WorldWideScience

Sample records for carbon pollution reduction

  1. Aircraft engine pollution reduction.

    Science.gov (United States)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  2. The implications of Australia's carbon pollution reduction scheme for its National Electricity Market

    International Nuclear Information System (INIS)

    Betz, Regina; Owen, Anthony D.

    2010-01-01

    This paper assesses the major implications for the National Electricity Market of the introduction of a domestic cap-and-trade carbon pollution reduction scheme in Australia. The electricity sector is the largest source of emissions in the Australian economy, and it is this sector, therefore, that will bear the brunt of the impact of the proposed scheme. The paper addresses core issues for the electricity market up to 2020 operating under the scheme. It focuses specifically on its impact on electricity prices and generation technology mix. These two variables have been assessed using a number of models, each applying different assumptions about key impact factors. In this paper we present a comparative summary of the results of the three highest-profile models and compare their assumptions in order to explain differences in projected outcomes. This comparison will give an indication of the likely range of impacts on the market of the current design of the scheme. (author)

  3. Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI).

    Science.gov (United States)

    Zheng, Yun; Yu, Zihao; Lin, Feng; Guo, Fangsong; Alamry, Khalid A; Taib, Layla A; Asiri, Abdullah M; Wang, Xinchen

    2017-04-01

    As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based on trithiocyanuric acid and melamine (TM) supramolecular aggregates. By tuning the polymerization temperature, a series of sulfur-doped carbon nitride microrods are prepared. The degradation of Rhodamine B (RhB) and the reduction of hexavalent chromium Cr(VI) are selected as probe reactions to evaluate the photocatalytic activities. Results show that increasing pyrolysis temperature leads to a large specific surface area, strong visible-light absorption, and accelerated electron-hole separation. Compared to bulk carbon nitride, the highly porous sulfur-doped carbon nitride microrods fabricated at 650 °C exhibit remarkably higher photocatalytic activity for degradation of RhB and reduction of Cr(VI). This work highlights the importance of self-assembly approach and temperature-control strategy in the synthesis of photoactive materials for environmental remediation.

  4. Microplastics pollution and reduction strategies

    Institute of Scientific and Technical Information of China (English)

    Wei-Min Wu; Jun Yang; Craig S.Criddle

    2017-01-01

    Microplastic particles smaller than 5 mm in size are of increasing concern,especially in aquatic environments,such as the ocean.Primary source is microbeads (< 1 mm) used in cosmetics and cleaning agents and fiber fragments from washing of clothes,and secondary source such as broken down plastic litter and debris.These particles are mostly made from polyethylene (PE),polypropylene (PP),polystyrene (PS),polyethylene terephthalate (PET) and polyesters.They are ingested by diverse marine fauna,including zooplanktons,mussel,oyster,shrimp,fish etc.and can enter human food chains via several pathways.Strategy for control of microplastics pollution should primarily focus on source reduction and subsequently on the development of cost-effective clean up and remediation technologies.Recent research results on biodegradation of plastics have revealed a potential for microbial biodegradation and bioremediation of plastic pollutants,such as PE,PS and PET under appropriate conditions.

  5. Optimal pollution trading without pollution reductions

    Science.gov (United States)

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  6. Understanding the effect of an emissions trading scheme on electricity generator investment and retirement behaviour: the proposed carbon pollution reduction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lambie, N.R. [Australian National University, Canberra, ACT (Australia). Crawford School of Economics & Government

    2010-04-15

    The objective of a greenhouse gas (GHG) emissions trading scheme (ETS) is to reduce emissions by transitioning the economy away from the production and consumption of goods and services that are GHG intensive. A GHG ETS has been a public policy issue in Australia for over a decade. The latest policy initiative on an ETS is the proposed Carbon Pollution Reduction Scheme (CPRS). A substantial share of Australia's total GHG reduction under the CPRS is expected to come from the electricity generation sector. This paper surveys the literature on investment behaviour under an ETS. It specifically focuses on the relationship between the design of an ETS and a generator's decisions to invest in low emissions plant and retire high emissions plant. The proposed CPRS provides the context for presenting key findings along with the implications for the electricity generation sector's transition to lower emissions plant. The literature shows that design features such as the method of allocating permits, the stringency of the emissions cap along with permit price uncertainty, provisions for banking, borrowing and internationally trading permits, and the credibility of emissions caps and policy uncertainty may all significantly impact on the investment and retirement behaviour of generators.

