WorldWideScience

Sample records for carbon products precursors

  1. Production and screening of carbon products precursors from coal. Quarterly progress report, July 1, 1996--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.; Stiller, A.

    1996-10-25

    This quarterly report covers activities during the period from July 1, 1996 through September 30, 1996 on the development of carbon products precursor materials from coal. The first year of the project ended in February, 1996; however, the WVU research effort continued through August 14, 1997 on a no-cost extension of the original contract. PETC chose to exercise the option for continuation of the projects and $100,000 became available on August 9, 1996. The objective for year two is to focus on development of those carbon products from coal-based solvent extract precursors which have the greatest possibility for commercial success.

  2. Preparation and evaluation of coal extracts as precursors for carbon and graphite products

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1996-08-01

    A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.

  3. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    Science.gov (United States)

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  4. PEEK: An excellent precursor for activated carbon production for high temperature application

    International Nuclear Information System (INIS)

    A series of activated carbons (AC) with high apparent surface area and very high micropore volumes were prepared from granulated PEEK (poly[oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene]) by physical activation with CO2 at different temperatures and different activation times. The carbonisation yields at 873, 1073 and 1173 K were 57, 52 and 51%. As the activation temperature increased, between 873 and 1173 K, the burn-off, the micropore volume and mean pore size increased too. Those prepared at 1173 K, with 74% burn-off, present an extremely high apparent surface area (2874 m2 g-1) and a very high micropore volume (1.27 cm3 g-1). The presence of pyrone groups, identified by FTIR, on the AC surface corroborates the prevalence of a basic point of zero charge, always higher than 9.2. The thermal stability was checked by thermogravimetric analysis and as the carbonisation temperature increased the thermal stability of the char increased too. All AC obtained from PEEK by physical activation at 1173 K are thermally resistant, as at 1073 K the loss of the initial mass was less than 15%. The collective results confirm that PEEK is an excellent precursor for preparing AC with a high carbonisation yield, a high micropore volume and apparent surface area and a very high resistance at elevated temperature. (author)

  5. Production and application of synthetic precursors labeled with carbon-11 and fluorine-18

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.

    2001-04-02

    It is evident from this chapter that there is enormous flexibility both in the selection of the nature of the radioisotope and ways to generate it, as well as in the selection of the labeling precursor to appropriately attach that radioisotope to some larger biomolecule of interest. The arsenal of radiolabeling precursors now available to the chemist is quite extensive, and without a doubt will continue to grow as chemists develop new ones. However, the upcoming years will perhaps reflect a greater effort in refining existing methods for preparing some of those precursors that are already available to us. For example, the use of solid-phase reactions to accomplish in a single step what would normally take several using conventional solvent-based reactions has already been shown to work in many occasions. The obvious advantage here is that processes become more amenable to system automation thus affording greater reliability in day-to-day operations. There are perhaps other technologies in science that have yet to be realized by the chemist in the PET laboratory that could provide a similar or even a greater benefit. One only needs to be open to new ideas, and imaginative enough to apply them to the problems at hand.

  6. Production and application of synthetic precursors labeled with carbon-11 and fluorine-18

    International Nuclear Information System (INIS)

    It is evident from this chapter that there is enormous flexibility both in the selection of the nature of the radioisotope and ways to generate it, as well as in the selection of the labeling precursor to appropriately attach that radioisotope to some larger biomolecule of interest. The arsenal of radiolabeling precursors now available to the chemist is quite extensive, and without a doubt will continue to grow as chemists develop new ones. However, the upcoming years will perhaps reflect a greater effort in refining existing methods for preparing some of those precursors that are already available to us. For example, the use of solid-phase reactions to accomplish in a single step what would normally take several using conventional solvent-based reactions has already been shown to work in many occasions. The obvious advantage here is that processes become more amenable to system automation thus affording greater reliability in day-to-day operations. There are perhaps other technologies in science that have yet to be realized by the chemist in the PET laboratory that could provide a similar or even a greater benefit. One only needs to be open to new ideas, and imaginative enough to apply them to the problems at hand

  7. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil

    Science.gov (United States)

    Raziah, A. Z.; Junizah, A. R.; Saifuddin, N.

    2012-09-01

    Castor oil has long been an article of commerce due to its versatility as it is widely used as a starting material for many industrial chemical products because of its unique structure. In this study, carbon nanotubes has been synthesized by thermal decomposition of castor oil in nitrogen atmosphere at 300-400δC using custom-made microwave processing unit. The precursor material was catalyzed by iron clusters originating from the addition of ferrocene. The morphology and characterization of the CNTs were studied and discussed by transmission electron microscopy (TEM).

  8. Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal.

    Science.gov (United States)

    Watson, Kalinda; Farré, Maria José; Knight, Nicole

    2015-01-01

    The removal of both organic and inorganic disinfection by-product (DBP) precursors prior to disinfection is important in mitigating DBP formation, with halide removal being particularly important in salinity-impacted water sources. A matrix of waters of variable alkalinity, halide concentration and dissolved organic carbon (DOC) concentration were treated with enhanced coagulation (EC) followed by anion exchange (MIEX resin) or powdered activated carbon (PAC) and the subsequent disinfection by-product formation potentials (DBP-FPs) assessed and compared to DBP-FPs for untreated samples. Halide and DOC removal were also monitored for both treatment processes. Bromide and iodide adsorption by MIEX treatment ranged from 0 to 53% and 4-78%, respectively. As expected, EC and PAC treatments did not remove halides. DOC removal by EC/PAC was 70 ± 10%, while EC/MIEX enabled a DOC removal of 66 ± 12%. Despite the halide removals achieved by MIEX, increases in brominated disinfection by-product (Br-DBP) formation were observed relative to untreated samples, when favourable Br:DOC ratios were created by the treatment. However, the increases in formation were less than what was observed for the EC/PAC treated waters, which caused large increases in Br-DBP formation when high Br-DBP-forming water quality conditions occurred. The formation potential of fully chlorinated DBPs decreased after treatment in all cases. PMID:25462752

  9. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  10. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment.

    Science.gov (United States)

    Chu, Wenhai; Yao, Dechang; Gao, Naiyun; Bond, Tom; Templeton, Michael R

    2015-12-01

    Pilot-scale tests were performed to reduce the formation of a range of carbonaceous and nitrogenous disinfection by-products (C-, N-DBPs), by removing or transforming their precursors, with an integrated permanganate oxidation and powdered activated carbon adsorption (PM-PAC) treatment process before conventional water treatment processes (coagulation-sedimentation-filtration, abbreviated as CPs). Compared with the CPs, PM-PAC significantly enhanced the removal of DOC, DON, NH3(+)-N, and algae from 52.9%, 31.6%, 71.3%, and 83.6% to 69.5%, 61.3%, 92.5%, and 97.5%, respectively. PM pre-oxidation alone and PAC pre-adsorption alone did not substantially reduce the formation of dichloroacetonitrile, trichloroacetonitrile, N-nitrosodimethylamine and dichloroacetamide. However, the PM-PAC integrated process significantly reduced the formation of both C-DBPs and N-DBPs by 60-90% for six C-DBPs and 64-93% for six N-DBPs, because PM oxidation chemically altered the molecular structures of nitrogenous organic compounds and increased the adsorption capacity of the DBP precursors, thus highlighting a synergistic effect of PM and PAC. PM-PAC integrated process is a promising drinking water technology for the reduction of a broad spectrum of C-DBPs and N-DBPs. PMID:26065622

  11. Production and screening of carbon products precursors from coal. Quarterly technical progress report No. 5, January 1,1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Individual quarterly reports of four industrial participants of this project are included in this report. The technical emphasis continues to be the supply of coal-based feedstocks to the industrial participants. There have been several iterations of samples and feedback to meet feedstock characteristics for a wide variety of carbon products. Technology transfer and marketing of the Carbon Products Consortium (CPC) is a continual effort. Interest in the program and positive results from the research continue to grow. In several aspects, the program is ahead of schedule.

  12. Production and screening of carbon products precursors from coal. Quarterly technical progress report and key personnel staffing report No. 6, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The main goal of this program is to demonstrate the utility of coal extracts from the West Virginia University (WVU) extraction process as suitable base raw materials for the carbon products encompassed by the Carbon Products Consortium (CPC) team. This quarterly report covers activities during the period from April 1, 1996 through June 30, 1996. The first year of the project ended in February, 1996; however, the WVU research effort has continued on a no-cost extension of the original contract. Samples have been supplied to CPC participants so they could conduct their portions of the project as contracted through ORNL. Progress reports are presented for the following tasks: project planning and administration; consortium administration and reporting; coal extraction; technical/economic evaluation of WVU extraction process; and technology transfer. Previous work has shown that the WVU coal extraction process coupled with hydrotreatment, does have the potential for producing suitable base raw materials for carbon products. Current effort, therefore, involved the screening and evaluation of extracts produced by the WVU Group and recommending appropriate materials for scaleup for subsequent evaluation by Consortium Team members. As part of this program, the activation of the coal extraction residues was investigated for the purpose of producing a useful active carbon. A further task, which was started towards the end of the program, was to fabricate a small graphite artifact using Coke derived from coal extract as the filler and the coal extract itself as a binder. The results of these studies are summarized in this report.

  13. Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal.

    Science.gov (United States)

    Watson, Kalinda; Farré, Maria José; Knight, Nicole

    2016-01-15

    During disinfection, bromide, iodide and natural organic matter (NOM) in source waters can lead to the formation of brominated and/or iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The objective of this study was to compare the efficiency of a silver-impregnated activated carbon (SIAC) with the equivalent unimpregnated granular activated carbon (GAC) for the removal of bromide, iodide and NOM from a matrix of synthetic waters with variable NOM, halide, and alkalinity concentrations, and to investigate the impact on DBP formation. An enhanced coagulation (EC) pre-treatment was employed prior to sample exposure to either carbon adsorbent. Excellent halide removals were observed by the SIAC treatment across the sample matrix, with iodide concentrations consistently reduced to below the method reporting limit (removal of bromide achieved. Bromide removal by unimpregnated GAC was poor, however iodide removal was comparable to that achieved by SIAC. The combination of EC with SIAC treatment removed 77±8% of the dissolved organic carbon (DOC) present, across the sample matrix, which was similar to removals by EC/GAC (67±14%). Combined EC/SIAC treatment reduced both total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs) formation by 97±3%, while also achieving a greater than 74% removal of two chloropropanones and a 92±8% decrease in chloral hydrate (CH), compared to untreated samples, regardless of the sample's starting water quality (bromide, alkalinity and NOM concentration). Combined EC/GAC treatment led to similar DBP removals to EC/SIAC for the fully chlorinated DBPs, however, brominated DBPs were less efficiently removed, or experienced concentration increases. PMID:26546763

  14. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    OpenAIRE

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleat...

  15. DSC Study on the Polyacrylonitrile Precursors for Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    Wangxi ZHANG; Musen LI

    2005-01-01

    Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.

  16. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Dai, Xuliang [GrafTech International Holdings Inc.; Hausner, Andrew [GrafTech International Holdings Inc.

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  17. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  18. Pyruvate kinase deletion as an effective phenotype to enhance lysine production in Corynebacterium glutamicum ATCC13032: Redirecting the carbon flow to a precursor metabolite.

    Science.gov (United States)

    Yanase, Masaki; Aikoh, Tohru; Sawada, Kazunori; Ogura, Kotaro; Hagiwara, Takuya; Imai, Keita; Wada, Masaru; Yokota, Atsushi

    2016-08-01

    Various attempts have been made to enhance lysine production in Corynebacterium glutamicum. Pyruvate kinase (PYK) defect is one of the strategies used to enhance the supply of oxaloacetic acid (OAA), a precursor metabolite for lysine biosynthesis. However, inconsistent effects of this mutation have been reported: positive effects of PYK defect in mutants having phosphoenolpyruvate carboxylase (PEPC) desensitized to feedback inhibition by aspartic acid, while negative effects in simple PYK gene (pyk) knockout mutants. To address these discrepancies, the effects of pyk deletion on lysine yield were investigated with or without the D299N mutation in ppc rendering PEPC desensitization. C. glutamicum ATCC13032 mutant strain P with a feedback inhibition-desensitized aspartokinase was used as the parent strain, producing 9.36 g/L lysine from 100 g/L glucose in a jar fermentor culture. Under these conditions, while the simple mutant D2 with pyk deletion or R2 with the PEPC-desensitization mutation showed marginally increased lysine yield (∼1.1-fold, not significant), the mutant DR2 strain having both mutations showed synergistically increased lysine productivity (1.38-fold, 12.9 g/L). Therefore, the pyk deletion is effective under a PEPC-desensitized background, which ensures enhanced supply of OAA, thus clarifying the discrepancies. A citrate synthase defective mutation (S252C in gltA) further increased the lysine yield in strain DR2 (1.68-fold, 15.7 g/L). Thus, these three mutations coordinately enhanced the lysine yield. Both the malate:quinone oxidoreductase activity and respiration rate were significantly reduced in strains D2 and DR2. Overall, these results provide valuable knowledge for engineering the anaplerotic reaction to increase lysine yield in C. glutamicum. PMID:26983943

  19. Chemical preparation and shock wave compression of carbon nitride precursors

    International Nuclear Information System (INIS)

    Two synthetic routes have been developed to produce high-molecular-weight organic precursors containing a high weight fraction of nitrogen. One of the precursors is a pyrolysis residue of melamine-formaldehyde resin. The second precursor is the byproduct of an unusual low-temperature combustion reaction of tetrazole and its sodium salt. These precursors have been shock compressed under typical conditions for diamond and wurtzite boron nitride synthesis in an attempt to recover a new ultrahard carbon nitride. The recovered material has been analyzed by X-ray diffraction, FTIR, and Raman microprobe analysis. Diamond is present in the recovered material. This diamond is well ordered relative to diamond shock synthesized from carbonaceous starting materials

  20. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    Science.gov (United States)

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-12-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.

  1. Growth characteristics of graphene synthesized via chemical vapor deposition using carbon tetrabromide precursor

    International Nuclear Information System (INIS)

    Highlights: • Carbon tetrabromide (CBr4) precursor and Cu foil can be used for chemical vapor deposition (CVD) of graphene. • High yield and controllable growth are possible via CVD used with a CBr4 precursor. • CBr4 precursor is a new alternative for use in the mass production of graphene. • Low bond dissociation energy of CBr4 allows lower temperature growth (800 °C) of high-quality graphene film, compared to that (1000 °C) of methane used CVD. - Abstract: A carbon tetrabromide (CBr4) precursor was employed for the chemical vapor deposition (CVD) of graphene, and the graphene growth characteristics as functions of the following key factors were then investigated: growth time, growth temperature, and the partial pressure of the precursor. The graphene was transferred onto a SiO2/Si substrate and characterized using transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, and the electrical properties were measured through the fabrication of field-effect transistors. Our results show that high yield and controllable growth are possible via CVD used with a CBr4 precursor. Thus, CBr4 precursor is a new alternative candidate for use in the mass production of graphene

  2. Growth characteristics of graphene synthesized via chemical vapor deposition using carbon tetrabromide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Taejin; Jung, Hanearl; Lee, Chang Wan [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Mun, Ki-Yeung; Kim, Soo-Hyun [Nano-Devices and Process Laboratory, School of Materials Science and Engineering, Yeungnam University, Dae-Dong, Gyeongsan-Si 712-749 (Korea, Republic of); Park, Jusang [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2015-07-15

    Highlights: • Carbon tetrabromide (CBr{sub 4}) precursor and Cu foil can be used for chemical vapor deposition (CVD) of graphene. • High yield and controllable growth are possible via CVD used with a CBr{sub 4} precursor. • CBr{sub 4} precursor is a new alternative for use in the mass production of graphene. • Low bond dissociation energy of CBr{sub 4} allows lower temperature growth (800 °C) of high-quality graphene film, compared to that (1000 °C) of methane used CVD. - Abstract: A carbon tetrabromide (CBr{sub 4}) precursor was employed for the chemical vapor deposition (CVD) of graphene, and the graphene growth characteristics as functions of the following key factors were then investigated: growth time, growth temperature, and the partial pressure of the precursor. The graphene was transferred onto a SiO{sub 2}/Si substrate and characterized using transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, and the electrical properties were measured through the fabrication of field-effect transistors. Our results show that high yield and controllable growth are possible via CVD used with a CBr{sub 4} precursor. Thus, CBr{sub 4} precursor is a new alternative candidate for use in the mass production of graphene.

  3. Effect of capacitive deionization on disinfection by-product precursors.

    Science.gov (United States)

    Liu, Danyang; Wang, Xiaomao; Xie, Yuefeng F; Tang, Hao L

    2016-10-15

    Formation of brominated disinfection by-products (DBPs) from bromide and natural organic matter upon chlorination imposes health risks to drinking water users. In this study, capacitive deionization (CDI) was evaluated as a potential process for DBP precursor removal. Synthetic humic acid and bromide containing saline water was used as model water prior to CDI treatment. Batch experiments were conducted at cell voltages of 0.6-, 0.9-, and 1.2V to study the influence of CDI on the ratio of bromide and dissolved organic carbon, bromine substitution factor, and DBP formation potential (FP). Results showed beneficial aspects of CDI on reducing the levels of these parameters. A maximum DBPFP removal from 1510 to 1160μg/L was observed at the cell voltage of 0.6V. For the removed DBPFP, electro-adsorption played a greater role than physical adsorption. However, it is also noted that there could be electrochemical oxidations that led to reduction of humic content and formation of new dichloroacetic acid precursors at high cell voltages. Because of the potential of CDI on reducing health risks from the formation of less brominated DBPs upon subsequent chlorination, it can be considered as a potential technology for DBP control in drinking water treatment. PMID:27285792

  4. Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sabornie [ORNL; Jones, Eric B [ORNL; Clingenpeel, Amy [National High Magnetic Field Laboratory (Magnet Lab), Florida; McKenna, Amy [National High Magnetic Field Laboratory (Magnet Lab), Florida; Rios, Orlando [ORNL; McNutt, Nicholas W [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Johs, Alexander [ORNL

    2014-08-04

    Lignin is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fiber, monolithic structures or powders that could be used directly in the production of anodes for lithium-ion batteries. In this work, we report processing parameters relevant for the conversion of lignin precursors into electrochemically active carbon fibers, the impact of lignin precursor modification on melt processing and the microstructure of the final carbon material. The conversion process encompasses melt spinning of the lignin precursor, oxidative stabilization and a low temperature carbonization step in a nitrogen/hydrogen atmosphere. To assess electrochemical performance, we determined resistivities of individual carbon fiber samples and characterized the microstructure by scanning electron microscopy and neutron diffraction. The chemical modification and subsequent thermomechanical processing methods reported here are effective for conversion into carbon fibers while preserving the macromolecular backbone structure of lignin. Modification of softwood lignin produced functionalities and rheological properties that more closely resemble hardwood lignin thereby enabling the melt processing of softwood lignin in oxidative atmospheres (air). Structural characterization of the carbonized fibers reveals nanoscale graphitic domains that are linked to enhanced electrochemical performance.

  5. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  6. Engineering Escherichia Coli Fatty Acid Metabolism for the Production of Biofuel Precursors

    OpenAIRE

    Ford, Tyler John

    2015-01-01

    Medium chain fatty acids (MCFAs, 6-12 carbons) are potential precursors to biofuels with properties similar to gasoline and diesel fuel but are not native products of Escherichia coli fatty acid synthesis. Herein we engineer E. coli to produce, metabolize, and activate MCFAs for their future reduction into alcohols and alkanes (potential biofuels). We develop an E. coli strain with an octanoate (8-carbon MCFA) producing enzyme (a thioesterase), metabolic knockouts, and the capa...

  7. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-02-23

    The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feedstocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others. Key milestones included producing hydrogenated coal in the Hydrotreating Facility for the first time. The facility is now operational, although digital controls have not yet been completely wired. In addition, ultrasound is being used to investigate enhanced dissolution of coal. Experiments have been carried out.

  8. Carbon Fibers from UV-Assisted Stabilization of Lignin-Based Precursors

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2015-06-01

    Full Text Available Production of high strength carbon fibers from bio-derived precursors is of topical interest. Recently, we reported on dry-spinning of a partially acetylated softwood kraft lignin to produce carbon fibers with superior properties, but the thermo-oxidative stabilization step required a long time due to a slow heating rate needed to prevent the fibers from being heated too rapidly and sticking to each other. Here we report a rapid strategy of dual UV-thermoxidative stabilization (crosslinking of dry-spun lignin fibers that significantly reduces the stabilization time. The fibers undergo reaction close to the surface such that they can be subsequently thermally stabilized at a rapid heating rate without fibers fusing together, which reduces the total stabilization time significantly from 40 to 4 h. Consequently, the glass transition temperature of UV irradiated fibers was about 15 °C higher than that of fibers without UV treatment. Stabilized fibers were successfully carbonized at 1000 °C and resulting carbon fibers displayed a tensile strength of 900 ± 100 MPa, which is amongst the highest reported for carbon fibers derived from softwood lignin-based precursors. These results establish that UV irradiation is a rapid step that can effectively shorten the total stabilization time for production of lignin-derived carbon fibers.

  9. Analysis of structure and properties of active carbons and their copolymeric precursors

    Science.gov (United States)

    Sobiesiak, M.; Gawdzik, B.; Puziy, A. M.; Poddubnaya, O. I.

    2010-06-01

    The relations between chemical structures of BM-DVB copolymers obtained with various monomer molar ratios and their carbonization products were studied. Three porous copolymers 1:4, 1:1, and 4:1 of BM to DVB were the starting materials for preparation of active carbons. Two activation agents were employed: air and phosphoric acid. The carbonization process was performed in the same way in these two cases. To characterize the obtained materials FTIR spectroscopy, thermal and elemental analyses were applied. Porous structure parameters were obtained by means of nitrogen sorption. The results proved that differences in the molar ratio of monomers used in the syntheses of polymeric precursor play a key role for structure and properties of copolymers but have rather small influence on properties of the obtained carbons. Preliminary treatment is more effective during the activation process. The carbons obtained by activation with phosphoric acid are microporous and have well developed porous structures. The air activated carbons are mesoporous with specific surface areas similar to those of polymeric precursors.

  10. Strategies towards Novel Carbon Fiber Precursors: the Research Results on the Synthesis of PAN Copolymers via AGET ATRP and on Lignin as a Precursor

    Directory of Open Access Journals (Sweden)

    Spyridon Soulis

    2015-11-01

    Full Text Available The aim of this work is the presentation of two different approximations for improving the production of carbon fibers through the introduction of alternative precursors. The first approach concerns the development of novel polyacrylonitrile block copolymers through activators’ generated by electron transfer-atom transfer radical polymerization (AGET-ATRP reaction mechanism in microemulsion; the novel polymers are envisaged to contain a structure that will be more efficiently oxidatively stabilized and/or carbonized, with the ultimate target of CFs with improved properties. The second approximation aims at the introduction of lignin as efficient CFs precursor; this approach aims at reducing the cost of the process and increasing the production yield. Pyrolysis together with oxidative stabilization of lignin were investigated, as well as the effects on structure and thermal behavior of blending with thermoplastics. Thus far, both these methodologies exhibited significant potential and will be further developed towards full scale industrial application.

  11. Surface Study of Carbon Nanotubes Prepared by Thermal-CVD of Camphor Precursor

    Science.gov (United States)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Surface morphology study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature, which indirectly maybe cost effective. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HR-TEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs. The camphoric hydrocarbons not only found acts as the precursors but also enhances the production rate and the quality of CNTs.

  12. Effect of precursors on the growth of carbon filaments onto clay surface

    International Nuclear Information System (INIS)

    The successful growth of carbon filaments on two different precursors, i.e., the pristine sodium-montmorillonite (Na+MMT), which undergoes reflux at 100 deg. C (r-MMT), and the Na+MMT exchanged with Fe3+ ions (MMT(Fe)), was attained through chemical vapor deposition (CVD). The products obtained were characterized by X-ray diffraction, thermogravimetry, scanning electron microscopy, and transmission electron microscopy. Refluxing can make the Fe3+ ions in the octahedral layer of Na+MMT migrate to the interlayer and exchange with Na+ ions. Furthermore, through calcination at 500 deg. C, the Fe3+ ions migrate again to the surface of the clay layer and form iron oxides, which can serve as precursors for the deposition of carbon. Although r-MMT contained less iron than the MMT(Fe), the ultimate yield of carbon components grown was almost the same, indicating that the iron species in r-MMT possess higher catalytic activity. However, on the surface of r-MMT, CVD hardly generated carbon nanotubes with a clear hollow structure but that those with a carbon fiber structure instead.

  13. DFT Thermodynamic Research of the Pyrolysis Mechanism of the Carbon Matrix Precursor Toluene for Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the experiments, the standard enthalpy △H of the possible pyrolysis reactions of the carbon matrix precursor toluene was investigated by means of DFT method UB3LYP/ 3-21G* (based on semi-empirical method UAM1 and ab initio method UHF/3-21G* ). The com putation results with UB3LYP/3-21G* coincide with the experimental values well. Then, the mechanism for all types of the pyrolysis reactions of toluene was studied by UB3LYP/3-2lG*. The geometries of the reactant and the product radicals were optimized, meanwhile, the standard thermodynamic parameters of the pyrolysis reaction at different temperatures (298, 773, 843, 963 and 1 073 K) were calculated. The thermodynamic computation result shows that when the pyrolysis temperature of toluene is lower than 963 K, the reaction path supported by thermody namics is that the C-H bond of the methyl on the benzene ring breaks and bitoluene form, while the temperature increases (about 1 073 K), the thermodynamic calculation result turns to sup port the reaction path producing phenyl radicals and methyl radicals. This mechanism is in accord with the experiments.

  14. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.

    Science.gov (United States)

    Nabais, J M Valente; Gomes, J A; Suhas; Carrott, P J M; Laginhas, C; Roman, S

    2009-08-15

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m(2)g(-1) and pore volume 0.5 cm(3)g(-1). The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 degrees C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g(-1) for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the pi-pi dispersion interaction between the phenol aromatic ring and the delocalised pi electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism. PMID:19233559

  15. Precursors and metabolic pathway for guaiacol production by Alicyclobacillus acidoterrestris.

    Science.gov (United States)

    Cai, Rui; Yuan, Yahong; Wang, Zhouli; Guo, Chunfeng; Liu, Bin; Liu, Laping; Wang, Yutang; Yue, Tianli

    2015-12-01

    Alicyclobacillus acidoterrestris has recently received much attention due to its implication in the spoilage of pasteurized fruit juices, which was manifested by the production of guaiacol. Vanillic acid and vanillin have been accepted as the biochemical precursors of guaiacol in fruit juices. The purpose of this study was to try to find other precursors and elucidate details about the conversion of vanillic acid and vanillin to guaiacol by A. acidoterrestris. Four potential substrates including ferulic acid, catechol, phenylalanine and tyrosine were analyzed, but they could not be metabolized to guaiacol by all the thirty A. acidoterrestris strains tested. Resting cell studies and enzyme assays demonstrated that vanillin was reduced to vanillyl alcohol by NADPH-dependent vanillin reductase and oxidized to vanillic acid by NAD(P)(+)-dependent vanillin dehydrogenases in A. acidoterrestris DSM 3923. Vanillic acid underwent a nonoxidative decarboxylation to guaiacol. The reversible vanillic acid decarboxylase involved was oxygen insensitive and pyridine nucleotide-independent. PMID:26241489

  16. Formation and transformation of a short range ordered iron carbonate precursor

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas;

    2015-01-01

    structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase...... formed. Its coherent scattering domains determined from PDF analysis are slightly larger than for amorphous calcium carbonate, suggesting that the precursor could be nanocrystalline. Replica exchange molecular dynamics simulations of Fe-carbonate polynuclear complexes yield PDF peak positions that agree...

  17. Preparation and Characterization of Various Activated Carbons Derived From Mixed Precursors Using Phosphoric Acid

    International Nuclear Information System (INIS)

    Rice straw (RS) and rice husk (RH), a low-cost agricultural by-products, have been used as a mixed precursor (i.e., RS mixed with RH in 1:1; 1:3 and 3:1 ratios) for the production of novel carbons using phosphoric acid as chemical activation. The raw materials were impregnated with 50% and 70% H3PO4 followed by activation at 500 degree C. The latter proved to be the most effective in producing active carbon with good adsorptive capacity. The resulting carbons were characterized by elemental analysis, infrared spectroscopy, density, SEM and SBET. In general, the resulting carbons showed reasonable surface areas with mainly micropore structure. The adsorption capacity was demonstrated by the isotherms of methylene blue (MB), phenol and iodine from aqueous solution. The adsorption data was found to conform with the Langmuir equation with the concentration range studied, and the monolayer coverage was determined for each of the samples. It was found that surface area is mainly attributed to micropore volume so that phenol adsorption and iodine number correspond well with surface area determined by nitrogen adsorption

  18. Effects of catalyst precursors on carbon nanowires by using ethanol catalytic combustion technique

    Institute of Scientific and Technical Information of China (English)

    CHENG Jin; ZOU Xiao-ping; LI Fei; ZHANG Hong-dan; REN Peng-fei

    2006-01-01

    Iron nitrate,nickel nitrate and cobalt nitrate were used as catalyst precursors to study their effects on carbon nanowires synthesized by ethanol catalytic combustion (ECC) process. The as-grown carbon nanowires were characterized by means of scanning electron microscopy,transmission electron microscopy and Raman spectroscopy. The results show that relatively uniform nanowires will be formed when the catalyst precursor is iron nitrate:while helical structure or disordered structure will be formed when the catalyst precursor is nickel nitrate or cobalt nitrate.

  19. Characterization of the nanopore structures of PAN-based carbon fiber precursors by small angle X-ray scattering

    International Nuclear Information System (INIS)

    The nanopore structures m precursors are crucial to the performance of PAN-based carbon fibers. Four carbon-fiber precursors are prepared. They are bath-fed filaments (A), water-washing filaments (B), hot-stretching filaments (C) and drying-densification filaments (D). Synchrotron radiation small angle X-ray scattering is used to probe and compare the nanopore structures of the four fibers. The nanopore size, discrete volume distribution, nanopore orientation degree along the fiber axis and the porosity are obtained. The results demonstrate that the nanopores are mainly formed in the water-washing stage. During the processes of the subsequent production technologies, the slenderness ratio of nanopores and their orientation degree along the fiber axis increase further and simultaneously, the porosity decreases. These results are helpful for improving the performance of the final carbon fibers. (authors)

  20. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Rober [ORNL; Paulauskas, Felix [ORNL; Naskar, Amit [ORNL; Kaufman, Michael [ORNL; Yarborough, Ken [ORNL; Derstine, Chris [The Dow Chemical Company

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  1. Effect of a constructed wetland on disinfection byproducts: Removal processes and production of precursors

    Science.gov (United States)

    Rostad, C.E.; Martin, B.S.; Barber, L.B.; Leenheer, J.A.; Daniel, S.R.

    2000-01-01

    The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (TH M), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (THM), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.

  2. Sensitivity Studies For Methane And Carbon Monoxide Retrievals From Sentinel-5 Precursor

    Science.gov (United States)

    Krings, T.; Reuter, M.; Buchwitz, M.; Heymann, J.; Hilker, M.; Bovensmann, H.; Burrows, J. P.

    2013-12-01

    Carbon monoxide (CO) has a large impact on air quality and methane (CH4) is an important anthropogenic green- house gas. Detailed and continuous observations of these gases are necessary to better assess their impact on cli- mate and atmospheric pollution. Abundances of both gases can be obtained from ESA's future satellite mission Sentinel-5 Precursor (S-5P). This work shows first results from the verification activities undertaken at the University of Bremen. For this, the BESD (Bremen Optimal Estimation DOAS) retrieval algorithm is used that has already been successfully applied to CO2 retrieval from SCIAMACHY satellite data. First simulations show that the adaption of BESD to the S-5P specifications results in reasonable results, which will lead to a detailed comparison of BESD results with the operational retrieval algorithms for CO and CH4. This will contribute to achieving high quality results for the final data product of CO and CH4 from the S-5P satellite mission.

  3. Evaluation of activated carbon processes for removing trihalomethane precursors from a surface water impoundment

    OpenAIRE

    Lavinder, Steven Robert

    1987-01-01

    A pilot plant study was conducted in Newport News, Virginia to investigate the effectiveness of powdered activated carbon [PAC] and granular activated carbon [GAC], with and without preoxidation, for reducing trihalomethane [THM] precursor concentrations in Harwood's Mill Reservoir water. Preoxidation with ozone followed by GAC is referred to as the "biological activated carbonâ [BAC] process. This study showed that the GAC and BAC processes obtained the same level of organic...

  4. Effect of Iron and Cobalt Catalysts on The Growth of Carbon Nanotubes from Palm Oil Precursor

    International Nuclear Information System (INIS)

    Catalysts which are typically a transition metal is mandatory and plays an important role in the production of CNT. In this work, the effect of iron (Fe) and cobalt (Co) nitrate catalyst on the growth of carbon nanotubes (CNT) were systematically studied. Green bio-hydrocarbon precursor namely palm oil was used as a precursor. The synthesis was done using thermal chemical vapour deposition method at temperature of 750°C for 15 min synthesis time. The Fe and Co solution were spin-coated separately on silicon substrate at speed of 3000 rev.min-1. The CNT characteristics were analyzed using field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results revealed that CNT properties were strongly affected by the catalyst type. CNT catalyzed by Co yields large diameter, crooked tube and lower quality, whereas CNT produced by Fe catalyst results in the smallest diameter and reasonably good graphitization. As a conclusion, Fe was considered as the optimum catalyst for better CNT structure and crystallinity. This was due to efficient, uniform and stable Fe catalytic activity as compared to Co catalyst in producing CNT.

  5. Toward biotechnological production of adipic acid and precursors from biorenewables.

    Science.gov (United States)

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. PMID:22824738

  6. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors

    Science.gov (United States)

    Updyke, Katelyn M.; Nguyen, Tran B.; Nizkorodov, Sergey A.

    2012-12-01

    Filter samples of secondary organic aerosols (SOA) generated from the ozone (O3)- and hydroxyl radical (OH)-initiated oxidation of various biogenic (isoprene, α-pinene, limonene, α-cedrene, α-humulene, farnesene, pine leaf essential oils, cedar leaf essential oils) and anthropogenic (tetradecane, 1,3,5-trimethylbenzene, naphthalene) precursors were exposed to humid air containing approximately 100 ppb of gaseous ammonia (NH3). Reactions of SOA compounds with NH3 resulted in production of light-absorbing "brown carbon" compounds, with the extent of browning ranging from no observable change (isoprene SOA) to visible change in color (limonene SOA). The aqueous phase reactions with dissolved ammonium (NH4+) salts, such as ammonium sulfate, were equally efficient in producing brown carbon. Wavelength-dependent mass absorption coefficients (MAC) of the aged SOA were quantified by extracting known amounts of SOA material in methanol and recording its UV/Vis absorption spectra. For a given precursor, the OH-generated SOA had systematically lower MAC compared to the O3-generated SOA. The highest MAC values, for brown carbon from SOA resulting from O3 oxidation of limonene and sesquiterpenes, were comparable to MAC values for biomass burning particles but considerably smaller than MAC values for black carbon aerosols. The NH3/NH4+ + SOA brown carbon aerosol may contribute to aerosol optical density in regions with elevated concentrations of NH3 or ammonium sulfate and high photochemical activity.

  7. Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites

    OpenAIRE

    Renato Luiz Siqueira; Inez Valéria Pagotto Yoshida; Luiz Claudio Pardini; Marco Antônio Schiavon

    2007-01-01

    Ceramic matrix composites (CMCs), constituted of a silicon boron oxycarbide (SiBCO) matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS) or poly(borosiloxane) (PBS) matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence o...

  8. AN INITIAL EVALUATION OF POLY(VINYLACETYLENE) AS A CARBON-FIBER PRECURSOR

    NARCIS (Netherlands)

    MAVINKURVE, A; VISSER, S; PENNINGS, AJ

    1995-01-01

    Poly(vinylacetylene) obtained by the selective polymerization of monovinylacetylene through the vinyl group has been investigated for its use as an alternative precursor for carbon fibers. The low yield of char obtained on pyrolysis of the polymer in an inert atmosphere was improved dramatically by

  9. Effect of different carbon precursors on properties of LiFePO4/C

    Institute of Scientific and Technical Information of China (English)

    肖政伟; 张英杰; 胡国荣

    2015-01-01

    The anoxic decomposition and influence of carbon precursors on the properties of LiFePO4/C prepared by using Fe2O3 were investigated. X-ray powder diffractometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and carbon content and charge–discharge tests were applied to the characterization of the as-synthesized cathodes. Partial carbon is lost in the anaerobic decomposition of organic precursors and a high hydrogen content leads to a high residual carbon rate. Pyromellitic anhydride and citric acid participate in reactions before and in ball-milling. All the chosen carbon precursors are capable of producing LiFePO4 with high degree of crystallinity and purity. The carbon derived fromα-D-glucose, pyromellitic anhydride, soluble starch, citric acid and polyacrylamide has a loose and porous texture in LiFePO4/C which forms conduction on and between LiFePO4 particles. LiFePO4/C prepared by usingα-D-glucose, pyromellitic anhydride, citric acid and sucrose exhibits appreciable electrochemical performance. Graphite alone is able to enhance the electrochemical performance of LiFePO4 to a limited extent but incapable of preparing practical cathode.

  10. Classification of carbon materials for developing structure-properties relationships based on the aggregate state of the precursors

    Institute of Scientific and Technical Information of China (English)

    Oleksiy V. Khavryuchenko; Volodymyr D.Khavryuchenko

    2014-01-01

    Modern carbon science lacks an efficient structure-related classi-fication of materials. We present an approach based on dividing carbon materials by the aggregate state of the precursor. The common features in the structure of carbon particles that allow putting them into a group are discussed, with particular attention to the potential energy stored in the carbon structure from differ-ent rates of relaxation during the synthesis and prearrangement of structural motifs due to the effect of the precursor structure.

  11. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption.

    Science.gov (United States)

    Beita-Sandí, Wilson; Ersan, Mahmut Selim; Uzun, Habibullah; Karanfil, Tanju

    2016-01-01

    The main objective of this study was to examine the roles of powdered activated carbon (PAC) characteristics (i.e., surface chemistry, pore size distribution, and surface area) in the removal of N-nitrosodimethylamine (NDMA) formation potential (FP) in surface and wastewater-impacted waters. Also, the effects of natural attenuation of NDMA precursors in surface waters, NDMA FP concentration, and carbon dose on the removal of NDMA FP by PAC were evaluated. Finally, the removal of NDMA FP by PAC at two full-scale DWTPs was monitored. Wastewater-impacted and surface water samples were collected to conduct adsorption experiments using different PACs and activated carbon fibers (ACFs) with a wide range of physicochemical characteristics. The removal efficiency of NDMA FP by PAC was significantly higher in wastewater-impacted than surface waters. Adsorbable NDMA precursors showed a size distribution in the waters tested; the adsorbable fraction included precursors accessing the pore size regions of 10-20 Å and carbons showed higher removal of NDMA FP than acidic carbons on a surface area basis. The overall removal of NDMA FP by PAC on a mass basis depended on the surface area, pore size distribution and pHPZC. Thus, PACs with hybrid characteristics (micro and mesoporous), higher surface areas, and basic surface chemistry are more likely to be effective for NDMA precursor control by PAC adsorption. The application of PAC in DWTPs for taste and odor control resulted in an additional 20% removal of NDMA FP for the PAC doses of 7-10 mg/L. The natural attenuation of NDMA precursors through a combination of processes (biodegradation, photolysis and adsorption) decreased their adsorbability and removal by PAC adsorption. PMID:26584342

  12. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.

    Science.gov (United States)

    Tomlinson, Adam; Drikas, Mary; Brookes, Justin D

    2016-10-01

    Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton. PMID:27348195

  13. Method for production of carbon nanofiber mat or carbon paper

    Science.gov (United States)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  14. Influence of hydrogen on chemical vapour synthesis of different carbon nanostructures using propane as precursor and nickel as catalyst

    Indian Academy of Sciences (India)

    R K Sahoo; H Mamgain; C Jacob

    2014-10-01

    The role of hydrogen in the catalytic chemical vapour deposition of carbon nanotubes using sputtered nickel thin film as a catalyst is explained in this work. The growth of different carbon nanostructures with the variation in the precursor gas content was studied by keeping all other process parameters constant and using sputtered Ni thin film as a catalyst. The catalyst granule size, its external morphology and the resulting products were analysed. Carbon nanotubes (CNTs), carbon nanofibres (CNFs) and carbon nanoribbons (CNRs) were observed under different growth conditions. The different conditions of growth leading to form tubes, fibres or ribbons were analysed by varying the flow ratio of propane and hydrogen gas during the high temperature growth. Scanning and transmission electron microscopies confirmed the above structures under different growth conditions. The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its correlative effect on the growth of carbon nanostructures is analysed. This direct approach can, in principle, be used to synthesize different types of carbon nanostructures by tailoring the hydrogen concentration.

