Univ., Beijing (China)

    1995-10-01

    The construction of a gene encoding Lys-human proinsulin, its direct expression in E.coli, and the simple purification procedure are described here. The temperature inducible promotor was employed for induction in a very short time. The expression level could reach 20-30%. After a simple downstream processing and only one step of Sephadex G50 purification, 150 mg recombinant Lys-human proinsulin with a purity of up to 90% could be obtained easily from 1 L of high density fermentation medium. The obtained product is in the form of Met-Lys-human proinsulin because of the failure of the bacterial host to remove the initiator methionine residue. The Lys-human proinsulin could be changed into human insulin by tryspin and carboxypeptidase B treatment in later steps. After separation with DEAE Sephadex A25, human insulin with expected amino acid composition and full native biological activity could be obtained with a yield of 50 mg/L fermentation medium. 20 refs., 5 figs., 4 tabs.

  10. Reduction of CO2 emissions by mineral carbonation : steelmaking slags as rawmaterial with a pure calcium carbonate end product

    OpenAIRE

    Eloneva, Sanni

    2010-01-01

    Mineral carbonation is one of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation purposes. Steel manufacturing, which is one of the biggest industrial sources of CO2 emissions, could benefit from this option by utilizing its own by-products, i.e., steelmaking slags, to combine with CO2. Additional benefits would be achieved if the end product was a pure and marketable calcium carbonate. The utilization of CaCO3 derived from steelmaking s...

  11. Parametric Study of Carbon Nanotube Production by Laser Ablation Process

    Science.gov (United States)

    Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William; Hadjiev, Victor; Scott, Carl

    2002-01-01

    Carbon nanotubes form a new class of nanomaterials that are presumed to have extraordinary mechanical, electrical and thermal properties. The single wall nanotubes (SWNTs) are estimated to be 100 times stronger than steel with 1/6th the weight; electrical carrying capacity better than copper and thermal conductivity better than diamond. Applications of these SWNTs include possible weight reduction of aerospace structures, multifunctional materials, nanosensors and nanoelectronics. Double pulsed laser vaporization process produces SWNTs with the highest percentage of nanotubes in the output material. The normal operating conditions include a green laser pulse closely followed by an infrared laser pulse. Lasers ab late a metal-containing graphite target located in a flow tube maintained in an oven at 1473K with argon flow of 100 sccm at a 500 Torr pressure. In the present work a number of production runs were carried out, changing one operating condition at a time. We have studied the effects of nine parameters, including the sequencing of the laser pulses, pulse separation times, laser energy densities, the type of buffer gas used, oven temperature, operating pressure, flow rate and inner flow tube diameters. All runs were done using the same graphite target. The collected nanotube material was characterized by a variety of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and thermo gravimetric analysis (TGA). Results indicate trends that could be used to optimize the process and increase the efficiency of the production process.

  12. Snapshot prediction of carbon productivity, carbon and protein content in a Southern Ocean diatom using FTIR spectroscopy.

    Science.gov (United States)

    Sackett, Olivia; Petrou, Katherina; Reedy, Brian; Hill, Ross; Doblin, Martina; Beardall, John; Ralph, Peter; Heraud, Philip

    2016-02-01

    Diatoms, an important group of phytoplankton, bloom annually in the Southern Ocean, covering thousands of square kilometers and dominating the region's phytoplankton communities. In their role as the major food source to marine grazers, diatoms supply carbon, nutrients and energy to the Southern Ocean food web. Prevailing environmental conditions influence diatom phenotypic traits (for example, photophysiology, macromolecular composition and morphology), which in turn affect the transfer of energy, carbon and nutrients to grazers and higher trophic levels, as well as oceanic biogeochemical cycles. The paucity of phenotypic data on Southern Ocean phytoplankton limits our understanding of the ecosystem and how it may respond to future environmental change. Here we used a novel approach to create a 'snapshot' of cell phenotype. Using mass spectrometry, we measured nitrogen (a proxy for protein), total carbon and carbon-13 enrichment (carbon productivity), then used this data to build spectroscopy-based predictive models. The models were used to provide phenotypic data for samples from a third sample set. Importantly, this approach enabled the first ever rate determination of carbon productivity from a single time point, circumventing the need for time-series measurements. This study showed that Chaetoceros simplex was less productive and had lower protein and carbon content during short-term periods of high salinity. Applying this new phenomics approach to natural phytoplankton samples could provide valuable insight into understanding phytoplankton productivity and function in the marine system.

  13. Dutch (organic) agriculture, carbon sequestration and energy production

    NARCIS (Netherlands)

    Burgt, van der G.J.H.M.; Staps, S.; Timmermans, B.

    2010-01-01

    Carbon sequestration in soils is often mentioned in the discussions about climate changes. In this paper the opportunities for carbon sequestration in Dutch agriculture are discussed at farm and national level. Farm internal carbon sources are already completely used in livestock farming. The effect

  14. Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Liming; You, Tingting; Zhou, Tian; Zhou, Xia; Xu, Feng

    2016-06-01

    The advent of bioethanol production has generated abundant lignin-derived byproducts which contain proteins and polysaccharides. These byproducts are inapplicable for direct material applications. In this study, lignin-derived byproducts were used for the first time as carbon precursors to construct an interconnected hierarchical porous nitrogen-doped carbon (HPNC) via hydrothermal treatment and activation. The obtained HPNC exhibited favorable features for supercapacitor applications, such as hierarchical bowl-like pore structures, a large specific surface area of 2218 m(2) g(-1), a high electronic conductivity of 4.8 S cm(-1), and a nitrogen doping content of 3.4%. HPNC-based supercapacitors in a 6 M KOH aqueous electrolyte exhibited high-rate performance with a high specific capacitance of 312 F g(-1) at 1 A g(-1) and 81% retention at 80 A g(-1) as well as an excellent cyclic life of 98% initial capacitance after 20 000 cycles at 10 A g(-1). Moreover, HPNC-based supercapacitors in the ionic liquid electrolyte of EMI-BF4 displayed an enhanced energy density of 44.7 Wh kg(-1) (remaining 74% of max value) at an ultrahigh power density of 73.1 kW kg(-1). The proposed strategy may facilitate lignin utilization and lead to a green bioethanol production process. PMID:27181098

  15. Yarn spun from carbon nanotube forests: Production, structure, properties and applications

    Institute of Scientific and Technical Information of China (English)

    Menghe Miao

    2013-01-01

    The discovery ofdrawable carbon nanotube forests opened up the possibility of constructing a wide range of pure carbon nanotube macrostructures and sparked interests in developing applications from these structures,especially pure carbon nanotube yarns.This review examines the various facets of the drawable carbon nanotube forests,synthesis and drawability,and their resulting yarns,structure,production,properties and applications.The structure,formation and properties of carbon nanotube yarns are compared with those of conventional textile yarns in order to obtain a better understanding of the science,structural mechanics and processing technology involved in carbon nanotube yarns.

  16. Magnéli phases Ti{sub 4}O{sub 7} and Ti{sub 8}O{sub 15} and their carbon nanocomposites via the thermal decomposition-precursor route

    Energy Technology Data Exchange (ETDEWEB)

    Conze, S., E-mail: susan.conze@ikts.fraunhofer.de [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany); Veremchuk, I. [Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden (Germany); Reibold, M. [Technical University of Dresden, Zum Triebenberg 50, 01328 Dresden (Zaschendorf) (Germany); Matthey, B.; Michaelis, A. [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany); Grin, Yu. [Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden (Germany); Kinski, I. [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany)

    2015-09-15

    A new synthetic approach for producing nano-powders of the Magnéli phases Ti{sub 4}O{sub 7}, Ti{sub 8}O{sub 15} and their carbon nanocomposites by thermal decomposition-precursor route is proposed. The formation mechanism of the single-phase carbon nanocomposites (Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C) from metal–organic precursors is studied using FT-IR, elemental analysis, TG, STA-MS and others. The synthesis parameters and conditions were optimized to prepare the target oxides with the desired microstructure and physical properties. The electrical and transport properties of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. These nano-materials are n-type semiconductors with relatively low thermal conductivity in contrast to the bulk species. The nanostructured carbon nanocomposites of Magnéli phases achieve a low thermal conductivity close to 1 W/m K at RT. The maximum ZT{sub 570} {sub °C} values are 0.04 for Ti{sub 4}O{sub 7}/C powder nanocomposite and 0.01 for Ti{sub 8}O{sub 15}/C bulk nanocomposite. - Graphical abstract: From the precursor to the produced titanium oxide pellet and its microstructure (SEM, TEM micrographs) as well as results of phase and thermoelectric analyses. - Highlights: • Magnéli phases Ti{sub 4}O{sub 7}/Ti{sub 8}O{sub 15} via thermal decomposition-precursor route is proposed. • The formation mechanism of the nanocomposites Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. • Microstructure of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are examined. • The electrical and transport properties of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. • The maximum figure of mertit ZT{sub 570} {sub °C} of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are 0.01 and 0.04.

  17. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  18. Effect of applied environmental stress on growth, photosynthesis, carbon allocation, and hydrocarbon production in Euphorbia lathyris

    International Nuclear Information System (INIS)

    Photosynthetic activity was reduced by salinity stress, but is was found to be less sensitive than growth. Salinity stress also caused changes in the concentrations of specific cations. Moderate water stress had little effect on growth, but large changes in hydrocarbon production were still observed. Carbon allocation experiments with radiolabeled carbon indicated that carbon for latex production was supplied by nearby leaves, with some translocation down the stem also occurring

  19. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Science.gov (United States)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  20. Process synthesis and optimization for the production of carbon nanostructures

    International Nuclear Information System (INIS)

    A swirled fluidized bed chemical vapour deposition (SFCVD) reactor has been manufactured and optimized to produce carbon nanostructures on a continuous basis using in situ formation of floating catalyst particles by thermal decomposition of organometallic ferrocene. During the process optimization, carbon nanoballs were produced in the absence of a catalyst at temperatures higher than 1000 0C, while carbon nanofibres, single-walled carbon nanotubes, helical carbon nanotubes, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibres (CNFs) were produced in the presence of a catalyst at lower temperatures of between 750 and 900 0C. The optimum conditions for producing carbon nanostructures were a temperature of 850 0C, acetylene flow rate of 100 ml min-1, and acetylene gas was used as the carbon source. All carbon nanostructures produced have morphologies and diameters ranging from 15 to 200 nm and wall thicknesses between 0.5 and 0.8 nm. In comparison to the quantity of MWCNTs produced with other methods described in the literature, the SFCVD technique was superior to floating catalytic CVD (horizontal fixed bed) and microwave CVD but inferior to rotary tube CVD.

  1. Process synthesis and optimization for the production of carbon nanostructures

    Science.gov (United States)

    Iyuke, S. E.; Mamvura, T. A.; Liu, K.; Sibanda, V.; Meyyappan, M.; Varadan, V. K.

    2009-09-01

    A swirled fluidized bed chemical vapour deposition (SFCVD) reactor has been manufactured and optimized to produce carbon nanostructures on a continuous basis using in situ formation of floating catalyst particles by thermal decomposition of organometallic ferrocene. During the process optimization, carbon nanoballs were produced in the absence of a catalyst at temperatures higher than 1000 °C, while carbon nanofibres, single-walled carbon nanotubes, helical carbon nanotubes, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibres (CNFs) were produced in the presence of a catalyst at lower temperatures of between 750 and 900 °C. The optimum conditions for producing carbon nanostructures were a temperature of 850 °C, acetylene flow rate of 100 ml min-1, and acetylene gas was used as the carbon source. All carbon nanostructures produced have morphologies and diameters ranging from 15 to 200 nm and wall thicknesses between 0.5 and 0.8 nm. In comparison to the quantity of MWCNTs produced with other methods described in the literature, the SFCVD technique was superior to floating catalytic CVD (horizontal fixed bed) and microwave CVD but inferior to rotary tube CVD.

  2. Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Flysjoe, A.M.

    2012-11-01

    The present PhD project has focused on some of the most critical methodological aspects influencing GHG emission estimates of milk and dairy products and how the methodology can be improved. In addition, the Carbon Footprint (CF) for different types of dairy products has been analysed. Based on these results, mitigation options have been identified along the entire dairy value chain. The key methodological challenges analysed in the present study are: estimation of CH{sub 4} and N{sub 2}O emissions, assessment of CO{sub 2} emissions from land use change (LUC), co-product handling, and definition of the functional unit. Estimates of the biogenic emissions CH{sub 4} and N{sub 2}O are associated with large uncertainties due to the complexity and natural variation in biological processes. Accounting for these variations resulted in a {+-}30-50% variation in the CF for milk in Sweden and New Zealand (excluding emissions from LUC). The inclusion of emissions from LUC can drastically affect the CF of dairy products, and different models can even provide contradictory results. Thus, it is suggested that emissions associated with LUC are reported separately and that underlying assumptions are clearly explained. Accounting for the by-product beef is decisive for the CF of milk, and when designing future strategies for the dairy sector, milk and meat production needs to be addressed in an integrated approach. It is shown that an increase in milk yield per cow does not necessarily result in a lower CF of milk, when taking into account the alternative production of the by-product beef. This demonstrates that it is important to investigate interactions between different product chains, i.e. to apply system thinking. The CF of dairy products from Arla Foods analysed in the present study range from: 1.2-5.5 kg CO{sub 2}e per kg fresh dairy products, 7.3-10.9 kg CO{sub 2}e per kg butter and butter blends, 4.5-9.9 kg CO{sub 2}e per kg cheese, and 1.0-17.4 kg CO{sub 2}e per kg milk

  3. Production of activated carbon from Atili seed shells

    Directory of Open Access Journals (Sweden)

    Nehemiah Samuel MAINA

    2014-11-01

    Full Text Available Activated carbon was produced from atili (black date seed shells by chemical activation with phosphoric acid as an activating agent. Carbonization was done at temperatures of 350°C, 450°C, 550°C, 650°C and at corresponding resident times of 20, 30, 40, 50 and 60 minutes respectively in a muffle furnace. The study involved the determination of yield, carbon content, burn-off, moisture content, and ash content as well as the temperature and suitable resident time for carbonization. The result showed that, increasing the carbonization temperature from 350°C to 650°C as well as increasing the corresponding resident time from 20 to 60 minutes led to a decrease in carbonization yield as well as an increase in burn off. An increase in carbonization time led to a decrease in ash content while an increase in carbonization temperature led to a decrease in the moisture content. The yield, burn-off and ash content obtained at a carbonization temperature of 650°C and at a corresponding time of 60 minutes were found to be 68.29%, 31.71% and 0.75% respectively while the highest carbon content (99.16 and lowest moisture content (0.09 was obtained at this same temperature and corresponding time. The activated carbon produced gave a yield of 99.37%, ash content (2.01%, moisture content (4.20%, carbon content (93.79%, burn off (0.63% and pH of 6.752. These properties therefore indicate the suitability of the activated carbon produced.

