WorldWideScience

Sample records for carbon pollution reduction

  1. Assessing the influence of the carbon oxidation-reduction state on organic pollutant biodegradation in algal-bacterial photobioreactors

    NARCIS (Netherlands)

    Bahr, M.; Stams, A.J.M.; Rosa, de la F.; Garcia-Encina, P.; Munoz, R.

    2011-01-01

    The influence of the carbon oxidation-reduction state (CORS) of organic pollutants on their biodegradation in enclosed algal-bacterial photobioreactors was evaluated using a consortium of enriched wild-type methanotrophic bacteria and microalgae. Methane, methanol and glucose (with CORS -4, -2 and 0

  2. Assessing the influence of the carbon oxidation-reduction state on organic pollutant biodegradation in algal-bacterial photobioreactors.

    Science.gov (United States)

    Bahr, Melanie; Stams, Alfons J M; De la Rosa, Francisco; García-Encina, Pedro A; Muñoz, Raul

    2011-05-01

    The influence of the carbon oxidation-reduction state (CORS) of organic pollutants on their biodegradation in enclosed algal-bacterial photobioreactors was evaluated using a consortium of enriched wild-type methanotrophic bacteria and microalgae. Methane, methanol and glucose (with CORS -4, -2 and 0, respectively) were chosen as model organic pollutants. In the absence of external oxygen supply, microalgal photosynthesis was not capable of supporting a significant methane and methanol biodegradation due to their high oxygen demands per carbon unit, while glucose was fully oxidized by photosynthetic oxygenation. When bicarbonate was added, removal efficiencies of 37 ± 4% (20 days), 65 ± 4% (11 days) and 100% (2 days) were recorded for CH(4,) CH(3)OH and C(6)H(12)O(6), respectively due to the additional oxygen generated from photosynthetic bicarbonate assimilation. The use of NO(3)(-) instead of NH(4)(+) as nitrogen source (N oxidation-reduction state of +5 vs. -3) resulted in an increase in CH(4) degradation from 0 to 33 ± 3% in the absence of bicarbonate and from 37 ± 4% to 100% in the presence of bicarbonate, likely due to a decrease in the stoichiometric oxygen requirements and the higher photosynthetic oxygen production. Hypothetically, the CORS of the substrates might affect the CORS of the microalgal biomass composition (higher lipid content). However, the total lipid content of the algal-bacterial biomass was 19 ± 7% in the absence and 16 ± 2% in the presence of bicarbonate.

  3. Assessing the influence of the carbon oxidation-reduction state on organic pollutant biodegradation in algal-bacterial photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Bahr, Melanie; Garcia-Encina, Pedro A.; Munoz, Raul [Valladolid Univ. (Spain). Dept. of Chemical Engineering and Environmental Technology; Stams, Alfons J.M. [Valladolid Univ. (Spain). Dept. of Chemical Engineering and Environmental Technology; Wageningen Univ. (Netherlands). Lab. of Microbiology; Rosa, Francisco de la [Valladolid Univ. (Spain). Dept. of Analytical Chemistry

    2011-05-15

    The influence of the carbon oxidation-reduction state (CORS) of organic pollutants on their biodegradation in enclosed algal-bacterial photobioreactors was evaluated using a consortium of enriched wild-type methanotrophic bacteria and microalgae. Methane, methanol and glucose (with CORS -4, -2 and 0, respectively) were chosen as model organic pollutants. In the absence of external oxygen supply, microalgal photosynthesis was not capable of supporting a significant methane and methanol biodegradation due to their high oxygen demands per carbon unit, while glucose was fully oxidized by photosynthetic oxygenation. When bicarbonate was added, removal efficiencies of 37 {+-} 4% (20 days), 65 {+-} 4% (11 days) and 100% (2 days) were recorded for CH{sub 4}, CH{sub 3}OH and C{sub 6}H{sub 12}O{sub 6}, respectively due to the additional oxygen generated from photosynthetic bicarbonate assimilation. The use of NO{sub 3}{sup -} instead of NH{sub 4}{sup +} as nitrogen source (N oxidation-reduction state of +5 vs. -3) resulted in an increase in CH4 degradation from 0 to 33 {+-} 3% in the absence of bicarbonate and from 37 {+-} 4% to 100% in the presence of bicarbonate, likely due to a decrease in the stoichiometric oxygen requirements and the higher photosynthetic oxygen production. Hypothetically, the CORS of the substrates might affect the CORS of the microalgal biomass composition (higher lipid content). However, the total lipid content of the algal-bacterial biomass was 19 {+-} 7% in the absence and 16 {+-} 2% in the presence of bicarbonate. (orig.)

  4. Remediation of actual groundwater polluted with nitrate by the catalytic reduction over copper-palladium supported on active carbon

    OpenAIRE

    Wang, Yi; Sakamoto, Yoshinori; Kamiya, Yuichi

    2009-01-01

    Catalytic reduction of nitrate (NO3-) in groundwater over a Cu-Pd catalyst supported on active carbon was investigated in a gas-liquid co-current flow system at 298 K. Although Cu-Pd/active carbon, in which the Cu/Pd molar ratio was more than 0.66, showed high activity, high selectivity for the formation of N2 and N2O (98%), and high durability for the reduction of 100 ppm NO3- in distilled water, the catalytic performance decreased during the reduction of NO3- in groundwater. The catalyst al...

  5. CARBON DIOXIDE REDUCTION SYSTEM.

    Science.gov (United States)

    CARBON DIOXIDE , *SPACE FLIGHT, RESPIRATION, REDUCTION(CHEMISTRY), RESPIRATION, AEROSPACE MEDICINE, ELECTROLYSIS, INSTRUMENTATION, ELECTROLYTES, VOLTAGE, MANNED, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, NICKEL.

  6. Optimal pollution trading without pollution reductions

    Science.gov (United States)

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  7. Optimal pollution trading without pollution reductions

    Science.gov (United States)

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  8. Metropolitan Pollution Reduction by Intelligent Negotiation

    Institute of Scientific and Technical Information of China (English)

    HAN Wei; WANG Yun; WANG Cheng-dao

    2004-01-01

    This paper discusses the issue of pollution reduction in metropolises by means of intelligent negotiation in multi-agent systems.For situations of complete information, it gives a stochastic hill-climbing search algorithm for computing the pollution-reduction solutions; For situations of incomplete information, it puts forward a genetic algorithm for computing the best solutions for every plants subjectively and proposes market-mechanism-based algorithm for computing the emission-redistribution solutions objectively.

  9. Can the financialized atmosphere be effectively regulated? A critical analysis of the proposed Australian carbon pollution reduction scheme as a complex market solution to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Windsor, C. [Bond Univ. (Australia); McNicholas, P. [Monash Univ. (Australia)

    2009-07-01

    A large body of scientific evidence indicates that global warming from human induced greenhouse gases (GHG) emissions is producing harmful climate change that will lead to global environmental and economic catastrophe within 10 years. The threat of human induced global warming has been on the international and public policy agenda for several years; for example on 11 December 1998, government representatives of 108 countries signed the United Nations Framework Convention on Climate Change (UNFCCC) an international agreement to reduce global warming or the Kyoto Protocol, with the then exception of the Australian and the United States (U.S.) governments. International action on GHG emissions reduction was thwarted by U.S. and Australian goverments. The then Australian government (1996-2007) surreptitiously funding by vested interests such as the coal industry, had no intention to act even though scientific evidence reported that Australia had begun to experience the detrimental effects of global warming. To fulfil an electoral promise, the center left Labor government signed the Kyoto Protocol on 3 December 2007. To deal with the global warming crisis, the Australian government has proposed an emissions trading scheme now officially called the 'Carbon Pollution Reduction Scheme' or CPRS. The proposed scheme is a cap and trade market mechanism that purportedly encourages businesses to operate more efficiently, thus reducing GHG emissions through price signalling in a government instigated market. Hence credible, transparent and efficient information underpins such a market in a post-Keynes deregulated world. The purpose of this paper is to critically examine the integrity of using current financial and reporting regulation that will oversee and monitor the veracity of newly commoditized carbon financial products, particularly since the global financial crisis has exposed significant financial regulatory weaknesses. Further we contend that current corporate

  10. COMMITTED TO CARBON REDUCTION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Chinese efforts to lower carbon emissions through environmentally friendly means begin gaining momentum Efforts to curb carbon emissions continue to take shape as China adheres to its pledge for a brighter, greener future. More importantly, as environmental measures take hold and develop

  11. Cement plant gaseous pollutant emission reduction technologies

    Directory of Open Access Journals (Sweden)

    Andrés Emilio Hoyos Barreto

    2010-10-01

    Full Text Available A brief description of SOX, NOX and CO2 formation is presented, these being the main pollutants emitted in the cement industry gas stream Several technologies for reducing NOX, SOX and CO2 emissions in long wet kilns are introduced: primary measures preventing contaminant formation and secondary/tube end emission reduction measures. Strategies for preventing CO2 (green-house effect gas formation are also addressed, such as fuel and raw material substitution and CO2 capture technologies which are still being developed.

  12. Impact of Alkaline Dust Pollution on Soil Microbial Biomass Carbon

    OpenAIRE

    Kara, Ömer; Bolat, İlyas

    2007-01-01

    The effect of alkaline dust pollution emitted from Bartın cement plant on the soil microbial biomass carbon was investigated using the chloroform fumigation-extraction (CFE) method. Microbial biomass C (Cmic) values ranged from 157.82 to 1201.51 µg g-1 soils in the polluted area and from 726.70 to 1529.14 µg g-1 soils in the control area. Soils polluted with alkaline cement dust resulted in significant reductions in Cmic levels compared to control soils. Microbial biomass C correlated negativ...

  13. Impact of Alkaline Dust Pollution on Soil Microbial Biomass Carbon

    OpenAIRE

    KARA, Ömer; Bolat, İlyas

    2014-01-01

    The effect of alkaline dust pollution emitted from Bartın cement plant on the soil microbial biomass carbon was investigated using the chloroform fumigation-extraction (CFE) method. Microbial biomass C (Cmic) values ranged from 157.82 to 1201.51 µg g-1 soils in the polluted area and from 726.70 to 1529.14 µg g-1 soils in the control area. Soils polluted with alkaline cement dust resulted in significant reductions in Cmic levels compared to control soils. Microbial biomass C correlated negativ...

  14. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  15. Optimal Pollution Trading without Pollution Reductions : A Note

    Science.gov (United States)

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  16. Optimal Pollution Trading without Pollution Reductions : A Note

    Science.gov (United States)

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  17. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs.

    Science.gov (United States)

    Xie, Yujing; Zhao, Laijun; Xue, Jian; Hu, Qingmi; Xu, Xiang; Wang, Hongbo

    2016-12-15

    How to effectively control severe regional air pollution has become a focus of global concern recently. The non-cooperative reduction model (NCRM) is still the main air pollution control pattern in China, but it is both ineffective and costly, because each province must independently fight air pollution. Thus, we proposed a cooperative reduction model (CRM), with the goal of maximizing the reduction in adverse health effects (AHEs) at the lowest cost by encouraging neighboring areas to jointly control air pollution. CRM has two parts: a model of optimal pollutant removal rates using two optimization objectives (maximizing the reduction in AHEs and minimizing pollutant reduction cost) while meeting the regional pollution control targets set by the central government, and a model that allocates the cooperation benefits (i.e., health improvement and cost reduction) among the participants according to their contributions using the Shapley value method. We applied CRM to the case of sulfur dioxide (SO2) reduction in Yangtze River Delta region. Based on data from 2003 to 2013, and using mortality due to respiratory and cardiovascular diseases as the health endpoints, CRM saves 437 more lives than NCRM, amounting to 12.1% of the reduction under NCRM. CRM also reduced costs by US $65.8×10(6) compared with NCRM, which is 5.2% of the total cost of NCRM. Thus, CRM performs significantly better than NCRM. Each province obtains significant benefits from cooperation, which can motivate them to actively cooperate in the long term. A sensitivity analysis was performed to quantify the effects of parameter values on the cooperation benefits. Results shown that the CRM is not sensitive to the changes in each province's pollutant carrying capacity and the minimum pollutant removal capacity, but sensitive to the maximum pollutant reduction capacity. Moreover, higher cooperation benefits will be generated when a province's maximum pollutant reduction capacity increases.

  18. [Cryogenic fuels in aviation: pollution reduction].

    Science.gov (United States)

    Afanas'ev, R V; Berezin, G I; Raznoschikov, V V

    2004-01-01

    Cryogenic fuels are viewed as an alternative to the commonly used hydrocarbonic fuels. The existing national and international guidelines set limits to the emission of unburned carbohydrates (CnHm), carbon monoxide (CO), nitrogen oxides (NO(x)), and soot (SN); there is also prohibition against premeditated fuel discharge in atmosphere of airports. Whereas the international regulations are constantly revised toward toughening, more than 80% of the plane engines in the Russian civil aviation do not meet both national and international harmful emission limits. One of the ways to resolve the problem is substitution of the liquid carbohydrate fuel (kerosene) by natural gas.

  19. Study on air pollution reduction costs of power industry

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.C. [Korea Energy Economics Institute, Euiwang (Korea, Republic of); Kwon, O.S. [Seoul University, Seoul (Korea, Republic of)

    1998-04-01

    This study mainly treats the productivity change due to the use of low-sulfur fuel oil in the power generation sector and estimates marginal reduction cost due to air pollution as contents. For this, domestic energy use, supply and demand status and forecast of power sector are described, and the effect of the use of low-sulfur fuel oil in power generation sector was analyzed and the result was summarized. The marginal reduction cost of air pollutants in domestic power sector was estimated and the result was summarized using products distance functions. Major results can be summarized as follows. 1. Pollution control, profitability based on size and technology development are found to exert a statistically meaningful influence on a productivity change in power generation sector. Among these, pollution control by the supply of low- sulfur fuel oil is found to have both primary factors that either increase or decrease productivity. 2. The result of estimating the marginal reduction cost of domestic thermoelectric power plants using the duality of products distance function and import function shows that average marginal reduction costs for the period of 1990 {approx} 1995 are 310.6 thousands Won for SO{sub X}, 146.7 thousands Won for NO{sub X}, 15,482.3 thousands Won for TSP, and 3.8 thousands Won for CO{sub 2} in case four pollutants are all included though there may be some difference based on the assumption of model. 70 refs., 16 figs., 30 tabs.

  20. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is a novel technology for producing large quantities of oxygen on the Moon. Oxygen yields of 15 kilograms per...

  1. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  2. Electrocatalytic carbon dioxide reduction - a mechanistic study

    NARCIS (Netherlands)

    Schouten, Klaas Jan Schouten

    2013-01-01

    This thesis presents new insights into the reduction of carbon dioxide to methane and ethylene on copper electrodes. This electrochemical process has great potential for the storage of surplus renewable electrical energy in the form of hydrocarbons. The research described in this thesis focuses on t

  3. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  4. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    Science.gov (United States)

    Diebel, M.W.; Maxted, J.T.; Robertson, D.M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  5. Landscape planning for agricultural nonpoint source pollution reduction III: assessing phosphorus and sediment reduction potential.

    Science.gov (United States)

    Diebel, Matthew W; Maxted, Jeffrey T; Robertson, Dale M; Han, Seungbong; Vander Zanden, M Jake

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km(2)) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale.

  6. The reduction of pollution. A simple approach to the reduction of pollution in the dental operating theatre.

    Science.gov (United States)

    Johnstone, R D; Willis, B A; Vaughan, R S

    1977-09-01

    This paper describes the construction and evaluation of a simple anti-pollution device for use with the McKesson nasal mask for dental anaesthesia. The device is attached to the expiratory valve of the mask and spilled halothane vapour is adsorbed onto activated charcoal. In theatre use, comparing similar dental anaesthesia sessions, it resulted in a reduction of approximately 78% in the mean halothane concentration (vol./vol.) at a point equidistant from the expiratory valve as the faces of surgeon and anaesthetist. This percentage reduction was consistent with the weight gained by the activated charcoal container (Cardiff 'Aldasorber') compared with the weight of halothane vapourised.

  7. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    Science.gov (United States)

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  8. Carbon Dioxide Reduction Technology Trade Study

    Science.gov (United States)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  9. China to Strengthen the Effort for Industrial Energy-Saving,Consumption Reduction, Emission Reduction and Pollution Control in 2010

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Li Yizhong, Minister of the Ministry of Industry and Information Technology, said on February 1, 2010 that China would take four measures to enhance industrial energy-saving, consumption reduction, emission reduction, and pollution control in 2010.

  10. A Healthy Reduction in Oil Dependence and Carbon Emissions

    Science.gov (United States)

    Higgins, P. A.; Higgins, M.

    2003-12-01

    Societal dependence on oil as an energy source for personal transportation leads to increasingly negative social consequences including climate change, air pollution, political and economic instability and habitat degradation. Our heavy reliance on the automobile for transportation, determined in part by urban sprawl, also contributes to the population's increasingly sedentary lifestyle and to a concomitant degradation in health. We have shown that widespread substitution of exercise, commensurate with previously recommended levels, through biking or walking instead of driving can substantially reduce oil consumption and carbon emissions. For example, if all individuals between the ages of 10 and 64 substituted one hour of cycling for driving the reduction in gasoline demand would be equivalent to the gas produced from 34.9 percent of current oil consumption. Relative to 1990 net US emissions, this constitutes a 10.9 percent reduction in carbon emissions. Therefore, substitution of exercise for driving could improve health, reduce carbon emissions and save more oil than even upper estimates of that contained in the Arctic National Wildlife Refuge.

  11. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    Science.gov (United States)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-12-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  12. Public Perceptions of How Long Air Pollution and Carbon Dioxide Remain in the Atmosphere.

    Science.gov (United States)

    Dryden, Rachel; Morgan, M Granger; Bostrom, Ann; Bruine de Bruin, Wändi

    2017-06-30

    The atmospheric residence time of carbon dioxide is hundreds of years, many orders of magnitude longer than that of common air pollution, which is typically hours to a few days. However, randomly selected respondents in a mail survey in Allegheny County, PA (N = 119) and in a national survey conducted with MTurk (N = 1,013) judged the two to be identical (in decades), considerably overestimating the residence time of air pollution and drastically underestimating that of carbon dioxide. Moreover, while many respondents believed that action is needed today to avoid climate change (regardless of cause), roughly a quarter held the view that if climate change is real and serious, we will be able to stop it in the future when it happens, just as we did with common air pollution. In addition to assessing respondents' understanding of how long carbon dioxide and common air pollution stay in the atmosphere, we also explored the extent to which people correctly identified causes of climate change and how their beliefs affect support for action. With climate change at the forefront of politics and mainstream media, informing discussions of policy is increasingly important. Confusion about the causes and consequences of climate change, and especially about carbon dioxide's long atmospheric residence time, could have profound implications for sustained support of policies to achieve reductions in carbon dioxide emissions and other greenhouse gases. © 2017 Society for Risk Analysis.

  13. Reduction of carbon monoxide. Past research summary

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, R.R.

    1981-10-01

    Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

  14. 78 FR 39533 - Power Sector Carbon Pollution Standards

    Science.gov (United States)

    2013-07-01

    ..., the urgency of addressing climate change intensifies. I made clear in my State of the Union address that my Administration is committed to reducing carbon pollution that causes climate change, preparing our communities for the consequences of climate change, and speeding the transition to...

  15. Environmental policy. Resolution of the German Federal Government concerning the Air Pollution Abatement Programme of the Federal Republic of Germany based on the fourth report of the Interdepartmental Working Group on Carbon Dioxide Reduction (IMA `CO{sub 2} Reduction`); Umweltpolitik. Beschluss der Bundesregierung zum Klimaschutzprogramm der Bundesrepublik Deutschland auf der Basis des Vierten Berichts der Interministeriellen Arbeitsgruppe ``CO{sub 2}-Reduktion`` (IMA ``CO{sub 2}-Reduktion``)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Air pollution abatement is a key issue in German environmental policy. This was stressed again in the 4th report of the Interdepartmental Working Group on Carbon Dioxide Reduction (IMA `CO{sub 2}-Reduktion`), in which the Federal Government confirmed its goal of a 25% reduction of carbon dioxide emissions by 2005 as referred to 1990. This report contains the government decision, the formulatio of the task assigned to the IMA, and the 4th report of the IMA. (orig./SR) [Deutsch] Klimavorsorge ist ein Schwerpunkt der deutschen Umweltpolitik. Dies hat das Bundeskabinett mit der Verabschiedung des 4. Berichts der Interministeriellen Arbeitsgruppe (IMA) ``CO{sub 2}-Reduktion`` nachdruecklich unterstrichen. Mit diesem Beschluss bekraeftigt die Bundesregierung erneut ihr Ziel, die CO{sub 2} Emissionen bis 2005 um 25 % gegenueber 1990 zu senken. Der vorliegende Bericht enthaelt den Beschluss, der Bundesregierung, den Auftrag der Bundesregierung an die Interministerielle Arbeitsgruppe (IMA) und den 4. Bericht der IMA ``CO{sub 2}-Reduktion``. (orig./SR)

  16. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  17. Pollution reduction goal of government, industrial structure and pollution reduction%政府减排目标、产业结构与污染减排∗

    Institute of Scientific and Technical Information of China (English)

    丛云云; 原毅军; 苗颖

    2015-01-01

    政府是污染减排的重要主体,了解其行为对污染减排的作用对提升污染减排效果及实现中国绿色发展具有重要意义。创造性地将政府减排目标纳入研究框架,构建面板门槛模型,从工业污染排放总量的角度分析政府减排目标、产业结构、经济规模等因素对地方污染减排的影响,并用工业污染物强度进行稳健性检验。结果显示,政府减排目标对污染减排的作用存在阶段性不同:经济发展初级阶段,政府减排目标对污染排放总量的作用方向为正;经济发展水平较高时,作用方向为负;两者之间存在适应性调整阶段,作用方向具有不确定性,但总体由正向作用向负向作用转变。产业结构对工业污染排放总量的作用方向因污染物种类而异,经济规模对工业污染排放总量作用方向为正。%government is an important body in pollution reduction, and understanding the function of its behavior on pollution reduction plays an important role in promoting pollution reduction effect and the realization of green development in China. The pollution reduction goal of government is creatively included into the research framework. The panel threshold model is established. The influence on local pollution reduction of the factors such as pollution reduction goal of government, economy scale, industry structure is analyzed from the perspective of total industrial pollution emissions, and the stability test is carried out by the industrial pollutant intensity. The result shows that there are differences on the pollution reduction goal of government to pollution reduction effect at different economic development stages. In the primary stage of economic development, the effect of pollution reduction goal of government to the pollution emissions is positive. But in the higher stage of economic development, the effect of pollution reduction goal of government to the pollution

  18. A pollution reduction methodology for chemical process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, S.K.; Cabezas, H.; Bare, J.C.; Sikdar, S.K. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1996-11-01

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has been modified by weighing the mass flowrate of each pollutant by its potential environmental impact score. This converts the mass balance into an environmental impact balance. This balance defines an impact index with units of environmental impact per mass of products. The impact index measures the potential environmental effects of process wastes. Three different schemes for chemical ranking were considered: (1) no ranking, (2) simple ranking from 0 to 3, and (3) ranking by a scientifically derived measure of human health and environmental effects. Use of the methodology is illustrated with two examples from the production of (1) methyl ethyl ketone and (2) synthetic ammonia.

  19. Electrocatalytic Reduction of Carbon Dioxide to Methane

    Science.gov (United States)

    Sammells, Anthony F.; Spiegel, Ella F.

    2008-01-01

    A room-temperature electrocatalytic process that effects the overall chemical reaction CO2 + 2H2O yields CH4 + 2O2 has been investigated as a means of removing carbon dioxide from air and restoring oxygen to the air. The process was originally intended for use in a spacecraft life-support system, in which the methane would be vented to outer space. The process may also have potential utility in terrestrial applications in which either or both of the methane and oxygen produced might be utilized or vented to the atmosphere. A typical cell used to implement the process includes a polymer solid-electrolyte membrane, onto which are deposited cathode and anode films. The cathode film is catalytic for electrolytic reduction of CO2 at low overpotential. The anode film is typically made of platinum. When CO2 is circulated past the cathode, water is circulated past the anode, and a suitable potential is applied, the anode half-cell reaction is 4H2O yields 2O2 + 8H(+) + 8e(-). The H(+) ions travel through the membrane to the cathode, where they participate in the half-cell reaction CO2 + 8H(+) + 8e(-) yields CH4 + 2H2O.

  20. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production.

  1. Temporary stabilization of air pollution control residues using carbonation.

    Science.gov (United States)

    Zhang, Hua; He, Pin-Jing; Shao, Li-Ming; Lee, Duu-Jong

    2008-01-01

    Carbonation presents a good prospect for stabilizing alkaline waste materials. The risk of metal leaching from carbonated waste was investigated in the present study; in particular, the effect of the carbonation process and leachate pH on the leaching toxicity of the alkaline air pollution control (APC) residues from municipal solid waste incinerator was evaluated. The pH varying test was conducted to characterize the leaching characteristics of the raw and carbonated residue over a broad range of pH. Partial least square modeling and thermodynamic modeling using Visual MINTEQ were applied to highlight the significant process parameters that controlled metal leaching from the carbonated residue. By lowering the pH to 8-11, the carbonation process reduced markedly the leaching toxicity of the alkaline APC residue; however, the treated APC residue showed similar potential risk of heavy metal release as the raw ash when subjected to an acid shock. The carbonated waste could, thereby, not be disposed of safely. Nonetheless, carbonation could be applied as a temporary stabilization process for heavy metals in APC residues in order to reduce the leaching risk during its transportation and storage before final disposal.

  2. TOWARDS CARBON EMISSION REDUCTION USING ICT

    OpenAIRE

    Tiroyamodimo Mogotlhwane

    2014-01-01

    The impact of global warming is now showing its ability to disturb human and other forms of life on the earth. Environmental pollution and how it can be minimised is a global issue for discussion. There is an increase in promoting human activities that are environmental friendly through the “green” initiatives. Green computing is how the computing profession is responding to concern for minimising environmental pollution. Internet based operations enable work to be done remotely minimising th...

  3. Air pollution impacts from carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Harmelen, T. van; Horssen, A. van; Jozwicka, M.; Pulles, T. (TNO, Delft (Netherlands)); Odeh, N. (AEA Technology, Harwell (United Kingdom)); Adams, M. (EEA, Copenhagen (Denmark))

    2011-11-15

    This report comprises two separate complementary parts that address the links between CCS implementation and its subsequent impacts on GHG and air pollutant emissions on a life-cycle basis: Part A discusses and presents key findings from the latest literature, focusing upon the potential air pollution impacts across the CCS life-cycle arising from the implementation of the main foreseen technologies. Both negative and positive impacts on air quality are presently suggested in the literature - the basis of scientific knowledge on these issues is rapidly advancing. Part B comprises a case study that quantifies and highlights the range of GHG and air pollutant life-cycle emissions that could occur by 2050 under a low-carbon pathway should CCS be implemented in power plants across the European Union under various hypothetical scenarios. A particular focus of the study was to quantify the main life-cycle emissions of the air pollutants taking into account the latest knowledge on air pollutant emission factors and life-cycle aspects of the CCS life-cycle as described in Part A of the report. Pollutants considered in the report were the main GHGs CO{sub 2}, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) and the main air pollutants with potential to harm human health and/or the environment - nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}), ammonia (NH{sub 3}), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM{sub 10}). (Author)

  4. An Important Supplement to NAA in Study on Atmosphere Pollution:Determination of Black Carbon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Light absorption in the atmosphere is dominated by elemental carbon (EC), sometimes called black carbon (BC). Black carbon is an important indication of man-made pollution in airborne particulate matter

  5. Fish, fishing, and pollutant reduction in the Baltic Sea

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Almesjö, L.; Hansson, S.

    2004-01-01

    Sea was a sink for 260 kg of PCBs in the late 1980s to early 1990s and that the fishery removed as much or more PCB (31 kg yr(-1)) than other budget components (e.g., degradation in the water column). Accounting for fish and fisheries could increase our understanding of the fluxes of pollutants......, and concentrations in fish and other fauna are still significant. Several models of the fluxes of these pollutants among the water, sediment, and atmosphere have been developed, but these generally omit the roles of fish and fisheries. We show that the standing stock of the most abundant fish species in the Baltic......The Baltic Sea is heavily polluted yet supports major Commercial fisheries for cod (Gadus morhua), herring (Clupea harengus), and sprat (Sprattus sprattus). Emissions of persistent organic pollutants, such as polychlorinated biphenyls (PCBs) and DDT, were high during the 1960s and 1970s...

  6. Managing Air Quality - Control Strategies to Achieve Air Pollution Reduction

    Science.gov (United States)

    Considerations in designing an effective control strategy related to air quality, controlling pollution sources, need for regional or national controls, steps to developing a control strategy, and additional EPA resources.

  7. Impact of Sustainable Environmental Expenditures Policy on Air Pollution Reduction, During European Integration Framework

    Directory of Open Access Journals (Sweden)

    Ionel Bostan

    2016-05-01

    Full Text Available Pursuant to the growth of society, against the boosting of scientific and technological progress, also arises the negative effect of pollution acceleration. In this context, we relate to risks that imply the growth of pollution, especially against nuisance air pollution increase (CO, SO2, NO etc. with major implications on the growth of greenhouse effect, the melting of the ice fields, respectively the pollution of the soil with nitrates from fertilizers intensively used in agriculture. Our study is up-to-date, as pursuant to the ONU Conference from Paris (France 2015, Conference on Climate Changes, they reached an agreement and the adopted text admits the menace of climate modifications is far more important than previously acknowledged and engages the participants to reduce their pollutant emissions. The researchers’ current concerns focus on studying the effects of the redistribution of financial resources obtained by practising the ‘green’ fiscal policy on dependent variables. Observing them, we integrate the respective variables into complex models analysed by multiple regression (both standard and robust and the fixed effects panel on 20 European countries which also reflect the different effects on the environmental policy and the expenses it incurred. The main purpose of the analysis we aim to accomplish is the impact of the policy for environment expenditure tenable within the European framework on against nuisance air pollution attenuation. The statistical analysis aims at identifying these effects by means of regression equations (OLS, robust regression (M method, fixed and random effects, using panel data from 18 EU countries, as well as Switzerland and Turkey due to their position in relation to the community block; we will analyse the period between 1995-2013. Further to the application of multiple regression statistical methods (OLS and robust M, our results show that teimiqgdp expenses played a major role in the reduction

  8. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  9. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  10. Estimated Pollution Reduction from Wind Farms in Oklahoma and Associated Economic and Human Health Benefits

    Directory of Open Access Journals (Sweden)

    J. Scott Greene

    2013-01-01

    Full Text Available Over the past few decades, there has been a recognition of the growing need for different forms of energy outside of fossil fuels. Since the latter half of the twentieth century individuals, corporations, and governments have become increasingly aware of the effects of the emissions of carbon and other harmful pollutants on the environment. With this greater concern has come increasing activity to combat these harmful emissions by using alternative fuel sources to power homes, businesses, and cities. As can be seen from recent trends in their installed capacity, it is clear that renewable energy resources will continue to be more commonly used in the future. As renewable energy increases, a decrease in a range of harmful pollutants from the energy sector will also occur. This paper provides a case study to estimate the potential environmental and health benefits of an increased shift from fossil fuels to renewable fuels for electrical production in Oklahoma. Results illustrate and quantify the specific reduction that wind energy can and will have on air quality, as well as provide a quantification of the associated potential health benefits.

  11. Mixed Carbon Policies Based on Cooperation of Carbon Emission Reduction in Supply Chain

    Directory of Open Access Journals (Sweden)

    Yongwei Cheng

    2017-01-01

    Full Text Available This paper established cooperation decision model for a mixed carbon policy of carbon trading-carbon tax (environmental tax in a two-stage S-M supply chain. For three different cooperative abatement situations, we considered the supplier driven model, the manufacturer driven model, and the equilibrium game model. We investigated the influence of mixed carbon policy with constraint of reduction targets on supply chain price, productivity, profits, carbon emissions reduction rate, and so on. The results showed that (1 high-strength carbon policies do not necessarily encourage enterprises to effectively reduce emissions, and increasing market acceptance of low carbon products or raising the price of carbon quota can promote the benign reduction; (2 perfect competitive carbon market has a higher carbon reduction efficiency than oligarch carbon market, but their optimal level of cooperation is the same and the realized reduction rate is in line with the intensity of carbon policy; (3 the policy sensitivity of the carbon trading mechanism is stronger than the carbon tax; “paid quota mechanism” can subsidize the cost of abatement and improve reduction initiative. Finally, we use a numerical example to solve the optimal decisions under different market situations, validating the effectiveness of model and the conclusions.

  12. Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics.

    Science.gov (United States)

    Zietzschmann, Frederik; Altmann, Johannes; Ruhl, Aki Sebastian; Dünnbier, Uwe; Dommisch, Ingvild; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

    2014-06-01

    Eight commercially available powdered activated carbons (PAC) were examined regarding organic micro-pollutant (OMP) removal efficiencies in wastewater treatment plant (WWTP) effluent. PAC characteristic numbers such as B.E.T. surface, iodine number and nitrobenzene number were checked for their potential to predict the OMP removal of the PAC products. Furthermore, the PAC-induced removal of UV254 nm absorption (UVA254) in WWTP effluent was determined and also correlated with OMP removal. None of the PAC characteristic numbers can satisfactorily describe OMP removal and accordingly, these characteristics have little informative value on the reduction of OMP concentrations in WWTP effluent. In contrast, UVA254 removal and OMP removal correlate well for carbamazepine, diclofenac, and several iodinated x-ray contrast media. Also, UVA254 removal can roughly describe the average OMP removal of all measured OMP, and can accordingly predict PAC performance in OMP removal. We therefore suggest UVA254 as a handy indicator for the approximation of OMP removal in practical applications where direct OMP concentration quantification is not always available. In continuous operation of large-scale plants, this approach allows for the efficient adjustment of PAC dosing to UVA254, in order to ensure reliable OMP removal whilst minimizing PAC consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Air pollution removal and temperature reduction by Gainesville's urban forest

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Poor air quality is a common problem in many urban areas. It can lead to human health problems and reduced visibility, and it can impair the health of plants and wildlife. The urban forest can help improve air quality by removing pollutants and by reducing air temperature through shading and transpiration. Trees also emit volatile...

  14. Supply Chain Coordination and Consumer Awareness for Pollution Reduction

    Directory of Open Access Journals (Sweden)

    Bowon Kim

    2016-04-01

    Full Text Available To understand the dynamics of the manufacturer’s effort to reduce pollution in a supply chain consisting of manufacturer, retailer, and consumers, we analyze four cases according to consumer awareness of the pollution’s harmful effect, i.e., environmentally aware versus ignorant, and supply chain coordination, i.e., competitive versus cooperative. Applying differential games, we derive managerial implications: the most significant is that the supply chain coordination strategy becomes irrelevant to reducing the pollution, if the consumers are not environmentally aware or sensitive enough. It highlights the critical role played by the consumer awareness in curbing the pollution in the supply chain. In addition, we find the transfer price and the potential market size are important factors to determine each case’s relative effectiveness. Under a regular condition, where the transfer price from the retailer to the manufacturer is sufficiently high, the consumer-aware and competitive case can generate a better outcome in reducing the pollution than those with ignorant consumers. However, the opposite might occur if the transfer price is excessively low, giving the manufacturer little motivation to make an effort to reduce the pollution. For the cooperative supply chain, it is the potential market size that determines whether the consumer-aware case is better than the consumer-ignorant. In fact, it turns out that there is a stronger result, i.e., the feasibility condition enforces that the market is always big enough to make the consumer-aware cooperative case better than the consumer-ignorant cases. We further discuss managerial as well as policy implications of these analysis outcomes.

  15. Carbon monoxide pollution and neurodevelopment: A public health concern.

    Science.gov (United States)

    Levy, Richard J

    2015-01-01

    Although an association between air pollution and adverse systemic health effects has been known for years, the effect of pollutants on neurodevelopment has been underappreciated. Recent evidence suggests a possible link between air pollution and neurocognitive impairment and behavioral disorders in children, however, the exact nature of this relationship remains poorly understood. Infants and children are uniquely vulnerable due to the potential for exposure in both the fetal and postnatal environments during critical periods in development. Carbon monoxide (CO), a common component of indoor and outdoor air pollution, can cross the placenta to gain access to the fetal circulation and the developing brain. Thus, CO is of particular interest as a known neurotoxin and a potential public health threat. Here we review overt CO toxicity and the policies regulating CO exposure, detail the evidence suggesting a potential link between CO-associated ambient air pollution, tobacco smoke, and learning and behavioral abnormalities in children, describe the effects of subclinical CO exposure on the brain during development, and provide mechanistic insight into a potential connection between CO exposure and neurodevelopmental outcome. CO can disrupt a number of critical processes in the developing brain, providing a better understanding of how this specific neurotoxin may impair neurodevelopment. However, further investigation is needed to better define the effects of perinatal CO exposure on the immature brain. Current policies regarding CO standards were established based on evidence of cardiovascular risk in adults with pre-existing comorbidities. Thus, recent and emerging data highlighted in this review regarding CO exposure in the fetus and developing child may be important to consider when the standards and guidelines are evaluated and revised in the future.

  16. Carbon Dioxide Emissions Reduction Estimates: Potential Use of ...

    African Journals Online (AJOL)

    User

    with ethanol to determine CO2 emissions reduction for 1998−2007, and thereafter making emissions ... Keywords: Carbon dioxide; Transport; Biofuel; Gasoline−ethanol blends; ..... Mechanical Engineers, Part A: Journal of Power and Energy.

  17. Development of NaY zeolite derived from biomass and environmental assessment of carbon dioxide reduction

    Directory of Open Access Journals (Sweden)

    Worathanakul Patcharin

    2016-01-01

    Full Text Available Carbon dioxide is one of greenhouse gases. The carbon dioxide caused by the industry activities and impact to the global warming. The objectives of this research were to synthesize NaY zeolite from bagasse ash as silica source and loaded with different weight percentage of Cu(II for carbon dioxide reduction. The carbon footprint of Cu/Y zeolite for carbon dioxide reduction was calculated. The synthesized NaY zeolite from bagasse ash can be easily formed at Si/Al ratio of 0.75 with the additional heat after crystallization 70 °C for 1 hour. The crystal size of NaY zeolite was approximately 0.22−0.37 μm diameter. The results of carbon dioxide adsorption were increased when the flow rate of carbon dioxide decreased. Finally, the carbon footprint value was shown that synthesis step was shown the highest of greenhouse gas emission. This research can increase the value of wastes and reduce pollution emission.

  18. Effect of crude oil pollution on organic carbon and humus content in grey-brown soils in Mangyshlak,Pre-Caspian Sea Region

    Institute of Scientific and Technical Information of China (English)

    Saimbulek; DOSBERGENOV

    2010-01-01

    The organic carbon and humus content in oil polluted brown and grey-brown soils in Mangyshlak,Pre-Caspian Sea Region,was analyzed from 2000 to 2008.The results indicated that bitumen substances from crude oil pollution deteriorated the soil property,however,the organic carbon content increased significantly.The products of oil pollution changed the composition of car-bonaceous substances which formed soil humus,and changed the ratios of the humus components.Residual insoluble carbon increased with the rise of oil organic carbon.The mobility of humus components was significantly increased because of the high oxidation-reduction process in the topsoil,and the humus content and microorganism activity increased.The organic carbon content increased significantly,while it decreased with the distance away from the oil well.The rearrangement of physical,physical-chemical and chemical properties of the polluted soils was significant.

  19. R.F. Pollution Reduction in Cellular Communication

    CERN Document Server

    Katiyar, Sumit; Agrawal, N K

    2012-01-01

    R. F. pollution has been recognized as health hazard in India in the prevailing circumstances. There is lot of hue and cry against cellular towers installed in residential area. Recently high court in India has issued an order not to install towers in residential areas. For meeting the exponential demand of cellular communication in India this will be a set back for future growth. An appropriate solution has to be developed for meeting demand as well as RF pollution concern of the society. This paper deals with the installation of low power base stations in residential areas instead of high power macro cell base stations. Macro stations are proposed to be used for fast traffic, low power micro cell for a slow traffic / pedestrian and pico cell / femto cell for indoor use. These cells will be in hierarchical structure along with adaptive frequency allocation techniques and A-SDMA approach.

  20. China's air pollution reduction efforts may result in an increase in surface ozone levels in highly polluted areas.

    Science.gov (United States)

    Anger, Annela; Dessens, Olivier; Xi, Fengming; Barker, Terry; Wu, Rui

    2016-03-01

    China, as a fast growing fossil-fuel-based economy, experiences increasing levels of air pollution. To tackle air pollution, China has taken the first steps by setting emission-reduction targets for nitrogen oxides (NO x ) and sulphur dioxide (SO2) in the 11th and 12th Five Year Plans. This paper uses two models-the Energy-Environment-Economy Model at the Global level (E3MG) and the global Chemistry Transport Model pTOMCAT-to test the effects of these policies. If the policy targets are met, then the maximum values of 32 % and 45 % reductions below 'business as usual' in the monthly mean NO x and SO2 concentrations, respectively, will be achieved in 2015. However, a decrease in NO x concentrations in some highly polluted areas of East, North-East and South-East China can lead to up to a 10% increase in the monthly mean concentrations in surface ozone in 2015. Our study demonstrates an urgent need for the more detailed analysis of the impacts and designs of air pollution reduction guidelines for China.

  1. Means of atmospheric air pollution reduction during drilling wells

    Science.gov (United States)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  2. Carbon materials as catalysts for the ozonation of organic pollutants in water

    OpenAIRE

    Pereira, M. F. R.; Gonçalves,A.G.; Órfão, J. J. M.

    2014-01-01

    [EN] A brief overview about the use of carbon materials as metal free ozonation catalysts is presented. Carbon materials (activated carbons, carbon xerogels, carbon nanofibers and carbon nanotubes) have been shown to be active catalysts in the ozonation of a wide range of organic pollutants. Carbon materials with surface basic properties (i.e. high electron density) and with large pores are the most promising for this process.

  3. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review

    Institute of Scientific and Technical Information of China (English)

    Guobin SHAN; Rao Y. SURAMPALLI; Rajeshwar D. TYAGI; Tian C. ZHANG

    2009-01-01

    Nanomaterials are applicable in the areas of reduction of environmental burden, reduction/treatment of industrial and agricultural wastes, and nonpoint source (NPS) pollution control. First, environmental burden reduction involves green process and engineering, emis-sions control, desulfurization/denitrification of nonrenew-able energy sources, and improvement of agriculture and food systems. Second, reduction/treatment of industrial and agricultural wastes involves converting wastes into products, groundwater remediation, adsorption, delaying photocatalysis, and nanomembranes. Third, NPS pollution control involves controlling water pollution. Nanomater-ials alter physical properties on a nanoscale due to their high specific surface area to volume ratio. They are used as catalysts, adsorbents, membranes, and additives to increase activity and capability due to their high specific surface areas and nano-sized effects. Thus, nanomaterials are more effective at treating environmental wastes because they reduce the amount of material needed.

  4. [Experimental study on rainfall-runoff pollutant reduction by urban green space].

    Science.gov (United States)

    Cheng, Jiang; Yang, Kai; Lü, Yong-Peng; Li, Bo; Lü, Shu-Hua

    2009-11-01

    Based on the state that non-pointed pollution caused by urban rainfall-runoff was one of the major factors which led to urban surface water contaminated and ecology deteriorated, a soil aquifer treatment system was built to experimentally study the pollution reduction effectiveness of green space, and the impacts of land cover, influent concentration, soil depth, hydraulic loading rate and residence time were analyzed. The results exhibit that green space has a better and stabilized ability to reduce three representative urban rainfall-runoff pollution concentrations, which COD are 44.5, 144.3, 487.2 mg x L(-1), NH4(+) -N are 4.27, 11.44, 36.61 mg x L(-1) and TP are 0.98, 2.85, 9.66 mg x L(-1), respectively, and with 8.15, 7.13 and 6.12 cm x h(-1) hydraulic loading rate, respectively. The pollution reduction rates of COD, NH4(+) -N and TP by green space are 33.41%-37.14%, 58.74%-61.49% and 63.65%-67.08%, respectively. The effect of land cover to pollution reduction rate is not significant because of the limitation of oxygen and hydraulic residence time. When pollution concentration increases, the comprehensive pollution reduction ability of green space is kept in 50%-60%, with a little increased tendency. Pollution reduction process happens mainly in the upper layer of the green space soil with a depth of 50-70 cm.

  5. Electricity generation: options for reduction in carbon emissions.

    Science.gov (United States)

    Whittington, H W

    2002-08-15

    Historically, the bulk production of electricity has been achieved by burning fossil fuels, with unavoidable gaseous emissions, including large quantities of carbon dioxide: an average-sized modern coal-burning power station is responsible for more than 10 Mt of CO(2) each year. This paper details typical emissions from present-day power stations and discusses the options for their reduction. Acknowledging that the cuts achieved in the past decade in the UK CO(2) emissions have been achieved largely by fuel switching, the remaining possibilities offered by this method are discussed. Switching to less-polluting fossil fuels will achieve some measure of reduction, but the basic problem of CO(2) emissions continues. Of the alternatives to fossil fuels, only nuclear power represents a zero-carbon large-scale energy source. Unfortunately, public concerns over safety and radioactive waste have still to be assuaged. Other approaches include the application of improved combustion technology, the removal of harmful gases from power-station flues and the use of waste heat to improve overall power-station efficiency. These all have a part to play, but many consider our best hope for emissions reduction to be the use of renewable energy. The main renewable energy contenders are assessed in this paper and realistic estimates of the contribution that each could provide are indicated. It appears that, in the time-scale envisaged by planners for reduction in CO(2) emission, in many countries renewable energy will be unlikely to deliver. At the same time, it is worth commenting that, again in many countries, the level of penetration of renewable energy will fall short of the present somewhat optimistic targets. Of renewable options, wind energy could be used in the short to medium term to cover for thermal plant closures, but for wind energy to be successful, the network will have to be modified to cope with wind's intermittent nature. Globally, hydroelectricity is currently the

  6. [Awareness of health co-benefits of carbon emissions reduction in urban residents in Beijing: a cross-sectional survey].

    Science.gov (United States)

    Gao, J H; Zhang, Y; Wang, J; Chen, H J; Zhang, G B; Liu, X B; Wu, H X; Li, J; Li, J; Liu, Q Y

    2017-05-10

    Objective: To understand the awareness of the health co-benefits of carbon emission reduction in urban residents in Beijing and the influencing factors, and provide information for policy decision on carbon emission reduction and health education campaigns. Methods: Four communities were selected randomly from Fangshan, Haidian, Huairou and Dongcheng districts of Beijing, respectively. The sample size was estimated by using Kish-Leslie formula for descriptive analysis. 90 participants were recruited from each community. χ(2) test was conducted to examine the associations between socio-demographic variables and individuals' awareness of the health co-benefits of carbon emission reduction. Ordinal logistic regression analysis was performed to investigate the factors influencing the awareness about the health co-benefits. Results: In 369 participants surveyed, 12.7% reported they knew the health co-benefits of carbon emission reduction. The final logistic regression analysis revealed that age (OR=0.98), attitude to climate warming (OR=0.72) and air pollution (OR=1.59), family monthly average income (OR=1.27), and low carbon lifestyle (OR=2.36) were important factors influencing their awareness of the health co-benefits of carbon emission reduction. Conclusion: The awareness of the health co-benefits of carbon emissions reduction were influenced by people' socio-demographic characteristics (age and family income), concerns about air pollution and climate warming, and low carbon lifestyle. It is necessary to take these factors into consideration in future development and implementation of carbon emission reduction policies and related health education campaigns.

  7. Reduction mechanism of stainless steelmaking dust and carbon pellets

    Institute of Scientific and Technical Information of China (English)

    PENG Bing; SONG Hai-chen; CHAI Li-yuan; WANG Ja; WANG Yun-yan; MIN Xiao-bo; HE De-wen

    2005-01-01

    The reduction mechanism of stainless steelmaking dust and carbon pellets was investigated. The metal oxides present in the dust were reduced by carbon with a new direct reduction technology. The direct reduction parameters were determined by measuring the rates of dust melting and reduction. The results show that the rate of reduction is faster than that of the melting. Both melting and reduction processes are accelerated by the direct transfer of heat from the smelting slag. The recovery of metals is improved while the pellets were added to argon oxygen decarburization(AOD) or vacuum oxygen decarburization(VOD) vessels in the late period of the first smelting stage. More carbon travels to the slag instead of to the steel because the diffusion coefficient of carbon, impacted by the viscosity of slag and surface tension between slag and melted steel, is larger in the slag than in the steel. The viscosity of slag is about 2.54Pa·s and the surface tension between slag and steel is about 490mN/m.

  8. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  9. Reduction of Sulfur Dioxide on Carbons Catalyzed by Salts

    OpenAIRE

    2005-01-01

    Abstract. The reduction of SO2 on different carbons in the presence of the nitrates and sulfides of sodium, potassium and calcium and potassium polysulfides was studied. The presence of salts increased the initial rate 2-5 fold for all of them and did not change the product distribution. The catalysis was not determined by the cation and there was no difference in the catalytic reactivity between nitrates and sulfides. The sulfur content of the activated carbon increased during the reaction o...

  10. Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment.

    Science.gov (United States)

    Chen, Changhong; Chen, Bingheng; Wang, Bingyan; Huang, Cheng; Zhao, Jing; Dai, Yi; Kan, Haidong

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis.

  11. Low-carbon energy policy and ambient air pollution in Shanghai, China. A health-based economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changhong; Wang, Bingyan [Shanghai Academy of Environmental Sciences, Shanghai 200233 (China); Chen, Bingheng; Kan, Haidong [Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032 (China); Huang, Cheng; Zhao, Jing; Dai, Yi [East China University of Science and Technology, Shanghai 200237 (China)

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM{sub 10}-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis. (author)

  12. Low-carbon energy policy and ambient air pollution in Shanghai, China: A health-based economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen Changhong [Shanghai Academy of Environmental Sciences, Shanghai 200233 (China); Chen Bingheng [Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032 (China); Wang Bingyan [Shanghai Academy of Environmental Sciences, Shanghai 200233 (China); Huang Cheng [East China University of Science and Technology, Shanghai 200237 (China); Zhao Jing [East China University of Science and Technology, Shanghai 200237 (China); Dai Yi [East China University of Science and Technology, Shanghai 200237 (China); Kan Haidong [Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032 (China)]. E-mail: haidongkan@gmail.com

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM{sub 10}-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis.