  7. Concentration reduction of selected pollutants in fish culture ...

    African Journals Online (AJOL)

    Concentration reduction of selected pollutants in fish culture effluents using plastic straws and palm kernel shells. ... Journal of Environmental Extension ... Their effluent treatment ability were evaluated in terms of reduction made to ...

  8. Optimal Pollution Trading without Pollution Reductions : A Note

    Science.gov (United States)

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  9. Reduction Assessment of Agricultural Non-Point Source Pollutant Loading

    OpenAIRE

    Fu, YiCheng; Zang, Wenbin; Zhang, Jian; Wang, Hongtao; Zhang, Chunling; Shi, Wanli

    2018-01-01

    NPS (Non-point source) pollution has become a key impact element to watershed environment at present. With the development of technology, application of models to control NPS pollution has become a very common practice for resource management and Pollutant reduction control in the watershed scale of China. The SWAT (Soil and Water Assessment Tool) model is a semi-conceptual model, which was put forward to estimate pollutant production & the influences on water quantity-quality under different...

  10. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs.

    Science.gov (United States)

    Xie, Yujing; Zhao, Laijun; Xue, Jian; Hu, Qingmi; Xu, Xiang; Wang, Hongbo

    2016-12-15

    How to effectively control severe regional air pollution has become a focus of global concern recently. The non-cooperative reduction model (NCRM) is still the main air pollution control pattern in China, but it is both ineffective and costly, because each province must independently fight air pollution. Thus, we proposed a cooperative reduction model (CRM), with the goal of maximizing the reduction in adverse health effects (AHEs) at the lowest cost by encouraging neighboring areas to jointly control air pollution. CRM has two parts: a model of optimal pollutant removal rates using two optimization objectives (maximizing the reduction in AHEs and minimizing pollutant reduction cost) while meeting the regional pollution control targets set by the central government, and a model that allocates the cooperation benefits (i.e., health improvement and cost reduction) among the participants according to their contributions using the Shapley value method. We applied CRM to the case of sulfur dioxide (SO 2 ) reduction in Yangtze River Delta region. Based on data from 2003 to 2013, and using mortality due to respiratory and cardiovascular diseases as the health endpoints, CRM saves 437 more lives than NCRM, amounting to 12.1% of the reduction under NCRM. CRM also reduced costs by US $65.8×10 6 compared with NCRM, which is 5.2% of the total cost of NCRM. Thus, CRM performs significantly better than NCRM. Each province obtains significant benefits from cooperation, which can motivate them to actively cooperate in the long term. A sensitivity analysis was performed to quantify the effects of parameter values on the cooperation benefits. Results shown that the CRM is not sensitive to the changes in each province's pollutant carrying capacity and the minimum pollutant removal capacity, but sensitive to the maximum pollutant reduction capacity. Moreover, higher cooperation benefits will be generated when a province's maximum pollutant reduction capacity increases. Copyright

  11. Results of the pollution reduction technology program for turboprop engines

    Science.gov (United States)

    Mularz, E. J.

    1976-01-01

    A program was performed to evolve and demonstrate advanced combustor technology aimed at achieving the 1979 EPA standards for turboprop engines (Class P2). The engine selected for this program was the 501-D22A turboprop manufactured by Detroit Diesel Allison Division of General Motors Corporation. Three combustor concepts were designed and tested in a combustor rig at the exact combustor operating conditions of the 501-D22A engine over the EPA landing-takeoff cycle. Each combustor concept exhibited pollutant emissions well below the EPA standards, achieving substantial reductions in unburned hydrocarbons, carbon monoxide, and smoke emissions compared with emissions from the production combustor of this engine. Oxides of nitrogen emissions remained well below the EPA standards, also.

  12. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Mostofa Kamal Nasir

    2014-01-01

    Full Text Available Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO, hydrocarbons (HC, carbon dioxide (CO2, particulate matter (PM, and oxides of nitrogen (NOx. Intelligent transport system (ITS technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  13. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  14. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  15. Pollutants removal from syngas using carbon materials

    International Nuclear Information System (INIS)

    Al-Dury, S.S.