  4. New natural product carbonic anhydrase inhibitors incorporating phenol moieties.

    Science.gov (United States)

    Karioti, Anastasia; Ceruso, Mariangela; Carta, Fabrizio; Bilia, Anna-Rita; Supuran, Claudiu T

    2015-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.

  5. Application of thermal analysis techniques in activated carbon production

    Science.gov (United States)

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  6. Control of precursor maturation and disposal is an early regulative mechanism in the normal insulin production of pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Jie Wang

    Full Text Available The essential folding and maturation process of proinsulin in β-cells is largely uncharacterized. To analyze this process, we improved approaches to immunoblotting, metabolic labeling, and data analysis used to determine the proportion of monomers and non-monomers and changes in composition of proinsulin in cells. We found the natural occurrence of a large proportion of proinsulin in various non-monomer states, i.e., aggregates, in normal mouse and human β-cells and a striking increase in the proportion of proinsulin non-monomers in Ins2(+/Akita mice in response to a mutation (C96Y in the insulin 2 (Ins2 gene. Proinsulin emerges in monomer and abundant dual-fate non-monomer states during nascent protein synthesis and shows heavy and preferential ATP/redox-sensitive disposal among secretory proteins during early post-translational processes. These findings support the preservation of proinsulin's aggregation-prone nature and low relative folding rate that permits the plentiful production of non-monomer forms with incomplete folding. Thus, in normal mouse/human β-cells, proinsulin's integrated maturation and degradation processes maintain a balance of natively and non-natively folded states, i.e., proinsulin homeostasis (PIHO. Further analysis discovered the high susceptibility of PIHO to cellular energy and calcium changes, endoplasmic reticulum (ER and reductive/oxidative stress, and insults by thiol reagent and cytokine. These results expose a direct correlation between various extra-/intracellular influences and (atypical integrations of proinsulin maturation and disposal processes. Overall, our findings demonstrated that the control of precursor maturation and disposal acts as an early regulative mechanism in normal insulin production, and its disorder is crucially linked to β-cell failure and diabetes pathogenesis.

  7. Carbon footprint of building products and assembled constructional complexes

    OpenAIRE

    Petrović, Klemen

    2015-01-01

    Greenhouse gases are becoming bigger and bigger polluter of our planet. Carbon dioxide represents the largest part of greenhouse gases (70 %), because of that we represent carbon footprint with CO2 equivalent (CO2-e). We will compare assembled construction complexes and their carbon footprint in this graduation thesis. At first we will explain what greenhouse gases are and how they are formed. Then we will present some of the studies that research field of materials in constructio...

  8. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  9. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    Science.gov (United States)

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  10. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method.

    Science.gov (United States)

    Ilham, Zul; Saka, Shiro

    2009-03-01

    In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 degrees C/20 MPa, rapeseed oil treated with supercritical dimethyl carbonate reached 94% (w/w) yield of fatty acid methyl ester. The by-products from this process which are glycerol carbonate and citramalic acid are much higher in value than glycerol produced by the conventional process. In addition, the yield of the fatty acid methyl esters as biodiesel was almost at par with supercritical methanol method. Therefore, supercritical dimethyl carbonate process can be a good candidate as an alternative biodiesel production process. PMID:18990561

  11. Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production

    DEFF Research Database (Denmark)

    Kongpanna, Pichayapan; Pavarajarn, Varong; Gani, Rafiqul;

    2015-01-01

    ; and (4) synthesis from ethylene carbonate. The processes avoid the use of toxic chemicals such as phosgene, CO and NO that are required in conventional DMC production processes. From preliminary thermodynamic analysis, the yields of DMC are found to have the following order (higher to lower): ethylene......In this work, several chemical processes for production of dimethyl carbonate (DMC) based on CO2 utilization are evaluated. Four CO2-based processes for production of DMC are considered: (1) direct synthesis from CO2 and methanol; (2) synthesis from urea; (3) synthesis from propylene carbonate...... carbonate route > urea route > propylene carbonate route > direct synthesis from CO2. Therefore, only the urea and ethylene carbonate routes are further investigated by comparing their performances with the commercial BAYER process on the basis of kg of DMC produced at a specific purity. The ethylene...

  12. Methane dry reforming catalysts for the production of hydrogen and carbon monoxide

    International Nuclear Information System (INIS)

    The reaction of carbon dioxide reforming of methane (dry reforming) is a very attractive way to convert low-cost reactants in synthesis gas (CO + H2).Moreover, the reaction also has very important environmental effects because both methane and carbon dioxide are greenhouse gases, and may become valuable raw materials. One of the advantages of the dry reforming compared with the conventional steam reforming is the low H2:CO relationship in the product, which is preferred for the synthesis of oxoalcohols and oxygenated compounds. Although noble metals based catalysts have been proved to be less sensitive to coke, the high cost and restricted availability limit their use in this process.From an industrial standpoint, it is more desirable to develop nickel-based catalysts, which are resistant to carbon deposition and exhibit stable operation for extended periods of time.In this work nickel-alumina catalysts, pure or promoted with rhodium or ruthenium, were prepared using different techniques, employing aluminum and nickel alkoxides, and characterized and selected according to their catalytic activity and coking resistance.These catalysts are to be used in an inert ceramic membrane reactor.The nickel precursor is a nickel alkoxide incorporated to the matrix precursor of alumina, which at the same time is an aluminum alkoxide.Under this scheme, catalysts with a 14% nickel charge were prepared using three preparation methods: pC0: characteristics: hydrolysis and acid peptization with HNO3. A1C0: characteristics: thermal decomposition. A1C0H: characteristics: thermal decomposition and subsequent hydrothermal treatment.To sum up, three Ni-A12O3 catalysts, three Ni-Rh-A12O3 catalysts, and three Ni-Ru-A12O3 catalysts were prepared.Each catalyst was prepared using the three methods: pC0-Ni-X, A1C0-Ni-X, and A1C0H-Ni-X, (X= Ru or Rh).The precursors of alumina and nickel were aluminum sec-butoxide and nickel 1-methoxide-2-propoxide. Microstructure characterization was studied by

  13. The process of dimethyl carbonate to diphenyl carbonate: thermodynamics, reaction kinetics and conceptual process design

    NARCIS (Netherlands)

    Haubrock, Jens

    2007-01-01

    Diphenyl carbonate (DPC) is a precursor in the production of Polycarbonate (PC), a widely employed engineering plastic. To overcome the drawbacks of the traditional PC process - e.g. phosgene as a reactant and methylene chloride as solvent- a new process route starting from Dimethyl carbonate (DMC)

  14. Erosion mechanism and erosion products in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Piazza, G.; Safronov, V. E-mail: vsafr@rico.ttk.ru; Scaffidi-Argentina, F.; Toporkov, D.; Vasenin, S.; Wuerz, H.; Zhitlukhin, A

    2002-12-01

    Plasma/material interaction was studied in disruption simulation experiments at the plasma gun facility MK-200. Graphite and carbon-fibre composites were exposed to pulsed energetic plasma under heat loads typically expected for disruptions in future tokamaks. Erosion rates, erosion mechanisms and the properties of the eroded carbon have been studied.

  15. Methane cracking over commercial carbons for hydrogen production

    Directory of Open Access Journals (Sweden)

    J. Sarada Prasad, Vivek Dhand, V. Himabindu Y. Anjaneyulu

    2010-07-01

    Full Text Available A bench scale unit has been designed and developed indigenously for producing hydrogen from methane in the presence of a catalyst. Five number carbon samples (two carbon blacks and three activated carbons of different origin procured from Indian market have been investigated in the bench scale unit with stainless steel continuous fixed bed reactor at a constant temperature of 850 0C and space velocity (VHSV of 1.62 Lit/hr.g. Among all the five samples, activated carbon produced from coconut shells with BET surface area of 1185 m2/g showed promising activity with a sustainability factor (R1/R0 of 0.33 and initial activity (R0 of 0.623 mmol/min.g of catalyst. Accumulated carbon yield (over a period of four hours of the above catalyst is 564 mg/g of catalyst.

  16. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-07-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

  17. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    OpenAIRE

    Guo, Hong-xia; Shao, Ming

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products, we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent. We apply the development idea of low-carbon economy, introduce the third-party logistics companies, establish distribution center of cold chain logistics of agricultural products, and strengthen information sharing, to reengineer the process of cold chain logistics of agricultural produc...

  18. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate.

    Science.gov (United States)

    Adkins, Jake; Jordan, Justin; Nielsen, David R

    2013-06-01

    Through metabolic pathway engineering, novel microbial biocatalysts can be engineered to convert renewable resources into useful chemicals, including monomer building-blocks for bioplastics production. Here we describe the systematic engineering of Escherichia coli to produce, as individual products, two 5-carbon polyamide building blocks, namely 5-aminovalerate (AMV) and glutarate. The modular pathways were derived using "parts" from the natural lysine degradation pathway of Pseudomonas putida KT2440. Endogenous over-production of the required precursor, lysine, was first achieved through metabolic deregulation of its biosynthesis pathway by introducing feedback resistant mutants of aspartate kinase III and dihydrodipicolinate synthase. Further disruption of native lysine decarboxylase activity (by deleting cadA and ldcC) limited cadaverine by-product formation, enabling lysine production to 2.25 g/L at a glucose yield of 138 mmol/mol (18% of theoretical). Co-expression of lysine monooxygenase and 5-aminovaleramide amidohydrolase (encoded by davBA) then resulted in the production of 0.86 g/L AMV in 48 h. Finally, the additional co-expression of glutaric semialdehyde dehydrogenase and 5-aminovalerate aminotransferase (encoded by davDT) led to the production of 0.82 g/L glutarate under the same conditions. At this output, yields on glucose were 71 and 68 mmol/mol for AMV and glutarate (9.5 and 9.1% of theoretical), respectively. These findings further expand the number and diversity of polyamide monomers that can be derived directly from renewable resources. PMID:23296991

  19. The Demand and Supply Status of Carbon Fibers and its Production Cost%碳纤维供求状况与生产成本

    Institute of Scientific and Technical Information of China (English)

    芦长椿

    2013-01-01

    分析了近年来碳纤维的供需变化趋势及碳纤维的成本影响因素,介绍了国内外碳纤维原丝和低成本碳纤维技术的研发状况,并从美国Oak Ridge实验室开展的低成本碳纤维及其复合材料的研究中得到了有益的启示.%The tendency of demand and supply changes of carbon fiber (CF) and its factors influencing production cost in recent years are analyzed. This article introduces the domestic and overseas development of CF precursors and low cost carbon fibers recently and states the useful inspiration from development in the aspects of low cost CF and its composites performed by Oak Ridge Laboratory.

  20. Combined hydrogen production and storage with subsequent carbon crystallization.

    Science.gov (United States)

    Lueking, Angela D; Gutierrez, Humberto R; Fonseca, Dania A; Narayanan, Deepa L; Van Essendelft, Dirk; Jain, Puja; Clifford, Caroline E B

    2006-06-21

    We provide evidence of low-temperature hydrogen evolution and possible hydrogen trapping in an anthracite coal derivative, formed via reactive ball milling with cyclohexene. No molecular hydrogen is added to the process. Raman-active molecular hydrogen vibrations are apparent in samples at atmospheric conditions (300 K, 1 bar) for samples prepared 1 year previously and stored in ambient air. Hydrogen evolves slowly at room temperature and is accelerated upon sample heating, with a first increase in hydrogen evolution occurring at approximately 60 degrees C. Subsequent chemical modification leads to the observation of crystalline carbons, including nanocrystalline diamond surrounded by graphene ribbons, other sp2-sp3 transition regions, purely graphitic regions, and a previously unidentified crystalline carbon form surrounded by amorphous carbon. The combined evidence for hydrogen trapping and carbon crystallization suggests hydrogen-induced crystallization of the amorphous carbon materials, as metastable hydrogenated carbons formed via the high-energy milling process rearrange into more thermodynamically stable carbon forms and molecular hydrogen.