  13. Oxygen reduction on teflon-bonded carbon electrode

    Institute of Scientific and Technical Information of China (English)

    周德璧; 黄可龙; 张世民

    2004-01-01

    Oxygen reduction on Teflon-bonded carbon gas diffusion electrode without catalyst in 6 mol/L KOH solution was investigated with acimpedance spectroscopy and other electrochemical techniques. The kinetic parameters were measured with an exchange current density of J0= 3.44 × 10-9 and a Tafel slope of 46 mV/dec in low overpotential range (-0.05 --0.14 V vs SCE), which are comparable with those reported on carbon supported platinum electrode. The reaction mechanism of OR and the active effect of carbon black were examined.

  14. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  15. Greenhouse gas and air pollutant emission reduction potentials of renewable energy--case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan.

    Science.gov (United States)

    Kuo, Yu-Ming; Fukushima, Yasuhiro

    2009-03-01

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study.

  16. REDUCTION OF NOISE OF ENVIRONMENTAL POLLUTION BY INSTALLING SILENCERS

    Directory of Open Access Journals (Sweden)

    Gorin V. A.

    2016-05-01

    Full Text Available The article describes the sources of noise Yeisk thermal power plant (TPP in excess of the permissible sound pressure levels in homes on the street. Gorky, 25. Eisk TPP is located near the residential area, where the permissible noise level standards adopted much more stringent than in the power plants. Prolonged exposure to noise leads to human disease noise disease. The scheme of movement of exhaust gases from the thermal power plant generating units Yeisk. Analysis of measurements of noise characteristics of main and auxiliary equipment showed that one of the main sources are sectioned estuaries double-barrel pipe height of 27 m and slices estuaries pipes emergency explosive valves flues installed on the roof at a height of 17 m. The previous Noise reduction nozzles that emit noise uniformly in all directions are replaced by advanced, whose index changed direction estuaries sections double-barrel tubes. This will change the level of radiated noise in residential development. If you change the angle of orientation of 135°-180°, the noise level in residential construction decreased by 7-10 dB. Shows a photograph of thermal power plants, residential buildings, the old and improved silencers

  17. Ozone pollution effects on the land carbon sink in the future greenhouse world

    Science.gov (United States)

    Unger, N.; Yue, X.

    2015-12-01

    Ozone pollution has huge impacts on the carbon balance in the United States, Europe and China. While terrestrial ecosystems provide an important sink for surface ozone through stomatal uptake, this process damages photosynthesis, reduces plant growth and biomass accumulation, and affects stomatal control over plant transpiration of water vapor. Effective mitigation of climate change by stabilizing atmospheric carbon dioxide concentrations requires improved understanding of ozone effects on the land carbon sink. Future effects of ozone pollution on the land carbon sink are largely unknown. We apply multiple observational datasets in combination with the Yale Interactive Terrestrial Biosphere (YIBs) model to quantify ozone vegetation damage in the present climatic state and for a broad range of possible futures. YIBs includes a mechanistic ozone damage model that affects both photosynthetic rate and stomatal conductance for low or high ozone plant sensitivity. YIBs is embedded in the NASA GISS ModelE2 global chemistry-climate model to allow a uniquely informed integration of plant physiology, atmospheric chemistry, and climate. The YIBs model has been extensively evaluated using land carbon flux measurements from 145 flux tower sites and multiple satellite products. Chronic ozone exposure in the present day reduces GPP by 11-23%, NPP by 8-16%, stomatal conductance by 8-17% and leaf area index by 2-5% in the summer time eastern United States. Similar response magnitudes are found in Europe but almost doubled damage effects occur in hotspots in eastern China. We investigate future ozone vegetation damage within the context of multiple global change drivers (physical climate change, carbon dioxide fertilization, human energy and agricultural emissions, human land use) at 2050 following the IPCC RCP2.6 and RCP8.5 scenarios. In the RCP8.5 world at 2050, growing season average GPP and NPP are reduced by 20-40% in China and 5-20% in the United States due to the global rise

  18. Electrochemical reduction of dilute chromate solutions on carbon felt electrodes

    NARCIS (Netherlands)

    Frenzel, Ines; Holdik, Hans; Barmashenko, Vladimir; Stamatialis, Dimitrios F.; Wessling, Matthias

    2006-01-01

    Carbon felt is a potential material for electrochemical reduction of chromates. Very dilute solutions may be efficiently treated due to its large specific surface area and high porosity. In this work, the up-scaling of this technology is investigated using a new type of separated cell and once-throu

  19. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  20. Carbon emission reduction potentials through thinned wood in Japan

    Directory of Open Access Journals (Sweden)

    Ninomiya H

    2011-06-01

    Full Text Available Substituting fossil fuel with woody biomass for bioelectricity production has great potentials for carbon emission reductions while increasing forest productivity to increase carbon sequestration and improve ecological functionalities. Until recently, study on such potentials was very limited. Beginning in 2007, Japan’s special budgets were allocated for a 6-year intensive thinning on about 3.3 million ha of young stands for increasing carbon sinks in Japanese forests to meet the capped amount of 47.7 Tg CO2 year-1 allowed under the Marrakesh Accord. Because of only 30% of the thinned wood were used for sawntimber, CO2 and CH4 must have been emitted from the disposed thinned wood and wood waste. Such emissions and reduction potentials need to be assessed to provide future alternatives for climate change mitigation. We assessed carbon emission reduction potentials when woody biomass from thinned wood is fully utilized for bioelectricity production as compared with the generation of the same amount of energy produced under coal, oil, and natural gas scenarios. Our analytical results show that if all disposed thinned wood and wood waste are utilized to generate energy, about 62.6, 58.3, and 37.8 Tg CO2 year-1 could be prevented from emitting depending on emission scenarios or about 33.2, 30.9, and 20.0% of Japan’s reduction commitment to the Kyoto Protocol. On the other hand, if thinned wood and wood waste are not utilized, about 13.4 Tg CO2 year-1 would be released due to thinning. Our results suggest that incentives to reducing emission reductions in forest sector in the future climate change mitigation agreements will likely lead to large emission reductions, otherwise leakages due to thinning are unavoidable.

  1. Dissimilatory reduction of perchlorate and other common pollutants by a consortium enriched from tidal flats of the Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    Nirmala Bardiya; Jae-Ho Bae

    2015-01-01

    Objective: To enrich a facultative anaerobic bacterial consortium from the Yellow Sea and assess its ability to reduce perchlorate and other co-pollutants. Methods: Bacterial consortium collected from the tidal flats of the Yellow Sea was enriched in an anoxic medium containing perchlorate as the electron (e-) acceptor and acetate as the electron (e-) donor. The enriched consortium was then tested for perchlorate reduction under different perchlorate concentrations and in the presence of nitrate by using standard anaerobic techniques. The complete enzymatic reduction of perchlorate to chloride was confirmed by chlorite dismutation. Ability of the consortium to grow with alternate e- acceptors was also tested with acetate as the e- donor. Results: The enriched consortium could rapidly reduce perchlorate up to the initial concentration of 25.65 mmol/L. In the presence of nitrate, perchlorate reduction did not occur immediately and reduction of nitrate started after a lag phase, with concomitant accumulation of nitrite. The perchlorate-enriched consortium could reduce chlorate, oxygen, Cr (VI), and selenate as the alternate e- acceptors but failed to utilize sulfate, thiosulfate, sulfite, and nitrite. Conclusions: The consortium from the tidal flats of the Yellow Sea could reduce perchlorate and co-contaminants such as chlorate, nitrate, Cr (VI), and selenate under heterotrophic conditions with acetate as the e- donor and carbon source. While perchlorate was completely dismutated into innocuous chloride and oxygen, accumulation of nitrite occurred during the reduction of nitrate.

  2. Survey of risk reduction and pollution prevention practices in the Rhode Island automotive refinishing industry.

    Science.gov (United States)

    Enander, R T; Gute, D M; Missaghian, R

    1998-07-01

    In 1996 a survey of pollution prevention, environmental control, and occupational health and safety practices was conducted in the Rhode Island automotive refinishing industry sector. In conjunction with project partners, the Rhode Island Department of Environmental Management developed a multidimensional survey instrument to identify risk reduction opportunities. Investigators sought to characterize the range of environmental and industrial hygiene control employed by Rhode Island facilities for the purposes of focusing state technical and compliance assistance efforts. Data were collected on a diverse range of subject areas including work force demographics; source reduction; potential health hazards; worker protection and safety; solid and hazardous waste management; and air pollution control. Nearly one-half of the shops employ three or fewer people, and in many cases, spray painters double as body repair technicians thereby increasing their potential exposure to workplace contaminants. While nearly all of the shops reported that they use spray painting booths, only 38% own booths the more effective downdraft design. Based on the self-reported data, recently promulgated state air pollution control regulations (requiring the use of compliant coatings, enclosed or modified spray gun cleaners, and high-volume, low-pressure, spray guns) appear to be effective at motivating companies toward source reduction. A range of risk reduction opportunities were identified as input material changes, technology changes, and improved operating practices. Better methods of risk communication; a professional licensing requirement; and targeted training, compliance, and technical assistance would help to achieve greater levels of risk reduction in this mature, high-hazard industry.

  3. Evidence for Microbial Iron Reduction in a Landfill Leachate-Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1994-01-01

    as an increase in the concentration of dissolved Fe(II). Iron reduction did not occur when the medium was inoculated with inactive sediment and when the organisms in the inoculated medium were killed by formaldehyde, by chloroform, or by pasteurization, whereas the level of iron reduction was significant when...... and groundwater. Synthetic amorphous Fe(III) oxides, as well as naturally occurring sediment-bound Fe(III) oxides, could be reduced by the cultures. Together, our results provide evidence that iron-reducing bacteria are present and microbial iron reduction occurs in the polluted aquifer sediments which we studied....

  4. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts

    Science.gov (United States)

    Wei, Wei; Tao, Ying; Lv, Wei; Su, Fang-Yuan; Ke, Lei; Li, Jia; Wang, Da-Wei; Li, Baohua; Kang, Feiyu; Yang, Quan-Hong

    2014-09-01

    Carbon-based electrocatalysts are more durable and cost-effective than noble materials for the oxygen reduction reaction (ORR), which is an important process in energy conversion technologies. Heteroatoms are considered responsible for the excellent ORR performance in many carbon-based electrocatalysts. But whether an all-carbon electrocatalyst can effectively reduce oxygen is unknown. We subtly engineered the interfaces between planar graphene sheets and curved carbon nanotubes (G-CNT) and gained a remarkable activity/selectivity for ORR (larger current, and n = 3.86, ~93% hydroxide + ~7% peroxide). This performance is close to that of Pt; and the durability is much better than Pt. We further demonstrate the application of this G-CNT hybrid as an all-carbon cathode catalyst for lithium oxygen batteries.We speculate that the high ORR activity of this G-CNT hybrid stems from the localized charge separation at the interface of the graphene and carbon nanotube, which results from the tunneling electron transfer due to the Fermi level mismatch on the planar and curved sp2 surfaces. Our result represents a conceptual breakthrough and pioneers the new avenues towards practical all-carbon electrocatalysis.

  5. Energy efficiency improvement and pollution reduction in a cupola route foundry

    Energy Technology Data Exchange (ETDEWEB)

    Pal, P.; Bhattacherjee, S. [Tata Energy Research Institute, New Delhi (India)

    2001-07-01

    Coke is the major source of fuel used in foundries, primarily to melt the metallic charges in a vertical shaft furnace called cupola. Most of the cupolas operating in the small-scale foundries have very low energy efficiencies and poor environmental performances. The paper describes a technological upgradation initiative undertaken to improve the energy efficiency environmental performance of small-scale foundry units in India. Technology upgradation of the melting plant leads to reduced energy consumption, which in turn leads to savings in operating cost and has the added attraction of reduction in emissions generation at source. The reduction of pollution at source reduces the size of the pollution control system necessary to meet the statutory emission standards. Till recently, most of the foundries had conventional cupolas. The DBC (divided blast cupola) is an attractive option of reducing coke consumption at a modest investment. The design of a suitable flue gas cleaning system along with DBC was undertaken to provide a viable solution to small-scale foundries. The paper describes the design features as regards energy efficiency, pollution, and melting of a demonstration cupola plant that was set up at a foundry in Howrah. Results of the demonstration project reveal that there is a huge potential for energy saving and pollution reduction in foundries of India. However, the compliance to environmental standards will be better if the emission limits are made more pragmatic and a better rapport is established between the industry associations and controlling authorities. 3 refs., 2 figs., 2 tabs.

  6. Modification of Carbon Nanotube Powder Microelectrode and Nitrite Reduction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The properties of the carbon nanotube powder microelectrodes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.

  7. Modification of Carbon Nanotube Powder Microelectrode and Nitrite Reduction

    Institute of Scientific and Technical Information of China (English)

    PeiFangLIU; JunFuHU

    2002-01-01

    The properties of the carbon nanotube powder microelectroes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.

  8. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Directory of Open Access Journals (Sweden)

    Qing-chun Meng

    Full Text Available CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  9. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  10. Seat-integrated localized ventilation for exposure reduction to air pollutants in indoor environments

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Rezgals, Lauris; Melikov, Arsen Krikor

    2016-01-01

    generated before they disperse around a room. The polluted near the body air is exhausted into the cushion and it is removed from the room by a separate exhaust system. The performance of the method was studied in series of experiments. Full-scale room and a dressed thermal manikin sitting in front...... of a desk were used to simulate one person office. The chair on which the thermal manikin was sitting had the ventilated cushion (VC). Tracer gases, carbon dioxide (CO2) and nitrous oxide (N2O), were used to simulate bioeffluents emitted by the manikin’s armpits and groin region respectively...... from the cushion at 1.5, 3 and 5 L/s were performed. The pollution removal efficiency was assessed by measuring the pollution concentration in the breathing zone of the manikin and at several other locations in the room bulk air. Exhausting air through the VC decreased the concentration of the tracer...

  11. Air pollution - reduction of air pollution for plants to produce and process vegetable oils. Emissionen - Emissionsminderung bei Anlagen zur Gewinnung und Bearbeitung pflanzlicher Oele

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, M. (Broekelmann und Co., Oelmuehle und Raffinerie KG, Hamm (Germany, F.R.))

    1989-03-01

    The waste gas flows and the connected air pollution for a typical plant to process softseeds up to a capacity of about 50 t/h and refinery of about 15 t/h are given and suited measures for the reduction of air pollution are described. On current occasion the paper refers to the VDI-Richtlinie Nr. 2592. (orig.).

  12. Impact of carbon-dosing on micro-pollutants removal in MBBR post-denitrification systems

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Torresi, Elena; Plósz, Benedek G.

    Dosing of methanol or ethanol is a common practice in post-denitrification steps during wastewater treatment by MBBR technology. The carbon-dosage impact on micro- pollutants removal, in terms of type (methanol or ethanol) and concentration was investigated. First, with continuous operation...... and indigenous micro-pollutants concentrations, different methanol and ethanol dosages were used to manipulate the carbon-to-nitrate ratio in two MBBRs. Atenolol, citalopram and trimethoprim were efficiently removed in both reactors. However, type or concentration of carbon did not correlate to micro-pollutant...... the removal of such compounds. In contrast, for moderately degraded micro-pollutants, the biofilm developed under methanol dosing presented the highest removal rate constants. This might mean that the primary metabolism of methanol improved the metabolism of these micro-pollutants. In general...

  13. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, Mercedes, E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, Sara; Rodriguez Mellado, Jose Miguel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' , E-14014 Cordoba (Spain)

    2010-03-30

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H{sub 2}SO{sub 4}) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH < pK{sub a}), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK{sub a} the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  14. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, G.R.; Hardie, R.W. [Los Alamos National Lab., NM (United States); Barrera-Roldan, A. [Instituto Mexicano de Petroleo, Mexico City (Mexico)

    1993-12-31

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linear function of the reduction of hydrocarbon and NO{sub x} emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO{sub x}. The relationship between ozone levels and the hydrocarbon and NO{sub x} concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy.

  15. Water Quality Improvement through Reductions of Pollutant Loads on Small Scale of Bioretention System

    Science.gov (United States)

    Elyza Muha, Norshafa; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Bioretention system is introduced as an important topic namely Urban Storm Water Management Manual for Malaysia (MSMA) by the Department of Irrigation and Drainage Malaysia (DID) in May 2012. The main objective of this paper is to evaluate the performance of water quality for small scale bioretention system under tropical climate via MUSIC model. Two bioretention systems 1 and 2 are observed based on the difference media depth. The result of bioretention system is compared with a reference model which has infrastructure with Urban Stormwater Improvement Conceptualisation (MUSIC) for pollutants load reduction and water quality results. Assessment of results via MUSIC software indicates a significant percentage of reduction for Total Suspended Solid (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). The prediction of pollutant reduction via using MUSIC has the harmony for requirement in MSMA. TSS pollutant reduction is more than 80%, while for TP and TN more than 50%. The outcome of this study can be helpful for improvement of the existing MSMA guidelines for application of bioretention systems in Malaysia.

  16. Photoassisted carbon dioxide reduction and formation of twoand three-carbon compounds. [prebiological photosynthesis

    Science.gov (United States)

    Halmann, M.; Aurian-Blajeni, B.; Bloch, S.

    1981-01-01

    The photoassisted reduction of aqueous carbon dioxide in the presence of naturally occurring minerals is investigated as a possible abiotic precursor of photosynthesis. Aqueous carbon dioxide saturated suspensions or surfaces of the minerals nontronite, bentonite, anatase, wolframite, molybdenite, minium, cinnabar and hematite were irradiated with high-pressure mercury lamps or sunlight. Chemical analyses reveal the production of formic acid, formaldehyde, methanol and methane, and the two and three-carbon compounds glyoxal (CHOCHO) and malonaldehyde (CH2(CHO)2). It is suggested that such photosynthetic reactions with visible light in the presence of semiconducting minerals may provide models for prebiological carbon and nitrogen fixation in both oxidized and reduced atmospheres.

  17. Impact of carbon dosing on micro-pollutants removal in MBBR post-denitrification systems

    DEFF Research Database (Denmark)

    Escola, Monica; Torresi, Elena; Gy Plósz, Benedek

    Dosing of carbon as methanol or ethanol is a common practice in post-denitrification steps during wastewater treatment by MBBR technology. The impact of the carbon dosage on micro-pollutants removal, in terms of type (methanol or ethanol) and concentration was investigated. First, with continuous...... to 53% and 30 to 100 % respectively. However, type or concentration of carbon did not lead to different micro-pollutant removal rates. Second, an anoxic-batch test with the same wastewater but containing spiked micro-pollutants (2 ng/mL) was conducted. The batch test showed that acetyl...... operation and indigenous micro-pollutants concentrations, different dosages of methanol and ethanol were used to manipulate the carbon-to-nitrate ratio in the two systems. This test revealed that atenolol, citalopram and trimethoprim were efficiently removed, with removal percentages from 56 to 98%, 17...

  18. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets

    Science.gov (United States)

    Wang, Qiannan; Wang, Likai; Tang, Zhenghua; Wang, Fucai; Yan, Wei; Yang, Hongyu; Zhou, Weijia; Li, Ligui; Kang, Xiongwu; Chen, Shaowei

    2016-03-01

    Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-visible absorption spectroscopy, thermogravimetric analysis and BET nitrogen adsorption/desorption. Electrochemical studies showed that the composites demonstrated apparent ORR activity in alkaline media, and the sample with a 30% Au mass loading was identified as the best catalyst among the series, with a performance comparable to that of commercial Pt/C, but superior to those of Au102 nanoclusters and carbon nanosheets alone, within the context of onset potential, kinetic current density, and durability. The results suggest an effective approach to the preparation of high-performance ORR catalysts based on gold nanoclusters supported on carbon nanosheets.Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as

  19. Molten carbonate fuel cell reduction of nickel deposits

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James L. (Lemont, IL); Zwick, Stanley A. (Darien, IL)

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  20. Low-cost carbon pellets for NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Mora, J.M.; Bueno-Lopez, A.; Garcia-Garcia, A.; Perry, R.; Snape, C.E. [University of Alicante, Alicante (Spain)

    2005-07-01

    Various low-cost carbon precursors were examined for their suitability and selectivity towards NOx reduction. The carbon feedstocks selected included bituminous coal, high- and medium-temperature cokes, petroleum coke, anthracite, scrap tyre pyrolysis char and power station PFA. Cashew nut shell liquid (CNSL) was the binder. Pellets were prepared from a solid mixture containing 65 mass % of air-dried carbon feedstock crushed to {lt} 0.5 mm, 30% potassium hydroxide milled to {lt}0.2 mm and 5% CNSL. To test their propensity to reduce NOx in flue gas, 10 g samples of pellets were heated in a reactor at 325-350{sup o}C in a 2 dm{sup 3}/min flow of gas comprising 2000 ppmv NO, 5% oxygen with nitrogen as the balance. The reduction in NOx and O{sub 2} conversion were measured on-line together with CO{sub 2} and CO evolution. A selectivity factor was then calculated for each pellet sample and test condition, which defines the proportion of carbon consumed in reducing NOx relative to its combustion with oxygen. The results show that constant values of NOx reduction are kept after 2 hours of reaction leading to satisfactory values of selectivity factor. This parameter is highly dependent on potassium content of the samples following all stages of heat treatment. Final potassium content is itself obviously dependent on the loss in mass experienced by the pellets during heat treatment, but measured potassium contents were without exception higher than those attributable to volatile losses alone, suggesting that there was alkali-induced activation occurring resulting in some of the carbon being consumed during carbonisation. The highest selectivity of around 0.4 was obtained for the carbonised bituminous coal. 3 refs., 1 fig., 1 tab.

  1. Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China

    Directory of Open Access Journals (Sweden)

    Ye Li

    2016-11-01

    Full Text Available In recent years, emissions from the road transportation industry in China have been increasing rapidly. To evaluate the reduction potential of greenhouse gas and pollutant emissions of the industry in China, its emission inventory was calculated and scenario analysis was created for the period between 2012 and 2030 in this paper. Based on the Long-range Energy Alternatives Planning System (LEAP model, the development of China’s road transportation industry in two scenarios (the business-as-usual (BAU scenario and the comprehensive-mitigation (CM scenario was simulated. In the Comprehensive Mitigation scenario, there are nine various measures which include Fuel Economy Standards, Auto Emission Standards, Energy-saving Technology, Tax Policy, Eco-driving, Logistics Informatization, Vehicle Liquidation, Electric Vehicles, and Alternative Fuels. The cumulative energy and emission reductions of these specific measures were evaluated. Our results demonstrate that China’s road transportation produced 881 million metric tons of CO2 and emitted 1420 thousand tons of CO, 2150 thousand tons of NOx, 148 thousand tons of PM10, and 745 thousand tons of HC in 2012. The reduction potential is quite large, and road freight transportation is the key mitigation subsector, accounting for 85%–92% of the total emission. For energy conservation and carbon emission mitigation, logistics informatization is the most effective method, potentially reducing 1.80 billion tons of coal equivalent and 3.83 billion tons of CO2 from 2012 to 2030. In terms of air pollutant emission mitigation, the auto emission standards measure performs best with respect to NOx, PM10, and HC emission mitigation, and logistic informatization measure is the best in CO emission reduction. In order to maximize the mitigation potential of China’s road transportation industry, the government needs to implement various measures in a timely and strict fashion.

  2. Forest biomonitoring of the largest Slovene thermal power plant with respect to reduction of air pollution.

    Science.gov (United States)

    Al Sayegh Petkovšek, Samar

    2013-02-01

    The condition of the forest ecosystem in the vicinity of the largest Slovene power plant [the Šoštanj Thermal Power Plant (ŠTPP)] was monitored during the period 1991-2008 by determining the total concentration of sulphur, ascorbic acid and chlorophyll in Norway spruce needles. After 1995, the introduction of cleaning devices at the ŠTPP dramatically reduced the former extremely high SO(2) and dust emissions. The most significant findings of this comprehensive, long-duration survey are as follows: (1) the chosen parameters are suitable bioindicators of stress caused by air pollution in Norway spruce needles; they reflect both spatial and temporal variations in air pollution as well as the degree of efficiency of the cleaning devices; (2) observations show that the physiological condition of Norway spruce in northern Slovenia has significantly improved since 1995, when the first desulphurization device at ŠTPP was built, together with a reduction in the area influenced by pollution from ŠTPP; (3) metabolic processes in spruce needles react to air pollution according to the severity of the pollution and the length of exposure; exposure to high SO(2) ambient levels and/or spread over a long duration can damage the antioxidant defence mechanisms of spruce trees as well as diminishing the concentration of ascorbic acid; (4) a reduction in the exposure to air pollution improves the vitality of the trees (e.g. higher concentrations of total (a + b) chlorophyll), as well as restoring their defence capabilities as shown by higher concentrations of ascorbic acid; and (5) forest monitoring should be continued and focused on integrating the effects of multiple stressors, which can additionally affect a forest ecosystem.

  3. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels.

    Science.gov (United States)

    Loya, Wendy M; Pregitzer, Kurt S; Karberg, Noah J; King, John S; Giardina, Christian P

    2003-10-16

    In the Northern Hemisphere, ozone levels in the troposphere have increased by 35 per cent over the past century, with detrimental impacts on forest and agricultural productivity, even when forest productivity has been stimulated by increased carbon dioxide levels. In addition to reducing productivity, increased tropospheric ozone levels could alter terrestrial carbon cycling by lowering the quantity and quality of carbon inputs to soils. However, the influence of elevated ozone levels on soil carbon formation and decomposition are unknown. Here we examine the effects of elevated ozone levels on the formation rates of total and decay-resistant acid-insoluble soil carbon under conditions of elevated carbon dioxide levels in experimental aspen (Populus tremuloides) stands and mixed aspen-birch (Betula papyrifera) stands. With ambient concentrations of ozone and carbon dioxide both raised by 50 per cent, we find that the formation rates of total and acid-insoluble soil carbon are reduced by 50 per cent relative to the amounts entering the soil when the forests were exposed to increased carbon dioxide alone. Our results suggest that, in a world with elevated atmospheric carbon dioxide concentrations, global-scale reductions in plant productivity due to elevated ozone levels will also lower soil carbon formation rates significantly.

  4. Chromate Reduction in Serratia marcescens Isolated from Tannery Effluent and Potential Application for Bioremediation of Chromate Pollution

    Directory of Open Access Journals (Sweden)

    M.A. Mondaca

    2002-01-01

    Full Text Available Pollution of aquatic systems by heavy metals has resulted in increasing environmental concern because they cannot be biodegraded. One metal that gives reason for concern due to its toxicity is chromium. Cr(VI and Cr(III are the principal forms of chromium found in natural waters. A chromate-resistant strain of the bacterium S. marcescens was isolated from tannery effluent. The strain was able to reduce Cr(VI to Cr(III, and about 80% of chromate was removed from the medium. The reduction seems to occur on the cell surface. Transmission electron microscopic examination of cells revealed that particles were deposited on the outside of bacterial cells. A stable biofilm was formed in less than 10 h, reaching around 1010 cfu attached per milligram of activated carbon. These findings demonstrate that immobilized S. marcescens might be used in industrial waste treatment processes.

  5. Does carbon reduction increase sustainability? A study in wastewater treatment.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2015-12-15

    This study investigates the relationships between carbon reduction and sustainability in the context of wastewater treatment, focussing on the impacts of control adjustments, and demonstrates that reducing energy use and/or increasing energy recovery to reduce net energy can be detrimental to sustainability. Factorial sampling is used to derive 315 control options, containing two different control strategies and a range of sludge wastage flow rates and dissolved oxygen setpoints, for evaluation. For each, sustainability indicators including operational costs, net energy and multiple environmental performance measures are calculated. This enables identification of trade-offs between different components of sustainability which must be considered before implementing energy reduction measures. In particular, it is found that the impacts of energy reduction measures on sludge production and nitrogen removal must be considered, as these are worsened in the lowest energy solutions. It also demonstrates that a sufficiently large range of indicators need to be assessed to capture trade-offs present within the environmental component of sustainability. This is because no solutions provided a move towards sustainability with respect to every indicator. Lastly, it is highlighted that improving the energy balance (as may be considered an approach to achieving carbon reduction) is not a reliable means of reducing total greenhouse gas emissions.

  6. Air pollution emission reduction techniques in combustion plants; Technique de reduction des emissions de polluants atmospheriques dans les installations de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bouscaren, R. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1996-12-31

    Separating techniques offer a large choice between various procedures for air pollution reduction in combustion plants: mechanical, electrical, filtering, hydraulic, chemical, physical, catalytic, thermal and biological processes. Many environment-friendly equipment use such separating techniques, particularly for dust cleaning and fume desulfurizing and more recently for the abatement of volatile organic pollutants or dioxins and furans. These processes are briefly described

  7. Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment

    Science.gov (United States)

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition (13C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ13C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ13C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ13C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  8. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    Science.gov (United States)

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  9. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    Science.gov (United States)

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.

  10. [Research on contribution decomposition by industry to China's carbon intensity reduction and carbon emission growth].

    Science.gov (United States)

    Jiang, Jing-Jing; Ye, Bin; Ji, Jun-Ping; Ma, Xiao-Ming

    2014-11-01

    The binding carbon intensity index and the pilot "cap-and-trade" emission trading scheme are two important approaches currently applied by China to mitigate its greenhouse gases emissions. It is of great significance to research the influence mechanism of related factors by industry on the dynamics of national carbon intensity and emission, not only for setting industry-specified intensity reduction target but also for setting industry coverage of the ETS. Two LMDI models were applied in this paper to decompose industry contributions to the changes of China's carbon intensity and carbon emission during the period of 1996-2010. Empirical results showed that: The decline of national carbon intensity was jointly determined by the changes of carbon intensities and the added value proportions of all industries, and the impact of industry carbon intensities was larger. The increase of national carbon emission was jointly determined by the changes of carbon intensities and the added value of all industries. The former had inhibitory effect whist the latter had decisive promoting effect. The five industries making the largest contribution to the changes of national carbon emission and carbon intensity included industries of electricity, nonmetal mineral, ferrous metal, transportation service, chemical materials, which were followed by the industries of agriculture, coal mining and processing, petroleum and natural gas extraction. Petroleum refining and coking industry and construction industry made small contribution to the decline of national carbon intensity, but made large contribution to the growth of national carbon emission. The contributions of service industries to national carbon emission growth showed a rising trend, especially those of transportation service industry, wholesaling, retailing and catering service industry.

  11. The effect of aeration position on the spatial distribution and reduction of pollutants in the landfill stabilization process--a pilot scale study.

    Science.gov (United States)

    Chai, Xiaoli; Hao, Yongxia; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Zhao, Youcai

    2013-01-01

    Three pilot-scale simulators with different aeration systems were constructed to explore the effects of aeration position on the reduction of pollutants. The simulator with a bottom aeration system successfully distributed oxygen and efficiently inhibited methane production. A close relationship was found between the oxygen distribution and the removal of pollutants, especially that of nitrogen. The transition between nitrification and denitrification in the longitude direction of the simulator with a bottom aeration system contributed to nitrogen removal in aerobic conditions. This process can be defined as a new path for nitrogen removal in addition to simultaneous nitrification and denitrification. The concentration of NH4+ -N total nitrogen and total organic carbon dropped to 3, 78 and 204 mg L(-1), respectively, after 312 days of bottom aeration and to 514, 659 and 828 mg L(-1), respectively, after 312 days of top aeration. These results indicate that the bottom aeration system was more efficient for reducing pollutants than the top aeration system.

  12. Carbon tetrachloride pollution pathway of groundwater a typical contaminated site in the east of the city

    Science.gov (United States)

    Jiang, P.; Ma, Z. M.; Yu, W. W.; Wen, M.

    2017-08-01

    Determine 40 sampling points basing on a comprehensive monitoring. Determine the spatial distribution characteristics of the carbon tetrachloride by using the software of ArcGIS. Determine the location of the pollution sources by using MT3DMS program and Hook-Jeeves arithmetic to simulate, and connecting with the actual situation of carbon tetrachloride to analyze pollution causes. The results show that the source of carbon tetrachloride is located in the northeast near a chemical plant in the study area, whose pollutant concentration is diminishing from northeast to southwest. The main reasons to the pollution are that factories discharge waste water at random, leakage of open channel and culvert, sewage irrigation and the vulnerability of geological conditions in this area.

  13. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Preble, Chelsea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Hadley, Odelle [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Gadgil, Ashok [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions. This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.

  14. Plant use for reduction of atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Shinada, Y. (and others) (CRIEPI, Abiko-shi (Japan). Abiko Research Lab.)

    1992-01-01

    The paper reports the possible reduction of atmospheric carbon dioxide by forestation, marine plants proliferation, and microalgal mass culture. Costs and current technical situations were examined by means of hearing from specialists engaged in reforestation programs and by surveying the literature. The results can be summarized as follows: 1. Forestation (a) forestable land area - Possible total land area for forestation is estimated to be about 210 million hectares in all the world. If all of the area were forested, it would be possible to reserve 21 billion tons of carbon. (b) key factors for forestation - Land acquisition and consent by residents are the most important factors to succeed in forestation in developing countries. (c) costs for forestation - Foresting costs are 150-300 thousand yen per hectare and storing atmospheric carbon by forestation costs 2 thousand yen per one ton of carbon. 2. Current situations of marine plants proliferation - It is technically posible to proliferate kelp, gulfweed, and so on; however, costs for making one hectare of growth base will be more than 100-300 million yen. 3. Use of microorganisms - An alternative food production system by using microalgal mass cultivation will have some advantges to reduce conversion of forests to cropland and emission of other greenhouse-effect gases (e.g. methane, nitrous oxide) from agriculture. It is estimated that microalgal mass culture would be lower in costs than marine plants proliferation.

  15. Reduction of Sulfur Dioxide on Carbons Catalyzed by Salts

    Directory of Open Access Journals (Sweden)

    Wido Schreiner

    2005-01-01

    Full Text Available Abstract. The reduction of SO2 on different carbons in the presence of the nitrates and sulfides of sodium, potassium and calcium and potassium polysulfides was studied. The presence of salts increased the initial rate 2-5 fold for all of them and did not change the product distribution. The catalysis was not determined by the cation and there was no difference in the catalytic reactivity between nitrates and sulfides. The sulfur content of the activated carbon increased during the reaction on account of the stable reactive intermediates in the reduction of SO2. In the presence of NaNO3 or Na2S, the amount of sulfur incorporated was in the molar ratio Na:S = 3 ± 0.3, and the XPS spectra of the residual carbon showed an increase of ca. 9% of the non-oxidized form of sulfur in the intermediates. In the absence of salt, it is proposed that after the adsorption of SO2 on the carbon, a 1,3,2-dioxathiolane or 1,2-oxathietene 2-oxide are formed and that decompose to produce CO2 and atomic sulfur. The non-oxidized sulfur intermediate would be an episulfide 3, formed from the reaction of the atomic sulfur with the nearest double bond and followed by consecutive reactions of insertion of atomic sulfur to form a trisulfide. Extrusion of S2 from the trisulfide would regenerate the episulfide, establishing a sulfidedisulfide-trisulfide equilibrium that worked as a capture-release cycle of sulfur. In the presence of salt, the results are consistent with the assumption that the episulfide 3 reacts with the corresponding sulfide anion to form a disulfide anion, which upon reaction with atomic sulfur forms a trisulfide anion that decomposes releasing diatomic sulfur S2, transporting the sulfur and generating a thiolate that is part of the catalytic cycle.

  16. Reduction of low temperature engine pollutants by understanding the exhaust species interactions in a diesel oxidation catalyst.

    Science.gov (United States)

    Lefort, I; Herreros, J M; Tsolakis, A

    2014-02-18

    The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off curves were obtained. From the catalyst activity tests, it was found that the presence of species including CO, medium-heavy HC, alkenes, alkanes, and NOx and their concentration influence the catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could inhibit itself and other species oxidation (e.g., light and medium-heavy hydrocarbons) while suffering from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to promote low temperature HC oxidation through its partial reduction, forming NO. The understanding of these exhaust species interactions within the DOC could aid the design of an efficient aftertreatment system for the removal of diesel exhaust pollutants.

  17. Adaptation of carbon allocation under light and nutrient reduction

    Science.gov (United States)

    Wegener, Frederik; Werner, Christiane

    2015-04-01

    The allocation of recently assimilated carbon (C) by plants depends on developmental stage and on environmental factors, but the underlying mechanisms are still a matter of debate. Whereas shifts in the allocation of photosynthates induced by reduced water availability, enhanced temperature and CO2 concentration were recently investigated in various studies, less is known about the response to light and nutrient reduction. We induced different allocation patterns in the Mediterranean shrub Halimium halimifolium L. by a reduction of light (Low L treatment) and nutrient availability (Low N treatment) and analysed allocation parameters as well as morphological and physiological traits for 15 months. Finally, we conducted a 13CO2 pulse-labelling and followed the fate of recently assimilated carbon to eight different classes of plant tissues and respiration for 13 days. The results revealed a high intraspecific variability in C distribution to tissues and in respiration. Allocation changes even varied within leaf and stem tissue classes (e.g. more C in main stems, less in lateral stems). These results show that the common separation of plant tissues in only three classes, i.e. root, shoot and leaf tissues, can result in missing information about allocation changes. The nutrient reduction enhanced the transport of recently assimilated C from leaves to roots in terms of quantity (c. 200%) and velocity compared to control plants. Interestingly, a 57% light reduction enhanced photosynthetic capacity and caused no change in final biomass after 15 months. Therefore, our results support the recently discussed sink regulation of photosynthesis. Finally, our results indicate that growing heterotrophic tissues strongly reduce the C loss from storage and structural C pools and therefore enhance the fraction of recent assimilates used for respiration. We propose that this interruption of the C reflux from storage and structural C pools could be a control mechanism for C

  18. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Mingyu; Gao, Long; Li, Jun [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Fang, Jia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Cai, Wenxuan [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Xu, Aihua, E-mail: xahspinel@sina.com [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073 (China)

    2016-10-05

    Highlights: • Supported g-C{sub 3}N{sub 4} on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C{sub 3}N{sub 4}/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C{sub 3}N{sub 4} was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C{sub 3}N{sub 4} to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C{sub 3}N{sub 4}/AC catalyst within 20 min with PMS, while g-C{sub 3}N{sub 4}+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C{sub 3}N{sub 4} loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO{sub 4}·{sup −}) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C){sub 3} group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  19. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    Science.gov (United States)

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μm

  20. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

    Science.gov (United States)

    Shen, Jing; Kortlever, Ruud; Kas, Recep; Birdja, Yuvraj Y.; Diaz-Morales, Oscar; Kwon, Youngkook; Ledezma-Yanez, Isis; Schouten, Klaas Jan P.; Mul, Guido; Koper, Marc T. M.

    2015-01-01

    The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low overpotential (0.5 V), with an efficiency and selectivity comparable to the best porphyrin-based electrocatalyst in the literature. While carbon monoxide is the main reduction product, we also observe methane as by-product. The results of our detailed pH-dependent studies are explained consistently by a mechanism in which carbon dioxide is activated by the cobalt protoporphyrin through the stabilization of a radical intermediate, which acts as Brønsted base. The basic character of this intermediate explains how the carbon dioxide reduction circumvents a concerted proton–electron transfer mechanism, in contrast to hydrogen evolution. Our results and their mechanistic interpretations suggest strategies for designing improved catalysts. PMID:26324108

  1. Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seokjoon; Gallagher, James R.; Miller, Jeffrey T.; Surendranath, Yogesh

    2016-02-17

    Condensation of fac-Re(5,6-diamino-1,10-phenanthroline)(CO)(3)Cl to o-quinone edge defects on graphitic carbon surfaces generates graphite-conjugated rhenium (GCC-Re) catalysts that are highly active for CO2 reduction to CO in acetonitrile electrolyte. X-ray photo-electron and X-ray absorption spectroscopies establish the formation of surface-bound Re centers with well-defined coordination environments. GCC-Re species on glassy carbon surfaces display catalytic currents greater than 50 mA cm(-2) with 96 +/- 3% Faradaic efficiency for CO production. Normalized for the number of Re active sites, GCC-Re catalysts exhibit higher turnover frequencies than that of a soluble molecular analogue, fac-Re(1,10-phenanthroline)(CO)(3)Cl, and turnover numbers greater than 12,000. In contrast to the molecular analogue, GCC-Re surfaces display a Tafel slope of 150 mV/decade, indicative of a catalytic mechanism involving rate-limiting one-electron transfer. This work establishes graphite conjugation as a powerful strategy for generating well-defined, tunable, heterogeneous electrocatalysts on ubiquitous graphitic carbon surfaces.

  2. Willingness to pay for mortality risk reduction associated with air pollution in São Paulo

    Directory of Open Access Journals (Sweden)

    Ramon Arigoni Ortiz

    2009-03-01

    Full Text Available Epidemiological studies report significant association between air pollution and cardiovascular and respiratory mortality. Governmental intervention is required to implement policies aiming to increase air quality, and cost-benefit analysis can be useful to evaluate such policies. Reductions in risks of death are arguably the most important benefit underlying air-quality policies, and therefore need to be valued in money terms. This paper presents a contingent valuation study conducted in São Paulo to estimate the population's willingness to pay (WTP to reduce their risk of death and the correspondent value of a statistical life (VSL. Results ranged between US$ 0.77 - US$ 6.1 million.

  3. Low-cost carbon pellets for NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Soriano-Mora; A. Bueno-Lopez; A. Garcia-Garcia; R. Perry; C.E. Snape [University of Alicante (Spain). Department of Inorganic Chemistry

    2005-07-01

    Carbonaceous materials have been proposed as potential inexpensive reducing agents for NOx reduction under suitable operating conditions. Potassium has been found to be an effective catalyst in the C-NOx reaction at sufficiently high concentration. In the current work it was decided to explore low-cost carbon precursors for their suitability for NOx reduction, and to incorporate them in pellets rather than briquettes. The much greater surface area afforded by pellets should allow them to be used to better effect in removing NOx from flue gases passing through a fixed bed. The feedstocks selected included bituminous coal, high- and medium-temperature cokes, petroleum coke, anthracite, scrap tyre pyrolysis char and power station PFA. Cashew nut shell liquid (CNSL) was used as a binder, as it can be heat-cured per se at ca. 275{sup o}C, with little loss in volatile matter. To test their propensity to reduce NOx in flue gas, 10g samples of pellets were heated in a reactor at 325 - 350{sup o}C in a 2 dm{sup 3}/min flow of gas comprising 2000 ppmv NO, 5% oxygen with nitrogen as the balance. A selectivity factor was then calculated for each pellet sample and test condition, which defines the proportion of carbon consumed in reducing NOx relative to its combustion with oxygen. The results show that constant levels of NOx reduction are kept after 2 hours of reaction, being the consumption of O{sub 2} hardly appreciable, leading to satisfactory values of selectivity factor. This parameter is highly dependent on potassium content of the samples following all stages of heat treatment. The highest selectivity of ca. 0.4 was obtained for the carbonised bituminous coal and this was comparable to that achieved for briquettes from earlier studies. (Abstract only).

  4. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  5. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  6. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.

    Science.gov (United States)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-09-15

    Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital information for developing porous materials for efficient adsorbents, especially for polar pollutants.

  7. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  8. Modelling of Carbon Monoxide Air Pollution in Larg Cities by Evaluetion of Spectral LANDSAT8 Images

    Science.gov (United States)

    Hamzelo, M.; Gharagozlou, A.; Sadeghian, S.; Baikpour, S. H.; Rajabi, A.

    2015-12-01

    Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS ), spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  9. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy

    Science.gov (United States)

    Li, Xueying; Peng, Ying; Zhang, Jing

    2017-01-01

    Under the background of a low carbon economy, this paper examines the impact of carbon tax policy on supply chain network emission reduction. The integer linear programming method is used to establish a supply chain network emission reduction such a model considers the cost of CO2 emissions, and analyses the impact of different carbon price on cost and carbon emissions in supply chains. The results show that the implementation of a carbon tax policy can reduce CO2 emissions in building supply chain, but the increase in carbon price does not produce a reduction effect, and may bring financial burden to the enterprise. This paper presents a reasonable carbon price range and provides decision makers with strategies towards realizing a low carbon building supply chain in an economical manner.

  10. Pollutant Removal and Hydraulic Reduction Performance of Field Grassed Swales during Runoff Simulation Experiments

    Directory of Open Access Journals (Sweden)

    Terry Lucke

    2014-06-01

    Full Text Available Four different field swales were tested in this study, using 24 standardised synthetic runoff simulation experiments to evaluate their performance in removing Total Suspended Solids (TSS, Total Nitrogen (TN and Total Phosphorous (TP from stormwater runoff. Hydraulic reduction capability of the swales was also assessed. The study demonstrated that a swale’s TSS removal performance is highly dependent on the inlet TSS concentrations. Results showed that between 50% and 80% of the TSS was generally removed within the first 10 m of the swale length. The study found no reduction in TN concentrations due to treatment by the swales. However, it did demonstrate a reduction in measured TP levels of between 20% and 23% between the inlet and the outlet. The study results demonstrated that swales can be successfully used to attenuate peak stormwater flow rates, reduce runoff volumes and to improve the quality of stormwater runoff, particularly in runoff with high concentrations of TSS and TP. The results from this study will assist designers to estimate the appropriate length of swale required to achieve specific TSS and TP pollution reductions in urban stormwater runoff and to reduce downstream runoff volumes.

  11. Mitigation of air pollution and carbon footprint by energy conservation through CFLs: a case study.

    Science.gov (United States)

    Wath, Sushant B; Majumdar, Deepanjan

    2011-01-01

    Electricity consumption of compact fluorescent lamps (CFLs) is low, making them a useful tool for minimizing the rapidly increasing demand of electrical energy in India. The present study aims to project the likely electricity conservation in a scenario of complete replacement of existing Fluorescent Tubes (FTs) by CFLs at CSIR-NEERI (National Environmental Engineering Research Institute) visa vis the financial repercussions and indirect reduction in emissions of greenhouse gases, e.g. CO2, N2O, CH4 and other air pollutants, e.g. SO2, NO, suspended particulate matter (SPM), black carbon (BC) and mercury (Hg) from coal fired thermal power plants. The calculations show that the Institute could save around 122850 kWh of electricity per annum, thereby saving approximately INR 859950/(USD 18453.86) towards electricity cost per annum and would be able to minimize 44579.08 kg of CO2-C equivalent (over 100 year time horizon), 909 kg SO2, 982.8 kg NO, 9.8 kg of BC, 368.5 kg SPM, 18.4 kg PM10 and 0.0024 kg Hg emissions per annum from a coal fired thermal power plant by conserving electricity at the institute level.

  12. Oxygen reduction on carbon supported Pt-W electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Meza, D.; Morales, U.; Salgado, L. [Departamento de Quimica, Area de Electroquimica, Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Distrito Federal (Mexico); Roquero, P. [Unidad de Investigacion en Catalisis, Facultad de Quimica, UNAM, Ciudad Universitaria, 04510 Distrito Federal (Mexico)

    2010-11-15

    The catalytic activity of Pt-W electrocatalysts towards oxygen reduction reaction (ORR) was studied. Pt-W/C materials were prepared by thermolysis of tungsten and platinum carbonyl complexes in 1-2 dichloro-benzene during 48 h. The precursors were mixed to obtain relations of Pt:W: 50:50 and 80:20%w, respectively. The Pt carbonyl complex was previously synthesized by bubbling CO in a chloroplatinic acid solution. The synthesized materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and a rotating disk electrode (RDE). The results show that both materials (Pt{sub 50}W{sub 50}/C and Pt{sub 80}W{sub 20}/C) have a crystalline phase associated with metallic platinum and an amorphous phase related with tungsten and carbon. The particle size of the electrocatalysts depends on the relationship between platinum and tungsten. Finally, both materials exhibit catalytic activity for oxygen reduction. (author)

  13. DETOXIFICATION OF PESTICIDES POLLUTED SOIL BY ADSORBTION ON ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    V.M. Mukhin

    2009-06-01

    Full Text Available The paper emphasizes a very severe social-ecological problem, related to the contamination of soils by pesticides and fodder micotoxins. The authors suggest the utilization of a carbon adsorption based method of purification of soils contaminated with traces of pesticides. It is demonstrated that this method of soil rehabilitation leads to an 80% crop increase, allowing the production of environmentally clean plant products. The utilization of special activated carbons “Ptitsesorb” leads to a 30-40% decrease of necessary combined fodder in chickens breeding.

  14. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    Used ventilation filters are a major source of sensory pollutants in air handling systems. The objective of the present study was to evaluate the net effect that different combinations of filters had on perceived air quality after 5 months of continuous filtration of outdoor suburban air. A panel....... Furthermore, its pressure drop changed very little during the 5 months of service, and it had the added benefit of removing a large fraction of ozone from the airstream. If similar results are obtained over a wider variety of soiling conditions, such filters may be a viable solution to a long recognized...

  15. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    Science.gov (United States)

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  16. Reduction of air pollution levels downwind of a road with an upwind noise barrier

    Science.gov (United States)

    Enayati Ahangar, Faraz; Heist, David; Perry, Steven; Venkatram, Akula

    2017-04-01

    We propose a dispersion model to estimate the impact of a solid noise barrier upwind of a highway on air pollution concentrations downwind of the road. The model, based on data from wind tunnel experiments conducted by Heist et al. (2009), assumes that the upwind barrier has two main effects: 1) it creates a recirculation zone behind the barrier that sweeps the emissions from the highway back towards the wall, and 2) it enhances vertical dispersion and initial mixing. By combining the upwind barrier model with the mixed wake model for a downwind barrier described in Schulte et al. (2014), we are able to model dispersion of emissions from a highway with noise barriers on both sides. The model provides a good description of measurements made in the wind tunnel. The presence of an upwind barrier causes reductions in concentrations relative to those measured downwind of a road with no barriers. The reduction can be as large as that caused by a downwind barrier if the recirculation zone covers the width of the highway. Barriers on both sides of the highway result in larger reductions downwind of the barriers than those caused by a single barrier either upwind or downwind. As expected, barrier effects are small beyond 10 barrier heights downwind of the highway. We also propose a tentative model to estimate on-road concentrations within the recirculation zone induced by the upwind barrier.

  17. Preliminary investigation into the pollution reduction performance of swales used in a stormwater treatment train.

    Science.gov (United States)

    Kachchu Mohamed, M A; Lucke, T; Boogaard, F

    2014-01-01

    Permeable pavements have been shown to be effective stormwater treatment devices that can greatly reduce surface runoff and significantly improve the quality of stormwater runoff in urban areas. However, the potential problems with sediment clogging and consequent maintenance requirements have been identified as the main barriers to more widespread adoption of permeable pavements in urban developments. This Australian study investigates the effectiveness of using grass swales as pre-treatment devices for permeable pavements in order to reduce clogging and extend the life span of these systems. The results of simulated runoff experiments demonstrated that between 50 and 75% of the total suspended sediment (TSS) was removed within the first 10 m of the swale length. This suggests swales of this length could potentially increase the effective life of permeable pavement systems by reducing clogging, and therefore maintenance. Nutrient removal was also tested in the study and the results indicated the tested swales were of limited effectiveness in the removal of these pollutants. However, in real runoff situations, reduction of TSS will have a direct influence on removing nutrients because a significant proportion of nutrients (and other pollutants) are attached to the sediments.