  15. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    Science.gov (United States)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  16. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    Science.gov (United States)

    Kraus, T.E.C.; Anderson, C.A.; Morgenstern, K.; Downing, B.D.; Pellerin, B.A.; Bergamaschi, B.A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  17. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  18. PZT thin films production by spin coating, from polymeric precursors

    International Nuclear Information System (INIS)

    Lead zirconate titanate (PZT) ceramic have strong piezoelectricity in compositions of Pb Ti O3 n Pb Zr O3 solid solution near the morphotropic phase boundary. Thin PZT films were obtained by the polymeric precursors method. The resins with the Pb, Zr and Ti were deposited on glass and Si (111) substrates by spin coating and thermally treated between 450 and 700 deg C for 1 hour. The results of X-ray diffraction showed that the PZT phase crystalline at low temperatures (around 500 deg C) and the SEM showed that it is possible to obtain dense and homogeneous films on temperatures around 600 deg C. (author)

  19. Densification and microstructure of carbon/carbon composites prepared by chemical vapor infiltration using ethanol as precursor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chemical vapor infiltration of carbon fiber felts with uniform initial bulk density of 0.47 g·cm-3 was investigated at the ethanol partial pressures of 5-20 kPa,as well as the temperatures of 1050,1100,1150 and 1200°C.Ethanol,diluted by nitrogen,was employed as the precursor of pyrolytic carbon.Polarized light microscopy(PLM),scanning electron microscopy and X-ray diffraction were adopted to study the texture of pyrolytic carbon deposited at various temperatures.A change from medium-to high-textured pyrolytic carbon was observed in the sample infiltrated at 1050°C.Whereas,homogeneous high-textured pyrolytic carbons were deposited at the temperatures of 1100,1150 and 1200°C.Extinction angles of 19°-21° were determined for different regions in the samples densified at the temperatures ranging from 1100 to 1200°C.Scanning electron microscopy of the fracture surface after bending test indicated that the prepared carbon/carbon composite samples exhibited a pseudo-plastic fracture behavior.In addition,fracture behavior of the carbon/carbon samples was obviously effected by their infiltration temperature.The fracture mode of C/C composites was transformed from shearing failure to tensile breakage with increasing infiltration temperature. Results of this study show that ethanol is a promising carbon source to synthesize carbon/carbon composites with homogeneously high-textured pyrolytic carbon over a wide range of temperatures(from 1100 to 1200°C).

  20. New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Nunez, G., E-mail: galonso@cnyn.unam.mx; Garza, L. Morales de la; Rogel-Hernandez, E.; Reynoso, E. [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia (Mexico); Licea-Claverie, A.; Felix-Navarro, R. M. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion (Mexico); Berhault, G. [UMR 5256 CNRS-Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon (France); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados S. C. (Mexico)

    2011-09-15

    New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl{sub 4}, (NH{sub 4}){sub 2}PtCl{sub 6}, (NH{sub 4}){sub 2}PdCl{sub 6}, or (NH{sub 4}){sub 3}RhCl{sub 6} with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA){sub n}Me{sub x}Cl{sub y} salts (with Me = Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.

  1. Preparation of carbon nitride materials by polycondensation of the single-source precursor aminodichlorotriazine (ADCT)

    International Nuclear Information System (INIS)

    Carbon nitride, usually described as C3N4 or CNx (x > 1), has been reported to form disordered network structures. In this work we describe a new synthesis route using 2-amino-4,6-dichloro-s-triazine (ADCT) as a single-source precursor, adopting single step and two step decompositions. During two step polycondensation ADCT is first heated in a closed system and than fully condensed under vacuum. Our reactions yielded carbon nitride materials having compositions near C3N4. The obtained carbon nitride occurs as a brown, amorphous solid according to X-ray and electron diffraction experiments. Moreover, infrared spectra and results from 13C-NMR measurements indicate evidence for the presence of bridged heptazine and triazine units in the structure

  2. Fluorescent Comparison of Sr2CeO4 Prepared from Carbonate and Oxalate Precursor

    Institute of Scientific and Technical Information of China (English)

    石士考; 栗俊敏; 王继业; 王瑞芬; 周济

    2004-01-01

    A blue-emitting phosphor powder, Sr2CeO4, was synthesized after heat-treatment to carbonate and oxalate precursors, which were obtained by co-precipitation reactions with respective ammonium compounds as precipitants. The phase formation and chemical purity of Sr2CeO4 powders were studied on XRD, TGA and XPS techniques. Their fluorescent performances were investigated and compared. The photoluminescence emission spectra for the phosphor prepared from respective precursors are similar, having a broad band with the peak at about 470 nm. However, their fluorescent intensities are different after heat-treatment at same conditions. The optimum condition to achieve superior Sr2CeO4 phosphor is confirmed.

  3. Carbon footprinting of electronic products

    International Nuclear Information System (INIS)

    Highlights: • Challenges in adopting existing CF standards for electronic products are discussed. • Carbon footprint of electronic products is underestimated using existing standards. • Multipronged approach is presented to overcome the identified challenges. • Multipronged approach demonstrated on commercial and military grade DC–DC converter system. - Abstract: In order to mitigate the effects of global warming, companies are being compelled by governments, investors, and customers to control their greenhouse gas (GHG) emissions. Similar to the European Union’s legislation on the airline industry, legislation is expected to require the electronics industry to assess their product’s carbon footprint before sale or use, as the electronics industry’s contribution to global GHG emissions is comparable to the airline industry’s contribution. Thus, it is necessary for members of the electronics industry to assess their current GHG emission rates and identify methods to reduce environmental impacts. Organizations use Carbon Footprint (CF) analysis methods to identify and quantify the GHG emissions associated with the life cycle stages of their product or services. This paper discusses the prevailing methods used by organizations to estimate the CF of their electronics products and identifies the challenges faced by the electronics industry when adopting these methods in an environment of decreasing product development cycles with complex and diffuse supply chains. We find that, as a result of the inconsistencies arising from the system boundary selection methods and databases, the use of outdated LCA approaches, and the lack of supplier’s emissions-related data, the CFs of electronic products are typically underestimated. To address these challenges, we present a comprehensive approach to the carbon footprinting of electronic products that involves the use of product-group-oriented standards, hybrid life cycle assessment techniques, and the

  4. Inhibition of carbon dioxide corrosion of mild steel by imidazolines and their precursors

    Energy Technology Data Exchange (ETDEWEB)

    Jovancicevic, V.; Ramachandran, S.; Prince, P. (Baker Petrolite, Sugar Land, TX (United States))

    1999-05-01

    Corrosion inhibition of mild steel by imidazolines and their precursors in a carbon dioxide (CO[sub 2])-containing environment was studied using rotating cylinder electrode (RCE) and linear polarization resistance (LPR) techniques. Corrosion rate-time/concentration profiles and minimum effective concentrations obtained for a series of imidazolines and amides were evaluated in terms of the respective contributions of their constituents parts (imidazoline ring, amide/amine group, and hydrocarbon chain) to overall corrosion inhibition. Formation of the inhibitor film was studied in terms of the bilayer-multilayer film model.

  5. Reinforcement of precursor-derived Si-(B-)C-N ceramics with carbon nanotubes

    OpenAIRE

    Katsuda, Yuji

    2005-01-01

    Incorporation of carbon nanotubes (CNTs) into the precursor-derived Si-(B-)C-N ceramics has been investigated for the reinforcement of the materials. Different types of CNTs consisting of multi-wall (MW) and single-wall (SW) were examined as the reinforcement of the Si-(B-)C-N ceramics to make a comparison of the effect. Mechanical properties demonstrated in the Si-(B-)C-N/CNT nanocomposites have been discussed in connection with their microstructural features characterized by scanning electr...

  6. Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles.

    Science.gov (United States)

    Situ, Shu F; Samia, Anna Cristina S

    2014-11-26

    A new hydrothermal synthesis approach involving the carbonization of glucose in the presence of wüstite (FeO) nanoparticles is presented, which leads to the fabrication of rapidly acting and potent antibacterial agents based on iron oxide@carbon (IO@C) nanochains. By using nonmagnetic FeO precursor nanoparticles that slowly oxidize into the magnetic Fe3O4 crystal structure under hydrothermal conditions, we were able to prepare well-defined and short-length IO@C nanochains that are highly dispersed in aqueous media and readily interact with bacterial cells, leading to a complete loss in bacterial cell viability within short incubation times at minimal dosage. The smaller IO@C nanochains synthesized using the FeO precursor nanoparticles can reach above 2-fold enhancement in microbe-killing activity when compared to the larger nanochains fabricated directly from Fe3O4 nanoparticles. In addition, the synthesized IO@C nanochains can be easily isolated using an external magnet and be subsequently recycled to effectively eradicate Escherichia coli cells even after five separate treatment cycles. PMID:25347201

  7. Self-Templated Synthesis of Mesoporous Carbon from Carbon Tetrachloride Precursor for Supercapacitor Electrodes.

    Science.gov (United States)

    Tang, Duihai; Hu, Shi; Dai, Fang; Yi, Ran; Gordin, Mikhail L; Chen, Shuru; Song, Jiangxuan; Wang, Donghai

    2016-03-23

    A high-surface-area mesoporous carbon material has been synthesized using a self-templating approach via reduction of carbon tetrachloride by sodium potassium alloy. The advantage is the reduction-generated salt templates can be easily removed with just water. The produced mesoporous carbon has a high surface area and a narrow pore size distribution. When used as a supercapacitor electrode, this material exhibits a high specific capacitance (259 F g(-1)) and excellent cycling performance (>92% capacitance retention for 6000 cycles). PMID:26913815

  8. Biochar production for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  9. The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition

    Science.gov (United States)

    Liu, Wei-Wen; Aziz, Azizan; Chai, Siang-Piao; Mohamed, Abdul Rahman; Tye, Ching-Thian

    2011-06-01

    The effect of carbon precursors on carbon nanotube (CNT) formation was studied. The catalyst used was Fe 3O 4/MgO without prior reduction by hydrogen. Methane, benzene and camphor were used to produce CNTs at 600, 700, 800, 900 and 1000 °C. The results show that the types of carbon precursors greatly affect the quality of CNTs produced. The CNTs obtained from the decomposition of methane had the lowest intensity of D band to G band ratio ( ID/ IG) compared to the ID/ IG ratios of CNTs produced using benzene and camphor at 900 and 1000 °C, respectively. This low ID/ IG ratio is due to the difference in the molecule structures between methane, benzene and camphor, which resulted in different CNT growth mechanism. Raman analysis showed that single-walled carbon nanotubes of high quality were formed at 900 °C using methane as carbon precursor.

  10. Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin

    Science.gov (United States)

    Sobiesiak, M.

    2016-04-01

    The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.

  11. Influence of oxidation process on the adsorption capacity of activated carbons from lignocellulosic precursors

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, P.A.M.; Laginhas, C.; Custodio, F.; Nabais, J.M.V.; Carrott, P.J.M.; Carrott, M.M.L. Ribeiro [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    A set of activated carbon materials non-oxidised and oxidised, were successfully prepared from two different lignocellulosic precursors, almond shell and vine shoot, by physical activation with carbon dioxide and posterior oxidation with nitric acid. All samples were characterised in relation to their structural properties and chemical composition, by different techniques, namely nitrogen adsorption at 77 K, elemental analysis (C, H, N, O and S), point of zero charge (PZC) and FTIR. A judicious choice was made to obtain carbon materials with similar structural properties (apparent BET surface area {proportional_to} 850-950 m{sup 2}g{sup -1}, micropore volume {proportional_to} 0.4 cm{sup 3}g{sup -1}, mean pore width {proportional_to} 1.2 nm and external surface area {proportional_to} 14-26 m{sup 2}g{sup -1}). After their characterisation, these microporous activated carbons were also tested for the adsorption of phenolic compounds (p-nitrophenol and phenol) in the liquid phase at room temperature. The performance in liquid phase was correlated with their structural and chemical properties. The oxidation had a major impact at a chemical level but only a moderate modification of the porous structure of the samples. The Langmuir and Freundlich equations were applied to the experimental adsorption isotherms of phenolic compounds with good agreement for the different estimated parameters. (author)

  12. Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor

    Science.gov (United States)

    Avci, Ercan

    2014-12-01

    Herein we report a facile and efficient solid state synthesis of carbon coated lithium iron phosphate (LiFePO4/C) cathode material achieved through the pyrolysis of polytetrafluoroethylene (PTFE). The current investigation is comparatively analyzed with the results of the composites of LiFePO4/C (LFP/C) synthesized using polystyrene-block-polybutadiene (PS-b-PBD), polyethyhylene (PE) and sucrose as carbon precursors. The optimized LFP/CPTFE composite is synthesized at 700 °C using 10 wt.% PTFE. The composite exhibits remarkable improvement in capacity, cyclability and rate capability compared to those of LFP/C synthesized using (PS-b-PBD), PE and sucrose. The specific discharge capacities as high as 166 mA h g-1 (theoretical capacity: 170 mA h g-1) at 0.2 C and 114 mA h g-1 at 10 C rates were achieved with LFP/CPTFE. In addition, the composite exhibits a long-term cycling stability with the capacity loss of only 11.4% after 1000 cycles. PTFE shifts the size distribution of the composite to nanometer scale (approximately 120 nm), however the addition of sucrose and other polymers do not have such an effect. According to TEM and XPS analysis, LFP/CPTFE particles are mostly coated with a few nanometers thick carbon layer forming a core-shell structure. Residual carbon does not contain fluorine.

  13. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ian, E-mail: ian.holt@rjah.nhs.uk [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Gestmann, Ingo, E-mail: Ingo.Gestmann@fei.com [FEI Europe B.V., Achtseweg Noord 5, 5651 Eindhoven (Netherlands); Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Glyndwr University, Plas Coch, Mold Rd, Wrexham LL11 2AW (United Kingdom)

    2013-10-15

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth.

  14. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    International Nuclear Information System (INIS)

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth

  15. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties

    International Nuclear Information System (INIS)

    Highly porous cadmium oxide (CdO) nanowires have been prepared by calcining the hydroxy- and carbonate-containing cadmium compound precursor nanowires. The large-scale precursor nanowires were synthesized through a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize and analyze the as-synthesized precursor nanowires as well as the calcined products. It was revealed that the wire-like morphology of the precursor was fundamentally retained during the process of calcination and the CdO nanowires obtained were polycrystalline with highly porous structures. In order to illustrate the formation mechanism of the porous structures, the morphology and composition evolutions of the precursor nanowires under different stages of the calcining process were further investigated via SEM, x-ray diffraction (XRD) and infrared (IR) absorbance spectroscopy. Gas sensing has been explored for the sensor device fabricated with highly porous CdO nanowires, which demonstrates that it has good response owing to its special structures and great selectivity to NOx. Furthermore, the UV-visible and photoluminescence spectra of highly porous CdO nanowires have also been investigated

  16. The effect of synthesis time on graphene growth from palm oil as green carbon precursor

    Science.gov (United States)

    Salifairus, M. J.; Hamid, S. B. Abd; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Graphene is the new material that arises after carbon nanotubes (CNTs) era and has extraordinary optical, electronic and mechanical properties compared to CNTs. The 2D graphene is the sp2 carbon allotropes compared to other dimensionality. It also can be in three forms that are zero-dimensional, one-dimensional or three-dimensional. The different dimensionality also called fullerenes, nanotubes and graphite. Therefore, the graphene is known as centre potential materials in expanding research area than others ever. The 2cm × 2cm silicon wafer was seeded with nickel (Ni) at different thickness by using sputter coater. The palm oil, carbon source, was placed in the precursor furnace and the silicon was placed in the second furnace (deposition furnace). The palm oil will mix with Nitrogen gas was used as carrier gas in the CVD under certain temperature and pressure to undergo pyrolysis proses. The deposition temperature was set at 1000 °C. The deposition time varied from 3 minutes, 5 minutes and 7 minutes. The graphene was growth at ambient pressure in the CVD system. Electron microscopy and Raman Spectrometer revealed the structural properties and surface morphology of the grapheme on the substrate. The D and G band appear approximately at 1350 cm-1 and 1850 cm-1. It can be concluded that the growth of graphene varies at different deposition time.

  17. Poly(borosiloxanes as precursors for carbon fiber ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Renato Luiz Siqueira

    2007-06-01

    Full Text Available Ceramic matrix composites (CMCs, constituted of a silicon boron oxycarbide (SiBCO matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS or poly(borosiloxane (PBS matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence of Si-O-B bonds at 880 cm-1, due to the incorporation of the crosslinker trigonal units of BO3 in the polymeric network. X ray diffraction analyses exhibited an amorphous character of the resulting polymer-derived ceramics obtained by pyrolysis up to 1000 °C under inert atmosphere. The C/SiBCO composites showed better thermal stability than the C/SiOC materials. In addition, good adhesion between the carbon fiber and the ceramic phase was observed by SEM microscopy

  18. Role of precursor crystal structure on electrochemical performance of carbide-derived carbon electrodes

    Science.gov (United States)

    Palazzo, Benjamin; Norris, Zach; Taylor, Greg; Yu, Lei; Lofland, Samuel; Hettinger, Jeffrey

    2015-03-01

    Binary carbides with hexagonal and cubic crystal structures have been synthesized by reactive magnetron sputtering of vanadium and other transition metals in acetylene or methane gas mixed with argon. The binary carbides are converted to carbide-derived carbon (CDC) films using chlorine gas in a post-deposition process in an external vacuum reaction furnace. Residual chlorine has been removed using an annealing step in a hydrogen atmosphere. The CDC materials have been characterized by x-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The performance of the CDC materials in electrochemical device applications has been measured with the hexagonal phase precursor demonstrating a significantly higher specific capacitance in comparison to that of the cubic phase. We report these results and pore-size distributions of these and similar materials.

  19. Novel technological strategies to enhance tropical thiol precursors in winemaking by-products.

    Science.gov (United States)

    Román Villegas, Tomás; Tonidandel, Loris; Fedrizzi, Bruno; Larcher, Roberto; Nicolini, Giorgio

    2016-09-15

    Grape pomace is a winemaking by-product that can be used to extract oenological tannins. Recently, some grape skin tannins were shown to contain very high amounts of two polyfunctional thiol precursors (3-S-glutathionylhexan-1-ol, 3-S-cysteinylhexan-1-ol) whose free forms are responsible for appreciated tropical-like flavours. This study shows that an oxidative treatment (no SO2) of white grape pomace and the presence of grape leaves and stems can increase the content of the above mentioned precursors. Moreover, it shows significant differences between Sauvignon Blanc, Gewuerztraminer and Mueller-Thurgau grape pomace for the 3-mercaptohexan-1-ol precursors and 4-S-cysteinyl-4-methylpentan-2-one. The grape cultivar is crucial, but the technological ability of enhancing the level of the volatile thiol precursors simply by treating the grape marc in different ways is a promising and powerful tool for the production of potentially flavouring tannins intended for food and beverage industry. PMID:27080874

  20. Synthesis of Nitrogen-Doped Carbon Nanocoils with Adjustable Morphology using Ni–Fe Layered Double Hydroxides as Catalyst Precursors

    OpenAIRE

    Tomohiro Iwasaki; Masashi Tomisawa; Takuma Yoshimura; Hideya Nakamura; Masao Ohyama; Katsuya Asao; Satoru Watano

    2015-01-01

    Nitrogen-doped carbon nanocoils (CNCs) with adjusted morphologies were synthesized in a one-step catalytic chemical vapour deposition (CVD) process using acetoni‐ trile as the carbon and nitrogen source. The nickel iron oxide/nickel oxide nanocomposites, which were derived from nickel–iron layered double hydroxide (LDH) precur‐ sors, were employed as catalysts for the synthesis of CNCs. In this method, precursor-to-catalyst transformation, catalyst activation, formation of CNCs, and nitrogen ...

  1. Debottlenecking recombinant protein production in Bacillus megaterium under large-scale conditions--targeted precursor feeding designed from metabolomics.

    Science.gov (United States)

    Korneli, Claudia; Bolten, Christoph Josef; Godard, Thibault; Franco-Lara, Ezequiel; Wittmann, Christoph

    2012-06-01

    In the present work the impact of large production scale was investigated for Bacillus megaterium expressing green fluorescent protein (GFP). Specifically designed scale-down studies, mimicking the intermittent and continuous nutrient supply of large- and small-scale processes, were carried out for this purpose. The recombinant strain revealed a 40% reduced GFP yield for the large-scale conditions. In line with extended carbon loss via formation of acetate and carbon dioxide, this indicated obvious limitations in the underlying metabolism of B. megaterium under the large-scale conditions. Quantitative analysis of intracellular amino acids via validated fast filtration protocols revealed that their level strongly differed between the two scenarios. During cultivation in large-scale set-up, the availability of most amino acids, serving as key building blocks of the recombinant protein, was substantially reduced. This was most pronounced for tryptophan, aspartate, histidine, glutamine, and lysine. In contrast alanine was increased, probably related to a bottleneck at the level of pyruvate which also triggered acetate overflow metabolism. The pre-cursor quantifications could then be exploited to verify the presumed bottlenecks and improve recombinant protein production under large-scale conditions. Addition of only 5 mM tryptophan, aspartate, histidine, glutamine, and lysine to the feed solution increased the GFP yield by 100%. This rational concept of driving the lab scale productivity of recombinant microorganisms under suboptimal feeding conditions emulating large scale can easily be extended to other processes and production hosts. PMID:22252649

  2. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    Science.gov (United States)

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-12-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem-- Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  3. Insights into properties of activated carbons prepared from different raw precursors by pyrophosphoric acid activation.

    Science.gov (United States)

    Gao, Yuan; Yue, Qinyan; Gao, Baoyu

    2016-03-01

    Low-cost activated carbons (ACs) were prepared from four kinds of solid wastes: petroleum coke, Enteromorpha prolifera, lignin from papermaking black liquid and hair, by pyrophosphoric acid (H4P2O7) activation. Thermo-gravimetric analysis of the pyrolysis of H4P2O7-precursor mixtures implied that H4P2O7 had different influences on the pyrolysis behavior of the four raw materials. N2 adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons. AC derived from E. prolifera exhibited the highest surface area (1094m(2)/g) and maximum monolayer adsorption capacity for malachite green (1250mg/g). Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model. The adsorption isotherms were well described by the Langmuir isotherm model, indicating the adsorption of dye onto the ACs proceeded by monolayers. PMID:26969070

  4. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2011-01-01

    Full Text Available Abstract Practical application of aligned carbon nanotubes (ACNTs would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  5. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Scalcinati Gionata

    2012-08-01

    Full Text Available Abstract Background Sesquiterpenes are a class of natural products with a diverse range of attractive industrial proprieties. Due to economic difficulties of sesquiterpene production via extraction from plants or chemical synthesis there is interest in developing alternative and cost efficient bioprocesses. The hydrocarbon α-santalene is a precursor of sesquiterpenes with relevant commercial applications. Here, we construct an efficient Saccharomyces cerevisiae cell factory for α-santalene production. Results A multistep metabolic engineering strategy targeted to increase precursor and cofactor supply was employed to manipulate the yeast metabolic network in order to redirect carbon toward the desired product. To do so, genetic modifications were introduced acting to optimize the farnesyl diphosphate branch point, modulate the mevalonate pathway, modify the ammonium assimilation pathway and enhance the activity of a transcriptional activator. The approach employed resulted in an overall α-santalene yield of a 0.0052 Cmmol (Cmmol glucose-1 corresponding to a 4-fold improvement over the reference strain. This strategy, combined with a specifically developed continuous fermentation process, led to a final α-santalene productivity of 0.036 Cmmol (g biomass-1 h-1. Conclusions The results reported in this work illustrate how the combination of a metabolic engineering strategy with fermentation technology optimization can be used to obtain significant amounts of the high-value sesquiterpene α-santalene. This represents a starting point toward the construction of a yeast “sesquiterpene factory” and for the development of an economically viable bio-based process that has the potential to replace the current production methods.

  6. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products.

    Directory of Open Access Journals (Sweden)

    Brett K Kaiser

    Full Text Available We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.

  7. Removing of Disinfection By-Product Precursors from Surface Water by Using Magnetic Graphene Oxide.

    Directory of Open Access Journals (Sweden)

    Zhongmou Liu

    Full Text Available The magnetic graphene oxide (MGO was successfully synthesised by the in situ chemical co-precipitation method with Fe3+, Fe2+ and graphene oxide (GO in laboratory and, was used as an adsorbent for disinfection by-product (DBP precursors removing from four natural surface water samples. The results indicate that various DBPs formation significantly decreased by 7-19% to 78-98% for the four samples after MGO treatment and, the treatment process was rapidly reached equilibrium within 20 minutes. The DBP precursors removal efficiency decreased with the increasing pH value from 4 to 10. Hydrophobic compounds (humic acid and fulvic acid are more sensitive to MGO, whereas hydrophilic and nitrogenous compounds (aromatic proteins are more insensitive. MGO could be regenerated by using 20% (v/v ethanol and, the DBP precursors removal efficiency can stay stable after five cycles. These results indicate that MGO can be utilized as a promising adsorbent for the removal of DBP precursors from natural surface water.

  8. A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids

    OpenAIRE

    Park, Woo Jung; Kothapalli, Kumar S. D.; Reardon, Holly T; Lawrence, Peter; Qian, Shu-Bing; Brenna, J. Thomas

    2012-01-01

    The fatty acid desaturase (FADS) genes code for the rate-limiting enzymes required for the biosynthesis of long-chain polyunsaturated fatty acids (LCPUFA). Here we report discovery and function of a novel FADS1 splice variant. FADS1 alternative transcript 1 (FADS1AT1) enhances desaturation of FADS2, leading to increased production of eicosanoid precursors, the first case of an isoform modulating the enzymatic activity encoded by another gene. Multiple protein isoforms were detected in primate...

  9. Reduction of Precursors of Chlorination By-products in Drinking Water Using Fluidized-bed Biofilm Reactor at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    SHU-GUANG XIE; DONG-HUI WEN; DONG-WEN SHI; XIAO-YAN TANG

    2006-01-01

    Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofilm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), trihalomethane (THM)formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3℃, however, it could quickly rise to over 50% above 3℃. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.

  10. Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation

    International Nuclear Information System (INIS)

    Highlights: ► We are describing a technique to spot ions which are derived from each other. ► Single stage high resolution data is used. ► This “in silicon” technique is compared to conventional precursor scan. ► Some applications for this technique are presented. -- Abstract: Monitoring of common diagnostic fragments is essential for recognizing molecules which are members of a particular compound class. Up to now, unit resolving tandem quadrupole mass spectrometers, operating in the precursor ion scan mode, have been typically used to perform such analysis. By means of high-resolution mass spectrometry (HRMS) a much more sensitive and selective detection can be achieved. However, using a single-stage HRMS instrument, there is no unequivocal link to the corresponding precursor ion, since such instrumentation does not permit a previous precursor selection. Thus, to address this limitation, an in silico approach to locate precursor ions, based on diagnostic fragments, was developed. Implemented as an Excel macro, the algorithm rapidly assembles and surveys exact mass data to provide a list of feasible precursor candidates according to the correlation of the chromatographic peak shape profile and other additional filtering criteria (e.g. neutral losses and isotopes). The macro was tested with two families of veterinary drugs, sulfonamides and penicillins, which are known to yield diagnostic product ions when fragmented. Data sets obtained from different food matrices (fish and liver), both at high and low concentration of the target compounds, were investigated in order to evaluate the capabilities and limitations of the reported approach. Finally, other possible applications of this technique, such as the elucidation of elemental compositions based on product ions and corresponding neutral losses, were also presented and discussed

  11. Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Borràs, S. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Kaufmann, A., E-mail: anton.kaufmann@klzh.ch [Official Food Control Authority, Fehrenstrasse 15, 8032 Zürich (Switzerland); Companyó, R. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain)

    2013-04-15

    Highlights: ► We are describing a technique to spot ions which are derived from each other. ► Single stage high resolution data is used. ► This “in silicon” technique is compared to conventional precursor scan. ► Some applications for this technique are presented. -- Abstract: Monitoring of common diagnostic fragments is essential for recognizing molecules which are members of a particular compound class. Up to now, unit resolving tandem quadrupole mass spectrometers, operating in the precursor ion scan mode, have been typically used to perform such analysis. By means of high-resolution mass spectrometry (HRMS) a much more sensitive and selective detection can be achieved. However, using a single-stage HRMS instrument, there is no unequivocal link to the corresponding precursor ion, since such instrumentation does not permit a previous precursor selection. Thus, to address this limitation, an in silico approach to locate precursor ions, based on diagnostic fragments, was developed. Implemented as an Excel macro, the algorithm rapidly assembles and surveys exact mass data to provide a list of feasible precursor candidates according to the correlation of the chromatographic peak shape profile and other additional filtering criteria (e.g. neutral losses and isotopes). The macro was tested with two families of veterinary drugs, sulfonamides and penicillins, which are known to yield diagnostic product ions when fragmented. Data sets obtained from different food matrices (fish and liver), both at high and low concentration of the target compounds, were investigated in order to evaluate the capabilities and limitations of the reported approach. Finally, other possible applications of this technique, such as the elucidation of elemental compositions based on product ions and corresponding neutral losses, were also presented and discussed.

  12. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.;

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  13. Production Scale-Up or Activated Carbons for Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  14. Product carbon footprint developments and gaps

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper

    2012-01-01

    Purpose - Over the last decade, multiple initiatives have been undertaken to learn how to capture the carbon footprint of a supply chain at a product level. The purpose of this paper is to focus on the process of standardization to secure consistency of product carbon footprinting (PCF) and to...

  15. Ozone production in four major cities of China: sensitivity to ozone precursors and heterogeneous processes

    Directory of Open Access Journals (Sweden)

    L. K. Xue

    2013-10-01

    Full Text Available Despite a large volume of research over a number of years, our understandings of the key precursors that control tropospheric ozone production and the impacts of heterogeneous processes remain incomplete. In this study, we analyze measurements of ozone and its precursors made at rural/suburban sites downwind of four large Chinese cities – Beijing, Shanghai, Guangzhou and Lanzhou. At each site the same measurement techniques were utilized and a photochemical box model based on the Master Chemical Mechanism (v3.2 was applied, to minimize uncertainties in comparison of the results due to differences in methodology. All four cities suffered from severe ozone pollution. At the rural site of Beijing, export of the well-processed urban plumes contributed to the extremely high ozone levels (up to an hourly value of 286 ppbv, while the pollution observed at the suburban sites of Shanghai, Guangzhou and Lanzhou was characterized by intense in-situ ozone production. The major anthropogenic hydrocarbons were alkenes and aromatics in Beijing and Shanghai, aromatics in Guangzhou, and alkenes in Lanzhou. The ozone production was found to be in a VOCs-limited regime in both Shanghai and Guangzhou, and a mixed regime in Lanzhou. In Shanghai, the ozone formation was most sensitive to aromatics and alkenes, while in Guangzhou aromatics were the predominant ozone precursors. In Lanzhou, either controlling NOx or reducing emissions of olefins from the petrochemical industry would mitigate the local ozone production. The potential impacts of several heterogeneous processes on the ozone formation were assessed. The hydrolysis of dinitrogen pentoxide (N2O5, uptake of the hydroperoxyl radical (HO2 on particles, and surface reactions of NO2 forming nitrous acid (HONO present considerable sources of uncertainty in the current studies of ozone chemistry. Further efforts are urgently required to better understand these processes and refine atmospheric models.

  16. Additions of precursors and elicitors improve geranylgeraniol production in Croton stellatopilosus callus cultures

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2015-02-01

    Full Text Available Strategies for enhancing GGOH production in Croton stellatopilosus callus culture included additions of precursors (sodium acetate-NA, sodium pyruvate-NP, mevalonic acid lactone-MVA and elicitors (methyl jasmonate-MJ, acetylsalicylic acid-ASA, yeast extract-YE. Treated cells were evaluated for their GGOH contents by GC-FID and compared with the nontreated cells as controls. Additions of NA (25 mg/L, NP (50 mg/L and MVA (100 mg/L resulted in an enhancement of GGOH productivity to 0.61 mg/g DW, 0.52 mg/g DW and 0.70 mg/g DW, respectively, compared to the control culture (0.29 mg/g DW. Callus cultures elicited with MJ at 30 mg/L for 24 h stimulated GGOH production to 0.35 mg/g DW compared to the control culture (0.07 mg/g DW. Cells also responded to ASA (20 mg/L, 2 days and YE (0.25 g/L, 4 days and produced GGOH contents of 0.46 mg/g DW and 1.37 mg/g DW, respectively. This study has shown that isoprenoid precursors and conventional elicitors enhanced GGOH production in the C. stellatopilosus callus culture.

  17. Preparation of carbon-coated copper nanoparticles by detonation decomposition of copper ion doped sol–gel explosive precursors

    International Nuclear Information System (INIS)

    Carbon-coated copper (Cu-C) nanoparticles with a core–shell structure were prepared by detonation decomposition of energetic Cu ion doped sol–gel explosive precursors. The composite nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high resolution TEM, energy dispersive X-ray spectroscopy, and Raman spectroscopy, respectively. The results indicate that the as-obtained core–shell structure Cu-C nanoparticles are with diameter about 10–40 nm. The composite nanoparticles are composed of face-centered cubic-Cu and the amorphous/graphitic carbon coating shells. The thermal stability of the obtained samples was studied by a difference scanning calorimetry–thermogravimetric analyzer. By varying the composition of initial mixtures that contain Cu ion explosive precursors, the different size and chemical composition of composite nanoparticles are shown in this study. The growth mechanism of Cu-C was also briefly discussed.

  18. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhibo Xu; Zhenquan Lin; Zhiwen Wang; Tao Chen

    2015-01-01

    3,4-Dihydroxy-2-butanone 4-phosphate (DHBP) and GTP are the precursors for riboflavin biosynthesis. In this research, improving the precursor supply for riboflavin production was attempted by overexpressing ribB and engineering purine pathway in a riboflavin-producing Escherichia coli strain. Initially, ribB gene was overexpressed to increase the flux from ribulose 5-phosphate (Ru-5-P) to DHBP. Then ndk and gmk genes were overexpressed to enhance GTP supply. Subsequently, a R419L mutation was introduced into purA to reduce the flux from IMP to AMP. Finally, co-overexpression of mutant purF and prs genes further increased riboflavin production. The final strain RF18S produced 387.6 mg riboflavin · L−1 with a yield of 44.8 mg riboflavin per gram glucose in shake-flask fermentations. The final titer and yield were 72.2%and 55.6%higher than those of RF01S, respectively. It was concluded that simultaneously engineering the DHBP synthase and GTP biosynthetic pathway by rational metabolic engineering can efficiently boost riboflavin production in E. coli.

  19. On precursor self-organization upon the microwave vacuum-plasma deposition of submonolayer carbon coatings on silicon (100) crystals

    International Nuclear Information System (INIS)

    Scanning atomic-force and electron microscopies are used to study the self-organization kinetics of nanoscale domains upon the deposition of submonolayer carbon coatings on silicon (100) in the microwave plasma of low-pressure ethanol vapor. Model mechanisms of how silicon-carbon domains are formed are suggested. The mechanisms are based on Langmuir’s model of adsorption from the precursor state and modern concepts of modification of the equilibrium structure of the upper atomic layer in crystalline semiconductors under the influence of external action

  20. A Novel Partially Biobased PAN-Lignin Blend as a Potential Carbon Fiber Precursor

    Directory of Open Access Journals (Sweden)

    M. Özgür Seydibeyoğlu

    2012-01-01

    Full Text Available Blends of polyacrylonitrile (PAN and lignin were prepared with three different lignin types by solution blending and solution casting. Among three types of lignin, one type was chosen and different blend concentrations were prepared and casted. The casted blend films were characterized chemically with fourier transform infrared spectroscopy (FTIR, and thermally with thermogravimetric analysis (TGA. The mechanical properties of the blends were measured using dynamic mechanical analysis (DMA. FTIR analysis shows an excellent interaction of PAN and lignin. The interaction of the lignins and PAN was confirmed by TGA analysis. The DMA results reveal that the lignin enhance the mechanical properties of PAN at room temperature and elevated temperatures. The blend structure and morphology were observed using scanning electron microscopy (SEM. SEM images show that excellent polymer blends were prepared. The results show that it is possible to develop a new precursor material with a blend of lignin and PAN. These studies show that the side product of paper and cellulosic bioethanol industries, namely, lignin can be used for new application areas.

  1. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family

    Directory of Open Access Journals (Sweden)

    Mitchell Douglas A

    2010-05-01

    Full Text Available Abstract Background A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM. As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor. Results Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P, but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery. Conclusions This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for

  2. Overview of the carbon products consortium (CPC)

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, C.L. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    The Carbon Products Consortium (CPC) is an industry, university, government cooperative research team which has evolved over the past seven years to produce and evaluate coal-derived feedstocks for carbon products. The members of the Carbon Products Consortium are UCAR Carbon Company, Koppers Industries, CONOCO, Aluminum Company of America, AMOCO Polymers, and West Virginia University. The Carbon and Insulation Materials Technology Group at Oak Ridge National Laboratory, Fiber Materials Inc., and BASF Corporation are affiliates of the CPC. The initial work on coal-derived nuclear graphites was supported by a grant to WVU, UCAR Carbon, and ORNL from the U.S. DOE New Production Reactor program. More recently, the CPC program has been supported through the Fossil Energy Materials program and through PETC`s Liquefaction program. The coal processing technologies involve hydrogenation, extraction by solvents such as N-methyl pyrolidone and toluene, material blending, and calcination. The breadth of carbon science expertise and manufacturing capability available in the CPC enables it to address virtually all research and development issues of importance to the carbon products industry.

  3. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  4. Pyrolysis of furfural-acetone resin as matrix precursor for new carbon materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to increase the understanding of the pyrolysis mechanism,Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-mass spectrometric coupling technique (TG-MS) were used to study the pyrolysis behavior of furfural-acetone resin used for new carbon materials.The curing and carbonization mechanisms of furfural-acetone resin were mainly investigated;structural changes and volatile products evolved during pyrolysis were analyzed.The results indicate that,during pyrolysis of furfural-acetone resin adding 7% (mass fraction) phosphorous acid as curing agent,the rupture of C-O bond in the five-membered heterocycle firstly takes place to release oxygen atoms and then does the C--H bond,which enable the molecular chain to cross-link and condense,then lead to the formation of three dimensional networking structure.With the increase of pyrolyzing temperature,the scission of methyl and the opening of furan ring are generated.As a result,the recomposition of molecular chain structure isgenerated and a hexatomic fused ring containing double bonds is built.The main volatile products during pyrolysis of furfuralacetone resin are H2O,and a small mount of CO,CO2 and CH4.At elevated temperatures,dehydrogenation takes place and hydrogen gas is evolved.

  5. Design and Application of a Data-Independent Precursor and Product Ion Repository

    Science.gov (United States)

    Thalassinos, Konstantinos; Vissers, Johannes P. C.; Tenzer, Stefan; Levin, Yishai; Thompson, J. Will; Daniel, David; Mann, Darrin; DeLong, Mark R.; Moseley, M. Arthur; America, Antoine H.; Ottens, Andrew K.; Cavey, Greg S.; Efstathiou, Georgios; Scrivens, James H.; Langridge, James I.; Geromanos, Scott J.

    2012-10-01

    The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.

  6. Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani.

    Science.gov (United States)

    Venugopalan, Aarthi; Potunuru, Uma Rani; Dixit, Madhulika; Srivastava, Smita

    2016-04-01

    Volumetric productivity of camptothecin from the suspension culture of the endophyte Fusarium solani was enhanced up to ∼152 fold (from 0.19 μg l(-1) d(-1) to 28.9 μg l(-1) d(-1)) under optimized fermentation conditions including initial pH (6.0), temperature (32 °C) and agitation speed (80 rpm) with (5% (v/v)) ethanol as medium component. Among various elicitors and precursors studied, tryptamine (0.5 mM) as precursor and bovine serum albumin (BSA) (0.075 mM) as an elicitor added on day 6 of the cultivation period resulted in maximum enhancement of camptothecin concentration (up to 4.5 and 3.4-fold, respectively). These leads provide immense scope for further enhancement in camptothecin productivity at bioreactor level. The cytotoxicity analysis of the crude camptothecin extract from the fungal biomass revealed its high effectiveness against colon and mammary gland cancer cell lines. PMID:26851893

  7. Silicate production and availability for mineral carbonation.

    Science.gov (United States)

    Renforth, P; Washbourne, C-L; Taylder, J; Manning, D A C

    2011-03-15

    Atmospheric carbon dioxide sequestered as carbonates through the accelerated weathering of silicate minerals is proposed as a climate change mitigation technology with the potential to capture billions of tonnes of carbon per year. Although these materials can be mined expressly for carbonation, they are also produced by human activities (cement, iron and steel making, coal combustion, etc.). Despite their potential, there is poor global accounting of silicates produced in this way. This paper presents production estimates (by proxy) of various silicate materials including aggregate and mine waste, cement kiln dust, construction and demolition waste, iron and steel slag, and fuel ash. Approximately 7-17 billion tonnes are produced globally each year with an approximate annual sequestration potential of 190-332 million tonnes C. These estimates provide justification for additional research to accurately quantify the contemporary production of silicate minerals and to determine the location and carbon capture potential of historic material accumulations. PMID:21332128

  8. Designed synthesis of carbon-functional magnetic graphene mesoporous silica materials using polydopamine as carbon precursor for the selective enrichment of N-linked glycan.