  1. Controls on terrestrial carbon feedbacks by productivity vs. turnover in the CMIP5 Earth System Models

    Directory of Open Access Journals (Sweden)

    C. D. Koven

    2015-04-01

    Full Text Available To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into 4 categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes, and outputs (turnover-driven changes, and apply the analysis separately to the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5 simulations for 5 models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This responses arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times in response to increases in productivity. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully-coupled, biogeochemically-coupled, and radiatively-coupled 1% yr−1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally-integrated equilibrium carbon responses to initial turnover times, inital productivity, fractional changes in turnover, and fractional changes in

  2. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters

    International Nuclear Information System (INIS)

    Highlights: • Utilization of glycerol to synthesize glycerol carbonate through various routes. • Different types of carbonates and catalysts used for glycerol carbonate production via transesterification are elucidated. • Important factors influencing glycerol carbonate production performances are detailed. • Future research needs of glycerol carbonate production are proposed. - Abstract: Driven by high energy demand and environmental concerns, biodiesel as a substitute for fossil fuels is recognized to be promising renewable and clean energy. The increase in the biodiesel plant dramatically leads to the oversupply of its by-product glycerol in the biodiesel industries. Developing new industrial uses for glycerol is essential to increase the net energy and sustainability of biodiesel. Moreover, glycerol has great potential to be converted into marketable and valuable chemicals. The conversion of glycerol to glycerol carbonate (GC) has been extensively studied and transesterification of glycerol to GC has been proven to be the most promising route. Aimed to reveal the underlying mechanism of this successful conversion path, this paper reviews the chemo- and biocatalytic transesterification of glycerol with different carbonates sources. Also, a detail elucidation of the influence of the catalysts and operating conditions on the GC yield is included to provide an insight into the process. In addition, the future direction of glycerol carbonate production via catalytic transesterification is provided in this review

  3. Applying the polarity rapid assessment method to characterize nitrosamine precursors and to understand their removal by drinking water treatment processes.

    Science.gov (United States)

    Liao, Xiaobin; Bei, Er; Li, Shixiang; Ouyang, Yueying; Wang, Jun; Chen, Chao; Zhang, Xiaojian; Krasner, Stuart W; Suffet, I H Mel

    2015-12-15

    Some N-nitrosamines (NAs) have been identified as emerging disinfection by-products during water treatment. Thus, it is essential to understand the characteristics of the NA precursors. In this study, the polarity rapid assessment method (PRAM) and the classical resin fractionation method were studied as methods to fractionate the NA precursors during drinking water treatment. The results showed that PRAM has much higher selectivity for NA precursors than the resin approach. The normalized N-nitrosodimethylamine formation potential (NDMA FP) and N-nitrosodiethylamine (NDEA) FP of four resin fractions was at the same level as the average yield of the bulk organic matter whereas that of the cationic fraction by PRAM showed 50 times the average. Thus, the cationic fraction was shown to be the most important NDMA precursor contributor. The PRAM method also helped understand which portions of the NA precursor were removed by different water treatment processes. Activated carbon (AC) adsorption removed over 90% of the non-polar PRAM fraction (that sorbs onto the C18 solid phase extraction [SPE] cartridge) of NDMA and NDEA precursors. Bio-treatment removed 80-90% of the cationic fraction of PRAM (that is retained on the cation exchange SPE cartridge) and 40-60% of the non-cationic fractions. Ozonation removed 50-60% of the non-polar PRAM fraction of NA precursors and transformed part of them into the polar fraction. Coagulation and sedimentation had very limited removal of various PRAM fractions of NA precursors.

  4. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  5. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    Science.gov (United States)

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  6. Production of single-walled carbon nanotube grids

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  7. Carbon emissions from U.S. ethylene production under climate change policies.

    Science.gov (United States)

    Ruth, Matthias; Amato, Anthony D; Davidsdottir, Brynhildur

    2002-01-15

    This paper presents the results from a dynamic computer model of U.S. ethylene production, designed to explore implications of alternative climate change policies for the industry's energy use and carbon emissions profiles. The model applies to the aggregate ethylene industry but distinguishes its main cracker types, fuels used as feedstocks and for process energy, as well as the industry's capital vintage structure and vintage-specific efficiencies. Results indicate that policies which increase the cost of carbon of process energy-such as carbon taxes or carbon permit systems-are relatively blunt instruments for cutting carbon emissions from ethylene production. In contrast, policies directly affecting the relative efficiencies of new to old capital-such as R&D stimuli or accelerated depreciation schedules-may be more effective in leveraging the industry's potential for carbon emissions reductions.

  8. Production of lightweight aggregate from industrial waste and carbon dioxide.

    Science.gov (United States)

    Gunning, Peter J; Hills, Colin D; Carey, Paula J

    2009-10-01

    The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m(3) and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere. PMID:19577916

  9. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products,we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent.We apply the development idea of low-carbon economy,introduce the thirdparty logistics companies,establish distribution center of cold chain logistics of agricultural products,and strengthen information sharing,to reengineer the process of cold chain logistics of agricultural products in China.The results show that applying low-carbon economy to process reengineering of cold chain logistics of agricultural products,has advantages of increasing added value of products,promoting scale merit and abating lag,plays a role in promoting emission reduction,high efficiency and environmental protection in the process of cold chain logistics of agricultural products in China.

  10. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models

    Science.gov (United States)

    Koven, C. D.; Chambers, J. Q.; Georgiou, K.; Knox, R.; Negron-Juarez, R.; Riley, W. J.; Arora, V. K.; Brovkin, V.; Friedlingstein, P.; Jones, C. D.

    2015-09-01

    To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr-1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model spread in

  11. Theoretical spectral distributions and total cross sections for neutral subthreshold pion production in carbon-carbon collisions

    Science.gov (United States)

    Norbury, J. W.; Cucinotta, F. A.; Deutchman, P. A.; Townsend, L. W.

    1985-01-01

    A coherent isobar formalism is employed to model subthreshold production of neutral pions in carbon-carbon collisions at energies below 100 MeV/nucleon. No arbitrary scale factors or adjustable free parameters are used in calculation of the Lorentz-invariant cross sections for pion production in the projectile, which produces an excited state that goes to M1 resonance in the target by conservation of spin and isospin. Pion production is also modeled for the projectile, which also reaches M1 resonance. The overall pion spectral distribution in the center of mass system is then integrated over the energy range 35-84 MeV/nucleon. The results expose an energy loss in the incident ions, as observed experimentally, and indicate that an isobar mechanism is responsible for higher energy pion production. Lower energy pions are a result of thermal processes.

  12. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method

    OpenAIRE

    Ilham, Zul; Saka, Shiro

    2009-01-01

    In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 °C/20 MPa, rapeseed oil treated with supercritical dimethyl carbona...

  13. The effect of carbon coating thickness on the capacity of LiFePO{sub 4}/C composite cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yung-Da; Fey, George Ting-Kuo [Department of Chemical and Materials Engineering, National Central University, Chung-Li 32054 (China); Kao, Hsien-Ming [Department of Chemistry, National Central University, Chung-Li 32054 (China)

    2009-04-01

    Two types of carbon source and precursor mixing pellets were employed simultaneously to prepare the LiFePO{sub 4}/C composite materials: Type I using the LiFePO{sub 4} precursor with 20 wt.% polystyrene (PS) as a primary carbon source, and Type II using the LiFePO{sub 4} precursor with 50 wt.% malonic acid as a secondary carbon vapor source. During final sintering, a Type I pellet was placed down-stream and Type II precursor pellet(s) was(were) placed upstream next to a Type I precursor pellet in a quartz-tube furnace. The carbon-coated product of the sintered Type I precursor pellet was obtained by using both PS and malonic acid as carbon sources. When two Type II pellets were used as a carbon vapor source (defined as Product-2), a more uniform film between 4 and 8 nm was formed, as shown in the TEM images. In the absence of a secondary carbon source (defined as Product-0), the discharge capacity of Product-0 was 137 mAh g{sup -1} with 100 cycles at a 0.2C-rate, but Product-2 demonstrated a high capacity of 151 mAh g{sup -1} with 400 cycles. Our results indicate that electrochemical properties of LiFePO{sub 4} are correlated to the amount of carbon and its coating thickness and uniformity. (author)

  14. The Environmental Impact of Industrial Bamboo Products: Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an elec

  15. Mangrove production and carbon sinks: a revision of global budget estimates

    NARCIS (Netherlands)

    Bouillon, S.; Borges, A.V.; Castañeda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V.H.; Smith III, T.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove pri

  16. Mangrove production and carbon sinks: A revision of global budget estimates

    Science.gov (United States)

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  17. Effects of hydrolysis and carbonization reactions on hydrochar production.

    Science.gov (United States)

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  18. GHG emissions of green coffee production : toward a standard methodology for carbon footprinting : report

    NARCIS (Netherlands)

    Sevenster, M.; Verhagen, A.

    2010-01-01

    In this project, the scope for product specific rules for carbon footprinting of (green) coffee is investigated and a proposal is drafted for further work toward actual definition and implementation of such a standard.

  19. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Directory of Open Access Journals (Sweden)

    Vanessa Moura Dos Reis

    Full Text Available The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  20. Estimate of carbonate production by scleractinian corals at Luhuitou fringing reef, Sanya, China

    Institute of Scientific and Technical Information of China (English)

    SHI Qi; ZHAO MeiXia; ZHANG QiaoMin; YU KeFu; CHEN TianRan; LI Shu; WANG HanKui

    2009-01-01

    Carbonate production by scleractinian corals not only maintains coral reef growth, but also represents an important source of atmospheric carbon dioxide. In this paper the carbonate production by scler-actinian corals at Luhuitou fringing reef, Sanya, Hainan Island, China, is investigated with an ecological census-based method. Averaged carbonate production is 1.16±0.55 kg·m-2·a-1 and 3.52±1.32 kg·m-2·a-1 on the reef flat and reef slope, respectively, depending on the composition and distribution of corals and the intergeneric difference of skeletal growth. In response to the rapidly increasing hu-man impacts, coral carbonate production has decreased by 80%-89% at this fringing reef since the 1960s; as a result, the reef accretion rate declined and became lower than the rate of sea level rise. Further development of the Luhuitou fringing reef will switch significantly from lateral extension sea-wards to vertical growth, reflecting a response of coral reef bio-geomorphic process to strong human impacts under the background of global sea level rise. In addition, decrease in coral carbonate pro-duction reduced CO2 release from this fringing reef. In the future, it is likely that the role played by coral reefs, especially of fringing reefs, in the ocean and even in the global carbon cycle will be modified or weakened by the increasing human impacts.

  1. Regional carbon dioxide implications of forest bioenergy production

    OpenAIRE

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    International audience Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests1, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions2, and forest thinning to reduce wildfire emissions3. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2-14% (46-405 Tg C) higher emissions compared with cur...

  2. Carbon dioxide metabolism by Actinomyces viscosus: pathways for succinate and aspartate production.

    OpenAIRE

    Brown, A T; Breeding, L C

    1980-01-01

    14C-labeled bicarbonate was incorporated into trichloroacetic acid-insoluble material by cell suspensions of A. viscosus strain M100 and also into the four-carbon fermentation product, succinate, but not into the three-carbon fermentation product, lactate. The initial step in the conversion of 14C-labeled bicarbonate into both trichloroacetic acid-insoluble material and succinate was catalyzed by the enzyme phosphoenolypyruvate carboxylase, which served to convert the glycolytic intermediate,...

  3. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production

    OpenAIRE

    Gelfand, Ilya; Zenone, Terenzio; Jasrotia, Poonam; Chen, Jiquan; Hamilton, Stephen K.; Robertson, G. Philip

    2011-01-01

    Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn–soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt...

  4. How will conversion to organic cereal production affect carbon stocks in Swedish agricultural soils?

    OpenAIRE

    Andrén, Olof; Kätterer, Thomas; Kirchmann, Holger

    2008-01-01

    Soil carbon changes were modelled over 30 years with the focus on cereal crops, since leys are often managed similarly in organic and conventional agriculture. Other crops were not considered due to difficulties in large-scale cropping of oilseed rape and potatoes organically because of pest problems. Four scenarios were used: 0%, 8% (current), 20% and 100% organic cereal production. Conversion to organic cereal crop production was found to reduce the amount of carbon stored as organic matter...

  5. Sustainable Production of Cannabinoids with Supercritical Carbon Dioxide Technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all cannabinoi

  6. Equilibrium thermodynamic analyses of methanol production via a novel Chemical Looping Carbon Arrestor process

    International Nuclear Information System (INIS)

    Highlights: • A novel Chemical Looping Carbon Arrestor Reforming process has been developed. • Energy efficiency of the process is found to be ∼64–70%. • The process emits only about 0.14 mole of carbon dioxide per mole of methanol. • The process offers an efficient and low-emission option for methanol production. - Abstract: Methanol economy is considered as an alternative to hydrogen economy due to the better handling and storage characteristics of methanol fuel than liquid hydrogen. This paper is concerned about a comprehensive equilibrium thermodynamic analysis carried out on methanol production via an innovative Chemical Looping Carbon Arrestor/Reforming process being developed at the University of Newcastle in order to reduce both energy consumption and carbon emissions. The detailed simulation revealed thermodynamic limitations within the Chemical Looping Carbon Reforming process however on the other hand it also confirmed that the new concept is a low energy requirement and low emission option compared to other methanol production technologies. Specifically, the mass and energy balance study showed that the Chemical Looping Carbon Reforming process typically consumes approximately 0.76–0.77 mole methane, 0.25–0.27 mole carbon dioxide, 0.49–0.50 mole water, and 0.51 mole iron oxide (in a chemical looping manner) per mole of methanol production. Moreover, the energy efficiency of Chemical Looping Carbon Reforming process was found to be ∼64–70% and its emission profile was found as low as 0.14 mole carbon dioxide per mole of methanol, which is about 82–88% less than the conventional methanol production process and well below the emission levels of other emerging methanol production technologies

  7. Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors

    Directory of Open Access Journals (Sweden)

    Jianchang Lu

    2015-04-01

    Full Text Available Based on the international community’s analysis of the present CO2 emissions situation, a Log Mean Divisia Index (LMDI decomposition model is proposed in this paper, aiming to reflect the decomposition of carbon productivity. The model is designed by analyzing the factors that affect carbon productivity. China’s contribution to carbon productivity is analyzed from the dimensions of influencing factors, regional structure and industrial structure. It comes to the conclusions that: (a economic output, the provincial carbon productivity and energy structure are the most influential factors, which are consistent with China’s current actual policy; (b the distribution patterns of economic output, carbon productivity and energy structure in different regions have nothing to do with the Chinese traditional sense of the regional economic development patterns; (c considering the regional protectionism, regional actual situation need to be considered at the same time; (d in the study of the industrial structure, the contribution value of industry is the most prominent factor for China’s carbon productivity, while the industrial restructuring has not been done well enough.