  18. Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater.

    Science.gov (United States)

    Soares, Olivia Salomé G P; Orfão, José J M; Gallegos-Suarez, Esteban; Castillejos, Eva; Rodríguez-Ramos, Inmaculada; Pereira, Manuel Fernando R

    2012-01-01

    The influence of the presence of inorganic and organic matter during the catalytic reduction of nitrate in a local groundwater over a Pd-Cu catalyst supported on carbon nanotubes was investigated. It was observed that the catalyst performance was affected by the groundwater composition. The nitrate conversion attained was higher in the experiment using only deionized water as solvent than in the case of simulated or real groundwater. With exception of sulphate ions, all the other solutes evaluated (chloride and phosphate ions and natural organic matter) had a negative influence on the catalytic activity and selectivity to nitrogen.

  19. Black carbon reduction will weaken the aerosol net cooling effect

    Directory of Open Access Journals (Sweden)

    Z. L. Wang

    2014-12-01

    Full Text Available Black carbon (BC, a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA will be enhanced by 0.12 W m−2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7–2.0 W m−2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  20. Pilot study on bromate reduction in ozonation of water with low carbonate alkalinities by carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Ji Li; Li Zou; Lulu Guo; Jialin Ji

    2011-01-01

    A pilot study was carried out to explore the application of carbon dioxide for pH depression in a bubble column and its ability to inhibit bromate formation for water with a low alkalinity.Results showed that in the absence of ammonia,CO2 was capable of reducing bromate 38.0%-65.4% with one-unit pH depression.CO2 caused a slightly lower bromate reduction (4.2%) than did H2SO4 when the pH was depressed to 7.4,and a more a pronounced lower reduction (8.8%) when the pH was depressed to 6.9.In the presence of 0.20mg/L-N ammonia,bromate was largely inhibited with 73.9% reduction.When the pH was depressed to 7.4,CO2 and H2SO4 showed an 11.3% and 23.5% bromate reduction respectively,demonstrating that the joint use of CO2 and ammonia might be a plausible strategy of blocking all three bromate formation pathways.CO2 could be applied through the aeration diffuser together with ozone gas,resulting in a similar bromate reduction compared with the premixing method through Venturi mixer.

  1. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-02-21

    To increase energy security and reduce emissions of air pollutants and CO2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP20. To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP20. We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  2. An assessment of the effectiveness of lead pollution reduction strategies in North Lake Macquarie, NSW, Australia.

    Science.gov (United States)

    Morrison, Anthony L

    2003-02-15

    The North Lake Macquarie area of NSW, Australia, principally the suburbs of Boolaroo, Argenton and Speers Point, has been significantly polluted by lead emissions emanating from the Pasminco Metals Smelter (Cockle Creek). A lead accessibility reduction program has been carried out in North Lake Macquarie since 1991. The primary measure of success for the program is reduced blood lead levels, particularly in children. From 1991 to 2000 average child blood lead levels have decreased from 11 to 7.5 microg/dl. However, the lead accessibility reduction programs had failed to eliminate child blood lead levels that exceed the National Health and Medical Research Council maximum goal of 10 microg/dl, and a number of children still retain blood lead levels >25 microg/dl. Many factors have contributed to this failure, notably the continued presence of airborne high lead pollutants in ambient air, dusts and soil in residential areas. Significant reductions in lead mass emissions from 92 tonnes per annum (p.a.) in 1988 to approximately 15 tonnes p.a. to September 2000 have been achieved by the smelter operator. However, the reductions have been insufficient to ensure that ambient air quality consent conditions of 1 microg/m(3) are achieved in the residential areas surrounding the smelter. Sampling by the smelter operator also provides confirmation of continued deposition of high lead dusts in residential areas. The continued dust deposition places a high burden on the local community which must maintain obsessive levels of household cleanliness in order to minimise lead uptake from dusts deposited within the home and community. Evidence exists of institutional failure that may also have limited the success of the program. These failures include the use of inappropriate standards and non-approved techniques in remediation, lack of coordination between various arms of government and an unwillingness to enforce consent conditions. The smelter operator has also failed to

  3. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  4. Designed protein aggregates entrapping carbon nanotubes for bioelectrochemical oxygen reduction.

    Science.gov (United States)

    Garcia, Kristen E; Babanova, Sofia; Scheffler, William; Hans, Mansij; Baker, David; Atanassov, Plamen; Banta, Scott

    2016-11-01

    The engineering of robust protein/nanomaterial interfaces is critical in the development of bioelectrocatalytic systems. We have used computational protein design to identify two amino acid mutations in the small laccase protein (SLAC) from Streptomyces coelicolor to introduce new inter-protein disulfide bonds. The new dimeric interface introduced by these disulfide bonds in combination with the natural trimeric structure drive the self-assembly of SLAC into functional aggregates. The mutations had a minimal effect on kinetic parameters, and the enzymatic assemblies exhibited an increased resistance to irreversible thermal denaturation. The SLAC assemblies were combined with single-walled carbon nanotubes (SWNTs), and explored for use in oxygen reduction electrodes. The incorporation of SWNTs into the SLAC aggregates enabled operation at an elevated temperature and reduced the reaction overpotential. A current density of 1.1 mA/cm(2) at 0 V versus Ag/AgCl was achieved in an air-breathing cathode system. Biotechnol. Bioeng. 2016;113: 2321-2327. © 2016 Wiley Periodicals, Inc.

  5. Carbon Dioxide reduction by non-equilibrium electrocatalysis plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amouroux, J; Cavadias, S [LGPPTS- ENSCP/UPMC 11 rue P. t M. Curie 75231 Paris cedex 05 (France); Doubla, A, E-mail: simeon-cavadias@chimie-paristech.fr [Laboratoire de Chimie Minerale, Universite de Yaounde I, BP 812 (Cameroon)

    2011-03-15

    A possible strategy to increase the added value from CCS, is to consider it as a raw material for the production of liquid fuels, or chemical products. The most studied ways related to CO{sub 2} reduction, with formation of molecules such as CH{sub 3}OH or syngas, is the reaction with H{sub 2} (exothermic reaction needing catalytic activation), or CH{sub 4} (endothermic reaction taking place at high temperature) with the use of a catalyst. The synthesis of CH{sub 3}OH is performed on Lewis acid type sites (default of electrons) Cu/Zn/Al{sub 2}O{sub 3}. However the products of the reaction i.e. the water and methanol molecules, are very polar, resulting in a very low desorption rate. So in this reaction the key step is water desorption (Lewis basis). The increase of temperature in order to increase this desorption rate, leads to a cracking and the deposition of carbon in the catalyst, limiting its lifetime. Plasma driven catalysis allows firstly, a vibrational activation of CO{sub 2}, H{sub 2} or CH{sub 4} through electron-molecule collisions, making easier their dissociation at low temperature and secondly expels water from the catalyst sites by supplying electrons (electropolarisation). The results show an increase of the yield in CH{sub 3}OH with plasma and catalyst, confirming the action of the plasma. However energy consumption remains relatively high.

  6. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Lotus corniculatus Crop Growth in Crude Oil Polluted Soil. Part1 Total Petroleum Hydrocarbons Reduction of Polluted and Cultivated Soil

    Directory of Open Access Journals (Sweden)

    Smaranda Masu

    2016-05-01

    Full Text Available The use of power plant fly ash, by its physical-chemical properties, can significantly change the characteristics of soils polluted with oil (Total Petroleum Hydrocarbons, TPH, in their rehabilitation process, if combined with biodegradable organic materials, wastes such as sewage sludge from municipal wastewater treatment plant. Maintaining vegetation on soils polluted with 80.5 ± 3.9 g·kg-1 D.M. of TPH under perennial regime specific to bird’s foot trefoil (Lotus corniculatus, demonstrates the tolerance of the plant to the created conditions by the treatment of polluted soil with adequate amounts of fertilizer and fly ash from burning coal in power stations. The addition of 50-500 g fly ash per vegetation pot equipped with crude oil polluted soil mixed with 250 g sewage sludge per pot has reduced the oil content in the soil, in two ways: on the one hand influenced by the state of development of plants and on the other hand by weather conditions (alternation of seasons. The amount of TPH lost during the 16 months of vegetation in soils polluted with 80.5±3.9 g·kg-1 D.M. was 73.3-77.5 g·kg-1 D.M.

  8. Selective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon

    OpenAIRE

    2014-01-01

    The selective reduction of sulfur dioxide with carbon monoxide to elemental sulfur was studied over AC-supported transition-metal oxide catalysts. According to the study, Fe2O3/AC was the most active catalyst among the 4 AC-supported catalysts tested. By using Fe2O3/AC, the best catalyst, when the feed conditions were properly optimized (CO/SO2 molar ratio = 2:1; sulfidation temperature, 400 °C; Fe content, 20 wt%; GHSV = 7000 mL g-1 h-1), 95.43% sulfur dioxide conversion and 86.59% sulfur yi...

  9. A Modeled Carbon Emission Analysis Of Rampal Power Plant In Bangladesh And A Review Of Carbon Reduction Technologies

    Directory of Open Access Journals (Sweden)

    Gour Chand Mazumder

    2015-08-01

    Full Text Available todays most important concern of Bangladesh is power generation. Government has planned a 1320 MW coal-fired power station at Rampal near Sundarbans. Environmentalists have indicated that this plant will face environmental issues. So we tried finding the capability of Sundarbans to face carbon emissions. We figured out approximate carbon emission of that power plant using an arbitrary operational model. We found 3.16MKg of carbon emission daily. We used mangroves carbon sequestration rate to calculate the carbon tolerance level of Sundarbans and found approximately 4.2 MKg of carbon per day.The amount of emission we found here is marginal with the ability of Sundarbans as it is already contributing to sequester carbon from other sources. We studied and showed technology wise carbon reductions. It is possible to reduce 90 to 95 carbon emissioby using these technologies. We recommend these advanced technologies to ensure sundarbans environmental safety.

  10. Cobenefits of climate and air pollution regulations. The context of the European Commission Roadmap for moving to a low carbon economy in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Koelemeijer, R.; Eerens, H.; Van Velze, K. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands); Colette, A.; Schucht, S.; Pere, J.C.; Bessagnet, B.; Rouil, L. [Institut National de l' Environnement Industriel et des Risques INERIS, Verneuil-en-Halatte (France); Mellios, G. [EMISIA, Thessaloniki (Greece)

    2012-03-15

    In 2011, the European Commission published its roadmap towards a competitive low-carbon economy for 2050. For this roadmap the possibilities of a far-reaching reduction in greenhouse gas emissions in Europe were assessed (a decrease of 80% by 2050 compared to 1990 levels). This report was written at the request of the European Environment Agency and examines the effects of such a reduction on air quality. Analysis of several existing scenarios indicates that climate policy, in general, leads to a decrease in air pollution in Europe.

  11. Measurement of Black Carbon and Co-pollutants Emitted from Diesel Vehicles in Mexico

    Science.gov (United States)

    Zavala, M. A.; Molina, L. T.; Fortner, E.; Herndon, S.; Knighton, B.; Yacovitch, T. I.; Floerchinger, C. R.; Roscioli, J. R.; Kolb, C. E.; Paramo, V. H.; Zirath, S.; Mejia, J.; Jazcilevich, A. D.

    2013-12-01

    Freight, public transport, and heavy-duty trucks can contribute to harmful emissions of black carbon and other co-pollutants in many urban areas. Controlling the emissions of black carbon from the transport sector is important for the potential of mitigating its impacts on climate, ecosystems, and human health. However, reducing the emissions of black carbon from mobile sources is be a challenging task in many developing urban areas due to economic, social, and technical constrains, as well as the uncertainties surrounding the accurate quantification of the associated benefits. Several emissions control technologies offer a proven approach for reducing emissions of black carbon from diesel-powered mobile sources, but the accurate quantification of associated emissions benefits in developing urban areas is not well documented. We present the results of the measurement of black carbon and co-emitted pollutants of dozens of diesel powered vehicles, including freight trucks, public transport buses, and intra-city metrobuses sampled during a 4-day experiment in Mexico City in February of 2013 as part of the SLCFs-Mexico project. Measurements were obtained with the Aerodyne Mobile Laboratory, remote sensing, and portable emissions measurements, and encompassed the sampling of several vehicle models and technologies in experimental and real-world driving conditions. The results can help in the identification of key factors that hinder the implementation of control emissions for reducing emissions of black carbon elsewhere and the potential benefits of implementing various emission control technologies.

  12. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  13. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    Science.gov (United States)

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  14. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    Science.gov (United States)

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  15. Economic feasibility of surface flow constructed (SFCW) wetlands for reduction of water pollution from agricultural fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, Søren Marcus; Kjaergaard, Charlotte

    2014-01-01

    Constructed wetlands have been proposed as cost effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as study cases...

  16. Electrochemical Reduction of Oxygen on Multi-walled Carbon Nanotubes Electrode in Alkaline Solution

    Institute of Scientific and Technical Information of China (English)

    You Qun CHU; Chun An MA; Feng Ming ZHAO; Hui HUANG

    2004-01-01

    The multi-walled carbon nanotubes (MWNTs) electrode was constructed using poly- tetrafluoroethylene as binder, and the electrochemical reductive behavior of oxygen in alkaline solution was first examined on this electrode. Compared with other carbon materials, MWNTs show higher electrocatalytic activity, and the reversibility of O2 reduction reaction is greatly improved. The experiments reveal that the electrochemical reduction of O2 to HO2- is controlled by adsorption. The preliminary results illustrate the potential application of MWNTs in fuel cells.

  17. Black Carbon And Co-Pollutants Emissions And Energy Efficiency From Bricks Production In Guanajuato, Mexico

    Science.gov (United States)

    Molina, L. T.; Zavala, M.; Maiz, P.; Monsivais, I.; Chow, J.; Munguia, J.

    2013-12-01

    In many parts of the world, small-scale traditional brick kilns are a notorious informal sector source of urban air pollution. Many are both inefficient and burn highly polluting fuels that emit significant levels of black carbon and other pollutants into local communities and to the atmosphere, resulting in severe health and environmental impacts. It is estimated that there are nearly 20,000 traditional brick kilns in Mexico, in which bricks are still produced as they have been for centuries. They are made by hand, dried in the sun, and generally fired in small, one chamber kilns that use various types of fuels, including plastic refuse, used tires, manure, wood scrap, and used motor oil. Three brick kilns, two traditional kilns and an improved kiln (MK2), were sampled as part of the SLCFs-Mexico campaign in Guanajuato, Mexico during March of 2013. The concept of the MK-2 involves covering the kiln with a dome and channeling the output of an active kiln through a second, identical loaded kiln for its additional filtration of the effluents. The results of energy efficiency and carbon mass balance calculations are presented for comparing the production efficiency and carbon emissions from the sampled kilns. Measurements included PM2.5 mass with quartz filters and temporally-resolved elemental carbon and organic carbon composition obtained using thermo-optical methods. The carbon emissions obtained with the mass balance method are compared with concurrent, high- time resolution, emissions measurements obtained using the Aerodyne mobile laboratory employing the tracer method (see abstract by Fortner et al.)

  18. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants.

    Science.gov (United States)

    Ramnani, Pankaj; Saucedo, Nuvia M; Mulchandani, Ashok

    2016-01-01

    Carbon allotropes such as graphene and carbon nanotubes, have been incorporated in electrochemical biosensors for highly sensitive and selective detection of various analytes. The superior physical and electrical properties like high carrier mobility, ambipolar electric field effect, high surface area, flexibility and their compatibility with microfabrication techniques makes these carbon nanomaterials easy to integrate in field-effect transistor (FET)/chemiresistor type configuration which is suitable for portable and point-of-use/field-deployable sensors. This review covers the synthesis of carbon nanostructures (graphene and CNTs) and their integration into devices using various fabrication methods. Finally, we discuss the recent reports showing different sensing platforms that incorporate biomolecules like enzymes, antibodies and aptamers as recognition elements for fabrication of simple, low cost, compact biosensors that can be used for on-site, rapid environmental monitoring of environmental pollutants like pathogens, heavy metals, pesticides and explosives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Corrosion of carbon steel, zinc and copper by air pollution in Chongqing

    Institute of Scientific and Technical Information of China (English)

    YE Di; ZHAO Da-wei; CHEN Gang-cai; ZHANG Dong-bao

    2007-01-01

    This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose-response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.

  20. Simulating the uncertain effect of active carbon capping of a dioxin-polluted Norwegian fjord.

    Science.gov (United States)

    Starrfelt, Jostein; Saloranta, Tuomo M

    2015-07-01

    Process-based multimedia models are frequently used to simulate the long-term impacts of pollutants and to evaluate potential remediation actions that can be put in place to improve or manage polluted marine environments. Many such models are detailed enough to encapsulate the different scales and processes relevant for various contaminants, yet still are tractable enough for analysis through established methods for uncertainty assessment. Inclusion and quantification of the uncertainty associated with local efficacy of remediation actions is of importance when the desired outcome in terms of human health concerns or environmental classification shows a nonlinear relationship with remediation effort. We present an updated fugacity-based environmental fate model set up to simulate the historical fate of polychlorinated dibenzo-p-dioxins and dibenzo-furans (PCDD/Fs) in the Grenland fjords, in Norway. The model is parameterized using Bayesian inference and is then used to simulate the effect of capping parts of the polluted sediments with active carbon. Great care is taken in quantifying the uncertainty regarding the efficacy of the activated carbon cap to reduce the leaching of contaminants from the sediments. The model predicts that by capping selected parts of the fjord, biota will be classified as moderately polluted approximately a decade earlier than a natural remediation scenario. Our approach also illustrates the importance of incorporating uncertainty in local remediation efforts, as the biotic concentrations scale nonlinearly with remediation effort.

  1. THE EFFECTS OF THE AİR POLLUTANTS ON CARBONATED BUİLDİNG STONE

    Directory of Open Access Journals (Sweden)

    Lokman Hakan TECER

    2005-02-01

    Full Text Available The pollutant emissions that are thrown into the atmosphere as a result of the fossile fuel usage for either energy production, cause deterioration of the building stones in addition other environmental problems. Especially, SO2 and NOx have negative effects on the historical buildings in all over the world which are made of carbonate stones. These effects can be observed as the deterioration of the carbonate building stones by with the change of their chemical structures. This study presents the result of surveys which analyse the deterioration mechanism of CaCO3 major-constituent building stones by air pollutants. The buildings in urban areas are destroyed by air pollutants and meteorological conditions depending on their material characteristics. The main sign of the mentioned destroy is the gypsum formation that can go from the surface of the stone to inner parts. In the following pores of the stones cyclic crystallizations and melting, micro cracks and a loss of material are formed. These deterioration effects become more serious with the increasing pollution levels

  2. Economic growth and pollution in the long run: the case of carbon dioxide

    OpenAIRE

    Paul J. Burke

    2008-01-01

    The concept underpinning the Environmental Kuznets Curve is that economic growth results in reduced pollution in the long run. In this report, an extension of Andreoni and Levinson’s (2001) theoretical model is presented. It demonstrates that an Environmental Kuznets Curve relationship can occur because high incomes allow more adoption of low-emission technologies at higher income levels. Evidence on the determinants of carbon dioxide emissions changes for OECD countries over the period 1961-...

  3. Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, P.L.; Hsu, C.H.; Wu, H.M.; Hsu, W.S. [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Kuo, D. [Department of Biochemistry, University of Washington, Seattle, WA (United States)

    2012-08-15

    Novel nitrogen-doped carbon layer surrounding carbon nanotubes composite (NC-CNT) (N/C ratio 3.3-14.3 wt.%) as catalyst support has been prepared using aniline as a dispersant to carbon nanotubes (CNTs) and as a source for both carbon and nitrogen coated on the surface of the CNTs, where the amount of doped nitrogen is controllable. The NC-CNT so obtained were characterized with scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption and desorption isotherms. A uniform dispersion of Pt nanoparticles (ca. 1.5-2.0 nm) was then anchored on the surface of NC-CNT by using aromatic amine as a stabilizer. For these Pt/NC-CNTs, cyclic voltammogram measurements show a high electrochemical activity surface area (up to 103.7 m{sup 2} g{sup -1}) compared to the commercial E-TEK catalyst (55.3 m{sup 2} g{sup -1}). In single cell test, Pt/NC-CNT catalyst has greatly enhanced catalytic activity toward the oxygen reduction reaction, resulting in an enhancement of ca. 37% in mass activity compared with that of E-TEK. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Graphitic mesoporous carbon based on aromatic polycondensation as catalyst support for oxygen reduction reaction

    Science.gov (United States)

    Liu, Peng; Kong, Jiangrong; Liu, Yaru; Liu, Qicheng; Zhu, Hongze

    2015-03-01

    Mesoporous carbon is constructed by monolithic polyaromatic mesophase deriving from the hexane insoluble of coal-tar pitch. This carbon material exhibits spherical morphology and layered crystallite, and thereby can be graphitized at 900 °C without destroying the mesoporous structure. Electrochemical measurements indicate that graphitic mesoporous carbon (GMC) support not only improves the activity of Pt electrocatalyst to oxygen reduction reaction (ORR), but also shows higher corrosion resistance than commercial XC-72 carbon black in the acid cathode environment.

  5. Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles.

    Science.gov (United States)

    Choudhary, Bharat C; Paul, Debajyoti; Gupta, Tarun; Tetgure, Sandesh R; Garole, Vaman J; Borse, Amulrao U; Garole, Dipak J

    2017-05-01

    We report a rapid method of green chemistry approach for synthesis of gold nanoparticles (AuNPs) using Lagerstroemia speciosa leaf extract (LSE). L. speciosa plant extract is known for its effective treatment of diabetes and kidney related problems. The green synthesis of AuNPs was complete within 30min at 25°C. The same could also be achieved within 2min at a higher reaction temperature (80°C). Both UV-visible spectroscopy and transmission electron microscopy results suggest that the morphology and size distribution of AuNPs are dependent on the pH of gold solution, gold concentration, volume of LSE, and reaction time and temperature. Comparison between Fourier transform infrared spectroscopy (FT-IR) spectra of LSE and the synthesized AuNPs indicate an active role of polyphenolic functional groups (from gallotannins, lagerstroemin, and corosolic acid) in the green synthesis and capping of AuNPs. The green route synthesized AuNPs show strong photocatalytic activity in the reduction of dyes viz., methylene blue, methyl orange, bromophenol blue and bromocresol green, and 4-nitrophenol under visible light in the presence of NaBH4. The non-toxic and cost effective LSE mediated AuNPs synthesis proposed in this study is extremely rapid compared to the other reported methods that require hours to days for complete synthesis of AuNPs using various plant extracts. Strong and stable photocatalytic behavior makes AuNPs attractive in environmental applications, particularly in the reduction of organic pollutants in wastewater. Copyright © 2016. Published by Elsevier B.V.

  6. Health and Climate-Relevant Pollutant Concentrations from a Carbon-Finance Approved Cookstove Intervention in Rural India.

    Science.gov (United States)

    Aung, Ther W; Jain, Grishma; Sethuraman, Karthik; Baumgartner, Jill; Reynolds, Conor; Grieshop, Andrew P; Marshall, Julian D; Brauer, Michael

    2016-07-05

    Efforts to introduce more efficient stoves increasingly leverage carbon-finance to scale up dissemination of interventions. We conducted a randomized intervention study to evaluate a Clean Development Mechanism approved stove replacement impact on fuelwood usage, and climate and health-relevant air pollutants. We randomly assigned 187 households to either receive the intervention or to continue using traditional stoves. Measurements of fine particulate matter (PM2.5) and absorbance were conducted in cooking areas, village center and at upwind background site. There were minor and overlapping seasonal differences (post- minus preintervention change) between control and intervention groups for median (95% CI) fuel use (-0.60 (-1.02, -0.22) vs -0.52 (-1.07, 0.00) kg day(-1)), and 24 h absorbance (35 (18, 60) vs 36 (22, 50) × 10(-6) m(-1)); for 24 h PM2.5, there was a higher (139 (61,229) vs 73(-6, 156) μg m(-3))) increase in control compared to intervention homes between the two seasons. Forty percent of the intervention homes continued using traditional stoves. For intervention homes, absorbance-to-mass ratios suggest a higher proportion of black carbon in PM2.5 emitted from intervention compared with traditional stoves. Absent of field-based evaluation, stove interventions may be pursued that fail to realize expected carbon reductions or anticipated health and climate cobenefits.

  7. Where to dose powdered activated carbon in a wastewater treatment plant for organic micro-pollutant removal.

    Science.gov (United States)

    Streicher, Judith; Ruhl, Aki Sebastian; Gnirß, Regina; Jekel, Martin

    2016-08-01

    Emissions of many organic micro-pollutants (OMP) into the aquatic environment can be efficiently reduced with advanced treatment at wastewater treatment plants (WWTP). Post-treatment with activated carbon is currently considered as one of the most promising options, but powdered activated carbon (PAC) could also be dosed into the existing biological treatment process instead. Due to much greater concentrations of suspended and dissolved constituents the adsorptive OMP removal was expected to be severely hindered. Systematic comparative adsorption tests with samples from different process steps of a large conventional WWTP were conducted to investigate differences in adsorption competition and removal efficiencies. The results show that much greater competition occurs in the WWTP influent and in the anaerobic tank but removal efficiencies in the anoxic and aerobic tank and in the WWTP effluent were more similar than expected. Suspended solids thus seem not to severely affect OMP adsorption. Similar results were obtained in a comparison of different commercial PAC in all for the respective matrices. OMP removals showed a relation with the PAC dosage normalized to the concentration of dissolved organic carbon. In the anoxic and aerobic tank and in the WWTP effluent, a uniform correlation of OMP removals and reductions of UV light absorption was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  9. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    DEFF Research Database (Denmark)

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C

    2011-01-01

    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  10. [Impact of industrial pollution on emission of carbon dioxide by soils in the Kola Subarctic Region].

    Science.gov (United States)

    Koptsik, G N; Kadulin, M S; Zakharova, A I

    2015-01-01

    Soil emission of carbon dioxide, the key component of carbon cycle and the characteristic of soil biological activity, has been studied in background and polluted ecosystems in the Kola subarctic, the large industrial region of Russia. Long-term air pollution by emissions of "Pechenganikel" smelter, the largest source of sulphur dioxide and heavy metals in Northern Europe, has caused the technogenic digression of forest ecosystems. As a result of the digression, the tree layer was destructed, the number of plant species was diminished, the activity of soil biota was weakened, the soils were polluted and exhausted, biogeochemical cycles of elements were disturbed and productivity of ecosystems shrunk. Field investigations revealed the decrease of the in.situ soil respiration in average from 190-230 mg C-CO2/m2 x per h in background pine forests to 130-160, 100, and 20 mg C-CO2/m2.per h at the stages of pine defoliation, sparse pine forest and technogenic barrens of the technogenic succession, respectively. The soil respira- tion in birch forests was more intense than in pine forests and tended to decrease from about 290 mg C-CO2/m2 x per h in background forests to 210-220 and 170-190 mg C-CO2/m2 x per h in defoliating forests and technogenic sparse forests, respectively. Due to high spatial variability of soil respiration in both pine and birch forests significant differences from the background level were found only in technogenic sparse forests and barrens. Soil respiration represents total production of carbon dioxide by plant roots and soil microorganisms. The decrease in share of root respiration in the total soil respiration with the rise of pollution from 38-57% in background forests up to zero in technogenic barrens has been revealed for the first time for this region. This indicates that plants seem to be more sensitive to pollution as compared to relatively resistant microorganisms. Soil respiration and the contribution of roots to the total respiration

  11. Impacts of black carbon and co-pollutant emissions from transportation sector in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Almanza, Victor; Garcia, Agustin; Jazcilevich, Aron; Lei, Wenfang; Molina, Luisa

    2016-04-01

    Black carbon is one of the most important short-lived climate-forcing agents, which is harmful to human health and also contributes significantly to climate change. Transportation is one of the largest sources of black carbon emissions in many megacities and urban complexes, with diesel vehicles leading the way. Both on-road and off-road vehicles can emit substantial amounts of harmful BC-containing particulate matter (PM) and are also responsible for large emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and many other co-emitted volatile organic compounds (VOCs). Regionally, black carbon emissions contributions from mobile sources may vary widely depending on the technical characteristics of the vehicle fleet, the quality and chemical properties of the fuels consumed, and the degree of local development and economic activities that foster wider and more frequent or intensive use of vehicles. This presentation will review and assess the emissions of black carbon from the on-road and off-road transportation sector in the Mexico City Metropolitan Area. Viable mitigation strategies, including innovative technological alternatives to reduce black carbon and co-pollutants in diesel vehicles and their impacts on climate, human health and ecosystems will be described.

  12. The Carbon Reduction Effect of the Trade of Paper Products in China

    Institute of Scientific and Technical Information of China (English)

    Feng; FENG; Heliang; HUANG; Pei; ZHANG; Siying; CHEN

    2015-01-01

    Through using the data of import and export trading of China’s paper products in 2012,we utilize the method of volume source biomass equation and net primary productivity( NPP) to calculate the carbon reduction effect of papermaking raw materials trade,and utilize the method of IPCC guidelines for inventories to calculate the carbon emission effect of paper and paper products trade. The results show that the distinctive characteristics of China’s paper products trade has resulted in the dual effects on the domestic carbon emissions. On the one hand,large imports of paper-making raw materials make China reduce domestic forest felling,with the effect of carbon emission reduction. On the other hand,net exports of paper and paper products increase the domestic carbon emissions,with the effect of carbon emission. The carbon emission reduction effect of China’s paper-making raw materials trade is obvious and up to 19. 0211 million tons. This is equal to the total volume of 180. 5709 million cubic meters forest’s annual carbon sequestration. The carbon emission effect of paper and paper products trade is only 0. 5136 million tons,which is not significant compared with the former. In general,China’s paper product trade causes the significant effect on carbon emission reduction.

  13. Carbothermal Reduction of Quartz with Carbon from Natural Gas

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2017-04-01

    Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.

  14. Carbothermal Reduction of Quartz with Carbon from Natural Gas

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2017-01-01

    Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.

  15. Modification of activated carbon using nitration followed by reduction for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Shafeeyan, Mohammad Saleh; Houshmand, Amirhossein; Arami-Niya, Arash; Daud, Wan Mohd AshiWan [Dept. of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Razaghizadeh, Hosain [Dept. of Faculty of Environment and Energy, Research and Science Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Activated carbon (AC) samples were modified using nitration followed by reduction to enhance their CO{sub 2} adsorption capacities. Besides characterization of the samples, investigation of CO{sub 2} capture performance was conducted by CO{sub 2} isothermal adsorption, temperature-programmed (TP) CO{sub 2} adsorption, cyclic CO{sub 2} adsorption–desorption, and dynamic CO{sub 2} adsorption tests. Almost all modified samples showed a rise in the amount of CO{sub 2} adsorbed when the comparison is made in unit surface area. On the other hand, some of the samples displayed a capacity superior to that of the parent material when compared in mass unit, especially at elevated temperatures. Despite ⁓65% decrease in the surface area, TP-CO{sub 2} adsorption of the best samples exhibited increases of ⁓10 and 70% in CO{sub 2} capture capacity at 30 and 100 °C, respectively.

  16. Watershed Controls on the Proper Scale of Economic Markets for Pollution Reduction

    Science.gov (United States)

    Rigby, J.; Doyle, M. W.; Yates, A.

    2010-12-01

    Markets for tradable discharge permits (TDPs) are an increasingly popular policy instrument for obtaining cost-effective nutrient reduction targets across watersheds. Such markets are also an emerging, dynamic coupling between economic institutions and stream hydrology/biogeochemistry as trading markets become explicit determinants for the spatial distribution of stream nutrient loads. A central problem in any environmental market program is setting the size of the market, as there are distinct trade-offs for large versus small markets. While the overall cost-effectiveness of permit trading increases with the size of the market, the potential for localized and highly damaging nutrient concentrations, or “hotspots”, also increases. Smaller market size reduces the potential for hot spots by dispersing the location of trades, but this may increase the net costs of water quality compliance significantly through both the restriction of possible trading partners and price manipulation by market participants. This project couples a microeconomic model for TDPs (based on possible configurations of mutually exclusive trading zones within the basin) with a semi-distributed water quality model to examine watershed controls on the configuration and scale of such markets. Our results show a wide variation in total annual cost of pollution abatement based on choice of market design -- often with large differences in cost between very similar configurations. This framework is also applied to a 10-member trading program among wastewater treatment plants in the Neuse River, NC, in order to assess (1) the optimum market design for the Upper Neuse basin and (2) how these costs compare with expected costs under alternative market structures (e.g., trading ratio system) and (3) the cost improvements over traditional command-and-control regulatory frameworks. We find that the optimal zone configuration is almost always a lower cost option when compared to a trading ratio scheme and

  17. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    Science.gov (United States)

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Differences in oxygen reduction catalysis of platinised acid treated Showa Denko carbon nanofibres

    DEFF Research Database (Denmark)

    Veltzé, Sune; Yli-Rantala, Elina; Borghei, Maryam;

    2011-01-01

    forms of the ECSA degradation: By agglomeration of the platinum crystallites, Rietveld ripening or indirectly by corrosion of the carbon support. Graphitised carbon nanostructures like carbon nanotubes (CNTs), carbon nanofibres (CNFs), etc. are proposed as carbon support substitutes to avoid carbon......The use of carbon as support material for platinum nano-crystallites in polymer electrolyte fuel cells (PEFC) is a common method for increasing the electrochemical specific surface area (ECSA) of platinum. During fuel cell operation, the conditions that catalysts are subjected to lead to various...... corrosion, as the nanostructures are thermally and chemically more durable. The presented work describes the effects on surface defect of acid treated Showa Denko vapour grown carbon fibres (VGCF®/VGCF-H®). A selection of carbon fibres have been platinised and the differences of the oxygen reduction...

  19. Gas flaring and resultant air pollution: A review focusing on black carbon.

    Science.gov (United States)

    Fawole, Olusegun G; Cai, X-M; MacKenzie, A R

    2016-09-01

    Gas flaring is a prominent source of VOCs, CO, CO2, SO2, PAH, NOX and soot (black carbon), all of which are important pollutants which interact, directly and indirectly, in the Earth's climatic processes. Globally, over 130 billion cubic metres of gas are flared annually. We review the contribution of gas flaring to air pollution on local, regional and global scales, with special emphasis on black carbon (BC, "soot"). The temporal and spatial characteristics of gas flaring distinguishes it from mobile combustion sources (transport), while the open-flame nature of gas flaring distinguishes it from industrial point-sources; the high temperature, flame control, and spatial compactness distinguishes gas flaring from both biomass burning and domestic fuel-use. All of these distinguishing factors influence the quantity and characteristics of BC production from gas flaring, so that it is important to consider this source separately in emissions inventories and environmental field studies. Estimate of the yield of pollutants from gas flaring have, to date, paid little or no attention to the emission of BC with the assumption often being made that flaring produces a smokeless flame. In gas flares, soot yield is known to depend on a number of factors, and there is a need to develop emission estimates and modelling frameworks that take these factors into consideration. Hence, emission inventories, especially of the soot yield from gas flaring should give adequate consideration to the variation of fuel gas composition, and to combustion characteristics, which are strong determinants of the nature and quantity of pollutants emitted. The buoyant nature of gas flaring plume, often at temperatures in the range of 2000 K, coupled with the height of the stack enables some of the pollutants to escape further into the free troposphere aiding their long-range transport, which is often not well-captured by model studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    Science.gov (United States)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar

  1. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  2. Seasonal trends in black carbon properties and co-pollutants in Mexico City

    Science.gov (United States)

    Retama, A.; Baumgardner, D.; Raga, G. B.; McMeeking, G. R.; Walker, J. W.

    2015-04-01

    The Mexico City Metropolitan Area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e. ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown little response to mitigation strategies that have been in place for more than two decades. For the first time, extended measurements have been made of equivalent black carbon (eBC), derived from light absorption measurements made with a Photoacoustic Extinctiometer (PAX), over a 13 month period from March 2013 through March 2014. The daily trends in workday (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in that region: rainy, cold-dry and warm-dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, Pproduction of ozone by photochemical reactions. A significant "weekend effect" was also identified, particularly the decrease in BC due to fewer large transport vehicles that are fueled by diesel that produces a large fraction of the BC emissions. The other co-pollutant concentrations are also significantly less on weekends except for O3 that shows no change in maximum values from workday to Sunday. As has been noted in previous studies, this lack of change is a result of the balancing effects of lower precursor gases, i.e. VOCs, offset by lower NOx that is an O3 inhibitor. A comparison of average, maximum values of eBC measured during the one year period of the current study with maximum values measured in short field campaigns in 2000 and 2006 show that there has been no significant change in the eBC emissions over a 14 year period. This suggests that the current pollution mitigation strategy will need to

  3. Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway.

    Science.gov (United States)

    Reboul, Cyril; Boissière, Julien; André, Lucas; Meyer, Gregory; Bideaux, Patrice; Fouret, Gilles; Feillet-Coudray, Christine; Obert, Philippe; Lacampagne, Alain; Thireau, Jérôme; Cazorla, Olivier; Richard, Sylvain

    2017-01-03

    Risk of hospital readmission and cardiac mortality increases with atmospheric pollution for patients with heart failure. The underlying mechanisms are unclear. Carbon monoxide (CO) a ubiquitous environmental pollutant could be involved. We explored the effect of daily exposure of CO relevant to urban pollution on post-myocardial infarcted animals. Rats with ischemic heart failure were exposed 4 weeks to daily peaks of CO mimicking urban exposure or to standard filtered air. CO exposure worsened cardiac contractile dysfunction evaluated by echocardiography and at the cardiomyocyte level. In line with clinical reports, the animals exposed to CO also exhibited a severe arrhythmogenic phenotype with numerous sustained ventricular tachycardias as monitored by surface telemetric electrocardiograms. CO did not affect cardiac β-adrenergic responsiveness. Instead, mitochondrial dysfunction was exacerbated leading to additional oxidative stress and Ca(2+) cycling alterations. This was reversed following acute antioxidant treatment of cardiomyocytes with N-acetylcysteine confirming involvement of CO-induced oxidative stress. Exposure to daily peaks of CO pollution aggravated cardiac dysfunction in rats with ischemic heart failure by specifically targeting mitochondria and generating ROS-dependent alterations. This pathway may contribute to the high sensibility and vulnerability of individuals with cardiac disease to environmental outdoor air quality.

  4. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R.; Collins, Donald R.; Molina, Mario J.

    2016-04-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  5. Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway

    Science.gov (United States)

    Reboul, Cyril; Boissière, Julien; André, Lucas; Meyer, Gregory; Bideaux, Patrice; Fouret, Gilles; Feillet-Coudray, Christine; Obert, Philippe; Lacampagne, Alain; Thireau, Jérôme; Cazorla, Olivier; Richard, Sylvain

    2017-01-01

    Risk of hospital readmission and cardiac mortality increases with atmospheric pollution for patients with heart failure. The underlying mechanisms are unclear. Carbon monoxide (CO) a ubiquitous environmental pollutant could be involved. We explored the effect of daily exposure of CO relevant to urban pollution on post-myocardial infarcted animals. Rats with ischemic heart failure were exposed 4 weeks to daily peaks of CO mimicking urban exposure or to standard filtered air. CO exposure worsened cardiac contractile dysfunction evaluated by echocardiography and at the cardiomyocyte level. In line with clinical reports, the animals exposed to CO also exhibited a severe arrhythmogenic phenotype with numerous sustained ventricular tachycardias as monitored by surface telemetric electrocardiograms. CO did not affect cardiac β–adrenergic responsiveness. Instead, mitochondrial dysfunction was exacerbated leading to additional oxidative stress and Ca2+ cycling alterations. This was reversed following acute antioxidant treatment of cardiomyocytes with N-acetylcysteine confirming involvement of CO-induced oxidative stress. Exposure to daily peaks of CO pollution aggravated cardiac dysfunction in rats with ischemic heart failure by specifically targeting mitochondria and generating ROS-dependent alterations. This pathway may contribute to the high sensibility and vulnerability of individuals with cardiac disease to environmental outdoor air quality. PMID:28045070

  6. Advanced airflow distribution methods for reduction of personal exposure to indoor pollutants

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kosonen, Risto; Melikov, Arsen

    2016-01-01

    The main objective of this study is to recognize possible airflow distribution methods to protect the occupants from exposure to various indoor pollutants. The fact of the increasing exposure of occupants to various indoor pollutants shows that there is an urgent need to develop advanced airflow ...... distribution methods to reduce indoor exposure to various indoor pollutants. This article presents some of the latest development of advanced airflow distribution methods to reduce indoor exposure in various types of buildings.......The main objective of this study is to recognize possible airflow distribution methods to protect the occupants from exposure to various indoor pollutants. The fact of the increasing exposure of occupants to various indoor pollutants shows that there is an urgent need to develop advanced airflow...

  7. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  8. an evaluation of china's carbon emission reduction policies on ...

    African Journals Online (AJOL)

    Keywords: Urban transport system, greenhouse gas emission reduction, .... Analysis Framework. In particular .... The actual fuel efficiency data of every country or region ..... (c) promoting the application of intelligent transportation system (ITS).

  9. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  10. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide

    DEFF Research Database (Denmark)

    Xu, Junyuan; Kan, Yuhe; Huang, Rui;

    2016-01-01

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst’s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90% current efficiency...... for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2C). The initial...... reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction.The doped nitrogen atoms stabilize the radical anion,thereby lowering the initial reduction barrier and improving the intrinsic activity. The most...

  11. Facile synthesis of sewage sludge-derived in-situ multi-doped nanoporous carbon material for electrocatalytic oxygen reduction

    Science.gov (United States)

    Yuan, Shi-Jie; Dai, Xiao-Hu

    2016-06-01

    Developing efficient, low-cost, and stable carbon-based catalysts for oxygen reduction reaction (ORR) to replace the expensive platinum-based electrocatalysts remains a major challenge that hamper the practical application of fuel cells. Here, we report that N, Fe, and S co-doped nanoporous carbon material, derived via a facile one-step pyrolysis of sewage sludge, the major byproduct of wastewater treatment, can serve as an effective electrocatalyst for ORR. Except for the comparable catalytic activity with commercial 20% Pt/C via a nearly four-electron transfer pathway in both alkaline and acid medium, the as-synthesized co-doped electrocatalyst also exhibits excellent methanol crossover resistance and outstanding long-term operation stability. The organic compounds in sewage sludge act as the carbon source and the in-situ N and S dopant in the fabrication, while the inorganic compounds serve as the in-built template and the in-situ Fe dopant. Our protocol demonstrates a new approach in the economic and eco-friendly benign reuse of sewage sludge, and also provides a straightforward route for synthesizing excellent carbon-based electrocatalysts as promising candidates for ORR directly from a type of waste/pollution.

  12. Personal carbon trading: a potential "stealth intervention" for obesity reduction?

    Science.gov (United States)

    Egger, Garry

    2007-08-06

    The obesity epidemic and global warming are linked through energy use. A personal carbon trading scheme aimed at reducing fossil fuel usage could act as a "stealth intervention" for reducing obesity by increasing personal energy use. Such a scheme would complement a corporate "cap and trade" system for carbon emissions, which should increase the relative price of processed, energy-dense foods. The scheme would work by reducing global carbon emissions to a sustainable level (contraction), while offering potential for trade of emission rights between frugal and profligate users of non-renewable energy (convergence). A key goal would be changed attitudes to conspicuous (and obesogenic) consumption. Adoption of the scheme would make healthy choices the easy choice.

  13. Nanostructured carbon electrodes for laccase-catalyzed oxygen reduction without added mediators

    Energy Technology Data Exchange (ETDEWEB)

    Stolarczyk, Krzysztof; Nazaruk, Ewa [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Rogalski, Jerzy [Department of Biochemistry, Maria Curie Sklodowska University, Sklodowskiej Sq 3, Lublin 20-031 (Poland); Bilewicz, Renata [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)], E-mail: bilewicz@chem.uw.edu.pl

    2008-04-20

    Reduction of dioxygen catalyzed by laccase was studied at carbon electrodes without any added mediators. On bare glassy carbon electrode (GCE) the catalytic reduction did not take place. However, when the same substrate was decorated with carbon nanotubes or carbon microcrystals the dioxygen reduction started at 0.6 V versus Ag/AgCl, which is close to the formal potential of the laccase used. Four different matrices: lecithin, hydrophobin, Nafion and lipid liquid-crystalline cubic phase were employed for hosting fungal laccase from Cerrena unicolor. The carbon nanotubes and nanoparticles present on the electrode provided electrical connectivity between the electrode and the enzyme active sites. Direct electrochemistry of the enzyme itself was observed in deoxygenated solutions and its catalytic activity towards dioxygen reduction was demonstrated. The stabilities of the hosted enzymes, the reduction potentials and ratios of catalytic to background currents were compared. The boron-doped diamond (BDD) electrodes prepolarized to high anodic potentials exhibited behavior similar to that of nanotube covered GCE pointing to the formation of nanostructures during the anodic pretreatment. BDD is a promising substrate in terms of potential of dioxygen reduction, however the catalytic current densities are not large enough for practical applications, therefore as shown in this paper, it should be additionally decorated with carbon particles being in direct contact with the electrode surface.

  14. Implications of Carbon and Energy Taxes as Instrument for Environmental Emission Reduction in China's Power Sector

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With the Integrated Resources Planning Assessment (IRPA) model, implications of carbon tax and energy tax on technological selection, power price and environmental pollution in power industry of China were studied. This model is a least-cost generation planning model, with which the technological composition, electricity price and pollutant emission can be calculated by comparing the cost changes for different power generation options due to carbon and energy taxes. The primary simulation result shows that the levy of US$ 25/tC carbon tax or US$ 0.5/Mbtu energy tax can improve the power generation structure and greatly reduce CO2, SO2 and NOx emissions in power industry. Several advanced power generation technologies such as IGCC and NGCC are of competitive cost, and should be given priority in future planning of power industry.

  15. Landscape planning for agricultural non-point source pollution reduction. II. Balancing watershed size, number of watersheds, and implementation effort.

    Science.gov (United States)

    Maxted, Jeffrey T; Diebel, Matthew W; Vander Zanden, M Jake

    2009-01-01

    Agricultural non-point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs--i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds--have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km(2); and optimal expenditure ranged from $21,000 to $35,000/km(2). The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km(2). These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.

  16. The effect of carbon on phosphate reduction. [in lunar soil and breccia metal particles

    Science.gov (United States)

    Friel, J. J.; Goldstein, J. I.; Romig, A. D., Jr.

    1977-01-01

    Several experiments were performed in order to evaluate the effect of carbon on phosphate reduction in synthetic systems. It was attempted to simulate in the experiments conditions occurring during lunar impact processes, but without shock pressure. Temperature, oxygen fugacity, and bulk chemistry were evaluated separately in order to determine the conditions which are suitable for carbon reduction. It appears on the basis of the results of the reported investigation that carbon can be an effective reducing agent during reheating events such as those encountered by lunar soils and breccias. Phosphate reduction may be viewed as a two-step process in which carbon is mobilized as CO during heating and preferentially dissolved in the metal phase. It then acts as a reducing agent on cooling. Gas phase transport and diffusion of carbon in metal are sufficiently rapid to allow uniform carbon distribution both within and between metal grains. The availability of metal from meteorites and carbon from the solar wind is probably sufficient to make reduction by carbon a significant process on the lunar surface.

  17. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    Science.gov (United States)

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  18. Carbon monoxide-induced reduction and healing of graphene oxide

    NARCIS (Netherlands)

    Narayanan, B.; Weeks, S. L.; Jariwala, B. N.; Macco, B.; Weber, J.; Rathi, S. J.; M. C. M. van de Sanden,; Sutter, P.; Agarwal, S.; Ciobanu, C. V.

    2013-01-01

    Graphene oxide holds promise as a carbon-based nanomaterial that can be produced inexpensively in large quantities. However, its structural and electrical properties remain far from those of the graphene sheets obtained by mechanical exfoliation or by chemical vapor deposition unless efficient reduc

  19. Carbon monoxide-induced reduction and healing of graphene oxide

    NARCIS (Netherlands)

    Narayanan, B.; Weeks, S. L.; Jariwala, B. N.; Macco, B.; Weber, J.; Rathi, S. J.; M. C. M. van de Sanden,; Sutter, P.; Agarwal, S.; Ciobanu, C. V.

    2013-01-01

    Graphene oxide holds promise as a carbon-based nanomaterial that can be produced inexpensively in large quantities. However, its structural and electrical properties remain far from those of the graphene sheets obtained by mechanical exfoliation or by chemical vapor deposition unless efficient reduc

  20. Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City

    Science.gov (United States)

    Retama, A.; Baumgardner, D.; Raga, G. B.; McMeeking, G. R.; Walker, J. W.

    2015-08-01

    The Mexico City metropolitan area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short-lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e., ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown a less positive response to mitigation strategies that have been in place for almost 3 decades. For the first time, extended measurements of equivalent black carbon (eBC), derived from light absorption measurements, have been made using a Photoacoustic Extinctiometer (PAX) over a 13 month period from March 2013 through March 2014. The daily trends in workdays (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in the MCMA: rainy, cold and dry and warm and dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, P production of ozone by photochemical reactions and the heavy, almost daily rain that removes particulate matter. A significant "weekend effect" was also identified, particularly the decrease in BC due to fewer large transport vehicles that are fueled by diesel, which produces a large fraction of the BC. The other co-pollutant concentrations are also significantly less on weekends except for O3 that shows no change in maximum values from workdays to Sundays. This lack of change is a result of the balancing effects of lower precursor gases, i.e., VOCs, offset by lower concentrations of NOx, that is an O3 inhibitor. A comparison of the average maximum value of eBC measured during the 1 year period of the current study, with maximum values measured in shorter field campaigns in 2000 and 2006, shows no significant change in the eBC emissions over a 14 year period. This suggests that new methods may need

  1. Carbon dioxide reduction in housing: experiences in urban renewal projects in the Netherlands

    NARCIS (Netherlands)

    Waals, F.M. van der; Vermeulen, W.J.V.; Glasbergen, P.