    Science.gov (United States)

    Sun, Nianrong; Yao, Jizong; Deng, Chunhui

    2016-02-01

    Glycosylation, which has been confirmed to be associated with many diseases, is an important protein post-translation modification. Taking into account the low abundant of glycan, the purification of complex biological samples is considered to be very significant before mass spectrometry detection. In this work, carbon-functionalized magnetic graphene /mesoporous silica materials (C-Mag G@mSiO2 materials) with high content of carbon were designed and synthesized by using polydopamine as carbon precursor. Taking advantage of the special interaction between carbon and glycan, C-Mag G@mSiO2 materials were successfully applied to enrich N-linked glycans in different complex samples, such as standard glycoprotein digestion, the mixture of standard glycoprotein digestion, glycoprotein and non-glycoprotein, and human serum. PMID:26653470

  9. Morphology control in precursor ceramic powder production by the electrical dispersion reactor

    International Nuclear Information System (INIS)

    This paper reports on the Electrical Dispersion Reactor (EDR) which allows the continuous production of composite oxide ceramic precursor materials. Silica particles in the form of highly porous shells are produced by the hydrolysis of tetraethylorthosilicate as the continuous phase and water-ammonia as the disperse phase, reflecting the diffusion of the silicon moiety into the dispersed phase. Alternately, denser silica particles result when aqueous solutions of sodium metasilicate are dispersed in a continuous phase containing acetic acid in 2-ethyl-1-hexanol. Additionally, spherical particles in the size range 0.1 to 2 microns are produced from the dispersion of aqueous solutions containing cupric chloride or a mixture of cupric chloride, yttrium nitrate, and barium nitrate (3:1:2 molar ratio) into a continuous organic phase containing ammonia

  10. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  11. Fatty acids and algal lipids as precursors of chlorination by-products

    Institute of Scientific and Technical Information of China (English)

    Yan Liang; Yuen Shan Lui; Huachang Hong

    2012-01-01

    Six common algal fatty acids (FAs) with different numbers of double bonds,lipophilic fractions and proteins extracted from the diatom Navicula pelliculosa and algal cells were chlorinated to evaluate their potential in generating disinfection by-products (DBPs).The result showed that the more double bonds in the FAs,the higher the amounts of chloroform and dichloroacetic acid (DCAA) produced,but such a pattern was not observed for trichloroacetic acid (TCAA).Based on the previously reported composition of fatty acids in algal lipids,the DBP generation potentials of algal lipids were calculated.These predicted values were much lower than those measured in the chlorinated algal lipophilic fraction,suggesting unknown lipophilic fraction(s) served as potent DBPs precursors.Another calculation attempted to predict DBP production in algal cells based on algal lipid and protein composition,given quantified measured DBP production per unit algal lipid and proteins.The analysis showed that the observed DBP production was similar to that predicted (< 35% difference),suggesting that algal biochemical compositions may serve as a bioindicator for preliminary estimation of chloroform,DCAA and TCAA formation upon chlorinating algae.

  12. Synthesis of single source molecular precursors for copper indium diselenide and copper indium disulfide production via confined plume chemical deposition

    Science.gov (United States)

    Jackson, Jason D.

    A one-step process for preparing coatings of known photovoltaic materials on either inorganic or organic substrates is reported. IR laser (2.94 microm wavelength) and femtosecond visible laser (800 nm wavelength) irradiation of single-source molecular precursors layered between transparent supports under temporal and spatial confinement at a laser wavelength (2.94 microm or 800 nm) resonant with a precursor vibrational band gives one-step deposition of copper indium diselenide (CISe) or copper indium disulfide (CIS) without incurring noticeable collateral thermal damage to the substrate material. Reaction plume formation at the precursor/laser beam interface initiates confined plume, chemical deposition (CPCD) of nano CIS product. Continuous coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of precursors 1-6 on confined substrates, ultra high molecular weight polyethylene (UHMWPE)/glass, and glass/sapphire gives CISe, CIS respectively.

  13. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis

    Science.gov (United States)

    Schütte, Kai; Meyer, Hajo; Gemel, Christian; Barthel, Juri; Fischer, Roland A.; Janiak, Christoph

    2014-02-01

    Microwave-induced decomposition of the transition metal amidinates {[Me(C(NiPr)2)]Cu}2 (1) and [Me(C(NiPr)2)]2Zn (2) in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) or in propylene carbonate (PC) gives copper and zinc nanoparticles which are stable in the absence of capping ligands (surfactants) for more than six weeks. Co-decomposition of 1 and 2 yields the intermetallic nano-brass phases β-CuZn and γ-Cu3Zn depending on the chosen molar ratios of the precursors. Nanoparticles were characterized by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), dynamic light scattering and powder X-ray diffractometry. Microstructure characterizations were complemented by STEM with spatially resolved energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Synthesis in ILs yields significantly smaller nanoparticles than in PC. β-CuZn alloy nanoparticles are precursors to catalysts for methanol synthesis from the synthesis gas H2/CO/CO2 with a productivity of 10.7 mol(MeOH) (kg(Cu) h)-1.Microwave-induced decomposition of the transition metal amidinates {[Me(C(NiPr)2)]Cu}2 (1) and [Me(C(NiPr)2)]2Zn (2) in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) or in propylene carbonate (PC) gives copper and zinc nanoparticles which are stable in the absence of capping ligands (surfactants) for more than six weeks. Co-decomposition of 1 and 2 yields the intermetallic nano-brass phases β-CuZn and γ-Cu3Zn depending on the chosen molar ratios of the precursors. Nanoparticles were characterized by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), dynamic light scattering and powder X-ray diffractometry. Microstructure characterizations were complemented by STEM with spatially resolved energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Synthesis in ILs yields significantly smaller nanoparticles than in PC.

  14. Catalytic synthesis of nitrogen-doped multi-walled carbon nanotubes using layered double hydroxides as catalyst precursors

    Indian Academy of Sciences (India)

    Yong Cao; Yun Zhao; Qingxia Li; Qingze Jiao

    2009-03-01

    The nitrogen (N)-doped carbon (CN) nanotubes were synthesized by pyrolysis of ethylenediamine with Ni1.07Mg1.01AlO3.58, Ni1.99Mg0.29AlO3.78, and Ni2.31Mg0.08AlO3.89 mixed oxides as catalysts at 650°C. Those mixed oxides were obtained by calcination of corresponding layered double hydroxide precursors (LDHs). Structure and composition of LDHs and mixed oxides were characterized by X-ray diffraction (XRD) and Inductively coupled plasma spectrum. X-ray photoelectron spectroscopy and transmission electron microscope were used to characterize the N content, proportion of pyridine-like N structure and morphology of CN nanotubes. The results showed that the tubes grown with Ni2.31Mg0.08AlO3.89 as catalysts had more obvious bamboo-like structure, larger diameter than those grown with Ni1.07Mg1.01AlO3.58 and Ni1.99Mg0.29AlO3.78. The N content and proportion of graphitic-like N structures increased with the content of Ni2+ increasing in LDH precursors. The morphology, N content and pyridine-like N structures for CN nanotubes can be controlled to a certain extent by varying the content of Ni2+ in LDH precursors.

  15. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  16. Synthesis of Nitrogen-Doped Carbon Nanocoils with Adjustable Morphology using Ni–Fe Layered Double Hydroxides as Catalyst Precursors

    Directory of Open Access Journals (Sweden)

    Tomohiro Iwasaki

    2015-01-01

    Full Text Available Nitrogen-doped carbon nanocoils (CNCs with adjusted morphologies were synthesized in a one-step catalytic chemical vapour deposition (CVD process using acetoni‐ trile as the carbon and nitrogen source. The nickel iron oxide/nickel oxide nanocomposites, which were derived from nickel–iron layered double hydroxide (LDH precur‐ sors, were employed as catalysts for the synthesis of CNCs. In this method, precursor-to-catalyst transformation, catalyst activation, formation of CNCs, and nitrogen doping were all performed in situ in a single process. The morphology (coil diameter, coil pitch, and fibre diameter and nitrogen content of the synthesized CNCs was indi‐ vidually adjusted by modulation of the catalyst composi‐ tion and CVD reaction temperature, respectively. The adjustable ranges of the coil diameter, coil pitch, fibre diameter, and nitrogen content were confirmed to be approximately 500±100 nm, 600±100 nm, 100±20 nm, and 1.1±0.3 atom%, respectively.

  17. Nickel-carbon nanocomposites prepared using castor oil as precursor: A novel catalyst for ethanol steam reforming

    Science.gov (United States)

    Carreño, Neftalí L. V.; Garcia, Irene T. S.; Raubach, Cristiane W.; Krolow, Mateus; Santos, Cláudia C. G.; Probst, Luiz F. D.; Fajardo, Humberto V.

    A novel and simple method to prepare nickel-based catalysts for ethanol steam reforming is proposed. The present method was developed using castor oil as a precursor. The results clarify that the nickel-carbon (Ni/C) catalyst has a high activity for ethanol steam reforming. It was observed that the catalytic behavior could be modified according to the experimental conditions employed. Moreover, it is interesting to note that the increase in the catalytic activity of the Ni/C nanocomposite over time, at 500 and 600 °C of reaction temperature, may be associated with the formation of filamentous carbon. The preliminary results indicate that the novel methodology used, led to the obtainment of materials with important properties that can be extended to applications in different catalytic process.

  18. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction.

    Science.gov (United States)

    Yuan, Xianxia; Hu, Xin-Xin; Ding, Xin-Long; Kong, Hai-Chuan; Sha, Hao-Dong; Lin, He; Wen, Wen; Shen, Guangxia; Guo, Zhi; Ma, Zi-Feng; Yang, Yong

    2013-01-01

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too. PMID:24229351

  19. Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase.

    Science.gov (United States)

    Volk, R; Bacher, A

    1990-11-15

    The formation of the riboflavin precursor, 6,7-dimethyl-8-ribityllumazine, from 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione requires a phosphorylated 4-carbon intermediate which has been designated as Compound X (Neuberger, G., and Bacher, A. (1985) Biochem. Biophys. Res. Commun. 127, 175-181). The enzyme catalyzing the formation of Compound X has been purified about 600-fold from the cell extract of the flavinogenic yeast Candida guilliermondii by chromatographic procedures. The purified protein appeared homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and consisted of a single polypeptide of 24 kDa. The committed substrate of the enzyme was identified as D-ribulose 5-phosphate. The enzyme yields two products which were identified as L-3,4-dihydroxy-2-butanone 4-phosphate and formate by NMR and CD spectroscopy. Mg2+ is required for activity. PMID:2246238

  20. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  1. Organic Carbon and Disinfection Byproduct Precursor Loads from a Constructed, Non-Tidal Wetland in California's Sacramento–San Joaquin Delta

    OpenAIRE

    Fleck, Jacob A.; Fram, Miranda S.; Fujii, Roger

    2007-01-01

    Wetland restoration on peat islands in the Sacramento-San Joaquin Delta will change the quality of island drainage waters entering the Delta, a primary source of drinking water in California. Peat island drainage waters contain high concentrations of dissolved and particulate organic carbon (DOC and POC) and organic precursors to drinking water disinfection byproducts, such as trihalomethanes (THMs). We quantified the net loads of DOC, POC, and THM-precursors from a constructed subsidence mit...

  2. Production of the forskolin precursor 11β-hydroxy-manoyl oxide in yeast using surrogate enzymatic activities

    DEFF Research Database (Denmark)

    Ignea, Codruta; Ioannou, Efstathia; Georgantea, Panagiota; Trikka, Fotini A; Athanasakoglou, Anastasia; Loupassaki, Sofia; Roussis, Vassilios; Makris, Antonios M; Kampranis, Sotirios C

    2016-01-01

    employing surrogate enzymes. Using CYP76AH24, a Salvia pomifera cytochrome P450 responsible for the oxidation of C-12 and C-11 of the abietane skeleton en route to carnosic acid, we were able to produce the forskolin precursor 11β-hydroxy-manoyl oxide in yeast. To improve 11β-hydroxy-manoyl oxide production...

  3. Combining UHPLC-High Resolution MS and Feeding of Stable Isotope Labeled Polyketide Intermediates for Linking Precursors to End Products

    DEFF Research Database (Denmark)

    Klitgaard, Andreas; Frandsen, Rasmus John Normand; Holm, Dorte Koefoed; Knudsen, Peter Boldsen; Frisvad, Jens Christian; Nielsen, Kristian Fog

    2015-01-01

    We present the results from stable isotope labeled precursor feeding studies combined with ultrahigh performance liquid chromatography-high resolution mass spectrometry for the identification of labeled polyketide (PK) end-products. Feeding experiments were performed with 13C8-6-methylsalicylic...

  4. Synthesis of Co-containing mesoporous carbon foams using a new cobalt-oxo cluster as a precursor

    International Nuclear Information System (INIS)

    A novel trinuclear cobalt-oxo cluster 2[Co3O(Ac)6(H2O)3]·H2O (Co-OXO) has been obtained and characterized by X-ray single-crystal diffraction and elemental analysis. The structure of Co-OXO displays 3D supramolecular networks through hydrogen bonds and generates boron nitride (bnn) topology. Co-OXO was further used as a precursor to synthesize Co-containing mesoporous carbon foams (Co-MCFs), which exhibit highly ordered mesostructure with specific surface area of 614 m2 g−1 and uniform pore size of 2.7 nm. Charge–discharge tests show that the specific discharge capacitance of Co-MCFs is 7% higher than that of the MCFs at the current density of 100 mA g−1, and 26% higher than that of MCFs at the current density of 3 A g−1. The electrochemical behaviors of Co-MCFs are obviously improved due to the improved wettability, increased graphitization degree and the pseudo-capacitance through additional faradic reactions arising from cobalt. - Graphical Abstract: A new trinuclear cobalt-oxo cluster, 2[Co3O(Ac)6(H2O)3]·H2O (1), was obtained and further used as a precursor to synthesize Co-containing mesoporous carbon foams (Co-MCFs) which exhibit improved electrochemical behaviors. Highlights: ► A new trinuclear cobalt-oxo cluster (1) were obtained. ► 1 is joined by hydrogen bonds to construct a 3D structure showing bnn topology. ► 1 was further used to obtain Co-containing mesoporous carbon foams (Co-MCFs). ► Co-MCFs exhibit highly ordered mesostructure and uniform pore sizes. ► Electrochemical behaviors of Co-MCFs are obviously improved compared with pure MCFs.

  5. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  6. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis

    Science.gov (United States)

    Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.

  7. Mass spectrometric study of selected precursors and degradation products of chemical warfare agents.

    Science.gov (United States)

    Papousková, Barbora; Bednár, Petr; Frysová, Iveta; Stýskala, Jakub; Hlavác, Jan; Barták, Petr; Ulrichová, Jitka; Jirkovský, Jaromír; Lemr, Karel

    2007-12-01

    Selected precursors and degradation products of chemical warfare agents namely N,N-dialkylaminoethane-2-ols, N,N-dialkylaminoethyl-2-chlorides and some of related N-quaternary salts were studied by means of electrospray ionization-multiple tandem mass spectrometry (ESI-MS(n)). Proposed structures were confirmed with accurate mass measurement. General fragmentation patterns of these compounds are discussed in detail and suggested processes are confirmed using deuterated standards. The typical processes are elimination of alkene, hydrogen chloride, or water, respectively. Besides, elimination of ethene from propyl chain under specific conditions was observed and unambiguously confirmed using exact mass measurement and labelled standard. The potential of mass spectrometry to distinguish the positional isomers occurring among the studied compounds is reviewed in detail using two different MS instruments (i.e. ion trap and hybrid quadrupole-time of flight (Q-TOF) analyzer). A new microcolumn liquid chromatography (microLC)/MS(n) method was designed for the cases where the resolution based solely on differences in fragmentation is not sufficient. Low retention of the derivatives on reversed phase (RP) was overcome by using addition of less typical ion pairing agent (1 mM/l, 3,5-dinitrobenzoic acid) to the mobile phase (mixture water : acetonitrile). PMID:18085550

  8. A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids.

    Science.gov (United States)

    Park, Woo Jung; Kothapalli, Kumar S D; Reardon, Holly T; Lawrence, Peter; Qian, Shu-Bing; Brenna, J Thomas

    2012-08-01

    The fatty acid desaturase (FADS) genes code for the rate-limiting enzymes required for the biosynthesis of long-chain polyunsaturated fatty acids (LCPUFA). Here we report discovery and function of a novel FADS1 splice variant. FADS1 alternative transcript 1 (FADS1AT1) enhances desaturation of FADS2, leading to increased production of eicosanoid precursors, the first case of an isoform modulating the enzymatic activity encoded by another gene. Multiple protein isoforms were detected in primate liver, thymus, and brain. In human neuronal cells, their expression patterns are modulated by differentiation and result in alteration of cellular fatty acids. FADS1, but not FADS1AT1, localizes to endoplasmic reticulum and mitochondria. Ribosomal footprinting demonstrates that all three FADS genes are translated at similar levels. The noncatalytic regulation of FADS2 desaturation by FADS1AT1 is a novel, plausible mechanism by which several phylogenetically conserved FADS isoforms may regulate LCPUFA biosynthesis in a manner specific to tissue, organelle, and developmental stage. PMID:22619218

  9. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    International Nuclear Information System (INIS)

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N2/77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H2 and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  10. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume.

    Science.gov (United States)

    Li, Penghui; Dong, Qiang; Ge, Shujun; He, Xianzhi; Verdier, Jerome; Li, Dongqin; Zhao, Jian

    2016-07-01

    MtPAR is a proanthocyanidin (PA) biosynthesis regulator; the mechanism underlying its promotion of PA biosynthesis is not fully understood. Here, we showed that MtPAR promotes PA production by a direct repression of biosynthesis of isoflavones, the major flavonoids in legume, and by redirecting immediate precursors, such as anthocyanidins, flux into PA pathway. Ectopic expression of MtPAR repressed isoflavonoid production by directly binding and suppressing isoflavone biosynthetic genes such as isoflavone synthase (IFS). Meanwhile, MtPAR up-regulated PA-specific genes and decreased the anthocyanin levels without altering the expression of anthocyanin biosynthetic genes. MtPAR may shift the anthocyanidin precursor flux from anthocyanin pathway to PA biosynthesis. MtPAR complemented PA-deficient phenotype of Arabidopsis tt2 mutant seeds, demonstrating their similar action on PA production. We showed the direct interactions between MtPAR, MtTT8 and MtWD40-1 proteins from Medicago truncatula and Glycine max, to form a ternary complex to trans-activate PA-specific ANR gene. Finally, MtPAR expression in alfalfa (Medicago sativa) hairy roots and whole plants only promoted the production of small amount of PAs, which was significantly enhanced by co-expression of MtPAR and MtLAP1. Transcriptomic and metabolite profiling showed an additive effect between MtPAR and MtLAP1 on the production of PAs, supporting that efficient PA production requires more anthocyanidin precursors. This study provides new insights into the role and mechanism of MtPAR in partitioning precursors from isoflavone and anthocyanin pathways into PA pathways for a specific promotion of PA production. Based on this, a strategy by combining MtPAR and MtLAP1 co-expression to effectively improve metabolic engineering performance of PA production in legume forage was developed. PMID:26806316

  11. Organophosphonic acid as precursor to prepare LiFePO4/carbon nanocomposites for high-power lithium ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: LiFePO4/C nanocomposites were prepared by a quasi-sol–gel method with the use of organophosphonic acid, exhibiting improved electrochemical performance with excellent cycle stability. Display Omitted -- Highlights: •Amino tris(methylene phosphonic acid) is served as a novel precursor for LiFePO4/C. •Nano-sized and high-purity LiFePO4/C composites are obtained by a quasi-sol–gel route. •Core-shell structured LiFePO4/C nanocomposites are fabricated by further introducing sucrose. •Superior electrochemical performance is observed in the organophosphorus-synthesized LiFePO4/C. -- Abstract: Amino tris(methylene phosphonic acid) (ATMP) is selected as phosphorus and carbon co-source for the synthesis of uniformly nano-sized LiFePO4/C by a quasi-sol–gel method. This strategy using ATMP instead of conventional NH4H2PO4 supplies two advantages: firstly, ATMP in situ chelates Li+ onto its framework and subsequently binds with FeC2O4 in aqueous solution, forming a molecule-scale homogeneous precursor which can obviously improve the purity of LiFePO4. Secondly, the organic carbon contained in ATMP can form uniformly distributed conductive carbon networks among LiFePO4 particles after calcination, which improves the electrical conductivity. The resultant LiFePO4/C with 1.1 wt.% carbon achieves a higher discharge capacity than those of LiFePO4 and LiFePO4/C prepared with inorganic NH4H2PO4. Moreover, core-shell structured LiFePO4/C nanocomposites are also fabricated by further introducing sucrose into the synthesis system. The high-quality carbon shell effectively hinders the LiFePO4 particle growth and aggregation under high-temperature treatment, which further enhances the electrical conductivity and lithium-ion diffusion, resulting in the improved electrochemical performance with excellent cycle stability (the optimum discharge capacity of 158.6 mAh g−1 at 0.1 C and 138.4 mAh g−1 at 2 C). The high purity, nanosize and core-shell structure

  12. Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effuent organic matter.

    Science.gov (United States)

    Krasner, Stuart W; Westerhoff, Paul; Chen, Baiyang; Rittmann, Bruce E; Nam, Seong-Nam; Amy, Gary

    2009-04-15

    Unintentional, indirect wastewater reuse often occurs as wastewater treatment plant (WWTP) discharges contaminate receiving waters serving as drinking-water supplies. A survey was conducted at 23 WWTPs that utilized a range of treatment technologies. Samples were analyzed for typical wastewater and drinking-water constituents, chemical characteristics of the dissolved organic matter (DOM), and disinfection byproduct (DBP) precursors present in the effluent organic matter (EfOM). This was the first large-scale assessment of the critical water quality parameters that affect the formation of potential carcinogens during drinking water treatment relative to the discharge of upstream WWTPs. This study considered a large and wide range of variables, including emerging contaminants rarely studied at WWTPs and never before in one study. This paper emphasizesthe profound impact of nitrification on many measures of effluent water quality, from the obvious wastewater parameters (e.g., ammonia, biochemical oxygen demand) to the ones specific to downstream drinking water treatment plants (e.g., formation potentialsfor a diverse group of DBPs of health concern). Complete nitrification reduced the concentration of biodegradable dissolved organic carbon (BDOC) and changed the ratio of BDOC/DOC. Although nitrification reduced ultraviolet absorbance (UVA) at 254 nm, it resulted in an increase in specific UVA (UVA/DOC). This is attributed to preferential removal of the less UV-absorbing (nonhumic) fraction of the DOC during biological treatment. EfOM is composed of hydrophilic and biodegradable DOM, as well as hydrophobic and recalcitrant DOM, whose proportions change with advanced biological treatment. The onset of nitrification yielded lower precursor levels for haloacetic acids and nitrogenous DBPs (haloacetonitriles, N-nitrosodimethylamine). However, trihalomethane precursors were relatively unaffected by the level of wastewater treatment Thus, one design/operations parameter in

  13. Production of templated carbon nano materials, carbon nanofibers and super capasitors

    OpenAIRE

    Sakintuna, Billur; Dumanlı, Ahu Gümrah; Dumanli, Ahu Gumrah; Nalbant, Aslı; Nalbant, Asli; Erden, Ayça; Erden, Ayca; Yürüm, Yuda; Yurum, Yuda

    2008-01-01

    i. Porous carbons are usually obtained via carbonization of precursors of natural or synthetic origin, followed by activation. To meet the requirements, a novel approach, the template carbonization method, has been proposed. Replication, the process of filling the external and / or internal pores of a solid with a different material, physically or chemically separating the resulting material from the template, is a technique that is widely used in microporosity and printing. Th...

  14. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery

    International Nuclear Information System (INIS)

    Li4Ti5O12/C composite was synthesized via a simple solid-state reaction using Super-P-Li conductive carbon black as reaction precursor. The prepared samples were characterized by XRD, SEM, TG and granularity analysis and their electrochemical performance was also investigated in this work. The results showed that the Li4Ti5O12/C composite had a spinel crystal structure and the particle size of the powder was uniformly distributed with an average particle size of 480 nm. The conductive carbon was embedded in the Li4Ti5O12 particles without incorporation in the Li4Ti5O12 crystal lattice during the sintering process. The added Super-P-Li carbon played an important role in improving the electronic conductivity and electrochemical performance of the Li4Ti5O12/C electrode. Compared with raw Li4Ti5O12, the Li4Ti5O12/C composite exhibited higher rate capability and excellent reversibility. The initial discharge capacity of Li4Ti5O12/C composite was 174.5 mAh g-1 at 0.5C and 169.3 mAh g-1 at 1C.

  15. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances

    International Nuclear Information System (INIS)

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm2 to 2500 μm2) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism. (paper)

  16. Surface area and pore size distribution of activated carbon produced from low cost precursors

    International Nuclear Information System (INIS)

    Fast growing wood (Paulownia tomentos-PT, Ailanthus altissima-AA. Salvadara oleoides-SO) and animal bones were utilized for the preparation of activated carbon. The carbon samples were activated by thermal means (400-1000 degree C). The samples were characterized by surface area (Langmuir and BJH) with micropore and meso pores volume (BJH). The surface area of other carbon samples activated at 800 degree C was found in the sequence: 654.9 for Salvadora oleoides > 615.8 for Ailanthus altissima > 346.3 for Paulownia tomentosa > 300.0 for animal bones. BJH surface area (m/sup 2/g/sup -l/) analysis of the carbon samples activated at 800 degree C was found in the sequence: 274.6 for Salvadora oleoides > 261.76 for animal bones> 224.8 for Paulownia tomentosa > 200.2 for Ailanthus altissima. The micropore volume (BJH method) of 800 degree C activated carbon samples were in the sequence: 0.15 for Ailanthus altissima > 0.13 for Salvadora oleoides > 0.08 for animal bones. (author)

  17. Activated carbon from thermo-compressed wood and other lignocellulosic precursors

    Directory of Open Access Journals (Sweden)

    Capart, R.

    2007-05-01

    Full Text Available The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%, a high surface area (>1700 m2.g-1, and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon.

  18. Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products

    International Nuclear Information System (INIS)

    This work has the aim to employ the agave bagasse, a waste from Tequila and Mescal industries, to obtain a product of high commercial value such as activated carbon. The activated carbon production methodology was based on a chemical activation, by using ZnCl2 and H3PO4 as activating agent and agave bagasse as a natural source of carbon. The activation temperature (150-450 oC), activation time (0-60 min) and weight ratio of activating agent to precursor (0.2-4) were studied. The produced carbon materials were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and nitrogen physisorption at -196 oC. In addition, the activating agent recovery was evaluated. We were able to obtain highly microporous activated carbons with micropore volumes between 0.24 and 1.20 cm3/g and a surface area within 300 and 2139 m2/g. These results demonstrated the feasibility to treat the industrial wastes of the Tequila and Mescal industries, being this wastes an excellent precursor to produce highly microporous activated carbons that can be processed at low activation temperatures in short times, with the possibility of recycling the activating agent.

  19. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    OpenAIRE

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-01-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided t...

  20. CONVENTIONAL WATER TREATMENT AND DIRECT FILTRATION: TREATMENT AND REMOVAL OF TOTAL ORGANIC CARBON AND TRIHALOMETHANE PRECURSORS

    Science.gov (United States)

    After describing the fundamentals of coagulation of humic substances for alum and cationic polyelectrolytes, field studies of two conventional-type water treatment plants are discussed. THM formation through the plants is examined, and removals of total organic carbon (TOC) and T...

  1. Cyclopropene derivatives as precursors to enantioenriched cyclopropanols and n-butenals possessing quaternary carbon stereocenters.

    Science.gov (United States)

    Simaan, Marwan; Delaye, Pierre-Olivier; Shi, Min; Marek, Ilan

    2015-10-12

    The diastereoselective carbocupration reaction of cyclopropenylmethyl ethers followed by addition of oxenoid leads to the formation of diastereo- and enantiomerically enriched 2,2,3,3-tetrasubstituted cyclopropanol derivatives. Ring fragmentation of the copper cyclopropanolate leads to acyclic butenal derivatives possessing enantiomerically enriched α-quaternary carbon stereocenters in a single-pot operation. PMID:25689601

  2. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  3. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  4. Production of activated carbons from almond shell

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, Joao M. Valente; Laginhas, Carlos Eduardo C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    The production of activated carbons from almond shell, using physical activation by CO{sub 2} is reported in this work. The used method has produced activated carbons with apparent BET surface areas and micropore volume as high as 1138 m{sup 2} g{sup -1} and 0.49 cm{sup 3} g{sup -1}, respectively. The activated carbons produced have essentially primary micropores and only a small volume of wider micropores. By FTIR analysis it was possible to identify, in the surface of the activated carbons, several functional groups, namely hydroxyls (free and phenol), ethers, esters, lactones, pyrones and Si-H bonds. By the analysis of the XRD patterns it was possible to calculate the microcrystallites dimensions with height between 1.178 and 1.881 nm and width between 3.106 and 5.917 nm. From the XRD it was also possible to identify the presence of traces of inorganic heteroatoms such as Si, Pb, K, Fe and P. All activated carbons showed basic characteristics with point of zero charge between 9.42 and 10.43. (author)

  5. Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study.

    Science.gov (United States)

    Liu, Peng; Farré, Maria José; Keller, Jurg; Gernjak, Wolfgang

    2016-09-15

    Riverbank filtration (RBF) with days to months of residence time has been successfully used as treatment or pre-treatment process to improve water quality for decades. However, its feasibility depends on the local hydrogeological conditions. Therefore, for sites unsuitable to traditional RBF, a smaller engineered RBF may be an option. This study evaluates the performance of engineered short residence time RBF on improving water quality, focusing on the removal of natural organic matter (NOM) and the reduction of precursors of carbon and nitrogen disinfection by-products (DBP). Lab-scale experiments were conducted with surface feed water from a drinking water plant. The results showed that within 6days hydraulic retention time (HRT), 60-70% dissolved organic carbon (DOC) and 70-80% ultraviolet absorbance at 254nm (UV254) could be removed. During the whole filtration process, biodegradation was responsible for the removal of organic matter, and it was found that alternating redox condition between oxic and anoxic was beneficial for the overall performance of the RBF. Dissolved oxygen (DO) had a substantial impact on the removal of DBP precursors. For carbon-containing DBP (C-DBP) precursors' removal, re-aeration after a sequence of oxic and anoxic conditions could further increase the removal efficiencies from 50%, 60%, and 60% to 80%, 90%, and 80% for trihalomethanes (THMs), chloral hydrate (CH), and haloketones (HKs). Prolonged anoxic conditions were however beneficial for the removal of nitrogen-containing DBP (N-DBP) precursors. PMID:27203522

  6. Cyclopentanone: A raw material for production of C15 and C17 fuel precursors

    International Nuclear Information System (INIS)

    The synthesis of diesel or jet fuels intermediates from furfural or 5-hydroxymethylfurfural (HMF) via aqueous aldol-condensation with cyclopentanone was studied. Cyclopentanone is the product of furfural rearrangement in an aqueous system. Since the aldol-condensation reaction is conducted in an aqueous solution all these biomass-derived reactants can be applied as water solutions formed in the processes of their preparation. The aldol condensation of furfural with cyclopentanone is at low concentration of base and molar ratio of reactants 2:1 highly selective and after 40–80 min of reaction at a temperature of 40–100 °C more than 95 mol% yield of 2,5-bis (2-furylmethylidene) cyclopentan-1-one (F2C) was obtained. When instead of furfural as a reactant HMF was used higher than 98 mol% yield of 2,5-bis (5-hydroxymethyl-2-furylmethylidene) cyclopentan-1-one was achieved. The final products of aldol condensation of furfural and HMF are exclusively corresponding dimers, what enables to obtain after subsequent hydrogenation/hydrodeoxygenation step dialkylcyclopentane type of diesel or jet fuels having C15 or C17 molecules. - Highlights: • The aldol condensation of biomass derived cyclopentanone with furfural and HMF. • More than 95 mol % yields of products are achieved. • The products are compounds having exclusively 15 or 17 carbon atoms in molecule. • Reactants can be used as diluted aqueous solutions. • The products are separated as solids insoluble in water

  7. Facile synthesis of stereoregular carbon fiber precursor polymers by template assisted solid phase polymerization

    Directory of Open Access Journals (Sweden)

    G. Santhana Krishnan

    2012-09-01

    Full Text Available Predominantly isotactic stereoregular polyacrylonitrile copolymers (PAC were prepared by solid phase polymerization techniques using hexagonal crystalline metal salts as template compounds. Stereoregular distributions of the prepared polymer were studied using high resolution 13C nuclear magnetic resonance spectroscopy (13C NMR spectra. The extent of isotacticity was directly determined from the peak intensity of the methine carbon (CH. The triad tacticity from the intensities of methine carbon peaks were examined by statistical methods. It was found that the PAC was predominantly isotactic in stereoregularity, and its sequence distribution obeys Bernoulli statistics. The optimum polymerization conditions ensuring isotactic content over 50% were disclosed experimentally. The chemical composition of PAC was confirmed with 1H NMR data. The obtained polyacrylonitrile copolymers were also characterized for molecular parameters such as viscosity average molecular weight (Mv, number average molecular weight (Mn, weight average molecular weight (Mw and polydispersity index.

  8. Nitrogen catabolite repression modulates the production of aromatic thiols characteristic of Sauvignon Blanc at the level of precursor transport.

    Science.gov (United States)

    Subileau, Maeva; Schneider, Rémy; Salmon, Jean-Michel; Degryse, Eric

    2008-08-01

    The free thiols 3-mercapto-hexanol (3MH) and its acetate, practically absent from musts, are liberated by yeast during fermentation from a cysteinylated precursor [S-3-(hexan-1-ol)-l-cysteine (Cys-3MH)] present in the grape must and contribute favorably to the flavor of Sauvignon white wines. Production of 3MH is increased when urea is substituted for diammonium phosphate (DAP) as the sole nitrogen source on a synthetic medium. On grape must, complementation with DAP induces a decrease of 3MH production. This observation is reminiscent of nitrogen catabolite repression (NCR). The production of 3MH is significantly lower for a gap1Delta mutant compared with the wild type, during fermentation of a synthetic medium containing Cys-3MH as the precursor and urea as the sole nitrogen source. Mutants isolated from an enological strain with a relief of NCR on GAP1 produce significantly higher amounts of 3MH on synthetic medium than the parental strain. These phenotypes were not confirmed on grape must. It is concluded that on synthetic medium, Cys-3MH enters the cell through at least one identified transporter, GAP1p, whose activity is limiting the release of volatile thiols. On grape must, the uptake of the precursor through GAP1p is not confirmed, but the effect of addition of DAP, eventually prolonging NCR, is shown to decrease thiol production. PMID:18549408

  9. Metal and Precursor Effect during 1-Heptyne Selective Hydrogenation Using an Activated Carbon as Support

    OpenAIRE

    Lederhos, Cecilia R.; Badano, Juan M.; Nicolas Carrara; Fernando Coloma-Pascual; M. Cristina Almansa; Domingo Liprandi; Mónica Quiroga

    2013-01-01

    Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are g...

  10. Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber

    OpenAIRE

    Hendrik Mainka; Olaf Täger; Enrico Körner; Liane Hilfert; Sabine Busse; Edelmann, Frank T.; Axel S. Herrmann

    2015-01-01

    Lightweight design is an essential part of the overall Volkswagen strategy for reducing the CO2 emission. The use of carbon fiber reinforced polymers (CFRP) offers an enormous lightweight potential in comparison to aluminum, enabling a weight reduction, if a load-adapted (unidirectional) CFRP-design is used, of up to 60% in automobile parts without a degradation of the functionalities. Today, the use of CFRP is limited in mass series applications of the automotive industry by the cost of the ...

  11. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor

    International Nuclear Information System (INIS)

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5–30 nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD50: 50 mg/ml) and could be used for bioimaging even at lower concentration (0.5 mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors. - Highlights: • Synthesis of hydrophobic carbon dots from polymer based Paraplast • Deep blue color under the influence of UV light • Typical optical properties used for biological imaging • Biological imaging of breast cancer stem cells revealing potential of carbon dots

  12. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Talib, Abou [Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Pandey, Sunil [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Thakur, Mukeshchand [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Wu, Hui-Fen, E-mail: hui@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan (China); Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan (China)

    2015-03-01

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5–30 nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD{sub 50}: 50 mg/ml) and could be used for bioimaging even at lower concentration (0.5 mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors. - Highlights: • Synthesis of hydrophobic carbon dots from polymer based Paraplast • Deep blue color under the influence of UV light • Typical optical properties used for biological imaging • Biological imaging of breast cancer stem cells revealing potential of carbon dots.

  13. Switching to carbon-free production processes: Implications for carbon leakage and border carbon adjustment

    International Nuclear Information System (INIS)

    Climate policy under partial global compliance raises concerns regarding carbon leakage. While border carbon adjustment (BCA) measures are a potential remedy, they have also been criticised on various grounds. This paper therefore investigates whether a policy fostering the switch to carbon-free technologies can substitute for BCAs. A reason for the effectiveness of a targeted technology policy is that major leakage prone sectors (such as iron and steel), have two main sources of carbon emissions, combustion of fossil fuels and industrial processes. While combustion emissions can be reduced relatively easy by increasing energy efficiency, reducing process emissions requires a switch to low-carbon production processes, e.g. in steel production by deploying electrolysis based on large-scale solar electricity. We show by means of a multi-regional computable general equilibrium analysis that such a switch in steel production technology can eliminate a significant fraction of carbon leakage and also increase sectoral output and welfare. Since the necessary technologies are not available at large scale yet (however, are likely to be by 2020), a transitional BCA scheme may be a crucial supportive instrument to foster such technology switches. Yet, in the long run BCA should be phased out to preserve the incentive for carbon-free innovation. - Highlights: • A carbon-free technology switch in iron production considerably reduces total leakage. • Border carbon adjustment (BCA) may impede domestic industrial decarbonisation. • A targeted technology policy is superior to BCA in fostering low-carbon investments. • But implemented as a transitory instrument, BCA reinforces technology policy

  14. Simulations of the Dynamics of Precursor Organic and Prebiotic Carbon-rich Moleculess

    Science.gov (United States)

    Marshall, David William; Sadeghpour, Hossein

    2015-01-01

    Not only has mid-IR imaging revealed an extraordinary variety of carbon-rich molecules present in the galaxy, but also that they can be seen in a host of different astronomical bodies; from HII regions to planetary nebula, and from young stellar objects to old post-AGB sources. The range of organic species discovered so far include PAHs, fullerenes, long chain hydrocarbons and carbonaceous clusters, some of which are biologically important. There's strong evidence that much of the terrestrial water was delivered to Earth during the Late Heavy Bombardment (LHB) approximately 3.8 - 4.1 Gyr ago [1]. Comparisons of the deuterium-hydrogen ratio of the Vienna Mean Standard Ocean Water and comets like Harley 2, have revealed a striking similarity​ [2]​​. It's not without reason to assume that prebiotic molecules may have been delivered to Earth​, too. ​In this work, reactive molecular dynamics simulations ​[3] are performed to probe the formation of carbon-rich molecules and clusters on graphitic surfaces. The simulations are run over a range of temperatures, densities and carbonaceous surfaces and a comparison is made of the distribution of chain and cluster formation in the gas and condensed phases. Results from these simulations will be presented.[1]. Hartmann, W. K., Ryder, G., Dones, L. & Grinspoon, D. in Origin of the Earth and Moon (eds Canup, R. & Righter, K.) 493--512 (Univ. Arizona Press, Tucson, 2000).[​2]. Hartogh P. et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218-220 (2011).[3]. Patra N. P. Kral, and H. R. Sadeghpour. Nucleation and stabilization of carbon-rich structures in interstellar media', Astrophysical Journal 785, 6(2014); doi:10.1088/0004-637X/785/1/6.​

  15. Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber

    Directory of Open Access Journals (Sweden)

    Hendrik Mainka

    2015-07-01

    Furthermore, the process ability and demonstrators as well as the suitability for high volume production of the developed processes are main issues for successful implementation in future lightweight vehicle concepts.

  16. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor

    KAUST Repository

    Ma, Xiaohua

    2013-10-01

    We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 C, respectively. At 440 C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530 C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040 Barrer with a high selectivity over CH4 of 38. Above 600 C, the strong emergence of ultramicroporosity (<7 Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. © 2013 Elsevier Ltd. All rights reserved.

  17. Enhanced photocatalytic ability from carbon-doped ZnO photocatalyst synthesized without an external carbon precursor

    Science.gov (United States)

    Zhang, Dong En; Wang, Ming Yan; Ma, Juan Juan; Han, Gui Quan; Li, Shu An; Zhao, Hong; Zhao, Bin Yuan; Tong, Zhi Wei

    2014-03-01

    We report a simple synthesis of C-doped ZnO composite nanoparticles by a solvothermal treatment of Zn(OAc)2 ṡ 2H2O that provides a source of both zinc and carbon. The photocatalytic activities of the composites were evaluated by the degree of degradation rhodamine B in aqueous solutions at room temperature with near UV light irradiation. These nanocomposites exhibit higher photocatalytic activity compared with pure ZnO nanoparticles. The enhancement of photocatalytic activity of C-doped ZnO nanoparticles is mainly attributed to their absorbed more photons and reduced electron hole pair recombination.