    2009-01-01

    The incomplete combustion of biomass can cause the production of combustible gases including carbon monoxide (CO), hydrogen and methane. This study discussed a method of removing pollutants from syngas. Experiments were conducted using a fluidized bed atmospheric gasifier. The aim of the study was to characterize the solid waste pyrolysis and gasification process while developing a syngas cleanup and conditioning system. The unit was operated in both gasifying and combustion modes in order to compare traditional and alternative energy production values and environmental impacts. Active carbon, black cook and char coal samples were used as filters at temperatures ranging between 120 and 200 degrees C. Dolomite was used as a bed material. Results of the study showed that carbon materials can be used as a cheap and effective method of cleaning syngas during biomass gasifications conducted at low temperatures. 6 refs., 2 tabs., 5 figs.

  16. Natural gas and quality of fuels for the reduction of atmospheric pollution

    International Nuclear Information System (INIS)

    Riva, A.; Occhio, L.; Andreetto, B.

    1998-01-01

    The production of atmospheric pollutants in combustion processes depends on plant characteristic, combustion conditions and fuel quality. The influence of fuel quality on the emission of sulphur oxides, nitrogen oxides, carbon monoxide, dust and carbon dioxide and on the emission of some toxic pollutants, such as heavy metals and polycyclic aromatic hydrocarbons, is analysed. The comparison between the emission limits, fixed by the Italian legislation, and the uncontrolled pollutant emissions, produced by fossil fuel combustion in power plants and industrial use, shows that, in order to comply with the limits, a reduction of pollutant emissions is required through the use of abatement systems and cleaner fuels where natural gas has a primary role. The use of cleaner fuels is particularly required in heating plants and appliances for the residential sector, where the development of new gas technologies further increases the environmental advantages of natural gas in comparison with other fuels [it

  17. Reduction of environmental pollution from fuel and target manufacturing processes

    International Nuclear Information System (INIS)

    Hardt, H.A.

    1976-10-01

    Nuclear fuel and target manufacturing processes in the 300 Area generate potential environmental pollutants. Efforts to eliminate or reduce their harmful effects have been pursued for many years by the Raw Materials and Raw Materials Technology departments with assistance from other groups, primarily the Project and Health Physics departments. This report documents: methods adopted to reduce pollution; cost of these methods; amount of pollution reduction achieved; and other benefits in cost savings or quality improvement for January 1968 through December 1975. Capital funds totaling $915,000 were spent on these programs. Annual cost savings of $65,000 were realized, and incidental but significant improvements in product quality were obtained. In no case was product quality degraded. Reductions in releases of pollutants are summarized for water pollution, air pollution, and land pollution. In addition to these reductions, intangible benefits were realized including reduced corrosion of structures and equipment; improved working conditions for personnel; energy savings, both on and offplant; improved utilization of natural resources; and reduced impact to environment, both on and offplant

  18. Synthesis of carbon nanorods by reduction of carbon bisulfide

    International Nuclear Information System (INIS)

    Lou Zhengsong; He Minglong; Zhao Dejian; Li Zhongchun; Shang Tongming

    2010-01-01

    Research highlights: Our manuscript is a concise preliminary account of original and of significant research, which illuminates carbon nanorods and variously shaped Y-junction carbon nanorods are successfully fabricated on a large scale through a carbon bisulfide thermal reduction process. Various shaped Y-junction carbon nanorods can be used as studying the electronic and transport properties of the nano-meter carbon material. - Abstract: Carbon nanorods are synthesized at large scale by the reduction of carbon bisulfide at 600 o C. Moreover, novel Y-junction carbon nanorods are detected in the samples. The X-ray power diffraction pattern indicates that the products are hexagonal graphite. Scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and N 2 physisorption studies show that carbon nanorods predominate in the product. Based on the supercritical carbon bisulfide system, the possible growth mechanism of the carbon nanorods was discussed. This method provides a simple and cheap route to large-scale synthesis of carbon nanorods.

  19. Pollution reduction technology program for turboprop engines

    Science.gov (United States)

    Tomlinson, J. G.

    1977-01-01

    The reduction of CO, HC, and smoke emissions while maintaining acceptable NO(x) emissions without affecting fuel consumption, durability, maintainability, and safety was accomplished. Component combustor concept screening directed toward the demonstration of advanced combustor technology required to meet the EPA exhaust emissions standards for class P2 turboprop engines was covered. The combustion system for the Allison 501-D22A engine was used, and three combustor design concepts - reverse flow, prechamber, and staged fuel were evaluated.