    2003-01-01

    It is increasingly being recognised that the housing sector can contribute to reductions in the levels of carbon dioxide (CO2 ). The renewal of existing residential areas offers opportunities to reduce CO2 emissions. However, technical options for CO2-reduction, such as insulation, solar energy,

  2. Carbonic Anhydrase as Pollution Biomarker: An Ancient Enzyme with a New Use

    Directory of Open Access Journals (Sweden)

    Trifone Schettino

    2012-11-01

    Full Text Available The measurement of cellular and sub-cellular responses to chemical contaminants (referred to as biomarkers in living organisms represents a recent tool in environmental monitoring. The review focuses on carbonic anhydrase, a ubiquitous metalloenzyme which plays key roles in a wide variety of physiological processes involving CO2 and HCO3−. In the last decade a number of studies have demonstrated the sensitivity of this enzyme to pollutants such as heavy metals and organic chemicals in both humans and wildlife. The review analyses these studies and discusses the potentiality of this enzyme as novel biomarker in environmental monitoring and assessment.

  3. Kinetics of Reduction of MnO in Molten Slag with Carbon Undersaturated Liquid Iron

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The reduction of MnO in molten slag with carbon undersaturated iron was studied. It was found that the process is affected by the carbon content of molten metal and the temperature. The higher the carbon content and the temperature, the faster both the reduction and the emerging of the hump on curve of ωFeO, the larger the difference betwe en ωFeO, max and ωFeO, e. The phenomena were explained with three-step reaction model.

  4. Reduced mass absorption cross section of black carbon under an extremely polluted condition in southern suburb of Beijing, China

    Science.gov (United States)

    Wang, J.; Wang, S.; Hua, Y.; Jiang, J.; Zhao, B.; Xing, J.; Jiang, S.; Cai, R.; Hao, J.

    2015-12-01

    Black carbon (BC), as one of the most important climate-warming agent, has been the focus of extensive studies in recent years. Mass absorption cross section (MAC) is a key parameter to assess the radiative forcing by linking the mass concentration with the radiation effect. In this study, we conducted a two-month field campaign in Beijing, the capital city of China, in a October and November, a period that severe PM2.5 pollution occurred. PM2.5 offline samples were collected daily onto quartz fiber filters by a Partisol 2300 Speciation Sampler. Size-segregated aerosol samples of the size ranged from 0.056 - 10 µm with 11 bins were collected onto quartz fiber filters by a cascade impactor developed by National Chiao Tung University (NCTU). A DRI Model 2001 thermal/optical carbon analyzer were used to analyze the samples. The MAC of BC is measured by a thermal-optical carbon analyzer. In contrast to previous studies, we found that after "shadow effect" has been corrected, the MAC is reduced from 14 m2/g to 5 m2/g with the increase of BC concentrations. There was no significant correlation between MAC with secondary inorganic aerosols. Such unexpected reduction in MAC of BC is possibly associated with the microphysical property of BC modulated under serious pollution condition. The study of size-segregated species concentrations shows that the size distribution of BC is unimodal, with the peak around 0.56-1.8 µm. The results also show the proportion of BC larger than 0.56 µm is significant increased. Additionally, "soot superaggregate", as distinct from conventional sub-micron aggregates, was found in the bins of BC with size ranged from 1 to1.8 µm. Such high carbon aerosol proportion and large BC size distribution suggests that emissions from residential biomass burning is dominant during this episode. This study suggests that the optical property for BC from different emission sectors should be considered in the estimation of radiative forcing.

  5. Preventing industrial pollution at its source: the final report of the Michigan source reduction initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report describes a collaborative effort between NRDC, Dow Chemical, and Michigan Environmental Groups. The effort resulted in the identification and implementation of 17 pollution prevention projects that reduced substantial quantities of wastes and emissions and saved Dow considerable money.

  6. A Modeling Methodology to Support Evaluation Public Health Impacts on Air Pollution Reduction Programs

    Science.gov (United States)

    Environmental public health protection requires a good understanding of types and locations of pollutant emissions of health concern and their relationship to environmental public health indicators. Therefore, it is necessary to develop the methodologies, data sources, and tools...

  7. Novel Catalytic Mechanisms For The Chemical Reduction Of Carbon Dioxide To Energy-Dense Liquids

    Science.gov (United States)

    2016-12-14

    First International Conference on Solar Fuels (ISF-1), Uppsala, Sweden , May 1, 2015, (plenary lecture). C. P. Kubiak, “Carbon dioxide reduction...Reduction of CO2” University of Uppsala, Uppsala, Sweden , August 26, 2011. C. P. Kubiak “Electrochemical and Photoelectrochemical Reduction of CO2” (3...of water and chemical reactions on surfaces; early experience from LCLS” Maxlab user meeting, Lund, Sweden (2014). A. Nilsson, “Fundamental

  8. Landscape planning for agricultural nonpoint source pollution reduction I: a geographical allocation framework.

    Science.gov (United States)

    Diebel, Matthew W; Maxted, Jeffrey T; Nowak, Peter J; Vander Zanden, M Jake

    2008-11-01

    Agricultural nonpoint source pollution remains a persistent environmental problem, despite the large amount of money that has been spent on its abatement. At local scales, agricultural best management practices (BMPs) have been shown to be effective at reducing nutrient and sediment inputs to surface waters. However, these effects have rarely been found to act in concert to produce measurable, broad-scale improvements in water quality. We investigated potential causes for this failure through an effort to develop recommendations for the use of riparian buffers in addressing nonpoint source pollution in Wisconsin. We used frequency distributions of phosphorus pollution at two spatial scales (watershed and field), along with typical stream phosphorus (P) concentration variability, to simulate benefit/cost curves for four approaches to geographically allocating conservation effort. The approaches differ in two ways: (1) whether effort is aggregated within certain watersheds or distributed without regard to watershed boundaries (dispersed), and (2) whether effort is targeted toward the most highly P-polluting fields or is distributed randomly with regard to field-scale P pollution levels. In realistic implementation scenarios, the aggregated and targeted approach most efficiently improves water quality. For example, with effort on only 10% of a model landscape, 26% of the total P load is retained and 25% of watersheds significantly improve. Our results indicate that agricultural conservation can be more efficient if it accounts for the uneven spatial distribution of potential pollution sources and the cumulative aspects of environmental benefits.

  9. Study on Behavior of Carbon Reduction of Monazite Concentrate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X-ray diffraction , electron probe, TG method and chemical analysis. The results show that rare earth phosphates in monazite concentrate can be reduced to their oxides, among them the decomposition processes of cerium phosphate are not in step with lanthanum phosphate, neodymium phosphate and so on, and the phosphorus was volatilized into air in simple form.

  10. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Ruibin Zhang

    2014-09-01

    Full Text Available In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  11. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    Science.gov (United States)

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  12. The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China

    Directory of Open Access Journals (Sweden)

    Baochen Yang

    2017-01-01

    Full Text Available In order to realize the national carbon intensity reduction target, China has decided to establish a unified national carbon emissions trading market in 2017. At the initial stage, eight industrial sectors will be covered in the carbon market and the other industrial sectors will be included gradually. The aim of this paper is to study the issue of how to allocate the carbon emissions quotas among different industrial sectors fairly and effectively. We try to provide theoretical support for how to determine the coverage scope and access order of the carbon market. In this paper, we construct a comprehensive reduction index based on indicators of equity and efficiency principle. We adopt entropy method to get the objective weights of the three indicators. Then, an allocation model is developed to determine each sector’s reduction target for the year of 2020. The result shows that our allocation scheme based on entropy method is more reasonable, and our allocation method will promote the equity of carbon quotas allocation and the efficiency of carbon emissions. With consideration of China’s current economic situation and industrial background, we discuss some policy implications regarding the construction of carbon market.

  13. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    Science.gov (United States)

    Guo, Qia; Dai, Xiaohu

    2017-08-30

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    Science.gov (United States)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems

  15. Enzyme-catalyzed Sequential Reduction of Carbon Dioxide to Formaldehyde☆

    Institute of Scientific and Technical Information of China (English)

    Wenfang Liu; Yanhui Hou; Benxiang Hou; Zhiping Zhao

    2014-01-01

    It has been reported that enzymatic-catalyzed reduction of CO2 is feasible. Most of literature focuses on the con-version of CO2 to methanol. Herein we put emphasis on the sequential conversion of CO2 to formaldehyde and its single reactions. It appears that CO2 pressure plays a critical role and higher pressure is greatly helpful to form more HCOOH as well as HCHO. The reverse reaction became severe in the reduction of CO2 to formaldehyde after 10 h, decreasing HCHO production. Increasing the mass ratio of formate dehydrogenase to formaldehyde dehydrogenase could promote the sequential reaction. At concentrations of nicotinamide adenine dinucleotide lower than 100 mmol·L−1, the reduction of CO2 was accelerated by increasing cofactor concentration. The opti-mum pH value and concentration of phosphate buffer were determined as 6.0 and 0.05 mol·L−1, respectively, for the overall reaction. It seems that thermodynamic factor such as pH is restrictive to the sequential reaction due to distinct divergence in appropriate pH range between its single reactions.

  16. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution.

    Science.gov (United States)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli; Zhang, Zhaohong; Yuan, Tianxin; Tian, Fangyuan; Dionysiou, Dionysios D

    2016-06-05

    In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10-20nm, 20-40nm, and 40-60nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10-20nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10-20nm CNTs within 7.0min irradiation when 25mL MO solution (25mg/L), 1.2g/L catalyst dose, 450W, 2450MHz, and pH=6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10-20nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168min(-1), respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  17. Biotechnology as an alternative for carbon disulfide treatment in air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, N.; Gallastegi, G.; Barona, A.; Gurtubay, L.; Elias, A. [Univ. of the Basque Country, Bilbao (Spain). Dept. of Chemical and Environmental Engineering; Gabriel Ibarra-Berastegi [Univ. of the Basque Country, Bilbao (Spain). Dept. of Nuclear Engineering and Fluid Mechanics

    2010-07-01

    The industry demand for CS{sub 2} has changed considerably over the last 2 decades and is expected to increase. This paper discussed the technical and financial feasibility of eliminating carbon disulphide (CS{sub 2}) from exhaust gases use biotechnology. The global emissions of this hazardous air pollutant are estimated to exceed 250,000 tonnes per year. However, the emission range depends on the source. The conventional technologies for treating CS{sub 2} emissions include thermal oxidation, thermo-catalytic processes or incineration. However, these technologies have drawbacks, such as high energy consumption and the generation of secondary by-products that require additional treatment. Recently, biotechnology was touted as an affordable, effective, and ecologically sound alternative to treat waste gases containing CS{sub 2}. Biological technologies based on microorganisms to biodegrade air pollutants overcome many of the disadvantages of conventional techniques and are particularly useful for the removal of relatively low concentrations of pollutants. The main properties, sources, and uses of CS{sub 2} were summarized in this paper along with alternative biotreatments for CS{sub 2}. Several applications of the technical and economical feasibility of biofilters and biotrickling filters were presented. Further research is required before their widespread industrial application. 72 refs., 3 tabs.

  18. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California.

    Science.gov (United States)

    Zhang, Hongliang; Magara-Gomez, Kento T; Olson, Michael R; Okuda, Tomoaki; Walz, Kenneth A; Schauer, James J; Kleeman, Michael J

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ±5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  19. Carbon-to-metal bonds: Electrochemical reduction of 2-butenenitrile

    Science.gov (United States)

    Deniau, Guy; Azoulay, Laurent; Jégou, Pascale; Le Chevallier, Gilles; Palacin, Serge

    2006-02-01

    2-Butenenitrile belongs to the large family of electron deficient vinylic monomers that usually form 100 to 500 nm thick grafted polymer films by electroreduction. However, 2-butenenitrile exhibits a slightly acidic hydrogen atom on its CH 3 group that inhibits the anionic polymerization usually observed with 'classical' organic monomers such as its isomer methacrylonitrile. 2-Butenenitrile thus gives nanometer thick grafted film by electroreduction, essentially composed of a mixture of monomers, dimers and trimers and in the same way, allows an easy observation by XPS of the chemical signature of the grafting, i.e. the carbon-to-nickel bond, observed at 283.6 eV.

  20. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

    NARCIS (Netherlands)

    Shen, J.; Kortlever, R.; Kas, Recep; Mul, Guido; Koper, M.T.M.

    2015-01-01

    The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low

  1. Triboelectric Nanogenerator Powered Electrochemical Degradation of Organic Pollutant Using Pt-Free Carbon Materials.

    Science.gov (United States)

    Gao, Shuyan; Chen, Ye; Su, Jingzhen; Wang, Miao; Wei, Xianjun; Jiang, Tao; Wang, Zhong Lin

    2017-04-25

    Carbon electrode materials are fabricated from bean curd to replace costly Pt-based electrodes to degrade methyl red (MR) as self-driven by a multilayer linkage triboelectric nanogenerator (ML-TENG). With the sponge as the buffer layer and precharge injection, the peak open-circuit voltage, Voc, short-circuit current, Isc, and maximum power density of the ML-TENG can reach and remain stable at 1300 V, 1.2 mA, and 7.4 W m(-2) (load resistance = 500 KΩ), respectively. Using the electric power generated by such an updated TENG, highly toxic and carcinogenic MR can be indirectly degraded to CO2 through an oxidation process induced by active chlorine produced at the as-obtained carbon-based electrode interface. Such an electrochemical degradation mechanism is proposed based on the cyclic voltammogram, gas chromatograph-mass spectrometer, and mass spectrometer. With compelling features of the TENG and carbon materials, such as sustainable energy, high and stable output performance, cost savings, and high degradation efficiency, this work pioneers the marriage of the TENG with carbon-based materials to self-power electrochemical degradation of organic pollutants for environmental protection.

  2. Evaluating Reduction of Sediment Pollution as a Strategy for Conservation of Coral Reef in High C02 World

    Science.gov (United States)

    Maina, J. M.; de Moel, H.; Mora, C.; Ward, P.; Watson, J.

    2014-12-01

    One of the key strategies for coral reef conservation in a high CO2 world is reduction of sediment and nutrient pollution. However, the reduction of sediment is a complicated planning issue as a result of the competing land uses from the demands to satisfy food production needs and from economic development, among others. Moreover, despite the significance of sedimentation as a threat to coral reefs, historical baseline and future estimates of sediment discharge on coral reefs remains poorly quantified. Therefore, the effectiveness of this strategy hinges upon (i) identifying the future sediment discharge on coral reefs relative to historical baseline, and (ii) on identifying spatially where sediment reduction actions are urgently needed and where they are likely to succeed. We provide this understanding by simulating sediment dynamics for historical and future time scales using models of land use and climate, for coastal watersheds adjacent coral reefs where they are found globally.

  3. Reduction of work hardening rate in low-carbon steels

    Science.gov (United States)

    Yalamanchili, Bhaskar Rao

    Low carbon grades of steel rods are used to produce finished products such as fine wire, coat hangers, staples, and roofing nails. These products are subject to ductility failures during production due to excessively high work hardening rates during wire drawing. The high work hardening rates are attributed to the presence of residuals, free nitrogen, or combinations thereof. This research concludes that the most cost-effective way to reduce the work hardening rate during wire drawing is to combine boron with nitrogen to form boron nitride, and thus reducing its work hardening contribution. The results of this study also conclude the following: (1) Boron/Nitrogen ratio is the more significant factor than rod tensile strength, which affects work hardening rate. Higher ratio is better in the 0.79 to 1.19 range. (2) Maintaining this narrow B/N range requires precise process control. (3) Process conditions such as dissolved oxygen (Steel Texas (North Star) benefited from this research by being able to provide a competitive edge in both quality and cost of its low carbon boron grades thus making North Star a preferred supplier of wire rod for these products.

  4. Reviews on current carbon emission reduction technologies and projects and their feasibilities on ships

    Science.gov (United States)

    Wang, Haibin; Zhou, Peilin; Wang, Zhongcheng

    2017-06-01

    Concern about global climate change is growing, and many projects and researchers are committed to reducing greenhouse gases from all possible sources. International Maritime (IMO) has set a target of 20% CO2 reduction from shipping by 2020 and also presented a series of carbon emission reduction methods, which are known as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operation Indicator (EEOI). Reviews on carbon emission reduction from all industries indicate that, Carbon Capture and Storage (CCS) is an excellent solution to global warming. In this paper, a comprehensive literature review of EEDI and EEOI and CCS is conducted and involves reviewing current policies, introducing common technologies, and considering their feasibilities for marine activities, mainly shipping. Current projects are also presented in this paper, thereby illustrating that carbon emission reduction has been the subject of attention from all over the world. Two case ship studies indicate the economic feasibility of carbon emission reduction and provide a guide for CCS system application and practical installation on ships.

  5. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli [School of Environment Science, Liaoning University, Shenyang 110036 (China); Zhang, Zhaohong, E-mail: lnuhjhx@163.com [School of Environment Science, Liaoning University, Shenyang 110036 (China); Yuan, Tianxin; Tian, Fangyuan [School of Environment Science, Liaoning University, Shenyang 110036 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-06-05

    Highlights: • Microwave-induced CNTs-based catalytic degradation technology is developed. • Microwave catalytic activities of CNTs with different diameters are compared. • Organic pollutants with different structure can be degraded in MW/CNTs system. • The 10–20 nm CNTs shows the higher catalytic activity under MW irradiation. - Abstract: In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10–20 nm, 20–40 nm, and 40–60 nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10–20 nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10–20 nm CNTs within 7.0 min irradiation when 25 mL MO solution (25 mg/L), 1.2 g/L catalyst dose, 450 W, 2450 MHz, and pH = 6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10–20 nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168 min{sup −1}, respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  6. Solar Energy as an Alternative to Energy Saving and Pollutant Emissions Reduction

    Directory of Open Access Journals (Sweden)

    Arina Negoițescu

    2016-10-01

    Full Text Available In the paper is analyzed thermal solar systems efficiency from the point of view of energy savings and pollutant emissions concentrations exhausted during these installations operation. For this purpose were taking into account four versions of solar panel systems combined with different types of conventional heating sources, for which were simulated the operation conditions. As a result of the simulation, there were obtained the values of energy savings and pollutant emissions during the four systems operation. By analyzing these values, the combined thermal system optimum solution was selected.

  7. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Jose, J.; Giridhar, R.; Anas, A.; LokaBharathi, P.A.; Nair, S.

    enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning....

  8. Viability of LPG use in low-power outboard engines for reduction in consumption and pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Murillo, S.; Miguez, J.L.; Porteiro, J. [Universidad de Vigo, E.T.S. Ingenieros Industriales, Vigo (Spain); Hernandez, J.J. [Universidad de Castilla-La Mancha, E.T.S. Ingenieros Industriales, Ciudad Real (Spain); Lopez-Gonzalez, L.M. [Universidad de La Rioja, Dept. de Ingenieria Mecanica, Logrono (Spain)

    2003-07-01

    This study presents the viability of the use of liquefied petroleum gases (LPG) dosage systems in order to solve the fuel supply in four-stroke outboard engines in compliance with regulations concerning emissions of immediate application pollutants. Results obtained show an important decrease in specific fuel consumption (nearly 20%) provoking a small power loss (about 5%), with an extra saving when making use of bottled fuel, which does not suffer spills in the bunkers and maintenance operations. Laboratory tests have been carried out on 8 and 15 HP Yamaha outboard engines, obtaining reductions in pollutants (CO, HC and NO{sub x}) of 60% and of 95% for each power, respectively. These trials have been contrasted with tests carried out in the Vigo estuary and the river Milno waterways, both located in the South of Galicia (Spain). (Author)

  9. Innovative Building Material - Reduction of Air Pollution through TioCem®

    Science.gov (United States)

    Bolte, G.

    In many European cities air quality is a massive problem. Besides the particulate matter, nitrogen oxides (NOX) and volatile organic compounds (VOC) are mainly responsible for the heavy pollution. Motivation to “do something” to protect the environment and climate is increasing constantly. Pollutants such as nitrogen oxides can be oxidized by means of photolysis. With the help of photocatalytic active particles this effect can be accelerated extensively. Photocatalytic active particles dispersed in the concrete turn it into an air pollutant reducing surface. Pollutants getting in contact with the concrete surface are decomposed or oxidized and therewith rendered harmless. This brand new technique is introduced into building industry with a new label “TX Active®“. A premium brand cement for the production of photo catalytically active concrete products - TX Active® products - is now available in the form of TioCem®. This cement can effectively contribute to air purification by using in numerous concrete components such as pavement, roof tiles, facade plates, concrete road surfaces, mortars etc.

  10. MIKADO: a decision support tool for pollution reduction in aluminium pressure die casting

    NARCIS (Netherlands)

    Neto, B.A.F.

    2007-01-01

    Industrial activities cause a variety of environmental problems. These are largely caused by emissions of air pollutants, the production of waste and depletion of natural resources. As a consequence, industrial managers face a complex problem when assessing the overall environmental pressure on the

  11. MIKADO: a decision support tool for pollution reduction in aluminium pressure die casting

    NARCIS (Netherlands)

    Neto, B.A.F.

    2007-01-01

    Industrial activities cause a variety of environmental problems. These are largely caused by emissions of air pollutants, the production of waste and depletion of natural resources. As a consequence, industrial managers face a complex problem when assessing the overall environmental pressure on the

  12. Reductions in emissions of local air pollutants and co-benefits of Chinese energy policy: a Shanghai case study

    Energy Technology Data Exchange (ETDEWEB)

    Changhong, Chen; Bingyan, Wang; Qingyan, Fu [Shanghai Academy of Environmental Sciences, Shanghai 200233 (China); Green, Collin [National Renewable Energy Laboratory, Washington, DC 20024 (United States); Streets, David G. [Argonne National Laboratory, DIS 900, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-04-15

    To better understand the reductions in local air pollution that will result from the implementation of current Chinese energy policy, as well as the co-benefit for greenhouse-gas emission reductions, a Shanghai case study was conducted. The MARKAL model was used to forecast energy consumption and emissions of local air pollutants under different energy policy scenarios and also to analyze the associated reductions in CO{sub 2} emissions. The results show that energy policies in Shanghai will significantly reduce SO{sub 2} and PM{sub 10} emissions and will also achieve the co-benefit of mitigating the increase of CO{sub 2} emissions. In energy policy scenarios, SO{sub 2} emissions during the period 2000-2020 will maintain the same level as in 2000; and the annual rate of increase of CO{sub 2} emissions will be reduced to 1.1-1.2%, compared with 2.7% under a business-as-usual scenario. The problem for the future will be NO{sub x} emissions, which are projected to increase by 60-70% by 2020, due to expansion of the transportation system. (author)

  13. Reductions in emissions of local air pollutants and co-benefits of Chinese energy policy: a Shanghai case study

    Energy Technology Data Exchange (ETDEWEB)

    Chen Changhong [Shanghai Academy of Environmental Sciences, Shanghai 200233 (China); Wang Bingyan [Shanghai Academy of Environmental Sciences, Shanghai 200233 (China); Fu Qingyan [Shanghai Academy of Environmental Sciences, Shanghai 200233 (China); Green, Collin [National Renewable Energy Laboratory, Washington, DC 20024 (United States); Streets, David G. [Argonne National Laboratory, DIS 900, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: dstreets@anl.gov

    2006-04-15

    To better understand the reductions in local air pollution that will result from the implementation of current Chinese energy policy, as well as the co-benefit for greenhouse-gas emission reductions, a Shanghai case study was conducted. The MARKAL model was used to forecast energy consumption and emissions of local air pollutants under different energy policy scenarios and also to analyze the associated reductions in CO{sub 2} emissions. The results show that energy policies in Shanghai will significantly reduce SO{sub 2} and PM{sub 1} emissions and will also achieve the co-benefit of mitigating the increase of CO{sub 2} emissions. In energy policy scenarios, SO{sub 2} emissions during the period 2000-2020 will maintain the same level as in 2000; and the annual rate of increase of CO{sub 2} emissions will be reduced to 1.1-1.2%, compared with 2.7% under a business-as-usual scenario. The problem for the future will be NO {sub x} emissions, which are projected to increase by 60-70% by 2020, due to expansion of the transportation system.

  14. Reductions in emissions of local air pollutants and co-benefits of Chinese energy policy: a Shanghai case study

    Energy Technology Data Exchange (ETDEWEB)

    Chen Changhong; Wang Bingyan; Fu Qingyan; Collin Green; David G. Streets [Shanghai Academy of Environmental Sciences, Shanghai (China)

    2006-04-15

    To better understand the reductions in local air pollution that will result from the implementation of current Chinese energy policy, as well as the co-benefit for greenhouse-gas emission reductions, a Shanghai case study was conducted. The MARKAL model was used to forecast energy consumption and emissions of local air pollutants under different energy policy scenarios and also to analyze the associated reductions in CO{sub 2} emissions. The results show that energy policies in Shanghai will significantly reduce SO{sub 2} and PM10 emissions and will also achieve the co-benefit of mitigating the increase of CO{sub 2} emissions. In energy policy scenarios, SO{sub 2} emissions during the period 2000-2020 will maintain the same level as in 2000; and the annual rate of increase of CO{sub 2} emissions will be reduced to 1.1-1.2%, compared with 2.7% under a business-as-usual scenario. The results presented are consistent with other modelling studies of China that have shown the intimate relationship between coal use and atmospheric emissions. The problem for the future will be NOx emissions, which are projected to increase by 60-70% by 2020, due to expansion of the transportation system. 21 refs., 5 figs., 6 tabs.

  15. Seasonal trends in black carbon properties and co-pollutants in Mexico City

    Directory of Open Access Journals (Sweden)

    A. Retama

    2015-04-01

    Full Text Available The Mexico City Metropolitan Area (MCMA is a region that continues to grow in population and vehicular traffic as well as being the largest source of short lived climate pollutants (SLCP in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e. ozone (O3 and carbon monoxide (CO, but particulate matter (PM2.5 and PM10 and black carbon (BC have shown little response to mitigation strategies that have been in place for more than two decades. For the first time, extended measurements have been made of equivalent black carbon (eBC, derived from light absorption measurements made with a Photoacoustic Extinctiometer (PAX, over a 13 month period from March 2013 through March 2014. The daily trends in workday (Monday through Saturday and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in that region: rainy, cold-dry and warm-dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, P2.5, CO, O3, and NOx were 8.8 to 13.1 μg m-3 (40%, 49 to 73 μg m-3 (40%, 2.5 to 3.8 ppm (40%, 73 to 100 ppb (30% and 144 to 252 ppb (53%, respectively. The primary factors that lead to these large changes between the wet and dry seasons are the accelerated vertical mixing of boundary layer and free tropospheric air by the formation of clouds that dilutes the concentration of the SLCPs and the decreased actinic flux that reduces the production of ozone by photochemical reactions. A significant "weekend effect" was also identified, particularly the decrease in BC due to fewer large transport vehicles that are fueled by diesel that produces a large fraction of the BC emissions. The other co-pollutant concentrations are also significantly less on weekends except for O3 that shows no change in maximum values from workday to Sunday. As has been noted in previous studies, this lack of change is a

  16. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongliang [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States); Magara-Gomez, Kento T. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Environmental Engineering Department, Pontificia Bolivariana University-Bucaramanga, Km 7 Vía Piedecuesta, Bucaramanga (Colombia); Olson, Michael R. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Okuda, Tomoaki [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Walz, Kenneth A. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Madison Area Technical College, 3550 Anderson Street, Madison, WI 53704 (United States); Schauer, James J. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Kleeman, Michael J., E-mail: mjkleeman@ucdavis.edu [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States)

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  17. Carbon dioxide sequestration by mineral carbonation. Feasibility of enhanced natural weathering as a CO2 emission reduction technology

    Energy Technology Data Exchange (ETDEWEB)

    Huijgen, W.J.J. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2007-07-01

    A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonates. Potential advantages of mineral CO2 sequestration compared to, e.g., geological CO2 storage include (1) the permanent and inherently safe sequestration of CO2, due to the thermodynamic stability of the carbonate product formed and (2) the vast potential sequestration capacity, because of the widespread and abundant occurrence of suitable feedstock. In addition, carbonation is an exothermic process, which potentially limits the overall energy consumption and costs of CO2 emission reduction. However, weathering processes are slow, with timescales at natural conditions of thousands to millions of years. For industrial implementation, a reduction of the reaction time to the order of minutes has to be achieved by developing alternative process routes. The aim of this thesis is an investigation of the technical, energetic, and economic feasibility of CO2 sequestration by mineral carbonation. In Chapter 1 the literature published on CO2 sequestration by mineral carbonation is reviewed. Among the potentially suitable mineral feedstock for mineral CO2 sequestration, Ca-silicates, more particularly wollastonite (CaSiO3), a mineral ore, and steel slag, an industrial alkaline solid residue, are selected for further research. Alkaline Ca-rich residues seem particularly promising, since these materials are inexpensive and available near large industrial point sources of CO2. In addition, residues tend to react relatively rapidly with CO2 due to their (geo)chemical instability. Various process routes have been proposed for mineral carbonation, which often include a pre-treatment of the solid feedstock (e.g., size reduction and

  18. Reduction of Carbon Dioxide by a Molybdenum-Containing Formate Dehydrogenase: A Kinetic and Mechanistic Study.

    Science.gov (United States)

    Maia, Luisa B; Fonseca, Luis; Moura, Isabel; Moura, José J G

    2016-07-20

    Carbon dioxide accumulation is a major concern for the ecosystems, but its abundance and low cost make it an interesting source for the production of chemical feedstocks and fuels. However, the thermodynamic and kinetic stability of the carbon dioxide molecule makes its activation a challenging task. Studying the chemistry used by nature to functionalize carbon dioxide should be helpful for the development of new efficient (bio)catalysts for atmospheric carbon dioxide utilization. In this work, the ability of Desulfovibrio desulfuricans formate dehydrogenase (Dd FDH) to reduce carbon dioxide was kinetically and mechanistically characterized. The Dd FDH is suggested to be purified in an inactive form that has to be activated through a reduction-dependent mechanism. A kinetic model of a hysteretic enzyme is proposed to interpret and predict the progress curves of the Dd FDH-catalyzed reactions (initial lag phase and subsequent faster phase). Once activated, Dd FDH is able to efficiently catalyze, not only the formate oxidation (kcat of 543 s(-1), Km of 57.1 μM), but also the carbon dioxide reduction (kcat of 46.6 s(-1), Km of 15.7 μM), in an overall reaction that is thermodynamically and kinetically reversible. Noteworthy, both Dd FDH-catalyzed formate oxidation and carbon dioxide reduction are completely inactivated by cyanide. Current FDH reaction mechanistic proposals are discussed and a different mechanism is here suggested: formate oxidation and carbon dioxide reduction are proposed to proceed through hydride transfer and the sulfo group of the oxidized and reduced molybdenum center, Mo(6+)═S and Mo(4+)-SH, are suggested to be the direct hydride acceptor and donor, respectively.

  19. Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2015-11-01

    Full Text Available We report on the direct conversion of carbon dioxide (CO2 in a photoelectrochemical cell consisting of germanium doped gallium nitride nanowire anode and copper (Cu cathode. Various products including methane (CH4, carbon monoxide (CO, and formic acid (HCOOH were observed under light illumination. A Faradaic efficiency of ∼10% was measured for HCOOH. Furthermore, this photoelectrochemical system showed enhanced stability for 6 h CO2 reduction reaction on low cost, large area Si substrates.

  20. Deep-convection events foster carbonate ion reduction in deep coral reefs

    Science.gov (United States)

    Perez, Fiz F.; Fontela, Marcos; Garcia-Ibañez, Maribel I.; Lherminier, Pascale; Zunino, Patricia; de la Paz, Mercedes; Padín, Xose A.; Alonso-Pérez, Fernando; Velo, Anton; Guallart, Elisa F.; Mercier, Herle

    2017-04-01

    Since millennial times, water mass circulation and deep-convection events have been transforming warm upper waters at high latitudes into cold and well-oxygenated deep waters. These processes have filled the deep North Atlantic Ocean with waters moderately saturated in calcium carbonate, thus promoting the growth of stony corals, which are hotspots of biodiversity. During the Anthropocene, the meridional circulation has been conveying cumulative amounts of more acidified waters with lower calcium carbonate saturation levels due to the incorporation of anthropogenic carbon dioxide, with very harsh conditions for deep cold-water corals projected by 2100. We evaluate the diminution of calcium carbonate saturation levels (aragonite form) due to the increase in anthropogenic carbon dioxide during the last two decades (2002-2016). We observe a strong decrease in the aragonite saturation levels concomitant with the reduction in the volume transport of aragonite-saturated waters. We estimate a 30-35% reduction in the transport of ion carbonate excess over the saturation levels with respect to the natural carbon cycle for the period 2002-2016. This reduction is associated with an increase in the downward transport of hydrogen ions. We also observe a heaving of the aragonite saturation horizons during the last 25 years, which is estimated at 6 m year-1 for the deep waters and 12-14 m year-1 for the intermediated waters. The harsh winters of 2015 and 2016 have fostered the fast addition of more acidified water into the lower layers of the North Atlantic through deep-convection events. In the future scenario of 2oC warming, the anthropogenic carbon dioxide in the water column would be double than today and the associated transport of hydrogen ions towards the bottom water would reduce the aragonite saturation levels to 60-80% with respect to preindustrial levels. This reduction in the aragonite saturation levels would suppose a strong diminution of the North Atlantic habitats

  1. APPLICATION OF E-COMMERCE IN LOCAL HOME SHOPPING AND ITS CONSEQUENCES ON ENERGY CONSUMPTION AND AIR POLLUTION REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Tehrani and A. R. Karbassi

    2005-10-01

    Full Text Available Methyl Tert-Butyl Ether (MTBE is one of the ether oxygenates which its use has been increased within the last twenty years. This compound is produced from isobutylene and methanol reaction that is used as octane index enhancer and also increases dissolved oxygen in gasoline and decreases carbon monoxide emission in four phased motors because of better combustion of gasoline. High solubility in water (52 g/L, high vapor pressure (0.54 kg/cm3, low absorption to organic carbon of soil and presence of MTBE in the list of potentially-carcinogens of U.S EPA has made its use of great concern. The culture media used in this study was Mineral Salt Medium (MSM. The study lasted for 236 days and in three different concentrations of MTBE of 200, 5 and 0.8 mg/L. A control sample was also used to compare the results. This research studied the isolation methods of microbial consortium in the MTBE polluted soils in Tehran and Abadan petroleum refinery besides MTBE degradation. The results showed the capability of bacteria in consuming MTBE as carbon source. Final microbial isolation was performed with several microbial passages as well as keeping consortium in a certain amount of MTBE as the carbon source.

  2. Redox Reactions of Metalloporphyrins and their Role in Catalyzed Reduction of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Neta, P.

    2002-09-01

    Pulse radiolysis and laser photolysis are used to study redox processes of metalloporphyrins and related complexes in order to evaluate these light absorbing molecules as sensitizers and intermediates in solar energy conversion schemes. The main thrust of the current studies is to investigate the role of reduced metalloporphyrins as intermediates in the catalyzed reduction of carbon dioxide. Studies involve cobalt and iron porphyrins, phthalocyanines, corroles, and corrins as homogeneous catalysts for reduction of carbon dioxide in solution. The main aim is to understand the mechanisms of these photochemical schemes in order to facilitate their potential utilization.

  3. Improvement of center segregation in high-carbon steel billets using soft reduction

    Institute of Scientific and Technical Information of China (English)

    Wenjun Wang; Xionggang Hu; Linxin Ning; Raimund Bülte; Wolfgang Bleck

    2006-01-01

    Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduction technology is considered to be an effective method to minimize center segregation. To elucidate the effect of soft reduction on the internal quality of high-carbon steel billets, soft reduction was applied with different solid fractions in the core area of billets in a laboratory casting machine. A coupled temperature/displacement finite element model was developed to calculate the solid fraction using the commercial software ABAQUS.Center segregation, center porosity, homogeneity of elements, and equiaxed crystal zone were obviously improved by applying soft reduction, especially when the solid fraction was less than 1.0. The optimal results were obtained when the solid fraction was approximately 0.9.

  4. Seasonal and diurnal variations of methane and carbon dioxide in the highly polluted Kathmandu Valley, Nepal

    Science.gov (United States)

    Mahata, Khadak; Panday, Arnico; Rupakheti, Maheswar; Lawrence, Mark

    2016-04-01

    Anthropogenic emissions of carbon dioxide and methane - key greenhouse gases (GHGs) - are primary causes of global warming and resultant impacts. The atmospheric warming is more pronounced and likely to cause more serious damage in vulnerable areas such as the Hindukush-Karakorum-Himalayan region (HKH). The HKH region is a data gap region according to the 5th Assessment report of the intergovernmental panel on climate change (IPCC). In order to understand the mixing ratios and variability of the key GHGs in the foothills of the Central Himalaya, we carried out continuous measurements of CO2, CH4, CO, and water vapor at Bode (an urban site in the Kathmandu valley, Nepal) for a year (March 2013 - Feb 2014), and again at Bode and at Chanban (a background outside the Valley) for 3 months (July 15 - Oct 3, 2015), with two state-of-the-art cavity ring-down instruments (Picarro G2401). The measurements were carried out as a part of the international air pollution measurement campaign: SusKat- ABC (Sustainable atmosphere for the Kathmandu Valley - Atmospheric Brown Clouds). The annual average CO2 and CH4 concentrations at Bode were 419 ± 24 and 2.192 ± 0.224 ppm, respectively, which are notably higher than those observed at the background site at Mauna Loa Observatory in the same period. The CO2concentration at Bode was high during the pre-monsoon period and low during the monsoon, while CH4 was high in winter and lower during the pre-monsoon period. The monthly CO2concentration was highest in April. Forest fires and agro-waste burning in the region, and the local emissions in the Kathmandu valley were the main sources of the high CO2 in the pre-monsoon period. CH4 showed a maximum in September due to additional emissions from paddy fields. Seasonally, winter has the highest CH4 concentration which is due to brick production, which is a seasonal activity, and other local sources combined with the shallow mixing layer height in winter. The diurnal pattern of CO2 and CH4

  5. Comparative Studies on Vehicle Related Policies for Air Pollution Reduction in Ten Asian Countries

    Directory of Open Access Journals (Sweden)

    Keiko Hirota

    2010-01-01

    Full Text Available Asian countries are facing major air pollution problems due to rapid economic growth, urbanization and motorization. Mortality and respiratory diseases caused by air pollution are believed to be endemic in major cities of these countries. Regulations and standards are the first requirement for reducing emissions from both fixed and mobile sources. This paper emphasizes monitoring problems such as vehicle registration systems, inspection and maintenance (I/M systems and fuel quality monitoring systems for vehicles in use. Monitoring problems in developing countries share similar characteristics such as a weakness in government initiatives and inadequate operation of government agencies, which results from a lack of human resources and availability of adequate facilities. Finally, this paper proposes a method to assure air quality improvements under the different shares of emission regulations in these Asian countries and introduces an example of an evaluation method based on a policy survey to improve air quality.

  6. Assessment of Current and Future Air Pollutant Emission Reduction Technologies for Marine Diesel Engines

    Science.gov (United States)

    2014-02-01

    sulphur present in fuel: the less sulphur content in the fuel, the less SOx in the exhaust. SOx cause acid rain and SOx oxidation in the atmosphere...gases contain gaseous sulphur species that form sulphuric acid , causing corrosion problems [9]. Presentations to the cruise industry in 2009 by MAN...emerging. Most of the air pollutant emission control technologies focus on reducing concentration of nitrogen oxides (NOx), sulphur oxides (SOx), or

  7. Simulation of the spread of pollutants in water using order reduction

    Directory of Open Access Journals (Sweden)

    RIBEIRO, V. G.

    2010-12-01

    Full Text Available In this paper, we present a new analytical method for solving problems in water pollution. The method provides a simulation using two differential constraints of first order, from which are found auto-Bäcklund transformations for the equation in two-dimensional advective-diffusive steady state. The main feature of the proposed formulation is the reduced processing time required to obtain the analytical solutions. Results of numerical simulations are presented in graphical format.

  8. Laboratory studies on granular filters and their relationship to geotextiles for stormwater pollutant reduction

    OpenAIRE

    Parneet, Paul; Tota-Maharaj, Kiran

    2015-01-01

    Applications of geotextiles within tertiary stormwater treatment systems and for stormwater infiltration can provide a substrate for biofilm formation, enabling biological treatment of contaminants. Geotextiles can serve as an efficient part of stormwater filtration within the urban water environment. The project assessed the applications of three experimental granular filters as a sustainable urban drainage system (SUDS) for the decomposition of organic pollutant loading present in stormwate...

  9. How to reach haze control targets by air pollutants emission reduction in the Beijing-Tianjin-Hebei region of China?

    Science.gov (United States)

    Xu, Feng; Xiang, Nan; Higano, Yoshiro

    2017-01-01

    Currently, Haze is one of the greatest environmental problems with serious impacts on human health in China, especially in capital region (Beijing-Tianjin-Hebei region). To alleviate this problem, the Chinese government introduced a National Air Pollution Control Action Plan (NAPCAP) with air pollutants reduction targets by 2017. However, there is doubt whether these targets can be achieved once the plan is implemented. In this work, the effectiveness of NAPCAP is analyzed by developing models of the statistical relationship between PM2.5 concentrations and air pollutant emissions (SO2, NOx, smoke and dust), while taking into account wind and neighboring transfer impacts. The model can also identify ways of calculating the intended emission levels in the Beijing–Tianjin–Hebei area. The results indicate that haze concentration control targets will not be attained by following the NAPCAP, and that the amount of progress needed to meet the targets is unrealistic. A more appropriate approach to reducing air emissions is proposed, which addresses joint regional efforts. PMID:28282464

  10. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, Jette B.; Jensen, Dorthe Lærke; Grøn, Christian

    1998-01-01

    Samples of dissolved organic carbon (DOG) were obtained from landfill leachate-polluted groundwater at Vejen Landfill, Denmark. The humic acids, fulvic acids and the hydrophilic fraction were isolated and purified. Based on DOC measurements, the fulvic acid fraction predominated, accounting...... for about 60% of the total amount of DOC with an apparent molecular weight of about 1800 Da. The hydrophilic fraction constituted about 30% of the total amount of DOC with an apparent molecular weight of about 2100 Da, and the humic acid fraction made up about 10% of the total amount of DOC with an apparent...... molecular weight of about 2600 Da. The elemental compositions of the humic acids, fulvic acids and the hydrophilic fraction were in the ranges typical for humic substances from other origins. The O/C ratios for humic acids, fulvic acids and the hydrophilic fraction were similar in the leachate...

  11. Kinetics of enhanced adsorption by polarization for organic pollutants on activated carbon fiber

    Institute of Scientific and Technical Information of China (English)

    HAN Yanhe; QUAN Xie; ZHAO Huimin; CHEN Shuo; ZHAO Yazhi

    2007-01-01

    The adsorption kinetics for model pollutants on activated carbon fiber(ACF)by polarization was investigated in this work.Kinetics data obtained for the adsorption of these model pollutants at open-circuit.400 mV,and -400 mV polarization were applied to the Lagergren equation,and adsorption rate constants(Ka)were determined.With the anodic polarization of 400 mV,the capacity of sodium phenoxide was increased from 0.0083 mmol/g at open circuit to 0.18 mmol/g,and a 17-fold enhancement was achieved;however,the capacity of p-nitrophenol was decreased from 2.93 mmol/g at open-circuit to 2.65 mmol/g.With the cathodal polarization of -400 mV,the capacity of aniline was improved from 3.60 mmol/g at open-circuit to 3.88 mmol/g;however,the capacity of sodium dodecylben zene sulfonate was reduced from 2.20 mmol/g at open-circuit to 1.59 mmol/g.The enhancement for electrosorption changed with different groups substituting.Anodic polarization enhances the adsorption of benzene with the electron donating group.But whether anodic or not,cathodal polarization had less effect on the adsorption of electron-accepting aromatic compounds,and decreased the adsorption capacity of benzene-bearing donor-conjugate bridge-acceptor,while increasing its adsorption rate.Electrostatic interaction played a very important role in the electrosorption of ion-pollutants.

  12. STUDY ON THE FACTORS AFFECTING REDUCTION CAPACITIES OF ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The reduction adsorption of silver diamminonitrate on different kinds of activated carbonfibers (ACF) has been studied in this paper. The effect of different parameters, including adsorptiontemperature, concentrations of activation agents, and activation time on the silver adsorptioncapacities of activated carbon fibers has been investigated The results show that higher temperaturein which the silver complex interacts with ACF. or higher concentration of activation agent, will makehigher reduction adsorption capacities of ACFs. More over, ACFs activated with phosphoric acidhave higher reduction capacities than those activated with zinc chloride or steam.

  13. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    Science.gov (United States)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  14. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  15. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.

    Science.gov (United States)

    Han, Shenjie; Sun, Qingfeng; Zheng, Huanhuan; Li, Jingpeng; Jin, Chunde

    2016-01-20

    Carbon-based aerogel fabricated from waste biomass is a potential absorbent material for solving organic pollution. Herein, the lightweight, hydrophobic and porous carbon aerogels (CAs) have been synthesized through freezing-drying and post-pyrolysis by using waste newspaper as the only raw materials. The as-prepared CAs exhibited a low density of 18.5 mg cm(-3) and excellent hydrophobicity with a water contact angle of 132° and selective absorption for organic reagents. The absorption capacity of CA for organic compounds can be 29-51 times its own weight. Moreover, three methods (e.g., squeezing, combustion, and distillation) can be employed to recycle CA and harvest organic pollutants. Combined with waste biomass as raw materials, green and facile fabrication process, excellent hydrophobicity and oleophilicity, CA used as an absorbent material has great potential in application of organic pollutant solvents absorption and environmental protection.

  16. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  17. Controlled Growth of Carbon Spheres Through the Mg-Reduction Route

    Directory of Open Access Journals (Sweden)

    Lin Hailin

    2009-01-01

    Full Text Available Abstract Hollow spheres, hollow capsules and solid spheres of carbon were selectively synthesized by Mg-reduction of hexachlorobutadiene at appropriate reaction conditions. X-ray powder diffraction and Raman spectra reveal that the as-prepared materials have a well-ordered structure. A possible formation mechanism has been proposed.

  18. Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia

    Directory of Open Access Journals (Sweden)

    Tomoko Hasegawa

    2016-12-01

    Full Text Available We investigated the key mitigation options for achieving the mid-term target for carbon emission reduction in Indonesia. A computable general equilibrium model coupled with a land-based mitigation technology model was used to evaluate specific mitigation options within the whole economic framework. The results revealed three primary findings: (1 If no climate policy were implemented, Indonesia’s total greenhouse gas emissions would reach 3.0 GtCO2eq by 2030; (2 To reduce carbon emissions to meet the latest Intended Nationally-Determined Contributions (INDC target, ~58% of total reductions should come from the agriculture, forestry and other land use sectors by implementing forest protection, afforestation and plantation efforts; (3 A higher carbon price in 2020 suggests that meeting the 2020 target would be economically challenging, whereas the INDC target for 2030 would be more economically realistic in Indonesia.

  19. Electrochemical Reduction of Carbon Dioxide over CNT-Supported Nanoscale Copper Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Sk. Safdar Hossain

    2014-01-01

    Full Text Available This paper presents the experimental investigation of copper loaded carbon nanotubes (CNTs electrocatalysts for the electrochemical reduction of carbon dioxide. The electrocatalysts were synthesized by homogeneous deposition precipitation method (HDP using urea as precipitating agent. The prepared catalysts were characterized by TEM, SEM, XRD, XPS, BET, and FTIR for their morphology and structure. Characterization results confirm the deposition of Cu nanoparticles (3–60 nm on CNTs. Linear sweep voltammetry (LSV and chronoamperometry (CA were used to investigate the activity of the as-prepared catalysts for the electrochemical reduction of carbon dioxide. The electrocatalysts reduced CO2 with high current density in the potential range 0~−3 V versus SCE (standard calomel electrode. Among all catalysts tested, 20 wt. % copper loaded CNTs showed maximum activity. Gas chromatograph with TCD was used to analyze liquid phase composition. The faradaic efficiency for methanol formation was estimated to be 38.5%.

  20. Parameter Uncertainty in CGE Modeling of the Macroeconomic Impact of Carbon Reduction in China

    Institute of Scientific and Technical Information of China (English)

    WANG Can; CHEN Jining

    2006-01-01

    Formal methods are used to characterize the uncertainty in the computable general equilibrium (CGE) model outputs to assess the use of the CGE model of China (integrated energy-economy-environment dynamic CGE, TEDCGE) for carbon tax policy issues. Monte Carlo experiment was used for the parameter uncertainty propagation and unconditional sensitivity analysis, using the variance of the conditional expectation (VCE) as the importance index to identify critical uncertainties. The results illustrate the statistical characteristics of TEDCGE outputs and sensitivities of the TEDCGE outputs to 50 uncertain elasticities. The results show that the carbon tax level for a predefined emission reduction goal is quite sensitive to both capital-energy substitution elasticity and inter-fuel substitution elasticity in the production function, while the key parameter for the GDP reduction rate was only the inter-fuel substitution elasticity. Among the various sectors, heavy industry and electricity are most vitally affected by a carbon tax.

  1. Removal of triazine-based pollutants from water by carbon nanotubes: Impact of dissolved organic matter (DOM) and solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-12-01

    Adsorption of organic pollutants by carbon nanotubes (CNTs) in the environment or removal of pollutants during water purification require deep understanding of the impacts of the presence of dissolved organic matter (DOM). DOM is an integral part of environmental systems and plays a key role affecting the behavior of organic pollutants. In this study, the effects of solution chemistry (pH and ionic strength) and the presence of DOM on the removal of atrazine and lamotrigine by single-walled CNTs (SWCNTs) was investigated. The solubility of atrazine slightly decreased (∼5%) in the presence of DOM, whereas that of lamotrigine was significantly enhanced (by up to ∼70%). Simultaneous introduction of DOM and pollutant resulted in suppression of removal of both atrazine and lamotrigine, which was attributed to DOM-pollutant competition or blockage of adsorption sites by DOM. However the decrease in removal of lamotrigine was also a result of its complexation with DOM. Pre-introduction of DOM significantly reduced pollutant adsorption by the SWCNTs, whereas introduction of DOM after the pollutant resulted in the release of adsorbed atrazine and lamotrigine from the SWCNTs. These data imply that DOM exhibits higher affinity for the adsorption sites than the triazine-based pollutants. In the absence of DOM atrazine was a more effective competitor than lamotrigine for adsorption sites in SWCNTs. However, competition between pollutants in the presence of DOM revealed lamotrigine as the better competitor. Our findings help unravel the complex DOM-organic pollutant-CNT system and will aid in CNT-implementation in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Black carbon-mediated reduction of 2,4-dinitrotoluene by dithiothreitol.