  18. Carbon-13 nuclear magnetic resonance of heterocyclic salts and its precursors

    International Nuclear Information System (INIS)

    The synthesis of 1,2,3,6 - tetrahydro - 1, 1 dimethyl - 3 - oxo - 5 phenylpyridinium bromides containing the substituents: H, Me, Cl, Br, OMe and NO2 is described. The phenacyl bromides (8a-f) were characterized by their melting points and by their I.r. and 1H n.m.r. spectra. Some studies on 13C n.m.r. spectra of the phenacyl bromides (8a-f), the quartenary ammonium salts (7a-f) and the cyclic salts(6a-f) are shown. The effect of substituents on the eletronic structure of these compounds and on the chemical shifts of the different carbon atoms in terms of electronic and steric effects are discussed. (M.J.C.)

  19. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  20. Production of activated carbons from coffee endocarp by CO2 and steam activation

    International Nuclear Information System (INIS)

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  1. Production of activated carbons from coffee endocarp by CO{sub 2} and steam activation

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J.M.; Ribeiro Carrott, M. Manuela L. [Centro de Quimica de Evora and Departamento de Quimica, Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal); Garcia, A. Macias; Diaz-Diez, M.A. [Universidad de Extremadura, Avda. de Elvas, s/n 06071 Badajoz (Spain)

    2008-03-15

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO{sub 2} was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO{sub 2} activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  2. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Ducat, DC; Avelar-Rivas, JA; Way, JC; Silver, PA

    2012-03-23

    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose-or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to similar to 80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.

  3. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  4. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States)

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a

  5. Metal and precursor effect during 1-heptyne selective hydrogenation using an activated carbon as support.

    Science.gov (United States)

    Lederhos, Cecilia R; Badano, Juan M; Carrara, Nicolas; Coloma-Pascual, Fernando; Almansa, M Cristina; Liprandi, Domingo; Quiroga, Mónica

    2013-01-01

    Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX>PdNRX>PtClRX≫RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX=PdNRX>RuClRX>PtClRX, and it can be mainly attributed to thermodynamic effects. PMID:24348168

  6. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.

    Science.gov (United States)

    Friis, Stig D; Lindhardt, Anders T; Skrydstrup, Troels

    2016-04-19

    , an array of low-pressure carbonylations were developed applying only near stoichiometric amounts of carbon monoxide. Importantly, carbon isotope variants of the CO precursors, such as (13)COgen, Sila(13)COgen, or even (14)COgen, provide a simple means for performing isotope-labeling syntheses. Finally, the COware applicability has been extended to reactions with other gases, such as hydrogen, CO2, and ethylene including their deuterium and (13)C-isotopically labeled versions where relevant. The COware system has been repeatedly demonstrated to be a valuable reactor for carrying out a wide number of transition metal-catalyzed transformations, and we believe this technology will have a significant place in many organic research laboratories. PMID:26999377

  7. The STM4195 Gene Product (PanS) Transports Coenzyme A Precursors in Salmonella enterica

    OpenAIRE

    Ernst, Dustin C.; Downs, Diana M.

    2015-01-01

    Coenzyme A (CoA) is a ubiquitous coenzyme involved in fundamental metabolic processes. CoA is synthesized from pantothenic acid by a pathway that is largely conserved among bacteria and eukaryotes and consists of five enzymatic steps. While higher organisms, including humans, must scavenge pantothenate from the environment, most bacteria and plants are capable of de novo pantothenate biosynthesis. In Salmonella enterica, precursors to pantothenate can be salvaged, but subsequent intermediates...

  8. Minocycline inhibits the production of the precursor form of nerve growth factor by retinal microglial cells

    Institute of Scientific and Technical Information of China (English)

    Xiaochun Yang; Xuanchu Duan

    2013-01-01

    A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells, glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis.

  9. Metal and Precursor Effect during 1-Heptyne Selective Hydrogenation Using an Activated Carbon as Support

    Directory of Open Access Journals (Sweden)

    Cecilia R. Lederhos

    2013-01-01

    Full Text Available Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX > PdNRX > PtClRX ≫ RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX = PdNRX > RuClRX > PtClRX, and it can be mainly attributed to thermodynamic effects.

  10. Revisiting the Stӧber method: Design of nitrogen-doped porous carbon spheres from molecular precursors of different chemical structures.

    Science.gov (United States)

    Tian, Hao; Liu, Jian; O'Donnell, Kane; Liu, Tingting; Liu, Xinmei; Yan, Zifeng; Liu, Shaomin; Jaroniec, Mietek

    2016-08-15

    Porous polymer resins and carbon spheres have been successfully prepared by an extended Stӧber method using phenol derivatives of different functionality. Herein, the Stӧber method is revised and used for the preparation of phenolic resin spheres from a series of hetero-atoms containing phenol derivatives (such as nitrophenol, aminophenol and halide-substituted phenols), which upon carbonization are converted to heteroatom-doped carbon spheres. The use of 4-amino-3-nitrophenol affords monodispersed carbon spheres with unprecedentedly high nitrogen content of about 11.9wt%. In this synthesis phenolic resin is initially formed by polymerizing formaldehyde with one of the aforementioned phenol derivatives, which acts as a resin precursor and source of heteroatoms to be doped. When amino group in aminophenol is in meta position the monodisperse phenolic resin and subsequently converted-doped carbon spheres are obtained. The resultant carbon spheres were examined as potential CO2 adsorbents and electrode materials for supercapacitors, reaching CO2 uptake of 89cm(3) STP/g (at 273K and 1.0bar), and the electrochemical capacitance of 127 F/g under basic conditions, respectively. This study provides some guidelines for design of carbon spheres by selecting phenolic resin precursors with desired molecular structures and functionalities for specific applications. PMID:27208436

  11. The carbon footprint of indoor Cannabis production

    International Nuclear Information System (INIS)

    The emergent industry of indoor Cannabis production – legal in some jurisdictions and illicit in others – utilizes highly energy intensive processes to control environmental conditions during cultivation. This article estimates the energy consumption for this practice in the United States at 1% of national electricity use, or $6 billion each year. One average kilogram of final product is associated with 4600 kg of carbon dioxide emissions to the atmosphere, or that of 3 million average U.S. cars when aggregated across all national production. The practice of indoor cultivation is driven by criminalization, pursuit of security, pest and disease management, and the desire for greater process control and yields. Energy analysts and policymakers have not previously addressed this use of energy. The unchecked growth of electricity demand in this sector confounds energy forecasts and obscures savings from energy efficiency programs and policies. While criminalization has contributed to the substantial energy intensity, legalization would not change the situation materially without ancillary efforts to manage energy use, provide consumer information via labeling, and other measures. Were product prices to fall as a result of legalization, indoor production using current practices could rapidly become non-viable. - Highlights: ► The emergent industry of indoor Cannabis production utilizes highly energy intensive processes and is highly inefficient. ► In the United States, this represents an annual energy expenditure of $6 billion. ► One kg of final product is associated with emissions of 4600 kg of CO2 emissions to the atmosphere. ► Aggregate U.S. emissions are equivalent those of 3 million cars. ► Energy analysts and policymakers have not previously addressed this use of energy.

  12. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    extraction products indicated that they had the requisite properties of viable carbon-product precursors.

  13. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  14. Effect of medium modification and selected precursors on sterol production by short-term callus cultures of Euphorbia tirucalli

    Energy Technology Data Exchange (ETDEWEB)

    Biesboer, D.D.; Mahlberg, P.G.

    1979-01-01

    Latex from E. Tirucalli, a potential rubber source, contains steroidal alcohols that are high in energy and thus of value in biomass conversion to fuels. Euphol was present in large amounts in the latex, but tirucallol predominated in greater quantities in explants and callus indicating synthesis and/or accumulation of tirucallol by cells other than the laticifer cell. Sterol production was significantly enhanced by certain nutrient media, as well as indole-3-acetic acid, and depressed by benzyladenine. Precursor stimulation of product synthesis was successful only with squalene, which promoted sterol production at 1.0 mg/liter but inhibited cell growth at higher concentrations. DL-mevalonic acid and lanosterol promoted neither growth nor sterol production. DL-(214C) mevalonate was used to confirm the biosynthesis of sterols in both latex and callus cultures.

  15. Carbon sequestration from boreal wildfires via Pyrogenic Carbon production

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan; Preston, Caroline

    2014-05-01

    Fire releases important quantities of carbon (C) to the atmosphere. Every year, an average of 460 Million ha burn around the globe, generating C emissions equivalent to a third of the current annual contribution from fossil fuel combustion. Over the longer-term wildfires are widely considered as 'net zero C emission events', because C emissions from fires, excluding those associated with deforestation and peatland fires, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the production of pyrogenic C (PyC). During fire, part of the biomass C burnt is emitted to the atmosphere but part is transformed into PyC (i.e. charcoal). The enhanced resistance of PyC to environmental degradation compared to unburnt biomass gives it the potential to sequester C over the medium/long term. Therefore, after complete regeneration of the vegetation, the PyC generated may represent an additional C pool and, hence, recurring fire-regrowth cycles could represent net sinks of atmospheric C. To estimate the quantitative importance of PyC production, accurate data on PyC generation with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and pools (i.e. PyC in soil, ash, downed wood and standing vegetation). To address this research gap, we utilized the globally unique FireSmart experimental forest fires in Northwest Canada. They are aimed to reproduce wildfire conditions typical for boreal forest and, at the same time, allow pre-fire fuel assessment, fire behaviour monitoring and immediate post-fire fuel and PyC inventory. This

  16. Enhancement of enterotoxin production by carbon dioxide in Vibrio cholerae.

    OpenAIRE

    Shimamura, T; Watanabe, S; Sasaki, S.

    1985-01-01

    We found that Vibrio cholerae 569B produced much more cholera enterotoxin in the presence of added carbon dioxide than in its absence. An atmosphere of 10% carbon dioxide was optimal for maximal enterotoxin production.

  17. Method for production of polymer and carbon nanofibers from water-soluble polymers.

    Science.gov (United States)

    Spender, Jonathan; Demers, Alexander L; Xie, Xinfeng; Cline, Amos E; Earle, M Alden; Ellis, Lucas D; Neivandt, David J

    2012-07-11

    Nanometer scale carbon fibers (carbon nanofibers) are of great interest to scientists and engineers in fields such as materials science, composite production, and energy storage due to their unique chemical, physical, and mechanical properties. Precursors currently used for production of carbon nanofibers are primarily from nonrenewable resources. Lignin is a renewable natural polymer existing in all high-level plants that is a byproduct of the papermaking process and a potential feedstock for carbon nanofiber production. The work presented here demonstrates a process involving the rapid freezing of an aqueous lignin solution, followed by sublimation of the resultant ice, to form a uniform network comprised of individual interconnected lignin nanofibers. Carbonization of the lignin nanofibers yields a similarly structured carbon nanofiber network. The methodology is not specific to lignin; nanofibers of other water-soluble polymers have been successfully produced. This nanoscale fibrous morphology has not been observed in traditional cryogel processes, due to the relatively slower freezing rates employed compared to those achieved in this study. PMID:22716198

  18. 5-Azacytidine acts directly on both erythroid precursors and progenitors to increase production of fetal hemoglobin.

    OpenAIRE

    Humphries, R K; Dover, G; Young, N S; Moore, J G; Charache, S.; Ley, T; Nienhuis, A W

    1985-01-01

    The effect of 5-azacytidine on erythroid precursors and progenitors was studied in nine patients with sickle cell anemia or severe thalassemia. Each patient received the drug intravenously for 5 or 7 d. 5-Azacytidine caused a four- to sixfold increase in gamma-messenger RNA concentration in bone marrow cells of eight of the nine patients and decreased the methylation frequency of a specific cytosine residue in the gamma-globin gene promoter in all nine patients. Within 2 d of the start of dru...

  19. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of 'polymer-induced liquid precursor' processes.

    Science.gov (United States)

    Wolf, Stephan E; Leiterer, Jork; Pipich, Vitaliy; Barrea, Raul; Emmerling, Franziska; Tremel, Wolfgang

    2011-08-17

    The impact of the ovo proteins ovalbumin and lysozyme--present in the first stage of egg shell formation--on the homogeneous formation of the liquid amorphous calcium carbonate (LACC) precursor, was studied by a combination of complementing methods: in situ WAXS, SANS, XANES, TEM, and immunogold labeling. Lysozyme (pI = 9.3) destabilizes the LACC emulsion whereas the glycoprotein ovalbumin (pI = 4.7) extends the lifespan of the emulsified state remarkably. In the light of the presented data: (a) Ovalbumin is shown to behave commensurable to the 'polymer-induced liquid precursor' (PILP) process proposed by Gower et al. Ovalbumin can be assumed to take a key role during eggshell formation where it serves as an effective stabilization agent for transient precursors and prevents undirected mineralization of the eggshell. (b) It is further shown that the emulsified LACC carries a negative surface charge and is electrostatically stabilized. (c) We propose that the liquid amorphous calcium carbonate is affected by polymers by depletion stabilization and de-emulsification rather than 'induced' by acidic proteins and polymers during a so-called polymer-induced liquid-precursor process. The original PILP coating effect, first reported by Gower et al., appears to be a result of a de-emulsification process of a stabilized LACC phase. The behavior of the liquid amorphous carbonate phase and the polymer-induced liquid-precursor phase itself can be well described by colloid chemical terms: electrostatic and depletion stabilization and de-emulsification by depletion destabilization. PMID:21736300

  20. Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications

    Science.gov (United States)

    Bhandavat, Romil

    Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 mum 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents

  1. Activated carbon preparation with pore nanosized from biomass precursors; Preparacao de carvoes ativados com poros de dimensoes nanometricas a partir de precursores de biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Capobianco, Gino [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Planejamento de Sistemas Energeticos; Coutinho, Aparecido dos Reis [Universidade Metodista de Piracicaba, SP (Brazil). Lab. de Materiais Carbonosos; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Grupo Combustiveis Alternativos

    2004-07-01

    Here are reported preliminary tests using pinnus wood, mesocarpo of green coconut and macadamia shell. They are carbonized and later physically activated with CO{sub 2} or chemically with ZnCl{sub 2}. The resulting activated carbons (AC) are characterized with scanning electronic microscopy, the BET method for determination of the specific surface area-ASE, real density-DR, helium picnometry among others. The results indicate macadamia shell originates better AC, with average micropores in the range of 1,2-1,6 nm, apparent density of 1,08 g/cm{sup 3}, and ASE-BET 1400m{sup 2}/g. Then, these AC have the possibility to be applied in NG storage. (author)

  2. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    Science.gov (United States)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  3. Reprint of: Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani.

    Science.gov (United States)

    Venugopalan, Aarthi; Potunuru, Uma Rani; Dixit, Madhulika; Srivastava, Smita

    2016-08-01

    Volumetric productivity of camptothecin from the suspension culture of the endophyte Fusarium solani was enhanced up to ∼152 fold (from 0.19μgl(-1)d(-1) to 28.9μgl(-1)d(-1)) under optimized fermentation conditions including initial pH (6.0), temperature (32°C) and agitation speed (80rpm) with (5% (v/v)) ethanol as medium component. Among various elicitors and precursors studied, tryptamine (0.5mM) as precursor and bovine serum albumin (BSA) (0.075mM) as an elicitor added on day 6 of the cultivation period resulted in maximum enhancement of camptothecin concentration (up to 4.5 and 3.4-fold, respectively). These leads provide immense scope for further enhancement in camptothecin productivity at bioreactor level. The cytotoxicity analysis of the crude camptothecin extract from the fungal biomass revealed its high effectiveness against colon and mammary gland cancer cell lines. PMID:27189536

  4. Identification of antiyellowing agents as precursors of N-nitrosodimethylamine production on ozonation from sewage treatment plant influent.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Konno, Yusuke; Oya, Masami; Kunikane, Shoichi

    2009-07-15

    In Japan, N-nitrosodimethylamine (NDMA) formation associated with ozonation at a relatively high concentration has been reported only at a small number of water treatment plants (WTPs) in the western part of Japan for which the source water is the Yodo River. In the present study, the formation of relatively high concentrations of NDMA was found upon ozonation of water samples taken from sewage treatment plants (STPs) located upstream of the water intake points of the WTPs in the Yodo River basin. NDMA concentrations before and after ozonation were 16-290 and 14-280 ng/L, respectively. At least some of the STPs investigated receive industrial effluents. At one STP in this area, an extremely high concentration of NDMA (10,000ng/L) was found in one influent water sample after ozonation. To identify potential NDMA precursors upon ozonation in the influent at this STP, the concentrated extracts of the influent were fractionated by high-performance liquid chromatography (HPLC). Ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC/MS/MS) identified 4,4'-hexamethylenebis(1,1-dimethylsemicarbazide) (HDMS) and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide (TMDS) as precursors of NDMA on ozonation of the influent. Both HDMS and TMDS are used as antiyellowing agents in polyurethane fibers and as light stabilizers in polyamide resins. Their contributions to NDMA production on ozonation of water samples at STPs were up to 17%. The remaining unidentified NDMA precursors may be hydrophilic compounds that were not trapped by the cartridges used for extraction of the water samples. HDMS and TMDS were frequently present in surface waters and STP effluents in the Yodo River basin and were also detected in surface waters from several other areas in Japan. PMID:19708347

  5. Optimization of supercritical dimethyl carbonate method for biodiesel production

    OpenAIRE

    Ilham, Zul; Saka, Shiro

    2012-01-01

    Biodiesel could be produced from triglycerides and dimethyl carbonate, instead of the conventional methanol, in this non-catalytic supercritical dimethyl carbonate method. It was demonstrated that, supercritical dimethyl carbonate method successfully converted triglycerides as well as fatty acids to fatty acid methyl esters (FAME) with glycerol carbonate, a higher value by-product compared to the conventional glycerol. The FAME are high in yield, comparable with supercritical methanol method,...

  6. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    International Nuclear Information System (INIS)

    A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs

  7. Product carbon footprints and their uncertainties in comparative decision contexts.

    Directory of Open Access Journals (Sweden)

    Patrik J G Henriksson

    Full Text Available In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp. farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance.

  8. Three-dimensional decomposition models for carbon productivity

    International Nuclear Information System (INIS)

    This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.

  9. Synthesis of carbon nanotubes by catalytic pyrolysis method with Feitknecht compound as precursor of NiZnAl catalyst

    Institute of Scientific and Technical Information of China (English)

    Yan Xiaoqi; Liu Quanrun; Zhang Songlin; Zhang Kun; Chen Jiuling; Li Yongdan

    2004-01-01

    Carbon nanotubes are synthesized by catalytic pyrolysis method with a kind of new type catalyst--nickel-zinc-alumina catalyst prepared from Feitknecht compound. Tubular carbon nanotubes, bamboo-shaped carbon naotubes, herringbone carbon nanotubues and branched carbon nanotubes are all found formed at moderate temperature. It is important for the formation of quasi-liquid state of the metal nanoparticles at the tip of carbon naotubes during the growth of carbon nanotubes to lead to different kinds of carbon nanotubes. It is likely that the addition of zinc make the activity of nickel catalyst after calcinations and reduction changed strangely.

  10. Influence of Cobalt Precursor on Efficient Production of Commercial Fuels over FTS Co/SiC Catalyst

    Directory of Open Access Journals (Sweden)

    Ana Raquel de la Osa

    2016-07-01

    Full Text Available β-SiC-supported cobalt catalysts have been prepared from nitrate, acetate, chloride and citrate salts to study the dependence of Fischer–Tropsch synthesis (FTS on the type of precursor. Com/SiC catalysts were synthetized by vacuum-assisted impregnation while N2 adsorption/desorption, XRD, TEM, TPR, O2 pulses and acid/base titrations were used as characterization techniques. FTS catalytic performance was carried out at 220 °C and 250 °C while keeping constant the pressure (20 bar, space velocity (6000 Ncm3/g·h and syngas composition (H2/CO:2. The nature of cobalt precursor was found to influence basic behavior, extent of reduction and metallic particle size. For β-SiC-supported catalysts, the use of cobalt nitrate resulted in big Co crystallites, an enhanced degree of reduction and higher basicity compared to acetate, chloride and citrate-based catalysts. Consequently, cobalt nitrate provided a better activity and selectivity to C5+ (less than 10% methane was formed, which was centered in kerosene-diesel fraction (α = 0.90. On the contrary, catalyst from cobalt citrate, characterized by the highest viscosity and acidity values, presented a highly dispersed distribution of Co nanoparticles leading to a lower reducibility. Therefore, a lower FTS activity was obtained and chain growth probability was shortened as observed from methane and gasoline-kerosene (α = 0.76 production when using cobalt citrate.

  11. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites.

    Science.gov (United States)

    Lian, Jiazhang; Zhao, Huimin

    2015-03-01

    Fatty acids or their activated forms, fatty acyl-CoAs and fatty acyl-ACPs, are important precursors to synthesize a wide variety of fuels and chemicals, including but not limited to free fatty acids (FFAs), fatty alcohols (FALs), fatty acid ethyl esters (FAEEs), and alkanes. However, Saccharomyces cerevisiae, an important cell factory, does not naturally accumulate fatty acids in large quantities. Therefore, metabolic engineering strategies were carried out to increase the glycolytic fluxes to fatty acid biosynthesis in yeast, specifically to enhance the supply of precursors, eliminate competing pathways, and bypass the host regulatory network. This review will focus on the genetic manipulation of both structural and regulatory genes in each step for fatty acids overproduction in S. cerevisiae, including from sugar to acetyl-CoA, from acetyl-CoA to malonyl-CoA, and from malonyl-CoA to fatty acyl-CoAs. The downstream pathways for the conversion of fatty acyl-CoAs to the desired products will also be discussed. PMID:25306882

  12. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  13. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Sabine A.E. Heider

    2014-08-01

    Full Text Available The biotechnologically relevant bacterium C. glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP and its isomer dimethylallyl pyrophosphate (DMAPP, are synthesized in this organism via the methylerythritol phosphate (MEP or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various nonnative C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP astaxanthin could be produced in the mg per g cell dry weight range when the endogenous genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4 oxygenase from Brevundimonas aurantiaca.

  14. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  15. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  16. Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana.

    Science.gov (United States)

    Crocoll, Christoph; Mirza, Nadia; Reichelt, Michael; Gershenzon, Jonathan; Halkier, Barbara Ann

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our goal of creating a rich source of glucoraphanin for dietary supplements, we have previously reported the feasibility of engineering glucoraphanin in Nicotiana benthamiana through transient expression of glucoraphanin biosynthetic genes from A. thaliana (Mikkelsen et al., 2010). As side-products, we obtained fivefold to eightfold higher levels of chain-elongated leucine-derived glucosinolates, not found in the native plant. Here, we investigated two different strategies to improve engineering of the methionine chain elongation part of the glucoraphanin pathway in N. benthamiana: (1) coexpression of the large subunit (LSU1) of the heterodimeric isopropylmalate isomerase and (2) coexpression of BAT5 transporter for efficient transfer of intermediates across the chloroplast membrane. We succeeded in raising dihomomethionine (DHM) levels to a maximum of 432 nmol g(-1) fresh weight that is equivalent to a ninefold increase compared to the highest production of this intermediate, as previously reported (Mikkelsen et al., 2010). The increased DHM production without increasing leucine-derived side-product levels provides new metabolic engineering strategies for improved glucoraphanin production in a heterologous host. PMID:26909347

  17. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate.

    Science.gov (United States)

    Ilham, Zul; Saka, Shiro

    2016-01-01

    Conversion of glycerol from biodiesel production to glycerol carbonate was studied by esterification with dimethyl carbonate in a non-catalytic supercritical condition. It was found that in a non-catalytic supercritical condition, glycerol at higher purity gave higher yield of glycerol carbonate at 98 wt% after reaction at 300 °C/20-40 MPa/15 min. The yield of glycerol carbonate was observed to increase with molar ratio, temperature, pressure and time until a certain equilibrium limit. The existence of impurities such as water and remnants of alkaline catalyst in crude glycerol will direct the reaction to produce glycidol. Although impurities might not be desirable, the non-catalytic supercritical dimethyl carbonate could be an alternative method for conversion of glycerol from biodiesel production to value-added glycerol carbonate.Graphical abstractPlausible reaction scheme for conversion of glycerol to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. PMID:27386367

  18. Solubility Products of M(II) - Carbonates

    International Nuclear Information System (INIS)

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author)

  19. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    OpenAIRE

    Mohammadi Maedeh; Najafpour Ghasem D.; Mohamed Abdul Rahman

    2011-01-01

    The possibility of production of carbon molecular sieve (CMS) from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD) from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (...

  20. Production and characterization of carbon structures derived from wood

    Science.gov (United States)

    Xie, Xinfeng

    The objective of this research was to produce structural carbon materials from wood, a renewable biomaterial, for advanced material application. A broad range of materials were produced for study including carbonized wood, resin infused carbon composites made from carbonized wood, and carbon nanotubes from wood fibers. The effect of slow heating on the properties of carbonized wood was studied and important carbonized wood properties were found to be produced over a range of heating rates and peak temperatures. Slow heating rates promoted the formation and growth of graphene sheets in turbostratic crystallites, which had a significant influence on the electrical resistivity and Young's modulus of the carbonized wood. A reduction in the rate of heating may be beneficial with respect to carbon properties and the prevention of crack production during the manufacture of large monolithic carbon specimens from wood and wood-based materials. Investigation of selected physical and mechanical properties of resin-infused porous carbon composites made from medium density fiberboard demonstrated that the infused material can be used in specific applications, where high mechanical strength is not required but high dimensional stability at elevated-use temperatures, fire safety, or static dissipation and shielding is required. A unique cyclic heating process has been developed to produce carbon nanotubes directly from wood fibers. Study on the oxidative behavior of carbons derived from cellulose and lignin showed that cellulose carbon ablates faster at a lower temperature in air than lignin carbon when they were prepared at temperatures lower than 500°C due to cellulose carbon's lower content of aromatic structures. It is hypothesized that the formation of carbon nanotubes during the cyclic heating process occurred via template synthesis, with the nanochannels formed from the ablation of cellulose fibrils functioning as a template. Evidence of formation of nanochannels has been

  1. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  2. Quantitative analysis of carbon--carbon coupling in the 13C nuclear magnetic resonance spectra of molecules biosynthesized from 13C enriched precursors

    International Nuclear Information System (INIS)

    The quantitative dependence of the intensities of the various multiplet lines arising from 13C-13C nuclear spin coupling as a function of 13C enrichment is considered. Two cases are distinguished, depending on whether or not the enrichment of the interacting carbons is statistically independent. For statistically independent labeling, the splitting is simply related to the enrichment of the various carbons. For cases in which this condition does not hold, the splitting provides a measure of the correlation in the enrichment of interacting carbons. The quantitative analysis of 13C-13C coupling is shown to provide additional information in biosynthetic experiments in which a correlation in the labeling of the substrates is introduced. In contrast to the information which is obtained by looking for the incorporation of a label into a specific position of a biosynthesized molecule, a quantitative analysis of the correlation in the labeling of the product can give information about the direct incorporation of more complex structural units. Three examples are discussed: the glycolysis of glucose to lactate, the biosynthesis of galactosylglycerol by species of red algae, and the use of doubly labeled acetate to study the biosynthetic incorporation of acetate units into more complex molecules. (U.S.)

  3. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    Science.gov (United States)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  4. Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Crocoll, Christoph; Mirza, Nadia; Reichelt, Michael; Gershenzon, Jonathan; Halkier, Barbara Ann

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our...

  5. Optimization of engineered production of the glucoraphanin precursor dihomomethionine in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Crocoll, Christoph; Mirza, Nadia Muhammad Akram; Reichelt, Michael;

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our...

  6. Zeolite deactivation during hydrocarbon reactions: characterisation of coke precursors and acidity, product distribution

    OpenAIRE

    Wang, B.

    2008-01-01

    The catalytic conversion of hydrocarbons over zeolites has been applied in large scale petroleum-refining processes. However, there is always formation and retention of heavy by-products, called coke, which causes catalyst deactivation. This deactivation is due to the poisoning of the acid sites and/or pore blockage. The formation of coke on hydrocarbon processing catalysts is of considerable technological and economic importance and a great deal of work has been carried out to this study. Th...

  7. The commercial production of compounds of the lanthanides and yttrium as CRT phosphor precursors

    International Nuclear Information System (INIS)

    The consumer acceptance of color television at the start of the 60's was triggered by the phosphor industry's discovery and production of a satisfactory red phosphor using the element europium. This element, in the middle of the lanthanide series, had until that time been an academic curiosity, prepared only in gram quantities for research. The large-scale production by the lanthanide industry, in order to meet the demand for commercial quantities of high purity europium oxide, required the introduction of new technology. Lanthanide elements other than europium, such as cerium and terbium, are also needed as the active ions for many phosphors. In addition, the inert host lattice for those emitting ions can be provided by compounds of yttrium, the element above the lanthanides in the periodic table, with comparable properties. The lanthanide industry has developed processes to produce compounds of such elements in the required quantities and purities. For commercial separation of these elements a technology known as counter-current liquid-liquid extraction has been developed. This technique, commonly called solvent extraction, is illustrated and described. The initial ore preparation steps, together with the final high purity oxide production is also mentioned

  8. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis

    OpenAIRE

    Schütte, K.; H. Meyer; Gemel, Chr.; Barthel, Juri; Fischer, R.A.; Janiak,Chr.

    2014-01-01

    Microwave-induced decomposition of the transition metal amidinates {[Me(C(NiPr)2)]Cu}2 (1) and [Me(C(NiPr)2)]2Zn (2) in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) or in propylene carbonate (PC) gives copper and zinc nanoparticles which are stable in the absence of capping ligands (surfactants) for more than six weeks. Co-decomposition of 1 and 2 yields the intermetallic nano-brass phases β-CuZn and γ-Cu3Zn depending on the chosen molar ratios of the precursor...

  9. High-performance zno transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80-180 °c

    KAUST Repository

    Lin, Yenhung

    2013-06-25

    An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm2/Vs at temperatures <180°C. Because of its low temperature requirements the method allows processing of high-performance transistors onto temperature sensitive substrates such as plastic. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solubility Products of M(II) - Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Grauer, Rolf; Berner, Urs [ed.

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author) translated from a PSI internal report written in German in 1994 (TM-44-94-05). 5 figs., 1 tab., 68 refs.

  11. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  12. Processing of carbon fiber reinforced composites with particulate-filled precursor-derived Si-C-N matrix phases

    OpenAIRE

    Lee, Sea-Hoon

    2004-01-01

    Die Arbeit widmet sich Faktoren, die bei der Herstellung von keramischen Faser-Matrix-Verbundwerkstoffen (FRC, fiber-reinforced composites) deren mechanische und thermische Eigenschaften beeinflussen. Insbesondere wurden der Einfluss von Fuellstoffen und die Optimierung des PIP-Verfahrens (Precursor Impregnation and Pyrolysis) zur Herstellung kohlenstofffaserverstaerkter Si-C-N-Precursorkeramiken untersucht. Dabei wurden fuenf Bereiche betrachtet, die jeweils in einem Kapitel dargelegt wurden...

  13. Optical monitoring of Disinfection By-product Precursors with Fluorescence Excitation-Emission Mapping (F-EEM): Practical Application Issues for Drinking, Waste and Reuse Water Industry

    Science.gov (United States)

    Gilmore, A. M.

    2012-12-01

    Drinking water, wastewater and reuse plants must deal with regulations associated with bacterial contamination and halogen disinfection procedures that can generate harmful disinfection by-products (DBPs) including trihalomethanes (THMs), haloacetic acids (HOAAs) and other compounds. The natural fluorescent chromophoric dissolved organic matter (CDOM) is regulated as the major DBP precursor. This study outlines the advantages and current limitations associated with optical monitoring of water treatment processes using tcontemporary Fluorescence Excitation-Emission Mapping (F-EEM). The F-EEM method coupled with practical peak indexing and multi-variate analyses is potentially superior in terms of cost, speed and sensitivity over conventional total organic carbon (TOC) meters and specific UV-absorbance (SUVA) measurements. Hence there is strong interest in developing revised environmental regulations around the F-EEM technique instruments which can incidentally simultaneously measure the SUVA and DOC parameters. Importantly, the F-EEM technique, compared to the single-point TOC and SUVA signals can resolve CDOM classes distinguishing those that strongly cause DBPs. The F-EEM DBP prediction method can be applied to surface water sources to evaluate DBP potential as a function of the point sources and reservoir depth profiles. It can also be applied in-line to rapidly adjust DOC removal processes including sedimentation-flocculation, microfiltration, reverse-osmosis, and ozonation. Limitations and interferences for F-EEMs are discussed including those common to SUVA and TOC in contrast to the advantages including that F-EEMs are less prone to interferences from inorganic carbon and metal contaminations and require little if any chemical preparation. In conclusion, the F-EEM method is discussed in terms of not only the DBP problem but also as a means of predicting (concurrent to DBP monitoring) organic membrane fouling in water-reuse and desalination plants.

  14. Carbonate and carbon fluctuations in the Eastern Arabian Sea over 140 ka: Implications on productivity changes?

    Science.gov (United States)

    Guptha, M. V. S.; Naidu, P. Divakar; Haake, Birgit Gaye; Schiebel, Ralf

    2005-07-01

    Biological productivity in the western Arabian Sea was higher during interglacial than glacial times. In the eastern Arabian Sea productivity was higher during the glacials compared to interglacials, which is in sharp contrast to the southwest monsoon intensity variations. To examine temporal changes in productivity in the eastern Arabian Sea over the last 140 ka, oxygen isotopes, calcium carbonate and organic carbon on three cores (SL-1 & 4 and SK 129-CR05) were analyzed. Oxygen isotope records display distinct glacial and interglacial transitions. In the northeastern (Core SL-1) and eastern Arabian Sea (Core SL-4) both calcium carbonate and organic carbon variations show no significant systematic relationship with glacial and interglacials periods. In the southeastern Arabian Sea (Core SK-129-CR05) calcium carbonate shows high and low values during interglacial and glacials, respectively, and temporal changes in organic carbon concentration are significant only during MIS 5. Differential variation of calcium carbonate and organic carbon concentration at the northeastern and southeastern Arabian Sea, and between glacials and interglacials, are attributed to regional differences in sedimentation rates, dilution and preservation, which modify the signal of carbonate and carbon production.

  15. Dutch (organic) agriculture, carbon sequestration and energy production

    OpenAIRE

    Burgt, van der, Maarten; Staps, S.; Timmermans, B.

    2008-01-01

    Carbon sequestration in soils is often mentioned in the discussions about climate changes. In this paper the opportunities for carbon sequestration in Dutch agriculture are discussed at farm and national level. Farm internal carbon sources are already completely used in livestock farming. The effect under arable conditions is limited in time and very limited compared to national CO2 emission. External sources are scarce. Energy production out of crop residues and manure via biogas installatio...

  16. Various mechanisms in cyclopeptide production from precursors synthesized independently of non-ribosomal peptide synthetases

    Institute of Scientific and Technical Information of China (English)

    Wenyan Xu; Liling Li; Liangcheng Du; Ninghua Tan

    2011-01-01

    An increasing number of cyclopeptides have been discovered as products of ribosomal synthetic pathway.The biosynthetic study of these cyclopeptides has revealed interesting new mechanisms for cyclization.This review highlighted the recent discoveries in cyclization mechanisms for cyclopeptides synthesized independently of non-ribosomal peptide synthetases,including endopeptidase-catalyzed cyclization,intein-mediated cyclization,and peptide synthetase-catalyzed cyclization.This information may help to design hybrid ribosomal and non-ribosomal biosynthetic systems to produce novel cyclopeptides with various bioactivities.

  17. Qualitative determination of carbon black in food products.

    Science.gov (United States)

    Miranda-Bermudez, E; Belai, N; Harp, B Petigara; Yakes, B J; Barrows, J N

    2012-01-01

    Carbon black (C.I. 77266) is an insoluble pigment produced by the partial combustion of hydrocarbons. The pigment is known by several synonyms, including vegetable carbon, lamp black and carbon ash, that correspond to the raw materials and methods used for its production. Vegetable carbon (E153) is permitted for use in colouring food in the European Union. The US Food and Drug Administration (USFDA) has not approved the use of any type of carbon black for colouring food, although the agency batch certifies the pigment as D&C Black No. 2 for use in colouring certain cosmetics. Since carbon black (as vegetable carbon) may be present in food products offered for import into the United States, the USFDA's district laboratories need a qualitative analytical method for determining its presence. We have developed an extraction method for this purpose. A sample is broken down and dissolved with nitric acid. The resulting solution is filtered and treated with hydrochloric acid to dissolve any black iron oxide also present as a colour additive. A black residue remaining on the filter paper indicates the presence of carbon black in the food. We confirmed the presence of carbon black in residues from several standards and food products using Raman spectroscopy. The limit of detection for this method is 0.0001%. PMID:22035229

  18. Towards a Microbial Production of Fatty Acids as Precursors of Bio-kerosene from Glucose and Xylose

    International Nuclear Information System (INIS)

    The aviation industry considers the development of sustainable biofuels as one of the biggest challenges of the next ten years. The aim is to lower the environmental impact of the steadily increasing use of fossil fuels on climate change, yielding greater energy independence and fuel security. Thus, the development of a new route for the production of lipids from renewable non-food resources is now being promoted with the recent ASTM certification of hydrotreated oils. Our study focuses on the potential of growth of the oleaginous yeast Rhodotorula glutinis using glucose and xylose which can come from renewable lignocellulosic substrates and of lipid accumulation using glucose as substrate. Experiments were carried out in fed-batch mode which allowed feed flux management. Carbon fluxes were controlled with modifying xylose/glucose ratios to quantify metabolism in optimal growth condition. Besides, the management of carbon and nitrogen fluxes allowed characterizing lipid accumulation. Thus, it has been shown that the yeast Rhodotorula glutinis can simultaneously consume glucose and xylose. When the ratio xylose/glucose increased, the growth rate and the carbon conversion yield into biomass decreased: it was of 0.36 h-1 and 0.64 Cmolx*.Cmolglu-1 for pure glucose, it was of 0.15 h-1 and 0.56 Cmol.Cmol-1 for 10% xylose and it was of 0.037 h-1 and 0.18 Cmol.Cmol-1 for pure xylose. The necessity to maintain residual growth and to manage carbon fluxes to optimize lipid accumulation performance was revealed. Lipid accumulation on glucose engendered a final biomass concentration of 150 gCDW.L-1, microbial production (72% of lipids) and maximal productivity over 1.48 glip.L-1.h-1. The culture temperature is an important parameter to modulate the lipid profile. The results were encouraging. Lipid accumulation using lignocellulosic feedstock was shown to be a highly promising route. (authors)

  19. Process for the production of sodium carbonate anhydrate

    NARCIS (Netherlands)

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m<3>, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of

  20. Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities

    International Nuclear Information System (INIS)

    Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a ‘carbon neutral’ flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: ► Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. ► The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. ► Life cycle inventories and product carbon footprint protocols need more comprehensive land use-related accounting. ► Interdisciplinary collaboration linking the LCA and

  1. Synthesis of Ni/Mg/Al Layered Double Hydroxides and Their Use as Catalyst Precursors in the Preparation of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yun; JIAO Qing-ze; LIANG Ji; LI Chun-hua

    2005-01-01

    Ni/Mg/Al layered double hydroxides(LDHs) with different n(Ni):n(Mg):n(Al) ratio values were prepared via a coprecipitation reaction. Then Ni/Mg/Al mixed oxides were obtained by calcination of these LDHs precursors. Carbon nanotubes were produced in the catalytic decomposition of propane over the Ni/Mg/Al mixed oxide catalysts. The quality of as-made nanotubes was investigated by SEM and TEM. The nanotubes were multiwall with a high length-diameter ratio and appeared to be flexible. The catalytic activities of these mixed oxides increased with increasing the Ni content. The Ni/Mg/Al mixed oxide with the highest Ni content [n(Ni)/n(Mg)/n(Al)=1/1/1] showed the highest activity and the carbon nanotubes grown on its surface had the best quality.

  2. High speed production of YBCO precursor films by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    YBa2Cu3O7-y (YBCO) long tapes derived from the metal-organic deposition (MOD) method using the starting solution containing trifluoroacetate (TFA) have been developed with high critical currents (Ic) over 200 A/cm-width. However, high speed production of YBCO films is simultaneously necessary to satisfy the requirements of electric power device applications in terms of cost and the amounts of the tapes. In this work, we developed a new TFA-MOD starting solution using F-free salt of Y, TFA salt of Ba and Cu-Octylate for application to the coating/calcination process and discussed several issues by using the Multi-turn (MT) Reel-to-Reel (RTR) system calcination furnace for the purpose of high throughput without degradation of the properties. The coating system was improved for uniform deposition qualities in both longitudinal and transversal directions. YBCO films using the new starting solution at the traveling rate of 10 m/h in coating/calcination by the MT-RTR calcination furnace showed the values of the critical current density of 1.6 MA/cm2 as thick as 1.5 μm at 77 K under the self fields after firing at the high heating rate in the crystallization.