  8. Carbon dioxide concentration in Mediterranean greenhouses : how much lost production?

    NARCIS (Netherlands)

    Stanghellini, C.; Incrocci, L.; Gazquez, J.C.; Dimauro, B.

    2008-01-01

    In the absence of artificial supply of carbon dioxide in the greenhouse environment, the CO2 absorbed in the process of photosynthesis must ultimately come from the external ambient through the ventilation openings. This requires that the CO2 concentration within the house must be lower than the ext

  9. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  10. A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings

    International Nuclear Information System (INIS)

    We develop an endogenous growth model with capital, labor and carbon-energy as production factors and three technology variables that measure accumulated innovations for carbon-energy production, carbon-energy savings, and neutral growth. All markets are complete and perfect, except for research, for which we assume that the marginal social benefits exceed the marginal private benefits by factor four. The model constants are calibrated so that the model reproduces the relevant global trends over the 1970-2000 period. The model contains a simple climate module, and is used to assess the impact of Induced Technological Change (ITC) for a policy that aims at a maximum level of atmospheric CO2 concentration (450 ppmv). ITC is shown to reduce the required carbon tax by more than a factor 2, and to reduce costs of such a policy by half. When we do not constrain aggregate R and D expenditures to benchmark levels, costs are further reduced. Numerical simulations show that knowledge accumulation shifts from energy production to energy saving technology. We discuss reasons for differences between our results and earlier results reported in the literature. (author)

  11. Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal-Organic Framework Nanosheets as Precursors for Supercapacitor Application.

    Science.gov (United States)

    Cao, Feifei; Zhao, Meiting; Yu, Yifu; Chen, Bo; Huang, Ying; Yang, Jian; Cao, Xiehong; Lu, Qipeng; Zhang, Xiao; Zhang, Zhicheng; Tan, Chaoliang; Zhang, Hua

    2016-06-01

    Two-dimensional (2D) metal-organic framework (MOF) nanosheets are attracting increasing research interest. Here, for the first time, we report the facile synthesis of 2D porphyrin paddlewheel framework-3 (PPF-3) MOF nanosheets with thickness of ca. 12-43 nm. Through the simultaneous sulfidation and carbonization of PPF-3 MOF nanosheets, we have prepared the 2D nanocomposite of CoS1.097 nanoparticles (NPs) and nitrogen-doped carbon, referred to as CoSNC, in which the CoS1.097 NPs with size of ca. 10 nm are embedded in the nitrogen-doped carbon matrix. As a proof-of-concept application, the obtained 2D CoSNC nanocomposite is used as an electrode material for a supercapacitor, which exhibits a specific capacitance of 360.1 F g(-1) at a current density of 1.5 A g(-1). Moreover, the composite electrode also shows high rate capability. Its specific capacitance delivered at a current density of 30.0 A g(-1) retains 56.8% of the value at 1.5 A g(-1).

  12. Organic carbon production, mineralization and preservation on the Peruvian margin

    Directory of Open Access Journals (Sweden)

    A. W. Dale

    2014-09-01

    Full Text Available Carbon cycling in Peruvian margin sediments (11° S and 12° S was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC content was lowest on the inner shelf and at the deep oxygenated stations (< 5% and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15–20%. The organic carbon burial efficiency (CBE was unexpectedly low on the inner shelf (< 20% when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%. Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09. Yet, mean POC burial rates were 2–5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  13. Synthesis of 2,15-Hexadecanedione as a Precursor of Muscone

    Institute of Scientific and Technical Information of China (English)

    郭媛; 顾焕; 史真

    2005-01-01

    Muscone is a precious fragrant compound scarce in nature. Many synthetic attempts for this unique natural product have been carried out. In this work, the one-carbon unit transfer reaction of tetrahydrofolate coenzyme was initialed. Bisbenzimidazolium salt was used as tetrahydrofolate coenzyme model, and thus the biomimetic synthesis of 2,15-hexadecanedione, a precursor of muscone, was successfully accomplished by using the addition-hydrolysis reaction of bisbenzimidazolium salt with methyl magnesium iodide.

  14. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  15. Brief Analysis on the Production & Operation Situation of Chinese Carbon Black Industry in the First Half Year

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    At present, there are about 120 carbon black manufacturing enterprises in China with the production capacity of 3.41 million tons, accounting for 78% of the total production capacity of the country, in which there are 31 carbon black enterprises with the production capacity of over 50,000 tons. Compared with the international carbon black industry, our carbon black industry has a low intensification.

  16. Interannual stability of organic to inorganic carbon production on a coral atoll

    Science.gov (United States)

    Kwiatkowski, Lester; Albright, Rebecca; Hosfelt, Jessica; Nebuchina, Yana; Ninokawa, Aaron; Rivlin, Tanya; Sesboüé, Marine; Wolfe, Kennedy; Caldeira, Ken

    2016-04-01

    Ocean acidification has the potential to adversely affect marine calcifying organisms, with substantial ocean ecosystem impacts projected over the 21st century. Characterizing the in situ sensitivity of calcifying ecosystems to natural variability in carbonate chemistry may improve our understanding of the long-term impacts of ocean acidification. We explore the potential for intensive temporal sampling to isolate the influence of carbonate chemistry on community calcification rates of a coral reef and compare the ratio of organic to inorganic carbon production to previous studies at the same location. Even with intensive temporal sampling, community calcification displays only a weak dependence on carbonate chemistry variability. However, across three years of sampling, the ratio of organic to inorganic carbon production is highly consistent. Although further work is required to quantify the spatial variability associated with such ratios, this suggests that these measurements have the potential to indicate the response of coral reefs to ongoing disturbance, ocean acidification, and climate change.

  17. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    Directory of Open Access Journals (Sweden)

    Antonia Nette

    2016-03-01

    Full Text Available Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq (31% per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  18. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  19. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  20. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  1. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  2. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.

    Science.gov (United States)

    Shen, Yi; Lua, Aik Chong

    2016-01-15

    A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials. PMID:26433477

  3. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  4. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon). PMID:26289204

  5. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  6. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  7. Resource Efficiency and Carbon Footprint Minimization in Manufacture of Plastic Products

    OpenAIRE

    K. Sabaliauskaitė; Kliaugaitė, D.

    2014-01-01

    Efficient resource management, waste prevention, as well as renewable resource consumption promote sustainable production and lower greenhouse gas emissions to the environment when manufacturing plastic products.The paper presents the analysis of the efficiency of resources and the potential of carbon footprint minimization in manufacture of plastic products by means of implementation of wood-plastic composite (WPC) production. The analysis was performed using life cycle assessment and materi...

  8. Filamentous carbon particles for cleaning oil spills and method of production

    Science.gov (United States)

    Muradov, Nazim

    2010-04-06

    A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.

  9. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and acet......The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol...... on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha -amylase, whereas addition of small amounts of glucose resulted in alpha -amylase production. A possible induction by alpha -methyl-D-glucoside during growth on glucose was also investigated......, but this compound was not found to be a better inducer of alpha -amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer....

  10. Production of graphene oxide from pitch-based carbon fiber

    OpenAIRE

    Miyeon Lee; Jihoon Lee; Sung Young Park; Byunggak Min; Bongsoo Kim; Insik In

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  11. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  12. Pd clusters supported on amorphous, low-porosity carbon spheres for hydrogen production from formic acid.

    Science.gov (United States)

    Bulushev, Dmitri A; Bulusheva, Lyubov G; Beloshapkin, Sergey; O'Connor, Thomas; Okotrub, Alexander V; Ryan, Kevin M

    2015-04-29

    Amorphous, low-porosity carbon spheres on the order of a few micrometers in size were prepared by carbonization of squalane (C30H62) in supercritical CO2 at 823 K. The spheres were characterized and used as catalysts' supports for Pd. Near-edge X-ray absorption fine structure studies of the spheres revealed sp(2) and sp(3) hybridized carbon. To activate carbons for interaction with a metal precursor, often oxidative treatment of a support is needed. We showed that boiling of the obtained spheres in 28 wt % HNO3 did not affect the shape and bulk structure of the spheres, but led to creation of a considerable amount of surface oxygen-containing functional groups and increase of the content of sp(2) hybridized carbon on the surface. This carbon was seen by scanning transmission electron microscopy in the form of waving graphene flakes. The H/C atomic ratio in the spheres was relatively high (0.4) and did not change with the HNO3 treatment. Palladium was deposited by impregnation with Pd acetate followed by reduction in H2. This gave uniform Pd clusters with a size of 2-4 nm. The Pd supported on the original C spheres showed 2-3 times higher catalytic activity in vapor phase formic acid decomposition and higher selectivity for H2 formation (98-99%) than those for the catalyst based on the HNO3 treated spheres. Using of such low-porosity spheres as a catalyst support should prevent mass transfer limitations for fast catalytic reactions.

  13. Hard carbon as anode material in lithium batteries: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.C.; Schmid, L.; Baiker, A.; Novak, P.

    2003-03-01

    Hard carbon is a possible alternative as negative electrode material for rechargeable lithium-ion batteries. A fast production of hard carbon can be reached if the curing time of the precursor is short. Due to the promising results from literature regarding epoxy resin as precursor we produced hard carbon from a commercially available fast-setting epoxy resin. The surface area and pore structure properties of the carbon powder were investigated with gas adsorption methods. The carbon particle size distribution was ana-lysed with a laser diffraction instrument. (author)

  14. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  15. 78 FR 79665 - Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Final Results of Antidumping...

    Science.gov (United States)

    2013-12-31

    ... Antidumping Duty Order; Welded Carbon Steel Standard Pipe and Tube Products From Turkey, 51 FR 17784, 17784... International Trade Administration Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Final... administrative review of the antidumping duty order on welded carbon steel standard pipe and tube...

  16. Potential for improving the carbon footprint of butter and blend products

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    2011-01-01

    To reduce the environmental impact of a product efficiently, it is crucial to consider the entire value chain of the product; that is, to apply life cycle thinking, to avoid suboptimization and identify the areas where the largest potential improvements can be made. This study analyzed the carbon...... on the price paid for raw milk to dairy farmers. The CF (expressed as carbon dioxide equivalents, CO2e) for 1 kg of butter or blend (assuming no product waste at consumer) ranged from 5.2 kg (blend with 60% fat content) to 9.3 kg of CO2e (butter in 250-g tub). When including product waste at the consumer level...... at the consumer. The greatest share of greenhouse gas emissions associated with butter production occurred at the farm level; thus, minimizing product losses in the whole value chain—from cow to consumer—is essential for efficient production....

  17. Short Term Electric Production Technology Switching Under Carbon Cap and Trade

    Directory of Open Access Journals (Sweden)

    Donald F. Larson

    2012-10-01

    Full Text Available This study examines fuel switching in electricity production following the introduction of the European Union’s Emissions Trading System (EU ETS for greenhouse gas emissions. A short-run restricted cost equation is estimated with carbon permits, high-carbon fuels, and low carbon fuels as variable inputs. Shadow values and substitution elasticities for carbon-free energy resources from nuclear, hydroelectric and renewable sources are imputed from the cost equation. The empirical analysis examines 12 European countries using monthly data on fuel use, prices, and electricity generation during the first phase of the European Emissions Trading System. Despite low emission permit prices, this study finds statistically significant substitution between fossil fuels and carbon free sources of energy for electric power production. Significant substitution between fossil fuels and nuclear energy also was found. Still, while 18 of the 20 substitution elasticities are statistically significant, they are all less than unity, consistent with limited substitution. Overall, these results suggest that prices for carbon emission permits relative to prices for carbon and carbon free sources of energy do matter but that electric power producers have limited operational flexibility in the short-run to satisfy greenhouse gas emission limits.

  18. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. PMID:26856444

  19. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  20. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    International Nuclear Information System (INIS)

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas

  1. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Jang, Se Gyu; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co. LTD, Seoul (Korea, Republic of)

    2014-06-15

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

  2. Evaluation of coral reef carbonate production models at a global scale

    Directory of Open Access Journals (Sweden)

    N. S. Jones

    2014-09-01

    Full Text Available Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM. None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate

  3. Evaluation of coral reef carbonate production models at a global scale

    Science.gov (United States)

    Jones, N. S.; Ridgwell, A.; Hendy, E. J.

    2015-03-01

    Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle; it is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are needed for understanding how carbonate deposition responds to environmental conditions including atmospheric CO2 concentrations in the past and into the future. However, before any projections can be made, the basic test is to establish model skill in recreating present-day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales. We also compile available global data on reef calcification to produce an independent observation-based data set for the model evaluation of carbonate budget outputs. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically developed global framework, the Global Reef Accretion Model (GRAM). No model was able to reproduce independent rate estimates of whole-reef calcification, and the output from the temperature-only based approach was the only model to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modelling approach, accounting for population dynamics in terms of mortality and recruitment and hence calcifier abundance, in estimating global reef carbonate budgets. In addition, validation of reef

  4. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper;

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two...... an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements....