    Science.gov (United States)

    Oh, Seok-Young; Son, Jong-Gil; Hur, Seung Hyun; Chung, Jin Suk; Chiu, Pei C

    2013-01-01

    By using various types of black carbon (BC), including chemically converted graphene (CCG), multiwalled carbon nanotubes (MWCNT), and granular activated carbon (GAC), BC-mediated reduction was investigated with 2,4-dinitrotoluene (DNT), a model nitroaromatic compound. We hypothesized that by providing sorption and electron transfer sites, BC can be used as a catalyst to accelerate DNT reduction by dithiothreitol (DTL), a thiol reductant. Results from batch experiments showed that CCG, MWCNT, and GAC could promote reduction of DNT by DTL. The yield ratio of the two aminonitro intermediates was approximately 1:1, which was consistent with that in a graphite system. However, fullerene did not significantly enhance the reduction of DNT, likely due to being a π acceptor. Kinetic data analysis showed that removal of DNT in the presence of BC and DTL was linearly proportional to the electrical conductivity of BC, suggesting that the graphitic structure of BC may be responsible for DNT removal. Our results indicate that the presence of BC materials may affect the fate of nitroaromatic compounds under electron-rich conditions.

  3. Kinetics study of carbon raiser on the reduction of nickel laterite from Pomalaa, Southeast Sulawesi

    Science.gov (United States)

    Petrus, H. T. B. M.; Rhamdani, A. R.; Putera, A. D. P.; Warmada, I. W.; Yuliansyad, A. T.; Perdana, I.

    2016-11-01

    As one of the top ten on nickel laterite ore resources in the world, Indonesia must have been initiating the nickel processing in total amount of about 1.5 million tonnes. In regard to the low nickel laterite processing, one of the possible product is nickel pig iron (NPI) needed for the stainless steel industries. In this study carbon raiser that is waste from oil industries was used to replace metalurgical coke. The kinetic of nickel laterite reduction using carbon raiser was studied and compared with anthrasite coal. In this work, the author conducted the reduction of nickel laterite ores by both carbon raiser and anthrasite coal as reductant, in air and CO2 atmosphere, within the temperature ranged from 800°C and 1000°C. Two models were applied, sphere particle geometry model and Ginstling-Brounhstein diffusion model, to study the kinetic parameters. The results indicated that type of reductants and reduction atmosphere greatly influence the kinetic parameters. The obtained values of activation energy were varied between 17.44-18.12 kcal/mol.

  4. Insights into the emission reductions of multiple unintentional persistent organic pollutants from industrial activities.

    Science.gov (United States)

    Liu, Guorui; Zheng, Minghui; Jiang, Xiaoxu; Jin, Rong; Zhao, Yuyang; Zhan, Jiayu

    2016-02-01

    Industrial activities result in unintentional production of multiple types of persistent organic pollutants (POPs) at various concentrations. Because of the potential adverse effect of these POPs on the environment, biota and human health, methods for controlling emission of POPs are required. Development and application of techniques for controlling emissions of POPs can be a technical and economic burden for the industry involved. Therefore, from the point of view of cost-benefit analysis, reducing emissions of multiple pollutants at the same time is optimal for sustainable industrial development. Although techniques have been developed for reducing the emissions of individual POPs, such as dioxins, further work is required on multi-POP control emissions from industrial activities. This paper discusses three important aspects that need to be taken to achieve multi-POP control. These aspects include the establishment of a comprehensive system for evaluating the risk from emissions of multiple POPs, determination of indicators for total emissions of multiple POPs, and the preparation and application of functional materials to inhibit formation of multiple POPs. These discussion might be helpful for the future research on the multi-POP control in industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Monitoring carbon monoxide pollution over the largest ten cities in the US using satellite observations

    Science.gov (United States)

    Zheng, B.; de Beurs, K.; Owsley, B.; Krehbiel, C. P.; Henebry, G. M.

    2015-12-01

    Carbon monoxide (CO) is one of the several air pollutants that are largely produced by anthropogenic activities in urban areas as a result of incomplete combustion of carbon-containing fuels. Long-term satellite data can monitor spatial and temporal changes in CO globally. Here we investigated spatial, vertical, and temporal changes in CO concentrations over the largest ten US metropolitan statistical areas (MSAs) using Version 6 MOPITT TIR-only CO retrievals. The 15-year average of MOPITT Surface CO concentrations over urban areas were highest (388 ppbv) over New York City and lowest (151 ppbv) over Miami. The influence of cities on elevated CO levels extends well beyond the immediate urban area. The CO seasonal profiles above the surface show distinct seasonality with peaks March-April and troughs September-October. However, larger cities show a lack of CO seasonality near the surface. We applied the nonparametric Seasonal Kendall (SK) trend test to the CO time series. Results revealed significant decreasing trends in CO concentration, with stronger trends in the lower atmosphere (>700 hPa) than in the mid-troposphere (500-700 hPa). Our results demonstrate the strong influence of local urban emissions on (near-) surface CO concentrations. Decreasing urban CO over the past 15 years reflects improved urban metabolism through improved energy efficiency, and increasing use of alternative transportation and zero-emission vehicles.

  6. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Science.gov (United States)

    Tong, Yue; Zhang, Min; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli

    2016-05-01

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N2 adsorption-desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO2-coated maghemite/CNTs nanoparticles (CNTs/Fe3O4@SiO2 composites) were synthesized by the combination of high temperature decomposition process and an sol-gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO2, respectively. The CNTs/Fe3O4@SiO2 composites revealed a core-shell structure, Then, CNTs/Fe3O4@mSiO2 was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature.

  7. Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests.

    Science.gov (United States)

    Ma, Zhihai; Peng, Changhui; Zhu, Qiuan; Chen, Huai; Yu, Guirui; Li, Weizhong; Zhou, Xiaolu; Wang, Weifeng; Zhang, Wenhua

    2012-02-14

    The boreal forests, identified as a critical "tipping element" of the Earth's climate system, play a critical role in the global carbon budget. Recent findings have suggested that terrestrial carbon sinks in northern high-latitude regions are weakening, but there has been little observational evidence to support the idea of a reduction of carbon sinks in northern terrestrial ecosystems. Here, we estimated changes in the biomass carbon sink of natural stands throughout Canada's boreal forests using data from long-term forest permanent sampling plots. We found that in recent decades, the rate of biomass change decreased significantly in western Canada (Alberta, Saskatchewan, and Manitoba), but there was no significant trend for eastern Canada (Ontario and Quebec). Our results revealed that recent climate change, and especially drought-induced water stress, is the dominant cause of the observed reduction in the biomass carbon sink, suggesting that western Canada's boreal forests may become net carbon sources if the climate change-induced droughts continue to intensify.

  8. Reduction of air pollutants - a tool for control of atmospheric corrosion

    Directory of Open Access Journals (Sweden)

    Kucera, V.

    2003-12-01

    Full Text Available In most urban areas in Europe and Northern America serious corrosion impacts on buildings and cultural monuments have been caused by emissions of pollutants. The rapidly increasing pollution levels in many of the developing countries also exert a serious threat to materials. Beside the very important role of SO2 also the direct or synergistic effect of NOx and O3, the particulates and rain acidity may contribute in an important way to materials degradation. Results from extensive international field exposure programs i.e. within the UN/ECE have enabled development of dose-response relations which describe the effect of dry and wet deposition of pollutants on corrosion of different material groups. In most of the industrialized countries decreasing trends of sulphur and nitrogen pollutants and of acidity of precipitation have resulted in decreased corrosion rates. The concept of acceptable levels of pollutants is a useful tool in planning of abatement strategies and for defining of conditions for a suitable development in the field of corrosion of constructions in the atmosphere.

    La contaminación de la atmósfera ha sido la principal razón del grave deterioro de las edificaciones y de los monumentos en numerosas ciudades de Europa y Norteamérica. De otro lado, el acelerado incremento de los niveles de contaminación en los países menos desarrollados está poniendo en peligro la estabilidad de los materiales utilizados. Además del importante papel que en este sentido juega el SO2, la acción directa o el efecto sinérgico de los NOx y el O3, al igual que el material particulado y las lluvias acidas contribuyen a agravar el problema. Resultados de vastos programas internacionales de investigación como, por ejemplo, el UN/ECE, han permitido desarrollar relaciones dosis-respuesta que describen el efecto de la deposición de los contaminantes sobre la corrosión de

  9. Bonding strength in carbon steel sandwich panels under condition of diffusion-rolling with small reduction

    Institute of Scientific and Technical Information of China (English)

    LIU Jing; HAN Jing-tao; FU Ding-mei

    2005-01-01

    One of the key problems by diffusion-rolling bonding with small reduction for carbon steel plates is the bonding assistant coat. A bonding assistant coat used below 850 ℃ was developed. It contained copper as basic element and zinc as main alloy element. Other small elements and rare metals were added to decrease the melting point and to obtain a better clouding and high plasticity. Based on the theory of brazing and transient liquid diffusion welding, two carbon steel plates were rolled with small reduction by using self-made bonding assistant coat. Temperature, pressure and holding time are the main technology parameters for controlling the process of diffusion-rolling. The results show that the bonding strength is the greatest when the bonding temperature is 830 ℃, holding time is 3 min and the reduction rate is 9%.

  10. Asynchronous Reductive Release of Iron and Organic Carbon from Hematite-Humic Acid Complexes

    Science.gov (United States)

    Adhikari, D.; Poulson, S.; Sumaila, S.; Dynes, J.; McBeth, J. M.; Yang, Y.

    2015-12-01

    Association with solid-phase iron plays an important role in the accumulation and stabilization of soil organic matter (SOM). Ferric minerals are subject to redox reactions, which can compromise the stability of iron-bound SOM. To date, there is limited information available concerning the fate of iron-bound SOM during redox reactions. In this study, we investigated the release kinetics of hematite-bound organic carbon (OC) during the abiotic reduction of hematite-humic acid (HA) complexes by dithionite, as an analog for the fate of iron-bound SOM in natural redox reactions. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to examine the ratio of the aromatic, phenolic and carboxylic/imide functional groups of the adsorbed OC before and after reduction. Our results indicate that the reductive release of iron obeyed first-order kinetics with release rate constants of 6.67×10-3 to 13.0×10-3 min-1. The iron-bound OC was released rapidly during the initial stage with release rate constants of 0.011 to 1.49 min-1, and then became stable with residual fractions of 4.6% to 58.2% between 120 and 240 min. The release rate of aromatic OC was much faster than for the non-aromatic fraction of HA, and 90% of aromatic OC was released within the first hour for most samples. The more rapid release of aromatic OC was attributed to its potential distribution on the outer layer because of steric effects and the possible reduction of quinoids. Our findings show that in the reductive reaction the mobilization of iron-bound organic carbon was asynchronous with the reduction of iron, and aromatic carbon was released more readily than other organic components. This study illustrates the importance of evaluating the stability of iron-bound SOM, especially under aerobic-anaerobic transition conditions.

  11. Near-Infrared- and Visible-Light-Enhanced Metal-Free Catalytic Degradation of Organic Pollutants over Carbon-Dot-Based Carbocatalysts Synthesized from Biomass.

    Science.gov (United States)

    Wang, Hui; Zhuang, Jianqin; Velado, David; Wei, Zengyan; Matsui, Hiroshi; Zhou, Shuiqin

    2015-12-23

    Cost-efficient nanoparticle carbocatalysts composed of fluorescent carbon dots (CDs) embedded in carbon matrix were synthesized via one-step acid-assisted hydrothermal treatment (200 °C) of glucose. These as-synthesized CD-based carbocatalysts have excellent photoluminescence (PL) properties over a broad range of wavelengths and the external visible or NIR irradiation on the carbocatalysts could produce electrons to form electron-hole (e(-)-h(+)) pairs on the surface of carbocatalysts. These restant electron-hole pairs will react with the adsorbed oxidants/reducers on the surface of the CD-based carbocatalysts to produce active radicals for reduction of 4-nitrophenol and degradation of dye molecules. Moreover, the local temperature increase over CD-based carbocatalyst under NIR irradiation can enhance the electron transfer rate between the organic molecules and CD-based carbocatalysts, thus obviously increase the catalytic activity of the CD-based carbocatalyst for the reduction of 4-nitrophenol and the degradation of dye molecules. Such a type of CD-based carbocatalysts with excellent properties and highly efficient metal-free photocatalytic activities is an ideal candidate as photocatalysts for the reduction of organic pollutants under visible light and NIR radiation.

  12. Sensory pollution from bag-type fiberglass ventilation filters: Conventional filter compared with filters containing various amounts of activated carbon

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Fadeyi, M.O.; Clausen, Geo

    2009-01-01

    (100 g/m(2)). Each filter was weighed at the beginning of the soiling period and after 3 and 6 months of service. Additionally, up- and down-stream ozone concentrations and filter pressure drops were measured monthly. Following 6 months of service, the air downstream of each of the combination filters......As ventilation filters accumulate particles removed from the airstream, they become emitters of sensory pollutants that degrade indoor air quality. Previously we demonstrated that an F7 bag-type filter that incorporates activated carbon (a "combination filter") reduces this adverse effect compared...... to an equivalent filter without carbon. The aim of the present study was to examine how the amount of activated carbon (AC) used in combination filters affects their ability to remove both sensory offending pollutants and ozone. A panel evaluated the air downstream of four different filters after each had...

  13. Limiting Factors for Microbial Fe(III)-Reduction In a Landfill Leachate Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas Højlund

    1995-01-01

    Aquifer sediment samples from two locations within the anaerobic leachate plume of a municipal landfill were compared with respect to microbiology (especially Fe(III)-reduction) and geochemistry. The samples close to the landfill were characterized by low contents of Fe(III), whereas samples from...

  14. Noise pollution of air compressor and its noise reduction procedures by using an enclosure

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Conclusions: An overall noise reduction by 25 dB with the use of mineral wool as an extra liner on the inside of the enclosure, suggests that the effectiveness of the enclosure can be increased by using such absorber materials.

  15. Strategies for cost-effective carbon reductions: A sensitivity analysis of alternative scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Gumerman, Etan; Koomey, Jonathan G.; Brown, Marilyn

    2001-07-11

    Analyses of alternative futures often present results for a limited set of scenarios, with little if any sensitivity analysis to identify the factors affecting the scenario results. This approach creates an artificial impression of certainty associated with the scenarios considered, and inhibits understanding of the underlying forces. This paper summarizes the economic and carbon savings sensitivity analysis completed for the Scenarios for a Clean Energy Future study (IWG, 2000). Its 19 sensitivity cases provide insight into the costs and carbon-reduction impacts of a carbon permit trading system, demand-side efficiency programs, and supply-side policies. Impacts under different natural gas and oil price trajectories are also examined. The results provide compelling evidence that policy opportunities exist to reduce carbon emissions and save society money.

  16. Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ehlen, Ali [Center for Energy Efficiency and Renewable Technologies, Sacramento, CA (United States); Caldwell, James H. [Center for Energy Efficiency and Renewable Technologies, Sacramento, CA (United States)

    2016-01-07

    The California 2030 Low Carbon Grid Study (LCGS) analyzes the grid impacts of a variety of scenarios that achieve 50% carbon emission reductions from California's electric power sector. Impacts are characterized based on several key operational and economic metrics, including production costs, emissions, curtailment, and impacts on the operation of gas generation and imports. The modeling results indicate that achieving a low-carbon grid (with emissions 50% below 2012 levels) is possible by 2030 with relatively limited curtailment (less than 1%) if institutional frameworks are flexible. Less flexible institutional frameworks and a less diverse generation portfolio could lead to higher curtailment (up to 10%), operational costs (up to $800 million higher), and carbon emissions (up to 14% higher).

  17. Reduction of soil pollution by usingwaste of the limestone in the cement industry

    Science.gov (United States)

    Muñoz, M. Cecilia Soto; Robles Castillo, Marcelo; Blanco Fernandez, David; Diaz Gonzalez, Marcos; Naranjo Lamilla, Pedro; Moore Undurraga, Fernando; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    In the cement manufacturing process (wet) a residue is generated in the flotation process. This builds up causing contamination of soil, groundwater and agricultural land unusable type. In this study to reduce soil and water pollution 10% of the dose of cement was replaced by waste of origin limestone. Concretes were produced with 3 doses of cement and mechanical strengths of each type of concrete to 7, 28 and 90 days were determined. the results indicate that the characteristics of calcareous residue can replace up to 10% of the dose of cement without significant decreases in strength occurs. It is noted that use of the residue reduces the initial resistance, so that the dose of cement should not be less than 200 kg of cement per m3. The results allow recommends the use of limestone waste since it has been observed decrease in soil and water contamination without prejudice construction material Keywords: Soil contamination; Limestone residue; Adding concrete

  18. Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A. [TERI, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110003 (India); Kandpal, T.C. [Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India)

    2009-01-15

    About 78 million rural households in India reportedly lack access to grid electricity. About 67 million of them use kerosene for lighting. Government of India is promoting the use of solar home systems (SHS) as one of the options for meeting lighting requirements in households in remote and less inhabited villages. About 363,399 SHS were reportedly disseminated across the country by December 2007. Apart from meeting the basic lighting need of the households, SHS also help in abating the emissions of green house gases (GHGs) by directly displacing the use of kerosene in households that currently use it for lighting. This study has attempted at estimating the CO{sub 2} mitigation potential of SHS in India by studying the potential for their diffusion and the appropriate baseline. Subsequently, the scope for cost reduction to the user due to carbon finance, if received, is also studied. It is found that carbon finance could reduce the effective burden of SHS to the user by 19% if carbon prices were $10/tCO{sub 2} and no transaction costs were involved in getting the carbon revenues. These benefits are also estimated for scenarios where transaction costs are incurred by the project proponent in getting the carbon benefits. (author)

  19. Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction

    Science.gov (United States)

    Adhikari, Dinesh; Zhao, Qian; Das, Kamol; Mejia, Jacqueline; Huang, Rixiang; Wang, Xilong; Poulson, Simon R.; Tang, Yuanzhi; Roden, Eric E.; Yang, Yu

    2017-09-01

    The dynamics of iron (Fe)-bound organic carbon (OC) during dissimilatory microbial Fe(III) reduction has the potential to play an important role in regulating the biogeochemical cycling of carbon (C) in permanently or transiently anoxic soils and sediments. In this study, we investigated the release and transformation of ferrihydrite (Fh)-bound OC during microbial reduction of Fe by Shewanella putrefaciens strain CN32 under a fixed Fe concentration of 13 mM and varying C/Fe molar ratios. We found that reduction of Fe and reductive release of OC was dependent on the C/Fe molar ratio, with high C/Fe ratio enhancing both reduction of Fe and release of OC. For Fh-OC co-precipitates with C/Fe ratio of 3.7, 54.7% of Fh-bound OC was released to solution phase when 25.1% of Fe was reduced. The presence of OC inhibited the transformation of Fh to more crystalline Fe phases both in the bulk and on the surface. Upon reduction, Fh-bound OC became more concentrated on the surface of Fh-OC co-precipitates, and surface components were enriched with carboxylic functional groups. Reduction increased the lability of Fh-bound OC for Fh-OC co-precipitate with C/Fe ratio of 3.7, and aromatic OC was preferentially retained within the co-precipitates. Our results indicate that microbial reduction altered the quantity and composition of OC released from Fh-OC co-precipitates, depending on the C/Fe ratio and associations between Fe and OC. Assuming higher availability of released OC compared to original Fh-bound OC, reduction of Fh can likely lead to enhanced degradation of OC and result in a shorter residence time for OC in soils and sediments.

  20. Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants.

    Science.gov (United States)

    An, Qiao; Zhang, Peng; Li, Jun-Mei; Ma, Wan-Fu; Guo, Jia; Hu, Jun; Wang, Chang-Chun

    2012-08-21

    Highly active surface-enhanced Raman scattering (SERS) substrates of Ag nanoparticle (Ag-NP) modified Fe(3)O(4)@carbon core-shell microspheres were synthesized and characterized. The carbon coated Fe(3)O(4) microspheres were prepared via a one-pot solvothermal method and were served as the magnetic supporting substrates. The Ag-NPs were deposited by in situ reduction of AgNO(3) with butylamine and the thickness of the Ag-NP layer was variable by controlling the AgNO(3) concentrations. The structure and integrity of the Fe(3)O(4)@C@Ag composite microspheres were confirmed by TEM, XRD, VSM and UV-visible spectroscopy. In particular, the Ag-NP coated Fe(3)O(4)@carbon core-shell microspheres were shown to be highly active for SERS detections of pentachlorophenol (PCP), diethylhexyl phthalate (DEHP) and trinitrotoluene (TNT). These analytes are representatives of environmentally persistent organic pollutants with typically low SERS activities. The results suggested that the interactions between the carbon on the microsphere substrates and the aromatic cores of the target molecules contributed to the facile pre-concentration of the analytes near the Ag-NP surfaces.

  1. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  2. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies.

    Science.gov (United States)

    Kim, Wooyul; McClure, Beth Anne; Edri, Eran; Frei, Heinz

    2016-06-07

    The reduction of carbon dioxide by water with sunlight in an artificial system offers an opportunity for utilizing non-arable land for generating renewable transportation fuels to replace fossil resources. Because of the very large scale required for the impact on fuel consumption, the scalability of artificial photosystems is of key importance. Closing the photosynthetic cycle of carbon dioxide reduction and water oxidation on the nanoscale addresses major barriers for scalability as well as high efficiency, such as resistance losses inherent to ion transport over macroscale distances, loss of charge and other efficiency degrading processes, or excessive need for the balance of system components, to mention a few. For the conversion of carbon dioxide to six-electron or even more highly reduced liquid fuel products, introduction of a proton conducting, gas impermeable separation membrane is critical. This article reviews recent progress in the development of light absorber-catalyst assemblies for the reduction and oxidation half reactions with focus on well defined polynuclear structures, and on novel approaches for optimizing electron transfer among the molecular or nanoparticulate components. Studies by time-resolved optical and infrared spectroscopy for the understanding of charge transfer processes between the chromophore and the catalyst, and of the mechanism of water oxidation at metal oxide nanocatalysts through direct observation of surface reaction intermediates are discussed. All-inorganic polynuclear units for reducing carbon dioxide by water at the nanoscale are introduced, and progress towards core-shell nanotube assemblies for completing the photosynthetic cycle under membrane separation is described.

  3. Bio-Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane.

    Science.gov (United States)

    Schlager, Stefanie; Haberbauer, Marianne; Fuchsbauer, Anita; Hemmelmair, Christine; Dumitru, Liviu Mihai; Hinterberger, Gabriele; Neugebauer, Helmut; Sariciftci, Niyazi Serdar

    2017-01-10

    We present a study on a microbial electrolysis cell with methanogenic microorganisms adapted to reduce CO2 to CH4 with the direct injection of electrons and without the artificial addition of H2 or an additional carbon source except gaseous CO2 . This is a new approach in comparison to previous work in which both bicarbonate and gaseous CO2 served as the carbon source. The methanogens used are known to perform well in anaerobic reactors and metabolize H2 and CO2 to CH4 and water. This study shows the biofilm formation of those microorganisms on a carbon felt electrode and the long-term performance for CO2 reduction to CH4 using direct electrochemical reduction. CO2 reduction is performed simply by electron uptake with gaseous CO2 as the sole carbon source in a defined medium. This "electrometabolism" in such microbial electrolysis cells depends strongly on the potential applied as well as on the environmental conditions. We investigated the performance using different adaption mechanisms and a constant potential of -700 mV vs. Ag/AgCl for CH4 generation at 30-35 °C. The experiments were performed by using two-compartment electrochemical cells. Production rates with Faradaic efficiencies of around 22 % were observed.

  4. Bio‐Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane

    Science.gov (United States)

    Haberbauer, Marianne; Fuchsbauer, Anita; Hemmelmair, Christine; Dumitru, Liviu Mihai; Hinterberger, Gabriele; Neugebauer, Helmut; Sariciftci, Niyazi Serdar

    2016-01-01

    Abstract We present a study on a microbial electrolysis cell with methanogenic microorganisms adapted to reduce CO2 to CH4 with the direct injection of electrons and without the artificial addition of H2 or an additional carbon source except gaseous CO2. This is a new approach in comparison to previous work in which both bicarbonate and gaseous CO2 served as the carbon source. The methanogens used are known to perform well in anaerobic reactors and metabolize H2 and CO2 to CH4 and water. This study shows the biofilm formation of those microorganisms on a carbon felt electrode and the long‐term performance for CO2 reduction to CH4 using direct electrochemical reduction. CO2 reduction is performed simply by electron uptake with gaseous CO2 as the sole carbon source in a defined medium. This “electrometabolism” in such microbial electrolysis cells depends strongly on the potential applied as well as on the environmental conditions. We investigated the performance using different adaption mechanisms and a constant potential of −700 mV vs. Ag/AgCl for CH4 generation at 30–35 °C. The experiments were performed by using two‐compartment electrochemical cells. Production rates with Faradaic efficiencies of around 22 % were observed. PMID:27792284

  5. Sorption of priority pollutants to biochars and activated carbons for application to soil and sediment remediation

    Science.gov (United States)

    Beckingham, B.; Gomez-Eyles, J. L.; Kwon, S.; Riedel, G.; Gilmour, C.; Ghosh, U.

    2012-04-01

    The effectiveness of different biochars in comparison to 2 commercially available activated carbons (ACs) to sorb polychlorinated biphenyls (PCBs) and mercury (Hg) was assessed, with the aim of identifying promising materials for application to soil and sediment remediation and elucidating material properties that may enhance pollutant binding potential. Biochars studied were produced from pine dust, peanut hull, barley straw, and acai pit in addition to steam-activated biochars made from poultry litter (chicken and turkey). Aqueous concentrations of PCBs were measured using a polyoxymethylene passive sampling technique allowing a very low environmentally-relevant concentration range to be examined. Mercury pH-edge isotherms were conducted at relatively high concentrations in a wide pH range (pH 3-11). Sorption of Hg at low concentrations was also performed with ACs and two other biochars made from a marsh reed and a hard wood. Organic contaminant isotherms were analyzed by the Freundlich model, and Freundlich sorption coefficients (KFr) were normalized to a single concentration to allow comparison among materials (i.e. Kd). Values of Kd were related to the sorbent surface area, with sorption being greater for ACs than activated biochars, followed by unactivated biochars. ACs also had higher carbon content (80-90%) than biochars (22 - 77%). This sorption trend would thus be expected for adsorption of hydrophobic compounds to black carbon surfaces. In contrast, at high concentration all biochars removed more Hg from solution than ACs. Steam-activated poultry litter biochars showed the best performance, with consistent removal of >99.7% Hg over the entire pH range. The relatively high sulfur and phosphate content of these materials likely contribute to this enhanced Hg sorption. Also, owing to their lower pyrolysis temperatures relative to ACs, biochars are reported to have a greater surface group functionality which can enhance cation sorption. The importance of

  6. Does a Differentiated, Carbonate-rich, Rocky Object Pollute the White Dwarf SDSS J104341.53+085558.2?

    Science.gov (United States)

    Melis, Carl; Dufour, P.

    2017-01-01

    We present spectroscopic observations of the dust- and gas-enshrouded, polluted, single white dwarf star SDSS J104341.53+085558.2 (hereafter SDSS J1043+0855). Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet spectra combined with deep Keck HIRES optical spectroscopy reveal the elements C, O, Mg, Al, Si, P, S, Ca, Fe, and Ni and enable useful limits for Sc, Ti, V, Cr, and Mn in the photosphere of SDSS J1043+0855. From this suite of elements we determine that the parent body being accreted by SDSS J1043+0855 is similar to the silicate Moon or the outer layers of Earth in that it is rocky and iron-poor. Combining this with comparison to other heavily polluted white dwarf stars, we are able to identify the material being accreted by SDSS J1043+0855 as likely to have come from the outermost layers of a differentiated object. Furthermore, we present evidence that some polluted white dwarfs (including SDSS J1043+0855) allow us to examine the structure of differentiated extrasolar rocky bodies. Enhanced levels of carbon in the body polluting SDSS J1043+0855 relative to the Earth–Moon system can be explained with a model where a significant amount of the accreted rocky minerals took the form of carbonates; specifically, through this model the accreted material could be up to 9% calcium-carbonate by mass.

  7. Electrocatalytic Study of Carbon Dioxide Reduction By Co(TPPCl Complex

    Directory of Open Access Journals (Sweden)

    Khalaf Alenezi

    2016-01-01

    Full Text Available Carbon dioxide (CO2 is notorious for being a greenhouse gas and is the most important cause of global warming. However, it can be converted into useful products as it is a source of carbon. Reduction of CO2 is therefore an attractive research topic for many chemists. Different methods of electrocatalytic reduction of CO2 have been reported previously. Since CO2 is very stable, the direct electroreduction of CO2 into CO requires high potential at −2.2 V versus Ag/AgCl. In this work, CO2 reduction was carried out by the photoelectrocatalysis of CO2 in the presence of cobalt(IIItetraphenylporphyrin [Co(TPPCl] at −1.85 V with a current efficiency of 71%. At illuminated p-type silicon photocathode, the reduction of CO2 into CO was performed at a potential of 300 mV which is positive. However, at the same conditions, potential of −1.55 V with a current efficiency of ca 65% is required for the carbon electrode.

  8. Titania Nanotubes Grown on Carbon Fibers for Photocatalytic Decomposition of Gas-Phase Aromatic Pollutants

    Directory of Open Access Journals (Sweden)

    Wan-Kuen Jo

    2014-03-01

    Full Text Available This study aimed to prepare titania (TiO2 nanotube (TNT arrays grown on un-activated carbon fibers (UCFs, with the application of different TiO2 loadings based on the coating-hydrothermal process, and to evaluate their photocatalytic activity for the degradation of sub-ppm levels of aromatic pollutants (benzene, toluene, ethyl benzene, and o-xylene (BTEX using a plug-flow photocatalytic reactor. The characteristics of the prepared photocatalysts were determined by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX, transmission electron microscopy (TEM, UV-visible absorption spectroscopy (UV-Vis and X-ray diffraction (XRD analyses. Spectral analysis showed that the prepared photocatalysts were closely associated with the characteristics of one-dimensional nanostructured TiO2 nanotubes for TNTUCFs and spherical shapes for TiO2-coated UCF (TUCF. The photocatalytic activities of BTEX obtained from TNTUCFs were higher than those obtained from a reference photocatalyst, TUCF. Specifically, the average degradation efficiencies of BTEX observed for TNTUCF-10 were 81%, 97%, 99%, and 99%, respectively, while those observed for TUCF were 14%, 42%, 52%, and 79%, respectively. Moreover, the photocatalytic activities obtained for TNTUCFs suggested that the degradation efficiencies of BTEX varied with changes in TiO2 loadings, allowing for the optimization of TiO2 loading. Another important finding was that input concentrations and air flow rates could be important parameters for the treatment of BTEX, which should be considered for the optimization of TNTUCFs application. Taken together, TNTUCFs can be applied to effectively degrade sub-ppm levels of gas-phase aromatic pollutants through the optimization of operational conditions.

  9. Impact of California's Air Pollution Laws on Black Carbon and their Implications for Direct Radiative Forcing

    Science.gov (United States)

    Bahadur, R.; Feng, Y.; Russell, L. M.; Ramanathan, V.

    2010-12-01

    We examine the temporal and the spatial trends in the concentrations of black carbon (BC) - recorded by the IMPROVE monitoring network for the past 20 years - in California. Annual average BC concentrations in California have decreased by about 50% from 0.46 μg m-3 in 1989 to 0.24 μgm-3 in 2008 compared to a corresponding reductions in diesel BC emissions (also about 50%) from a peak of 0.013 Tg Yr-1 in 1990 to 0.006 Tg Yr-1 by 2008. We attribute the observed negative trends to the deployment of diesel particulate filters. Our conclusion that the reduction in diesel emissions is the primary cause of the observed BC reduction is also substantiated by a significant decrease in the ratio of BC to non-BC aerosols. The absorption efficiency of aerosols at visible wavelengths - determined from the observed scattering coefficient and the observed BC - also decreased by about 50% leading to a model-inferred negative direct radiative forcing (a cooling effect) of -1.4 Wm-2 (±60%) over California. Figure 1 (a) Annual means of measured Black Carbon (left axis) and BC fossil fuel emissions (right axis) in California from 1985 to 2008. Error bars correspond to standard deviation between measurements at each station. Dashed lines indicate a linear fit. Aerosol measurements from the IMPROVE network, emission inventories from (1) CARB, (2) [Ito and Penner, 2005] (b) Annual means of BC measured in Southern (South of 35 N), Northern (North of 38 N), and Central California (c) Annual means of measured Sulfate, Nitrate, and OC from IMPROVE network.

  10. Test methods and reduction of organic pollutant compound emissions from wood-based building and furniture materials.

    Science.gov (United States)

    Kim, Sumin; Choi, Yoon-Ki; Park, Kyung-Won; Kim, Jeong Tai

    2010-08-01

    This paper reviews different methods for the analysis of formaldehyde and volatile organic compounds (VOCs) from wood-based panel materials for furniture and building interiors and highlights research on reduction of emission from wood-based panels that can adversely affect indoor air quality. In Korea, standard test methods have been developed to determine formaldehyde and VOC emissions from building products, and the Ministry of Environment regulates the use of building materials with pollutant emissions. Desiccator and perforator methods are being used for formaldehyde and the chamber and field and laboratory emission cell (FLEC) methods for VOC and formaldehyde emissions. The VOC analyzer is a suitable pre-test method for application as a total VOC (TVOC) emission test and bake-out is a useful method to reduce TVOC and formaldehyde emissions from furniture materials in indoor environments.

  11. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Institute of Scientific and Technical Information of China (English)

    Chuanxiang Zhang; Haijun Tao; Yuming Dai; Xiancong He; Kejie Zhang

    2014-01-01

    Se-modified ruthenium supporting on carbon (Sex–Ru/C) electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG) in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS) presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR) performance was improved by appearance of selenium oxides.

  12. PREPARATION OF WC-Co POWDER BY DIRECT REDUCTION AND CARBONIZATION

    Institute of Scientific and Technical Information of China (English)

    Zhonglai Yi; Gangqin Shao; Xinglong Duan; Peng Sun; Xiaoliang Shi; Zhen Xiong; Jingkun Guo

    2005-01-01

    A new approach to produce superfine WC-Co powder by direct reduction and carbonization is proposed.Water-soluble salts containing W and Co were used as raw materials. Tungsten and cobalt oxide powder (CoWO4/WO3)was first formed by a spray-pyrolysis technique, which was then mixed with carbon black and converted to WC-Co composite powder at 950℃ for 4 h in N2 atmosphere. The resulting powder has a particle size of 100-300 nm.

  13. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    He-Sheng Zhai; Lei Cao; Xing-Hua Xia

    2013-01-01

    Graphitic carbon nitride (g-C3N4) was synthesized via direct pyrolysis of melamine and its electrocatalysis toward oxygen reduction reaction was studied.The morphology and structures of the products were characterized by scanning electron microscope and X-ray powder diffractometer.It was found that higher pyrolysis temperature resulted in more perfect crystalline structure of the graphitic carbon nitride product.Electrochemical characterizations show that the g-C3N4 has electrocatalytic activity toward ORR through a two-step and two-electron process.

  14. Enhancement of Nitrite Reduction Kinetics on Electrospun Pd-Carbon Nanomaterial Catalysts for Water Purification.

    Science.gov (United States)

    Ye, Tao; Durkin, David P; Hu, Maocong; Wang, Xianqin; Banek, Nathan A; Wagner, Michael J; Shuai, Danmeng

    2016-07-20

    We report a facile synthesis method for carbon nanofiber (CNF) supported Pd catalysts via one-pot electrospinning and their application for nitrite hydrogenation. A mixture of Pd acetylacetonate (Pd(acac)2), polyacrylonitrile (PAN), and nonfunctionalized multiwalled carbon nanotubes (MWCNTs) was electrospun and thermally treated to produce Pd/CNF-MWCNT catalysts. The addition of MWCNTs with a mass loading of 1.0-2.5 wt % (to PAN) significantly improved nitrite reduction activity compared to the catalyst without MWCNT addition. The results of CO chemisorption confirmed that the addition of MWCNTs increased Pd exposure on CNFs and hence improved catalytic activity.

  15. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites

    Science.gov (United States)

    Sohn, I.; Fruehan, R. J.

    2006-04-01

    The reduction of iron oxide/carbon composite pellets with hydrogen at 900 °C to 1000 °C was studied. Compared to hydrogen, the reduction by carbon was negligible at 900 °C and below. However, significant carbon oxidation of the iron oxide/graphite pellets by H2O generated from the reduction of Fe2O3 by H2 was observed. At higher temperatures, reduction by carbon complicates the overall reduction mechanism, with the iron oxide/graphite composite pellet found to be more reactive than the iron oxide/char composite pellet. From the scanning electron micrographs, partially reduced composite pellets showed a typical topochemical interface with an intermediate region between an oxygen-rich unreacted core and an iron-rich outer shell. To determine the possibility of reduction by volatiles, a layer of iron oxide powders was spread on top of a high volatile containing bituminous coal and heated inside a reactor using infra-red radiation. By separating the individual reactions involved for an iron oxide/coal mixture where a complex set of reactions occur simultaneously, it was possible to determine the sole effect of volatile reduction. It was found that the light reducing gases evolve initially and react with the iron oxide, with complex hydrocarbons evolving at the later stages. The volatiles caused about 20 to 50 pct reduction of the iron oxide.

  16. Coal derivates for reduction of SO{sub 2} N0{sub x}; Derivados del Carbon para la Reduccion de SO{sub 2}-NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    moulding stage). Potassium containing briquettes exhibit a considerable capacity for NO{sub x} reduction and, interestingly, are quite selective towards NO{sub x} reduction against oxygen gasification. This behaviour is very important, taking into account that one of the main disadvantages of carbonaceous materials in NO{sub x} pollution control is the great consumption of carbon due to oxygen combustion.

  17. Laboratory Studies on Granular Filters and Their Relationship to Geotextiles for Stormwater Pollutant Reduction

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2015-04-01

    Full Text Available Applications of geotextiles within tertiary stormwater treatment systems and for stormwater infiltration can provide a substrate for biofilm formation, enabling biological treatment of contaminants. Geotextiles can serve as an efficient part of stormwater filtration within the urban water environment. The project assessed the applications of three experimental granular filters as a sustainable urban drainage system (SUDS for the decomposition of organic pollutant loading present in stormwater. The three filter rigs were packed with alternating layers of filter media consisting of gravel, pea gravel, sand and either a single, double or no layer of geotextile membrane. A nonwoven geotextile was layered within the filter media. The hydraulic loading capacity for the three filters matched that commonly used with conventional sand filters systems. Water quality parameters were quantified by measuring suspended solids, chemical oxygen demand, dissolved oxygen, pH, nitrate-nitrogen, and phosphate concentrations. It was found that Filter Rig No. 3 (upper and lower geotextile membrane and Filter Rig No. 2 (single geotextile membrane had a significant statistical difference in treatment performance from Filter Rig No. 1 (no geotextile membrane.

  18. Graphitic carbon formation through calcite reduction in blueschist metasediments from Alpine Corsica (France)

    Science.gov (United States)

    Galvez, M.; Beyssac, O.; Martinez, I.; Benzerara, K.; Malvoisin, B.

    2012-04-01

    The geochemistry of reduced carbon in subduction zones is strongly affected by mineral equilibria. We study here the geochemistry of carbon in siliceous-marbles at the direct contact with serpentinites in the Alpine eclogitic meta-ophiolithic units of northern Corsica (France). We have combined petrology, Raman spectroscopy and carbon isotopy to provide a description of both the organic and carbonate components of the rocks across a reaction front where the reaction CaCO3+SiO2+2H2=CaSiO3+C+2H2O is evidenced. The continuous reaction zone is composed by a centimeter thick pale nephrite layer at the contact with the serpentinites, followed by a thin wollastonite layer and a 5 to 20 cm thick dark zone composed of wollastonite, carbonaceous material (CM), quartz but no carbonates. There is a sharp transition to the overlying original metasediment composed of calcite+quartz which is significantly less rich in CM. Raman spectroscopy shows that CM is much more graphitic in the reaction zone than in the original sediment. Significant isotopic differences are observed apart the reaction front with δ13C (CM) and δ13C (calcite) around -15‰ and 1.3‰ respectively in the original rock far from the reaction zone, whereas δ13C (CM) is around -1‰ in the reaction zone. We interpret the graphitic CM in the reaction zone as formed from the destabilization and reduction of calcite due to the diffusion of reducing fluids from the underlying serpentinite unit. Mass balance calculations support this hypothesis and show that a complete reduction of carbonates might have occurred. The timing of this abiotic macromolecular and graphitic C formation is discussed. We show that the combined study of isotopic geochemistry and structure of inorganic and organic carbon in metamorphic rocks might be suited to reveal with great fidelity redox gradients in subduction zones.

  19. Enhanced activity and selectivity of carbon nanofiber supported Pd catalysts for nitrite reduction.

    Science.gov (United States)

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R; Werth, Charles J

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment.

  20. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  1. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    improve the oxygen reduction kinetics due to increased oxygen solubility and suppressed adsorption of phosphoric acid anions. Further enhancement of the catalytic activity can be obtained by operating the polymer electrolytes at higher temperatures. Efforts have been made to develop a polymer electrolyte......Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...

  2. Effective stress reduction in diamond films on alumina by carbon ion implantation

    CERN Document Server

    Fang Zhi Jun; Wang Li; Zhang Wei; Ma Zhe Guo; Zhang Ming

    2002-01-01

    The authors show the effective stress reduction in diamond films by implanting carbon ions into alumina substrates prior to the diamond deposition. Residual stresses in the films are evaluated by Raman spectroscopy and a more reliable method for stress determination is presented for the quantitative measurement of stress evolution. It is found that compressive stresses in the diamond films can be partly offset by the compressive stresses in the alumina substrates, which are caused by the ion pre-implantation. At the same time, the difference between the offset by the pre-stressed substrates and the total stress reduction indicates that some other mechanisms are also active

  3. Effective Stress Reduction in Diamond Films on Alumina by Carbon Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    方志军; 夏义本; 王林军; 张伟丽; 马哲国; 张明龙

    2002-01-01

    We show the effective stress reduction in diamond films by implanting carbon ions into alumina substrates prior to the diamond deposition. Residual stresses in the films are evaluated by Raman spectroscopy and a more reliable method for stress determination is presented for the quantitative measurement of stress evolution. It is found that compressive stresses in the diamond films can be partly offset by the compressive stresses in the alumina substrates, which are caused by the ion pre-implantation. At the same time, the difference between the offset by the pre-stressed substrates and the total stress reduction indicates that some other mechanisms are also active.

  4. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    Science.gov (United States)

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-05

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all.

  5. Carbide Nanoparticles Encapsulated in the Caves of Carbon Nanotubes by an In Situ Reduction-Carbonization Route

    Directory of Open Access Journals (Sweden)

    Chunli Guo

    2011-01-01

    Full Text Available Carbides (TiC, WC, and NbC nanoparticles fully encapsulated in the caves of carbon nanotubes (CNTs were synthesized via an in situ reduction-carbonization route at 600∘C in an autoclave. The structural features and morphologies of as-obtained products were investigated using by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM. HRTEM studies showed that the average diameter of CNTs encapsulated with carbide nanoparticles are in the range of 15–40 nm. The reaction temperature, the reaction time, and the metal catalyst are found to play crucial roles to the product morphology. The growth mechanism of carbide nanoparticles encapsulated in CNTs was discussed in detail.

  6. Reduction of adsorption capacity of coconut shell activated carbon for organic vapors due to moisture contents.

    Science.gov (United States)

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    In occupational hygiene, activated carbon produced from coconut shell is a common adsorbent material for harmful substances including organic vapors due to its outstanding adsorption capacity and cost advantage. However, moisture adsorption of the carbon generally decreases the adsorption capacity for organic vapors. In a previous report, we prepared several coconut shell activated carbons which had been preconditioned by equilibration with moisture at different relative humidities and measured the breakthrough times for 6 kinds of organic vapor, in order to clarify the effect of preliminary moisture content in activated carbon on the adsorption capacity in detail. We found that the relative percent weight increase due to moisture adsorption of the carbon specimen had a quantitative effect, reducing the breakthrough time. In this report, we carried out further measurements of the effect of moisture content on the adsorption of 13 kinds of organic vapor, and investigated the relationship between moisture adsorption and the reduction of the breakthrough time of activated carbon specimens. We also applied the data to the Wood's breakthrough time estimation model which is an extension of the Wheeler-Jonas equation.

  7. Carbon Footprint Reduction in Transportation Activity by Emphasizing the Usage of Public Bus Services Among Adolescents

    Science.gov (United States)

    Sukor, Nur Sabahiah Abdul; Khairiyah Basri, Nur; Asmah Hassan, Sitti

    2017-08-01

    Transportation is one of the sectors that contributes to the Greenhouse Gases (GHGs) emissions. In terms of carbon footprint, transportation is among the major contributors of high carbon intensity in the urban area. This study was conducted to reduce the carbon footprint contributed by the transportation sector in Penang Island by emphasizing the use of public buses. Secondary school students were the target group for this study. They were asked to report their daily travel behaviour and fuel consumption in a travel journal. The fuel consumption data from the travel journal were used to calculate each individual’s carbon emission level. After the analyses, the value of carbon emissions was revealed to the students. Next, they were encouraged to use public transport in a motivation session and were asked to record their fuel consumption in the travel journal once again. The results showed that there was a significant difference in fuel consumption before and after the motivation session, as the students preferred to use public buses instead of private vehicles after the motivation session. This indicates that the motivation programme had been successful in creating the awareness towards carbon footprint reduction among the adolescents.

  8. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  9. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Science.gov (United States)

    Yu, Zhipeng; Piao, Jinhua; Liang, Zhenxing

    2017-01-01

    2D nitrogen-doped mesoporous carbon (NMC) is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR). The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM), nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and rotating disk electrode measurements (RDE). The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells. PMID:28772558

  10. Emission reduction of NOx, PM, PM-carbon, and PAHs from a generator fuelled by biodieselhols.

    Science.gov (United States)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Chao, How-Ran; Lin, Chih-Chung; Hsieh, Lien-Te

    2014-06-15

    This investigation examines the particulate matter (PM), particulate carbon, polycyclic aromatic hydrocarbons (PAHs), and nitrogen oxides (NOx) emitted from a generator fueled by petroleum diesel blended with waste-edible-oil-biodiesel and water-containing acetone. Experimental results show that using biodieselhols with water-containing (or pure) acetone as the fuel of generator, in comparison to using petroleum diesel, significantly reduces PM emission; roughly, this reduction increased as percentage of water-containing acetone increased. When the percentages of waste-edible-oil-biodiesel were ≤ 5 vol%, adding pure or water-containing acetone (1-3 vol%) to biodieselhols generated emission reductions of NOx, PM, particle-bound organic carbon (OC), total-PAHs, and total-BaPeq. Consequently, using water-containing acetone biodieselhols as an alternative generator fuel is feasible and helps recycle and reuse waste solvents containing water-containing acetone.

  11. Effect of oxidation and catalytic reduction of trace organic contaminants on their activated carbon adsorption.

    Science.gov (United States)

    Schoutteten, Klaas V K M; Hennebel, Tom; Dheere, Ellen; Bertelkamp, Cheryl; De Ridder, David J; Maes, Synthia; Chys, Michael; Van Hulle, Stijn W H; Vanden Bussche, Julie; Vanhaecke, Lynn; Verliefde, Arne R D

    2016-12-01

    The combination of ozonation and activated carbon (AC) adsorption is an established technology for removal of trace organic contaminants (TrOCs). In contrast to oxidation, reduction of TrOCs has recently gained attention as well, however less attention has gone to the combination of reduction with AC adsorption. In addition, no literature has compared the removal behavior of reduction vs. ozonation by-products by AC. In this study, the effect of pre-ozonation vs pre-catalytic reduction on the AC adsorption efficiency of five TrOCs and their by-products was compared. All compounds were susceptible to oxidation and reduction, however the catalytic reductive treatment proved to be a slower reaction than ozonation. New oxidation products were identified for dinoseb and new reduction products were identified for carbamazepine, bromoxynil and dinoseb. In terms of compatibility with AC adsorption, the influence of the oxidative and reductive pretreatments proved to be compound dependent. Oxidation products of bromoxynil and diatrizoic acid adsorbed better than their parent TrOCs, but oxidation products of atrazine, carbamazepine and dinoseb showed a decreased adsorption. The reductive pre-treatment showed an enhanced AC adsorption for dinoseb and a major enhancement for diatrizoic acid. For atrazine and bromoxynil, no clear influence on adsorption was noted, while for carbamazepine, the reductive pretreatment resulted in a decreased AC affinity. It may thus be concluded that when targeting mixtures of TrOCs, a trade-off will undoubtedly have to be made towards overall reactivity and removal of the different constituents, since no single treatment proves to be superior to the other.

  12. Organic micro-pollutant removal in liquid-phase using carbonized silk cotton hull

    Institute of Scientific and Technical Information of China (English)

    M Sathishkumar; A R Binupriya; D Kavitha; R Selvakumar; K K Sheema; E Yun; J G Choi

    2008-01-01

    Phenolic compounds constitute one of the major pollutants in the modern world. Although many physical and chemical treatment technologies for their removal exist, most of them are economically not feasible. The present study was aimed at using silk cotton hull, a potent agricultural waste as an adsobent for removal of 2,4-dichlorophenol (2,4-DCP), which was used as a model phenolic compound. The process parameters were investigated and optimized conditions were determined. The equilibrium time was found to be 60 and 80 min for 10 and 20 mg/L and 100 min for 30 and 40 mg/L 2,4-DCP concentrations, respectively. Among the kinetic models applied, pseudo-second order model fitted well. The maximum adsorption capacity was 16.0 mg/g by Langmuir isotherm. Acidic pH was found favorable for the adsorption of 2,4-DCP. Studies on pH effect and desorption seemed to show that chemisorption played a major role in the adsorption process. In thermodynamic study, the change in entropy (△S°) and heat of adsorption (△H°) of silk cotton hull carbon (SCHC) was estimated as 14.01 J/(mol·K) and 3.04 kJ/mol, respectively. SCHC as adsorbent for removal of 2,4-DCP from aqueous solution, is effective, inexpensive, indigenous, reusable, has low treatment time and is easily available in large quantities as waste there by significantly lowers the cost of wastewater treatment.