  3. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  4. Carbon Footprint of Tree Nuts Based Consumer Products

    OpenAIRE

    Roberto Volpe; Simona Messineo; Maurizio Volpe; Antonio Messineo

    2015-01-01

    This case study shows results of a calculation of carbon footprint (CFP) resulting from the production of nuts added value products for a large consumer market. Nuts consumption is increasing in the world and so is the consumer awareness of the environmental impact of goods, hence the calculation of greenhouse gas (GHG) emissions of food production is of growing importance for producers. Calculation of CO2eq emissions was performed for all stages of the production chain to the final retail po...

  5. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  6. The 53-kDa proteolytic product of precursor starch-hydrolyzing enzyme of Aspergillus niger has Taka-amylase-like activity.

    Science.gov (United States)

    Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S

    2007-04-01

    The 53-kDa amylase secreted by Aspergillus niger due to proteolytic processing of the precursor starch-hydrolyzing enzyme was resistant to acarbose, a potent alpha-glucosidase inhibitor. The enzyme production was induced when A. niger was grown in starch medium containing the inhibitor. Antibodies against the precursor enzyme cross-reacted with the 54-kDa Taka-amylase protein of A. oryzae. It resembled Taka-amylase in most of its properties and also hydrolyzed starch to maltose of alpha-anomeric configuration. However, it did not degrade maltotriose formed during the reaction and was not inhibited by zinc ions. PMID:17123073

  7. Production of activated carbon from cellulosic fibers for environment protection

    International Nuclear Information System (INIS)

    Activated carbon fibers (ACF) have received an increasing attention in recent years as an adsorbent for purifying polluted gaseous and aqueous streams. Their preparation, characterization and application have been reported in many studies [1], which show that the porosity of ACF is dependent on activation conditions, as temperature, time or gas. ACF provide adsorption rates 2 to 50 times higher than Granular Activated Carbon [2], because of their low diameter (∼10 m) providing a larger external surface area in contact with the fluid compared with that of granules. Furthermore, their potential for the removal of various pollutants from water was demonstrated towards micro-organics like phenols [3], pesticides or dyes [4]. Generally, fibrous activated carbons are produced from natural or synthetic precursors by carbonization at 600-1000 C followed by an activation step by CO2 oe steam at higher temperature [2]. Another way to produce the fibrous activated carbons is chemical activation with H3PO4, HNO3, KOH...[5]. Different types of synthetic or natural fibers have been used as precursors of fibrous activated carbons since 1970: polyacrylonitrile (PAN), polyphenol, rayon, cellulose phosphate, pitch, etc. Each of them has its own applications and limitations. The synthetic fibers being generally expensive, it would be interesting to find out low-cost precursors from local material resources. This work is a part of a research exchange program between the Vietnamese National Center of Natural Sciences and Technology (Vietnam) and the Ecole des Mines de Nantes (Gepea, France), with the aim to find some economical solutions for water treatment. Fibrous activated carbons are produced from natural cellulose fibers, namely jute and coconut fibers, which are abundant in Vietnam as well as in other tropical countries, have a low ash content and a low cost in comparison with synthetic fibers. Two methods are compared to produce activated carbons: 1) a physical activation with

  8. Production of activated carbon from microalgae

    OpenAIRE

    Hernández Férez, María del Remedio; Valdés Barceló, Francisco Javier; García Cortés, Ángela Nuria; Marcilla Gomis, Antonio; Chápuli Fernández, Eloy

    2008-01-01

    Presentado como póster en el 11th Mediterranean Congress of Chemical Engineering, Barcelona 2008. Resumen publicado en el libro de actas del congreso. Activated carbon is an important filter material for the removal of different compounds such as hazardous components in exhaust gases, for purification of drinking water, waste water treatment, adsorption of pollution from liquid phases, in catalysis, electrochemistry or for gas storage and present an important demand. Theoretically, activat...

  9. Biomimetic synthesis for precursor of muscone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Muscone is a precious fragrant compound scarce in nature. Many attempts have been made to synthesize this unique natural product. In this work, the one- carbon unit transfer reaction of tetrahydrofolate coenzyme was initiated. Benzimidazolium salt was used as the tetrahydrofolate coenzyme model at formic acid oxidation level and di-Grignard reagent as the nucleophile to which one-carbon unit was transferred; the biomimetic synthesis of 2,15- hexade-canedione, a precursor of muscone, was successfully accomplished by using the addition-hydrolysis reaction of benzimidazolium salt with Grignard reagent. And an impor-tant useful method for the synthesis of muscone is provided.

  10. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  11. Carbon Footprint Analysis for a GRAPE Production Case Study

    Science.gov (United States)

    Sirca, C.; Marras, S.; Masia, S.; Duce, P.; Zara, P.; Spano, D.

    2013-12-01

    Agriculture activities can play a double role in emitting or sequestering carbon from the atmosphere. Mitigation of greenhouse gas (GHG) emissions in agriculture is one of the most urgent research subjects in the framework of enhancing environmental stewardship. However, little is known about the role of the agriculture in the global carbon balance, since most of the studies applied the Eddy Covariance technique in natural or semi-natural ecosystems to investigate their role in mitigate the anthropogenic carbon release. The application of the Eddy Covariance technique in agricultural systems could greatly improve our knowledge about their role on the global carbon budget and help in modeling the related processes. In addition, there is a growing request from producers, trade companies, and customers on the assessment of the environmental impact of a production process related to agricultural high quality products. In recent years, particular attention was put on the estimation of GHG emissions deriving from productive processes. In this context, a useful tool is the Life Cycle Assessment (LCA), which represents a methodology to estimate GHG emissions related to the entire life cycle of a product. The Carbon Footprint (CF) analysis represents a subset of the LCA, which only considers CO2 emissions with an impact on climate change. With respect to the wine industry, most of studies focused on the CF analysis related to the wine making process in the cellar, while a few studies analyzed the GHG emissions related to the grape production. The aim of this work was to quantify the CO2 emissions due to the grape production and emphasize the double role of a vineyard as a carbon sink or source. An Eddy Covariance station was set up in a representative vineyard located in the Mediterranean Basin (Sardinia, Italy) to measure the net carbon exchange between the surface and the atmosphere. The CF analysis was also conducted to compute the carbon balance of the grape production

  12. Acute Exposure to a Precursor of Advanced Glycation End Products Induces a Dual Effect on the Rat Pancreatic Islet Function

    Directory of Open Access Journals (Sweden)

    Ghada Elmhiri

    2014-01-01

    Full Text Available Aim. Chronic diseases are the leading cause of death worldwide. Advanced glycation end products, known as AGEs, are a major risk factor for diabetes onset and maintenance. Methylglyoxal (MG, a highly reactive metabolite of glucose, is a precursor for the generation of endogenous AGEs. Methods. In this current study we incubated in vitro pancreatic islets from adult rats in absence or presence of MG (10 μmol/l with different concentrations of glucose and different metabolic components (acetylcholine, epinephrine, potassium, forskolin, and leucine. Results. Different effects of MG on insulin secretion were evidenced. In basal glucose stimulation (5.6 mM, MG induced a significant (P<0.05 increase of insulin secretion. By contrast, in higher glucose concentrations (8.3 mM and 16.7 mM, MG significantly inhibited insulin secretion (P<0.05. In the presence of potassium, forskolin, and epinephrine, MG enhanced insulin secretion (P<0.05, while when it was incubated with acetylcholine and leucine, MG resulted in a decrease of insulin secretion (P<0.05. Conclusion. We suggest that MG modulates the secretion activity of beta-cell depending on its level of stimulation by other metabolic factors. These results provide insights on a dual acute effect of MG on the pancreatic cells.

  13. Production of sorption-active polypropylene fibers by radiation-induce grafting of glycidyl methacrylate as a precursor monomer

    International Nuclear Information System (INIS)

    Full text: The design and development of sorption-active natural and synthetic polymer fibers and textile materials is of great scientific and practical interest. The advantages of that type of polymeric adsorbents, such as their highly developed specific surface, excellent ion-exchange parameters and ease of use especially under continuous conditions, allow them to find a great application in the chemical, biomedical, ecological and industrial fields. To obtain functional materials with the desired performance, the non-active polymer surface have to be modified. Among different innovative techniques used for the introduction of graft chains, the radiation-chemical method of initiation has some economical and ecological preferences over others. It allows to introduce into inert polymeric matrix chains of a monomer already containing a desirable functional group, or to graft chains of a precursor-monomer and subsequently its chemical modification to form required functional groups. At present an epoxy-group containing monomer, glycidyl methacrylate (GMA), is successfully used as a precursor-monomer for production of polymeric adsorbents of variety applications on the base of membranes, films, fibers and fabrics. Two types of sorption-active polypropylene fiber carrying strong-acid sulfonate groups and amino groups have been synthesized by radiation-induced graft polymerization of GMA, with subsequent chemical modification of the epoxy groups of poly-GMA graft chains The effect of various polymerization parameters on the GMA grafting degree was investigated in detail. The epoxy ring-opening of poly-GMA graft chains with introduction of strong-acid sulfonate groups was carried out with sodium hydrogen sulfite in water-dimethylformamide solution at 70 deg. C. The main peculiarities of the sulfonation reaction in depending on the reaction time and GMA grafting degree have been investigated. Amine groups were incorporated by treatment of the GMA-grafted polypropylene

  14. Production of sorption-active polypropylene fibers by radiation-induced grafting of glycidyl methacrylate as a precursor monomer

    International Nuclear Information System (INIS)

    The design and development of sorption-active natural and synthetic polymer fibers and textile materials is of great scientific and practical interest. The advantages of that type of polymeric adsorbents, as their highly developed specific surface, excellent ion-exchange and adsorption parameters and ease of their use especially under continuous conditions, allow them to find a great application in the chemical, biomedical, ecological and industrial fields. To obtain functional polymer materials with the desired performance, the non-active polymer surface have to be modified. Among different innovative techniques used for the introduction of graft chains, the radiation-chemical method of initiation has some economical and ecological preferences over others. It allows to introduce into inert polymeric matrix chains of a monomer already containing a desirable functional group, or to graft chains of a precursor-monomer and subsequently its chemical modification to form required functional groups. At present an epoxy-group containing monomer, glycidyl methacrylate (GMA), is successfully used as a precursor-monomer for production of polymeric adsorbents of variety applications on the base of membranes, films, fibers and fabrics. Two types of sorption-active polypropylene fiber carrying strong-acid sulfonate groups and amino groups have been synthesized by radiation-induced graft polymerization of GMA, with subsequent chemical modification of the epoxy groups of poly-GMA graft chains. The effect of various polymerization parameters on the GMA grafting degree was investigated in detail. The epoxy ring-opening of poly-GMA graft chains with introduction of strong-acid sulfonate groups was carried out with sodium hydrogen sulfite in water-dimethylformamide solution at 70 deg C. The main peculiarities of the sulfonation reaction in depending on the reaction time and GMA grafting degree have been investigated. Amine groups were incorporated by treatment of the GMA

  15. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, M., E-mail: m.suarez@cinn.e [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Fernandez, A. [Fundacion ITMA, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Menendez, J.L.; Torrecillas, R. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-03-18

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 {sup o}C by the chlorides route, whereas alkoxide precursors needed firing over 900 {sup o}C and nitrates even over 1100 {sup o}C. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 {sup o}C with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  16. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    International Nuclear Information System (INIS)

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 oC by the chlorides route, whereas alkoxide precursors needed firing over 900 oC and nitrates even over 1100 oC. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 oC with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  17. Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor.

    Science.gov (United States)

    To, John W F; He, Jiajun; Mei, Jianguo; Haghpanah, Reza; Chen, Zheng; Kurosawa, Tadanori; Chen, Shucheng; Bae, Won-Gyu; Pan, Lijia; Tok, Jeffrey B-H; Wilcox, Jennifer; Bao, Zhenan

    2016-01-27

    Carbon capture and sequestration from point sources is an important component in the CO2 emission mitigation portfolio. In particular, sorbents with both high capacity and selectivity are required for reducing the cost of carbon capture. Although physisorbents have the advantage of low energy consumption for regeneration, it remains a challenge to obtain both high capacity and sufficient CO2/N2 selectivity at the same time. Here, we report the controlled synthesis of a novel N-doped hierarchical carbon that exhibits record-high Henry's law CO2/N2 selectivity among physisorptive carbons while having a high CO2 adsorption capacity. Specifically, our synthesis involves the rational design of a modified pyrrole molecule that can co-assemble with the soft Pluronic template via hydrogen bonding and electrostatic interactions to give rise to mesopores followed by carbonization. The low-temperature carbonization and activation processes allow for the development of ultrasmall pores (d carbon-based materials for various potential applications. PMID:26717034

  18. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation

    DEFF Research Database (Denmark)

    Tian, Gui-Li; Zhao, Meng-Qiang; Zhang, Bingsen;

    2014-01-01

    Monodisperse metal nanoparticles (NPs) with high activity and selectivity are among the most important catalytic materials. However, the intrinsic process to obtain well-dispersed metal NPs with tunable high density (ranging from 10(13) to 10(16) m(-2)) and thermal stability is not yet well...... monodisperse embedded Fe NPs on the porous LDO flakes. The flake morphology of LDHs was well preserved, and the areal density of Fe NPs on the LDO flakes can be well controlled through adjusting the Fe content in the LDH precursor. With higher Fe loading, larger Fe NPs with higher areal density were available...

  19. In situ Diagnostics During Carbon Nanotube Production by Laser Ablation

    Science.gov (United States)

    Arepalli, Sivaram

    1999-01-01

    The preliminary results of spectral analysis of the reaction zone during the carbon nanotube production by laser ablation method indicate synergetic dependence on dual laser setup. The emission spectra recorded from different regions of the laser ablated plume at different delay times from the laser pulses are used to map the temperatures of C2 and C3. These are compared with Laser Induced Fluorescence (LIF) spectra also obtained during production to model the growth mechanism of carbon nanotubes. Experiments conducted to correlate the spectral features with nanotube yields as a function of different production parameters will be discussed.

  20. Net carbon flux in organic and conventional olive production systems

    Science.gov (United States)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  1. Beech carbon productivity as driver of ectomycorrhizal abundance and diversity.

    Science.gov (United States)

    Druebert, Christine; Lang, Christa; Valtanen, Kerttu; Polle, Andrea

    2009-08-01

    We tested the hypothesis that carbon productivity of beech (Fagus sylvatica) controls ectomycorrhizal colonization, diversity and community structures. Carbon productivity was limited by long-term shading or by girdling. The trees were grown in compost soil to avoid nutrient deficiencies. Despite severe limitation in photosynthesis and biomass production by shading, the concentrations of carbohydrates in roots were unaffected by the light level. Shade-acclimated plants were only 10% and sun-acclimated plants were 74% colonized by ectomycorrhiza. EM diversity was higher on roots with high than at roots with low mycorrhizal colonization. Evenness was unaffected by any treatment. Low mycorrhizal colonization had no negative effects on plant mineral nutrition. In girdled plants mycorrhizal colonization and diversity were retained although (14)C-leaf feeding showed almost complete disruption of carbon transport from leaves to roots. Carbohydrate storage pools in roots decreased upon girdling. Our results show that plant carbon productivity was the reason for and not the result of high ectomycorrhizal diversity. We suggest that ectomycorrhiza can be supplied by two carbon routes: recent photosynthate and stored carbohydrates. Storage pools may be important for ectomycorrhizal survival when photoassimilates were unavailable, probably feeding preferentially less carbon demanding EM species as shifts in community composition were found. PMID:19344334

  2. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate

    OpenAIRE

    Ilham, Zul; Saka, Shiro

    2016-01-01

    Conversion of glycerol from biodiesel production to glycerol carbonate was studied by esterification with dimethyl carbonate in a non-catalytic supercritical condition. It was found that in a non-catalytic supercritical condition, glycerol at higher purity gave higher yield of glycerol carbonate at 98 wt% after reaction at 300 °C/20–40 MPa/15 min. The yield of glycerol carbonate was observed to increase with molar ratio, temperature, pressure and time until a certain equilibrium limit. The ex...

  3. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  4. Production of superconductor/carbon bicomponent fibers

    Science.gov (United States)

    Wise, S. A.; Fain, C. C.; Leigh, H. D.

    1991-01-01

    Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been shown worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being studied. Various organic and acrylic materials were studied to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composite or cables.

  5. Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks

    OpenAIRE

    Jean-Pierre Dubé

    2004-01-01

    For several of the largest supermarket product categories, such as carbonated soft drinks, canned soups, ready-to-eat cereals, and cookies, consumers regularly purchase assortments of products. Within the category, consumers often purchase multiple products and multiple units of each alternative selected on a given trip. This multiple discreteness violates the single-unit purchase assumption of multinomial logit and probit models. The misspecification of such demand models in categories exhib...

  6. Nitric oxide increases carbon monoxide production by piglet cerebral microvessels

    OpenAIRE

    Leffler, Charles W.; Balabanova, Liliya; Fedinec, Alexander L.; Parfenova, Helena

    2005-01-01

    Carbon monoxide (CO) and nitric oxide (NO) can be involved in regulation of cerebral circulation. Inhibition of production of either one of these gaseous intercellular messengers inhibits newborn pig cerebral arteriolar dilation to the excitatory amino acid glutamate. Glutamate can increase NO production. Therefore, the present study tests the hypothesis that NO, which is increased by glutamate, stimulates the production of CO by cerebral microvessels. Experiments used freshly isolated cerebr...

  7. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  8. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    OpenAIRE

    Bosak, Z.; Barta, D; Zečević, N.; Šiklušić, S.

    2009-01-01

    This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV) oxide, carbon(II) oxide, hydrogen, methane, hydrogen sulfide, nitrogen...

  9. AlGaN/GaN high electron mobility transistors with intentionally doped GaN buffer using propane as carbon precursor

    Science.gov (United States)

    Bergsten, Johan; Li, Xun; Nilsson, Daniel; Danielsson, Örjan; Pedersen, Henrik; Janzén, Erik; Forsberg, Urban; Rorsman, Niklas

    2016-05-01

    AlGaN/GaN high electron mobility transistors (HEMTs) fabricated on a heterostructure grown by metalorganic chemical vapor deposition using an alternative method of carbon (C) doping the buffer are characterized. C-doping is achieved by using propane as precursor, as compared to tuning the growth process parameters to control C-incorporation from the gallium precursor. This approach allows for optimization of the GaN growth conditions without compromising material quality to achieve semi-insulating properties. The HEMTs are evaluated in terms of isolation and dispersion. Good isolation with OFF-state currents of 2 × 10-6 A/mm, breakdown fields of 70 V/µm, and low drain induced barrier lowering of 0.13 mV/V are found. Dispersive effects are examined using pulsed current-voltage measurements. Current collapse and knee walkout effects limit the maximum output power to 1.3 W/mm. With further optimization of the C-doping profile and GaN material quality this method should offer a versatile approach to decrease dispersive effects in GaN HEMTs.

  10. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T;

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  11. Carbon footprint of dairy production systems

    Science.gov (United States)

    Greenhouse gas (GHG) emissions and their potential impact on global warming has become an important national and international concern. Dairy production systems along with all other types of animal agriculture are recognized as a source of GHG. Although little information exists on the net GHG emiss...

  12. A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts.

    Science.gov (United States)

    Barman, Barun Kumar; Nanda, Karuna Kar

    2016-04-12

    Here, we demonstrate a green and environment-friendly pyrolysis route for the synthesis of metal-rich sulphide embedded in an N-doped carbon (NC) framework in the absence of sulphide ions (S(2-)). The metal-chelate complex (tris(ethylenediamine) metal(ii) sulfate) serves as a new and single source precursor for the synthesis of earth abundant and non-precious hybrid structures such as metal-rich sulphides Co9S8@NC and Ni3S2@NC when M(II) = Co(2+) and Ni(2+) and counter sulphate (SO4(2-)) ions are the source of S. Both the hybrids show superior OER activity as compared to commercial RuO2. PMID:26999042

  13. Carbon nano structures: Production and characterization

    Science.gov (United States)

    Beig Agha, Rosa

    L'objectif de ce memoire est de preparer et de caracteriser des nanostructures de carbone (CNS -- Carbon Nanostructures, en licence a l'Institut de recherche sur l'hydrogene, Quebec, Canada), un carbone avec un plus grand degre de graphitisation et une meilleure porosite. Le Chapitre 1 est une description generale des PEMFCs (PEMFC -- Polymer Electrolyte Membrane Fuel Cell) et plus particulierement des CNS comme support de catalyseurs, leur synthese et purification. Le Chapitre 2 decrit plus en details la methode de synthese et la purification des CNS, la theorie de formation des nanostructures et les differentes techniques de caracterisation que nous avons utilises telles que la diffraction aux rayons-X (XRD -- X-ray diffraction), la microscopie electronique a transmission (TEM -- transmission electron microscope ), la spectroscopie Raman, les isothermes d'adsorption d'azote a 77 K (analyse BET, t-plot, DFT), l'intrusion au mercure, et l'analyse thermogravimetrique (TGA -- thermogravimetric analysis). Le Chapitre 3 presente les resultats obtenus a chaque etape de la synthese des CNS et avec des echantillons produits a l'aide d'un broyeur de type SPEXRTM (SPEX/CertiPrep 8000D) et d'un broyeur de type planetaire (Fritsch Pulverisette 5). La difference essentielle entre ces deux types de broyeur est la facon avec laquelle les materiaux sont broyes. Le broyeur de type SPEX secoue le creuset contenant les materiaux et des billes d'acier selon 3 axes produisant ainsi des impacts de tres grande energie. Le broyeur planetaire quant a lui fait tourner et deplace le creuset contenant les materiaux et des billes d'acier selon 2 axes (plan). Les materiaux sont donc broyes differemment et l'objectif est de voir si les CNS produits ont les memes structures et proprietes. Lors de nos travaux nous avons ete confrontes a un probleme majeur. Nous n'arrivions pas a reproduire les CNS dont la methode de synthese a originellement ete developpee dans les laboratoires de l'Institut de

  14. Analysis on Availability of the Carbon Element in Alcohol Production

    Institute of Scientific and Technical Information of China (English)

    郭素荣; 蒋大和; 寇刘秀; 陆雍森

    2006-01-01

    According to the concept of circular economy, the mass integration of alcohol production was investigated though the analysis of the carbon element contained in raw material cassava. Through the mass integration, the distillage wastewater turned into carbon resource and produced a great deal of by-product biogas while its chemical oxygen demand (COD) was reduced from 50000 mg/L to not more than 300 mg/L, the local secondary effluent standards, and other by-products such as CO2 (liquidized) and fusel oil were recovered. In the way, the consumption of raw material was only 2.2 tons cassava to produce 1 ton alcohol (96%, ψ) in the case study, much lower than the average level 2.92 t/t in China. The carbon element balance for production of alcohol was made through testing the concentrations of the carbon element of all mass flows. The results showed that the mass integration helped the availability of the carbon element increased from 44.74% to 64.75%.

  15. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  16. Biological productivity and carbon cycling in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Primary production, bacterial production, particulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2@d) in the Chukchi shelf and was 3.8 mmolC/(m2@d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U disequilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to biogeochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2@d). Measurements of sediment excess 210Pb profile in the Chukchi shelf allowed us to estimate the amount of organic carbon buried in the bottom sediment, which ranged from 25 to 35 mmolC/(m2@d) and represented about 59%-82% of the mean primary production in the euphotic zone. Overall, our results indicated that the Arctic Ocean has active carbon cycling and is not a biological desert as previously believed. Therefore, the Arctic Ocean may play an important role in the global carbon cycle and climate change.

  17. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry, Ph.D.

    2002-09-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  18. Temperature Effects on the Production of Carbon Nano tubes from Palm Oil by Thermal Chemical Vapor Deposition Method

    International Nuclear Information System (INIS)

    In this study we report the effect of various synthesis temperatures of 600-1000 degree Celsius for the synthesis of carbon nano tubes (CNT). Bio-hydrocarbon precursor namely palm oil was utilized as a starting material by thermal vapor deposition method. The ferrocene at 5.33 wt% was directly mixed with palm oil precursor for 30 m synthesis time. The prepared CNT was collected from the furnace wall then characterized by field emission scanning electron microscopy (FESEM), micro-Raman spectroscopy and thermal gravimetric analysis (TGA). The growth rate, diameter, crystallinity and the purities of CNT were found to be highly dependent on the temperature changes. The synthesis temperature of 800 degree Celsius was considered to be the optimum temperature for higher quality and quantity of CNT production. (author)

  19. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  20. Effects of Globalisation on Carbon Footprints of Products

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky

    2009-01-01

    Outsourcing of production from the industrialised countries to the newly industrialised economies holds the potential to increase wealth in both places, but what are the environmental costs of the globalised manufacturing systems? This paper looks into the changes in carbon footprint of manufactu......Outsourcing of production from the industrialised countries to the newly industrialised economies holds the potential to increase wealth in both places, but what are the environmental costs of the globalised manufacturing systems? This paper looks into the changes in carbon footprint...

  1. Tracking urban carbon footprints from production and consumption perspectives

    International Nuclear Information System (INIS)

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO2e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO2e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO2e/y, 44.8 Mt CO2e/y, 28.4 Mt CO2e/y, 23.7 Mt CO2e/y, and 19.0 Mt CO2e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city. (letter)

  2. Tracking urban carbon footprints from production and consumption perspectives

    Science.gov (United States)

    Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu

    2015-05-01

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO2e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO2e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO2e/y, 44.8 Mt CO2e/y, 28.4 Mt CO2e/y, 23.7 Mt CO2e/y, and 19.0 Mt CO2e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city.

  3. Investigación de Almidones Termoplásticos, Precursores de Productos Biodegradables Research on Thermoplastic Starches, Biodegradable Products Precursors

    Directory of Open Access Journals (Sweden)

    Héctor S Villada

    2008-01-01

    Full Text Available En este trabajo se realizo una revisión enfocada al entendimiento de los conceptos detrás del término Almidón Termoplástico-TPS, para facilitar el desarrollo de productos biodegradables. La revisión de la literatura que abarca el presente trabajo se agrupó en seis categorías: fuentes, características y usos de los almidones; fusión y mecanismos de transformación; verificación del proceso de plastificación y propiedades; modificaciones químicas y bioquímicas; envejecimiento y biodegradación; y mezclas para el desarrollo de nuevos materiales. Esta categorización permite comprender los avances en este campo en los últimos quince años, así como los principales retos para el futuro, siendo los más relevantes disminuir la sensibilidad a la humedad y retardar la retrogradación de la matriz termoplástica.This paper presents a review focused on the understanding of the concepts behind the term Thermoplastic Starch -TPS to facilitate the development of biodegradable products. The literature review covered in this work is grouped into six categories: sources, characteristics and uses of starches; fusion and mechanisms of transformation; plasticizing properties and verification process; chemical and biochemical changes; aging and biodegradation; and mixtures for the development of new materials. This categorization allows understanding the advances in this field over the past fifteen years, as well as major challenges for the future, being the most important reducing the sensitivity to moisture and retarding the retrogradation of the thermoplastic matrix.

  4. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  5. One-Pot Method for Multifunctional Yolk Structured Nanocomposites with N-doped Carbon Shell Using Polydopamine as Precursor.

    Science.gov (United States)

    Zhang, Yanwei; Zhang, Min; Ding, Lei; Wang, Yongtao; Xu, Jingli

    2016-12-01

    Herein, we reported a facile method to prepared uniform yolk like nanocomposites with well-defined N-doped carbon shell (C), in which the cores@SiO2@polydopamine (Pdop) were used as the sacrificed template. Typically, inherited from the functional Au core, the yolk particles presented excellent catalytic activities. PMID:27094826

  6. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  7. Calcareous Algae of a Tropical Lagoon : Primary Productivity, Calcification and Carbonate Production

    OpenAIRE

    Kangwe, Juma W.

    2005-01-01

    The green algae of the genus Halimeda Lamouroux (Chlorophyta, Bryopsidales) and the encrusting loose-lying red coralline algae (Rhodophyta, Corallinales) known as rhodoliths are abundant and widespread in all oceans. They significantly contribute to primary productivity while alive and production of CaCO3 rich sediment materials on death and decay. Carbonate rich sediments are important components in the formation of Coral Reefs and as sources of inorganic carbon (influx) in tropical and subt...

  8. A simple route to making counter electrode for dye sensitized solar cells (DSSCs) using sucrose as carbon precursor.

    Science.gov (United States)

    Kumar, Rahul; More, Venumadhav; Mohanty, Shyama Prasad; Nemala, Siva Sankar; Mallick, Sudhanshu; Bhargava, Parag

    2015-12-01

    Dye sensitized solar cells (DSSCs) have attracted much attention in recent years due to low cost fabrication as compared to silicon-based and thin film solar cells. Though, platinum is an excellent catalytic material for use in preparation of counter electrodes (CEs) for DSSCs it is expensive. Alternatives to replacement of platinum (Pt) that have been examined are carbon materials, conductive polymers and hybrids. In this work, counter electrode for DSSCs was fabricated using carbon material obtained from graphitization of sucrose at high temperature. A slurry of the carbon produced from sucrose graphitization was made with polyvinylpyrrolidone (PVP) as a surfactant and a coating was obtained by doctor blading the slurry over the FTO glass substrate. The current density (Jsc) and open circuit voltage (V(OC)) of fabricated cell (area 0.25 cm(2)) was 10.28 mAc m(-2) and 0.76 V respectively. The efficiency of the cell was 4.33% which was just slightly lower than that obtained for similar cells using platinum based counter electrode. PMID:26283098

  9. Global carbon production and transport in Tore Supra

    International Nuclear Information System (INIS)

    Impurity production and transport have been studied in small Tore Supra plasmas, for which the sole source or impurities (essentially carbon) is an outboard limiter. The main diagnostic was a visible endoscope, allowing absolute intensity calibrated CCD camera images of the entire limiter to be obtained at selected wavelengths. The experimental results show that, while chemical sputtering is essential to explain the limiter images, it does not contribute much to the central impurity content (for which physical sputtering is more important). The experimental edge carbon fluxes and the core plasma carbon content were simulated by coupling the 3D Monte Carlo edge impurity code BBQ with the 1D Tore Supra core impurity transport code, thus modelling (for the first time) the global impurity production and transport. (Author)

  10. Global carbon production and transport in Tore Supra

    International Nuclear Information System (INIS)

    Impurity production and transport have been studied in small Tore Supra plasmas, for which the sole source of impurities (essentially carbon) is an outboard limiter. The main diagnostic was a visible endoscope, allowing absolute intensity calibrated CCD camera images of the entire limiter to be obtained at selected wavelengths. The experimental results show that, while chemical sputtering is essential to explain the limiter images, it does not contribute much to the central impurity content (for which physical sputtering is more important). The experimental edge carbon fluxes and the core plasma carbon content were simulated by coupling the 3-D Monte Carlo edge impurity code BBQ with the 1-D Tore Supra core impurity transport code, thus modelling (for the first time) the global impurity production and transport. (Authors). 24 refs., 6 figs., 1 tab

  11. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  12. Regulation of ROS Production and Vascular Function by Carbon Monoxide

    OpenAIRE

    Yoon Kyung Choi; Por, Elaine D.; Young-Guen Kwon; Young-Myeong Kim

    2012-01-01

    Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). CO interacts with reduced iron of heme-containing proteins, leading to its involvement in various cellular events via its production of mitochondrial reactive oxygen species (ROS). CO-mediated ROS production initiates intracellular signal events, which regulate the expression of adaptive genes implicated in oxidative stress and functions as signaling molecule for promoting vascular functions, including angio...

  13. Ethanol production from crop residues and soil organic carbon

    NARCIS (Netherlands)

    L. Reijnders

    2008-01-01

    In decision making about the use of residues from annual crops for ethanol production, alternative applications of these residues should be considered. Especially important is the use of such residues for stabilizing and increasing levels of soil organic carbon. Such alternative use leads to a limit

  14. 78 FR 35603 - Foreign-Trade Zone 83-Huntsville, Alabama; Application for Production Authority; Toray Carbon...

    Science.gov (United States)

    2013-06-13

    ...; Toray Carbon Fibers America, Inc.; (Polyacrylonitrile Fiber/Carbon Fiber Production), Decatur, Alabama... Airport Authority, grantee of FTZ 83, requesting production authority on behalf of Toray Carbon Fibers... facility is used for the production of polyacrylonitrile (PAN)-based carbon fiber, and PAN fiber,...

  15. Preparation of Carbon-Doped TiO2 Nanopowder Synthesized by Droplet Injection of Solution Precursor in a DC-RF Hybrid Plasma Flow System

    Science.gov (United States)

    Jang, Juyong; Takana, Hidemasa; Ando, Yasutaka; Solonenko, Oleg P.; Nishiyama, Hideya

    2013-08-01

    Carbon-doped titanium dioxide nanopowder has received much attention because of its higher photocatalytic performance, which is practically activated not only by UV, but also by visible light irradiation. In the present study, C-TiO2 nanopowder was synthesized by droplet injection of solution precursor in a DC-RF hybrid plasma flow system, resulting in higher photocatalytic performance even under visible light irradiation. In-flight C-TiO2 nanoparticles reacted with the high concentration of carbon in plasma flow and were then deposited on the surfaces of two quartz tubes in the upstream and downstream regions of this system. The collected C-TiO2 nanopowder contained anatase-rutile mixed-phase TiO2 and TiC, the contents of which depended on the location of the powder collection, the temperature, and the duration of plasma treatment. Highly functional C-TiO2 nanopowder collected in the downstream region exhibited a higher degradation rate of methylene blue than that of single-phase anatase TiO2, even under visible light irradiation, in spite of being TiC.

  16. Study on the production of the columbite phase (Mg Nb2 O6) by using the polymeric precursor method

    International Nuclear Information System (INIS)

    Columbite powders (Mg Nb2 O6) were synthesized by polymeric precursor method, or Pechini. Studies of thermogravimetric and differential thermo analysis, infrared spectroscopy, nitrogen adsorption/desorption isotherms and X-ray diffraction showed high reactive and crystalline powders. High surface area about 48 m2 g-1 was obtained and no Mg O or Nb2 O5 was observed. (author)

  17. Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress

    DEFF Research Database (Denmark)

    Kjær, Anders; Verstappen, Francel; Bouwmeester, Harro;

    2013-01-01

    was examined on the concentrations of AN and its immediate precursors in leaves, and these concentrations were related to densities and sizes of the glandular trichomes (GT). Plants were stress treated weekly five times by sandblasting or spraying with salicylic acid, chitosan oligosaccharide, H2O2, and Na...

  18. Methodology for calculation of carbon balances for biofuel crops production

    Science.gov (United States)

    Gerlfand, I.; Hamilton, S. K.; Snapp, S. S.; Robertson, G. P.

    2012-04-01

    Understanding the carbon balance implications for different biofuel crop production systems is important for the development of decision making tools and policies. We present here a detailed methodology for assessing carbon balances in agricultural and natural ecosystems. We use 20 years of data from Long-term Ecological Research (LTER) experiments at the Kellogg Biological Station (KBS), combined with models to produce farm level CO2 balances for different management practices. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; and (5) continuous alfalfa (Medicago sativa). In addition we use an abandoned agricultural field (successionnal ecosystem) as reference system. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). In addition to measurements, we model carbon offsets associated with the use of bioenergy from agriculturally produced crops. Our analysis shows the importance of establishing appropriate system boundaries for carbon balance calculations. We explore how different assumptions regarding production methods and emission factors affect overall conclusions on carbon balances of different agricultural systems. Our results show management practices that have major the most important effects on carbon balances. Overall, agricultural management with conventional tillage was found to be a net CO2 source to the atmosphere, while agricultural management under reduced tillage, low input, or organic management sequestered carbon at rates of 93, -23, -51, and -14 g CO2e m-2 yr-1, respectively for conventionally tilled, no-till, low-input, and organically managed ecosystems. Perennial systems (alfalfa and the successionnal fields) showed net carbon

  19. Carbon dioxide utilization and hydrogen production by photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Katsuhiro [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan); Takasaki, Koichi [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan)]|[RITE, Project Center for CO2 Fixation and Utilization, Minato, Tokyo (Japan); Miyake, Jun; Asada, Yasuo [National Institute of Bioscience and Human-Technology, AIST/MITI, Tsukuba, Ibaraki (Japan)

    1999-07-01

    The solar energy is the largest energy source in the world. Using the photosynthesis, we will be able utilise the huge amount of carbon dioxide. Microalgae, cyanobacteria, photosynthetic bacteria belong to photosynthetic microorganisms, which assimilate carbon dioxide during the photosynthesis. One of the cyanobacteria, Spirulina platensis accumulates carbohydrate photoautotrophically up to 50% of the dry cell weight in the nitrogen-deficient condition. Under an anaerobic condition in the dark, it is degraded into organic compounds such as organic acids, alcohol and sugar. As the hydrogen gas is also evolved in this process, the participation of hydrogenase (Hydrogen producing enzyme) has been suggested in this metabolism. We have investigated several conditions of evolution of hydrogen and production of organic compounds. The bacterial concentration initial pH and temperature had significant effects on hydrogen evolution as well as production of organic compounds. When the bacterial cell concentration was high, the pH of fermentation products was reduced to acidic and the evolution of hydrogen tended to be inhibited. The profiles of fermentation products varied according to the culture condition. The increase of organic acids were remarkable in the inhibitory condition for hydrogen production, such as acidic pH and high temperature. Furthermore these fermentation products were converted into hydrogen gas by using photosynthetic bacterium Rhodobacter sphaeroides RV with light energy. The composition of evolved gas was mainly hydrogen and carbon dioxide, and their contents were 78% and 10%, respectively. The total amount of evolved hydrogen was nearly equal to the estimated, value which was calculated by the degradation of each organic acid. Combining this system with the photosynthesis of cyanobacteria, we could accomplish the production of hydrogen by solar energy, carbon dioxide and water. And we demonstrated that the evolved gas could be directly supplied to the

  20. Regional carbon dioxide implications of forest bioenergy production

    Science.gov (United States)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-11-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2-14% (46-405TgC) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30-60gCm-2yr-1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.

  1. Biogenic carbon fluxes from global agricultural production and consumption

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  2. The impact of a carbon tax on Greek electricity production

    International Nuclear Information System (INIS)

    The impact of proposed carbon taxes on the electric power industry, using the Greek power system as a case study, is investigated in this paper. It uses the WASP model for electric generation capacity expansion to explore the optimal expansion path under alternative carbon tax scenarios and to estimate their impact on CO2 and other types of emissions and on electricity production costs. The findings suggest that low carbon taxes would lead to a considerable reduction of the use of conventional lignite fired power plants counterbalanced predominantly by natural gas fired plants. High carbon taxes (100-200 US dollars per ton of carbon) would lead to a drastic reduction of the use of conventional lignite fired power plants which would be mainly replaced by coal or lignite fired technologies with CO2 removal capabilities, which are not available today but might become available within the time horizon of the present study. Hydropower and renewable sources would be the second least-cost alternatives to lignite under both low and high tax scenarios. The study provides evidence that carbon taxes also result in significant increases in the cost of producing electricity, implying adverse economic effects on electricity consumers and the Greek economy in general. (author). 35 refs, 1 fig., 7 tabs

  3. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  4. SYNGAS PRODUCTION FROM CO2-REFORMING OF CH4 OVER SOL-GEL SYNTHESIZED Ni-Co/Al2O3-MgO-ZrO2 NANOCATALYST: EFFECT OF ZrO2 PRECURSOR ON CATALYST PROPERTIES AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Sajjadi

    2015-05-01

    Full Text Available Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH and zirconyl nitrate solution (ZNS, was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS. FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.

  5. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of

  6. A luminescent supramolecular assembly composed of a single-walled carbon nanotube and a molecular magnet precursor

    Energy Technology Data Exchange (ETDEWEB)

    Safar, G. A. M., E-mail: gamsafar@yahoo.com.br; Simoes, T. R. G. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Paula, A. M. de [Universidade Federal de Minas Gerais, Departamento de Fisica (Brazil); Gratens, X.; Chitta, V. A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Stumpf, H. O. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil)

    2013-02-15

    Magnetism of supramolecular assemblies of single-walled carbon nanotubes (SWCNTS) with a magnetic dinuclear molecule is investigated. Raman, optical absorption and confocal fluorescence images are used to probe the interaction of the dinuclear compound and the SWCNT. The supramolecular assembly shows antiferromagnetism, on the contrary to the case when strong electronic doping of the SWCNT occurs, yielding a spin-glass system, and contrary to the case of the dinuclear molecular crystal, which is ferromagnetic. The SWCNT imposes the antiferromagnetic order to the dinuclear molecule, corroborating recent findings that antiferromagnetism is present in pure SWCNTs. Two theoretical models are used to fit the data, both yielding good fitting results. The nanoparticle size range is around 2-10 nm.

  7. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; DeLuca, Adam P; Anfinson, Kristin R; Cranston, Cathryn M; Kaalberg, Emily E; Penticoff, Jessica A; Affatigato, Louisa M; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  8. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  9. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    Science.gov (United States)

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  10. Design of a Prussian Blue Analogue/Carbon Nanotube Thin-Film Nanocomposite: Tailored Precursor Preparation, Synthesis, Characterization, and Application.