  5. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants

    DEFF Research Database (Denmark)

    Madsen, Jørgen; Bjerg, Bjarne Schmidt; Hvelplund, Torben;

    2010-01-01

    This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake of metab...

  6. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne;

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation...

  7. Carbon-10: Example of cyclotron production of positron emitters as an open research field

    DEFF Research Database (Denmark)

    Alves, F.; Lima, J.J.P.; Nickles, R.J.;

    2007-01-01

    This paper supports the thesis that significant improvement of PET output response to clinical questions can be achieved by innovation in radionuclide production. Moreover, that development can be performed with the resources available at a clinical centre. Carbon-10 production parameters studies...

  8. C1-carbon sources for chemical and fuel production by microbial gas fermentation.

    Science.gov (United States)

    Dürre, Peter; Eikmanns, Bernhard J

    2015-12-01

    Fossil resources for production of fuels and chemicals are finite and fuel use contributes to greenhouse gas emissions and global warming. Thus, sustainable fuel supply, security, and prices necessitate the implementation of alternative routes to the production of chemicals and fuels. Much attention has been focussed on use of cellulosic material, particularly through microbial-based processes. However, this is still costly and proving challenging, as are catalytic routes to biofuels from whole biomass. An alternative strategy is to directly capture carbon before incorporation into lignocellulosic biomass. Autotrophic acetogenic, carboxidotrophic, and methanotrophic bacteria are able to capture carbon as CO, CO2, or CH4, respectively, and reuse that carbon in products that displace their fossil-derived counterparts. Thus, gas fermentation represents a versatile industrial platform for the sustainable production of commodity chemicals and fuels from diverse gas resources derived from industrial processes, coal, biomass, municipal solid waste (MSW), and extracted natural gas. PMID:25841103

  9. Improving farming practices reduces the carbon footprint of spring wheat production.

    Science.gov (United States)

    Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L; Campbell, Con A; Zentner, Robert P

    2014-11-18

    Wheat is one of the world's most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256 kg CO2 eq ha(-1) per year. For each kg of wheat grain produced, a net 0.027-0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production.

  10. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-23

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

  11. Carbon-based composite electrocatalysts for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. (Columbia, SC); Lee, Jog-Won (Columbia, SC); Subramanian, Nalini P. (Kennesaw, GA); Kumaraguru, Swaminatha P. (Honeoye Falls, NY); Colon-Mercado, Hector R. (Columbia, SC); Nallathambi, Vijayadurga (T-Nagar, IN); Li, Xuguang (Columbia, SC); Wu, Gang (West Columbia, SC)

    2009-12-08

    A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.

  12. Characterization of the major reactions during conversion of lignin to carbon fiber

    Directory of Open Access Journals (Sweden)

    Hendrik Mainka

    2015-10-01

    Full Text Available Lightweight design is an essential part of the overall Volkswagen strategy for reducing the CO2 emissions. The use of carbon fiber offers an enormous lightweight potential. In comparison to steel enabling a mass reduction of up to 70% in automotive parts without a degradation of the functionalities is possible. Today, the use of carbon fiber is limited in mass series applications of the automotive industry by the cost of the conventional C-fiber precursor polyacrylonitrile (PAN. 50% of the cost of a conventional carbon fiber already belongs to the cost of the PAN precursor. Lignin as a precursor for carbon fiber production can realize enormous savings in cost. For qualifying lignin-based carbon fiber for automotive mass production a detailed characterization of this new material is necessary. Therefore, nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy are used. Using the results of these experiments, the major reactions during conversion of lignin to carbon fiber are proposed.

  13. Impact of gas products around the anode on the performance of a direct carbon fuel cell using a carbon/carbonate slurry

    Science.gov (United States)

    Watanabe, Hirotatsu; Umehara, Daisuke; Hanamura, Katsunori

    2016-10-01

    This paper investigates the impact of gas products around the anode on cell performance via an in situ observation. In a direct carbon fuel cell used this study, the anode is inserted into the carbon/carbonate slurry. The current-voltage (I-V) curves are measured before and after a long discharge in the constant current discharge mode. An in situ observation shows that the anode is almost completely covered by gas bubbles when the voltage becomes nearly 0 V in the constant current discharge at 40 mA/cm2; this indicates that gas products such as CO2 prevent the carbon particles and ions from reaching the anode. Meanwhile, the long discharge at 20 mA/cm2 is achieved for 30 min, even though the anode is covered by the CO2 bubbles at 15 min. The I-V curves at 1 min after the termination of the long discharge at 20 mA/cm2 are lower than those prior to the long discharge. The overpotential significantly increases at higher current densities, where mass transport becomes the limiting process. The cell performance is significantly influenced by the gas products around the anode.

  14. Polyethylene-Based Carbon Fibers by the Use of Sulphonation for Stabilization

    Directory of Open Access Journals (Sweden)

    Gisa Wortberg

    2015-09-01

    Full Text Available Polyethylene has great potential as an alternative material for carbon fiber production. Polyethylene can be processed in the economic melt spinning process. These precursors are prepared for the subsequent process step of carbonization by using chemical stabilization (sulphonation. The strategy is to adjust these precursor properties by the melt spinning process, thus resulting in a precursor, which can be stabilized sufficiently by sulphonation. The objective is to find the correlation between precursor properties and the results of the sulphonation. In this paper, the chemical stabilization is described and the results of the chemical stabilization are discussed. The novelty in this paper is that the results of the sulphonation are brought in correlation with the precursor properties. It can be shown that the filament diameter and the polymer structure (e.g., the crystallinity of the precursor have an influence on the sulphonation process.

  15. Carbonic anhydrase in Escherichia coli. A product of the cyn operon.

    Science.gov (United States)

    Guilloton, M B; Korte, J J; Lamblin, A F; Fuchs, J A; Anderson, P M

    1992-02-25

    The product of the cynT gene of the cyn operon in Escherichia coli has been identified as a carbonic anhydrase. The cyn operon also includes the gene cynS, encoding the enzyme cyanase. Cyanase catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. The carbonic anhydrase was isolated from an Escherichia coli strain overexpressing the cynT gene and characterized. The purified enzyme was shown to contain 1 Zn2+/subunit (24 kDa) and was found to behave as an oligomer in solution; the presence of bicarbonate resulted in partial dissociation of the oligomeric enzyme. The kinetic properties of the enzyme are similar to those of carbonic anhydrases from other species, including inhibition by sulfonamides and cyanate. The amino acid sequence shows a high degree of identity with the sequences of two plant carbonic anhydrases. but not with animal and algal carbonic anhydrases. Since carbon dioxide formed in the bicarbonate-dependent decomposition of cyanate diffuses out of the cell faster than it would be hydrated to bicarbonate, the apparent function of the induced carbonic anhydrase is to catalyze hydration of carbon dioxide and thus prevent depletion of cellular bicarbonate.

  16. Plasma flow and carbon production and circulation with the ergodic divertor of Tore Supra

    Science.gov (United States)

    Corre, Y.; Gunn, J.; Pégourié, B.; Guirlet, R.; DeMichelis, C.; Giannella, R.; Ghendrih, P.; Hogan, J.; Monier-Garbet, P.; Azéroual, A.; Escarguel, A.; Gauthier, E.

    2007-02-01

    This paper presents a detailed study of carbon production and transport from the ergodic divertor (ED) target plates to the plasma core in the Tore Supra tokamak. Adapted experimental and numerical modelling techniques have been used to describe each of the main phenomena in play. Edge electron density and temperature are measured with Langmuir probes. The C II, C III and Hα emission is measured with optical fibres and cameras. The background plasma flow is calculated consistently with the observed recycling pattern by the neutral transport code EDCOLL for the two magnetic connection schemes of interest (short or long connection lengths). 3D Monte-Carlo modelling of carbon near the neutralizer plate (BBQ code) shows that the transport of carbon ions is governed by the friction force in addition to the electric field. Finally, a simplified 3D test particle model is used to estimate the core penetration fraction of carbon. A high value is found for the carbon screening efficiency (fraction of particles that does not penetrate in the plasma core), in the range 95-97% depending on the edge plasma conditions. This value, combined with the calculated carbon influxes, yields the first quantitative estimate of the carbon core contamination during ED operation. The paper shows that the screening of carbon and core contamination are mainly dependent on the carbon source (partially controlled with the ED) and the plasma flow distribution in the laminar region (magnetic topology and particle drifts).

  17. Synthesis of precursor the base of indene for polyelectrolyte an membrane production for application in fuel cell; Sintese de precursores a base de indeno para producao de polieletrolitos e membranas para uso em celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Brum, F.J.B.; Laux, F.N.; Haack, M.S.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul. Escola de Engenharia, Porto Alegre, RS (Brazil)

    2010-07-01

    Monomers with vinyl bond can be polymerized via a cationic mechanism using acid catalysts. This study aimed to obtain homo and copolymers of styrene and indene via cationic mechanism and the functionalization of sulfonic groups to the production of membranes for fuel cells. Polymers and poly electrolytes were characterized by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC/SEC). The degree of sulfonation of the polymers was determined by titration and evaluated for these films to the degree of swelling in water, ion exchange capacity and analysis of electrochemical impedance spectroscopy. Membranes prepared with polyindene and PVA were tested in an apparatus of the fuel cell. (author)

  18. Propellant and Terrestrial Fuel Production from Atmospheric Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Build and test in a relevant environment a Mars propellant production plant of an appropriate scale for an initial demonstration on Mars. It will produce sufficient...

  19. Method to assess the carbon footprint at product level in the dairy industry

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria; Thrane, Mikkel; Hermansen, John Erik

    2014-01-01

    A model to calculate the farm-to-customer carbon footprint (CF) for different dairy product groups is presented. As the largest share of the CF of dairy products occurs at farm level, it is decisive how the emissions from raw milk production are allocated between different products. Impacts...... associated with raw milk are allocated based on a weighted fat and protein content (1:1.4). Data from the dairy company Arla Foods give 1.1, 8.1, 6.5, 7.4 and 1.2 kg carbon dioxide equivalents per kg of fresh dairy product, butter and butter blend, cheese, milk powder and whey based product, and other...

  20. Utilization of compressed natural gas for the production of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Kim-Yang Lee; Wei-Ming Yeoh; Siang-Piao Chai; Abdul Rahman Mohamed

    2012-01-01

    The present work aims at utilizing compressed natural gas (CNG) as carbon source for the synthesis of carbon nanotubes (CNTs) over CoO-MoO/Al2O3 catalyst via catalytic chemical vapor deposition (CCVD) method.The as-produced carbonaceous product was characterized by thermal gravimetric analyzer (TGA),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and Raman spectroscopy.The experimental finding shows that CNTs were successfully produced from CNG while carbon nanofibers (CNFs) were formed as the side products.In addition,the catalytic activity and lifetime were found sustained and prolonged,as compared with using high purity methane as carbon source.The present study suggests an alternative route which can effectively produce CNTs and CNFs using low cost CNG.

  1. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    Science.gov (United States)

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed.

  2. Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray

    Science.gov (United States)

    Muoto, Chigozie K.; Jordan, Eric H.; Gell, Maurice; Aindow, Mark

    2011-06-01

    In solution precursor plasma spray chemical precursor solutions are injected into a standard plasma torch and the final material is formed and deposited in a single step. This process has several attractive features, including the ability to rapidly explore new compositions and to form amorphous and metastable phases from molecularly mixed precursors. Challenges include: (a) moderate deposition rates due to the need to evaporate the precursor solvent, (b) dealing on a case by case basis with precursor characteristics that influence the spray process (viscosity, endothermic and exothermic reactions, the sequence of physical states through which the precursor passes before attaining the final state, etc.). Desirable precursor properties were identified by comparing an effective precursor for yttria-stabilized zirconia with four less effective candidate precursors for MgO:Y2O3. The critical parameters identified were a lack of major endothermic events during precursor decomposition and highly dense resultant particles.

  3. Carbon Fiber Composite Materials in Modern Day Automotive Production Lines – A Case Study

    OpenAIRE

    Petersson, Håkan; Motte, Damien; Bjärnemo, Robert

    2014-01-01

    New and innovative production equipment can be developed by introducing lightweight materials in modern day automotive industry production lines. The properties of these new materials are expected to result in improved ergonomics, energy savings, increased flexibility and more robust equipment, which in the end will result in enhanced productivity. Carbon composite materials are one such alternative that has excellent material properties. These properties are well documented, and the market f...

  4. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    OpenAIRE

    Renato Altobelli Antunes; Rodrigo Uchida Ichikawa; Luis Gallego Martinez; Isolda Costa

    2014-01-01

    The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron micr...

  5. Incorporating jurisdiction issues into regional carbon accounts under production and consumption accounting principles

    OpenAIRE

    Karen Turner; Max Munday; Stuart McIntyre; Christa D. Jensen

    2011-01-01

    Despite increased public interest, policymakers have been slow to enact targets based on limiting emissions under full consumption accounting measures (such as carbon footprints). This paper argues that this may be due to the fact that policymakers in one jurisdiction do not have control over production technologies used in other jurisdictions. The paper uses a regional input-output framework and data derived on carbon dioxide emissions by industry (and households) to examine regional account...

  6. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. PMID:27090405

  7. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.