  20. Health effects of carbon monoxide environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    Carbon monoxide's (CO) chronic effects on man, its sources, and measuring methods are reviewed, and guidelines to determine health criteria are considered. The European data exchange included CO measuring methods in air and blood and their use in survey and experimental work, atmospheric CO pollution and sampling methods in urban thoroughfares and road tunnels in the European countries, a population survey of carboxyhemoglobin levels from cigarette smoking and atmospheric exposure, and physiological kinetics (uptake, distribution, and elimination) of CO inhalation. Additional topics are CO and the central nervous system, effects of moderate CO exposure on the cardiovascular system and on fetal development, and the current views on existing air quality criteria for CO.

  1. Electrocatalytic carbon dioxide reduction - a mechanistic study

    NARCIS (Netherlands)

    Schouten, Klaas Jan Schouten

    2013-01-01

    This thesis presents new insights into the reduction of carbon dioxide to methane and ethylene on copper electrodes. This electrochemical process has great potential for the storage of surplus renewable electrical energy in the form of hydrocarbons. The research described in this thesis focuses on

  2. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  3. The regeneration of polluted active carbon by radiation techniques

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Hu Longxin; Zhou Riumin; Zhu Jinliang

    1998-01-01

    In this paper, we investigated the regeneration of polluted active carbon from monosodium glutamate factory by combination of radiation and acid-alkali chemical techniques. The experimental results show that the polluted active carbon will be highly regenerated on the conditions of process concentration 3%, process time 0.5 hour and the adjustment process concentration 2%, time 0.5 hour, radiation dose 5kGy. As regeneration times increase, the regenerated active carbon behaves with good repetition and stable property

  4. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  5. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  6. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    Science.gov (United States)

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  7. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions

    Science.gov (United States)

    Shindell, Drew; Faluvegi, Greg; Seltzer, Karl; Shindell, Cary

    2018-04-01

    Societal risks increase as Earth warms, and increase further for emissions trajectories accepting relatively high levels of near-term emissions while assuming future negative emissions will compensate, even if they lead to identical warming as trajectories with reduced near-term emissions1. Accelerating carbon dioxide (CO2) emissions reductions, including as a substitute for negative emissions, hence reduces long-term risks but requires dramatic near-term societal transformations2. A major barrier to emissions reductions is the difficulty of reconciling immediate, localized costs with global, long-term benefits3,4. However, 2 °C trajectories not relying on negative emissions or 1.5 °C trajectories require elimination of most fossil-fuel-related emissions. This generally reduces co-emissions that cause ambient air pollution, resulting in near-term, localized health benefits. We therefore examine the human health benefits of increasing 21st-century CO2 reductions by 180 GtC, an amount that would shift a `standard' 2 °C scenario to 1.5 °C or could achieve 2 °C without negative emissions. The decreased air pollution leads to 153 ± 43 million fewer premature deaths worldwide, with 40% occurring during the next 40 years, and minimal climate disbenefits. More than a million premature deaths would be prevented in many metropolitan areas in Asia and Africa, and >200,000 in individual urban areas on every inhabited continent except Australia.

  8. Quantified, Localized Health Benefits of Accelerated Carbon Dioxide Emissions Reductions.

    Science.gov (United States)

    Shindell, Drew; Faluvegi, Greg; Seltzer, Karl; Shindell, Cary

    2018-01-01

    Societal risks increase as Earth warms, but also for emissions trajectories accepting relatively high levels of near-term emissions while assuming future negative emissions will compensate even if they lead to identical warming [1]. Accelerating carbon dioxide (CO 2 ) emissions reductions, including as a substitute for negative emissions, hence reduces long-term risks but requires dramatic near-term societal transformations [2]. A major barrier to emissions reductions is the difficulty of reconciling immediate, localized costs with global, long-term benefits [3, 4]. However, 2°C trajectories not relying on negative emissions or 1.5°C trajectories require elimination of most fossil fuel related emissions. This generally reduces co-emissions that cause ambient air pollution, resulting in near-term, localized health benefits. We therefore examine the human health benefits of increasing ambition of 21 st century CO 2 reductions by 180 GtC; an amount that would shift a 'standard' 2°C scenario to 1.5°C or could achieve 2°C without negative emissions. The decreased air pollution leads to 153±43 million fewer premature deaths worldwide, with ~40% occurring during the next 40 years, and minimal climate disbenefits. More than a million premature deaths would be prevented in many metropolitan areas in Asia and Africa, and >200,000 in individual urban areas on every inhabited continent except Australia.