    Science.gov (United States)

    Husmann, Samantha; Zarbin, Aldo J G

    2016-05-01

    Multi-walled carbon nanotubes (MWCNTs) filled with different species of cobalt (metallic cobalt, cobalt oxide) were synthesized by a chemical vapor deposition method through cobaltocene pyrolysis. A systematic study was performed to correlate different experimental conditions with the structure and characteristics of the obtained material. Thin films of Co-filled CNTs were deposited over conductive substrates through a liquid-liquid interfacial method and were used for cobalt hexacyanoferrate (CoHCFe) electrodeposition by an innovative route in which the Co species encapsulated in the CNTs were employed as reactants. The CNT/CoHCFe films were characterized by different spectroscopic, microscopic, and electrochemical techniques and presented high electrochemical stability in different media. The nanocomposites were applied as both an electrochemical sensor to H2 O2 and a cathode for ion batteries and showed limits of detection at approximately 3.7 nmol L(-1) and a capacity of 130 mAh g(-1) at a current density of 5 A g(-1) . PMID:27010671

  11. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  12. CREAT A CONSORTIUM AND DEVELOP PREMIUM CARBON PRODUCTS FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    John M. Andresen

    2003-08-01

    The Consortium for Premium Carbon Products from Coal, with funding from the U.S. Department of Energy's National Energy Technology Laboratory and matching funds from industry and academic institutions continued to excel in developing innovative technologies to use coal and coal-derived feedstocks to produce premium carbon product. During Budget Period 5, eleven projects were supported and sub-contracted were awarded to seven organizations. The CPCPC held two meetings and one tutorial at various locations during the year. Budget Period 5 was a time of growth for CPCPC in terms of number of proposals and funding requested from members, projects funded and participation during meetings. Although the membership was stable during the first part of Budget Period 5 an increase in new members was registered during the last months of the performance period.

  13. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone.

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael; Baker, Scott E; Bruno, Kenneth S; Wang, Clay C

    2010-12-06

    The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

  14. Photorespiration and Carbon Limitation Determine Productivity in Temperate Seagrasses

    OpenAIRE

    Buapet, Pimchanok; Rasmusson, Lina M.; Gullström, Martin; Björk, Mats

    2013-01-01

    The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. i...

  15. Nickel (II) lignosulfonate as precursor for the deposition of nickel hydroxide nanoparticles on a glassy carbon electrode for oxidative electrocatalysis

    International Nuclear Information System (INIS)

    We demonstrate, for the first time, the chemical/electrochemical synthesis of uniformly dispersed nickel hydroxide nanoparticles (Ni(OH)2-NPs) embedded in an adsorbed lignosulfonate layer (LS) deposited on a glassy carbon (GC) electrode. This approach is based on the oxidative deposition of Ni(II) lignosulfonates (Ni-LS) followed by Ni(OH)2-NP precipitation in alkaline electrolyte. The morphology of this composite was investigated by scanning electron microscopy (SEM). The SEM results show that the NPs have a nano-globular structure in the range ca. 50–200 nm. The composite displays reversible electrochemical transition due to a Ni(II)/Ni(III) redox couple and electrocatalytic activity leading to the oxidation of methanol in alkaline solution. The electrochemical properties of the resulting material deposited as a redox film were investigated by cyclic voltammetry and chronoamperometry techniques. Using Laviron's theory, the electron-transfer rate constant and the transfer coefficient were determined to be ks = 4.1 s−1 and α = 0.42 respectively for a modifier film (ΓNi = 2.5 × 10−9 mol cm−2) in 0.1 M sodium hydroxide electrolyte. Chronoamperometric studies were used to determine the catalytic rate constant for the catalytic reaction of the tested modifier with methanol (kch = 1.0 × 104 cm3 mol−1 s−1). The dependence of the methanol oxidation current on alcohol concentration is discussed. The modified electrode for methanol oxidation offers simple preparation, good stability and reproducibility

  16. Electrolysis of carbon dioxide for carbon monoxide production in a tubular solid oxide electrolysis cell

    International Nuclear Information System (INIS)

    Highlights: • An experimental study for the CO regeneration was demonstrated. • Higher current densities at higher temperatures were obtained. • The scale of the combined system was estimated experimentally at 800 °C. • The required surface area of the cells was estimated to be 65.6 km2/BF unit. • The combined system may contribute to establishing a low-carbon society. - Abstract: An active carbon recycling energy system (ACRES) based on carbon recycling has been proposed as a new energy transformation system. This energy transformation system reduces the carbon dioxide (CO2) emissions in the atmosphere during the iron-making process. An experimental study for electrochemical CO production by CO2 electrolysis based on the ACRES concept was carried out using a tubular solid oxide electrolysis cell. Experimental results show that the CO and oxygen (O2) production rates at 800, 850, and 900 °C were almost proportional to the current passing through the cell. Both ionic conductivity and the chemical kinetics of CO2 decomposition increased with increasing temperature. The highest current density and CO production rate at 900 °C were 2.97 mA/cm2 and 0.78 μmol/(min cm2), respectively. On the basis of the electrolytic characteristics of the cell, the scale of the combined ACRES CO2 electrolysis/iron-making system was estimated

  17. Carbonate and carbon fluctuations in the Eastern Arabian Sea over 140 ka: Implications on productivity changes?

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Naidu, P.D.; Haake, B.G.; Schiebel, R.

    -driven upwelling (Murray and Prell, 1992). A reliable organic carbon-based index of productivity must 0.0 -1.0 -2.0 -3.0 δ 18 O( ‰ ) 0 20 40 60 Age 20 Fig.4. Oxygenisotopestratigraphy,downcorevariationofcalcium coreSK129-CR05 (afterPattanetal.2003).LSR... andsummerinsolationmaximaintheprecessional frequencyband,itissuggestedthattheTOCsignal reflects either preservation changes due to en- hancedsedimentationratesortotheproductionof organic carbon and is not directly linked to monsoonal upwelling (Murray and Prell, 1992). In contrast, variation...

  18. Thermoset precursor

    International Nuclear Information System (INIS)

    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  19. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    International Nuclear Information System (INIS)

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation

  20. Enhanced humification by carbonated basic oxygen furnace steel slag--I. Characterization of humic-like acids produced from humic precursors.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nie, Yongfeng

    2012-01-01

    Carbonated basic oxygen furnace steel slag (hereinafter referred to as "steel slag") is generated during iron and steel manufacturing and is often classified as waste. The effect of steel slag on humification process was investigated. Catechol, glycine and glucose were used as model humic precursors from degraded biowastes. To verify that humification occurred in the system, humic-like acids (HLAs) were isolated and characterized structurally by elemental analysis, FTIR spectra, solid-state CP-MAS (13)C NMR spectra, and TMAH-Py-GC/MS. Characteristics of the steel slag-HLA were compared with those of HLAs formed in the presence of zeolite and birnessite, and with that of mature compost humic acid. The results showed that steel slag-HLA, like zeolite- and birnessite-HLA, is complex organic material containing prominent aromatic structures. Steel slag substantially accelerated the humification process, which would be highly significant for accelerating the stabilization of biowastes during composting (e.g. municipal solid waste, sewage sludge, and food waste). PMID:22130079

  1. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays.

    Science.gov (United States)

    Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter

    2016-01-01

    Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue. PMID:27200182

  2. Biological carbon monoxide conversion to acetate production by mixed culture.

    Science.gov (United States)

    Nam, Chul Woo; Jung, Kyung A; Park, Jong Moon

    2016-07-01

    To utilize waste CO for mixed culture gas fermentation, carbon sources (CO, CO2) and pH were optimized in the batch system to find out the center point and boundary of response surface method (RSM) for higher acetate (HAc) production (center points: 25% CO, 40% CO2, and pH 8). The concentrations of CO and CO2, and pH had significant effects on acetate production, but the pH was the most significant on the HAc production. The optimum condition for HAc production in the gas fermentation was 20.81% CO, 41.38% CO2, 37.81% N2, and pH 7.18. The continuous gas fermentation under the optimum condition obtained 1.66g/L of cell DW, 23.6g/L HAc, 3.11g/L propionate, and 3.42g/L ethanol. PMID:27035481

  3. Ratio of Pion Kaon Production in Proton Carbon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Andrey V.; /Harvard U.

    2007-05-01

    The ratio of pion-kaon production by 120 GeV/c protons incident on carbon target is presented. The data was recorded with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory. Production ratios of K{sup +}/{pi}{sup +}, K{sup -}/{pi}{sup -}, K{sup -}/K{sup +}, and {pi}{sup -}/{pi}{sup +} are measured in 24 bins in longitudinal momentum from 20 to 90 GeV/c and transverse momentum up to 2 GeV/c. The measurement is compared to existing data sets, particle production Monte Carlo results from FLUKA-06, parametrization of proton-beryllium data at 400/450 GeV/c, and ratios measured by the MINOS experiment on the NuMI target.

  4. Investigation of physiologically active products obtained from carbon-ion irradiated actinomycetes

    International Nuclear Information System (INIS)

    Charged particles such as carbon-ions are superior to X-rays or gamma-rays in the physical and biological characteristics. The propose research project is aimed to provide new insights on antibiotic development. Carbon-ion exposure reduced cell growth. Product(s) from carbon-ion irradiated microorganera suppressed growth of human leukemia cells. We suggested that carbon-ion irradiated actinomycetes produce antitumor active product(s) for leukemia cells. (author)

  5. MID Max: LC–MS/MS Method for Measuring the Precursor and Product Mass Isotopomer Distributions of Metabolic Intermediates and Cofactors for Metabolic Flux Analysis Applications

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Young, Jamey D.; Xu, Sibei;

    2016-01-01

    that takes advantage of additional scan types that maximizes the number of mass isotopomer distributions (MIDs) that can be acquired in a given experiment. The analytical method was found to measure the MIDs of 97 metabolites, corresponding to 74 unique metabolite-fragment pairs (32 precursor spectra...... and 42 product spectra) with accuracy and precision. The compounds measured included metabolic intermediates in central carbohydrate metabolism and cofactors of peripheral metabolism (e.g., ATP). Using only a subset of the acquired MIDs, the method was found to improve the precision of flux...

  6. Carbon Footprint of Tree Nuts Based Consumer Products

    Directory of Open Access Journals (Sweden)

    Roberto Volpe

    2015-11-01

    Full Text Available This case study shows results of a calculation of carbon footprint (CFP resulting from the production of nuts added value products for a large consumer market. Nuts consumption is increasing in the world and so is the consumer awareness of the environmental impact of goods, hence the calculation of greenhouse gas (GHG emissions of food production is of growing importance for producers. Calculation of CO2eq emissions was performed for all stages of the production chain to the final retail point for flour, grains, paste, chocolate covered nuts and spreadable cream produced from almonds, pistachios and hazelnuts grown and transformed in Italy and for peanuts grown in Argentina and transformed in Italy. Data from literature was used to evaluate CFP of raw materials, emissions from transport and packing were calculated using existing models, while emissions deriving from transformation were calculated empirically by multiplying the power of production lines (electrical and/or thermal by its productivity. All values were reported in kg of CO2 equivalent for each kg of packed product (net weight. Resulting values ranged between 1.2 g of CO2/kg for a 100 g bag of almond to 4.8 g of CO2/kg for the 100 g bag of chocolate covered almond. The calculation procedure can be well used for similar cases of large consumer food productions.

  7. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. PMID:25886016

  8. Apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor); Smith, Franklyn (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2012-01-01

    A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO.sub.2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO.sub.2 emissions compared to conventional processes.

  9. Converting poultry litter to activated carbon: optimal carbonization conditions and product sorption for benzene.

    Science.gov (United States)

    Guo, Mingxin; Song, Weiping

    2011-12-01

    To promote utilization of poultry litter as a source material for manufacturing low-cost activated carbon (AC) that can be used in wastewater treatment, this study investigated optimal production conditions and water-borne organic sorption potential of poultry litter-based AC. Pelletized broiler litter was carbonized at different temperatures for varied time periods and activated with steam at a range of flow rate and time. The AC products were examined for quality characteristics using standard methods and for organic sorption potentials using batch benzene sorption techniques. The study shows that the yield and quality of litter AC varied with production conditions. The optimal production conditions for poultry litter-based AC were carbonization at 700 degrees C for 45 min followed by activation with 2.5 ml min(-1) steam for another 45 min. The resulting AC possessed an iodine number of 454 mg g(-1) and a specific surface area of 403 m2 g(-1). It sorbed benzene in water following sigmoidal kinetic and isothermal patterns. The sorption capacity for benzene was 23.70 mg g(-1), lower than that of top-class commercial AC. The results, together with other reported research findings, suggest that poultry litter is a reasonable feedstock for low-cost AC applicable to pre-treat wastewater contaminated by organic pollutants and heavy metals. PMID:22439566

  10. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  11. 78 FR 34340 - Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Preliminary Results of...

    Science.gov (United States)

    2013-06-07

    ... Order; Welded Carbon Steel Standard Pipe and Tube Products from Turkey, 51 FR 17784 (May 15, 1986). The... International Trade Administration Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Preliminary... antidumping duty order on welded carbon steel standard pipe and tube products (welded pipe and tube)...

  12. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-08

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  13. Environmental Remediation and Conversion of Carbon Dioxide (CO2 into Useful Green Products by Accelerated Carbonation Technology

    Directory of Open Access Journals (Sweden)

    Kwang-Suk You

    2010-01-01

    Full Text Available This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2, a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC. Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation.

  14. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  15. Forests and ozone: productivity, carbon storage, and feedbacks

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H.; Shuman, Jacquelyn K.; Lerdau, Manuel T.

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  16. Development of tubular hybrid direct carbon fuel cell and pyrolysis of biomass for production of carbon fuel

    OpenAIRE

    Bonaccorso, Alfredo Damiano

    2013-01-01

    This study involved two avenues of investigation: a new concept of Direct Carbon Fuel Cell (DCFC) and the production of carbon from biomass. The new concept of DCFC merges a solid oxide electrolyte and a molten carbonate electrolyte called the “hybrid direct carbon fuel cell” using tubular geometry. The tubular cell was chosen for several reasons, such as sealing process, reduction of stress during the sintering process and reduction of the final size of the stack. In addition, it makes th...

  17. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V.A.; Kuvshinov, G.G.; Mogilnykh, Yu.I. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A. [University of Hamburg (Germany); Steinfeld, A.; Weidenkaff, A.; Meier, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  18. Enzymatic production of glycerol carbonate from by-product after biodiesel manufacturing process.

    Science.gov (United States)

    Jung, Hongsub; Lee, Youngrak; Kim, Daeheum; Han, Sung Ok; Kim, Seung Wook; Lee, Jinwon; Kim, Yong Hwan; Park, Chulhwan

    2012-08-10

    Glycerol carbonate is one of the higher value-added products derived from glycerol. In this study, glycerol carbonate (GC) was synthesized by transesterification of glycerol and dimethyl carbonate (DMC) using Novozym 435 (Candida antarctica Lipase B) at various conditions. For the enzymatic production of GC, the optimum conditions were the amount of enzyme (75 g/L), DMC/glycerol molar ratio (2.00), reaction temperature (60°C) and organic solvent (acetonitrile). Experimental investigation of the effect of water content revealed that the conversion of GC was maximized with no added water. The addition of surfactant such as Tween 80 increased the GC conversion, which finally reached 96.25% under the optimum condition and with surfactant addition. PMID:22759533

  19. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2011-12-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms and thereby modifying the oceanic alkalinity cycle. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. Meanwhile, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 will ultimately increase or decrease the globally-integrated pelagic calcification rate. Here, we assess the importance of this uncertainty by introducing a variable dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in the University of Victoria Earth System Climate Model, an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of this parameterization on global ocean carbon cycling under two CO2 emissions scenarios, both integrated to the year 3500. The simulations show a significant sensitivity of the vertical and surface horizontal alkalinity gradients to the parameterization, as well as the removal of alkalinity from the ocean through CaCO3 burial. These sensitivities result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 13 % of total carbon emissions, compared to the case where calcification is insensitive to acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500, a 13 % reduction in the amplitude of warming. Narrowing these uncertainties will require better understanding of both temperature and acidification effects on pelagic calcifiers. Preliminary examination suggests that

  20. Technical note: Methionine, a precursor of methane in living plants

    Directory of Open Access Journals (Sweden)

    K. Lenhart

    2014-11-01

    Full Text Available When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia. Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  1. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.

    Science.gov (United States)

    Rittmann, Simon K-M R; Lee, Hyun Sook; Lim, Jae Kyu; Kim, Tae Wan; Lee, Jung-Hyun; Kang, Sung Gyun

    2015-01-01

    Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates. PMID:25461503

  2. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Robledo, A., E-mail: amanzor@ipn.mx [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Costa, Natália J. S. [Universidade de São Paulo, Instituto de Química (Brazil); Philippot, K. [CNRS, LCC, Laboratoire de Chimie de Coordination (France); Rossi, Liane M. [Universidade de São Paulo, Instituto de Química (Brazil); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Guerrero-Ortega, L. P. A. [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Ezquerra-Quiroga, S. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico)

    2015-12-15

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd{sub 90}Ni{sub 10}, Pd{sub 50}Ni{sub 50}, Pd{sub 10}Ni{sub 90}, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd{sub 2}(dba){sub 3}, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod){sub 2}. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  3. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C60, 22% C70). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  4. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  5. Operation Mechanism of Farmers’ Professional Cooperatives from the Point of Low-Carbon Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    We firstly take a look at internal logic of cluster development of low-carbon agricultural products.In combination with operation features of farmers’ professional cooperatives and actual requirements for cluster development of low-carbon agricultural products;we elaborate establishing benefit allocation mechanism,bearing education and training functions,forming low-carbon value,building low-carbon identification system,as well as realizing low-carbon value.According to these situations,we systematically analyze operation mechanism of farmers’ professional cooperatives suitable for cluster development of low-carbon agricultural products.To promote cluster development of low-carbon agricultural products,we put forward following suggestions,including government guidance and encouragement,social acceptance and active cooperation,and integration into global low-carbon development system to share benefit of low-carbon development.

  6. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    Directory of Open Access Journals (Sweden)

    Mohammadi Maedeh

    2011-01-01

    Full Text Available The possibility of production of carbon molecular sieve (CMS from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (100, 200, 300 mL min-1 CH4 diluted in 500 mL min-1 N2 and deposition time (30 to 60 min were the investigated parameters. The textural characteristics of the CMSs were assessed by N2 adsorption. The largest BET surface area (752 m2 g-1, micropore surface area (902.2 m2 g-1 and micropore volume (0.3466 cm3 g-1 was obtained at the CH4 flow rate of 200 mL min-1 and deposition time of 30 min. However, prolonging the deposition time to 45 min yielded in a micropouros CMS with a narrow pore size distribution.

  7. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe2O3 was identified by means of colorimetry. (author)

  8. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  9. Spatial Estimation of Timber Production and Carbon in Harvested Wood Products Using Remote Sensing

    Science.gov (United States)

    Ling, P. Y.; Baiocchi, G.; Huang, C.

    2014-12-01

    Accurate estimation of the annual production of different kinds of timbers at different locations has many science and policy implications. For example, timber type information is needed for accurate estimation of the amount and life cycle of carbon stored in the harvested wood product (HWP) pool, and possible transport of carbon in wood products through trade. Several attempts have been made to estimate the carbon storage in the HWP, regardless which approach to use, information of the annual timber production are required. A statistic model has been developed to estimate the annual roundwood production at the county level. The inputs of the model includes forest disturbance area calculated using the VCT algorithm derived from the Landsat time series stack, a forest type map, and timber product output (TPO) data collected from wood processing mills by the USFS. The model is applied to North Carolina, a state with a large forestry sector and where harvesting and logging are a primary forest disturbance type. Ten-fold cross validation were done to the preliminary estimation for each type of HWP. The root mean square errors range between 13.6 and 31.5 for hardwood types; and between 1.3 and 55.6 for softwood types. The model is empirical as it depends on the local information on forest disturbance, forest types, and the amount of the roundwood output. However, the approach of the model can be used to apply to other areas with the local information provided. The result can be served as a starting point in spatial estimation of carbon storage in HWP.

  10. Rapid synthesis of macrocycles from diol precursors

    DEFF Research Database (Denmark)

    Wingstrand, Magnus; Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2009-01-01

    A method for the formation of synthetic macrocycles with different ring sizes from diols is presented. Reacting a simple diol precursor with electrophilic reagents leads to a cyclic carbonate, sulfite or phosphate in a single step in 25-60% yield. Converting the cyclization precursor to a bis...

  11. Production of defects in supported carbon nanotubes under ion irradiation

    International Nuclear Information System (INIS)

    Ion irradiation of individual carbon nanotubes deposited on substrates may be used for making metallic nanowires and studying effects of disorder on the electronic transport in low-dimensional systems. In order to understand the basic physical mechanisms of radiation damage production in supported nanotubes, we employ molecular dynamics and simulate ion impacts on nanotubes lying on different substrates, such as platinum and graphite. We show that defect production depends on the type of the substrate and that the damage is higher for metallic heavy-atom substrates than for light-atom substrates, since in the former case sputtered metal atoms and backscattered recoils produce extra damage in the nanotube. We further study the behavior of defects upon high-temperature annealing and demonstrate that although ions may severely damage nanotubes in a local region, the nanotube carbon network can heal such a strong localized damage due to defect migration and dangling-bond saturation. We also show that after annealing the residual damage in nanotubes is independent of the substrate type. We predict the pinning of nanotubes to substrates through nanotube-substrate bonds that appear near irradiation-induced defects

  12. Increasing carbon and material productivity through environmental tax reform

    International Nuclear Information System (INIS)

    Environmental tax reform (ETR), a shift in taxation towards environmental taxes, has been implemented on a small scale in a number of European countries. This paper first gives a short review of the literature about ETR. An Appendix briefly describes the model used for a modelling exercise to explore, through scenarios with low and high international energy prices, the implications of a large-scale ETR in the European Union, sufficient to reach the EU's emission reduction targets for 2020. The paper then reports the results of the exercise. The ETR results in increased carbon and materials, but reduced labour, productivity, with the emission reductions distributed across all sectors as a reduction in the demand for all fossil fuels. There are also small GDP increases for most, but not all, EU countries for all the scenarios, and for the EU as a whole. Both the environmental and macroeconomic outcomes are better with low than with high energy prices, because the former both increases the scale of the ETR required to reach the targets, and reduces the outflow of foreign exchange to pay for energy imports. ETR emerges from the exercise as an attractive and cost-effective policy for environmental improvement. - Highlights: ► European experience with environmental tax reform (ETR) is reviewed. ► Scenarios which meet EU carbon emission targets are modelled. ► The ETR results in increased carbon and materials, but reduced labour, productivity. ► There are small GDP increases for most, but not all, EU countries. ► ETR emerges as an attractive and cost-effective environmental policy.

  13. Carbon footprint of Canadian dairy products: calculations and issues.

    Science.gov (United States)

    Vergé, X P C; Maxime, D; Dyer, J A; Desjardins, R L; Arcand, Y; Vanderzaag, A

    2013-09-01

    The Canadian dairy sector is a major industry with about 1 million cows. This industry emits about 20% of the total greenhouse gas (GHG) emissions from the main livestock sectors (beef, dairy, swine, and poultry). In 2006, the Canadian dairy herd produced about 7.7 Mt of raw milk, resulting in about 4.4 Mt of dairy products (notably 64% fluid milk and 12% cheese). An integrated cradle-to-gate model (field to processing plant) has been developed to estimate the carbon footprint (CF) of 11 Canadian dairy products. The on-farm part of the model is the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES). It considers all GHG emissions associated with livestock production but, for this study, it was run for the dairy sector specifically. Off-farm GHG emissions were estimated using the Canadian Food Carbon Footprint calculator, (cafoo)(2)-milk. It considers GHG emissions from the farm gate to the exit gate of the processing plants. The CF of the raw milk has been found lower in western provinces [0.93 kg of CO2 equivalents (CO2e)/L of milk] than in eastern provinces (1.12 kg of CO2e/L of milk) because of differences in climate conditions and dairy herd management. Most of the CF estimates of dairy products ranged between 1 and 3 kg of CO2e/kg of product. Three products were, however, significantly higher: cheese (5.3 kg of CO2e/kg), butter (7.3 kg of CO2e/kg), and milk powder (10.1 kg of CO2e/kg). The CF results depend on the milk volume needed, the co-product allocation process (based on milk solids content), and the amount of energy used to manufacture each product. The GHG emissions per kilogram of protein ranged from 13 to 40 kg of CO2e. Two products had higher values: cream and sour cream, at 83 and 78 kg of CO2e/kg, respectively. Finally, the highest CF value was for butter, at about 730 kg of CO2e/kg. This extremely high value is due to the fact that the intensity indicator per kilogram of product is high and that butter is almost exclusively

  14. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  15. Production and behaviour of aluminium foams with different density by AlSi12 precursor; Fabricacion y comportamiento de espumas de aluminio con diferente densidad a partir de un precursor AlSi12

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Vazquez, J. A.; Onoro, J.

    2010-07-01

    Closed cell aluminium foams were prepared by powder metallurgical method in three different ranges of density using AlSi12 precursor. The objective has been to determine by means of tests the effect that has the density of these materials regarding its mechanical behaviour. The used precursor contained 0.4% of foaming agent of titanium hydride (TiH{sub 2}), mixed with aluminum and silicon in appropriate amounts to achieve the commercial composition of the AlSi12 precursor. Once cut the samples thermal treatments of foaming were made of 630 degree centigrade to 750 degree centigrade, by 3 to 20 minutes. The best solidification conditions were determined to avoid the collapse by means of forced air. The samples were prepared with the same weight to different densities, having itself obtained that the best mechanical behaviour was achieved in the high density foams, of 0.70 to 0.81 g/cm{sup 3}. (Author) 26 refs.

  16. Mangrove production and carbon sinks: a revision of global budget estimates

    OpenAIRE

    BOUILLON, S; Borges, A. V.; Castañeda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N. C.; Kristensen, E.; Lee, S.; Marchand, C; Middelburg, J. J.; Rivera-Monroy, V.H.; Smith III, T.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of similar to 218 +/- 72 Tg C a(-1). When using the best available estimates of various carbon sinks (organic carbon export, s...

  17. Fruity aroma production in solid state fermentation by Ceratocystis fimbriata : influence of the substrate type and the presence of precursors

    OpenAIRE

    CHRISTEN, Pierre; Meza, J.C.; Revah, S.

    1997-01-01

    Wheat bran, cassava bagasse and sugar cane bagasse were shown to be adequate substrates for the growth and aroma production by the mould #Ceratocystis fimbriata$. Among the nutritive media tested, sugar cane bagasse complemented with a synthetic medium containing glucose (200 g/l) gave a fruity aroma while the leucine or valine-containing medium gave a strong banana aroma. Aroma production was dependent on growth and the maximum aroma intensity was detected at about the time of the maximum re...

  18. Modeling Initial Stage of Ablation Material Pyrolysis: Graphitic Precursor Formation and Interfacial Effects

    Science.gov (United States)

    Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel

    2010-01-01

    Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.

  19. Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame.

    Science.gov (United States)

    Duerfahrt, Thomas; Doekel, Sascha; Sonke, Theo; Quaedflieg, Peter J L M; Marahiel, Mohamed A

    2003-11-01

    Microorganisms produce a large number of pharmacologically and biotechnologically important peptides by using nonribosomal peptide synthetases (NRPSs). Due to their modular arrangement and their domain organization NRPSs are particularly suitable for engineering recombinant proteins for the production of novel peptides with interesting properties. In order to compare different strategies of domain assembling and module fusions we focused on the selective construction of a set of peptide synthetases that catalyze the formation of the dipeptide alpha-l-aspartyl-l-phenylalanine (Asp-Phe), the precursor of the high-intensity sweetener alpha-l-aspartyl-l-phenylalanine methyl ester (aspartame). The de novo design of six different Asp-Phe synthetases was achieved by fusion of Asp and Phe activating modules comprising adenylation, peptidyl carrier protein and condensation domains. Product release was ensured by a C-terminally fused thioesterase domains and quantified by HPLC/MS analysis. Significant differences of enzyme activity caused by the fusion strategies were observed. Two forms of the Asp-Phe dipeptide were detected, the expected alpha-Asp-Phe and the by-product beta-Asp-Phe. Dependent on the turnover rates ranging from 0.01-0.7 min-1, the amount of alpha-Asp-Phe was between 75 and 100% of overall product, indicating a direct correlation between the turnover numbers and the ratios of alpha-Asp-Phe to beta-Asp-Phe. Taken together these results provide useful guidelines for the rational construction of hybrid peptide synthetases. PMID:14622284

  20. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-08-11

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  1. MEDIA OPTIMIZATION FOR BIOPROTEINS PRODUCTION FROM CHEAPER CARBON SOURCE

    Directory of Open Access Journals (Sweden)

    P. JAMAL

    2008-08-01

    Full Text Available There are high demands for animal and human food supply especially protein, which is an important dietary component. Agricultural wastes, cheap carbon sources- which are rich and have high energy, can be used for producing the value added bioprotein. A lab scale study was carried out to optimize the media composition for bioprotein production from a cheaper carbon source - wheat flour using potential strain, which was selected earlier by screening different microorganisms. The performance of the selected strain was enhanced by media optimization with varied substrate concentration, nitrogen sources and nutrient supplementation according to the central composite design from STATISTICA software. Statistical optimization was carried out to evaluate the polynomial regression model through effect of linear, quadratic and interaction of the factors. The maximum biomass produced was 21.89 g/L with optimum fermentation conditions of wheat flour (4 g/L, nitrogen concentration (0.5 g/L, nutrient concentration (0.1 g/L, and four days of fermentation.

  2. Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors

    OpenAIRE

    Jianchang Lu; Weiguo Fan; Ming Meng

    2015-01-01

    Based on the international community’s analysis of the present CO2 emissions situation, a Log Mean Divisia Index (LMDI) decomposition model is proposed in this paper, aiming to reflect the decomposition of carbon productivity. The model is designed by analyzing the factors that affect carbon productivity. China’s contribution to carbon productivity is analyzed from the dimensions of influencing factors, regional structure and industrial structure. It comes to the conclusions that: (a) economi...

  3. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Science.gov (United States)

    2010-01-01

    Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP)-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant). Using immobilized metal ion affinity chromatography (IMAC) as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture. PMID:20462406

  4. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Directory of Open Access Journals (Sweden)

    Chugh Dipti

    2010-05-01

    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  5. Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor l-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum.

    Science.gov (United States)

    Shi, Feng; Fang, Huimin; Niu, Tengfei; Lu, Zhengke

    2016-06-01

    4-hydroxyisoleucine (4-HIL) exhibits unique insulinotropic and insulin-sensitizing activities and is an attractive candidate for the treatment of type II and type I diabetes. In our previous study, l-isoleucine dioxygenase gene (ido) was cloned and overexpressed in an l-isoleucine-producing strain, Corynebacterium glutamicum ssp. lactofermentum SN01, and 4-HIL was produced from the endogenous l-isoleucine (Ile). In this study, ppc and lysC were co-expressed with ido to increase the supply of Ile, the direct precursor of 4-HIL, and to further improve the 4-HIL yield. After 144h of fermentation, the ido-ppc-expressing strain produced 95.72±1.52mM 4-HIL, 29% higher than the ido-expressing strain. The co-expression of lysC and ppc with ido resulted in a further 35% increment of carbon flux to l-aspartate family amino acids biosynthesis pathway. However, the conversion ratio of Ile to 4-HIL and the 4-HIL yield decreased to 0.31mol/mol and 30.16±2.01mM, respectively, likely due to the decreased IDO activity caused by lower pH and higher intracellular Ile concentration. Therefore, co-expression of ido and ppc was benefit for 4-HIL de novo biosynthesis, while co-expression of lysC with ido and ppc decreased the conversion ratio of Ile to 4-HIL. PMID:27178798

  6. Monosaccharide precursor of Echerichia coli lipid A has the ability to induce tumor-cytotoxic factor production by a murine macrophage-like cell line, J774. 1

    Energy Technology Data Exchange (ETDEWEB)

    Amano, F.; Nishijima, M.; Akamatsu, Y.

    1986-06-01

    A monosaccharide precursor of Escherichia coli lipid A, designated lipid X, which is a diacylglucosamine 1-phosphate with ..beta..-hydroxymyristoyl groups at positions 2 and 3, was shown to have the ability to induce the production of tumor necrosis factor (TNF)-like tumor-cytotoxic factor by a murine macrophage-like cell line, J774.1. This cytotoxic factor was released from J774.1 cells grown in the presence of lipid X and related compounds, and it was assayed as to its lytic activity against (/sup 3/H)thymidine-labeled L929 cells. Dose-response studies revealed that lipid X induced the production of smaller amounts of the tumor-cytotoxic factor than LPS at low concentrations, but it induced that of considerable amounts at and over 1 ..mu..g/ml. Elimination of 1-phosphate or 3-O-..beta..-hydroxymyristoyl group from lipid X completely prevented the induction of producing this factor by the macrophages. Therefore, it is suggested that both 1-phosphate and 3-O-..beta..-hydroxymyristoyl groups are essential for the biologic activity of lipid X, as to the induction of the tumor-cytotoxic factor production in the macrophages.

  7. Carbon footprint calculation of Finnish greenhouse products; Kasvihuonetuotteiden ilmastovaikutuslaskenta. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaenaeinen, H.; Silvenius, F.; Kaukoranta, T.; Naekkilae, J.; Saerkkae, L.; Tuhkanen, E.-M.

    2013-02-01

    This report presents the results of climate impact calculations for five products produced in Finnish greenhouses: tomatoes, cucumbers, salad crops, tulips and Elatior begonias. The study employed 16 greenhouses for the investigation; two greenhouses each for the tulips and the begonias and four each for the tomatoes, cucumbers and salad crops. Based on these calculations a greenhouse gas calculator was developed for greenhouse cultivators. The calculator is available at internet in www.kauppapuutarhaliitto.fi {yields} hiilijalanjaelki. In terms of environmental impacts this study concentrated on the climate impacts of the investigated products, and the calculations were made for the most significant greenhouse gases: carbon dioxide, methane and nitrous oxide. The following processes were included in the system boundaries: plant growing, manufacturing of lime, fertilizers and pesticides, manufacturing and disposal of pots, carbon dioxide production, irrigation, lighting, thermal curtains and cooling systems, the production and use of electricity and heat energy, distribution of products by the growers, other transportation, end-of-life and recycling. Processes excluded from the study were: distribution by other actors, retail functions, the consumer stage, and maintenance and manufacturing of infrastructure. The study used MTT's calculation model for the climate impact of food products excluding distribution and retail processes. The greenhouses selected for the study had some variation in their energy profiles and growing seasons. In addition, scenarios were created for different energy sources by using the average figures from this study. Monthly energy consumption values were also obtained from a number of the greenhouses and these were used to assess the variations in climate impact for different seasons. According to the results of the study the use of energy is the most significant source of climate impact of greenhouse products. In the tomato farms the

  8. Carbon footprint of dairy goat milk production in New Zealand.

    Science.gov (United States)

    Robertson, Kimberly; Symes, Wymond; Garnham, Malcolm

    2015-07-01

    The aim of this study was to assess the cradle-to-farm gate carbon footprint of indoor and outdoor dairy goat farming systems in New Zealand, identifying hotspots and discussing variability and methodology. Our study was based on the International Organization for Standardization standards for life cycle assessment, although only results for greenhouse gas emissions are presented. Two functional units were included: tonnes of CO2-equivalents (CO2e) per hectare (ha) and kilograms of CO2e per kilogram of fat- and protein-corrected milk (FPCM). The study covered 5 farms, 2 farming systems, and 3yr. Two methods for the calculation of enteric methane emissions were assessed. The Lassey method, as used in the New Zealand greenhouse gas inventory, provided a more robust estimate of emissions from enteric fermentation and was used in the final calculations. The alternative dry matter intake method was shown to overestimate emissions due to use of anecdotal assumptions around actual consumption of feed. Economic allocation was applied to milk and co-products. Scenario analysis was performed on the allocation method, nitrogen content of manure, manure management, and supplementary feed choice. The average carbon footprint for the indoor farms (n=3) was 11.05 t of CO2e/ha and 0.81kg of CO2e/kg of FPCM. For the outdoor farms (n=2), the average was 5.38 t of CO2e/ha and 1.03kg of CO2e/kg of FPCM. The average for all 5 farms was 8.78 t of CO2e/ha and 0.90kg of CO2e/kg of FPCM. The results showed relatively high variability due to differences in management practices between farms. The 5 farms covered 10% of the total dairy goat farms but may not be representative of an average farm. Methane from enteric fermentation was a major emission source. The use of supplementary feed was highly variable but an important contributor to the carbon footprint. Nitrous oxide can contribute up to 18% of emissions. Indoor goat farming systems produced milk with a significantly higher carbon

  9. Investigation of physiologically active products obtained from carbon-ion irradiated actinomycetes

    International Nuclear Information System (INIS)

    Charged particles such as carbon-ions are superior to X-rays or gamma-rays in the physical and biological characteristics. The propose research project is aimed to provide new insights on antibiotic development. Product(s) from carbon-ion irradiated microorganera suppressed growth of human leukemia cells and mammary tumor cells. This product(s) induced apoptosis in human leukemia cells. We suggested that carbon-ion irradiated actinomycetes produce antitumor active product(s) for leukemia cells and mammary tumor cells. (author)

  10. Carbon dioxide sequestration via olivine carbonation: Examining the formation of reaction products

    Science.gov (United States)

    King, H. E.; Plümper, O.; Putnis, A.

    2009-04-01

    Due to its abundance and natural ability to sequester CO2, olivine has been proposed as one mineral that could be used in the control of CO2 emissions into the atmosphere (Metz, 2005). Large scale peridotite deposits found in locations such as the Western Gneiss Region in Norway could provide in-situ sites for sequestration or the raw materials for ex-situ mineral carbonation. Determining the conditions under which magnesite (MgCO3) forms most efficiently is crucial to conduct a cost effective process. Understanding the development of secondary minerals is particularly important for in-situ methods as these phases can form passivating layers and affect the host rock porosity. The final solution of flow-through experiments conducted at alkaline pH have been shown to be supersaturated with respect to talc and chrysotile (Giammer et al., 2005), although these phases were not found to have precipitated the formation of a passivating, amorphous silica layer has been observed on reacted olivine surfaces (Bearat et al., 2006). By studying magnesite and other products produced during the carbonation of olivine within Teflon lined steel autoclaves we have begun to form a more comprehensive understanding of how these reactions would proceed during sequestration processes. We have performed batch experiments using carbonated saline solutions in the presence of air or gaseous CO2 from 80 to 200 ˚ C. X-ray powder diffraction was used to identify magnesite within the reaction products. Crystals of magnesite up to 20 m in diameter can be observed on olivine grain surfaces with scanning electron microscopy. Secondary reaction products formed a platy layer on olivine surfaces in reactions above 160 ˚ C and below pH 12. Energy dispersive X-ray analysis of the platy layer revealed an increase in Fe concentration. The macroscopically observable red colouration of the reaction products and Raman spectroscopy indicate that hematite is present in these layers. For experiments with

  11. An integrated new product development framework - an application on green and low-carbon products

    Science.gov (United States)

    Lin, Chun-Yu; Lee, Amy H. I.; Kang, He-Yau

    2015-03-01

    Companies need to be innovative to survive in today's competitive market; thus, new product development (NPD) has become very important. This research constructs an integrated NPD framework for developing new products. In stage one, customer attributes (CAs) and engineering characteristics (ECs) for developing products are collected, and fuzzy interpretive structural modelling (FISM) is applied to understand the relationships among these critical factors. Based on quality function deployment (QFD), a house of quality is then built, and fuzzy analytic network process (FANP) is adopted to calculate the relative importance of ECs. In stage two, fuzzy failure mode and effects analysis (FFMEA) is applied to understand the potential failures of the ECs and to determine the importance of ECs with respect to risk control. In stage three, a goal programming (GP) model is constructed to consider the outcome from the FANP-QFD, FFMEA and other objectives, in order to select the most important ECs. Due to pollution and global warming, environmental protection has become an important topic. With both governments and consumers developing environmental consciousness, successful green and low-carbon NPD provides an important competitive advantage, enabling the survival or renewal of firms. The proposed framework is implemented in a panel manufacturing firm for designing a green and low-carbon product.

  12. The Carbon Reduction Effect of the Trade of Paper Products in China

    Institute of Scientific and Technical Information of China (English)

    Feng; FENG; Heliang; HUANG; Pei; ZHANG; Siying; CHEN

    2015-01-01

    Through using the data of import and export trading of China’s paper products in 2012,we utilize the method of volume source biomass equation and net primary productivity( NPP) to calculate the carbon reduction effect of papermaking raw materials trade,and utilize the method of IPCC guidelines for inventories to calculate the carbon emission effect of paper and paper products trade. The results show that the distinctive characteristics of China’s paper products trade has resulted in the dual effects on the domestic carbon emissions. On the one hand,large imports of paper-making raw materials make China reduce domestic forest felling,with the effect of carbon emission reduction. On the other hand,net exports of paper and paper products increase the domestic carbon emissions,with the effect of carbon emission. The carbon emission reduction effect of China’s paper-making raw materials trade is obvious and up to 19. 0211 million tons. This is equal to the total volume of 180. 5709 million cubic meters forest’s annual carbon sequestration. The carbon emission effect of paper and paper products trade is only 0. 5136 million tons,which is not significant compared with the former. In general,China’s paper product trade causes the significant effect on carbon emission reduction.