  13. Efficient Oxidative Removal of Organic Pollutants by Ordered Mesoporous Carbon-Supported Cobalt Phthalocyanine

    Directory of Open Access Journals (Sweden)

    Yi Chen

    2016-01-01

    Full Text Available Ordered mesoporous carbon (OMC materials have received attention for use as supports in highly efficient catalytic systems because of their excellent properties. We used epoxy compound 2,3-epoxypropyl trimethylammonium chloride (EPTAC to modify cobalt tetraaminophthalocyanine (CoTAPc and obtained a novel catalyst (OMC-CoTAPc-EPTAC based on OMC-bonded CoTAPc-EPTAC that could oxidize Acid Red 1 (AR1 dyes by hydrogen peroxide (H2O2 activation under neutral conditions. OMC enhanced the catalytic performance of OMC-CoTAPc-EPTAC, which resulted in the combined high catalytic activity and high stability. Because of its large surface area and tunable pore texture, OMC has high substrate accessibility, and the modification of the catalyst with EPTAC could promote adsorption of the target substrate into OMC, which achieved the aim of in situ catalytic oxidation with enrichment of the target substrate and improved the catalytic efficiency significantly. Electron paramagnetic resonance spin-trap experiments confirmed that the OMC-CoTAPc-EPTAC/H2O2 system had a nonradical catalytic mechanism, and the high-valent cobalt-oxo intermediates and generated holes were speculated to act as dominant oxidation species for the catalytic degradation of AR1. These results demonstrated a new strategy for the elimination of low-concentration organic pollutants.

  14. Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal.

    Science.gov (United States)

    Hu, Jingyi; Aarts, Annelies; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2016-07-15

    Integrating powdered activated carbon (PAC) into wastewater tertiary treatment is a promising technology to reduce organic micro-pollutant (OMP) discharge into the receiving waters. To take advantage of the existing tertiary filter, PAC was pre-embedded inside the filter bed acting as a fixed-bed adsorber. The pre-embedding (i.e. immobilization) of PAC was realized by direct dosing a PAC solution on the filter top, which was then promoted to penetrate into the filter media by a down-flow of tap water. In order to examine the effectiveness of this PAC pre-embedded filter towards OMP removal, batch adsorption tests, representing PAC contact reactor (with the same PAC mass-to-treated water volume ratio as in the PAC pre-embedded filter) were performed as references. Moreover, as a conventional dosing option, PAC was dosed continuously with the filter influent (i.e. the wastewater secondary effluent with the investigated OMPs). Comparative results confirmed a higher OMP removal efficiency associated with the PAC pre-embedded filter, as compared to the batch system with a practical PAC residence time. Furthermore, over a filtration period of 10 h (approximating a realistic filtration cycle for tertiary filters), the continuous dosing approach resulted in less OMP removal. Therefore, it was concluded that the pre-embedding approach can be preferentially considered when integrating PAC into the wastewater tertiary treatment for OMP elimination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Adoption of voluntary water-pollution reduction technologies and water quality perception among Danish farmers

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Andersen, Laura Mørch; Pedersen, Søren Marcus

    2015-01-01

    The adoption of voluntary nutrient reduction technologies among Danish farmers is relatively low despite the introduction of a number of incentives to do so. With data from 267 farmers, this study analyzes the level of adoption of these technologies and the farmers’ perception of water quality......, existing regulatory measures and their implementation strategies. In general, farmers perceive the water quality to be above average and indicate a strong opposition to penalties for non-compliance. Results of two ordered probit models on adoption and perception show a significant importance of farm...... and soil types, farm size and slopes and information availability. These findings point to the need for increased information dissemination on water quality requirements both at national and regional levels and technical and institutional support for the existing and future incentives....

  16. Polydopamine-graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction

    Science.gov (United States)

    Qu, Konggang; Zheng, Yao; Dai, Sheng; Qiao, Shi Zhang

    2015-07-01

    Composite materials combining nitrogen-doped carbon (NC) with active species represent a paramount breakthrough as alternative catalysts to Pt for the oxygen reduction reaction (ORR) due to their competitive activity, low cost and excellent stability. In this paper, a simple strategy is presented to construct graphene oxide-polydopamine (GD) based carbon nanosheets. This approach does not need to modify graphene and use any catalyst for polymerization under ambient conditions, and the obtained carbon nanosheets possess adjustable thicknesses and uniform mesoporous structures without using any template. The thickness of GD hybrids and the carbonization temperature are found to play crucial roles in adjusting the microstructure of the resulting carbon nanosheets and, accordingly their ORR catalytic activity. The optimized carbon nanosheet generated by a GD hybrid of 5 nm thickness after 900 °C carbonization exhibits superior ORR activity with an onset potential of -0.07 V and a kinetic current density of 13.7 mA cm-2 at -0.6 V. The unique mesoporous structure, high surface areas, abundant defects and favorable nitrogen species are believed to significantly benefit the ORR catalytic process. Furthermore, it also shows remarkable durability and excellent methanol tolerance outperforming those of commercial Pt/C. In view of the physicochemical versatility and structural tunability of polydopamine (PDA) materials, our work would shed new light on the understanding and further development of PDA-based carbon materials for highly efficient electrocatalysts.Composite materials combining nitrogen-doped carbon (NC) with active species represent a paramount breakthrough as alternative catalysts to Pt for the oxygen reduction reaction (ORR) due to their competitive activity, low cost and excellent stability. In this paper, a simple strategy is presented to construct graphene oxide-polydopamine (GD) based carbon nanosheets. This approach does not need to modify graphene and use

  17. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  18. Synthesis of Al2O3/WC powder by aluminothermic reduction and carbonization method

    Institute of Scientific and Technical Information of China (English)

    韩兵强; 李楠

    2004-01-01

    Al2O3/WC powder was synthesized by means of aluminothermic reduction-carbonization with metallic Al powder, yellow tungsten oxide and carbon black or graphite as raw materials under the protection of coke granules.The effects of Al2O3 content, temperature, C/WO3 molar ratio, and atmosphere on the synthesis of Al2O3/WC powder were studied. The results show that the relative content of WC and W2C is strongly influenced by the factors mentioned-above. Carbon black has higher reactivity than graphite. Al2O3-WC composite is easier to obtain under the protection of coke granules than under argon atmosphere. The CO in the coke layer can easily react with tungsten to form WC and to transfer from W2 C to WC.

  19. Electro-catalytic effect of manganese oxide on oxygen reduction at teflonbonded carbon electrode

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode, the Tafel slope is-0.084V/dec and the apparent exchange current density is (1.02-3.0)×10-7 A/cm2. In the presence of manganese oxide on carbon electrode,the couple Mn3+/Mn4+ reacts with the O2 adsorbed on carbon sites forming O2- radicals and acceletes the dismutation of O2-, which contributes to the catalytic effect of manganese oxide for OR reaction.

  20. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  1. Synthesis of boron carbide nanoflakes via a bamboo-based carbon thermal reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jun [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Li, Qianqian [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Xia, Yang; Cheng, Xuejuan; Gan, Yongping; Huang, Hui [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Zhang, Wenkui, E-mail: msechem@zjut.edu.cn [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Tao, Xinyong, E-mail: tao@zjut.edu.cn [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China)

    2013-12-25

    Graphical abstract: B{sub 4}C nanoflakes were synthesized via a facile and cost-effective bamboo-based carbon thermal reduction method. Highlights: •Boron carbide nanoflakes were successfully synthesized via a bamboo-based carbon thermal reduction method. •A fluoride-assisted VLS nucleation and VS growth mechanism were proposed. •We studied the resistivity of boron carbide nanoflakes via in situ TEM techniques for the first time. -- Abstract: Boron carbide nanoflakes have been successfully synthesized by a facile and cost-effective bamboo-based carbon thermal reduction method. The majority of the boron carbide products exhibited a flake-like morphology with lateral dimensions of 0.5–50 μm in width and more than 50 μm in length, while the thickness was less than 150 nm. The structural, morphological, and elemental analyses demonstrated that these nanoflakes grew via the fluoride-assisted vapor–liquid–solid combined with vapor–solid growth mechanism. The corresponding growth model was proposed. In addition, the electrical property of individual boron carbide nanoflake was investigated by an in situ two point method inside a transmission electron microscope. The resistivity of boron carbide nanoflakes was measured to be 0.14 MΩ cm.

  2. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen.

    Science.gov (United States)

    Karnicka, Katarzyna; Miecznikowski, Krzysztof; Kowalewska, Barbara; Skunik, Magdalena; Opallo, Marcin; Rogalski, Jerzy; Schuhmann, Wolfgang; Kulesza, Pawel J

    2008-10-01

    The ability of such a common redox mediator as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to undergo sorption on carbon surfaces is explored here to convert multiwalled carbon nanotubes (CNTs) into a stable colloidal solution of ABTS-modified carbon nanostructures, the diameters of which are approximately 10 nm (as determined by transmission electron microscopy). Subsequently, inks composed of fungal laccase (Cerrena unicolor) mixed with the dispersion of ABTS-modified CNTs and stabilized with Nafion, were deposited on glassy carbon and successfully employed to the reduction of oxygen in McIlvain buffer at pH 5.2. For comparison, the systems utilizing only ABTS-free CNTs and laccase as well as ABTS-modified CNTs did not show appreciable activity toward the oxygen reduction. The three-dimensionally distributed ABTS-modified CNTs are expected to improve the film's overall conductivity and to facilitate electrical connection between the electrode and the enzyme. The network film of ABTS-modified CNTs is rigid, and it is characterized by charge propagation capabilities comparable to the conventional redox polymers. The whole concept of utilization of CNTs modified with ultrathin films of redox mediators in the preparation of efficient bioelectrocatalytic films seems to be of general importance to electroanalytical chemistry and to the development of biosensors.

  3. Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Nogala, Wojciech; Celebanska, Anna; Szot, Katarzyna [Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland); Wittstock, Gunther, E-mail: gunther.wittstock@uni-oldenburg.d [Carl von Ossietzky University of Oldenburg, Faculty of Mathematics and Science, Center of Interface Science (CIS), Department of Pure and Applied Chemistry, D-26111 Oldenburg (Germany); Opallo, Marcin, E-mail: mopallo@ichf.edu.p [Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland)

    2010-08-01

    Carbon ceramic electrodes were prepared by sol-gel processing of a hydrophobic precursor - methyltrimethoxysilane (MTMOS) - together with dispersed graphite microparticles according to a literature procedure. Bilirubin oxidase (BOx) was adsorbed on this electrode from buffer solution and this process was followed by atomic force microscopy (AFM). The electrodes exhibited efficient mediatorless electrocatalytic activity towards dioxygen reduction. The activity depends on the time of adsorption of the enzyme and the pH. The electrode remains active in neutral solution. The bioelectrocatalytic activity is further increased when a fraction of the carbon microparticles is replaced by sulfonated carbon nanoparticles (CNPs). This additive enhances the electrical communication between the enzyme and the electronic conductor. At pH 7 the carbon ceramic electrode modified with bilirubin oxidase retains ca. half of its highest activity. The role of the modified nanoparticles is confirmed by experiments in which a film embedded in a hydrophobic silicate matrix also exhibited efficient mediatorless biocatalytic dioxygen reduction. Scanning electrochemical microscopy (SECM) of the studied electrodes indicated a rather even distribution of the catalytic activity over the electrode surface.

  4. Black carbon emission reduction strategies in healthcare industry for effective global climate change management.

    Science.gov (United States)

    Raila, Emilia Mmbando; Anderson, David O

    2017-04-01

    Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO2). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.

  5. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  6. Electrochemical Degradation Characteristics of Refractory Organic Pollutants in Coking Wastewater on Multiwall Carbon Nanotube-Modified Electrode

    OpenAIRE

    Yan Wang; Shujing Sun; Guifu Ding; Hong Wang

    2012-01-01

    The multiwall carbon nanotube-mollified electrode (MWCNT-ME) was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical behavior of phenol and aniline at the MWCNT-ME were analyzed. Using ultraviolet-visible adsorption spectroscopy (UV-vis), Gas chromatography mass spectrometry (GC/MS), and chemical oxygen demand (COD) test, the electrochemical oxidation propert...

  7. Personal black carbon exposure influences ambulatory blood pressure: air pollution and cardiometabolic disease (AIRCMD-China) study.

    Science.gov (United States)

    Zhao, Xiaoyi; Sun, Zhichao; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Yang, Fumo; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Brook, Jeffrey R; Sun, Qinghua; Brook, Robert D; Rajagopalan, Sanjay; Fan, Zhongjie

    2014-04-01

    Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia's megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four-hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) μg/m(3). Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17-0.89 and 0.10-0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of -0.06 (95% confidence interval, 0.62-9.60 and -0.11 to -0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution.

  8. The kinetics and QSAR of abiotic reduction of mononitro aromatic compounds catalyzed by activated carbon.

    Science.gov (United States)

    Gong, Wenwen; Liu, Xinhui; Gao, Ding; Yu, Yanjun; Fu, Wenjun; Cheng, Dengmiao; Cui, Baoshan; Bai, Junhong

    2015-01-01

    The kinetics of abiotic reduction of mono-nitro aromatic compounds (mono-NACs) catalyzed by activated carbon (AC) in an anaerobic system were examined. There were 6 types of substituent groups on nitrobenzene, including methyl, chlorine, amino, carboxyl, hydroxyl and cyanogen groups, at the ortho, meta or para positions. Our results showed that reduction followed pseudo-first order reaction kinetics, and that the rate constant (logkSA) varied widely, ranging between -4.77 and -2.82, depending upon the type and position of the substituent. A quantitative structure-activity relationship (QSAR) model using 15 theoretical molecular descriptors and partial-least-squares (PLS) regression was developed for the reduction rates of mono-NACs catalyzed by AC. The cross-validated regression coefficient (Qcum(2), 0.861) and correlation coefficient (R(2), 0.898) indicated significantly high robustness of the model. The VIP (variable importance in the projection) values of energy of the lowest unoccupied molecular orbital (ELUMO) and the maximum net atomic charge on the aromatic carbon bound to the nitro group (QC(-)) were 1.15 and 1.01, respectively. These values indicated that the molecular orbital energies and the atomic net charges might play important roles in the reduction of mono-NACs catalyzed by AC in anaerobic systems.

  9. Reduction Kinetics of MnO from High-Carbon Ferromanganese Slags by Carbonaceous Materials in Ar and CO Atmospheres

    Science.gov (United States)

    Safarian, J.; Tranell, G.; Kolbeinsen, L.; Tangstad, M.; Gaal, S.; Kaczorowski, J.

    2008-10-01

    The kinetics of MnO reduction from synthetic and industrial high-carbon ferromanganese slags were investigated using a sessile drop technique at 1600 °C. The effects of the reductant type, ambient atmosphere, and slag composition on the MnO reduction were illuminated. Six different types of carbonaceous reductants were used as substrates for small slag droplets, which were reacted in a CO or Ar atmosphere, with the reaction studied in situ. The cross sections of the reacted slag-carbon samples were subsequently studied by electron-probe microanalysis (EPMA), to find the extent of the MnO reduction as a function of the reaction time. It was found that the rate of the MnO reduction is affected by both the type of reductant and the ambient atmosphere. It was observed that the MnO reduction rate from synthetic slag by cokes produced from single coals is lower than that from industrial cokes. Reduction rates obtained when charcoal was used as the reductant were higher than when coke was used, while the CO atmosphere yielded a faster initial MnO reduction than did the Ar atmosphere. It was found that the faster reduction rates in the CO atmosphere are related to the MnO reduction by CO gas. A newly developed kinetic method was applied, to calculate the rate constants for the MnO reduction by carbon and CO that considered the reaction interfaces. It was indicated that the rate of the MnO reduction by CO is less than that by carbon; however, the contribution of these reductants to slag reduction is very dependent on their contact with the slag.

  10. Amplification of Arctic warming by past air pollution reductions in Europe

    Science.gov (United States)

    Acosta Navarro, J. C.; Varma, V.; Riipinen, I.; Seland, Ø.; Kirkevåg, A.; Struthers, H.; Iversen, T.; Hansson, H.-C.; Ekman, A. M. L.

    2016-04-01

    The Arctic region is warming considerably faster than the rest of the globe, with important consequences for the ecosystems and human exploration of the region. However, the reasons behind this Arctic amplification are not entirely clear. As a result of measures to enhance air quality, anthropogenic emissions of particulate matter and its precursors have drastically decreased in parts of the Northern Hemisphere over the past three decades. Here we present simulations with an Earth system model with comprehensive aerosol physics and chemistry that show that the sulfate aerosol reductions in Europe since 1980 can potentially explain a significant fraction of Arctic warming over that period. Specifically, the Arctic region receives an additional 0.3 W m-2 of energy, and warms by 0.5 °C on annual average in simulations with declining European sulfur emissions in line with historical observations, compared with a model simulation with fixed European emissions at 1980 levels. Arctic warming is amplified mainly in fall and winter, but the warming is initiated in summer by an increase in incoming solar radiation as well as an enhanced poleward oceanic and atmospheric heat transport. The simulated summertime energy surplus reduces sea-ice cover, which leads to a transfer of heat from the Arctic Ocean to the atmosphere. We conclude that air quality regulations in the Northern Hemisphere, the ocean and atmospheric circulation, and Arctic climate are inherently linked.

  11. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  12. Electrocatalytic reduction of carbon dioxide on electrodeposited tin-based surfaces

    Science.gov (United States)

    Alba, Bianca Christina S.; Camayang, John Carl A.; Mopon, Marlon L.; del Rosario, Julie Anne D.

    2017-08-01

    The electrocatalytic reduction of carbon dioxide to small organic molecular compounds provides a means of generating alternative fuel source while suppressing climate change. Suitable catalysts, however, are necessary to optimize its reaction kinetics towards more valuable products. Consequently, in this study, electrodeposited Sn electrodes have been developed as catalysts for CO2 electroreduction. Deposition potential was varied to produce different Sn catalysts. SEM showed varying morphologies and increasing amount as the applied potential becomes more negative. Cyclic voltammetry and chronoamperometry showed that the activity and stability of the catalysts towards CO2 reduction depend on the morphology and presence of tin oxides. These results provide a better understanding on the performance of electrodeposited Sn-based surfaces as catalysts for CO2 reduction.

  13. Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Kai Wan

    2015-06-01

    Full Text Available Nitrogen-doped ordered mesoporous carbon was synthesized by using polyaniline as the carbon source and SBA-15 as the template. The microstructure, composition and electrochemical behavior were extensively investigated by the nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry and rotating ring-disk electrode. It is found that the pyrolysis temperature yielded a considerable effect on the pore structure, elemental composition and chemical configuration. The pyrolysis temperature from 800 to 1100 °C yielded a volcano-shape relationship with both the specific surface area and the content of the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic activity followed a similar volcano-shape relationship, and the carbon catalyst synthesized at 1000 °C yielded the best performance. The post-treatment in NH3 was found to further increase the specific surface area and to enhance the nitrogen doping, especially the edge-type nitrogen, which favored the oxygen reduction reaction in both acid and alkaline media. The above findings shed light on electrocatalysis and offer more strategies for the controllable synthesis of the doped carbon catalyst.

  14. Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes.

    Science.gov (United States)

    Watkins, John D; Bocarsly, Andrew B

    2014-01-01

    As an approach to combat the increasing emissions of carbon dioxide in the last 50 years, the sequestration of carbon dioxide gas in ionic liquids has become an attractive research area. Ionic liquids can be made that possess incredibly high molar absorption and specificity characteristics for carbon dioxide. Their high carbon dioxide solubility and specificity combined with their high inherent electrical conductivity also creates an ideal medium for the electrochemical reduction of carbon dioxide. Herein, a lesser studied ionic liquid, 1-ethyl-3-methylimidazolium trifluoroacetate, was used as both an effective carbon dioxide capture material and subsequently as an electrochemical matrix with water for the direct reduction of carbon dioxide into formate at indium, tin, and lead electrodes in good yield (ca. 3 mg h(-1) cm(-2)).

  15. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  16. Enhancement of oxygen reduction activity of nanoshell carbons by introducing nitrogen atoms from metal phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Jun-ichi, E-mail: jozaki@cee.gunma-u.ac.j [Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Tanifuji, Shin-ichi; Furuichi, Atsuya; Yabutsuka, Katsutoshi [Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515 (Japan)

    2010-02-15

    Nanoshell carbon is a type of catalytically grown nanocarbon with a hollow, round, shell-like structure, with a diameter in the range of approximately 20-50 nm. It has been shown to possess the electrocatalytic activity for oxygen reduction reaction (ORR) and is also expected to be a non-Pt catalyst for polymer electrolyte fuel cells. This paper reports the synergetic enhancement of the ORR activity of nanoshell carbons caused by the coexistence of nitrogen atoms. The nanoshell carbons were prepared by the carbonization of furan resin in the presence of acetylacetonates (AAs) and of phthalocyanines (Pcs), which contained Fe, Co, and Ni. The Pc-derived nanoshells (MP-T series; M = Co or Fe, T = carbonization temperature) showed higher ORR activities than the AA-derived nanoshells (MA-T series; M = Co or Fe, T = carbonization temperature) when the same metal elements were employed. An XPS study revealed that nitrogen species were introduced to the surface of the nanoshells when Pcs were used as the nanoshell-forming catalysts, and that no metal species remained on the nanoshells. Principally, the ORR activity of the carbons was governed by the presence of the nanoshells and further enhancement could be achieved by the introduction of nitrogen atoms. 0.78 V of OCV and 0.21 W cm{sup -2} of the maximum power density were observed for a fuel cell whose MEA consisted of 3CoP1000 cathode and a commercial Pt/C anode, when it was operated at 80 deg. C under a pressurized condition of 0.35 MPa.

  17. Estimation of Injected Carbon Longevity and Re-oxidation Times at Enhanced Reductive Bioremediation Sites

    Science.gov (United States)

    Tillotson, J.; Borden, R. C.

    2014-12-01

    Addition of an organic substrate to provide an electron donor and carbon source can be very effective at stimulating enhanced reductive bioremediation (ERB) of chlorinated solvents, energetics, and other groundwater contaminants. However, the quantity of electron donor added is usually based on an individual's or company's "rule of thumb" rather than considering site-specific conditions such as groundwater velocity, carbon source, and upgradient electron acceptor concentrations, potentially leading to unnecessarily large amounts of carbon injected. Mass balance estimates indicate that over 99% of electrons donated go to electron acceptors other than the primary contaminants. Thus, injecting excessive amounts of organic carbon can lead to a persistent reducing zone, releasing elevated levels of dissolved manganese, iron, methane, and sometimes arsenic. Monitoring data on carbon injections and electron acceptors were collected from 33 ERB sites. Two approaches were then used to evaluate carbon longevity and the time required to return to near-oxic conditions at an ERB site. The first method employed a simple mass balance approach, using such input parameters as groundwater velocity, upgradient electron acceptors, and amount of carbon injected. In the second approach, a combined flow, transport and geochemical model was developed using PHT3D to estimate the impact of ERB on secondary water quality impacts (SWQIs; e.g., methane production, iron mobilization and transport, etc.) The model was originally developed for use in estimating SWQIs released from petroleum sites, but has since been modified for use at ERB sites. The ERB site to be studied is a perchlorate release site in Elkton, Maryland where 840 lbs of an emulsified vegetable oil was injected. The results from the simple mass balance approach and PHT3D model will be compared and used to identify conditions where the simplified approach may be appropriate.

  18. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    Science.gov (United States)

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  19. Development of advanced carbon based composite electrodes for the detection and the degradation of organic pollutants in water via electrochemical/photoelectrochemical processes

    OpenAIRE

    2014-01-01

    Ph.D. (Chemistry) In this study, carbon based electrode materials such as glassy carbon, graphene, diamond and exfoliated graphite were explored as suitable electrode materials for electrochemical detection, electrochemical and photoelectrochemical degradation of organic water pollutants. Graphene modified glassy carbon electrode sensor was developed for bisphenol A. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene- modified glassy carbon electro...

  20. Study on the associated removal of pollutants from coal-firing flue gas using biomass activated carbon pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiping; Yuan, Wanli [Qingdao Univ., Shandong (China). Electrical and Mechanical Engineering College; Qi, Haiying [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2013-07-01

    A pilot-scale multi-layer system was developed for the adsorption of SO{sub 2}/NO{sub x}/Hg from flue gas (real flue gases of an heating boiler house) at various operating conditions, including operating temperature and activated carbon materials. Excellent SO{sub 2}/NO{sub x}/Hg removal efficiency was achieved with the multi-layer design with carbons pellets. The SO{sub 2} removal efficiency achieved with the first layer adsorption bed clearly decreased as the operating temperature was increased due to the decrease of physisorption performance. The NO{sub x} removal efficiency measured at the second layer adsorption bed was very higher when the particle carbon impregnated with NH{sub 3}. The higher amounts of Hg absorbed by cotton-seed-skin activated carbon (CSAC) were mainly contributed by chlorinated congeners content. The simultaneously removal of SO{sub 2}/NO{sub x}/Hg was optimization characterized with different carbon layer functions. Overall, The alkali function group and chloride content in CSAC impelled not only the outstanding physisorption but also better chemisorptions. The system for simultaneously removal of multi-pollutant-gas with biomass activated carbon pellets in multi-layer reactor was achieved and the removal results indicated was strongly depended on the activated carbon material and operating temperature.

  1. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  2. Markedly enhanced direct radiative forcing of black carbon particles under polluted urban environments

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zamora, Misti; Zeng, Liming; Shao, Min; Wu, Yusheng; Zheng, Jun; Wang, Yuan; Collins, Don; Zhang, Renyi

    2016-04-01

    Black carbon (BC) particles, produced from incomplete fossil fuel combustion and biomass burning, are ubiquitous in the atmosphere and have profound impacts on air quality, human health, weather, and climate. For example, in areas identified as aerosol hotspots, which include many urban centers and megacities worldwide, solar heating by BC particles has been shown to be comparable to warming due to the greenhouse gases2. Although BC represents a key short-lived climate forcer, its direct radiative forcing remains highly uncertain. In particular, the available results of absorption enhancement of BC particles during atmospheric aging are conflicting from the previous studies, leading to a large uncertainty in global radiative transfer calculation. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China and Houston, US, using a novel chamber approach. BC aging exhibits two distinct stages - initial transformation from a fractal to spherical morphology with little absorption variation and the subsequent growth of fully compact particles with a maximum absorption enhancement factor of 2.4. The variation in BC direct radiative forcing is highly dependent of the rate and timescale of aging, with an estimated increase of 0.45 (0.21 - 0.80) W m-2 from fresh to fully aged particles. Our results reveal a high climatic impact in polluted environments due to rapid aging and a clear distinction between urban cities in developed and developing countries for BC particles, highlighting a larger than recognized co-benefit in air quality improvement and climate protection by BC mediation.

  3. [Removal of DON in micro-polluted raw water by coagulation and adsorption using activated carbon].

    Science.gov (United States)

    Liu, Bing; Yu, Guo-Zhong; Gu, Li; Zhao, Cheng-Mei; Li, Qing-Fei; Zhai, Hui-Min

    2013-04-01

    Dissolved organic nitrogen as a precursor of new type nitrogenous disinfection by-products in drinking water attracted gradually the attention of scholars all over the world. In order to explore the mechanism of DON removal in micro-polluted raw water by coagulation and adsorption, water quality parameters, such as DON, DOC, NH4(+) -N, UV254, pH and dissolved oxygen, were determined in raw water and the molecular weight distribution of the DON and DOC was investigated. The variations in DON, DOC and UV254 in the coagulation and adsorption tests were investigated, and the changes of DON in raw water were characterized using three-dimensional fluorescence spectroscopy. The results showed that DON, DOC and UV254 were 1.28 mg x L(-1), 8.56 mg x L(-1), 0.16 cm(-1), and DOC/DON and SUVA were 6.69 mg x mg(-1), 1.87 m(-1) x (mg x L(-1))(-1) in raw water, respectively. The molecular weight distribution of the DON in raw water showed a bimodal distribution. The small molecular weight ( 20 000) fractions accounted for about 22%. The removal of DON, DOC and UV254 was about 20%, 26% and 70%, respectively, in the coagulation test and the dosage of coagulant was 10 mg x L(-1). The removal of DON, DOC and UV254 was about 60%, 35% and 100%, respectively, in the adsorption test and the dosage of activated carbon was 1.0 g. In the combination of coagulation and adsorption, the removal of DON and DOC reached approximately 82% and 64%, respectively. 3DEEM revealed that the variation of DON in the coagulation and adsorption tests depended intimately on tryptophan protein-like substances, aromatic protein-like substances and fulvic acid-like substances.

  4. Key Intermediates of Carbon Dioxide Reduction on Silver from Vibrational Nanospectroscopy

    Science.gov (United States)

    Jain, Prashant

    2017-06-01

    The design of efficacious, selective heterogeneous catalysts relies on the knowledge of the nature of active sites and reactive intermediates involved in the catalytic transformation. This is also true in the case of carbon dioxide reduction, an important scientific and technological problem. With the goal of furthering mechanistic understanding of a complex transformation that yields multiple products, we are employing surface enhanced Raman scattering (SERS) to image carbon dioxide photoreduction on individual Ag nanoparticles within a heterogeneous dispersion. The lack of ensemble-averaging is allowing us to detect fleeting intermediates in the adsorption and catalytic photoreduction processes. In particular, we have detected on some sites physisorbed CO_{2} and at others chemisorbed CO_{2}^{-} anion radical, a critical intermediate in carbon dioxide reduction. The primary product formed also appears to vary from one catalytic nanoparticle to another: CO, formaldehyde, or formic acid. The origin of such heterogeneities in adsorption and photoreduction behavior are being traced to differences in nanoparticle structure or surface composition, from which structure/activity relationships will be established, with aid from electronic structure theory. This single-nanoparticle approach is providing molecular-level insights into a broad range of industrially and environmentally relevant catalytic transformations.

  5. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  6. Carbon-cryogel hierarchical composites as effective and scalable filters for removal of trace organic pollutants from water.

    Science.gov (United States)

    Busquets, Rosa; Ivanov, Alexander E; Mbundi, Lubinda; Hörberg, Sofia; Kozynchenko, Oleksandr P; Cragg, Peter J; Savina, Irina N; Whitby, Raymond L D; Mikhalovsky, Sergey V; Tennison, Stephen R; Jungvid, Hans; Cundy, Andrew B

    2016-11-01

    Effective technologies are required to remove organic micropollutants from large fluid volumes to overcome present and future challenges in water and effluent treatment. A novel hierarchical composite filter material for rapid and effective removal of polar organic contaminants from water was developed. The composite is fabricated from phenolic resin-derived carbon microbeads with controllable porous structure and specific surface area embedded in a monolithic, flow permeable, poly(vinyl alcohol) cryogel. The bead-embedded monolithic composite filter retains the bulk of the high adsorptive capacity of the carbon microbeads while improving pore diffusion rates of organic pollutants. Water spiked with organic contaminants, both at environmentally relevant concentrations and at high levels of contamination, was used to determine the purification limits of the filter. Flow through tests using water spiked with the pesticides atrazine (32 mg/L) and malathion (16 mg/L) indicated maximum adsorptive capacities of 641 and 591 mg pollutant/g carbon, respectively. Over 400 bed volumes of water contaminated with 32 mg atrazine/L, and over 27,400 bed volumes of water contaminated with 2 μg atrazine/L, were treated before pesticide guideline values of 0.1 μg/L were exceeded. High adsorptive capacity was maintained when using water with high total organic carbon (TOC) levels and high salinity. The toxicity of water filtrates was tested in vitro with human epithelial cells with no evidence of cytotoxicity after initial washing.

  7. Transportation, Air Pollution, and Climate Change

    Science.gov (United States)

    ... Share Facebook Twitter Google+ Pinterest Contact Us Transportation, Air Pollution, and Climate Change Accomplishments & Successes View successes from ... reduce carbon pollution. Carbon pollution from transportation Other Air Pollution Learn about smog, soot, ozone, and other air ...

  8. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  9. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction

    Science.gov (United States)

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-09-01

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm-2) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  10. Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO_2 Reduction

    OpenAIRE

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2013-01-01

    A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na+ into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO_2 reduction. Hydrogen evolution and CO_2 reduction reactions of metal oxides with a given alkali carbona...

  11. Simulation of reduction of iron-oxide-carbon composite pellets in a rotary hearth furnace

    Science.gov (United States)

    Halder, Sabuj

    The primary motivation of this work is to evaluate a new alternative ironmaking process which involves the combination of a Rotary Hearth Furnace (RHF) with an iron bath smelter. This work is concerned primarily, with the productivity of the RHF. It is known that the reduction in the RHF is controlled by chemical kinetics of the carbon oxidation and wustite reduction reactions as well as by heat transfer to the pellet surface and within the pellet. It is heat transfer to the pellet which limits the number of layers of pellets in the pellet bed in the RHF and thus, the overall productivity. Different types of carbon like graphite, coal-char and wood charcoal were examined. Part of the research was to investigate the chemical kinetics by de-coupling it from the influence of heat and mass transfer. This was accomplished by carrying out reduction experiments using small iron-oxide-carbon powder composite mixtures. The reaction rate constants were determined by fitting the experimental mass loss with a mixed reaction model. This model accounts for the carbon oxidation by CO2 and wustite reduction by CO, which are the primary rate controlling surface-chemical reactions in the composite system. The reaction rate constants have been obtained using wustite-coal-char powder mixtures and wustite-wood-charcoal mixtures. The wustite for these mixtures was obtained from two iron-oxide sources: artificial porous analytical hematite (PAH) and hematite ore tailings. In the next phase of this study, larger scale experiments were conducted in a RHF simulator using spherical composite pellets. Measurement of the reaction rates was accomplished using off-gas analysis. Different combinations of raw materials for the pellets were investigated. These included artificial ferric oxide as well as naturally existing hematite and taconite ores. Graphite, coal-char and wood-charcoal were the reductants. Experiments were conducted using a single layer, a double layer and a triple layer of

  12. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Chuanxiang Zhang

    2014-12-01

    Full Text Available Se-modified ruthenium supporting on carbon (Sex–Ru/C electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR performance was improved by appearance of selenium oxides.

  13. High-performance oxygen reduction catalyst derived from porous, nitrogen-doped carbon nanosheets

    Science.gov (United States)

    Wang, Hao; Chen, Kai; Cao, Yingjie; Zhu, Juntong; Jiang, Yining; Feng, Lai; Dai, Xiao; Zou, Guifu

    2016-10-01

    A facile, self-foaming strategy is reported to synthesize porous, nitrogen-doped carbon nanosheets (N-CNSs) as a metal-free electrocatalyst for oxygen reduction reaction (ORR). Benefiting from the synergistic functions of N-induced active sites, a highly specific surface area and continuous structure, the optimal N-CNS catalyst exhibits Pt-like ORR activity (positive onset potential of ˜0 V versus Ag/AgCl and limiting current density of 5 mA cm-2) through a four-electron transfer process in alkaline media with excellent cycle stability and methanol tolerance. This work not only provides a promising metal-free ORR catalyst but also opens up a new path for designing carbon-based materials towards broad applications.

  14. Ammonia-treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiqing; Lee, Je Seung; Zhu, Qing; Liu, Jun; Wang, Yong; Dai, Sheng

    2010-04-13

    Polymer electrolyte membrane fuel cells (PEMFCs) have been considered as promising alternative power sources for many mobile and stationary applications. Compared to the fast hydrogen oxidation at the anode, the sluggish oxygen reduction reaction (ORR) at the cathode requires high-performance catalysts. Currently, platium (Pt) nanoparticles supported on high surface area carbons remain the best catalysts for ORR. However, both instability and high cost of Pt-based catalysts represent two main obstacles limiting the commercial applications of PEMFCs. The instability of supported Pt catalysts is mainly due to the corrosion of carbon support under operation conditions and the agglomation and detachment of Pt particles, leading to a decrease in catalytic surface areas. Development of corrosion resistant supports and enhancement of the interactions between Pt and supports are two strategies to improve the cathode long-term activity.

  15. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  16. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    Science.gov (United States)

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  17. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    Science.gov (United States)

    Martins, Paula; Hoyt, David W.; Bansal, Sheel; Mills, Christopher; Tfaily, Malak; Tangen, Brian; Finocchiaro, Raymond; Johnston, Michael D.; McAdams, Brandon C.; Solensky, Matthew J.; Smith, Garrett J.; Chin, Yu-Ping; Wilkins, Michael J.

    2017-01-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  18. Comparative estimation of soil and plant pollution in the impact area of air emissions from an aluminium plant after technogenic load reduction.

    Science.gov (United States)

    Evdokimova, Galina A; Mozgova, Natalya P

    2015-01-01

    The work provides a comparative analysis of changes in soil properties in the last 10-13 years along the pollution gradient of air emissions from Kandalaksha aluminium plant in connection with the reduction of their volume. The content of the priority pollutant fluorine (F) in atmospheric precipitation and in the organic horizon of soil in the plant impact zone significantly decreased in 2011-2013 compared to 2001. The aluminium concentrations reduced only in immediate proximity to the plant (2 km). The fluorine, calcium (Ca) and magnesium (Mg) concentrations are higher in liquid phase compared to solid phase thus these elements can migrated to greater distances from the pollution source (up to 15-20 km). Silicon (Si), aluminium (Al), iron (Fe) and phosphorus (P) can be found only in solid phases and in fall-out within the 5 km. The acidity of soil litter reduced by 2 pH units in the proximity to the plot within the 2 km. The zone of maximum soil contamination decreased from 2.5 km to 1.5 km from the emission source, the zones of heavy and moderate pollution reduced by 5 km in connection with the reduction of pollutant emissions in the plant. A high correlation between the fluorine concentrations in vegetables and litter was found. Higher fluorine concentrations in the soil result in its accumulation in plants. Mosses accumulate fluorine most intensively.

  19. Study of Reciprocal Effects between Mandatory Pollutant Emissions Reduction Policy and Structural Change within the Manufacturing Sector in a Chinese Coastal Area.

    Science.gov (United States)

    Guo, Yang; Guo, Xianglin; Tian, Jinping; Chen, Lujun

    2015-11-01

    We develop a multicriteria decision-making model coupled with scenario analysis to quantitatively elucidate the reciprocal effect between a mandatory pollutant emissions reduction policy and industrial structure change within the manufacturing sector on the basis of an in-depth study of a well-developed coastal area in East China, Ningbo City, toward 2020. First, 18 two-digit level industries (TDLIs) in the manufacturing sector are screened out due to intensive emissions of the four pollutants (COD, NH3-N, SO2, and NOx). Second, a model is established to identify the optimal solution for the industrial structure adjustment of the 18 TDLIs under two scenarios, the "business-as-usual" scenario and the "industrial structure adjustment" scenario. Both scenarios are expanded into three subscenarios. Quantitative constraint conditions and two criteria are formulated to screen out the optimal solutions. We propose a coefficient of industrial structure adjustment, Ki, which could clearly reflect the policy preference in terms of industrial development and reallocate the quota of the four-pollutant emission among the 18 TDLIs with regards to the different expectations of economy development in 2020. The model will help local authorities make tailored policies to reduce pollution emissions effectively through industrial structure change by delicately allocating the pollutant emission quota and setting reasonable targets of emission intensity reduction among TDLIs.

  20. Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells.

    Science.gov (United States)

    Lu, Yu; Zhu, Nengwu; Yin, Fuhua; Yang, Tingting; Wu, Pingxiao; Dang, Zhi; Liu, Meilin; Wei, Xiaorong

    2017-12-15

    Currently, the development of less expensive, more active and more stable catalysts like heteroatom-doped carbon based non-precious metal materials are highly desired for the cathodic oxygen reduction reaction (ORR) in microbial fuel cells (MFCs). Comparing with heteroatom sources from chemical reagents, biomass is notably inexpensive and abundant, containing more elements which contribute to ORR activity. Herein, we demonstrate an easy operating one-step and low-cost way to synthesize egg-derived heteroatoms-doped mesoporous carbon (EGC) catalysts utilizing egg as the biomass carbon and other elements source (sulphur, phosphorus, boron and iron), and porous g-C3N4 as both template and nitrogen source. After carbonized, such hybrid materials possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram and rotating ring-disk electrode tests show that the potential of oxygen reduction peak of EGC1-10-2 is at + 0.10V, onset potential is at + 0.257V (vs. Ag/AgCl) and electron transfer number of that is 3.84-3.92, which indicate that EGC1-10-2 via a four-electron pathway. Reactor operation shows that the maximum power density of MFC-EGC1-10-2 (737.1mWm(-2)), which is slightly higher than MFC-Pt/C (20%) (704mWm(-2)). The low cost (0.049 $g(-1)), high yield (20.26%) and high performance of EGC1-10-2 provide a promising alternative to noble metal catalysts by using abundant natural biological resources, which contribute a lot to expansion and commercialization of MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Replacing conventional carbon nucleophiles with electrophiles: nickel-catalyzed reductive alkylation of aryl bromides and chlorides.

    Science.gov (United States)

    Everson, Daniel A; Jones, Brittany A; Weix, Daniel J

    2012-04-11

    A general method is presented for the synthesis of alkylated arenes by the chemoselective combination of two electrophilic carbons. Under the optimized conditions, a variety of aryl and vinyl bromides are reductively coupled with alkyl bromides in high yields. Under similar conditions, activated aryl chlorides can also be coupled with bromoalkanes. The protocols are highly functional-group tolerant (-OH, -NHTs, -OAc, -OTs, -OTf, -COMe, -NHBoc, -NHCbz, -CN, -SO(2)Me), and the reactions are assembled on the benchtop with no special precautions to exclude air or moisture. The reaction displays different chemoselectivity than conventional cross-coupling reactions, such as the Suzuki-Miyaura, Stille, and Hiyama-Denmark reactions. Substrates bearing both an electrophilic and nucleophilic carbon result in selective coupling at the electrophilic carbon (R-X) and no reaction at the nucleophilic carbon (R-[M]) for organoboron (-Bpin), organotin (-SnMe(3)), and organosilicon (-SiMe(2)OH) containing organic halides (X-R-[M]). A Hammett study showed a linear correlation of σ and σ(-) parameters with the relative rate of reaction of substituted aryl bromides with bromoalkanes. The small ρ values for these correlations (1.2-1.7) indicate that oxidative addition of the bromoarene is not the turnover-frequency determining step. The rate of reaction has a positive dependence on the concentration of alkyl bromide and catalyst, no dependence upon the amount of zinc (reducing agent), and an inverse dependence upon aryl halide concentration. These results and studies with an organic reductant (TDAE) argue against the intermediacy of organozinc reagents. © 2012 American Chemical Society

  2. Embodied carbon mitigation and reduction in the built environment - What does the evidence say?

    Science.gov (United States)

    Pomponi, Francesco; Moncaster, Alice

    2016-10-01

    Of all industrial sectors, the built environment puts the most pressure on the natural environment, and in spite of significant efforts the International Energy Agency suggests that buildings-related emissions are on track to double by 2050. Whilst operational energy efficiency continues to receive significant attention by researchers, a less well-researched area is the assessment of embodied carbon in the built environment in order to understand where the greatest opportunities for its mitigation and reduction lie. This article approaches the body of academic knowledge on strategies to tackle embodied carbon (EC) and uses a systematic review of the available evidence to answer the following research question: how should we mitigate and reduce EC in the built environment? 102 journal articles have been reviewed systematically in the fields of embodied carbon mitigation and reduction, and life cycle assessment. In total, 17 mitigation strategies have been identified from within the existing literature which have been discussed through a meta-analysis on available data. Results reveal that no single mitigation strategy alone seems able to tackle the problem; rather, a pluralistic approach is necessary. The use of materials with lower EC, better design, an increased reuse of EC-intensive materials, and stronger policy drivers all emerged as key elements for a quicker transition to a low carbon built environment. The meta-analysis on 77 LCAs also shows an extremely incomplete and short-sighted approach to life cycle studies. Most studies only assess the manufacturing stages, often completely overlooking impacts occurring during the occupancy stage and at the end of life of the building. The LCA research community have the responsibility to address such shortcomings and work towards more complete and meaningful assessments.

  3. Towards a 60% reduction in UK transport carbon dioxide emissions: a scenario building and backcasting approach

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, Robin [Halcrow Group Ltd, London (United Kingdom); Banister, David [Univ. College London (United Kingdom). The Bartlett School of Planning

    2005-07-01

    This paper examines the possibilities of reducing transport carbon dioxide emissions in the UK by 60% by 2030 using a scenario building and backcasting approach. It draws on the VIBAT project, which examines Visioning and Backcasting for UK Transport Policy, and examines a range of policy measures (technological and behavioural), assessing how they can be effectively combined to achieve the required level of emissions reduction. The intention is to evaluate whether such an ambitious target is feasible, identify the main problems (including the transition costs), and the main decision points over the 30-year time horizon.

  4. Electrochemical surface derivation of glassy carbon by the reduction of triaryl- and alkyldiphenylsulfonium salts

    DEFF Research Database (Denmark)

    Vase, K.H.; Holm, A.H.; Norrman, Kion;

    2008-01-01

    , the alkyldiphenylsulfonium salts are found to cleave almost exclusively to an alkyl radical and diphenyl sulfide. As judged from the electrochemical blocking properties of the films made from such species, either relatively thick or compact films are formed. The mass spectrometric analysis indicates that the films are made......The range of materials susceptible to electrochemically assisted grafting onto carbon materials has been expanded to include a new group of compounds. This new approach is based on the reduction of symmetrical or unsymmetrical triarylsulfonium salts and alkyldiphenylsulfonium salts. Our findings...

  5. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  6. Nickel Decorated on Phosphorous-Doped Carbon Nitride as an Efficient Photocatalyst for Reduction of Nitrobenzenes

    Science.gov (United States)

    Kumar, Anurag; Kumar, Pawan; Joshi, Chetan; Manchanda, Manvi; Boukherroub, Rabah; Jain, Suman L.

    2016-01-01

    Nickel nanoparticle-decorated phosphorous-doped graphitic carbon nitride (Ni@g-PC3N4) was synthesized and used as an efficient photoactive catalyst for the reduction of various nitrobenzenes under visible light irradiation. Hydrazine monohydrate was used as the source of protons and electrons for the intended reaction. The developed photocatalyst was found to be highly active and afforded excellent product yields under mild experimental conditions. In addition, the photocatalyst could easily be recovered and reused for several runs without any detectable leaching during the reaction.

  7. The Photocatalyzed Reduction of Aqueous Sodium Carbonate Using Nano SrFeO3

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Heterogenous photocatalyzed reduction of aqueous Na2CO3 has been carried out byusing nano SrFeO3 semiconductor powders. Formic acid, formaldehyde and methyl alcoholwere identified as photoproducts, and were measured spectrophotometrically. The effect of thevariation of different parameters such as sodium carbonate concentration, amount of photocatalystand different light sources on the yield of photoproducts was also investigated. It shows thatnano SrFeO3 has photocatalytic activity. Irradiation leads to the production of electrons in theconduction band of the SrFeO3 semiconductor. It is likely that the photoproduced electronsreduce CO32- initially to HCOO-, and then to HCHO and CH3OH.

  8. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  9. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Science.gov (United States)

    Nandan, Ravi; Nanda, Karuna Kar

    2015-06-01

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min-1. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  10. Rhenium and manganese bipyridine tricarbonyl catalysts for the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Sampson, Matthew Dean

    Electrocatalytic reduction of carbon dioxide (CO2) is a profoundly challenging problem that is of interest, not only as a means of counteracting unsustainable emissions of CO2, but also as a method for the development of renewable fuels. Rhenium and manganese bipyridine tricarbonyl complexes are among the most active and robust catalysts for proton-coupled CO 2 reduction to carbon monoxide (CO). X- ray Absorption Spectroscopy studies are reported to reveal the electronic ground state of the Re catalysts, which help explain origins for high selectivity for CO2 reduction over proton reduction. Stopped-flow mixing in tandem with rapid-scan IR spectroscopy is utilized to probe the direct reaction of the Re catalysts with CO 2, observing, for the first time, the binding of CO2 to these catalysts. Manganese bipyridine catalysts are desirable, in comparison with their Re analogs, due to the earth-abundance of Mn and the ability for these catalysts to operate at lower overpotentials. One distinct difference between these Mn catalysts and their Re counterparts is a high tendency for dimerization after one-electron reduction, which contributes to the potential necessary to access their active state and to limiting their catalytic activity. Synthetic modification of the bipyridine ligand (by adding bulky mesityl groups) is used to completely eliminate dimerization for these Mn complexes, allowing the active catalyst to be generated at a 300 mV more positive potential than in typically Mn bipyridine complexes. CO2 reactivities in the presence of weak Bronsted acids, strong Bronsted acids, and Lewis acids have been explored in order to encourage this bulky Mn catalyst to reduce CO2 at low overpotentials. Mechanistic tools, including IR-spectroelectrochemistry, are described to gain insight into these unique catalytic processes. In order to further enhance stability and facilitate product separation, the use of metal-organic frameworks (MOFs) is explored as a means of anchoring

  11. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2015-01-01

    Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  12. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Ke, Peiling; Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-01-15

    Structure and properties of Cu-doped diamond-like carbon films (DLC) were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.%) on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  13. Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction

    Directory of Open Access Journals (Sweden)

    Lewinski Nastassja

    2011-01-01

    Full Text Available Abstract An in depth analysis of gold nanoparticle (AuNP synthesis and size tuning, utilizing carbon monoxide (CO gas as a reducing agent, is presented for the first time. The sizes of the AuNPs are tunable from ~4 to 100 nm by altering the concentration of HAuCl4 and inlet CO gas-injection flow rate. It is also found that speciation of aqueous HAuCl4, prior to reduction, influences the size, morphology, and properties of AuNPs when reduced with CO gas. Ensemble extinction spectra and TEM images provide clear evidence that CO reduction offers a high level of monodispersity with standard deviations as low as 3%. Upon synthesis, no excess reducing agent remains in solution eliminating the need for purification. The time necessary to synthesize AuNPs, using CO, is less than 2 min.

  14. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase.

    Science.gov (United States)

    Yang, Zhi-Yong; Moure, Vivian R; Dean, Dennis R; Seefeldt, Lance C

    2012-11-27

    A doubly substituted form of the nitrogenase MoFe protein (α-70(Val)(→Ala), α-195(His→Gln)) has the capacity to catalyze the reduction of carbon dioxide (CO(2)) to yield methane (CH(4)). Under optimized conditions, 1 nmol of the substituted MoFe protein catalyzes the formation of 21 nmol of CH(4) within 20 min. The catalytic rate depends on the partial pressure of CO(2) (or concentration of HCO(3)(-)) and the electron flux through nitrogenase. The doubly substituted MoFe protein also has the capacity to catalyze the unprecedented formation of propylene (H(2)C = CH-CH(3)) through the reductive coupling of CO(2) and acetylene (HC≡CH). In light of these observations, we suggest that an emerging understanding of the mechanistic features of nitrogenase could be relevant to the design of synthetic catalysts for CO(2) sequestration and formation of olefins.