  8. Laser ablation process for single-walled carbon nanotube production

    Science.gov (United States)

    Arepalli, Sivaram

    2004-01-01

    Different types of lasers are now routinely used to prepare single-walled carbon nanotubes. The original method developed by researchers at Rice University used a "double-pulse laser oven" process. Several researchers have used variations of the lasers to include one-laser pulse (green or infrared), different pulse widths (ns to micros as well as continuous wave), and different laser wavelengths (e.g., CO2, or free electron lasers in the near to far infrared). Some of these variations are tried with different combinations and concentrations of metal catalysts, buffer gases (e.g., helium), oven temperatures, flow conditions, and even different porosities of the graphite targets. This article is an attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.

  9. Production of Heat Resistant Composite based on Siloxane Elastomer and Multiwall Carbon Nanotubes

    Science.gov (United States)

    Bessonov, I. V.; Karelina, N. V.; Kopitsyna, M. N.; Morozov, A. S.; Reznik, S. V.; Skidchenko, V. Yu.

    2016-02-01

    Development of a new generation of composite with unique thermal properties is an important task in the fields of science and technology where material is operated at high temperatures and exposure to a short-wave radiation. Recent studies show that carbon nanomaterials (fullerenes and carbon nanotubes) could improve the thermal, radiation and thermal-oxidative stability of the polymer matrix. In this article the development of a new heat resistant composite based on elastomer and carbon nanotubes (CNT) was performed and physicochemical properties of final product were evaluated.

  10. Production of Carbon Nanofibers Using a CVD Method with Lithium Fluoride as a Supported Cobalt Catalyst

    Directory of Open Access Journals (Sweden)

    S. A. Manafi

    2008-01-01

    Full Text Available Carbon nanofibers (CNFs have been synthesized in high yield (>70% by catalytic chemical vapor deposition (CCVD on Co/LiF catalyst using acetylene as carbon source. A novel catalyst support (LiF is reported for the first time as an alternative for large-scale production of carbon nanofibers while purification process of nanofibers is easier. In our experiment, the sealed furnace was heated at 700∘C for 0.5 hour (the heating rate was 10∘C/min and then cooled to room temperature in the furnace naturally. Catalytic chemical vapor deposition is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanofibers (CNFs. The obtained sample was sequentially washed with ethanol, dilutes acid, and distilled water to remove residual impurities, amorphous carbon materials, and remaining of catalyst, and then dried at 110∘C for 24 hours. The combined physical characterization through several techniques, such as high-resolution transmission electron microscope (TEM, scanning electron microscope (SEM, thermogarvimetric analysis (TGA, and zeta-sizer and Raman spectroscopy, allows determining the geometric characteristic and the microstructure of individual carbon nanofibers. Catalytic chemical vapor deposition is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanofibers (CNFs. As a matter of fact, the method of CCVD guarantees the production of CNFs for different applications.

  11. Proposal to realize a cost breakthrough in carbon-13 production by photochemical separation

    International Nuclear Information System (INIS)

    A cost breakthrough can now be made in photochemical production of the rare stable isotope carbon-13. This cost breakthrough is achieved by CO2 laser infrared multiple-photon dissociation of any of several halocarbons (Freon derivatives) such as CF3Cl, CF3Br, or CF2Cl2. The single-step carbon-13 enrichment factor for this process is approximately 50, yielding 30% pure C-13 in one step, or up to 97% pure C-13 in two steps. A three-fold carbon-13 cost reduction to below $20/gram is expected to be achieved in a small laboratory-scale demonstration facility capable of producing 4 to 8 kg/year of carbon-13, using presently available pulsed CO2 TEA lasers at an average power level of 50 watts. Personnel costs dominate the attainable C-13 production costs in a small photochemical enrichment facility. A price reduction to $2/gm carbon-13 is feasible at carbon-13 production levels of 100 to 1000 kg/year, dominated by the Freon raw material costs

  12. Resource Efficiency and Carbon Footprint Minimization in Manufacture of Plastic Products

    Directory of Open Access Journals (Sweden)

    Kamilė Sabaliauskaitė

    2014-04-01

    Full Text Available Efficient resource management, waste prevention, as well as renewable resource consumption promote sustainable production and lower greenhouse gas emissions to the environment when manufacturing plastic products. The paper presents the analysis of the efficiency of resources and the potential of carbon footprint minimization in manufacture of plastic products by means of implementation of wood-plastic composite (WPC production. The analysis was performed using life cycle assessment and material flow analysis methodology. To devise the solution for better management of resources and minimization of carbon footprint, the environmental impacts of polyvinyl chloride (PVC and WPC wall panels through their life cycle were assessed, as well as the detailed material flow analyses of the PVC and WPC in production stages were carried out. The life cycle assessment has revealed that carbon footprint throughout life cycle of 1 kg of WPC wall panel is 37 % lower than those of the same weight of PVC wall panel product. Both products have a major impact on the environment during their production phase, while during this phase WPC wall panel has 35 % smaller carbon footprint and even 47 % smaller during disposal stages than those of the PVC wall panel. The results of material flow analysis have shown that recycling and reuse of production spoilage reduce the need of PVC secondary resources for PVC panels and primary WPC resources for WPC panel production. For better resource efficiency, the conceptual model of material flow management has been proposed. As WPC products are made of primary WPC granules, which are imported from abroad, the model suggests to produce the WPC granules at the company using collected PVC secondary materials (PVC stocks. It would lower environmental costs and environmental impact, increase the efficiency of resources, and diminish dependence on suppliers.

  13. Resource Efficiency and Carbon Footprint Minimization in Manufacture of Plastic Products

    Directory of Open Access Journals (Sweden)

    K. Sabaliauskaitė

    2014-03-01

    Full Text Available Efficient resource management, waste prevention, as well as renewable resource consumption promote sustainable production and lower greenhouse gas emissions to the environment when manufacturing plastic products.The paper presents the analysis of the efficiency of resources and the potential of carbon footprint minimization in manufacture of plastic products by means of implementation of wood-plastic composite (WPC production. The analysis was performed using life cycle assessment and material flow analysis methodology. To devise the solution for better management of resources and minimization of carbon footprint, the environmental impacts of polyvinyl chloride (PVC and WPC wall panels through their life cycle were assessed, as well as the detailed material flow analyses of the PVC and WPC in production stages were carried out.The life cycle assessment has revealed that carbon footprints throughout life cycle of 1 kg of WPC wall panel are 37 % lower than those of the same weight of PVC wall panel product. Both products have a major impact on the environment during their production phase, while during this phase WPC wall panel has 35 % smaller carbon footprint and even 47 % smaller during disposal stages than those of the PVC wall panel.The results of material flow analysis have shown that recycling and reuse of production spoilage reduce the need of PVC secondary resources for PVC panels and primary WPC resources for WPC panel production.For better resource efficiency, the conceptual model of material flow management has been proposed. As WPC products are made of primary WPC granules, which are imported from abroad, the model suggests to produce the WPC granules at the company using collected PVC secondary materials (PVC stocks. It would lower environmental costs and environmental impact, increase the efficiency of resources, and diminish dependence on suppliers.DOI: http://dx.doi.org/10.5755/j01.erem.67.1.6587

  14. H{sub 2} production from methane pyrolysis over commercial carbon catalysts: Kinetic and deactivation study

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, D.P.; Botas, J.A. [Chemical and Environmental Technology Department, ESCET, Rey Juan Carlos University, C/Tulipan s/n, 28933 Mostoles (Spain); IMDEA Energia, C/Tulipan s/n, 28933 Mostoles (Spain); Guil-Lopez, R. [Chemical and Environmental Technology Department, ESCET, Rey Juan Carlos University, C/Tulipan s/n, 28933 Mostoles (Spain)

    2009-05-15

    Hydrogen production from catalytic methane decomposition (DeCH{sub 4}) is a simple process to produce high purity hydrogen with no formation of carbon oxides (CO or CO{sub 2}). However, to completely avoid those emissions, the catalyst must not be regenerated. Therefore, it is necessary to use inexpensive catalysts, which show low deactivation during the process. Use of carbon materials as catalysts fulfils these requirements. Methane decomposition catalysed by a number of commercial carbons has been studied in this work using both constant and variable temperature experiments. The results obtained showed that the most active catalyst at short reaction times was activated carbon, but it underwent a fast deactivation due to the deposition of the carbon formed from methane cracking. On the contrary, carbon blacks, and especially the CB-bp sample, present high reaction rates for methane decomposition at both short and long reaction times. Carbon nanotubes exhibit a relatively low activity in spite of containing significant amounts of metals. The initial loss of activity observed with the different catalysts is attributed mainly to the blockage of their micropores due to the deposition of the carbon formed during the reaction. (author)

  15. 77 FR 32513 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian Federation; Preliminary...

    Science.gov (United States)

    2012-06-01

    ... Products From the Russian Federation, 64 FR 38642 (July 19, 1999). Upon the request of the petitioners, the... Carbon-Quality Steel Products From the Russian Federation, 64 FR 38626 (July 19, 1999). Likewise, the...-Rolled Flat-Rolled Carbon-Quality Steel Products from the Russian Federation, 77 FR 19619 (April 2,...

  16. Farm and product carbon footprints of China's fruit production--life cycle inventory of representative orchards of five major fruits.

    Science.gov (United States)

    Yan, Ming; Cheng, Kun; Yue, Qian; Yan, Yu; Rees, Robert M; Pan, Genxing

    2016-03-01

    Understanding the environmental impacts of fruit production will provide fundamental information for policy making of fruit consumption and marketing. This study aims to characterize the carbon footprints of China's fruit production and to figure out the key greenhouse gas emissions to cut with improved orchard management. Yearly input data of materials and energy in a full life cycle from material production to fruit harvest were obtained via field visits to orchards of five typical fruit types from selected areas of China. Carbon footprint (CF) was assessed with quantifying the greenhouse gas emissions associated with the individual inputs. Farm and product CFs were respectively predicted in terms of land use and of fresh fruit yield. Additionally, product CFs scaled by fruit nutrition value (vitamin C (Vc) content) and by the economic benefit from fruit production were also evaluated. The estimated farm CF ranged from 2.9 to 12.8 t CO2-eq ha(-1) across the surveyed orchards, whereas the product CF ranged from 0.07 to 0.7 kg CO2-eq kg(-1) fruit. While the mean product CFs of orange and pear were significantly lower than those of apple, banana, and peach, the nutrition-scaled CF of orange (0.5 kg CO2-eq g(-1) Vc on average) was significantly lower than others (3.0-5.9 kg CO2-eq g(-1) Vc). The income-scaled CF of orange and pear (1.20 and 1.01 kg CO2-eq USD(-1), respectively) was higher than apple, banana, and peach (0.87~0.39 kg CO2-eq USD(-1)). Among the inputs, synthetic nitrogen fertilizer contributed by over 50 % to the total greenhouse gas (GHG) emissions, varying among the fruit types. There were some tradeoffs in product CFs between fruit nutrition value and fruit growers' income. Low carbon production and consumption policy and marketing mechanism should be developed to cut down carbon emissions from fruit production sector, with balancing the nutrition value, producer's income, and climate change mitigation. PMID:26527344

  17. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties.

    Science.gov (United States)

    Vanreppelen, Kenny; Vanderheyden, Sara; Kuppens, Tom; Schreurs, Sonja; Yperman, Jan; Carleer, Robert

    2014-07-01

    Brewer's spent grain is a low cost residue generated by the brewing industry. Its chemical composition (high nitrogen content 4.35 wt.%, fibres, etc.) makes it very useful for the production of added value in situ nitrogenised activated carbon. The composition of brewer's spent grain revealed high amounts of cellulose (20.8 wt.%), hemicellulose (48.78 wt.%) and lignin (11.3 wt.%). The fat, ethanol extractives and ash accounted for 8.17 wt.%, 4.7 wt.% and 3.2 wt.%, respectively. Different activated carbons were produced in a lab-scale pyrolysis/activation reactor by applying several heat and steam activation profiles on brewer's spent grain. Activated carbon yields from 16.1 to 23.6 wt.% with high N-contents (> 2 wt.%) were obtained. The efficiency of the prepared activated carbons for phenol adsorption was studied as a function of different parameters: pH, contact time and carbon dosage relative to two commercial activated carbons. The equilibrium isotherms were described by the non-linear Langmuir and Freundlich models, and the kinetic results were fitted using the pseudo-first-order model and the pseudo-second-order model. The feasibility of an activated carbon production facility (onsite and offsite) that processes brewer's spent grain for different input feeds is evaluated based on a techno-economic model for estimating the net present value. Even though the model assumptions start from a rather pessimistic scenario, encouraging results for a profitable production of activated carbon using brewer's spent grain are obtained.

  18. 富碳的含钛碳化硅纤维先驱体的合成%Syntheses of Precursors of Si-Ti-C-O Fibers With Rich Carbon

    Institute of Scientific and Technical Information of China (English)

    王亦菲; 赵鹏; 宋永才; 冯春祥

    2001-01-01

    以聚硅烷(PS)、聚氯乙烯(PVC)和钛酸四丁酯[Ti(OBu)4]合成含碳量不同的聚钛碳硅烷(PTC)先驱体,运用IR、GPC、VPO、TG等分析手段系统地研究了富碳PTC先驱体的合成及其组成结构,讨论了加入PVC含量不同对PTC合成及其结构、性能的影响。经熔融纺丝、不熔化处理、高温烧成制备出具有较好工艺性能和电阻率为100Ω*cm~103Ω*cm的富碳含钛碳化硅纤维(Si-Ti-C-O纤维)。%Polytitanocarbosilanes(PTC) with different C content are synthesized by polysilane(L.PS),polyvinyl chlo-ride(PVC) and Ti(OBu)4.The syntheses,composition and structme of the PTC with rich carbon are studied and the in-fluence of PVC content on the syntheses,composition,structure and properties of PIC is discussed by IR,GPC,VPO,TG.From these precursors,Si-Ti-C-O fibers with specific resistance of 1 Ω*cm ~ 103 Ω*cm are manufactured by melt spin-ning,curing in air and sintering at high temperature.