  13. Separation of actinides and fission products from carbonate containing streams

    International Nuclear Information System (INIS)

    The capacities of the anion exchange resins AG 1-X8, AG 2-X8 and Bio-Rex 5 were determined for the carbonato complexes of UO22+, NpO22+, PuO22+, Pu4+, AmO22+ and Am3+ in batch and dynamic experiments. The Bio-Rex 5 resin, used for the first time in such experiments, shows a clear superiority over the strong basic resins which have been used in the treatment of uranium ores. The influence of the ratio U : CO32-, the pH-value, the temperature, the equilibration of the resin, the contact time and the concentration of uranium to the column parameters distribution coefficient, hold back- and break through capacities have been investigated for batch and dynamic experiments. The best results were obtained for a medium with pH 6-8 and low concentrations of actinides and carbonate ions, 0.04 M and 0.12 M respectively. In order to obtain informaiton on the behaviour of the fission products occuring in the recovery of the organic phase of the Purex-process, these expected fission products were added to the uranium solution, fixed and eluted together with the uranium and Bio-Rex 5. (orig./HK)

  14. Reduction of CO2 emissions by mineral carbonation : steelmaking slags as rawmaterial with a pure calcium carbonate end product

    OpenAIRE

    Eloneva, Sanni

    2010-01-01

    Mineral carbonation is one of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation purposes. Steel manufacturing, which is one of the biggest industrial sources of CO2 emissions, could benefit from this option by utilizing its own by-products, i.e., steelmaking slags, to combine with CO2. Additional benefits would be achieved if the end product was a pure and marketable calcium carbonate. The utilization of CaCO3 derived from steelmaking s...

  15. The presence of aliphatic and aromatic amines in reservoir and canal water as precursors to disinfection by-products.

    Science.gov (United States)

    Phatthalung, Warangkana Na; Musikavong, Charongpun; Suttinun, Oramas

    2016-09-18

    This research aimed at determining the dimethylamine (DMA), diethylamine (DEA), dibutylamine (DBA), and aromatic aniline (AN) in reservoir and canal water in the U-Tapao River Basin, Songkhla, Thailand. The trihalomethane formation potential (THMFP) and N-nitrosodimethylamine formation potential (NDMA-FP) of the reservoir and canal water were analyzed. Water samples from two reservoirs and raw water from water treatment plants at upstream, midstream, and downstream locations of the canal were collected twice. The analysis of the DMA, DEA, DBA, and AN were conducted using gas chromatography and spectrofluorometry techniques. The DMA, DEA, and DBA levels in the reservoir and canal waters ranged from not detectable (ND) to 10 µg/L and from ND to 21.2 µg/L, respectively. AN was detected from 123 to 129 ng/L and from 112 to 177 ng/L in the reservoir and canal waters, respectively. The DMA, DEA, DBA, and AN exhibited two fluorescent peaks at 230nmEx/345nmEm and 280 nmEx/355nmEm. These two peaks corresponded to the peak positions of tryptophan. Detection limits of DMA, DEA, and DBA for fluorescent analysis were 500 μg/L whereas that of AN and tryptophan were 10 and 0.5 μg/L, respectively. The NDMA-FP measured in all the water samples was lower than the detection limit of 237 ng/L. THMFP ranged from 175 to 248 μg/L and 214 to 429 μg/L was detected in the reservoir and canal waters, respectively. The THMFP/dissolved organic carbon (DOC) of the reservoir and canal waters were comparable within the ranges of 73 to 131 µg THMFP/mg DOC. PMID:27314493

  16. Carbon-supported Ni@NiO/Al2O3 integrated nanocomposite derived from layered double hydroxide precursor as cycling-stable anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Carbon-supported Ni@NiO/Al2O3 nanocomposite was prepared from LDH/C precursor. • Enhanced specific capacity and cycling stability are obtained. • EIS and TEM results provide convincing information underlying the enhancements. -- Abstract: Transition metal oxides (MO) have been widely investigated as promising anode materials for lithium-ion batteries, but suffer from the problems of irreversible capacity loss and poor cycling stability resulting from intrinsic poor conductivity, large volume expansion/contraction during the discharge/charge processes. Despite two main types of effective efforts, i.e., preparing pre-designed nano/microstructures and hybridization with either active or conductive nanomaterials, these approaches have hitherto had difficulties in seeking deliberate nano/microstructural designs and guaranteeing homogeneous interface/chemical distributions of active MO material within the non-active matrix at the nanoscale. Herein, we report a preparation of carbon-supported Ni core @ NiO shell/Al2O3 (C-Ni@NiO/Al2O3) integrated nanocomposite derived from NiAl-layered double hydroxide (NiAl-LDH) single-resource precursor. The combined features of the C-Ni@NiO/Al2O3 nanocomposite involve the uniform dispersion of nanosized Ni@NiO, the conductive carbon support and Ni core, as well as the buffer role of the newly generated non-active Al2O3. Electrochemical evaluation shows that the C-Ni@NiO/Al2O3 nanocomposite maintains much enhanced electrochemical performances and good cycling stability in comparison with the pristine NiO. Results of TEM visualizations and electrochemical impedance spectra provide experimentally convincing rationales of the information of Al2O3 buffer and improved the conductivity underlying the enhanced performances. The route could extend to design and prepare various nanostructured metal oxides with uniform-dispersion components based on the versatility in varying the metal cations of LDH precursors

  17. Dutch (organic) agriculture, carbon sequestration and energy production

    NARCIS (Netherlands)

    Burgt, van der G.J.H.M.; Staps, S.; Timmermans, B.

    2010-01-01

    Carbon sequestration in soils is often mentioned in the discussions about climate changes. In this paper the opportunities for carbon sequestration in Dutch agriculture are discussed at farm and national level. Farm internal carbon sources are already completely used in livestock farming. The effect

  18. Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load

    Science.gov (United States)

    Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Schebeske, G.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Kolle, O.; Ciccioli, P.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O.

    2010-10-01

    As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h-1. Within the plume core, aerosol concentrations were strongly enhanced, with ΔCN/ΔCO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. ΔCN/ΔCO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16±12%) of the plume particles were CCN

  19. Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Liming; You, Tingting; Zhou, Tian; Zhou, Xia; Xu, Feng

    2016-06-01

    The advent of bioethanol production has generated abundant lignin-derived byproducts which contain proteins and polysaccharides. These byproducts are inapplicable for direct material applications. In this study, lignin-derived byproducts were used for the first time as carbon precursors to construct an interconnected hierarchical porous nitrogen-doped carbon (HPNC) via hydrothermal treatment and activation. The obtained HPNC exhibited favorable features for supercapacitor applications, such as hierarchical bowl-like pore structures, a large specific surface area of 2218 m(2) g(-1), a high electronic conductivity of 4.8 S cm(-1), and a nitrogen doping content of 3.4%. HPNC-based supercapacitors in a 6 M KOH aqueous electrolyte exhibited high-rate performance with a high specific capacitance of 312 F g(-1) at 1 A g(-1) and 81% retention at 80 A g(-1) as well as an excellent cyclic life of 98% initial capacitance after 20 000 cycles at 10 A g(-1). Moreover, HPNC-based supercapacitors in the ionic liquid electrolyte of EMI-BF4 displayed an enhanced energy density of 44.7 Wh kg(-1) (remaining 74% of max value) at an ultrahigh power density of 73.1 kW kg(-1). The proposed strategy may facilitate lignin utilization and lead to a green bioethanol production process. PMID:27181098

  20. Yarn spun from carbon nanotube forests: Production, structure, properties and applications

    Institute of Scientific and Technical Information of China (English)

    Menghe Miao

    2013-01-01

    The discovery ofdrawable carbon nanotube forests opened up the possibility of constructing a wide range of pure carbon nanotube macrostructures and sparked interests in developing applications from these structures,especially pure carbon nanotube yarns.This review examines the various facets of the drawable carbon nanotube forests,synthesis and drawability,and their resulting yarns,structure,production,properties and applications.The structure,formation and properties of carbon nanotube yarns are compared with those of conventional textile yarns in order to obtain a better understanding of the science,structural mechanics and processing technology involved in carbon nanotube yarns.

  1. An economical device for carbon supplement in large-scale micro-algae production.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2008-10-01

    One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly. PMID:18369667

  2. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  3. Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load

    Directory of Open Access Journals (Sweden)

    U. Kuhn

    2010-10-01

    Full Text Available As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001 field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by concentrations of total aerosol number (CN and cloud condensation nuclei (CCN, and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h−1.

    Within the plume core, aerosol concentrations were strongly enhanced, with ΔCN/ΔCO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. ΔCN/ΔCO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60–80% at 0.6% supersaturation, the CCN/CN ratios within the

  4. Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load

    Directory of Open Access Journals (Sweden)

    U. Kuhn

    2010-05-01

    Full Text Available As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001 field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by total aerosol number concentration (CN and cloud condensation nuclei (CCN concentrations, and light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios in the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h−1.

    Within the plume core, aerosol concentrations were strongly enhanced, with ΔCN/ΔCO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. ΔCN/ΔCO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60–80% at 0.6% supersaturation, the CCN/CN ratios within

  5. Production of human insulin in an E. coli system with Met-Lys-human proinsulin as the expressed precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jin-Qiu Chen; Hong-Tao Zhang; Mei-Hao Hu; Jian-Guo Tang [Peking Univ., Beijing (China)

    1995-10-01

    The construction of a gene encoding Lys-human proinsulin, its direct expression in E.coli, and the simple purification procedure are described here. The temperature inducible promotor was employed for induction in a very short time. The expression level could reach 20-30%. After a simple downstream processing and only one step of Sephadex G50 purification, 150 mg recombinant Lys-human proinsulin with a purity of up to 90% could be obtained easily from 1 L of high density fermentation medium. The obtained product is in the form of Met-Lys-human proinsulin because of the failure of the bacterial host to remove the initiator methionine residue. The Lys-human proinsulin could be changed into human insulin by tryspin and carboxypeptidase B treatment in later steps. After separation with DEAE Sephadex A25, human insulin with expected amino acid composition and full native biological activity could be obtained with a yield of 50 mg/L fermentation medium. 20 refs., 5 figs., 4 tabs.

  6. Thymectomized, irradiated, and bone marrow-reconstituted chimeras have normal cytolytic T lymphocyte precursors but a defect in lymphokine production

    International Nuclear Information System (INIS)

    A model system has been developed to study extrathymic T cell differentiation; mice have been thymectomized, lethally irradiated, and reconstituted with bone marrow cells depleted of Thy-1+ cells. After 8 wk, the spleen cells of these athymic, bone marrow-reconstituted chimeras contain Thy-1+ precytolytic T lymphocytes (CTL) that are able to respond to antigen only if supernatant from Con A-activated T cells is added to culture. The phenotype of these pre-CTL is similar to that of thymocytes, suggesting that they may be immature T cells. Initial evaluation of the CTL repertoire of these athymic mice demonstrated that the CTL generated to trinitrophenyl-modified syngeneic cells are H-2-restricted, and that the CTL generated to alloantigens have many of the cross-reactivities observed in normal mice but not in nude mice. In this report, the authors demonstrate a helper T cell defect in these thymectomized chimeras. These chimeras lack an Ly-1+ helper cell required for thymocytes to differentiate to CTL. Further studies revealed that when spleen cells from these thymectomized chimeras were stimulated with Con A, they produced normal levels of interleukin 2. However, these splenocytes were defective in the production of another factor needed for CTL differentiation

  7. Carbon footprint of construction products : a comparison of application of individual Environmental Product Declarations and Building Information Modeling software

    OpenAIRE

    Nyári, Judit

    2011-01-01

    The purpose of this study was to investigate the benefits of using software for calculating cradle-to-gate carbon footprint of selected construction products. The assessment of environmental impacts, such as carbon footprint calculation of building materials and assemblies is important, because buildings consume 40% of raw materials globally, and their service lifetime is several decades. A cradle-to-gate carbon footprint calculation was carried out for the same building’s selected constructi...

  8. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Science.gov (United States)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  9. Effect of applied environmental stress on growth, photosynthesis, carbon allocation, and hydrocarbon production in Euphorbia lathyris

    International Nuclear Information System (INIS)

    Photosynthetic activity was reduced by salinity stress, but is was found to be less sensitive than growth. Salinity stress also caused changes in the concentrations of specific cations. Moderate water stress had little effect on growth, but large changes in hydrocarbon production were still observed. Carbon allocation experiments with radiolabeled carbon indicated that carbon for latex production was supplied by nearby leaves, with some translocation down the stem also occurring

  10. Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Flysjoe, A.M.

    2012-11-01

    The present PhD project has focused on some of the most critical methodological aspects influencing GHG emission estimates of milk and dairy products and how the methodology can be improved. In addition, the Carbon Footprint (CF) for different types of dairy products has been analysed. Based on these results, mitigation options have been identified along the entire dairy value chain. The key methodological challenges analysed in the present study are: estimation of CH{sub 4} and N{sub 2}O emissions, assessment of CO{sub 2} emissions from land use change (LUC), co-product handling, and definition of the functional unit. Estimates of the biogenic emissions CH{sub 4} and N{sub 2}O are associated with large uncertainties due to the complexity and natural variation in biological processes. Accounting for these variations resulted in a {+-}30-50% variation in the CF for milk in Sweden and New Zealand (excluding emissions from LUC). The inclusion of emissions from LUC can drastically affect the CF of dairy products, and different models can even provide contradictory results. Thus, it is suggested that emissions associated with LUC are reported separately and that underlying assumptions are clearly explained. Accounting for the by-product beef is decisive for the CF of milk, and when designing future strategies for the dairy sector, milk and meat production needs to be addressed in an integrated approach. It is shown that an increase in milk yield per cow does not necessarily result in a lower CF of milk, when taking into account the alternative production of the by-product beef. This demonstrates that it is important to investigate interactions between different product chains, i.e. to apply system thinking. The CF of dairy products from Arla Foods analysed in the present study range from: 1.2-5.5 kg CO{sub 2}e per kg fresh dairy products, 7.3-10.9 kg CO{sub 2}e per kg butter and butter blends, 4.5-9.9 kg CO{sub 2}e per kg cheese, and 1.0-17.4 kg CO{sub 2}e per kg milk

  11. Process synthesis and optimization for the production of carbon nanostructures

    International Nuclear Information System (INIS)

    A swirled fluidized bed chemical vapour deposition (SFCVD) reactor has been manufactured and optimized to produce carbon nanostructures on a continuous basis using in situ formation of floating catalyst particles by thermal decomposition of organometallic ferrocene. During the process optimization, carbon nanoballs were produced in the absence of a catalyst at temperatures higher than 1000 0C, while carbon nanofibres, single-walled carbon nanotubes, helical carbon nanotubes, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibres (CNFs) were produced in the presence of a catalyst at lower temperatures of between 750 and 900 0C. The optimum conditions for producing carbon nanostructures were a temperature of 850 0C, acetylene flow rate of 100 ml min-1, and acetylene gas was used as the carbon source. All carbon nanostructures produced have morphologies and diameters ranging from 15 to 200 nm and wall thicknesses between 0.5 and 0.8 nm. In comparison to the quantity of MWCNTs produced with other methods described in the literature, the SFCVD technique was superior to floating catalytic CVD (horizontal fixed bed) and microwave CVD but inferior to rotary tube CVD.

  12. Production of activated carbon from Atili seed shells

    Directory of Open Access Journals (Sweden)

    Nehemiah Samuel MAINA

    2014-11-01

    Full Text Available Activated carbon was produced from atili (black date seed shells by chemical activation with phosphoric acid as an activating agent. Carbonization was done at temperatures of 350°C, 450°C, 550°C, 650°C and at corresponding resident times of 20, 30, 40, 50 and 60 minutes respectively in a muffle furnace. The study involved the determination of yield, carbon content, burn-off, moisture content, and ash content as well as the temperature and suitable resident time for carbonization. The result showed that, increasing the carbonization temperature from 350°C to 650°C as well as increasing the corresponding resident time from 20 to 60 minutes led to a decrease in carbonization yield as well as an increase in burn off. An increase in carbonization time led to a decrease in ash content while an increase in carbonization temperature led to a decrease in the moisture content. The yield, burn-off and ash content obtained at a carbonization temperature of 650°C and at a corresponding time of 60 minutes were found to be 68.29%, 31.71% and 0.75% respectively while the highest carbon content (99.16 and lowest moisture content (0.09 was obtained at this same temperature and corresponding time. The activated carbon produced gave a yield of 99.37%, ash content (2.01%, moisture content (4.20%, carbon content (93.79%, burn off (0.63% and pH of 6.752. These properties therefore indicate the suitability of the activated carbon produced.

  13. Carbon footprint of building products and assembled constructional complexes

    OpenAIRE

    Petrović, Klemen

    2015-01-01

    Greenhouse gases are becoming bigger and bigger polluter of our planet. Carbon dioxide represents the largest part of greenhouse gases (70 %), because of that we represent carbon footprint with CO2 equivalent (CO2-e). We will compare assembled construction complexes and their carbon footprint in this graduation thesis. At first we will explain what greenhouse gases are and how they are formed. Then we will present some of the studies that research field of materials in constructio...

  14. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  15. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    Science.gov (United States)

    Muradov, Nazim Z.

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  16. Investigation of physiologically active products obtained from carbon-ion irradiated actinomycetes

    International Nuclear Information System (INIS)

    Charged particles such as carbon-ions are superior to X-rays or gamma-rays in the physical and biological characteristics. The propose research project is aimed to provide new insights on antibiotic development. Mutants were prepared by heavy ion irradiation, examined the effect of physiologically active substances produced. Product(s) from carbon-ion irradiated microorganera suppressed growth of human cololectal cancer cells and breast cancer cells. We suggested that carbon-ion irradiated actinomycetes produce antitumor active product(s) for cololectal and breast cancer cells. (author)

  17. The production of activated carbon using the equipment of thermal power plants and heating plants

    Science.gov (United States)

    Osintsev, K. V.; Osintsev, V. V.; Dzhundubaev, A. K.; Kim, S. P.; Al'musin, G. T.; Akbaev, T. A.; Bogatkin, V. I.

    2013-08-01

    The production technology of activated carbon using the conventional equipment of the thermal power stations and boiler houses is proposed. The obtained product is directed into the systems of chemical water preparation and water drain of enterprises. The production cycle is invariable when producing the activated carbon by the proposed technology. The fuel consumption and heat losses are considerably reduced when implementing this technology compared with the known analogs of the carbon sorbent. The production efficiency increases if small dust particles are preliminary separated and coal is activated in narrow ranges of fraction sizes.

  18. Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production

    DEFF Research Database (Denmark)

    Kongpanna, Pichayapan; Pavarajarn, Varong; Gani, Rafiqul;

    2015-01-01

    In this work, several chemical processes for production of dimethyl carbonate (DMC) based on CO2 utilization are evaluated. Four CO2-based processes for production of DMC are considered: (1) direct synthesis from CO2 and methanol; (2) synthesis from urea; (3) synthesis from propylene carbonate; and...... (4) synthesis from ethylene carbonate. The processes avoid the use of toxic chemicals such as phosgene, CO and NO that are required in conventional DMC production processes. From preliminary thermodynamic analysis, the yields of DMC are found to have the following order (higher to lower): ethylene...... carbonate route > urea route > propylene carbonate route > direct synthesis from CO2. Therefore, only the urea and ethylene carbonate routes are further investigated by comparing their performances with the commercial BAYER process on the basis of kg of DMC produced at a specific purity. The ethylene...

  19. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method.

    Science.gov (United States)

    Ilham, Zul; Saka, Shiro

    2009-03-01

    In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 degrees C/20 MPa, rapeseed oil treated with supercritical dimethyl carbonate reached 94% (w/w) yield of fatty acid methyl ester. The by-products from this process which are glycerol carbonate and citramalic acid are much higher in value than glycerol produced by the conventional process. In addition, the yield of the fatty acid methyl esters as biodiesel was almost at par with supercritical methanol method. Therefore, supercritical dimethyl carbonate process can be a good candidate as an alternative biodiesel production process. PMID:18990561

  20. Methane dry reforming catalysts for the production of hydrogen and carbon monoxide

    International Nuclear Information System (INIS)

    The reaction of carbon dioxide reforming of methane (dry reforming) is a very attractive way to convert low-cost reactants in synthesis gas (CO + H2).Moreover, the reaction also has very important environmental effects because both methane and carbon dioxide are greenhouse gases, and may become valuable raw materials. One of the advantages of the dry reforming compared with the conventional steam reforming is the low H2:CO relationship in the product, which is preferred for the synthesis of oxoalcohols and oxygenated compounds. Although noble metals based catalysts have been proved to be less sensitive to coke, the high cost and restricted availability limit their use in this process.From an industrial standpoint, it is more desirable to develop nickel-based catalysts, which are resistant to carbon deposition and exhibit stable operation for extended periods of time.In this work nickel-alumina catalysts, pure or promoted with rhodium or ruthenium, were prepared using different techniques, employing aluminum and nickel alkoxides, and characterized and selected according to their catalytic activity and coking resistance.These catalysts are to be used in an inert ceramic membrane reactor.The nickel precursor is a nickel alkoxide incorporated to the matrix precursor of alumina, which at the same time is an aluminum alkoxide.Under this scheme, catalysts with a 14% nickel charge were prepared using three preparation methods: pC0: characteristics: hydrolysis and acid peptization with HNO3. A1C0: characteristics: thermal decomposition. A1C0H: characteristics: thermal decomposition and subsequent hydrothermal treatment.To sum up, three Ni-A12O3 catalysts, three Ni-Rh-A12O3 catalysts, and three Ni-Ru-A12O3 catalysts were prepared.Each catalyst was prepared using the three methods: pC0-Ni-X, A1C0-Ni-X, and A1C0H-Ni-X, (X= Ru or Rh).The precursors of alumina and nickel were aluminum sec-butoxide and nickel 1-methoxide-2-propoxide. Microstructure characterization was studied by

  1. The process of dimethyl carbonate to diphenyl carbonate: thermodynamics, reaction kinetics and conceptual process design

    NARCIS (Netherlands)

    Haubrock, Jens

    2007-01-01

    Diphenyl carbonate (DPC) is a precursor in the production of Polycarbonate (PC), a widely employed engineering plastic. To overcome the drawbacks of the traditional PC process - e.g. phosgene as a reactant and methylene chloride as solvent- a new process route starting from Dimethyl carbonate (DMC)

  2. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China

    OpenAIRE

    Haina Wang; Yingsheng Yang; Xiaoyi Zhang; Guangdong Tian

    2015-01-01

    The theory on the carbon footprint of agriculture can systematically evaluate the carbon emissions caused by artificial factors from the agricultural production process, which is the theoretical basis for constructing low-carbon agriculture and has important guiding significance for realizing low-carbon agriculture. Based on farm production survey data from Jilin Province in 2014, this paper aims to obtain a clear understanding of the carbon footprint of maize production through the following...

  3. Control of precursor maturation and disposal is an early regulative mechanism in the normal insulin production of pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Jie Wang

    Full Text Available The essential folding and maturation process of proinsulin in β-cells is largely uncharacterized. To analyze this process, we improved approaches to immunoblotting, metabolic labeling, and data analysis used to determine the proportion of monomers and non-monomers and changes in composition of proinsulin in cells. We found the natural occurrence of a large proportion of proinsulin in various non-monomer states, i.e., aggregates, in normal mouse and human β-cells and a striking increase in the proportion of proinsulin non-monomers in Ins2(+/Akita mice in response to a mutation (C96Y in the insulin 2 (Ins2 gene. Proinsulin emerges in monomer and abundant dual-fate non-monomer states during nascent protein synthesis and shows heavy and preferential ATP/redox-sensitive disposal among secretory proteins during early post-translational processes. These findings support the preservation of proinsulin's aggregation-prone nature and low relative folding rate that permits the plentiful production of non-monomer forms with incomplete folding. Thus, in normal mouse/human β-cells, proinsulin's integrated maturation and degradation processes maintain a balance of natively and non-natively folded states, i.e., proinsulin homeostasis (PIHO. Further analysis discovered the high susceptibility of PIHO to cellular energy and calcium changes, endoplasmic reticulum (ER and reductive/oxidative stress, and insults by thiol reagent and cytokine. These results expose a direct correlation between various extra-/intracellular influences and (atypical integrations of proinsulin maturation and disposal processes. Overall, our findings demonstrated that the control of precursor maturation and disposal acts as an early regulative mechanism in normal insulin production, and its disorder is crucially linked to β-cell failure and diabetes pathogenesis.

  4. Simultaneous Screening of Glutathione and Cyanide Adducts Using Precursor Ion and Neutral Loss Scans-Dependent Product Ion Spectral Acquisition and Data Mining Tools

    Science.gov (United States)

    Jian, Wenying; Liu, Hua-Fen; Zhao, Weiping; Jones, Elliott; Zhu, Mingshe

    2012-05-01

    Drugs can be metabolically activated to soft and hard electrophiles, which are readily trapped by glutathione (GSH) and cyanide (CN), respectively. These adducts are often detected and structurally characterized using separate tandem mass spectrometry methods. We describe a new method for simultaneous screening of GSH and CN adducts using precursor ion (PI) and neutral loss (NL) scans-dependent product ion spectral acquisition and data mining tools on an triple quadrupole linear ion trap mass spectrometry. GSH, potassium cyanide, and their stable isotope labeled analogues were incubated with liver microsomes and a test compound. Negative PI scan of m/z 272 for detection of GSH adducts and positive NL scans of 27 and 29 Da for detection of CN adducts were conducted as survey scans to trigger acquisition of enhanced resolution (ER) spectrum and subsequent enhanced product ion (EPI) spectrum. Post-acquisition data mining of EPI data set using NL filters of 129 and 27 Da was then performed to reveal the GSH adducts and CN adducts, respectively. Isotope patterns and EPI spectra of the detected adducts were utilized for identification of their molecular weights and structures. The effectiveness of this method was evaluated by analyzing reactive metabolites of nefazodone formed from rat liver microsomes. In addition to known GSH- and CN-trapped reactive metabolites, several new CN adducts of nefazodone were identified. The results suggested that current approach is highly effective in the analysis of both soft and hard reactive metabolites and can be used as a high-throughput method in drug discovery.

  5. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.

    Science.gov (United States)

    Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F

    2015-12-01

    Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine. PMID:26276544

  6. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and...... acetate. A. oryzae did not grow on galactose as the sole carbon source, but galactose was co-metabolized together with glucose. Relative to that on low glucose concentration (below 10 mg/l), productivity was found to be higher during growth on maltose and maltodextrins, whereas it was lower during growth...

  7. Improving farming practices reduces the carbon footprint of spring wheat production

    OpenAIRE

    Gan, Yantai; LIANG, CHANG; Chai, Qiang; Lemke, Reynald L.; Campbell, Con A.; Zentner, Robert P.

    2014-01-01

    Wheat is one of the world’s most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited ...

  8. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    OpenAIRE

    Guo, Hong-xia; Shao, Ming

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products, we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent. We apply the development idea of low-carbon economy, introduce the third-party logistics companies, establish distribution center of cold chain logistics of agricultural products, and strengthen information sharing, to reengineer the process of cold chain logistics of agricultural produc...

  9. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    Science.gov (United States)

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  10. Production of thin carbon stripper foils using heated-substrates in a cathodic arc deposition system

    International Nuclear Information System (INIS)

    The lifetime of carbon stripper foil can have a marked impact on the successful running of a beam line. Standard techniques for production of carbon stripper foils include evaporation of carbon (ec) and laser-pulsed ablation (Ipa). Recent work by a using Ipa has been successful in substantially increasing the lifetime of a very thin foil. The suspected mechanism for the increased lifetime of the foil is that the amorphous carbon foil is density-matched to that of graphite (around 2.26g/cc). In this work, we attempt to reproduce this result by producing carbon stripper foils with a mass-density similar to graphite using a cathodic arc deposition system. The cathodic arc is well known for the production of tetrahedral amorphous carbon: a high density, high stress form of carbon with over 90% sp3-like bonds; to reduce the density of the carbon and promote more graphitic structure, a high bias was initially attempted but this proved unsuccessful. Another method is to use a heated-substrate holder to reduce compressive stress within the deposited film. The performance of the density-matched carbon stripper foils and the implications for future production of high-quality carbon stripper foils in our laboratory will be discussed. (authors)

  11. Controls on terrestrial carbon feedbacks by productivity vs. turnover in the CMIP5 Earth System Models

    Directory of Open Access Journals (Sweden)

    C. D. Koven

    2015-04-01

    Full Text Available To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into 4 categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes, and outputs (turnover-driven changes, and apply the analysis separately to the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5 simulations for 5 models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This responses arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times in response to increases in productivity. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully-coupled, biogeochemically-coupled, and radiatively-coupled 1% yr−1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally-integrated equilibrium carbon responses to initial turnover times, inital productivity, fractional changes in turnover, and fractional changes in

  12. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters

    International Nuclear Information System (INIS)

    Highlights: • Utilization of glycerol to synthesize glycerol carbonate through various routes. • Different types of carbonates and catalysts used for glycerol carbonate production via transesterification are elucidated. • Important factors influencing glycerol carbonate production performances are detailed. • Future research needs of glycerol carbonate production are proposed. - Abstract: Driven by high energy demand and environmental concerns, biodiesel as a substitute for fossil fuels is recognized to be promising renewable and clean energy. The increase in the biodiesel plant dramatically leads to the oversupply of its by-product glycerol in the biodiesel industries. Developing new industrial uses for glycerol is essential to increase the net energy and sustainability of biodiesel. Moreover, glycerol has great potential to be converted into marketable and valuable chemicals. The conversion of glycerol to glycerol carbonate (GC) has been extensively studied and transesterification of glycerol to GC has been proven to be the most promising route. Aimed to reveal the underlying mechanism of this successful conversion path, this paper reviews the chemo- and biocatalytic transesterification of glycerol with different carbonates sources. Also, a detail elucidation of the influence of the catalysts and operating conditions on the GC yield is included to provide an insight into the process. In addition, the future direction of glycerol carbonate production via catalytic transesterification is provided in this review

  13. Methods for forming particles from single source precursors

    Science.gov (United States)

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  14. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  15. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    Science.gov (United States)

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  16. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY...

  17. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane). PMID:26233751

  18. Production of lightweight aggregate from industrial waste and carbon dioxide.

    Science.gov (United States)

    Gunning, Peter J; Hills, Colin D; Carey, Paula J

    2009-10-01

    The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m(3) and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere. PMID:19577916

  19. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products,we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent.We apply the development idea of low-carbon economy,introduce the thirdparty logistics companies,establish distribution center of cold chain logistics of agricultural products,and strengthen information sharing,to reengineer the process of cold chain logistics of agricultural products in China.The results show that applying low-carbon economy to process reengineering of cold chain logistics of agricultural products,has advantages of increasing added value of products,promoting scale merit and abating lag,plays a role in promoting emission reduction,high efficiency and environmental protection in the process of cold chain logistics of agricultural products in China.

  20. Purification of uranium from fission products by ammonium uranyl carbonate precipitation

    International Nuclear Information System (INIS)

    Processing of the oxalate filtrate generated in plutonium reconversion laboratory involves recovery of plutonium by uranous oxalate carrier precipitation and uranium by ammonium diuranate precipitation. The ammonium di-uranate precipitate generally carries most of the fission products which are high energy gamma emitters. Purification of uranium from the fission products has been investigated employing ammonium carbonate which dissolves the slurry and re-precipitates uranium as ammonium uranyl carbonate. Fission product decontamination factor has been evaluated, which indicate the possibility of 99.6% recovery and purification of uranium from fission products. This method simplifies the purification process with less man-rem exposure and high quality end product. (author)

  1. Theoretical spectral distributions and total cross sections for neutral subthreshold pion production in carbon-carbon collisions

    Science.gov (United States)

    Norbury, J. W.; Cucinotta, F. A.; Deutchman, P. A.; Townsend, L. W.

    1985-01-01

    A coherent isobar formalism is employed to model subthreshold production of neutral pions in carbon-carbon collisions at energies below 100 MeV/nucleon. No arbitrary scale factors or adjustable free parameters are used in calculation of the Lorentz-invariant cross sections for pion production in the projectile, which produces an excited state that goes to M1 resonance in the target by conservation of spin and isospin. Pion production is also modeled for the projectile, which also reaches M1 resonance. The overall pion spectral distribution in the center of mass system is then integrated over the energy range 35-84 MeV/nucleon. The results expose an energy loss in the incident ions, as observed experimentally, and indicate that an isobar mechanism is responsible for higher energy pion production. Lower energy pions are a result of thermal processes.

  2. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method

    OpenAIRE

    Ilham, Zul; Saka, Shiro

    2009-01-01

    In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 °C/20 MPa, rapeseed oil treated with supercritical dimethyl carbona...

  3. 77 FR 72827 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Final...

    Science.gov (United States)

    2012-12-06

    ... Carbon Steel Flat Products from Germany, 71 FR 66163 (November 13, 2006). Analysis of Comments Received... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... on certain corrosion- resistant carbon steel flat products (``CORE'') from Germany and the...

  4. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five... duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  5. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... carbon steel flat products from the Republic of Korea for the period January 1, 2010, through December 31...\\ See Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

  6. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Science.gov (United States)

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to...

  7. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth

    International Nuclear Information System (INIS)

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about ‘high temperature methods’ because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of ‘medium or low temperature methods’ is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process. (topical review)

  8. The Environmental Impact of Industrial Bamboo Products: Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an elec

  9. Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production

    Science.gov (United States)

    Background: Although the association between rising levels of carbon dioxide, the principle anthropogenic greenhouse gas, and pollen production has been established, few data are available regarding the function of rising carbon dioxide on quantitative or qualitative changes in allergenic fungal sp...

  10. Mangrove production and carbon sinks: a revision of global budget estimates

    NARCIS (Netherlands)

    Bouillon, S.; Borges, A.V.; Castañeda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V.H.; Smith III, T.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove pri

  11. Mangrove production and carbon sinks: A revision of global budget estimates

    Science.gov (United States)

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J., III; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  12. Effects of hydrolysis and carbonization reactions on hydrochar production.

    Science.gov (United States)

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  13. GHG emissions of green coffee production : toward a standard methodology for carbon footprinting : report

    NARCIS (Netherlands)

    Sevenster, M.; Verhagen, A.

    2010-01-01

    In this project, the scope for product specific rules for carbon footprinting of (green) coffee is investigated and a proposal is drafted for further work toward actual definition and implementation of such a standard.

  14. Plant production, carbon accumulation and soil chemistry at post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Dvorščík, P.; Vindušková, O.; Cienciala, E.

    Boca Raton : Taylor & Francis CRC Press, 2013, s. 88-103. ISBN 978-1-4665-9931-4 Institutional support: RVO:60077344 Keywords : plant production * carbon accumulation * soil chemistry * post-mining sites Subject RIV: DF - Soil Science

  15. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil

    Science.gov (United States)

    dos Reis, Vanessa Moura; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013–2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future. PMID:27119151

  16. Estimate of carbonate production by scleractinian corals at Luhuitou fringing reef, Sanya, China

    Institute of Scientific and Technical Information of China (English)

    SHI Qi; ZHAO MeiXia; ZHANG QiaoMin; YU KeFu; CHEN TianRan; LI Shu; WANG HanKui

    2009-01-01

    Carbonate production by scleractinian corals not only maintains coral reef growth, but also represents an important source of atmospheric carbon dioxide. In this paper the carbonate production by scler-actinian corals at Luhuitou fringing reef, Sanya, Hainan Island, China, is investigated with an ecological census-based method. Averaged carbonate production is 1.16±0.55 kg·m-2·a-1 and 3.52±1.32 kg·m-2·a-1 on the reef flat and reef slope, respectively, depending on the composition and distribution of corals and the intergeneric difference of skeletal growth. In response to the rapidly increasing hu-man impacts, coral carbonate production has decreased by 80%-89% at this fringing reef since the 1960s; as a result, the reef accretion rate declined and became lower than the rate of sea level rise. Further development of the Luhuitou fringing reef will switch significantly from lateral extension sea-wards to vertical growth, reflecting a response of coral reef bio-geomorphic process to strong human impacts under the background of global sea level rise. In addition, decrease in coral carbonate pro-duction reduced CO2 release from this fringing reef. In the future, it is likely that the role played by coral reefs, especially of fringing reefs, in the ocean and even in the global carbon cycle will be modified or weakened by the increasing human impacts.

  17. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Directory of Open Access Journals (Sweden)

    Vanessa Moura Dos Reis

    Full Text Available The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  18. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Science.gov (United States)

    Reis, Vanessa Moura Dos; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future. PMID:27119151

  19. Operation Mechanism of Farmers’ Professional Cooperatives from the Point of Low-Carbon Agricultural Products

    OpenAIRE

    Huang, Lei; Cheng, Yu-gui

    2012-01-01

    We firstly take a look at internal logic of cluster development of low-carbon agricultural products. In combination with operation features of farmers’ professional cooperatives and actual requirements for cluster development of low-carbon agricultural products; we elaborate establishing benefit allocation mechanism, bearing education and training functions, forming low-carbon value, building low-carbon identification system, as well as realizing low-carbon value. According to these situati...

  20. Regional carbon dioxide implications of forest bioenergy production

    OpenAIRE

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    International audience Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests1, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions2, and forest thinning to reduce wildfire emissions3. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2-14% (46-405 Tg C) higher emissions compared with cur...

  1. How will conversion to organic cereal production affect carbon stocks in Swedish agricultural soils?

    OpenAIRE

    Andrén, Olof; Kätterer, Thomas; Kirchmann, Holger

    2008-01-01

    Soil carbon changes were modelled over 30 years with the focus on cereal crops, since leys are often managed similarly in organic and conventional agriculture. Other crops were not considered due to difficulties in large-scale cropping of oilseed rape and potatoes organically because of pest problems. Four scenarios were used: 0%, 8% (current), 20% and 100% organic cereal production. Conversion to organic cereal crop production was found to reduce the amount of carbon stored as organic matter...

  2. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production

    OpenAIRE

    Gelfand, Ilya; Zenone, Terenzio; Jasrotia, Poonam; Chen, Jiquan; Hamilton, Stephen K.; Robertson, G. Philip

    2011-01-01

    Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn–soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt...

  3. Effect of Different Carbon Source on Expression of Carotenogenic Genes and Astaxanthin Production in Xanthophyllomyces dendrorhous

    OpenAIRE

    Wei Wu; Xin Yu

    2013-01-01

    The present research gives an insight into astaxanthin production, as well as transcription differences of four key carotenogenic genes, in Xanthophyllomyces dendrorhous when cultured with various carbon sources and soybean oil as co-substrates. Glucose was found to be the carbon source with best culture growth and astaxanthin production and the addition of 2% (v/v) soybean oil resulted in even higher astaxanthin producing. In addition, four carotenogenic genes encoding geranylgeranyl diphosp...

  4. Investigations on the influence of combustion products on the retention of radioiodine by activated carbons

    International Nuclear Information System (INIS)

    Investigations were performed on the influence of gaseous combustion products from relevant materials used in nuclear power plants on the retention of methyl iodide (CH3131I) by commercial impregnated activated carbons. It is concluded that with iodine filters of large bed depths (residence time: ≥ 0.5 s), when containing a usually employed impregnated activated carbon, a sufficiently high retention of radioiodine should be achievable even with a high challenge of gaseous combustion products. (orig.)

  5. Carbon dioxide metabolism by Actinomyces viscosus: pathways for succinate and aspartate production.

    OpenAIRE

    Brown, A T; Breeding, L C

    1980-01-01

    14C-labeled bicarbonate was incorporated into trichloroacetic acid-insoluble material by cell suspensions of A. viscosus strain M100 and also into the four-carbon fermentation product, succinate, but not into the three-carbon fermentation product, lactate. The initial step in the conversion of 14C-labeled bicarbonate into both trichloroacetic acid-insoluble material and succinate was catalyzed by the enzyme phosphoenolypyruvate carboxylase, which served to convert the glycolytic intermediate,...

  6. Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors

    Directory of Open Access Journals (Sweden)

    Jianchang Lu

    2015-04-01

    Full Text Available Based on the international community’s analysis of the present CO2 emissions situation, a Log Mean Divisia Index (LMDI decomposition model is proposed in this paper, aiming to reflect the decomposition of carbon productivity. The model is designed by analyzing the factors that affect carbon productivity. China’s contribution to carbon productivity is analyzed from the dimensions of influencing factors, regional structure and industrial structure. It comes to the conclusions that: (a economic output, the provincial carbon productivity and energy structure are the most influential factors, which are consistent with China’s current actual policy; (b the distribution patterns of economic output, carbon productivity and energy structure in different regions have nothing to do with the Chinese traditional sense of the regional economic development patterns; (c considering the regional protectionism, regional actual situation need to be considered at the same time; (d in the study of the industrial structure, the contribution value of industry is the most prominent factor for China’s carbon productivity, while the industrial restructuring has not been done well enough.