  9. Meteorological controls on atmospheric particulate pollution during hazard reduction burns

    Science.gov (United States)

    Di Virgilio, Giovanni; Hart, Melissa Anne; Jiang, Ningbo

    2018-05-01

    Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRBs) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depend upon prevailing atmospheric conditions, and can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates pollution, the PBLH between 00:00 and 07:00 LT (local time) was 100-200 m higher than days with high pollution. The PBLH was similar during 10:00-17:00 LT for both low and high pollution days, but higher after 18:00 LT for HRB days with low pollution. Cloud cover, temperature and wind speed reflected the above pattern, e.g. mean temperatures and wind speeds were 2 °C cooler and 0.5 m s-1 lower during mornings and evenings of HRB days when air quality was poor. These cooler, more stable morning and evening conditions coincide with nocturnal westerly cold air drainage flows in Sydney, which are associated with reduced mixing height and vertical dispersion, leading to the build-up of PM2.5. These findings indicate that air pollution impacts may be reduced by altering the timing of HRBs by conducting them later in the morning (by a matter of hours). Our findings support location-specific forecasts of the air quality impacts of HRBs in Sydney and similar regions elsewhere.

  10. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China.

    Science.gov (United States)

    Tang, Kai; Gong, Chengzhu; Wang, Dong

    2016-01-15

    This paper analyses the reduction potential, shadow prices, and pollution costs of agricultural pollutants in China based on provincial panel data for 2001-2010. Using a parameterized quadratic form for the directional output distance function, we find that if agricultural sectors in all provinces were to produce on the production frontier, China could potentially reduce agricultural emissions of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) by 16.0%, 16.2%, and 20.4%, respectively. Additionally, our results show that the shadow price of TN increased rapidly and continuously, while that of COD and TP fluctuated for the whole period. For the whole country, the average shadow price of COD, TN, and TP are 8266 Yuan/tonne, 25,560 Yuan/tonne, and 10,160 Yuan/tonne, respectively. The regional shadow prices of agricultural pollutants are unbalanced. Furthermore, we show that the pollution costs from emissions of COD, TN, and TP are 6.09% of the annual gross output value of the agricultural sector and are highest in the Western and lowest in the Eastern provinces. Our estimates suggest that there is scope for further pollution abatement and simultaneous output expansion for China's agriculture if farmers promote greater efficiency in their production process. Policymakers are required to dynamically adjust the pollution tax rates and ascertain the initial permit price in an emission trading system. Policymakers should also consider the different pollution costs for each province when making the reduction allocations within the agricultural sector. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Technique for Reduction of Environmental Pollution from Construction Wastes

    Science.gov (United States)

    Bakaeva, N. V.; Klimenko, M. Y.

    2017-11-01

    The results of the research on the negative impact construction wastes have on the urban environment and construction ecological safety are described. The research results are based on the statistical data and indicators calculated with the use of environmental pollution assessment in the restoration system of urban buildings technical conditions. The technique for the reduction of environmental pollution from construction wastes is scientifically based on the analytic summary of scientific and practical results for ecological safety ensuring at major overhaul and current repairs (reconstruction) of the buildings and structures. It is also based on the practical application of the probability theory method, system analysis and disperse system theory. It is necessary to execute some stages implementing the developed technique to reduce environmental pollution from construction wastes. The stages include various steps starting from information collection to the system formation with optimum performance characteristics which are more resource saving and energy efficient for the accumulation of construction wastes from urban construction units. The following tasks are solved under certain studies: basic data collection about construction wastes accumulation; definition and comparison of technological combinations at each system functional stage intended for the reduction of construction wastes discharge into the environment; assessment criteria calculation of resource saving and energy efficiency; optimum working parameters of each implementation stage are created. The urban construction technique implementation shows that the resource saving criteria are from 55.22% to 88.84%; potential of construction wastes recycling is 450 million tons of construction damaged elements (parts).