  15. Effect of reduction treatment on copper modified activated carbons on NO(x) adsorption at room temperature.

    Science.gov (United States)

    Levasseur, Benoit; Gonzalez-Lopez, Eugene; Rossin, Joseph A; Bandosz, Teresa J

    2011-05-01

    Activated carbon was impregnated with copper salt and then exposed to reductive environment using hydrazine hydrate or heat treatment under nitrogen at 925 °C. On the obtained samples, adsorption of NO(2) was carried out at dynamic conditions at ambient temperature. The adsorbents before and after exposure to nitrogen dioxide were characterized by X-ray diffraction (XRD), thermal analysis, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), N(2)-sorption at -196 °C, and potentiometric titration. Copper loading improved the adsorption capacity of NO(2) as well as the retention of NO formed in the process of NO(2) reduction on the carbon surface. That improvement is linked to the presence of copper metal and its high dispersion on the surface. Even though both reduction methods lead to the reduction of copper, different reactions with the carbon surface take place. Heat treatment results in a significant percentage of metallic copper and a reduction of oxygen functional groups of the carbon matrix, whereas hydrazine, besides reduction of copper, leads to an incorporation of nitrogen. The results suggest that NO(2) mainly is converted to copper nitrates although the possibility to its reduction to N(2) is not ruled out. A high capacity on hydrazine treated samples is linked to the high dispersion of metallic copper on the surface of this carbon.

  16. Electrochemical Degradation Characteristics of Refractory Organic Pollutants in Coking Wastewater on Multiwall Carbon Nanotube-Modified Electrode

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-01-01

    Full Text Available The multiwall carbon nanotube-mollified electrode (MWCNT-ME was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical behavior of phenol and aniline at the MWCNT-ME were analyzed. Using ultraviolet-visible adsorption spectroscopy (UV-vis, Gas chromatography mass spectrometry (GC/MS, and chemical oxygen demand (COD test, the electrochemical oxidation properties of refractory organic pollutants of coking wastewater using the MWCNT-ME and the IrSnSb/Ti electrode were analyzed. Compared with the powder adsorption media, the MWCNT-ME was proved to have weaker adsorption activity, which means electrochemical degradation is the decisive factor of the removal of organic pollutants. The MWCNT-ME shows high electrochemical reactivity with oxidation peaks of 0.18 A and 0.12 A for phenol and aniline, respectively. Under the same working conditions, the MWCNT-ME COD removal rate 51% is higher than IrSnSb/Ti electrode’s rate 35%. The MWCNT-ME has application potential of electrochemical oxidation of refractory organic pollutants of coking wastewater.

  17. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O

    Science.gov (United States)

    Kharlamov, Alexey; Bondarenko, Marina; Kharlamova, Ganna; Fomenko, Veniamin

    2016-09-01

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C3N4. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets.

  18. Quantifying non-energy benefits of a carbon reduction initiative for a glassware company

    Energy Technology Data Exchange (ETDEWEB)

    Willoughb-y, Sheri (World Wildlife Fund (United States)); Guo, Stephan (IKEA Trading (Hongkong) Ltd. (China)); Dahlgren, Maja (IKEA Trading Services Sp. z o.o. (Poland)); Schaefer, Thomas (IKEA of Sweden (Sweden)); Jia, Hongming (Hongwei Glassware Co. Ltd. (China))

    2011-07-01

    A glassware company in Yuncheng, China, which supplies to IKEA, upgraded its furnaces and switched the fuel source from coal to natural gas as a participant in an IKEA and WWF-led carbon reduction project. In addition to reducing its greenhouse gas emissions by 35 % (approx7,000 tons CO{sub 2}e) between 2009 and 2010, the company realized numerous non-energy benefits (NEBs) which improved the business case for their investment. While many NEBs can be difficult to quantify, the company calculated that improvements in product quality related to switching the pot furnaces from coal to natural gas directly reduced cost of products by 17 %. This cost reduction was realized from two primary NEBs: 1. Rate of available material: For one product, improved temperature stability in the natural gas furnace increased the output rate from 1,200 to 1,350 pieces, reducing each product's cost 12.5 %. 2. Improvement of qualified rate (non-rejects): For another product output increased from 900 to 1,050 pieces and the qualified rate increased from 75 to 80 percent. This gain was also due to increased temperature stability in the natural gas furnace which made the melted color and the material quality more stable. This resulted in a cost reduction of 5 % compared to the daily output from the coal furnace. While the glassware company had not yet broke even on its investment in the first year, the management had a very favourable view on this project due to the NEBs listed above as well as increased labor productivity due to improved working conditions (cleaner and cooler) and reduced risk of fines due to environmental regulation of coal. If a source of biogas could be secured, further carbon reductions could be realized while maintaining the NEBs achieved by switching to natural gas. This paper will further examine these and other non-energy benefits realized by the glassware company through the IKEA-WWF carbon reduction project

  19. 减排和化污:恢复气候、治理灾变环境的实施途径∗%Reduction of Pollution:An Approach to Climate Governance and Disaster Recovery

    Institute of Scientific and Technical Information of China (English)

    唐代兴

    2015-01-01

    Various environmental disasters facing the world today are related to inverse ecology climate, which are rooted in continuous high carbon emission and comprehensive pollution. Therefore,emission and pollution re ̄duction constitutes a double way to climate governance and disaster recovery. There are four basic strategies of e ̄mission reduction, namely the establishment of two ̄dimensional prediction benchmark of international and na ̄tional population,the construction of WTO emission reduction operation mechanism,the international legal sys ̄tem and international ̄national carbon tax system,the establishment of carbon emission trading system and trading market . There are two approaches to pollution reduction:one is to restore the earth self ̄purifying;the other is to improve human remediation in both industrial production and human life.%当今世界所面临的各种环境灾害,都与气候逆生态化相关,造成气候逆生态化的根本因素是持续不断的高碳排放和全面污染。因此,减排和化污构成恢复气候、治理灾变环境的双重方式。实施减排的基本要略有四,即建立世界和国家两个维度的人口预测基准,构建WTO的减排运行机制,构建国际法律体系和国际—国家碳税制度,建立碳排放交易体制和交易市场。化污的努力途径有二:一是全面恢复地球自净化力;二是从生产与生活两个领域全面提高人类的化污能力。

  20. Continuous Reductive Amination of Biomass-Derived Molecules over Carbonized Filter Paper-Supported FeNi Alloy.

    Science.gov (United States)

    Chieffi, Gianpaolo; Braun, Max; Esposito, Davide

    2015-11-01

    This paper reports the continuous reductive amination of different molecules, including biomass-related compounds, over carbon-supported FeNi nanoparticles obtained on the basis of inexpensive and abundant metal precursors and cellulose. A biorefinery case study for the preparation of pyrrolidones via acid-catalyzed hydrolysis of glucose followed by reductive amination of the obtained levulinic acid is described.

  1. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation.

    Science.gov (United States)

    Lucke, Terry; Nichols, Peter W B

    2015-12-01

    This study evaluated the pollution removal and hydrologic performance of five, 10-year old street-side bioretention systems. The bioretention basins were subjected to a series of simulated rainfall events using synthetic stormwater. Four different pollution concentrations were tested on three of the bioretention basins. The four concentrations tested were: A) no pollution; B) typical Australian urban pollutant loads; C) double the typical pollution loads, and; D) five times the typical pollution loads. Tests were also undertaken to determine the levels of contaminant and heavy metals build-up that occurred in the filter media over the 10 year operational life of the bioretention systems. Although highly variable, the overall hydrological performance of the basins was found to be positive, with all basins attenuating flows, reducing both peak flow rates and total outflow volumes. Total suspended solids removal performance was variable for all tests and no correlation was found between performance and dosage. Total nitrogen (TN) removal was positive for Tests B, C and D. However, the TN removal results for Test A were found to be negative. Total phosphorus (TP) was the only pollutant to be effectively removed from all basins for all four synthetic stormwater tests. The study bioretention basins were found to export pollutants during tests where no pollutants were added to the simulated inflow water (Test A). Heavy metal and hydrocarbon testing undertaken on the bioretention systems found that the pollution levels of the filter media were still within acceptable limits after 10 years in operation. This field study has shown bioretention basin pollution removal performance to be highly variable and dependant on a range of factors including inflow pollution concentrations, filter media, construction methods and environmental factors. Further research is required in order to fully understand the potential stormwater management benefits of these systems.

  2. Effect of reduction method on the performance of Pd catalysts supported on activated carbon for the selective oxidation of glucose

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effect of the reduction method on the catalytic properties of palladium catalysts supported on activated carbon for the oxidation of D-glucose was examined.The reduction methods investigated include argon glow discharge plasma reduction at room temperature,reduction by flowing hydrogen at elevated temperature,and reduction by formaldehyde at room temperature.The plasma-reduced catalyst shows the smallest metal particles with a narrow size distribution that leads to a much higher activity.The catalyst characteristics show that the plasma reduction increases the amount of oxygen-containing functional groups,which significantly enhances the hydrophilic property of the activated carbon and improves the dispersion of the metal.

  3. Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(II)

    Science.gov (United States)

    Bae, Sungjun; Lee, Woojin

    2012-05-01

    We demonstrated that reductive dechlorination of carbon tetrachloride (CT) can be enhanced by iron-bearing soil minerals (IBSMs) in the presence of Shewanella putrefaciens CN32 (CN32) due to the formation of biogenic vivianite and Fe(II). The bioreduction efficiency of magnetite was the highest (51.1%), followed by lepidocrocite (25.7%), goethite (3.6%), and hematite (1.8%). The dechlorination kinetic of CT by lepidocrocite (0.043 d-1) in the presence of CN32 was three times faster than that by microbial transformation with CN32 (0.014 d-1). Chloroform (16.1-29.4%), carbon monoxide (2.4-23.8%), and formate (0-58.0%) were measured as main products for the degradation of CT by magnetite and lepidocrocite in the presence of CN32. X-ray diffraction and electron microscope analyses revealed that the biogenic vivianite can form during the CT degradation in magnetite and lepidocrocite suspensions with CN32. The dechlorination kinetics of CT by chemogenic vivianite was much faster than that by magnetite and lepidocrocite with CN32. The highest formate production (84.2%) was observed during a full degradation of CT by the chemogenic vivianite. The experimental results showed that biogenic vivianite and sorbed Fe(II) formed during the bioreduction of IBSMs played a pivotal role for the reductive dechlorination of CT.

  4. The role of H2 reduction in the growth of single-walled carbon nanotubes

    Science.gov (United States)

    Yuca, Neslihan; Gümüş, Fatih; Karatepe, Nilgün

    2013-09-01

    Carbon nanotubes (CNTs) with their high mechanical, electrical, thermal and chemical properties are regarded as promising materials for many different potential applications. Chemical vapor deposition (CVD) is a common method for CNT synthesis especially for mass production. There are important parameters (synthesis temperature, catalyst and calcination conditions, substrate, carbon source, synthesis time, H2 reduction, etc.) affecting the structure, morphology and the amount of the CNT synthesis. In this study, CNTs were synthesized by CVD of acetylene (C2H2) on magnesium oxide (MgO) powder substrate impregnated by iron nitrate (Fe (NO3)3•9H2O) solution. The synthesis conditions were as follows: at catalyst calcination temperatures of 400 and 550°C, calcination time of 0, 15, 30 and 45 min, hydrogen concentrations of 0, 50 and 100 % vol, synthesis temperature of 800°C and synthesis time of 30 minutes. The synthesized materials were characterized by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), X ray diffraction (XRD) and Raman spectroscopy. Effects of H2 reduction on catalyst calcination and CNT synthesis were investigated.

  5. Carbon-dot-decorated TiO2 nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria

    Science.gov (United States)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e-/h+ pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  6. Carbon-dot-decorated TiO₂ nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria.

    Science.gov (United States)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-18

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e(-)/h(+) pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  7. Public policies, atmospheric pollution and health: follow the risk decrease; Politiques publiques, pollution atmospherique et sante: poursuivre la reduction des risques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This book takes stock of the air pollution effects knowledge and prevention and proposes ways of improvement of this knowledge. More specifically, advices are provided in order to promote a coordinated research program and improve the public information on the air quality. (A.L.B.)

  8. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  9. Activated carbon adsorption-advanced electro-oxidative regeneration for the treatment of biorefractory organic pollutants

    Institute of Scientific and Technical Information of China (English)

    ZHOU Minghua; DAI Qizhou; LEI Lecheng; WANG Dahui

    2005-01-01

    The wastewater containing toxic and biorefractory pollutants such as aromatic compounds cannot be treated by conventional action due to their toxicity and structure stability, which has been one of the key technical difficulties in wastewater treatment in China.

  10. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    Science.gov (United States)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  11. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  12. The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction

    Science.gov (United States)

    Liu, Sisi; Deng, Chengwei; Yao, Lan; Zhong, Hexiang; Zhang, Huamin

    2014-12-01

    Highly active non-precious metal catalysts based on nitrogen-doped carbon xerogel (NCX) for the oxygen reduction reaction (ORR) is prepared with resorcinol(R)-formaldehyde (F) resin as carbon precursor and NH3 as nitrogen source. NCX samples doped with various transition metal species are investigated to elucidate the effect of transition metals on the structure and ORR activity of the products. As-prepared NCX catalysts with different metals are characterized using nitrogen-adsorption analysis, X-ray diffractometry, X-ray photoelectron spectroscopy, and Raman spectroscopy. The structural properties and ORR activities of the catalysts are altered by addition of different metals, and NCX doped with iron exhibits the best ORR activity. Metal doping evidently promotes the formation of more micropores and mesopores. Raman and XPS studies reveal that iron, cobalt, and nickel can increase pyridinic-N contents and that iron can catalyse the formation of graphene structures and enhance quaternary-N contents. Whereas the total N-content does not determine ORR activity, Metal-N4/C-like species generated from the interaction of the metals with nitrogen and carbon atoms play important roles in achieving high ORR activity.

  13. Reduction of Pt Usage in Fuel Cell Electrocatalysts Using Carbon Nanotubes and Non-Pt Metals

    Institute of Scientific and Technical Information of China (English)

    J. Nakamura; Y. Nagashima; T. Yamazaki; T. Matsumoto; E. Yoo

    2005-01-01

    @@ 1Introduction The high-priced and limited Pt constitutes a high barrier to commercialization of fuel cells. Pt is essential for the electrode catalyst of polymer electrolyte fuel cells (PEFCs). A reduction in Pt usage is one of the key requirements for the commercialization of fuel cells for use in everyday life, because of its high price and limited availability, and the difficulty of finding suitable substitutes. Non-Pt fuel cell catalysts will decrease the demand for Pt by PEFCs, enabling more Pt to be available for use in other essential products, and make fuel cells more popular[1]. The cheaper Mo2C is known to possess similar catalytic activities and electronic structures to Pt[2]. Carbon black (CB) is widely used as the support for Pt nanoparticles. However, we found that when carbon nanotubes (CNTs) rather than CB are used as the support, the performance is improved, especially below 600 mA/cm2[3,4]. Here, we show that a combination of Mo2C catalyst and carbon nanotubes in the anode provides performance as high as half that of the current PEFCs with Pt catalysts below 600mA/cm2.

  14. Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction.

    Science.gov (United States)

    Yu, Haiyan; Fisher, Adrian; Cheng, Daojian; Cao, Dapeng

    2016-08-24

    It remains a huge challenge to develop nonprecious electrocatalysts with high activity to substitute commercial Pt catalysts for oxygen reduction reactions (ORR). Here, the Cu,N-codoped hierarchical porous carbon (Cu-N-C) with a high content of pyridinic N was synthesized by carbonizing Cu-containing ZIF-8. Results indicate that Cu-N-C shows excellent ORR electrocatalyst properties. First of all, it nearly follows the four-electron route, and its electron transfer number reaches 3.92 at -0.4 V. Second, both the onset potential and limited current density of Cu-N-C are almost equal to those of a commercial Pt/C catalyst. Third, it exhibits a better half-wave potential (∼16 mV) than a commercial Pt/C catalyst. More importantly, the Cu-N-C displays better stability and methanol tolerance than the Pt/C catalyst. All of these good properties are attributed to hierarchical structure, high pyridinic N content, and the synergism of Cu and N dopants. The metal-N codoping strategy can significantly enhance the activity of electrocatalysts, and it will provide reference for the design of novel N-doped porous carbon ORR catalysts.

  15. Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction.

    Science.gov (United States)

    Wang, Biwei; Wang, Xinxia; Zou, Jinxiang; Yan, Yancui; Xie, Songhai; Hu, Guangzhi; Li, Yanguang; Dong, Angang

    2017-03-08

    Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe3O4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.

  16. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  17. The carbon reduction research of teaching staff commuting aided by Google Earth: taking Guangzhou University as an example

    Science.gov (United States)

    Xie, Hongyu; Wang, Xixiang; Zhao, Meichan; Zhao, Huaqing; Lin, Zhien

    2008-10-01

    In this paper, taking Guangzhou University as an example, carbon reduction of teaching staff commuting was researched. Firstly, considering carbon emission of teaching staff commuting is come from the fuel consumption of vehicle used to trip, the routes, schedule, vehicle type, fuel type and fuel consumption per 100 km of service express bus, public bus and private car were investigated from relevant department and web questionnaire in office automation system. Secondly, the routes of service express bus, public bus and private car were drawn in Google earth browser to measure distance. Thirdly, combined the bus schedule, school calendar, curriculum timetable of teacher and fuel consumption per 100 km of all kinds of vehicle, the fuel consumption of service express bus, public bus and private car were computed. Fourthly, carbon emission was calculated according to net calorific factor and calorie carbon emission factors of fuel. Finally, the measures of carbon reduction were discussed. The research results show that teaching staff commuting emitted 455.433 tons carbon in 2005-2006 academic year. And reducing usage rate of private car and adding new service express bus line are efficient measure of carbon reduction. Former measure can reduce 33.6891 tons carbon and about 7.4% of original emission. The latter can reduce 7.6317 tons and about 1.68% of original emission.

  18. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  19. Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction.

    Science.gov (United States)

    Dai, Ying; Hu, Yuchen; Jiang, Baojiang; Zou, Jinlong; Tian, Guohui; Fu, Honggang

    2016-05-15

    Composites of nano zero-valent iron (nZVI) and ordered mesoporous carbon (OMC) are prepared by using simultaneous carbothermal reduction methods. The reactivity and stability of nZVI are expected to be enhanced by embedding it in the ordered pore channels. The structure characteristics of nZVI/OMC and the removal pathway for hexavalent chromium (Cr(VI)) by nZVI/OMC are investigated. Results show that nZVI/OMC with a surface area of 715.16 m(2) g(-1) is obtained at 900 °C. nZVI with particle sizes of 20-30 nm is uniformly embedded in the OMC skeleton. The stability of nZVI is enhanced by surrounding it with a broad carbon layer and a little γ-Fe is derived from the passivation of α-Fe. Detection of ferric state (Fe 2p3/2, around 711.2eV) species confirms that part of the nZVI on the outer surface is inevitably oxidized by O2, even when unused. The removal efficiency of Cr(VI) (50 mg L(-1)) by nZVI/OMC is near 99% within 10 min through reduction (dominant mechanism) and adsorption. nZVI/OMC has the advantage in removal efficiency and reusability in comparison to nZVI/C, OMC and nZVI. This study suggests that nZVI/OMC has the potential for remediation of heavy metal pollution in water.

  20. Oxygen reduction at platinum nanoparticles supported on carbon cryogel in alkaline solution

    Directory of Open Access Journals (Sweden)

    N. R. ELEZOVIC

    2007-07-01

    Full Text Available The oxygen reduction reaction was investigated in 0.1 M NaOH solution, on a porous coated electrode formed of Pt particles supported on carbon cryogel. The Pt/C catalyst was characterized by the X-ray diffraction (XRD, transmission electron microscopy (TEM and cyclic voltammetry techniques. The results demonstrated a successful reduction of Pt to metallic form and homogenous Pt particle size distribution with a mean particle size of about 2.7 nm. The ORR kinetics was investigated by linear sweep polarization at a rotating disc electrode. The results showed the existence of two E – log j regions, usually referred to polycrystalline Pt in acid and alkaline solution. At low current densities (lcd, the Tafel slope was found to be close to –2.3RT/F, while at high current densities (hcd it was found to be close to –2×2.3RT/F. It is proposed that the main path in the ORR mechanism on Pt particles was the direct four-electron process, with the transfer of the first electron as the rate determining step. If the activities are expressed through the specific current densities, a small enhancement of the catalytic activity for Pt/C was observed compared to that of polycrystalline Pt. The effect of the Pt particle size on the electrocatalysis of oxygen reduction was ascribed to the predominant (111 facets of the platinum crystallites.

  1. Large reductions in urban black carbon concentrations in the United States between 1965 and 2000

    Science.gov (United States)

    Kirchstetter, Thomas W.; Preble, Chelsea V.; Hadley, Odelle L.; Bond, Tami C.; Apte, Joshua S.

    2017-02-01

    Long-term pollutant concentration trends can be useful for evaluating air quality effects of emission controls and historical transitions in energy sources. We employed archival records of coefficient of haze (COH), a now-retired measure of light-absorbing particulate matter, to re-construct historical black carbon (BC) concentrations at urban locations in the United States (U.S.). The following relationship between COH and BC was determined by reinstating into service COH monitors beside aethalometers for two years in Vallejo and one year in San Jose, California: BC (μg m-3) = 6.7COH + 0.1, R2 = 0.9. Estimated BC concentrations in ten states stretching from the East to West Coast decreased markedly between 1965 and 1980: 5-fold in Illinois, Ohio, and Virginia, 4-fold in Missouri, and 2.5-fold in Pennsylvania. Over the period from the mid-1960s to the early 2000s, annual average BC concentrations in New Jersey and California decreased from 13 to 2 μg m-3 and 4 to 1 μg m-3, respectively, despite concurrent increases in fossil fuel consumption from 1.6 to 2.1 EJ (EJ = 1018 J) in New Jersey and 4.2 to 6.4 EJ in California. New Jersey's greater reliance on BC-producing heavy fuel oils and coal in the 1960s and early 1970s and subsequent transition to cleaner fuels explains why the decrease was larger in New Jersey than California. Patterns in seasonal and weekly BC concentrations and energy consumption trends together indicate that reducing wintertime emissions - namely substituting natural gas and electricity for heavy fuel oil in the residential sector - and decreasing emissions from diesel vehicles contributed to lower ambient BC concentrations. Over the period of study, declining concentrations of BC, a potent and short-lived climate warming pollutant, contrast increasing fossil fuel carbon dioxide (CO2) emissions in the U.S. Declining BC emissions may have had the benefit of mitigating some atmospheric warming driven by increased CO2 emissions with

  2. Targets and Misunderstandings in Pollutants Reduction of Power Plants——An Interview with Wang Zhixuan, Vice-Secretary of CEC

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ ● The demand for organics reduction in power industry needs to be analyzed. Generally speaking, the organics from power plants is neither a main source of water pollution nor an emphasis of pollution control. ● The normal operation of FGD facilities is the key to fulfill the mission of SO2 emission reduction. ● The control of SO2 emission should not be imposed uniformly on all power plants nationwide. ● It is difficult to promote the emission trading of SO2 institutionally. ● The active policy of levying for SO2 emission starting from zero emission and using levies for SO2 control is unreasonable. It should be reformed as levying only for over-limit emission, and not levying for emissions below limit or levying indicatively. ● Environmental regulations on SO2 control should make differences depending on environmental function of zones, time period of generating units installed and manner of emissions.

  3. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    SAROFIM, A F; LISAUSKAS, R; RILEY, D; EDDINGS, E G; BROUWER, J; KLEWICKI, J P; DAVIS, K A; BOCKELIE, M J; HEAP, M P; PERSHING, D

    1998-01-01

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers,"in-furnace NOx control," which includes: staged low-NOx burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of "in-furnace" NOx control, processes. 2) To devise new, or improve existing, approaches for maximum "in-furnace" NOx control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NOx burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NOx burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NOx burners. 3 Determine the limits on NO control by in-furnace NOx control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NOx burners and coal reburning systems. 6 Modify the char burnout model in REI's coal

  4. Unveiling Adsorption Mechanisms of Organic Pollutants onto Carbon Nanomaterials by Density Functional Theory Computations and Linear Free Energy Relationship Modeling.

    Science.gov (United States)

    Wang, Ya; Chen, Jingwen; Wei, Xiaoxuan; Hernandez Maldonado, Arturo J; Chen, Zhongfang

    2017-10-02

    Predicting adsorption of organic pollutants onto carbon nanomaterials (CNMs) and understanding the adsorption mechanisms are of great importance to assess the environmental behavior and ecological risks of organic pollutants and CNMs. By means of density functional theory (DFT) computations, we investigated the adsorption of 38 organic molecules (aliphatic hydrocarbons, benzene and its derivatives, and polycyclic aromatic hydrocarbons) onto pristine graphene in both gaseous and aqueous phases. Polyparameter linear free energy relationships (pp-LFERs) were developed, which can be employed to predict adsorption energies of aliphatic and aromatic hydrocarbons on graphene. Based on the pp-LFERs, contributions of different interactions to the overall adsorption were estimated. As suggested by the pp-LFERs, the gaseous adsorption energies are mainly governed by dispersion and electrostatic interactions, while the aqueous adsorption energies are mainly determined by dispersion and hydrophobic interactions. It was also revealed that curvature of single-walled carbon nanotubes (SWNTs) exhibits more significant effects than the electronic properties (metallic or semiconducting) on gaseous adsorption energies, and graphene has stronger adsorption abilities than SWNTs. The developed models may pave a promising way for predicting adsorption of environmental chemicals onto CNMs with in silico techniques.

  5. Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water.

    Science.gov (United States)

    Liao, Zhen-Liang; Chen, Hao; Zhu, Bai-Rong; Li, Huai-Zheng

    2015-09-01

    Even zeolite is promising in ammonia pollution disposing, its removal efficiency is frequently interfered by organics. As activated carbon has good removal efficiency on organic contaminants, combination of two adsorbents may allow their respective adsorption characteristics into full play. This paper provides a performance assessment of the combination for enhancing ammonium removal in micro-polluted raw water. Gel-filtration chromatography (GFC) was carried out to quantify the molecular weight (MW) range of organic contaminants that powdered activated carbon (PAC) and powdered zeolite (PZ) can remove. The polydispersity difference which also calculated from GFC may indicate the wider organic contaminants removal range of PAC and the relatively centralized removal range of PZ. The jar tests of combination dosing confirm a synergistic effect which promotes ammonium removing. Nevertheless, it also shows an antagonism hindering the due removal performance of the two adsorbents on CODMn, while it is not much evident on UV254. Furthermore, a comparison study with simulated coagulation-sedimentation process was conducted to evaluate the optimum dosing points (spatial and temporal) of PAC and PZ among follows: suction well, pipeline mixer, early and middle phase of flocculation. We suggest to dose both two adsorbents into the early phase of flocculation to maximize the versatile removal efficiency on turbidity, ammonium and organic contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting

  7. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Directory of Open Access Journals (Sweden)

    S. C. Anenberg

    2011-07-01

    Full Text Available As a component of fine particulate matter (PM2.5, black carbon (BC is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m−3 (1.8 % and avoids 157 000 (95 % confidence interval, 120 000–194 000 annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %, followed by South Asia (India; 31 %, however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times

  8. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation.

    Science.gov (United States)

    Wang, Jing; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2017-09-27

    Metal-free carbon materials have been presented to be potential alternatives to metal-based catalysts for heterogeneous catalytic ozonation, yet the catalytic performance still needs to be enhanced. Doping carbon with non-metallic heteroatoms (e.g., N, B, and F) could alter the electronic structure and electrochemical properties of original carbon materials, has been considered to be an effective method for improving the catalytic activity of carbon materials. Herein, fluorine-doped carbon nanotubes (F-CNTs) were synthesized via a facile method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The as-synthesized F-CNTs exhibited notably enhanced catalytic activity towards catalytic ozonation for the degradation of organic pollutants. The oxalic acid removal efficiency of optimized F-CNTs was approximately two times as much as that of pristine CNTs, and even exceeded those of four conventional metal-based catalysts (ZnO, Al2O3, Fe2O3, and MnO2). The XPS and Raman studies confirmed that the covalent CF bonds were formed at the sp(3) C sites instead of sp(2) C sites on CNTs, not only resulting in high positive charge density of C atoms adjacent to F atoms, but remaining the delocalized π-system with intact carbon structure of F-CNTs, which then favored the conversion of ozone molecules (O3) into reactive oxygen species (ROS) and contributed to the high oxalic acid removal efficiency. Furthermore, electron spin resonance (ESR) studies revealed that superoxide radicals (O2(-)) and singlet oxygen ((1)O2) might be the dominant ROS that responsible for the degradation of oxalic acid in these catalytic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Karyne M

    2003-07-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature ({delta}{sup 15}N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature ({delta}{sup 13}C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months.

  10. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Wu, Renbing; Xue, Yanhong; Liu, Bo; Zhou, Kun; Wei, Jun; Chan, Siew Hwa

    2016-10-01

    Highly efficient and cost-effective electrocatalyst for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications. Herein, strongly coupled hybrid composites composed of cobalt diselenide (CoSe2) nanoparticles embedded within graphitic carbon polyhedra (GCP) as high-performance ORR catalyst have been rationally designed and synthesized. The catalyst is fabricated by a convenient method, which involves the simultaneous pyrolysis and selenization of preformed Co-based zeolitic imidazolate framework (ZIF-67). Benefiting from the unique structural features, the resulting CoSe2/GCP hybrid catalyst shows high stability and excellent electrocatalytic activity towards ORR (the onset and half-wave potentials are 0.935 and 0.806 V vs. RHE, respectively), which is superior to the state-of-the-art commercial Pt/C catalyst (0.912 and 0.781 V vs. RHE, respectively).

  11. Electroless reductions on carbon nanotubes: How critical is the diameter of a nanotube

    KAUST Repository

    Guo, Yong

    2013-01-01

    Detailed experimental and theoretical studies have been performed to investigate the influence of the diameter of multi-walled carboxy-functionalized carbon nanotubes (CFCNTs) on their ability to reduce PdCl4 2- salt to Pd nanoparticles on their surface at room temperature. The obtained results (inductively-coupled plasmaspectrometry and cyclic voltammetry) show that the reduction ability of CFCNTs with 5 nm diameter (CFCNT5) is stronger than that of CFCNTs with 15 nm diameter (CFCNT15). Density Functional Theory (DFT) calculations suggest that a more negative charge distribution exists on CFCNT5, which makes it a better electron donor to PdCl42-. This journal is © The Royal Society of Chemistry.

  12. Two-electron reduction of ethylene carbonate: a quantum chemistry re-examination of mechanisms

    CERN Document Server

    Leung, Kevin

    2013-01-01

    Passivating solid-electrolyte interphase (SEI) films arising from electrolyte decomposition on low-voltage lithium ion battery anode surfaces are critical for battery operations. We review the recent theoretical literature on electrolyte decomposition and emphasize the modeling work on two-electron reduction of ethylene carbonate (EC, a key battery organic solvent). One of the two-electron pathways, which releases CO gas, is re-examined using simple quantum chemistry calculations. Excess electrons are shown to preferentially attack EC in the order (broken EC^-) > (intact EC^-) > EC. This confirms the viability of two electron processes and emphasizes that they need to be considered when interpreting SEI experiments. An estimate of the crossover between one- and two-electron regimes under a homogeneous reaction zone approximation is proposed.

  13. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    Science.gov (United States)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  14. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32.

    Science.gov (United States)

    Huo, Ying-Chao; Li, Wen-Wei; Chen, Chang-Bin; Li, Chen-Xuan; Zeng, Raymond; Lau, Tai-Chu; Huang, Tian-Yin

    2016-12-01

    Dissimilatory metal reducing bacteria (DMRB) widely exist in the subsurface environment and are involved in various contaminant degradation and element geochemical cycling processes. Recent studies suggest that DMRB can biosynthesize metal nanoparticles during metal reduction, but it is unclear yet how such biogenic nanomaterials would affect their decontamination behaviors. In this study, we found that the dechlorination rates of carbon tetrachloride (CT) by Shewanella putrefaciens CN32 was significantly increased by 8 times with the formation of biogenic ferrous sulfide (FeS) nanoparticles. The pasteurized biogenic FeS enabled 5 times faster dechlorination than abiotic FeS that had larger sizes and irregular structure, confirming a significant contribution of the biogenic FeS to CT bioreduction resulting from its good dispersion and relatively high dechlorination activity. This study highlights a potentially important role of biosynthesized nanoparticles in environmental bioremediation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Preparation of carbon supported Pt-P catalysts and its electrocatalytic performance for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ma Juan [Institute of Chemical Power Sources, Soochow University, Suzhou 215006 (China); Tang Yawen; Yang Gaixiu; Chen Yu [College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210097 (China); Zhou Qun [Institute of Chemical Power Sources, Soochow University, Suzhou 215006 (China); Lu Tianhong [College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210097 (China); Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zheng Junwei, E-mail: jwzheng@suda.edu.cn [Institute of Chemical Power Sources, Soochow University, Suzhou 215006 (China)

    2011-05-15

    The carbon supported PtP (PtP/C) catalysts were synthesized from Pt(NO{sub 3}){sub 2} and phosphorus yellow at the room temperature. The content of P in the PtP/C catalysts prepared with this method is high and the average size of the PtP particles is decreased with increasing the content of P. The electrocatalytic performances of the PtP/C catalysts prepared with this method for the oxygen reduction reaction (ORR) are better than that of the commercial Pt/C catalyst. The promotion action of P for enhancing the electrocatalytic performance of the PtP/C catalyst for ORR is mainly due to that Pt and P form the alloy and then the electron density of Pt is decreased.

  16. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions.

    Science.gov (United States)

    Wei, Ping-Jie; Yu, Guo-Qiang; Naruta, Yoshinori; Liu, Jin-Gang

    2014-06-23

    The oxygen reduction reaction (ORR) is one of the most important reactions in both life processes and energy conversion systems. The replacement of noble-metal Pt-based ORR electrocatalysts by nonprecious-metal catalysts is crucial for the large-scale commercialization of automotive fuel cells. Inspired by the mechanisms of dioxygen activation by metalloenzymes, herein we report a structurally well-defined, bio-inspired ORR catalyst that consists of a biomimetic model compound-an axial imidazole-coordinated porphyrin-covalently attached to multiwalled carbon nanotubes. Without pyrolysis, this bio-inspired electrocatalyst demonstrates superior ORR activity and stability compared to those of the state-of-the-art Pt/C catalyst in both acidic and alkaline solutions, thus making it a promising alternative as an ORR electrocatalyst for application in fuel-cell technology.

  17. Hydrothermal Reduction of Carbon Dioxide at 250° C and 500 bar

    Science.gov (United States)

    Fu, Q.; Seyfried, W. E.

    2003-12-01

    Fischer-Tropsch type catalysis reactions are believed to play important roles in abiotic synthesis of organic compounds in mid-ocean ridge vent fluids. However, little is known about the mechanisms of these processes, especially the reaction intermediates in the formation of abiotic hydrocarbons from reduction of CO2. To better understand abiotic synthesis of hydrocarbons, an experiment involving CO2 reduction was carried out in a flexible-Au/Ti-cell hydrothermal solution apparatus at 250° C, 500 bar. To limit sources of contamination and simplify the pathway of this reduction process, this experiment was conducted by injecting CO2 and then H2 into the reaction cell, instead of using organic acids as surrogate sources. Magnetite was used as a catalyst for organic synthesis. To exclude organic contaminants on the catalyst and their potential effects on this reduction process, however, the magnetite was reacted with hydrogen peroxide prior to the experiment. Subsequently, H2 was injected into the reaction cell to restore the magnetite structure. Dissolved CO2 (aq) (35 mmol/kg) was then injected into the reaction cell. This was followed by systematic addition of dissolved H2. With the addition of H2 into the system, trace amounts of dissolved CO and CH4 were produced. 7 μ mol/kg formate (HCOO-) and 8 μ mol/kg acetate (CH3COO-) were also detected by ion chromatography. More formate was produced with adding more H2. When injecting H2 to a final concentration of 11 mmol/kg, the concentration of formate increased to 0.16 mmol/kg, CO and CH4 remain constant, while CO2 decreased to 4 mmol/kg, and no acetate was observed. Surface compositional analysis of magnetite was conducted using X-ray Photoelectron Spectroscopy (XPS). The concentration of carbon increased following reaction. The prominent C1s peak from the reacted magnetite occurred at 284.5 eV, which corresponds to graphite. The subsidiary peak was consistent with that expected for trace carbon on metal surfaces

  18. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    Science.gov (United States)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  19. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan [School of Environment, Northeast Normal University, Changchun 130117 (China); Yuan, Xing, E-mail: yuanx@nenu.edu.cn [School of Environment, Northeast Normal University, Changchun 130117 (China); Li, Baikun, E-mail: baikun@engr.uconn.edu [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2017-02-15

    Highlights: • Graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed. • The cytotoxicity detection vessel was miniaturized to the 96-well plate. • The electrochemical behavior of HepG2 cell was investigated for the first time. • The mixture signal of adenine and hypoxanthine was separated successfully. • The biosensor was used to assess the toxicity of heavy metals and phenols. - Abstract: The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24 h IC{sub 50} values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology.

  20. Electrocatalytic reduction of oxygen at ordered mesoporous carbon functionalized with tetrathiafulvalene.

    Science.gov (United States)

    Ndamanisha, Jean Chrysostome; Bo, Xiangjie; Guo, Liping

    2010-03-01

    A novel ordered mesoporous carbon-tetrathiafulvalene composite is synthesized. It is based on host-guest chemistry which utilizes synergic interactions between a nanostructured matrix of ordered mesoporous carbon (OMC) and the excellent electron donor properties of tetrathiafulvalene (TTF). It has been found that some interesting properties of OMC are improved. Especially the density of the edge plane-like defective sites, important groups responsible for the electrocatalytic activity towards some molecules, is increased on OMC-TTF composite. Moreover, this new material can be used to facilitate the heterogeneous electron transfer process. OMC-TTF was used, for the first time, to investigate the electrocatalytic reduction of oxygen. The results show that the electrocatalytic behavior of OMC-TTF is attributed to the unique physico-chemical properties of OMC and TTF. At the OMC-TTF modified electrode, the reduction proceeds by the direct four-electron pathway whereas at the OMC electrode the process is not direct. In order to show that the ability of OMC-TTF to promote the electron transfer can allow the application of this composite in many domains, an amperometric oxygen biosensor has been constructed based on OMC-TTF. It exhibits good response to dissolved oxygen with a large linear range and a very low detection limit. The interferences of ascorbic acid and uric acid are suppressed and the applied potential is positive enough to avoid perturbations of other electrochemically reducible compounds. The results above suggest that OMC-TTF has potential applications in the detection of dissolved oxygen and interesting properties of this composite may open up a new approach to study the electrochemical behavior of other biomolecules.

  1. Regioselective electrochemical reduction of 2,4-dichlorobiphenyl - Distinct standard reduction potentials for carbon-chlorine bonds using convolution potential sweep voltammetry

    Science.gov (United States)

    Muthukrishnan, A.; Sangaranarayanan, M. V.; Boyarskiy, V. P.; Boyarskaya, I. A.

    2010-04-01

    The reductive cleavage of carbon-chlorine bonds in 2,4-dichlorobiphenyl (PCB-7) is investigated using the convolution potential sweep voltammetry and quantum chemical calculations. The potential dependence of the logarithmic rate constant is non-linear which indicates the validity of Marcus-Hush theory of quadratic activation-driving force relationship. The ortho-chlorine of the 2,4-dichlorobiphenyl gets reduced first as inferred from the quantum chemical calculations and bulk electrolysis. The standard reduction potentials pertaining to the ortho-chlorine of 2,4-dichlorobiphenyl and that corresponding to para chlorine of the 4-chlorobiphenyl have been estimated.

  2. Black carbon aerosol in winter northeastern Qinghai-Tibetan Plateau, China: the effects from South Asia pollution

    Directory of Open Access Journals (Sweden)

    Q. Y. Wang

    2015-05-01

    Full Text Available Black carbon (BC aerosol at high-altitude Qinghai-Tibetan Plateau has potential effects on the regional climate and hydrological cycle. An intensive measurement campaign was conducted at Qinghai Lake (∼ 3200 a.s.l. at the edge of the northeastern Qinghai-Tibetan Plateau during winter using a ground-based single particle soot photometer (SP2 and a photoacoustic extinctiometer (PAX. The average BC concentration and number fraction of coated BC were found to be 160 ± 190 ng m-3 and 59.3% for the entire campaign, respectively. Significant enhancements of BC loadings and number fraction of coated BC were observed during pollution episode, with an average value of 390 ng m-3 and 64.6%, respectively. The mass size distribution of BC particles showed lognormal distribution with a peak diameter of ∼ 187 nm regardless of the pollution level. Five-day backward trajectory analysis combined with the fire counts map suggests that the biomass burning air masses from North India contributing to the increased BC loadings during the campaign. The potential source contribution function (PSCF model further proves that North India is an important potential region influencing northeastern Qinghai-Tibetan Plateau during the pollution episode. The BC mass absorption cross section (MACBC at λ = 532 nm was slightly larger during pollution episode (10.2 m2 g-1 than in clean days (8.9 m2 g-1, likely due to the higher mixing state of BC with other chemical components during pollution episode. The number fraction of coated BC particles showed positive correlation with light absorption, suggesting that the increase of coated BC particles will enhance the light absorption. The estimated BC direct radiative forcing was +0.93 W m-2 for pollution episode, which is 2 times larger than that in clean days. Our study provides insight into the potential climatic impacts of BC aerosol transported to the Qinghai-Tibetan Plateau from South Asian regions, and is also useful for

  3. Oxygen Reduction Electrocatalysts Based on Coupled Iron Nitride Nanoparticles with Nitrogen-Doped Carbon

    Directory of Open Access Journals (Sweden)

    Min Jung Park

    2016-06-01

    Full Text Available Aimed at developing a highly active and stable non-precious metal electrocatalyst for oxygen reduction reaction (ORR, a novel FexNy/NC nanocomposite—that is composed of highly dispersed iron nitride nanoparticles supported on nitrogen-doped carbon (NC—was prepared by pyrolyzing carbon black with an iron-containing precursor in an NH3 atmosphere. The influence of the various synthetic parameters such as the Fe precursor, Fe content, pyrolysis temperature and pyrolysis time on ORR performance of the prepared iron nitride nanoparticles was investigated. The formed phases were determined by experimental and simulated X-ray diffraction (XRD of numerous iron nitride species. We found that Fe3N phase creates superactive non-metallic catalytic sites for ORR that are more active than those of the constituents. The optimized Fe3N/NC nanocomposite exhibited excellent ORR activity and a direct four-electron pathway in alkaline solution. Furthermore, the hybrid material showed outstanding catalytic durability in alkaline electrolyte, even after 4,000 potential cycles.

  4. Reduction of nitric oxide with carbon monoxide on the Al-Mo(110) surface alloy

    Science.gov (United States)

    Grigorkina, G. S.; Tvauri, I. V.; Kaloeva, A. G.; Burdzieva, O. G.; Sekiba, D.; Ogura, S.; Fukutani, K.; Magkoev, T. T.

    2016-05-01

    Coadsorption and reaction of carbon monoxide (CO) and nitric oxide (NO) on Al-Mo(110) surface alloy have been studied by means of Auger electron, reflection-absorption infrared and temperature programmed desorption spectroscopies (AES, RAIRS, TPD), low energy electron diffraction (LEED) and work function measurements. The Al-Mo(110) surface alloy was obtained by thermal annealing at 800 K of aluminum film deposited on Mo(110) held at room temperature. Upon annealing Al penetrates the surface, most likely forming stoichiometric hexagonal surface monolayer of the compound Al2Mo. The NO and CO adsorb molecularly on this alloy surface at 200 K, unlike totally dissociative adsorption on bare Mo(110) and Al(111) film. Adsorption of CO on NO precovered Al-Mo(110) substrate dramatically affects the state of NO molecules, most probably displacing them to higher-coordinated sites with their simultaneous tilting to the surface plane. Heating to about room temperature (320 K) causes reduction of nitric oxide with carbon monoxide, yielding CO2, and substrate nitridation. This behavior can be associated with the surface reconstruction providing additional Al/Mo interface reaction sites and change of the d-band upon alloying.

  5. Mössbauer study of carbon coated iron magnetic nanoparticles produced by simultaneous reduction/pyrolysis

    Science.gov (United States)

    Mendonça, Fernanda G.; Ardisson, José D.; Rosmaninho, Marcelo G.; Lago, Rochel M.; Tristão, Juliana C.

    2011-11-01

    Magnetic iron nanoparticles immersed in a carbon matrix were produced by a combined process of controlled dispersion of Fe3 + ions in sucrose, thermal decomposition with simultaneous reduction of iron cores and the formation of the porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4 and 8 in %wt in sucrose and heated at 400, 600 and 800°. The samples were analyzed by XRD, Mössbauer spectroscopy, magnetization measurements, TG, SEM and TEM. The materials prepared at 400° are composed essentially of Fe3O4 particles and carbon, while treatments at higher temperatures, e.g. 600 and 800° produced as main phases Fe0 and Fe3C. The Mössbauer spectra of samples heated at 400° showed two sextets characteristic of a magnetite phase and other contributions compatible with Fe3 + and Fe2 + phases in a carbonaceous matrix. Samples treated at temperatures above 600° showed the presence of metallic iron with concentrations between 16-43%. The samples heated at 800° produced higher amounts of Fe3C (between 20% and 58%). SEM showed for the iron 8% sample treated at 600-800°C particle sizes smaller than 50 nm. Due to the presence of Fe0 particles in the carbonaceous porous matrix the materials have great potential for application as magnetic adsorbents.

  6. DNA-directed growth of Pd nanocrystals on carbon nanotubes towards efficient oxygen reduction reactions.

    Science.gov (United States)

    Zhang, Lian Ying; Guo, Chun Xian; Cui, Zhiming; Guo, Jun; Dong, Zhili; Li, Chang Ming

    2012-12-03

    Unique DNA-promoted Pd nanocrystals on carbon nanotubes (Pd/DNA-CNTs) are synthesized for the first time, in which through its regularly arranged PO(4)(3-) groups on the sugar-phosphate backbone, DNA directs the growth of ultrasmall Pd nanocrytals with an average size of 3.4 nm uniformly distributed on CNTs. The Pd/DNA-CNT catalyst shows much more efficient electrocatalytic activity towards oxygen reduction reaction (ORR) with a much more positive onset potential, higher catalytic current density and better stability than other Pd-based catalysts including Pd nanocrystals on carbon nanotubes (Pd/CNTs) without the use of DNA and commercial Pd/C catalyst. In addition, the Pd/DNA-CNTs catalyst provides high methanol tolerance. The high electrocatalytic performance is mainly contributed by the ultrasmall Pd nanocrystal particles grown directed by DNA to enhance the mass transport rate and to improve the utilization of the Pd catalyst. This work may demonstrate a universal approach to fabricate other superior metal nanocrystal catalysts with DNA promotion for broad applications in energy systems and sensing devices.

  7. Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhu; Higgins, Drew [Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Chen Zhongwei, E-mail: zhwchen@uwaterloo.c [Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)

    2010-06-30

    Nitrogen doped carbon nanotubes (NCNTs) were synthesized by a single step chemical vapor deposition technique using either ferrocene or iron(II) phthalocyanine as catalyst and pyridine as the carbon and nitrogen precursor. Variations in surface morphology and electrocatalytic activity for oxygen reduction reaction (ORR) were observed between the NCNTs synthesized using different catalysts. The structural and chemical characterizations were carried out using transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The electrochemical activity of NCNTs was evaluated with rotating ring disc electrode (RRDE) voltammetry. Structural characterization suggested more defects formed on the NCNTs synthesized from ferrocene (Fc-NCNTs) which led to a rugged surface morphology compared to the NCNTs synthesized from iron(II) phthalocyanine (FePc-NCNTs). Based on the RRDE voltammetry study, Fc-NCNTs demonstrated much higher activity for ORR than FePc-NCNT. Evidences from the structural and chemical characterizations illustrate the potential impact of catalyst structure in shaping the surface structure of NCNTs and the positive effect of surface defects on ORR activity. These results showed that potential improvements on ORR activity of NCNTs could be achieved by tailoring the surface structure of NCNTs by using catalysts with different structures.

  8. High Performance Heteroatoms Quaternary-doped Carbon Catalysts Derived from Shewanella Bacteria for Oxygen Reduction

    Science.gov (United States)

    Guo, Zhaoyan; Ren, Guangyuan; Jiang, Congcong; Lu, Xianyong; Zhu, Ying; Jiang, Lei; Dai, Liming

    2015-11-01

    A novel heteroatoms (N, P, S and Fe) quaternary-doped carbon (HQDC-X, X refers to the pyrolysis temperature) can be fabricated by directly pyrolyzing a gram-negative bacteria, S. oneidensis MR-1 as precursors at 800 °C, 900 °C and 1000 °C under argon atmosphere. These HQDC-X catalysts maintain the cylindrical shape of bacteria after pyrolysis under high temperatures, while heteroatoms including N, P, S and Fe distribute homogeneously on the carbon frameworks. As a result, HQDC-X catalysts exhibit excellent electrocatalytic activity for ORR via a dominant four-electron oxygen reduction pathway in alkaline medium, which is comparable with that of commercial Pt/C. More importantly, HQDC-X catalysts show better tolerance for methanol crossover and CO poisoning effects, long-term durability than commercial Pt/C, which could be promising alternatives to costly Pt-based electrocatalysts for ORR. The method may provide a promising avenue to develop cheap ORR catalysts from inexpensive, scalable and biological recursors.

  9. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    Science.gov (United States)

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  10. Metal-Organic Framework Derived Hierarchically Porous Nitrogen-Doped Carbon Nanostructures as Novel Electrocatalyst for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Zhou, Yazhou; Yang, Guohai; Jeon, Ju Won; Lemmon, John P.; Du, Dan; Nune, Satish K.; Lin, Yuehe

    2015-10-01

    The hierarchically porous nitrogen-doped carbon materials, derived from nitrogen-containing isoreticular metal-organic framework-3 (IRMOF-3) through direct carbonization, exhibited excellent electrocatalytic activity in alkaline solution for oxygen reduction reaction (ORR). This high activity is attributed to the 10 presence of high percentage of quaternary and pyridinic nitrogen, the high surface area as well as good conductivity. When IRMOF-3 was carbonized at 950 °C (CIRMOF-3-950), it showed four-electron reduction pathway for ORR and exhibited better stability (about 78.5% current density was maintained) than platinum/carbon (Pt/C) in the current durability test. In addition, CIRMOF-3-950 presented high selectivity to cathode reactions compared to commercial Pt/C.