  7. Equilibrium thermodynamic analyses of methanol production via a novel Chemical Looping Carbon Arrestor process

    International Nuclear Information System (INIS)

    Highlights: • A novel Chemical Looping Carbon Arrestor Reforming process has been developed. • Energy efficiency of the process is found to be ∼64–70%. • The process emits only about 0.14 mole of carbon dioxide per mole of methanol. • The process offers an efficient and low-emission option for methanol production. - Abstract: Methanol economy is considered as an alternative to hydrogen economy due to the better handling and storage characteristics of methanol fuel than liquid hydrogen. This paper is concerned about a comprehensive equilibrium thermodynamic analysis carried out on methanol production via an innovative Chemical Looping Carbon Arrestor/Reforming process being developed at the University of Newcastle in order to reduce both energy consumption and carbon emissions. The detailed simulation revealed thermodynamic limitations within the Chemical Looping Carbon Reforming process however on the other hand it also confirmed that the new concept is a low energy requirement and low emission option compared to other methanol production technologies. Specifically, the mass and energy balance study showed that the Chemical Looping Carbon Reforming process typically consumes approximately 0.76–0.77 mole methane, 0.25–0.27 mole carbon dioxide, 0.49–0.50 mole water, and 0.51 mole iron oxide (in a chemical looping manner) per mole of methanol production. Moreover, the energy efficiency of Chemical Looping Carbon Reforming process was found to be ∼64–70% and its emission profile was found as low as 0.14 mole carbon dioxide per mole of methanol, which is about 82–88% less than the conventional methanol production process and well below the emission levels of other emerging methanol production technologies

  8. Potential for improving the carbon footprint of butter and blend products

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    2011-01-01

    To reduce the environmental impact of a product efficiently, it is crucial to consider the entire value chain of the product; that is, to apply life cycle thinking, to avoid suboptimization and identify the areas where the largest potential improvements can be made. This study analyzed the carbon...... the price paid for raw milk to dairy farmers. The CF (expressed as carbon dioxide equivalents, CO2e) for 1 kg of butter or blend (assuming no product waste at consumer) ranged from 5.2 kg (blend with 60% fat content) to 9.3 kg of CO2e (butter in 250-g tub). When including product waste at the consumer...

  9. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  10. A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings

    International Nuclear Information System (INIS)

    We develop an endogenous growth model with capital, labor and carbon-energy as production factors and three technology variables that measure accumulated innovations for carbon-energy production, carbon-energy savings, and neutral growth. All markets are complete and perfect, except for research, for which we assume that the marginal social benefits exceed the marginal private benefits by factor four. The model constants are calibrated so that the model reproduces the relevant global trends over the 1970-2000 period. The model contains a simple climate module, and is used to assess the impact of Induced Technological Change (ITC) for a policy that aims at a maximum level of atmospheric CO2 concentration (450 ppmv). ITC is shown to reduce the required carbon tax by more than a factor 2, and to reduce costs of such a policy by half. When we do not constrain aggregate R and D expenditures to benchmark levels, costs are further reduced. Numerical simulations show that knowledge accumulation shifts from energy production to energy saving technology. We discuss reasons for differences between our results and earlier results reported in the literature. (author)

  11. Brief Analysis on the Production & Operation Situation of Chinese Carbon Black Industry in the First Half Year

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    At present, there are about 120 carbon black manufacturing enterprises in China with the production capacity of 3.41 million tons, accounting for 78% of the total production capacity of the country, in which there are 31 carbon black enterprises with the production capacity of over 50,000 tons. Compared with the international carbon black industry, our carbon black industry has a low intensification.

  12. Organic carbon production, mineralization and preservation on the Peruvian margin

    Directory of Open Access Journals (Sweden)

    A. W. Dale

    2014-09-01

    Full Text Available Carbon cycling in Peruvian margin sediments (11° S and 12° S was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC content was lowest on the inner shelf and at the deep oxygenated stations (< 5% and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15–20%. The organic carbon burial efficiency (CBE was unexpectedly low on the inner shelf (< 20% when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%. Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09. Yet, mean POC burial rates were 2–5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  13. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    Directory of Open Access Journals (Sweden)

    Antonia Nette

    2016-03-01

    Full Text Available Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq (31% per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  14. Interannual stability of organic to inorganic carbon production on a coral atoll

    Science.gov (United States)

    Kwiatkowski, Lester; Albright, Rebecca; Hosfelt, Jessica; Nebuchina, Yana; Ninokawa, Aaron; Rivlin, Tanya; Sesboüé, Marine; Wolfe, Kennedy; Caldeira, Ken

    2016-04-01

    Ocean acidification has the potential to adversely affect marine calcifying organisms, with substantial ocean ecosystem impacts projected over the 21st century. Characterizing the in situ sensitivity of calcifying ecosystems to natural variability in carbonate chemistry may improve our understanding of the long-term impacts of ocean acidification. We explore the potential for intensive temporal sampling to isolate the influence of carbonate chemistry on community calcification rates of a coral reef and compare the ratio of organic to inorganic carbon production to previous studies at the same location. Even with intensive temporal sampling, community calcification displays only a weak dependence on carbonate chemistry variability. However, across three years of sampling, the ratio of organic to inorganic carbon production is highly consistent. Although further work is required to quantify the spatial variability associated with such ratios, this suggests that these measurements have the potential to indicate the response of coral reefs to ongoing disturbance, ocean acidification, and climate change.

  15. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  16. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  17. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  18. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.

    Science.gov (United States)

    Shen, Yi; Lua, Aik Chong

    2016-01-15

    A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials. PMID:26433477

  19. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon). PMID:26289204

  20. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  1. Resource Efficiency and Carbon Footprint Minimization in Manufacture of Plastic Products

    OpenAIRE

    K. Sabaliauskaitė; Kliaugaitė, D.

    2014-01-01

    Efficient resource management, waste prevention, as well as renewable resource consumption promote sustainable production and lower greenhouse gas emissions to the environment when manufacturing plastic products.The paper presents the analysis of the efficiency of resources and the potential of carbon footprint minimization in manufacture of plastic products by means of implementation of wood-plastic composite (WPC) production. The analysis was performed using life cycle assessment and materi...

  2. Filamentous carbon particles for cleaning oil spills and method of production

    Science.gov (United States)

    Muradov, Nazim

    2010-04-06

    A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.

  3. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria

    OpenAIRE

    Dijkhuizen, L; Harder, W

    1984-01-01

    The Calvin cycle of carbon dioxide fixation constitutes a biosynthetic pathway for the generation of (multi-carbon) intermediates of central metabolism from the one-carbon compound carbon dioxide. The product of this cycle can be used as a precursor for the synthesis of all components of cell material. Autotrophic carbon dioxide fixation is energetically expensive and it is therefore not surprising that in the various groups of autotrophic bacteria the operation of the cycle is under strict m...

  4. Effect of an hyperbaric nitrogen narcotic ambience on arginine and citrulline levels, the precursor and co-product of nitric oxide, in rat striatum

    Directory of Open Access Journals (Sweden)

    Vallée Nicolas

    2011-07-01

    Full Text Available Abstract Previous studies performed in the laboratory have shown that nitrogen narcosis induces a decrease in striatal glutamate and dopamine levels. Although we stimulated the N-methyl-D-aspartate (NMDA receptor, an important glutamate receptor required for motor and locomotor activity managed by the striatum, and demonstrated that the receptor was effective when exposed to nitrogen at 3MPa, it was not possible to return the striatal glutamate level to its base values. We conclude that it was the striatopetal neurons of the glutamatergic pathways that were mainly affected in this hyperbaric syndrome, without understanding the principal reasons. Hence we sought to establish what happens in the vicinity of the plasma membrane, downstream the NMDA-Receptor, and we used the hypothesis that there could be neuronal nitric oxide synthase (nNOS disturbances. A microdialysis study was performed in rat striatum in order to analyse levels of citrulline, the NO co-product, and arginine, the NO precursor. Those both NO metabolites were detectable with an HPLC coupled to a fluorimetric detector. Exposure to pressurized nitrogen induced a reduction in citrulline (-18.9% and arginine (-10.4% levels. Under the control normobaric conditions, the striatal NMDA infusion enhanced the citrulline level (+85.6%, whereas under 3 MPa of nitrogen, the same NMDA infusion did not change the citrulline level which remains equivalent to that of the baseline. The level of arginine increased (+45.7% under normobaric conditions but a decrease occurred in pressurized nitrogen (-51.6%. Retrodialysis with Saclofen and KCl in the prefrontal cortex under normobaric conditions led to an increase in striatal levels of citrulline (+30.5% and a decrease in arginine levels (-67.4%. There was no significant difference when nitrogen at 3MPa was added. To conclude, the synthesis of citrulline/NO is reduced in nitrogen narcosis while it seems possible to activate it artificially by infusion

  5. Carbon sources effect on pectinase production from Aspergillus japonicus 586

    Directory of Open Access Journals (Sweden)

    Teixeira Maria F. S.

    2000-01-01

    Full Text Available The effect of different carbon sources on the pectinesterases, endo- and exo-polygalacturonase activities from Aspergillus japonicus 586 was evaluated in liquid media (Manachini solutions supplemented with different substrate concentrations. The culture medium was inoculated with 5.10(6 spores/ml and mantained under agitation (140 rpm, at 30°C, during 122 h. The enzyme evaluation was carried out 24 h after filtration. The crude extract from A. japonicus 586 indicated that the best enzymatic activities were afforded in the presence of 0.5% pectin (pectinesterease, 0.2% pectin and 0.2% glycerol (endopolygalacturonase, and 0.5% pectin associated to 0.5% glucose (exopolygalacturonase. Carbon sources concentration, isolated or associated, significantly affects the pectinesterase, and endo- and exopolygalacturonase activities. Pectin, glucose and saccharose, when added to the culture medium in high concentrations, exhibited a repression effect on all the analyzed enzymes.

  6. Production of graphene oxide from pitch-based carbon fiber

    OpenAIRE

    Miyeon Lee; Jihoon Lee; Sung Young Park; Byunggak Min; Bongsoo Kim; Insik In

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  7. Synthesis of 2,15-Hexadecanedione as a Precursor of Muscone

    Institute of Scientific and Technical Information of China (English)

    郭媛; 顾焕; 史真

    2005-01-01

    Muscone is a precious fragrant compound scarce in nature. Many synthetic attempts for this unique natural product have been carried out. In this work, the one-carbon unit transfer reaction of tetrahydrofolate coenzyme was initialed. Bisbenzimidazolium salt was used as tetrahydrofolate coenzyme model, and thus the biomimetic synthesis of 2,15-hexadecanedione, a precursor of muscone, was successfully accomplished by using the addition-hydrolysis reaction of bisbenzimidazolium salt with methyl magnesium iodide.

  8. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of...

  9. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2011-06-10

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations... determines that revocation of the countervailing duty order on hot-rolled flat-rolled carbon-quality steel...-rolled flat-rolled carbon-quality steel products from Brazil and Japan. Background The...

  10. 76 FR 7546 - Certain Hot-Rolled Carbon Steel Flat Products From Brazil: Rescission of Countervailing Duty...

    Science.gov (United States)

    2011-02-10

    ... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From Brazil: Rescission of... review of the countervailing duty order on certain hot- rolled carbon steel flat products (hot-rolled... Agreement Suspending the Countervailing Duty Investigation on Hot- Rolled Flat-Rolled Carbon-Quality...

  11. 78 FR 79665 - Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Final Results of Antidumping...

    Science.gov (United States)

    2013-12-31

    ... Antidumping Duty Order; Welded Carbon Steel Standard Pipe and Tube Products From Turkey, 51 FR 17784, 17784... International Trade Administration Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Final... administrative review of the antidumping duty order on welded carbon steel standard pipe and tube...

  12. Carbon footprint and ammonia emissions of California beef production systems

    Science.gov (United States)

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH3) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH3 ...

  13. Use of the reaction products of diols and organoaluminum compounds as precursors to Al{sub 2}O{sub 3}. Control over ceramic material phase and particle size by choice of precursor chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Rees, W.S. Jr.; Hesse, W. [Florida State Univ., Tallahassee, FL (United States)

    1993-12-31

    Diethylaluminumethoxide and triethylaluminum have been reacted with ethylene glycol and catechol in diethyl ether and tetrahydrofuran as solvent media in 1:1 and 1:1.5 ratios, with and without the presence of added poly(dimethylsiloxane). The reaction products have been characterized by elemental analysis, x-ray powder diffraction, solid state {sup 27}Al nuclear magnetic resonance spectroscopy, scanning electron microscopy, energy dispersive x-ray emission analysis, thermogravimetric analysis an identification of thermolysis products. Gasses and liquids were identified of powder x-ray diffraction, scanning electron microscopy, energy dispersive x-ray emission analysis, solid state {sup 27}Al nuclear magnetic resonance spectroscopy and apparent density.

  14. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  15. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Jang, Se Gyu; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co. LTD, Seoul (Korea, Republic of)

    2014-06-15

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

  16. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    International Nuclear Information System (INIS)

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas

  17. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. PMID:26856444

  18. Short Term Electric Production Technology Switching Under Carbon Cap and Trade

    Directory of Open Access Journals (Sweden)

    Donald F. Larson

    2012-10-01

    Full Text Available This study examines fuel switching in electricity production following the introduction of the European Union’s Emissions Trading System (EU ETS for greenhouse gas emissions. A short-run restricted cost equation is estimated with carbon permits, high-carbon fuels, and low carbon fuels as variable inputs. Shadow values and substitution elasticities for carbon-free energy resources from nuclear, hydroelectric and renewable sources are imputed from the cost equation. The empirical analysis examines 12 European countries using monthly data on fuel use, prices, and electricity generation during the first phase of the European Emissions Trading System. Despite low emission permit prices, this study finds statistically significant substitution between fossil fuels and carbon free sources of energy for electric power production. Significant substitution between fossil fuels and nuclear energy also was found. Still, while 18 of the 20 substitution elasticities are statistically significant, they are all less than unity, consistent with limited substitution. Overall, these results suggest that prices for carbon emission permits relative to prices for carbon and carbon free sources of energy do matter but that electric power producers have limited operational flexibility in the short-run to satisfy greenhouse gas emission limits.

  19. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  20. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne;

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation...

  1. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne; Sorensen, B.; Wille, J.

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation of...... methane was suggested....

  2. Carbon-10: Example of cyclotron production of positron emitters as an open research field

    DEFF Research Database (Denmark)

    Alves, F.; Lima, J.J.P.; Nickles, R.J.;

    2007-01-01

    This paper supports the thesis that significant improvement of PET output response to clinical questions can be achieved by innovation in radionuclide production. Moreover, that development can be performed with the resources available at a clinical centre. Carbon-10 production parameters studies...

  3. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and...... on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha -amylase, whereas addition of small amounts of glucose resulted in alpha -amylase production. A possible induction by alpha -methyl-D-glucoside during growth on glucose was also...... investigated, but this compound was not found to be a better inducer of alpha -amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer....

  4. C1-carbon sources for chemical and fuel production by microbial gas fermentation.

    Science.gov (United States)

    Dürre, Peter; Eikmanns, Bernhard J

    2015-12-01

    Fossil resources for production of fuels and chemicals are finite and fuel use contributes to greenhouse gas emissions and global warming. Thus, sustainable fuel supply, security, and prices necessitate the implementation of alternative routes to the production of chemicals and fuels. Much attention has been focussed on use of cellulosic material, particularly through microbial-based processes. However, this is still costly and proving challenging, as are catalytic routes to biofuels from whole biomass. An alternative strategy is to directly capture carbon before incorporation into lignocellulosic biomass. Autotrophic acetogenic, carboxidotrophic, and methanotrophic bacteria are able to capture carbon as CO, CO2, or CH4, respectively, and reuse that carbon in products that displace their fossil-derived counterparts. Thus, gas fermentation represents a versatile industrial platform for the sustainable production of commodity chemicals and fuels from diverse gas resources derived from industrial processes, coal, biomass, municipal solid waste (MSW), and extracted natural gas. PMID:25841103

  5. Improving farming practices reduces the carbon footprint of spring wheat production.

    Science.gov (United States)

    Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L; Campbell, Con A; Zentner, Robert P

    2014-01-01

    Wheat is one of the world's most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256 kg CO2 eq ha(-1) per year. For each kg of wheat grain produced, a net 0.027-0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production. PMID:25405548

  6. The Role of Eucalyptus Globulus Forest and Products in Carbon Sequestration

    International Nuclear Information System (INIS)

    This study is a contribution to the ongoing debate about the selection of the approach for carbon accounting in wood products to be used, in the future, in the national greenhouse gas inventories under the UNFCCC (United Nations Framework Convention on Climate Change). Two accounting approaches are used in this analysis: the stock-change approach and the atmospheric-flow approach. They are applied to the Portuguese Eucalyptus globulus forest sector. To achieve this objective, the fluxes of wood removed from the forest are tracked through its life cycle, which includes products manufacture (mainly pulp and paper), use and final disposal (landfilling, incineration and composting). This study develops a framework to the estimation of carbon sequestration in the forest of E. globulus, a fast growing species, more specifically, in the calculation of the conversion factors such as bark and foliage percentages and densities, used to convert wood volumes into total biomass. A mass balance approach based on real data from mills is also proposed, in order to assess carbon emissions from wood processing. The results show that E. globulus forest sector was a carbon sink, but the magnitude of the carbon sequestration differs substantially depending on the accounting approach used. The contribution of the forest ecosystem was smaller than the aggregated contribution of wood products in use and in landfills (including industrial waste), which reinforces the role that wood products play in national carbon budgets

  7. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-23

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

  8. Characterization of the major reactions during conversion of lignin to carbon fiber

    Directory of Open Access Journals (Sweden)

    Hendrik Mainka

    2015-10-01

    Full Text Available Lightweight design is an essential part of the overall Volkswagen strategy for reducing the CO2 emissions. The use of carbon fiber offers an enormous lightweight potential. In comparison to steel enabling a mass reduction of up to 70% in automotive parts without a degradation of the functionalities is possible. Today, the use of carbon fiber is limited in mass series applications of the automotive industry by the cost of the conventional C-fiber precursor polyacrylonitrile (PAN. 50% of the cost of a conventional carbon fiber already belongs to the cost of the PAN precursor. Lignin as a precursor for carbon fiber production can realize enormous savings in cost. For qualifying lignin-based carbon fiber for automotive mass production a detailed characterization of this new material is necessary. Therefore, nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy are used. Using the results of these experiments, the major reactions during conversion of lignin to carbon fiber are proposed.

  9. Carbon-based composite electrocatalysts for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. (Columbia, SC); Lee, Jog-Won (Columbia, SC); Subramanian, Nalini P. (Kennesaw, GA); Kumaraguru, Swaminatha P. (Honeoye Falls, NY); Colon-Mercado, Hector R. (Columbia, SC); Nallathambi, Vijayadurga (T-Nagar, IN); Li, Xuguang (Columbia, SC); Wu, Gang (West Columbia, SC)

    2009-12-08

    A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.

  10. Boron carbide/carbon composite material and production process therefor

    International Nuclear Information System (INIS)

    The boron carbide/carbon composite material of the present invention comprises from 15 to 40% by volume of graphite and the balance of two kinds of powdery boron carbides X and Y having different average grain sizes. The average grain size of the powdery boron carbide X is less than 1/2 of the average grain size of the boron carbide Y, and the composite material comprises more than 10% by volume of the powdery boron carbide X and more than 30% by volume of the powdery boron carbide Y. They are press-molded under heating at a temperature range of 480 to 600degC, followed by sintering. A binder pitch of less evaporation ingredient melting upon heating is used as a binder. Since the pitch of satisfactory melting property is used, there is no worry that binding property lacks to reduce the lowering of the strength even if a great amount of powdery boron carbide is added. Further, since a carbonization yield is improved due to less evaporation content, density and strength of the composite material can be increased. (T.M.)

  11. Carbon dioxide sequestration by chemolithotrophic oleaginous bacteria for production and optimization of polyhydroxyalkanoate.

    Science.gov (United States)

    Kumar, Manish; Gupta, Asmita; Thakur, Indu Shekhar

    2016-08-01

    The present work involved screening of a previously reported carbon concentrating oleaginous bacterial strain Serratia sp. ISTD04 for production of PHA and optimization of process parameters for enhanced PHA and biomass generation. The selected bacterial strain was screened for PHA production based on Nile red staining followed by visualization under fluorescence microscope. Spectrofluorometric measurement of Nile red fluorescence of the bacterial culture was also done. Confirmatory analysis of PHA accumulation by GC-MS revealed the presence of 3-hydroxyvalerate. Detection of characteristic peaks in the FT-IR spectrum further confirmed the production of PHA by the bacterium. Response Surface Methodology was used for optimization of pH and carbon sources' concentrations for higher PHA production. There was almost a 2 fold increase in the production of PHA following optimization as compared to un-optimized condition. The study thus establishes the production of PHA by Serratia sp. ISTD04. PMID:26920627

  12. Utilization of compressed natural gas for the production of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Kim-Yang Lee; Wei-Ming Yeoh; Siang-Piao Chai; Abdul Rahman Mohamed

    2012-01-01

    The present work aims at utilizing compressed natural gas (CNG) as carbon source for the synthesis of carbon nanotubes (CNTs) over CoO-MoO/Al2O3 catalyst via catalytic chemical vapor deposition (CCVD) method.The as-produced carbonaceous product was characterized by thermal gravimetric analyzer (TGA),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and Raman spectroscopy.The experimental finding shows that CNTs were successfully produced from CNG while carbon nanofibers (CNFs) were formed as the side products.In addition,the catalytic activity and lifetime were found sustained and prolonged,as compared with using high purity methane as carbon source.The present study suggests an alternative route which can effectively produce CNTs and CNFs using low cost CNG.

  13. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  14. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    OpenAIRE

    Renato Altobelli Antunes; Rodrigo Uchida Ichikawa; Luis Gallego Martinez; Isolda Costa

    2014-01-01

    The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron micr...

  15. Carbon Fiber Composite Materials in Modern Day Automotive Production Lines – A Case Study

    OpenAIRE

    Petersson, Håkan; Motte, Damien; Bjärnemo, Robert

    2014-01-01

    New and innovative production equipment can be developed by introducing lightweight materials in modern day automotive industry production lines. The properties of these new materials are expected to result in improved ergonomics, energy savings, increased flexibility and more robust equipment, which in the end will result in enhanced productivity. Carbon composite materials are one such alternative that has excellent material properties. These properties are well documented, and the market f...

  16. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  17. Carbon monoxide production and emission by some Scottish soils

    Science.gov (United States)

    Moxley, J. M.; Smith, K. A.

    1998-04-01

    When mineral soils from woodland, grassland and arable environments in Central Scotland were air-dried, they became net sources of CO; production rates were greatly increased by oven-drying at 104°C. The soils also produced CO after sterilisation by autoclaving and gamma irradiation. It was concluded that the CO production process involved non-biological decomposition of humic materials; addition of such materials to soils enhanced production. When moist, the soils were normally net sinks for CO, but in the presence of 1000 ppmv of acetylene (an inhibitor of microbial oxidation of CO), they became net sources. Net CO emission was observed in a peatland, in the field, during the wetter months of the year. Here, the CO production was apparently due to a different process from that responsible for production in the dried soils, probably involving anaerobic microbial activity. A possible upper limit of 0.2 Tg y1, for emissions of CO from northern hemisphere wetlands, was calculated on the basis of this part of the study.

  18. Gram scale production of singlewall carbon nanotubes by catalytic decomposition of hydrocarbons

    International Nuclear Information System (INIS)

    The quality of singlewall carbon nanotubes produced by catalytic decomposition of hydrocarbons depends on the synthesis conditions but also on the scale of production. Singlewall nanotubes are produced by the decomposition of methane over cobalt based catalyst supported on magnesium oxide. The characteristics of the samples produced at different gas flows are studied by TEM, TGA, XRD, PIXE and Raman spectroscopy. A process is suggested to remove amorphous carbon and a part of the cobalt particles from the samples

  19. Incorporating jurisdiction issues into regional carbon accounts under production and consumption accounting principles

    OpenAIRE

    2010-01-01

    Despite increased public interest, policymakers have been slow to enact targets based on limiting emissions under full consumption accounting measures (such as carbon footprints). This paper argues that this may be due to the fact that policymakers in one jurisdiction do not have control over production technologies used in other jurisdictions. The paper uses a regional input-output framework and data derived on carbon dioxide emissions by industry (and households) to examine regional account...

  20. Incorporating jurisdiction issues into regional carbon accounts under production and consumption accounting principles

    OpenAIRE

    Karen Turner; Max Munday; Stuart McIntyre; Christa D. Jensen

    2011-01-01

    Despite increased public interest, policymakers have been slow to enact targets based on limiting emissions under full consumption accounting measures (such as carbon footprints). This paper argues that this may be due to the fact that policymakers in one jurisdiction do not have control over production technologies used in other jurisdictions. The paper uses a regional input-output framework and data derived on carbon dioxide emissions by industry (and households) to examine regional account...

  1. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans

    OpenAIRE

    Nazem-Bokaee, Hadi; Gopalakrishnan, Saratram; James G. Ferry; Thomas K. Wood; Maranas, Costas D.

    2016-01-01

    Background Methanosarcina acetivorans is a model archaeon with renewed interest due to its unique reversible methane production pathways. However, the mechanism and relevant pathways implicated in (co)utilizing novel carbon substrates in this organism are still not fully understood. This paper provides a comprehensive inventory of thermodynamically feasible routes for anaerobic methane oxidation, co-reactant utilization, and maximum carbon yields of major biofuel candidates by M. acetivorans....

  2. Laser ablation process for single-walled carbon nanotube production

    Science.gov (United States)

    Arepalli, Sivaram

    2004-01-01

    Different types of lasers are now routinely used to prepare single-walled carbon nanotubes. The original method developed by researchers at Rice University used a "double-pulse laser oven" process. Several researchers have used variations of the lasers to include one-laser pulse (green or infrared), different pulse widths (ns to micros as well as continuous wave), and different laser wavelengths (e.g., CO2, or free electron lasers in the near to far infrared). Some of these variations are tried with different combinations and concentrations of metal catalysts, buffer gases (e.g., helium), oven temperatures, flow conditions, and even different porosities of the graphite targets. This article is an attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.

  3. Production of carbon 14-labeled fumonisin in liquid culture

    International Nuclear Information System (INIS)

    Currently, fumonisin B1 is obtained primarily by using solid culture methods. Although fumonisin B1 concentrations obtained in solid culture are typically quite high, subsequent extraction and purification present problems. In addition, current methods utilize complex media which makes analysis of biosynthetic pathways and control mechanisms difficult. Liquid culture methods of production could eliminate many problems associated with production in solid culture. However, in the past, concentrations obtained in liquid culture have been relatively low. In this work, factors affecting the production of fumonisin B1 from a shake flask scale of 100 ml to a fermenter scale of 100 liters were examined. Best results were obtained by using a fed batch method that is nitrogen limited, with pH control. With this method, concentrations in excess of 1000 ppm can be obtained. (author)

  4. Production of carbon monoxide by charged particle deposition.

    Science.gov (United States)

    Green, A. E. S.; Sawada, T.; Edgar, B. C.; Uman, M. A.

    1973-01-01

    Recent studies of electron energy deposition in CO2 and CO based upon a large set of electron impact cross sections are utilized to estimate the telluric CO directly produced by various charged-particle deposition mechanisms. The mechanisms considered are (1) lightning, (2) cloud coronal discharges, (3) background radioactivity, (4) natural electrostatic discharges, (5) photoelectrons in the ionosphere, (6) auroral electrons, (7) auroral protons, (8) cosmic rays, and (9) solar wind. 'Ball park' estimates of the global CO production by each of these mechanisms are given. Apart from mechanisms 1, 2, and 5, all CO production mechanisms are estimated to be small compared to artificial sources. If, as appears to be the case, the hot oxygen atoms and ions and other atomic species immediately produced by these three charged-particle deposition mechanisms react rapidly with CO2 to produce CO, these mechanisms can readily lead to CO production levels in the multimegaton-per-year range.

  5. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. PMID:27090405

  6. Determination of solubility product of lead carbonate using 14C radionuclide

    International Nuclear Information System (INIS)

    Using the obtained experimental data on lead carbonate solubility in bidistilled water at 25 deg C, the value of lead carbonate solubility product, which constituted (3.6+-0.1)x10sup(-11) at confidence level 0.95, is determined. The use of radioactive indicators permitted to eliminate the negative effect of carbonate-ion excess concentration and pH and to specify similar literature data. A high stability of leadcarbonate supersaturated solutions is shown, which can be explained by a slow rate of the process PbCO3 (aq) → PbCO3 (cr)

  7. Production of Heat Resistant Composite based on Siloxane Elastomer and Multiwall Carbon Nanotubes

    Science.gov (United States)

    Bessonov, I. V.; Karelina, N. V.; Kopitsyna, M. N.; Morozov, A. S.; Reznik, S. V.; Skidchenko, V. Yu.

    2016-02-01

    Development of a new generation of composite with unique thermal properties is an important task in the fields of science and technology where material is operated at high temperatures and exposure to a short-wave radiation. Recent studies show that carbon nanomaterials (fullerenes and carbon nanotubes) could improve the thermal, radiation and thermal-oxidative stability of the polymer matrix. In this article the development of a new heat resistant composite based on elastomer and carbon nanotubes (CNT) was performed and physicochemical properties of final product were evaluated.

  8. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides.

    Science.gov (United States)

    Sevilla, Marta; Fuertes, Antonio B

    2009-01-01

    Carbon-rich-quick scheme: A carbon-rich solid product made up of uniform micrometer-sized spheres of tunable diameter has been synthesized by the hydrothermal carbonization of saccharides. These microspheres possess a core-shell chemical structure based on the different nature of the oxygen functionalities between the core and the outer layer (see figure).A carbon-rich solid product, here denoted as hydrochar, has been synthesized by the hydrothermal carbonization of three different saccharides (glucose, sucrose, and starch) at temperatures ranging from 170 to 240 degrees C. This material is made up of uniform spherical micrometer-sized particles that have a diameter in the 0.4-6 mum range, which can be modulated by modifying the synthesis conditions (i.e., the concentration of the aqueous saccharide solution, the temperature of the hydrothermal treatment, the reaction time, and type of saccharide). The formation of the carbon-rich solid through the hydrothermal carbonization of saccharides is the consequence of dehydration, condensation, or polymerization and aromatization reactions. The microspheres thus obtained possess, from a chemical point of view, a core-shell structure consisting of a highly aromatic nucleus (hydrophobic) and a hydrophilic shell containing a high concentration of reactive oxygen functional groups (i.e., hydroxyl/phenolic, carbonyl, or carboxylic). PMID:19248078

  9. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation

    International Nuclear Information System (INIS)

    A 40 year projection of potential carbon sequestration is based on USDA Forest Service Forest Inventory and Analysis (FIA) data from the state of Georgia. The objective is to compare carbon sequestration under a sustainable management strategy versus a preservation strategy. FIA plots are projected ahead in time with hotdeck matching. This matches each subject plot with another plot from the database that represents the subject plot at a future time. The matched plot sequences are used to provide input data to a harvest scheduling program to generate a management strategy for the state. The sequestration from the management strategy is compared with a preservation strategy that involves no harvesting. Harvested wood is assumed to go into products with various half life decay rates. Carbon sequestration is increased as increasing proportions go into wood for energy, which is treated like a product with an infinite half life. Therefore, the harvested carbon does not return immediately to the atmosphere. Public land and land close to cities is assumed to be unavailable, and all other private land is assumed to be accessible. The results are presented as gigatonnes of CO2 equivalent to make them directly comparable to US annual carbon emissions. The conclusion is that forest management will sequester more above-ground carbon than preservation over a 40 year period if the wood is used for products with an average half life greater than 5 years.

  10. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H2 = 1/1, 100 cm3/min, at 620 oC under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H2 = 1/1, total gas flow rate 100 cm3/min, at 620 oC for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  11. Proposal to realize a cost breakthrough in carbon-13 production by photochemical separation

    International Nuclear Information System (INIS)

    A cost breakthrough can now be made in photochemical production of the rare stable isotope carbon-13. This cost breakthrough is achieved by CO2 laser infrared multiple-photon dissociation of any of several halocarbons (Freon derivatives) such as CF3Cl, CF3Br, or CF2Cl2. The single-step carbon-13 enrichment factor for this process is approximately 50, yielding 30% pure C-13 in one step, or up to 97% pure C-13 in two steps. A three-fold carbon-13 cost reduction to below $20/gram is expected to be achieved in a small laboratory-scale demonstration facility capable of producing 4 to 8 kg/year of carbon-13, using presently available pulsed CO2 TEA lasers at an average power level of 50 watts. Personnel costs dominate the attainable C-13 production costs in a small photochemical enrichment facility. A price reduction to $2/gm carbon-13 is feasible at carbon-13 production levels of 100 to 1000 kg/year, dominated by the Freon raw material costs

  12. Resource Efficiency and Carbon Footprint Minimization in Manufacture of Plastic Products

    Directory of Open Access Journals (Sweden)

    Kamilė Sabaliauskaitė

    2014-04-01

    Full Text Available Efficient resource management, waste prevention, as well as renewable resource consumption promote sustainable production and lower greenhouse gas emissions to the environment when manufacturing plastic products. The paper presents the analysis of the efficiency of resources and the potential of carbon footprint minimization in manufacture of plastic products by means of implementation of wood-plastic composite (WPC production. The analysis was performed using life cycle assessment and material flow analysis methodology. To devise the solution for better management of resources and minimization of carbon footprint, the environmental impacts of polyvinyl chloride (PVC and WPC wall panels through their life cycle were assessed, as well as the detailed material flow analyses of the PVC and WPC in production stages were carried out. The life cycle assessment has revealed that carbon footprint throughout life cycle of 1 kg of WPC wall panel is 37 % lower than those of the same weight of PVC wall panel product. Both products have a major impact on the environment during their production phase, while during this phase WPC wall panel has 35 % smaller carbon footprint and even 47 % smaller during disposal stages than those of the PVC wall panel. The results of material flow analysis have shown that recycling and reuse of production spoilage reduce the need of PVC secondary resources for PVC panels and primary WPC resources for WPC panel production. For better resource efficiency, the conceptual model of material flow management has been proposed. As WPC products are made of primary WPC granules, which are imported from abroad, the model suggests to produce the WPC granules at the company using collected PVC secondary materials (PVC stocks. It would lower environmental costs and environmental impact, increase the efficiency of resources, and diminish dependence on suppliers.

  13. Resource Efficiency and Carbon Footprint Minimization in Manufacture of Plastic Products

    Directory of Open Access Journals (Sweden)

    K. Sabaliauskaitė

    2014-03-01

    Full Text Available Efficient resource management, waste prevention, as well as renewable resource consumption promote sustainable production and lower greenhouse gas emissions to the environment when manufacturing plastic products.The paper presents the analysis of the efficiency of resources and the potential of carbon footprint minimization in manufacture of plastic products by means of implementation of wood-plastic composite (WPC production. The analysis was performed using life cycle assessment and material flow analysis methodology. To devise the solution for better management of resources and minimization of carbon footprint, the environmental impacts of polyvinyl chloride (PVC and WPC wall panels through their life cycle were assessed, as well as the detailed material flow analyses of the PVC and WPC in production stages were carried out.The life cycle assessment has revealed that carbon footprints throughout life cycle of 1 kg of WPC wall panel are 37 % lower than those of the same weight of PVC wall panel product. Both products have a major impact on the environment during their production phase, while during this phase WPC wall panel has 35 % smaller carbon footprint and even 47 % smaller during disposal stages than those of the PVC wall panel.The results of material flow analysis have shown that recycling and reuse of production spoilage reduce the need of PVC secondary resources for PVC panels and primary WPC resources for WPC panel production.For better resource efficiency, the conceptual model of material flow management has been proposed. As WPC products are made of primary WPC granules, which are imported from abroad, the model suggests to produce the WPC granules at the company using collected PVC secondary materials (PVC stocks. It would lower environmental costs and environmental impact, increase the efficiency of resources, and diminish dependence on suppliers.DOI: http://dx.doi.org/10.5755/j01.erem.67.1.6587

  14. Effect of progressive Co loading on commercial Co–Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: • A commercial cobalt molybdate was used as catalyst for natural gas decomposition to H2 production. • Increments of cobalt concentration enhance the production of hydrogen and CNTs. • The catalytic activity dependent on the amount of isolated Co3O4 phases. - Abstract: Successive cobalt increments from 3.1% up to 40.0% in a commercial hydrotreating catalyst containing originally 3.1%Co and 10.5%Mo on γ-Al2O3 was investigated at a reaction temperature of 700 °C and atmospheric pressure for the catalytic decomposition of natural gas to CO/CO2 free hydrogen and carbon nanomaterials. The fresh and used catalysts were characterized by XRD, BET, TEM and TG-DTA analysis. The catalytic performance data showed that the increase of cobalt concentration improved the catalytic dissociation activity and longevity toward hydrogen production. All surface properties declined with successive addition of cobalt in the catalysts. XRD results showed that the crystallinity was remarkably enhanced and Co3O4 phases predominate upon addition of the cobalt precursor. The catalytic activity was found to be primarily dependent on the extent and degree of isolation of Co3O4 phases on the catalyst surface which reflects that the current reaction is a metal catalyzed one. The influence of metal content on the total carbon yield and the degree of graphitization of the resulting CNTs was investigated by TGA, XRD, Raman spectroscopy and TEM analysis

  15. 77 FR 44213 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea...

    Science.gov (United States)

    2012-07-27

    ... Corrosion-Resistant Carbon Steel Flat Products from Germany, 71 FR 66163 (November 13, 2006). Analysis of... Steel Flat Products From Canada and Germany, 71 FR 14498 (March 22, 2006). \\7\\ See Notice of Final... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the...

  16. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ...: Certain Steel Products From Korea, 58 FR 43752 (August 17, 1993) (Order). \\3\\ See the ``Decision... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... carbon steel flat products (CORE) from the Republic of Korea (Korea) for the period of review...

  17. Synthesis of precursor the base of indene for polyelectrolyte an membrane production for application in fuel cell; Sintese de precursores a base de indeno para producao de polieletrolitos e membranas para uso em celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Brum, F.J.B.; Laux, F.N.; Haack, M.S.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul. Escola de Engenharia, Porto Alegre, RS (Brazil)

    2010-07-01

    Monomers with vinyl bond can be polymerized via a cationic mechanism using acid catalysts. This study aimed to obtain homo and copolymers of styrene and indene via cationic mechanism and the functionalization of sulfonic groups to the production of membranes for fuel cells. Polymers and poly electrolytes were characterized by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC/SEC). The degree of sulfonation of the polymers was determined by titration and evaluated for these films to the degree of swelling in water, ion exchange capacity and analysis of electrochemical impedance spectroscopy. Membranes prepared with polyindene and PVA were tested in an apparatus of the fuel cell. (author)

  18. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input.

    Science.gov (United States)

    Stibal, Marek; Tranter, Martyn; Benning, Liane G; Rehák, Josef

    2008-08-01

    Cryoconite holes are unique freshwater environments on glacier surfaces, formed when solar-heated dark debris melts down into the ice. Active photoautotrophic microorganisms are abundant within the holes and fix inorganic carbon due to the availability of liquid water and solar radiation. Cryoconite holes are potentially important sources of organic carbon to the glacial ecosystem, but the relative magnitudes of autochthonous microbial primary production and wind-borne allochthonous organic matter brought are unknown. Here, we compare an estimate of annual microbial primary production in 2006 on Werenskioldbreen, a Svalbard glacier, with the organic carbon content of cryoconite debris. There is a great disparity between annual primary production (4.3 mug C g(-1) year(-1)) and the high content of organic carbon within the debris (1.7-4.5%, equivalent to 8500-22 000 mug C g(-1) debris). Long-term accumulation of autochthonous organic matter is considered unlikely due to ablation dynamics and the surface hydrology of the glacier. Rather, it is more likely that the majority of the organic matter on Werenskioldbreen is allochthonous. Hence, although glacier surfaces can be a significant source of organic carbon for glacial environments on Svalbard, they may be reservoirs rather than oases of high productivity. PMID:18430008

  19. Microbial engineering for the production of fatty acids and fatty acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Gregory; Abidi, Syed Hussain Imam

    2014-07-01

    Some aspects of this invention relate to methods useful for the conversion of a carbon source to a biofuel or biofuel precursor using engineered microbes. Some aspects of this invention relate to the discovery of a key regulator of lipid metabolism in microbes. Some aspects of this invention relate to engineered microbes for biofuel or biofuel precursor production.

  20. Production of fluorine-18 from eithium carbonate in a research reactor

    International Nuclear Information System (INIS)

    A method for the production of fluorine-18 in a research reactor, from irradiated lithium carbonate, is described. Fluorine-18 is separated from impurities in a alumina column, which is an appropriate procedure for its production as a carrier-free radioisotope for oral administration. Characteristics of the product, when fluorine is separated from irradiated target in an usual alumina column, are compared with those when fluorine is separated in a previously calcined(10000C) alumina column: Yields of chemical separation and chemical forms of radioisotope obtained are studied. Fluorine elution is investigated for several eluant concentrations and the use of a lower concentrated eluant is emphasized. Purity degree of fluorine-18 solutions separated. A routine production procedure is determined by irradiating enriched lithium carbonate (95% 6Li). Theoretical yields are compared with fluorine-18 production yields obtained in several irradiations