  19. Tannins and terpenoids as major precursors of Suwannee River fulvic acid

    Science.gov (United States)

    Leenheer, Jerry A.; Rostad, Colleen E.

    2004-01-01

    Suwannee River fulvic acid (SRFA) was fractionated into 7 fractions by normal-phase chromatography on silica gel followed by reverse-phase fractionation on XAD-8 resin that produced 18 subfractions. Selected major subfractions were characterized by 13C-nuclear magnetic resonance (NMR), infrared spectrometry, and elemental analyses. 13C-NMR spectra of the subfractions were more indicative of precursor structures than unfractionated SRFA, and gave spectral profiles that indicated SRFA mass was about equally split between tannin precursors and terpenoid precursors. Lignin precursors were minor components. Synthesis of 13C-NMR data with elemental data for subfractions derived from both tannin and terpenoid precursors revealed high ring contents and low numbers of carbon per rings which is indicative of fused ring structures that are extensively substituted with carboxyl and methyl groups. These results ruled out extended chain structures for SRFA. This information is useful for determining sources and properties of fulvic acid in drinking water supplies as tannins are more reactive with chlorine to produce undesirable disinfection by-products than are terpenoids.

  20. Solid olive waste in environmental cleanup: oil recovery and carbon production for water purification.

    Science.gov (United States)

    El-Hamouz, Amer; Hilal, Hikmat S; Nassar, Nashaat; Mardawi, Zahi

    2007-07-01

    A potentially-economic three-fold strategy, to use solid olive wastes in water purification, is presented. Firstly, oil remaining in solid waste (higher than 5% of waste) was recovered by the Soxhlet extraction technique, which can be useful for the soap industry. Secondly, the remaining solid was processed to yield relatively high-surface area active carbon (AC). Thirdly, the resulting carbon was employed to reversibly adsorb chromate ions from water, aiming to establish a water purification process with reusable AC. The technique used here enabled oil recovery together with the production of a clean solid, suitable for making AC. This process also has the advantage of low production cost.

  1. Carbon nanotube prepared from carbon monoxide by CVD method and its application as electrode materials

    Institute of Scientific and Technical Information of China (English)

    AN Yuliang; YUAN Xia; CHENG Shinan; GEN Xin

    2006-01-01

    Carbon nanotubes with larger inner diameter were synthesized by the chemical vapor deposition of carbon monoxide (CO) on iron catalyst using H2S as promoting agent.It is found that the structure and morphology of carbon nanotubes can be tailored, to some degree, by varying the experimental conditions such as precursor components and process parameters.The results show that the presence of H2S may play key role for growing Y-branched carbon nanotubes.The products were characterized by SEM, TEM, and Raman spectroscopy, respectively.Furthermore, the obtained carbon nanotubes were explored as electrode materials for supercapacitor.

  2. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Science.gov (United States)

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. PMID:24907571

  3. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Haina Wang

    2015-11-01

    Full Text Available The theory on the carbon footprint of agriculture can systematically evaluate the carbon emissions caused by artificial factors from the agricultural production process, which is the theoretical basis for constructing low-carbon agriculture and has important guiding significance for realizing low-carbon agriculture. Based on farm production survey data from Jilin Province in 2014, this paper aims to obtain a clear understanding of the carbon footprint of maize production through the following method: (1 one ton of maize production was evaluated systematically by using the Life Cycle Assessment (LCA; (2 the carbon emissions of the whole system were estimated based on field measurement data, (3 using the emission factors we estimated Jilin’s carbon footprint for the period 2006–2013, and forecasted it for the period from 2014 to 2020 using the grey system model GM (1, 1.

  4. Technoeconomical analysis of the co-production of hydrogen energy and carbon materials

    Science.gov (United States)

    Guerra, Zuimdie

    HECAM (Hydrogen Energy and Carbon Materials) is a new energy production strategy. The main paradigm of HECAM is that energy extracted from the carbon in hydrocarbon fuels is not worth the production of carbon dioxide. The hydrocarbon fuel is heated in an oxygen free environment and it is chemically decomposed by the heat into gases (mostly hydrogen and methane), small quantities of liquid (light oil and tar), and a solid residue containing carbon and ash (char or coke). More quantities of hydrocarbons will need to be used, but less carbon dioxide will be produced. HECAM is going to compete with steam methane reforming (SMR) to produce hydrogen. HECAM with thermocatalytic decomposition of methane and efficient sensible heat recovery has a production cost per gigajoule of hydrogen about 9% higher than SMR, but will produce about half the carbon dioxide emissions that SMR produces. If HECAM with efficient sensible heat recovery is used to produce electricity in a power plant, it will have a comparable electricity production cost and carbon dioxide emissions to a natural gas combined cycle (NGCC) power plant. The byproduct coke is not a waste residue, but a valuable co-product. Uses for the byproduct coke material may be carbon sequestration, mine land restoration, additive to enhance agricultural soils, low sulfur and mercury content heating fuel for power plants, new construction materials, or carbon-base industrial materials. This study investigated the use of byproduct coke for new construction materials. HECAM concrete substitute (HCS) materials will have a comparable cost with concrete when the cost of the raw materials is $65 per metric ton of HCS produced. HECAM brick substitute (HBS) materials will have 20% higher cost per brick than clay bricks. If the HECAM byproduct coke can be formed into bricks as a product of the HECAM process, the manufacture of HBS bricks will be cheaper and may be cost competitive with clay bricks. The results of this analysis are

  5. Bacterial Cellular Materials as Precursors of Chloroform

    Science.gov (United States)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  6. Modelling carbon stocks and fluxes in the wood product sector: a comparative review.

    Science.gov (United States)

    Brunet-Navarro, Pau; Jochheim, Hubert; Muys, Bart

    2016-07-01

    In addition to forest ecosystems, wood products are carbon pools that can be strategically managed to mitigate climate change. Wood product models (WPMs) simulating the carbon balance of wood production, use and end of life can complement forest growth models to evaluate the mitigation potential of the forest sector as a whole. WPMs can be used to compare scenarios of product use and explore mitigation strategies. A considerable number of WPMs have been developed in the last three decades, but there is no review available analysing their functionality and performance. This study analyses and compares 41 WPMs. One surprising initial result was that we discovered the erroneous implementation of a few concepts and assumptions in some of the models. We further described and compared the models using six model characteristics (bucking allocation, industrial processes, carbon pools, product removal, recycling and substitution effects) and three model-use characteristics (system boundaries, model initialization and evaluation of results). Using a set of indicators based on the model characteristics, we classified models using a hierarchical clustering technique and differentiated them according to their increasing degrees of complexity and varying levels of user support. For purposes of simulating carbon stock in wood products, models with a simple structure may be sufficient, but to compare climate change mitigation options, complex models are needed. The number of models has increased substantially over the last ten years, introducing more diversity and accuracy. Calculation of substitution effects and recycling has also become more prominent. However, the lack of data is still an important constraint for a more realistic estimation of carbon stocks and fluxes. Therefore, if the sector wants to demonstrate the environmental quality of its products, it should make it a priority to provide reliable life cycle inventory data, particularly regarding aspects of time and

  7. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated disinfection by-products (DBPs). Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. The Energy & Environmental Research Center has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During previous studies, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. During this study, activated carbons were prepared from three coals representing high-sodium, low-sodium--low-calcium, and high-calcium compositions in two steps, an initial char formation followed by mild activation with steam to avoid excessive burnout. This set of carbons was characterized with respect to physical and chemical properties. The BET (Brunauer-Emmett-Teller) nitrogen adsorption isotherms gave relatively low surface areas (ranging from 245 to 370 m{sup 2}/g). The lowest-BET area was obtained for the high-sodium carbon, which can be attributed to enlargement of micropores as a result of sodium-catalyzed gasification reaction of the carbon structure. This hypothesis is consistent with the scanning electron microscopy microprobe analyses, which show that in both the coal and the activated carbon from this coal, the sodium is distributed over both the carbon structure and the mineral particles. Thus it is initially associated with carboxylate groups on the coal and then as sodium oxide or

  8. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    Directory of Open Access Journals (Sweden)

    Longfei He

    2014-01-01

    Full Text Available We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.

  9. Brazilian natural fiber (jute as raw material for activated carbon production

    Directory of Open Access Journals (Sweden)

    CARLA F.S. ROMBALDO

    2014-12-01

    Full Text Available Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g–1. The thermal analysis indicates that above 600°C there is no significant mass loss.

  10. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  11. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    DEFF Research Database (Denmark)

    Xie, Li; Wang, Lei; Zhou, Qi;

    2013-01-01

    The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... amended anazrobic seguencs batch reactor (ASBRs) was more stable than that of ASBRs without activated carbon addition regarding on hydrogen production and pH. Higher hydrogen yield(HY) and hydrogen producing rate(HPR) were observed in the activated carbon amended ASBRs, with 65%, 63%, 54%, 56% enhancement...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  12. Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium.

    Science.gov (United States)

    Chi, Zhanyou; Xie, Yuxiao; Elloy, Farah; Zheng, Yubin; Hu, Yucai; Chen, Shulin

    2013-04-01

    An extremely alkalihalophilic cyanobacteria Euhalothece ZM001 was tested in the Bicarbonate-based Integrated Carbon Capture and Algae Production System (BICCAPS), which utilize bicarbonate as carbon source for algae culture and use the regenerated carbonate to absorb CO2. Culture conditions including temperature, inoculation rate, medium composition, pH, and light intensity were investigated. A final biomass concentration of 4.79 g/L was reached in tissue flask culture with 1.0 M NaHCO3/Na2CO3. The biomass productivity of 1.21 g/L/day was achieved under optimal conditions. When pH increased from 9.55 to 10.51, 0.256 M of inorganic carbon was consumed during the culture process. This indicated sufficient carbon can be supplied as bicarbonate to the culture. This study proved that a high biomass production rate can be achieved in a BICCAPS. This strategy can also lead to new design of photobioreactors that provides an alternative supply of CO2 to sparging.

  13. Production and Recycling of Carbon in the Early Galactic Halo

    Science.gov (United States)

    Andersen, Johannes; Thidemann Hansen, Terese; Nordström, Birgitta

    2015-08-01

    Extremely metal-poor (EMP) stars - [Fe/H] below ~ -3 - are fossil records of the conditions in the early halo. High-resolution 8m-class spectroscopy has shown that the detailed abundance pattern of EMP giant stars is surprisingly uniform and essentially Solar (e.g. Bonifacio+ 2012), apart from the usual α-enhancement in the halo. In the simplest picture, iron is a proxy for both overall metallicity and time, so the EMP stars should form before the oldest and most metal-poor Galactic globular clusters, notably at the lowest metallicities ([Fe/H] ≲ -3.5).It is thus striking that 20-40% of the EMP giants are strongly enhanced in carbon - the CEMP stars (Lucatello+ 2006). This is conventionally ascribed to mass transfer from a former AGB binary companion, and from a limited compilation of data, Lucatello+ (2005) concluded that most or all CEMP stars are indeed binaries, similar to the classical Ba and CH stars (e.g. Jorissen+ 1998). However, most of the sample was of the inner-halo CEMP-s variety (C and s-process elements both enhanced), while CEMP-no stars dominate the outer halo (Carollo+ 2014). Our precise radial velocity monitoring for CEMP stars over 8 years shed light on this issue.Our data suggest a normal binary frequency for the CEMP-no stars; i.e. the C was not produced in a binary companion, but in sites at interstellar distances, e.g. ‘faint’ SNe, and imprinted on the natal clouds of the low-mass stars we observe. This has immediate implications for the formation of dust in primitive, high-redshift galaxies (Watson+ 2015) and the origin of C-enhanced DLAs (Cooke+ 2011, 2012). The CEMP-s binary orbits are also revealing, with periods up to several decades and generally low amplitudes and eccentricities, suggesting that EMP AGB stars have very large radii, facilitating extensive mass loss. More work on faint SNe and EMP AGB envelopes is needed!

  14. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    Science.gov (United States)

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters. PMID:26504243

  15. Occurrence and production of carbon monoxide in some brown algae. [Pelagophycus porra; Pelagophycus giganteus; Nereocystis luetkeana

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D.J.; Tocher, R.D.

    1966-01-01

    The first report of carbon monoxide in plants was based on studies with the Pacific Coast kelp, Nereocystis luetkeana. This work was extended and later confirmed. In (1916) it was reported that the brown algae Egregia menziesii, Macrocystis pyrifera, and Fucus evanescens did not contain carbon monoxide. Using a more sensitive method, researchers recently showed that the pneumatocysts of Egregia menziesii do indeed contain carbon monoxide, and they also studied its production by tissues of several brown and red algae. Another researcher found that Sargassum linifolium and Fucus virsoides were devoid of this gas, at least in concentrations detectable with a haemoglobin analytical method. By the method to be described, the gas was taken from pneumatocysts of Ascophyllum nodosum (Fucales) collected at Halifax, Nova Scotia. No carbon monoxide could be detected when 10 cm/sup 3/ of pooled samples of gas was analyzed. 10 references, 2 tables.

  16. Production of Feruloyl Esterase from Aspergillus niger by Solid-State Fermentation on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Shiyi Ou

    2011-01-01

    Full Text Available A mixture of wheat bran with maize bran as a carbon source and addition of (NH4SO4 as nitrogen source was found to significantly increase production of feruloyl esterase (FAE enzyme compared with wheat bran as a sole carbon and nitrogen source. The optimal conditions in conical flasks were carbon source (30 g to water 1 : 1, maize bran to wheat bran 1 : 2, (NH4SO4 1.2 g and MgSO4 70 mg. Under these conditions, FAE activity was 7.68 mU/g. The FAE activity on the mixed carbon sources showed, high activity against the plant cell walls contained in the cultures.