  11. Greenhouse gas emission and groundwater pollution potentials of soils amended with raw and carbonized swine solids

    Science.gov (United States)

    The objective of this research is to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with raw swine solids and swine biochars made from different thermochemical conditions. Triplicate sets of small pots were designed: 1) control soil with a 50/50 mixture o...

  12. Chapter 19: The carbon isotope composition of plants and soils as biomarkers of pollution

    Science.gov (United States)

    DE Pataki; JT Eanderson; W Want; MK Herzenach; NE Grulke

    2010-01-01

    Urban environments have been compared to the global environment predicted at the end of the twenty-first century, in that urban areas are currently experiencing elevated atmospheric C02 concentrations, warmer temperatures, increased nitrogen loads, and elevated concentrations of pollutants (Grimm et al. 2000). It is extremely difficult to predict...

  13. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    NARCIS (Netherlands)

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater treatm

  14. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    NARCIS (Netherlands)

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater

  15. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    NARCIS (Netherlands)

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater treatm

  16. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    Science.gov (United States)

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region.

  17. PENURUNAN KADAR PROTEIN LIMBAH CAIR TAHU DENGAN PEMANFAATAN KARBON BAGASSE TERAKTIVASI (Protein Reduction of Tofu Wastewater Using Activated Carbon Bagasse

    Directory of Open Access Journals (Sweden)

    Candra Purnawan

    2014-10-01

    Full Text Available ABSTRAK Penurunan kadar protein limbah tahu telah dilakukan dengan pemanfaatan karbon Bagasse teraktivasi. Tujuan dari penelitian ini adalah untuk mengetahui kondisi optimum dari karbon teraktivasi NaOH dan H2SO4 dalam menurunkan kadar protein limbah cair tahu dan mengetahui jenis isoterm adsorpsi dari karbon aktif yang digunakan untuk menyerap protein limbah cair tahu. Hasil penelitian menunjukkan konsentrasi NaOH yang optimum untuk aktivasi karbon aktif 15%, massa optimum karbon bagasse teraktivasi NaOH adalah 2 g dan penurunan kadar proteinnya 71,95%, sedangkan massa optimum karbon bagasse teraktivasi H2SO4 adalah 1 g dengan penurunan kadar protein sebesar 38,19%. Waktu kontak optimum karbon bagasse teraktivasi  NaOH dan H2SO4 adalah 12 jam. Adsorpsi protein oleh karbon bagasse teraktivasi NaOH mengikuti isoterm adsorpsi Langmuir dan Freundlich sedangkan karbon bagasse teraktivasi H2SO4 dominan mengikuti isoterm Freundlich.   ABSTRACT The protein reduction of tofu wastewater using activated carbon from bagasse  had been conducted. The purposes of this research were to analysis optimum condition of activated carbon bagsse using NaOH and H2SO4 for reduction protein in tofu wastewater, and analysis adsorption isotherm of activated carbon with protein. The result showed that optimum mass of carbon bagasse activated NaOH was  2 g with 71.95% protein reduction, while carbon bagasse activated H2SO4 has 1 g with 38.19% protein reduction. The optimum contact time between protein and activated carbon (with NaOH and H2SO4 was happened in 12 hours. Adsorption protein with carbon bagasse activated NaOH had followed Langmuir and Freundlich adsorption isotherm, while adsorption with carbon bagasse activated H2SO4 dominantlyhad followed Freundlich adsorption isotherm

  18. Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Gao, Bing; Nakano, Satoshi; Kakimoto, Koichi

    2017-09-01

    Generation, incorporation, and accumulation of carbon (C) were investigated by transient global simulations of heat and mass transport during the melting process of Czochralski silicon (CZ-Si) crystal growth. Contact reaction between the quartz crucible and graphite susceptor was introduced as an extra origin of C contamination. The contribution of the contact reaction on C accumulation is affected by the back diffusion of C monoxide (CO) from the gap between the gas-guide and the crucible. The effect of the gas-guide coating on C reduction was elucidated by taking the reaction between the silicon carbide (SiC) coating and gaseous Si monoxide (SiO) into account. Application of the SiC coating on the gas-guide could effectively reduce the C contamination because of its higher thermochemical stability relative to that of graphite. Gas flow control on the back diffusion of the generated CO was examined by the parametric study of argon gas flow rate. Generation and back diffusion of CO were both effectively suppressed by the increase in the gas flow rate because of the high Péclet number of species transport. Strategies for C content reduction were discussed by analyzing the mechanisms of C accumulation process. According to the elucidated mechanisms of C accumulation, the final C content depends on the growth duration and contamination flux at the gas/melt interface.

  19. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate

    Science.gov (United States)

    Zhu, De-qing; Chun, Tie-jun; Pan, Jian; Lu, Li-ming; He, Zhen

    2013-06-01

    The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and Al2O3), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an electric arc furnace to replace scrap steel.

  20. General economic assessment of carbon dioxide reduction strategies; Gesamtwirtschaftliche Beurteilung von CO{sub 2} Minderungsstrategien

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrand, B.; Wackerbauer, J.; Behring, K.; Karl, H.D.; Lehr, U.; Oberheitmann, A.; Ratzenberger, R.; Siebe, T.; Storchmann, K.H.; Goldrian, G.; Hild, R.

    1996-12-31

    In Germany, a comprehensive pogramme was launched in the past years for the purpose of achieving a 25 percent reduction in carbon dioxide emissions by 2005 as compared to the reference year 1990. The catalogue of measures ranges from legal regulations to economic incentives and to information and consulting. This investigation investigates the reduction effects to be expected from these measures as well as the sectoral and general economic cost effects. The interdependences between clean air policy on the one hand and sectoral and general economic goals like acceptable economic growth, stable prices and a level foreign trade balance are to be defined. (orig./RHM) [Deutsch] In Deutschland wurde in den letzten Jahren ein umfassendes Minderungsprogramm auf den Weg gebracht, mit dem eine Verringerung der CO{sub 2}-Emissionen bis zum Jahr 2005 gegenueber 1990 um 25 vH erreicht werden soll; das Massnahmenbuendel reicht von ordnungsrechtlichen Ge- und Verboten ueber oekonomische Anreize bis hin zu Information und Aufklaerung. Die vorliegende Untersuchung stellt die mit diesem Massnahmenkatalog verbundenen Reduktionswirkungen wie auch die sektoralen und gesamtwirtschaftlichen Kostenimpulse im Detail dar. Ziel ist es, den Zusammenhang zwischen Klimaschutzpolitik einerseits, sektoralen und gesamtwirtschaftlichen Zielen wie angemessenes Wirtschaftswachstum, stabiles Preisniveau oder aussenwirtschaftliches Gleichgewicht andererseits sichtbar zu machen. (orig./RHM)

  1. Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature☆

    Institute of Scientific and Technical Information of China (English)

    Shuli Bai; Shengtao Jiang; Huanying Li; Yujiang Guan

    2015-01-01

    The catalytic activity of carbon nanotubes-supported vanadium oxide (V2O5/CNTs) catalysts in the selective catalytic reduction (SCR) of NO with NH3 at low temperatures (≤250 °C) was investigated. The effects of V2O5 loading, reaction temperature, and presence of SO2 on the SCR activity were evaluated. The results show that V2O5/CNTs catalysts exhibit high activity for NO reduction with NH3 at low-temperatures. The catalysts also show very high stability in the presence of SO2. More interestingly, their activities are significantly promoted in-stead of being poisoned by SO2. The promoting effect of SO2 is distinctly associated with V2O5 loading, particularly maximized at low V2O5 loading, which indicated the role of CNTs support in this effect. The promoting effect of SO2 at low temperatures suggests that V2O5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.

  2. A study on the isotope effects in the reduction of carbon dioxide by zinc; Etude des effets isotopiques dans la reduction du gaz carbonique par le zinc

    Energy Technology Data Exchange (ETDEWEB)

    Senegacnik, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-06-15

    We have determined the isotope effects which occur in the reduction of carbon dioxide by zinc. It has been shown that in the case of irreversible surface reactions, Bernstein's equation which permits the calculation of the fractionation factor is still valid. These experimental factors are in good agreement with those obtained by calculating the partition functions of the adsorbed activated complexes. In the reaction mechanism used, the model of the activated complex corresponds to the dissociation of one of the carbon oxygen bonds CO{sub 2} {yields} CO + O. Perturbations arising from the slight reversibility of the reaction Zn + CO{sub 2} {r_reversible} ZnO + CO on the isotope effects on the carbon and oxygen atoms have also been calculated. (author) [French] Nous avons etudie les effets isotopiques qui ont lieu dans la reduction du gaz carbonique par le zinc. La validite de l'equation de Bernstein qui permet de calculer le facteur de fractionnement a ete demontree pour le cas d'une reaction irreversible de surface. Ces facteurs de fractionnement experimentaux sont en bon accord avec ceux obtenus par le calcul des fonctions de partition isotopiques des complexes actives adsorbes. Dans le mecanisme de reaction utilise, le modele du complexe active correspond a la dissociation d'une des liaisons carbone oxygene CO{sub 2} {yields} CO + O. Les effets perturbateurs de la reversibilite de la reduction Zn + CO{sub 2} {r_reversible} ZnO + CO sur les effets isotopiques du carbone et ceux de l'oxygene ont ete egalement evalues. (auteur)

  3. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.

    Science.gov (United States)

    Li, Wanlu; Seredych, Mykola; Rodríguez-Castellón, Enrique; Bandosz, Teresa J

    2016-03-21

    S-doped and dual S,N-doped polymer-derived carbons were studied as electrocatalysts for the reduction of CO2. Higher Faradaic efficiencies for conversion to CO and CH4 were obtained for S,N-doped carbon than its S-doped counterpart. The former showed a maximum Faradaic efficiency of 11.3% for CO and 0.18% for CH4 formation. The S,N-nanoporous carbon was better at decreasing the overpotential of the reduction process. The pyridinic nitrogen groups were found to be actively participating in binding CO2. The quaternary nitrogen and thiophenic groups were also involved in the reduction process. It is proposed that the positively charged sites on the carbon atoms, adjacent to pyridinic nitrogen, stabilize the CO2(.-) and COOH* intermediates, promoting the formation of CO. The surface basicity of the catalysts improved the CO2 reduction selectivity when competing with H2 evolution. N2 adsorption measurements suggested that ultra-micropores enhance the reduction of CO2 to CH4.

  4. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  5. Analysis of efficiency of pollution reduction measures in rural basin using MIKE Basin model. Case study: Olšava River Basin

    Directory of Open Access Journals (Sweden)

    Kaiglová Jana

    2014-03-01

    Full Text Available This paper presents the results of testing the applicability of the MIKE Basin model for simulating the efficiency of scenarios for reducing water pollution. The model has been tested on the Olšava River Basin (520 km2 which is a typical rural region with a heterogeneous mix of pollution sources with variable topography and land use. The study proved that the model can be calibrated successfully using even the limited amount of data typically available in rural basins. The scenarios of pollution reduction were based on implementation and intensification of municipal wastewater treatment and conversion of arable land on fields under the risk of soil erosion to permanent grassland. The application of simulation results of these scenarios with proposed measures proved decreasing concentrations in downstream monitoring stations. Due to the practical applicability of proposed measures, these could lead to fulfilment of the water pollution limits required by the Czech and EU legislation. However, there are factors of uncertainty that are discussed that may delay or limit the effect of adopted measures in small rural basins.

  6. Reproducibly creating hierarchical 3D carbon to study the effect of Si surface functionalization on the oxygen reduction reaction

    Science.gov (United States)

    Zeng, Yuze; Flores, Jose F.; Shao, Yu-Cheng; Guo, Jinghua; Chuang, Yi-De; Lu, Jennifer Q.

    2016-06-01

    We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This investigation reveals for the first time that non-conductive Si with an appropriate electronic structure distorts the carbon electronic structure and consequently enhances ORR electrocatalysis. The strong interface provides excellent electron connectivity according to electrochemical analysis. This highly reproducible and stable 3D platform can serve as a stepping-stone for the investigation of the effect of carbon surface functionalization on electrochemical reactions in general.We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This

  7. Chlorine-functionalized carbon dots for highly efficient photodegradation of pollutants under visible-light irradiation

    Science.gov (United States)

    Hu, Shengliang; Ding, Yanli; Chang, Qing; Yang, Jinlong; Lin, Kui

    2015-11-01

    Chlorine-functionalized carbon dots (Cl-CDs) were prepared by the substitution reaction between Cl radicals into thionyl chloride molecules and carbon dots with containing OH/COOH groups at their surface (O-CDs). The obtained Cl-CDs with a size of 2-5 nm contain 2-3% Cl atoms and emit blue light. Compared with amine-functionalzed carbon dots (N-CDs) and O-CDs, Cl-CDs exhibit much higher photocatalytic activity under visible-light irradiation. The thermally and chemically stable phthalocyanine can be even degraded quickly through Cl-CDs. This work suggests that surface engineering of carbon dots with heteroatoms can be used to enhance their photochemical properties.

  8. A cross-sectional study of exhaled carbon monoxide as a biomarker of recent household air pollution exposure.

    Science.gov (United States)

    Lee, Alison; Sanchez, Tiffany R; Shahriar, Muhammad Hasan; Eunus, Mahbubul; Perzanowski, Matthew; Graziano, Joseph

    2015-11-01

    Household air pollution causes 3.5 million deaths annually. Personal exposure assessments required for examining health associations are expensive and require technical expertize, limiting the quality of research in resource-poor settings To assess the feasibility of exhaled carbon monoxide and its relationship to continuous personal carbon monoxide monitoring and markers of respiratory health in female cooks primarily cooking with biomass fuels in Araihazar, Bangladesh METHODS AND MEASURE: For a 24-h period, exhaled carboxyhemoglobin (eCOHb) % saturation was measured before and after each cooking episode while simultaneous 24-h personal carbon monoxide monitoring was conducted. The Coburn-Forester-Kane (CFK) equation was used to convert continuous personal CO exposures to predicted COHb % saturation. Respiratory symptoms were assessed by St. George's Respiratory Questionnaire, airway inflammation measured by exhaled breath condensate pH, and lung function determined by spirometry. Spearman's correlation was used to examine the relationship between eCOHb and CKF-derived COHb, EBC pH, and lung function variables. eCOHb % saturation was dichotomized around the median and odds ratios calculated for each respiratory symptom Measurement of eCOHb % saturation is feasible in a resource-poor setting. eCOHb % saturation responds to cooking episodes and demonstrates consistency when measured at the same time point 24-h later, suggesting that eCOHb may be a sensitive biomarker of recent HAP exposures. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Size-selected black carbon mass distributions and mixing state in polluted and clean environments of northern India

    Science.gov (United States)

    Raatikainen, Tomi; Brus, David; Hooda, Rakesh K.; Hyvärinen, Antti-Pekka; Asmi, Eija; Sharma, Ved P.; Arola, Antti; Lihavainen, Heikki

    2017-01-01

    We have measured black carbon properties by using a size-selected single-particle soot photometer (SP2). The measurements were conducted in northern India at two sites: Gual Pahari is located at the Indo-Gangetic Plain (IGP) and Mukteshwar at the Himalayan foothills. Northern India is known as one of the absorbing aerosol hot spots, but detailed information about absorbing aerosol mixing state is still largely missing. Previous equivalent black carbon (eBC) mass concentration measurements are available for this region, and these are consistent with our observations showing that refractory black carbon (rBC) concentrations are about 10 times higher in Gual Pahari than those at Mukteshwar. Also, the number fraction of rBC-containing particles is higher in Gual Pahari, but individual rBC-containing particles and their size distributions are fairly similar. These findings indicate that particles at both sites have similar local and regional emission sources, but aerosols are also transported from the main source regions (IGP) to the less polluted regions (Himalayan foothills). Detailed examination of the rBC-containing particle properties revealed that they are most likely irregular particles such as fractal aggregates, but the exact structure remains unknown.

  10. Highly regenerable carbon-Fe3O4 core-satellite nanospheres as oxygen reduction electrocatalyst and magnetic adsorbent

    Science.gov (United States)

    Zhou, Wenqiang; Liu, Minmin; Cai, Chao; Zhou, Haijun; Liu, Rui

    2017-02-01

    We present the synthesis and multifunctional utilization of core-satellite carbon-Fe3O4 nanoparticles to serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. Starting from polydopamine (PDA) nanoparticles and Fe(NO3)3, carbon-Fe3O4 core-satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The synergistic combination of Fe3O4 and N-doped carbon endows the nanocomposite with high electrochemical activity in ORR and mainly four electrons transferred in reaction process. Furthermore, carbon-Fe3O4 nanoparticles used as magnetic adsorbent exhibit the efficient removal of Rhodamine B from an aqueous solution. The recovery and reuse of the adsorbent is demonstrated 5 times without any detectible loss in activity.

  11. Effects of air pollutants on the carbon dioxide (CO2) emission rate of human subjects

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt; Wargocki, Pawel; Wyon, David

    2004-01-01

    Several laboratory studies have shown the negative effects of emissions from typical indoor pollution sources on perceived air quality, SBS symptoms and the performance of office work. The subjects performed typical office tasks at their own pace while they were exposed for several hours to diffe......Several laboratory studies have shown the negative effects of emissions from typical indoor pollution sources on perceived air quality, SBS symptoms and the performance of office work. The subjects performed typical office tasks at their own pace while they were exposed for several hours...... to different air quality conditions. A re-analysis of the CO2 measurements obtained in two independent studies showed that human CO2 emission rates were affected by air quality (P...

  12. Atmospheric phenanthrene pollution modulates carbon allocation in red clover (Trifolium pratense L.)

    Energy Technology Data Exchange (ETDEWEB)

    Desalme, Dorine, E-mail: dorine.desalme@univ-fcomte.fr [Universite de Franche-Comte, CNRS, UMR 6249, Chrono-environnement, BP 71427, F-25211 Montbeliard Cedex (France); Binet, Philippe [Universite de Franche-Comte, CNRS, UMR 6249, Chrono-environnement, BP 71427, F-25211 Montbeliard Cedex (France); Epron, Daniel [Nancy Universite, UMR 1137, Ecologie et Ecophysiologie Forestieres, Faculte des Sciences, BP 70239, F- 54506 Vandoeuvre-les-Nancy Cedex (France); INRA, UMR 1137, Ecologie et Ecophysiologie Forestieres, Centre INRA de Nancy, F- 54280 Champenoux (France); Bernard, Nadine; Gilbert, Daniel; Toussaint, Marie-Laure [Universite de Franche-Comte, CNRS, UMR 6249, Chrono-environnement, BP 71427, F-25211 Montbeliard Cedex (France); Plain, Caroline [Nancy Universite, UMR 1137, Ecologie et Ecophysiologie Forestieres, Faculte des Sciences, BP 70239, F- 54506 Vandoeuvre-les-Nancy Cedex (France); INRA, UMR 1137, Ecologie et Ecophysiologie Forestieres, Centre INRA de Nancy, F- 54280 Champenoux (France); Chiapusio, Genevieve, E-mail: genevieve.chiapusio@univ-fcomte.fr [Universite de Franche-Comte, CNRS, UMR 6249, Chrono-environnement, BP 71427, F-25211 Montbeliard Cedex (France)

    2011-10-15

    The influence of atmospheric phenanthrene (PHE) exposure (160 {mu}g m{sup -3}) during one month on carbon allocation in clover was investigated by integrative (plant growth analysis) and instantaneous {sup 13}CO{sub 2} pulse-labelling approaches. PHE exposure diminished plant growth parameters (relative growth rate and net assimilation rate) and disturbed photosynthesis (carbon assimilation rate and chlorophyll content), leading to a 25% decrease in clover biomass. The root-shoot ratio was significantly enhanced (from 0.32 to 0.44). Photosynthates were identically allocated to leaves while less allocated to stems and roots. PHE exposure had a significant overall effect on the {sup 13}C partitioning among clover organs as more carbon was retained in leaves at the expense of roots and stems. The findings indicate that PHE decreases root exudation or transfer to symbionts and in leaves, retains carbon in a non-structural form diverting photosynthates away from growth and respiration (emergence of an additional C loss process). - Highlights: > Atmospheric PHE decreased growth, biomass partitioning and C allocation in clover. > C allocation was modified in favor of leaves but at the expense of roots and stems. > In roots, a decreased carbon exudation or allocation to symbionts was proposed. > In leaves, carbon was retained in a non-structural form as secondary metabolites. > BVOC emission was suggested as another loss process than respiration and exudation. - Exposure of clover to atmospheric PHE affected not only its growth, but also biomass partitioning and C allocation among its organs.

  13. Stable carbon isotope monitoring of in situ bioaugmentation for enhanced reductive dechlorination of halogenated hydrocarbons

    Science.gov (United States)

    Bill, M.; Conrad, M. E.; Sorenson, K.; Wymore, R.; Lamar, M.; Chamberlain, S.; Trotsky, J.

    2009-12-01

    Injection of electron donor to stimulate reductive dechlorination of trichloroethene (TCE) has been demonstrated to be an effective strategy for remediation of contaminated groundwater. At a number of sites, however, complete reductive dechlorination of TCE to ethene is not attained because the appropriate microbial community is not present. Addition of Dehalococcoides spp. to groundwater to achieve complete reductive dechlorination of TCE is being tested at Naval Weapons Station Seal Beach, CA. To help assess the effectiveness of this process, the stable carbon isotope compositions of TCE and its byproducts, cis-dichloroethene (cDCE), vinyl chloride (VC) and ethene are being measured during the experiment. Two different methods of bioremediation are being tested. In the “active” cell groundwater is continuously pumped from downgradient wells and re-injected into two upgradient wells. Electron donor (1-3% Na-lactate) has been added to the injection line either weekly or monthly. In the “passive” cell, no circulation of groundwater is done, but electron donor is added to three injection wells monthly. When reducing conditions were reached in the groundwater (late 2008), the bioaugmentation culture was added to both experimental cells with the electron donor. In the active cell, addition of electron donor prior to introduction of the bioaugmentation culture stimulated significant increases in the concentrations of cDCE, but only trace VC and ethene. In the passive cell, production of cDCE was observed, but at lower levels. The δ13C values of TCE ranged from -20‰ to 28‰ (averaging -24‰). The δ13C values of cDCE were generally 1-2‰ per mil lower than those of the TCE, representing fractionation during the biological conversion from TCE to cDCE. Following bioaugmentation, significant production of VC has been observed in the active cell, with corresponding increases in δ13C values of TCE and cDCE. In several wells, the δ13C values of the cDCE have

  14. Effects of air pollutants on the carbon dioxide (CO2) emission rate of human subjects

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt; Wargocki, Pawel; Wyon, David

    2004-01-01

    Several laboratory studies have shown the negative effects of emissions from typical indoor pollution sources on perceived air quality, SBS symptoms and the performance of office work. The subjects performed typical office tasks at their own pace while they were exposed for several hours...... to different air quality conditions. A re-analysis of the CO2 measurements obtained in two independent studies showed that human CO2 emission rates were affected by air quality (P...

  15. One-step fabrication of carbon fiber derived from waste paper and its application for catalyzing tri-iodide reduction

    Science.gov (United States)

    Xu, Shunjian

    2017-01-01

    Two carbon fibers were first fabricated by one-step pyrolysis of papers (filter paper and facial tissue), and then employed as catalytic materials for counter electrodes in dye-sensitized solar cells (DSCs) to investigate their potential application. The results show that the microstructure transformation and main weight loss of both the papers are mainly happened in the temperature range of 300–400 °C. After pyrolysis at 800°C, the weight remaining of the filter paper and facial tissue is 1.92% and 4.95%, respectively. The obtained carbon fibers belong to an amorphous carbon consisting of the randomly oriented stacks of graphene sheets. The diameters of both the carbon fibers are about 10 μm, on which there are a certain amount of fine carbon nanofibers. The amorphous microstructure and unique fine nanofibers of the carbon fibers induce more excellent catalytic activity for triiodide ion reduction compared with the biochar (derived from poplar leaf) and the graphite. As a result, the carbon fiber based DSCs display obviously higher efficiency than the biochar or graphite based ones. The conversion efficiency of the DSCs employing the filter paper derived carbon fiber, facial tissue derived carbon fiber, biochar and graphite is 4.72%, 4.70%, 1.33% and 0.77%, respectively.

  16. Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes - A Step Towards the Electrochemical CO2 Refinery

    KAUST Repository

    Wang, Hong

    2017-05-12

    The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of renewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.

  17. Game Theoretic Analysis of Carbon Emission Reduction and Sales Promotion in Dyadic Supply Chain in Presence of Consumers’ Low-Carbon Awareness

    Directory of Open Access Journals (Sweden)

    Liangjie Xia

    2014-01-01

    Full Text Available The paper studies how the combination of the manufacturer’s carbon emission reduction and the retailer’s emission reduction relevant promotion impacts the performances of a dyadic supply chain in low-carbon environment. We consider three typical scenarios, that is, centralized and decentralized without or with side-payment. We compare measures of supply chain performances, such as profitabilities, emission reduction efficiencies, and effectiveness, in these scenarios. To improve chain-wide performances, a new side-payment contract is designed to coordinate the supply chain and numerical experiments are also conducted. We find the following. (1 In decentralized setting, the retailer will provide emission cutting allowance to the manufacturer only if their unit product profit margin is higher enough than the manufacturer’s, and the emission reduction level of per unit product is a monotonically increasing function with respect to the cost pooling proportion provided by the retailer; (2 the new side-payment contract can coordinate the dyadic supply chain successfully due to its integrating sales promotion effort and emission reduction input, which results in system pareto optimality under decentralized individual rationality but achieves a collective rationality effect in the centralized setting; (3 when without external force’s regulation, consumers’ low-carbon awareness is to enhance consumers’ utility and decrease profits of supply chain firms.

  18. 论主要污染物减排中的环境管理%Environmental Management in Emissions Reduction of Main Pollutants

    Institute of Scientific and Technical Information of China (English)

    相震

    2012-01-01

    主要污染物减排是实现代价小、效益好、排放低、可持续环保新道路的主要抓手。"十二五"期间主要污染物减排因子增加,减排削减的范围覆盖面更广,减排难度也明显加大。在工程减排空间和潜力相对减少时,更加突出结构减排。创新机制体制,完善制度减排,保障减排实施是环保部门管理减排工作的重点。因此,通过源头防控、设施监管、考核革新、提升能力、以奖代补、落后产能退出、减排约谈、动态预警和领导蹲点等措施是提升管理减排效益的关键。%Main Pollutants emission reduction is an effective measure to realize environmental development of new load with low cost,favorable performance,low emission and sustainable development.During the Twelfth-Five-Year Plan,the reduction factors of main pollutant emissions increases with wider coverage of emission reduction scope and more difficulties to reduce the emissions.The relative decrease in space and potential of emissions reduction through engineering,stress of emission reduction shall be placed on structure adjustment.Mechanism innovation,system innovation,improved system and safeguard measures are the emphasis of emission reduction.Therefore,through prevention and control of the source,facilities regulatory,assessment of innovation,ability improvement and using incentives instead of remedial,backward production capacity,emissions interviews,dynamic early warning,and the supervision of the leadership to reduce the major pollutants are the key points to realize emissions reduction.

  19. Declines in oil-rates of stranded birds in the North Sea highlight spatial patterns in reductions of chronic oil pollution.

    Science.gov (United States)

    Camphuysen, Kees C J

    2010-08-01

    Strandings of oiled seabirds are used to signal the problem of chronic oil pollution. Species-specific oil rates reflect the risk for marine birds to become oiled at sea. High oil rates were characteristic for seabirds common in areas with frequent oil spills; low oil rates for birds wintering away from the busiest shipping lanes. Declining trends in oil-rates were found, reflecting a reduction in the amount of oil intentionally discharged over the past 50years. Spatial patterns in the risk to become oiled could be identified, when the winter distribution patterns of the affected birds were incorporated in the analysis. Declines in oil rates were most pronounced in coastal birds. These trends were consistent with tendencies to police nearshore waters more effectively than offshore waters. While levels of chronic oil pollution are much reduced, future emphasis should be to reduce chronic oiling more effectively in offshore waters.

  20. Moessbauer study of carbon coated iron magnetic nanoparticles produced by simultaneous reduction/pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Fernanda G. [Universidade Federal de Minas Gerais, Departamento de Quimica - ICEx (Brazil); Ardisson, Jose D. [CDTN, Laboratorio de Fisica Aplicada, Centro de Desenvolvimento de Tecnologia Nuclear (Brazil); Rosmaninho, Marcelo G.; Lago, Rochel M.; Tristao, Juliana C., E-mail: juliana@ufv.br [Universidade Federal de Minas Gerais, Departamento de Quimica - ICEx (Brazil)

    2011-11-15

    Magnetic iron nanoparticles immersed in a carbon matrix were produced by a combined process of controlled dispersion of Fe{sup 3 + } ions in sucrose, thermal decomposition with simultaneous reduction of iron cores and the formation of the porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4 and 8 in %wt in sucrose and heated at 400, 600 and 800 Degree-Sign . The samples were analyzed by XRD, Moessbauer spectroscopy, magnetization measurements, TG, SEM and TEM. The materials prepared at 400 Degree-Sign are composed essentially of Fe{sub 3}O{sub 4} particles and carbon, while treatments at higher temperatures, e.g. 600 and 800 Degree-Sign produced as main phases Fe{sup 0} and Fe{sub 3}C. The Moessbauer spectra of samples heated at 400 Degree-Sign showed two sextets characteristic of a magnetite phase and other contributions compatible with Fe{sup 3 + } and Fe{sup 2 + } phases in a carbonaceous matrix. Samples treated at temperatures above 600 Degree-Sign showed the presence of metallic iron with concentrations between 16-43%. The samples heated at 800 Degree-Sign produced higher amounts of Fe{sub 3}C (between 20% and 58%). SEM showed for the iron 8% sample treated at 600-800 Degree-Sign C particle sizes smaller than 50 nm. Due to the presence of Fe{sup 0} particles in the carbonaceous porous matrix the materials have great potential for application as magnetic adsorbents.

  1. High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature.

    Science.gov (United States)

    Ma, Cong; Yu, Shuili; Shi, Wenxin; Tian, Wende; Heijman, S G J; Rietveld, L C

    2012-06-01

    In this study, different concentrations of PAC combined with MBR were carried out to treat slightly polluted surface water (SPSW) at low temperature (10°C). Effects of PAC on the efficiencies of operation, treatment, and the performance of the process were investigated. It was found that the effluent quality, performance efficiency, resistance of shock load were all enhanced and chemical irreversible membrane fouling was reduced with increasing dosage of PAC in MBR. Only when the concentration of PAC which acted as biological carriers was high enough (i.g., 50 g/L), nitrification without initial inoculation in the filtration tank could start within 19 days and be completed within 35 days at 10°C. Fifty grams per liter PAC was the optimal dosage in MBR for stable and extended operation. Under this condition, mean removal efficiencies of ammonia nitrogen (NH(3)-N), dissolved organic carbon (DOC) and UV(254) were 93%, 75%, and 85%, respectively.

  2. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; Wit, de Patrick; Milbrat, Alexander; Luiten-Olieman, Mieke W.J.; Benes, Nieck E.; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-

  3. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size

    Science.gov (United States)

    Hankey, Steve; Marshall, Julian D.

    2015-12-01

    Inhalation of air pollution during transport is an important exposure pathway, especially for certain modes of travel and types of particles. We measured concentrations of particulate air pollution (particle number [PN], black carbon [BC], fine particles [PM2.5], particle size) using a mobile, bicycle-based monitoring platform during morning and afternoon rush-hour to explore patterns of exposure while cycling (34 days between August 14 and October 16, 2012 in Minneapolis, MN). Measurements were geo-located at 1 ​s intervals along 3 prescribed monitoring routes totaling 85 h (1426 km) of monitoring. Mean morning [afternoon] on-road concentrations were 32,500 [16,600] pt cm-3, 2.5 [0.7] μg m-3 BC, 8.7 [8.3] μg m-3 PM2.5, and 42 [39] nm particle diameter. Concentrations were correlated with street functional class and declined within small distances from a major road (e.g., for PN and BC, mean concentration decreased ∼20% by moving 1 block away from major roads to adjacent local roads). We estimate the share of on-bicycle exposure attributable to near-traffic emissions (vs. regional pollution) is ∼50% for PN and BC; ∼25% for PM2.5. Regression models of instantaneous traffic volumes, derived from on-bicycle video recordings of nearby traffic, quantify the increase in particle-concentrations associated with each passing vehicle; for example, trucks were associated with acute, high concentration exposure events (average concentration-increase per truck: 31,000 pt cm-3, 1.0 μg m-3 PM2.5, 1.6 μg m-3 BC). Our findings could be used to inform design of low-exposure bicycle networks in urban areas.

  4. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei

    2012-12-07

    In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of COD(Cr) NH(3)-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH(3)-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making.

  5. Simulation of Water Environmental Capacity and Pollution Load Reduction Using QUAL2K for Water Environmental Management

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei

    2012-01-01

    In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of CODCr NH3-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH3-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making. PMID:23222206

  6. Temperature dependence of the kinetics of oxygen reduction on carbon-supported Pt nanoparticles

    Directory of Open Access Journals (Sweden)

    NEVENKA R. ELEZOVIC

    2008-06-01

    Full Text Available The temperature dependence of oxygen reduction reaction (ORR was studied on highly dispersed Pt nanoparticles supported on a carbon cryogel. The specific surface area of the support was 517 m2 g-1, the Pt particles diameter was about 2.7 nm and the loading of the catalyst was 20 wt. %. The kinetics of the ORR at the Pt/C electrode was examined in 0.50 mol dm-3 HClO4 solution in the temperature range from 274 to 318 K. At all temperatures, two distinct E–log j regions were observed; at low current densities with a slope of –2.3RT/F and at high current densities with a slope of –2.3´2RT/F. In order to confirm the mechanism of oxygen reduction previously suggested at a polycrystalline Pt and a Pt/Ebonex nanostructured electrode, the apparent enthalpies of activation at selected potentials vs. the reversible hydrogen electrode were calculated in both current density regions. Although ∆Ha,1≠ > ∆Ha,h≠, it was found that the enthalpies of activation at the zero Galvani potential difference were the same and hence it could be concluded that the rate-determining step of the ORR was the same in both current density regions. The synthesized Pt/C catalyst showed a small enhancement in the catalytic activity for ORR in comparison to the polycrystalline Pt, but no change in the mechanism of the reaction.

  7. Carbon supported Pt-Y electrocatalysts for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Min Ku; McGinn, Paul J. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2011-02-01

    Carbon supported Pt{sub 3}Y (Pt{sub 3}Y/C) and PtY (PtY/C) were investigated as oxygen reduction reaction (ORR) catalysts. After synthesis via reduction by NaBH{sub 4}, the alloy catalysts exhibited 10-20% higher mass activity (mA mg{sub Pt}{sup -1}) than comparably synthesized Pt/C catalyst. The specific activity ({mu}A cm{sub Pt}{sup -2}) was 23 and 65% higher for the Pt{sub 3}Y/C and PtY/C catalysts, respectively, compared to Pt/C. After annealing at 900 C under a reducing atmosphere, Pt{sub 3}Y/C-900 and PtY/C-900 catalysts showed improved ORR activity; the Pt/C and Pt/C-900 (Pt/C catalyst annealed at 900 C) catalysts exhibited specific activities of 334 and 393 {mu}A cm{sub Pt}{sup -2}, respectively, while those of the Pt{sub 3}Y/C-900 and PtY/C-900 catalysts were 492 and 1050 {mu}A cm{sub Pt}{sup -2}, respectively. X-ray diffraction results revealed that both the Pt{sub 3}Y/C and PtY/C catalysts have a fcc Pt structure with slight Y doping. After annealing, XRD showed that more Y was incorporated into the Pt structure in the Pt{sub 3}Y/C-900 catalyst, while the PtY/C-900 catalyst remained unchanged. Although these results suggested that the high ORR activity of the PtY/C-900 catalyst did not originate from Pt-Y alloy formation, it is clear that the Pt-Y system is a promising ORR catalyst which merits further investigation. (author)

  8. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    Science.gov (United States)

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  9. Missing carbon reductions? Exploring rebound and backfire effects in UK households

    Energy Technology Data Exchange (ETDEWEB)

    Druckman, Angela, E-mail: a.druckman@surrey.ac.uk [ESRC Research Group on Lifestyles, Values and Environment (RESOLVE), University of Surrey (D3), Guildford GU2 7XH (United Kingdom); Chitnis, Mona [ESRC Research Group on Lifestyles, Values and Environment (RESOLVE), University of Surrey (D3), Guildford GU2 7XH (United Kingdom); Sorrell, Steve [Sussex Energy Group, University of Sussex (United Kingdom); Jackson, Tim [ESRC Research Group on Lifestyles, Values and Environment (RESOLVE), University of Surrey (D3), Guildford GU2 7XH (United Kingdom)

    2011-06-15

    Households are expected to play a pivotal role in reducing the UK's greenhouse gas (GHG) emissions, and the UK Government is encouraging specific household actions to help meet its targets. However, due to the rebound effect, only a portion of the GHG emission reductions estimated by simple engineering calculations are generally achieved in practice. For example, replacing short car journeys by walking or cycling reduces consumption of motor fuels. But this frees up money that may be spent on, for example, purchasing extra clothes or flying on vacation. Alternatively, the money may be put into savings. Since all of these options lead to GHG emissions, total GHG savings may be less than anticipated. Indeed, in some instances, emissions may increase-a phenomenon known as 'backfire'. We estimate that the rebound effect for a combination of three abatement actions by UK households is approximately 34%. Targeting re-spending on goods and services with a low GHG intensity reduces this to a minimum of around 12%, while re-spending on goods and services with a high GHG intensity leads to backfire. Our study highlights the importance of shifting consumption to lower GHG intensive categories and investing in low carbon investments. - Highlights: > Policy-makers should be mindful of the rebound effect when developing strategies. > Due to rebound, only around two thirds of expected GHG reductions may be achieved. > Re-use of avoided expenditure is critical; in extreme case backfire may occur. > Higher savings reduce rebound: 'green' investments minimise rebound. > Theoretically negative rebound is possible through 'green' technology investment.

  10. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    OpenAIRE

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate us...

  11. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    Science.gov (United States)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-01-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm−2 and a turnover frequency of 4.1 s−1 at the overpotential of 0.52 V in a near-neutral aqueous solution. PMID:28272403

  12. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    Science.gov (United States)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-03-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm-2 and a turnover frequency of 4.1 s-1 at the overpotential of 0.52 V in a near-neutral aqueous solution.

  13. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  14. A simple Cr(VI)–S(IV)–O{sub 2} system for rapid and simultaneous reduction of Cr(VI) and oxidative degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yanan; Yang, Shaojie [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, 430079 (China); Zhou, Danna, E-mail: zdncug@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Wu, Feng [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, 430079 (China)

    2016-04-15

    Highlights: • Rapid and simultaneous reduction of Cr(VI) and degradation of organic pollutants occur. • Oxysulfur radicals generated in Cr(VI)–S(IV)–O{sub 2} system oxidize the organic pollutants. • Acidic pH facilitates the reactions from both directions of reduction and oxidation. • Degradation potential of aromatic amines depends on the substituted groups. • Cr(VI)–S(IV)–O{sub 2} system is promising for “waste control by waste”. - Abstract: Hexavalent chromium (Cr(VI)), a heavy-metal contaminant, can be easily reduced to less toxic trivalent chromium (Cr(III)) by sulfite ions (S(IV)). However, S(IV) has not drawn as much attention as the ferrous ion has. We report herein a novel Cr(VI)–S(IV)–O{sub 2} system containing sulfite ions that rapidly and simultaneously reduces Cr(VI) and oxidize organic pollutants in the presence of oxygen in aqueous solutions. This Cr(VI)–S(IV)-O{sub 2} system contains the initiator Cr(VI), the reductant S(IV), and the oxidant O{sub 2}, which produce oxysulfur radicals (mainly SO{sub 4}·{sup −} and SO{sub 5}·{sup −}) and hydroxyl radicals (OH·). The Cr(VI)/S(IV) molar ratio, pH, and oxygen content play important roles in the entire reaction system. Acidic conditions (pH 3.0) facilitated degradation of organic compounds and reduction of Cr(VI) as well. In addition, experiments of rapid degradation of several kinds of organic pollutants such as azo dye (acid orange 7, AO7), aniline, phenol, bisphenol A etc were also conducted. Preliminary results show that the removal rates of the analogs of phenols or aromatic amines in this Cr(VI)–S(IV)–O{sub 2} system have a relationship with the electronic parameters (Hammett constant, σ) of the substituted groups. Thus, the Cr(VI)–S(IV)–O{sub 2} system, provides an excellent strategy of “waste control by waste” for removing multiple industrial contaminants.

  15. On the construction of the ecological environment to promote pollution reduction%推进污染减排 构建生态环境

    Institute of Scientific and Technical Information of China (English)

    陶怡斐

    2011-01-01

    介绍了推进污染减排是对社会经济结构的调整和经济效益的增长的重要抓手,同时是改善环境质量、解决区域性环境问题的重要手段。%Introduced to promote pollution reduction for social and economic structure adjustment and economic growth the important grasper, At the same time is to improve the quality of the environment, solving regional environmental problems the impoytant

  16. The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, J. B.; Christensen, Thomas Højlund

    2000-01-01

    Complexation of cadmium (Cd), nickel (Ni) and zinc (Zn) by dissolved organic carbon (DOC) in leachate-polluted groundwater was measured using a resin equilibrium method. Metal-DOC complexation was measured at di€erent DOC concentrations over a range of pH values . The results were compared...

  17. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  18. One-step synthesis of nitrogen-iron coordinated carbon nanotube catalysts for oxygen reduction reaction

    Science.gov (United States)

    Choi, Woongchul; Yang, Gang; Kim, Suk Lae; Liu, Peng; Sue, Hung-Jue; Yu, Choongho

    2016-05-01

    Prohibitively expensive precious metal catalysts for oxygen reduction reaction (ORR) have been one of the major hurdles in a wide use of electrochemical cells. Recent significant efforts to develop precious metal free catalysts have resulted in excellent catalytic activities. However, complicated and time-consuming synthesis processes have negated the cost benefit. Moreover, detailed analysis about catalytically active sites and the role of each element in these high-performance catalysts containing nanomaterials for large surface areas are often lacking. Here we report a facile one-step synthesis method of nitrogen-iron coordinated carbon nanotube (CNT) catalysts without precious metals. Our catalysts show excellent long-term stability and onset ORR potential comparable to those of other precious metal free catalysts, and the maximum limiting current density from our catalysts is larger than that of the Pt-based catalysts. We carry out a series of synthesis and characterization experiments with/without iron and nitrogen in CNT, and identify that the coordination of nitrogen and iron in CNT plays a key role in achieving the excellent catalytic performances. We anticipate our one-step process could be used for mass production of precious metal free electrocatalysts for a wide range of electrochemical cells including fuel cells and metal-air batteries.

  19. A study on environmental pollution control in energy field

    Energy Technology Data Exchange (ETDEWEB)

    Min, B.M.; Son, J.E.; Lee, H.K.; Choi, W.K.; Baek, I.H.; Lee, J.S. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This report is contained such as following contents; Preparation of the stepwise pollution control strategies to reduce pollutants in energy field, which will be satisfy to tightened emission standard in the future. Analysis of the environmental pollution control technologies level, which related to energy field in domestic and other countries. Visualization of the reduction strategies of domestic carbon dioxide emission in energy field. And, discussion and proposal of the R and D program to improve the domestic environmental pollution control technologies in energy field. (author). 99 refs., 67 figs., 73 tabs.

  20. Assessment of the Carbon Footprint, Social Benefit of Carbon Reduction, and Energy Payback Time of a High-Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Allen H. Hu

    2016-12-01

    Full Text Available Depleting fossil fuel sources and worsening global warming are two of the most serious world problems. Many renewable energy technologies are continuously being developed to overcome these challenges. Among these technologies, high-concentration photovoltaics (HCPV is a promising technology that reduces the use of expensive photovoltaic materials to achieve highly efficient energy conversion. This reduction process is achieved by adopting concentrating and tracking technologies. This study intends to understand and assess the carbon footprint and energy payback time (EPBT of HCPV modules during their entire life cycles. The social benefit of carbon reduction is also evaluated as another indicator to assess the energy alternatives. An HCPV module and a tracker from the Institute of Nuclear Energy Research (INER were applied, and SimaPro 8.0.2 was used for the assessment. The functional unit used in this study was 1 kWh, which is produced by HCPV, and inventory data was sourced from Ecoinvent 3.0 and the Taiwan carbon footprint calculation database. The carbon footprint, EPBT, and social benefit of carbon reduction were evaluated as 107.69 g CO2eq/kWh, 2.61 years, and 0.022 USD/kWh, respectively. Direct normal irradiation (DNI, life expectancy, and the degradation rate of HCPV system were subjected to sensitivity analysis. Results show that the influence of lifetime assumption under a low DNI value is greater than those under high DNI values. Degradation rate is also another important factor when assessing the carbon footprint of HCPV under a low DNI value and a long lifetime assumption. The findings of this study can provide several insights for the development of the Taiwanese solar industry.

  1. Self-assembled dopamine nanolayers wrapped carbon nanotubes as carbon-carbon bi-functional nanocatalyst for highly efficient oxygen reduction reaction and antiviral drug monitoring

    Science.gov (United States)

    Khalafallah, Diab; Akhtar, Naeem; Alothman, Othman Y.; Fouad, H.; Abdelrazek khalil, Khalil

    2017-09-01

    Oxygen reduction reaction (ORR) catalysts are the heart of eco-friendly energy resources particularly low temperature fuel cells. Although valuable efforts have been devoted to synthesize high performance catalysts for ORR, considerable challenges are extremely desirable in the development of energy technologies. Herein, we report a simple self-polymerization method to build a thin film of dopamine along the tubular nanostructures of multi-walled carbon nanotubes (CNT) in a weak alkaline solution. The dopamine@CNT hybrid (denoted as DA@CNT) reveals an enhanced electrocatalytic activity towards ORR with highly positive onset potential and cathodic current as a result of their outstanding features of longitudinal mesoporous structure, high surface area, and ornamentation of DA layers with nitrogen moieties, which enable fast electron transport and fully exposed electroactive sites. Impressively, the as-obtained hybrid afford remarkable electrochemical durability for prolonged test time of 60,000 s compared to benchmark Pt/C (20 wt%) catalyst. Furthermore, the developed DA@CNT electrode was successfully applied to access the quality of antiviral drug named Valacyclovir (VCR). The DA@CNT electrode shows enhanced sensing performance in terms of large linear range (3-75 nM), low limit of detection (2.55 nM) than CNT based electrode, indicating the effectiveness of the DA coating. Interestingly, the synergetic effect of nanostructured DA and CNT can significantly boost the electronic configuration and exposure level of active species for ORR and biomolecule recognition. Therefore, the existing carbon-based porous electrocatalyst may find numerous translational applications as attractive alternative to noble metals in polymer electrolyte membrane fuel cells and quality control assessment of pharmaceutical and therapeutic drugs.

  2. Scenario analysis on the global carbon emissions reduction goal proposed in the declaration of the 2009 G8 Summit

    Institute of Scientific and Technical Information of China (English)

    FANG JingYun; WANG ShaoPeng; YUE Chao; ZHU JiangLing; GUO ZhaoDi; HE CanFei; TANG ZhiYao

    2009-01-01

    A goal of a 50% reduction in global greenhouse gases emissions by 2050,with an 80% reduction by developed countries (hereafter referred to as the G8 Goal),was proposed at the G8 Summit held in L'Aquila,Italy,in July 2009.Here we analyze the scientific and political implications of the G8 Goal and its equity and feasibility by examining four greenhouse gas emissions scenarios.Our results show that (1) the goal to keep atmospheric CO_2 concentration of <450 ppmv,stated by G8 nations,can only be achieved under the scenario of a steady,linear emissions reduction by all countries and simultaneously meeting the G8 Goal during the period 2005-2050;(2) under the G8 Goal,the carbon emissions quota for developing countries would not meet their carbon emission demands even if very strict reduction regimes are followed,with a gap of up to>1/3 of emissions demand in the next 45 years;and (3) under the G8 Goal,the cumulative per capita emissions during the period of 2006-2050 for developed and developing countries will be 81 t C and 40-47 t C,respectively,with the former doubling that of the latter,implying that the historical disparity of carbon emissions between developed and developing countries would be widened.Historically,the cumulative per capita emissions from developed countries are 12 times of those from developing countries.We therefore conclude that (1) the G8 Goal seeks to impose binding reduction targets on developing countries that will impede their industrialization process and cause conflicts among developing countries in the allocation of carbon emission rights;(2) the G8 Goal will not only widen the existing disparities of historical carbon emissions between developed and developing countries,but also generate new inequalities in the rights of carbon emissions;and (3) the 450 ppmv threshold of atmospheric CO_2 concentration control,which is the basis for the G8 climate negotiation on carbon emission reduction.In summary,the G8 Goal is clearly against the

  3. Scenario analysis on the global carbon emissions reduction goal proposed in the declaration of the 2009 G8 Summit

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A goal of a 50% reduction in global greenhouse gases emissions by 2050, with an 80% reduction by developed countries (hereafter referred to as the G8 Goal), was proposed at the G8 Summit held in L’Aquila, Italy, in July 2009. Here we analyze the scientific and political implications of the G8 Goal and its equity and feasibility by examining four greenhouse gas emissions scenarios. Our results show that (1) the goal to keep atmospheric CO2 concentration of <450 ppmv, stated by G8 nations, can only be achieved under the scenario of a steady, linear emissions reduction by all countries and simultaneously meeting the G8 Goal during the period 2005-2050; (2) under the G8 Goal, the carbon emissions quota for developing countries would not meet their carbon emission demands even if very strict reduction regimes are followed, with a gap of up to >1/3 of emissions demand in the next 45 years; and (3) under the G8 Goal, the cumulative per capita emissions during the period of 2006-2050 for developed and developing countries will be 81 t C and 40-47 t C, respectively, with the former doubling that of the latter, implying that the historical disparity of carbon emissions between developed and developing countries would be widened. Historically, the cumulative per capita emissions from developed countries are 12 times of those from developing countries. We therefore conclude that (1) the G8 Goal seeks to impose binding reduction targets on developing countries that will impede their industrialization process and cause conflicts among developing countries in the allocation of carbon emission rights; (2) the G8 Goal will not only widen the existing disparities of historical carbon emissions between developed and developing countries, but also generate new inequalities in t