  17. Carbonate phosphonium salts as catalysts for the transesterification of dialkyl carbonates with diols. The competition between cyclic carbonates and linear dicarbonate products.

    Science.gov (United States)

    Selva, Maurizio; Caretto, Alessio; Noè, Marco; Perosa, Alvise

    2014-06-28

    At 90-120 °C, in the presence of methylcarbonate and bicarbonate methyltrioctylphosphonium salts as catalysts ([P8881][A]; [A] = MeOCO2 and HOCO2), the transesterification of non-toxic dimethyl- and diethyl-carbonate (DMC and DEC, respectively) with 1,X-diols (2 ≤ X ≤ 6) proceeds towards the formation of cyclic and linear products. In particular, 1,2-propanediol and ethylene glycol afford propylene- and ethylene-carbonate with selectivity and yields up to 95 and 90%, respectively; while, the reaction of DMC with higher diols such 1,3-butanediol, 2-methyl-1,3-propanediol, 1,3-propanediol, 2,2-dimethyl, 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol produce linear C8-C10 dicarbonates of general formula MeOC(O)O∼∼∼OC(O)OMe as the almost exclusive products. Of note, these dicarbonate derivatives are not otherwise accessible in good yields by other conventional base catalyzed methods. Among 1,3-diols, the only exception was 2-methyl 2,4-pentandiol that yields the corresponding cyclic carbonate, i.e. 4,4,6-trimethyl-1,3-dioxan-2-one. In no one case, polycarbonates are observed. Such remarkable differences of product distributions are ascribed to the structure (branching and relative position of OH groups) of diols and to the role of cooperative (nucleophilic and electrophilic) catalysis which has been proved for onium salts. The investigated carbonate salts are not only effective in amounts as low as 0.5 mol%, but they are highly stable and recyclable. PMID:24825024

  18. 76 FR 2344 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Preliminary Results of...

    Science.gov (United States)

    2011-01-13

    ... columbium), or both, added to stabilize carbon and nitrogen elements. HSLA steels are recognized as steels...'') steels, and the substrate for motor lamination steels. IF steels are recognized as low- carbon steels... Antidumping Duty Order: Certain Hot-Rolled Carbon Steel Flat Products From India, 66 FR 60194 (December...

  19. 76 FR 48143 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2011-08-08

    ...), or both, added to stabilize carbon and nitrogen elements. HSLA steels are recognized as steels with...'') steels, and the substrate for motor lamination steels. IF steels are recognized as low carbon steels with...: Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China, 66 FR 59561...

  20. 78 FR 42039 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2013-07-15

    ... (``HSLA'') steels, and the substrate for motor lamination steels. IF steels are recognized as low carbon... columbium), or both, added to stabilize carbon and nitrogen elements. HSLA steels are recognized as steels... Carbon Steel Flat Products from the People's Republic of China, 66 FR 59561 (November 29, 2001)....

  1. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    Directory of Open Access Journals (Sweden)

    Sergi Abad

    2015-12-01

    Full Text Available Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1, biomass (0.7–0.8 g cells/g Substrate and product (0.14–0.15 g DHA/g cells yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  2. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States). Energy Resources Center; Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois at Urbana Champaign, Urbana, IL (United States). Dept. of Natural Resources; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2016-09-01

    The $\\underline{C}$arbon $\\underline{C}$alculator for $\\underline{L}$and $\\underline{U}$se Change from $\\underline{B}$iofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  3. Carbon-14 production compared to oxygen isotope records from Camp Century, Greenland and Devon Island, Canada

    International Nuclear Information System (INIS)

    Carbon-14 production rate variations that are not explainable by geomagnetic changes are thought to be in antiphase with solar activity and as such should be in antiphase with paleotemperature records or proxy temperature histories such as those obtainable from oxygen isotope analyses of ice cores. Oxygen isotope records from Camp Century, Greeland and Devon Island Ice Cap are in phase with each other over thousands of years and in antiphase to the 14C production rate residuals. (Auth.)

  4. Belowground Carbon and Nitrogen Cycling in a Loblolly Pine Forest Managed for Bioenergy Production

    OpenAIRE

    Minick, Kevan J

    2014-01-01

    Concern over rising atmospheric CO2 due to fossil fuel combustion has intensified research into carbon-neutral energy and fuel production. Therefore, bioenergy production has expanded during the last decade, increasing demand for forest-based bioenergy feedstocks. Millions of acres of privately and industrially owned pine plantations exist across the southeastern US, representing a vast area of land that could be utilized to produce bioenergy without significant land-use change or diversion...

  5. Cooperative effect by monopodal silica-supported niobium com-plexes pairs enhancing catalytic cyclic carbonate production

    KAUST Repository

    D'Elia, Valerio

    2015-05-07

    Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica supported Nb-species by reacting a molecular niobium precursor [NbCl5•OEt2] with silica dehydroxylated at 700 °C (SiO2-700) or at 200 oC (SiO2-200) to generate diverse surface complexes. The product of the reaction between SiO2-700 and [NbCl5•OEt2] was identified as a monopodal supported surface species [≡SiONbCl4•OEt2] (1a). The reactions of SiO2-200 with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3•OEt2]. 93Nb SSNMR spectra of 1a-3a and 31P SSNMR on their PMe3 derivatives (1b-3b) led to the unambiguous assignment of 1a as a single site, monopodal Nb-species while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4•OEt2] and 3a being mostly bipodal [≡S ONbCl3•OEt2]. Double-quantum/single-quantum 31P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprece-dented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of the NbCl5 catalyzed cycloaddition in the homogeneous phase.

  6. Feasibility study of production of radioactive carbon black or carbon nanotubes in cyclotron facilities for nanobioscience applications

    International Nuclear Information System (INIS)

    A feasibility study regarding the production of radioactive carbon black and nanotubes has been performed by proton beam irradiation. Experimental and theoretical excitation functions of the nuclear reaction natC(p,x)7Be in the proton energy range 24–38 MeV are reported, with an acceptable agreement. We have demonstrated that sufficient activities of 7Be radioisotope can be produced in carbon black and nanotube that would facilitate studies of their possible impact on human and environment. - Highlights: ► We measured the excitation functions of the reaction natC(p,x)7Be in the energy range 24–38 MeV. ► We calculated the excitation functions of the reaction natC(p,x)7Be in the energy range 24–38 MeV. ► We assessed the thick target yield of the reaction natC(p,x)7Be. ► We reported results on the radiolabeling yields of carbon black and nanotubes with Beryllium 7

  7. Selective carboxylate production by controlling hydrogen, carbon dioxide and substrate concentrations in mixed culture fermentation

    NARCIS (Netherlands)

    Arslan, D.; Steinbusch, K.J.J.; Diels, L.; Wever, de H.; Hamelers, H.V.M.; Buisman, C.J.N.

    2013-01-01

    This research demonstrated the selective production of n-butyrate from mixed culture by applying 2 bar carbon dioxide into the headspace of batch fermenters or by increasing the initial substrate concentration. The effect of increasing initial substrate concentration was investigated at 8, 13.5 and

  8. Can iron-making and steelmaking slag products be used to sequester CO2? Passive weathering and active carbonation experiments.

    Science.gov (United States)

    Worrall, Fred; Dobrzański, Andrew

    2015-04-01

    The high calcium content of iron and steel-making slags has been highlighted as providing a suitable feedstock material and medium with which to sequester CO2 into geologically stable carbonate phases. Optimisation of the natural carbonation process provides the potential for increasing the degree of carbonation above that possible via passive weathering. This study has assessed the baseline passive carbonation potential of several different slag products (graded steel slag aggregate, pellite, GBFS) within the climate of the northern UK. This baseline was then used as a comparison to the carbonation values achieved by the same products when actively reacted in a CO2-rich environment. The active carbonation phase of the project involved a factorial experimental study of materials reacted at 1MPa/10MPa CO2 pressure and 25˚C/125˚C. This study has shown: 1) That active carbonation of these products can successfully sequester additional CO2. 2) Carbonation potential in general is highly dependent upon grain size within material types, 3) There is a material-dependant cost-benefit issue when using different active carbonation conditions as well as the choice to use active vs. passive carbonation. The median sequestration potential of the slag products in this study is equivalent to the total emissions from 910 people from the UK; the CO2 emissions from 10000 tonnes of cement production; or 340000 tonnes of steel production.

  9. [Effects of mixed carbon sources on glucose oxidase production by recombinant Pichia pastoris].

    Science.gov (United States)

    Shen, Yina; Gu, Lei; Zhang, Juan; Chen, Jian; Du, Guocheng

    2013-07-01

    Glucose oxidase (GOD) is an important industrial enzyme with many potential applications. In order to increase the production and productivity of GOD by recombinant Pichia pastoris GS115, we investigated the feeding strategies of mixed carbon sources during induction phase, based on results of the optimization of initial cell and methanol concentration on GOD production. The optimal initial cell and methanol concentration were 100 g/L and 18 g/L. During induction phase, the mixed-carbon-sources strategies showed that glycerol, sorbitol or mannitol co-feeding with methanol could enhance GOD production. With mannitol co-feeding (20:1(W/W)), the maximum GOD production and maximum GOD productivity reached 711.3 U/mL and 4.60 U/(mL x h) after an induction period of 156 h. Compared to the control, the enhancements of GOD production and productivity were 66.3% and 67.9%, respectively. Meanwhile, we found an appropriate mannitol co-feeding strategy that would not inhibit the expression of promote. The activity of alcohol oxidase was 8.8 U/g, which was enhanced by 69.2% compared to the control (5.2 U/g). We can use the same optimization process to improve the production of other proteins from recombinant Pichia pastoris by changing the fermentation parameters.

  10. In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies

    Science.gov (United States)

    Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha

    2014-05-01

    Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science

  11. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  12. Method for synthesizing carbon nanotubes

    Science.gov (United States)

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  13. Ethylene glycol assisted low-temperature synthesis of boron carbide powder from borate citrate precursors

    Directory of Open Access Journals (Sweden)

    Rafi-ud-din

    2014-09-01

    Full Text Available B4C powders were synthesized by carbothermal reduction of ethylene glycol (EG added borate citrate precursors, and effects of EG additions (0–50 mol% based on citric acid on the morphologies and yields of synthesized B4C powders were investigated. The conditions most suitable for the preparation of precursor were optimized and optimum temperature for precursor formation was 650 °C. EG additions facilitated low-temperature synthesis of B4C at 1350 °C, which was around 100–300 °C lower temperature compared to that without EG additions. The lowering of synthesis temperature was ascribed to the enlargement of interfacial area caused by superior homogeneity and dispersibility of precursors enabling the diffusion of reacting species facile. The 20% EG addition was optimal with free residual carbon lowered to 4%. For smaller EG additions, the polyhedral and rod-like particles of synthesized product co-existed. With higher EG additions, the morphology of synthesized product was transformed into needle and blade-like structure.

  14. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process

    Science.gov (United States)

    Nikolaev, Pavel

    2004-01-01

    The latest process for producing large quantities of single-walled carbon nanotubes (SWNTs) to emerge from the Rice University, dubbed HiPco, is living up to its promise. The current production rates approach 450 mg/h (or 10 g/day), and nanotubes typically have no more than 7 mol % of iron impurities. Second-generation HiPco apparatus can run continuously for 7-10 days at a time. In the HiPco process nanotubes grow in high-pressure, high-temperature flowing CO on catalytic clusters of iron. Catalyst is formed in situ by thermal decomposition of iron pentacarbonyl, which is delivered intact within a cold CO flow and then rapidly mixed with hot CO in the reaction zone. Upon heating, the Fe(CO)5 decomposes into atoms that condense into larger clusters. SWNTs nucleate and grow on these particles in the gas phase via CO disproportionation: CO + CO --> CO2 + C (SWNT), catalyzed by the Fe surface. The concentration of CO2 produced in this reaction is equal to that of carbon and can therefore serve as a useful real-time feedback parameter. It was used to study and optimize SWNT production as a function of temperature, pressure, and Fe(CO)5 concentration. The results of the parametric study are in agreement with current understanding of the nanotube formation mechanism.

  15. Optimal Medium Composition to Enhance Poly-β-hydroxybutyrate Production by Ralstonia eutropha Using Cane Molasses as Sole Carbon Source

    OpenAIRE

    Ali Bozorg; Manouchehr Vossoughi; Akhtarolmoluk Kazemi; Iran Alemzadeh

    2015-01-01

    In order to reduce the costs associated with Poly-β-hydroxybutyrate production, growth and Poly-β-hydroxybutyrate production of Ralstonia eutropha were studied in batch culture on different carbon sources. Experiments were designed and conducted to not only lower the cost of Poly-β-hydroxybutyrate production by using inexpensive substrates, but also to increase Poly-β-hydroxybutyrate production by optimizing the culture medium composition. Low cost, abundant carbon sources, including cane mol...

  16. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  17. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production.

    Science.gov (United States)

    Zainol, Muzakkir Mohammad; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2015-08-01

    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel.

  18. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    Science.gov (United States)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  19. 77 FR 301 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year...

    Science.gov (United States)

    2012-01-04

    ... corrosion-resistant carbon steel flat products from Germany and Korea (72 FR 7009). The Commission is now... part 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request...-resistant carbon steel flat products from Korea (58 FR 43752). On August 19, 1993, Commerce...

  20. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... FR 60078 (September 29, 2010) (Initiation). As a result of withdrawals of request for review, we are... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products...