  12. Pollution from the electric power sector in Japan and efficient pollution reduction

    International Nuclear Information System (INIS)

    Matsushita, Kyohei; Yamane, Fumihiro

    2012-01-01

    Under the scheme of the Kyoto Protocol, there are plans for the efficient reduction of carbon dioxide emissions. In the electric power sector, nuclear power generation, which emits no carbon dioxide in the process of generating electricity, has come under scrutiny. However, this energy produces a new environmental issue: the disposal of radioactive waste. First, we derive shadow prices of carbon dioxide and low-level waste as marginal abatement costs in the case of the electric power sector in Japan, employing a directional output distance function. It is found that the shadow prices are US$39 per tonne for carbon dioxide and US$1531 per liter for low-level waste. Secondly, we calculate the indirect Morishima elasticity between carbon dioxide and low-level waste in order to identify their substitutability, and it is found that the substitution of low-level waste for carbon dioxide is easier than the reverse. This result suggests that, with the amount of generated electricity fixed, carbon dioxide can be substituted more easily by low-level waste when the relative price of carbon dioxide increases, for example, as a result of implementation of a carbon dioxide tax or an emissions trading system.

  13. The reduction of air pollution by improved combustion

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, S.W. [Pennsylvania Univ., Chemical Engineering Dept., Philadelphia, PA (United States)

    1997-12-31

    The contributions of combustion to air pollution and possible remedies are discussed. Control and reduction of air pollution from combustion is more feasible than from other sources because of its discrete localization. The gaseous products of combustion inevitably include H{sub 2}O and CO{sub 2}, NO and/or NO{sub 2} and may include N{sub 2}O, SO{sub 2}, SO{sub 3} and unburned and partially burned hydrocarbons. Soot, ash and other dispersed solids may also be present, but are not considered herein. Unburned and partially burned hydrocarbons are prima facie evidence of poor mechanics of combustion and should not be tolerated. On the other hand, NO{sub x}, SO{sub 2} and SO{sub 3} are unavoidable if the fuel contains nitrogen and sulfur. The best remedy in this latter case is to remove these species from the fuel. Otherwise their products of combustion must be removed by absorption, adsorption or reaction. NO{sub x} from the fixation of N{sub 2} in the air and CO may be minimized by advanced techniques of combustion. One such method is described in some detail. If CO{sub 2} must be removed this can be accomplished by absorption, adsorption or reaction, but precooling is necessary and the quantity is an order of magnitude greater than that of any of the other pollutants. (Author)

  14. Reduction of nitric oxide by arc vaporized carbons (AVC)

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, S C; Chen, Y K; Green, M L.H. [The Catalysis Centre, Inorganic Chemistry Laboratory, University of Oxford, Oxford (United Kingdom)

    1996-07-04

    The reduction of nitric oxide by arc vaporized carbons (AVC) including the compound C{sub 6}0, fullerene soot and carbon nanotubes, giving dinitrogen and carbon oxides has been studied. It is found that the AVC carbons are more active towards oxidation by NO than by oxygen gas at low temperatures (300-400C). In contrast, conventional carbons such as graphite and microporous carbons are more readily oxidised by oxygen than by NO. The addition of copper salts and to a lesser extent, cobalt salts, to fullerene soot substantially promote NO reduction. The high intrinsic activity for NO reduction by AVC carbons compared to graphitic carbons is attributed to the presence of five membered carbon rings in the AVC carbons

  15. Pollution reduction technology program small jet aircraft engines, phase 3

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1981-01-01

    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.

  16. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    Science.gov (United States)

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  17. Public Perceptions of How Long Air Pollution and Carbon Dioxide Remain in the Atmosphere.

    Science.gov (United States)

    Dryden, Rachel; Morgan, M Granger; Bostrom, Ann; Bruine de Bruin, Wändi

    2018-03-01

    The atmospheric residence time of carbon dioxide is hundreds of years, many orders of magnitude longer than that of common air pollution, which is typically hours to a few days. However, randomly selected respondents in a mail survey in Allegheny County, PA (N = 119) and in a national survey conducted with MTurk (N = 1,013) judged the two to be identical (in decades), considerably overestimating the residence time of air pollution and drastically underestimating that of carbon dioxide. Moreover, while many respondents believed that action is needed today to avoid climate change (regardless of cause), roughly a quarter held the view that if climate change is real and serious, we will be able to stop it in the future when it happens, just as we did with common air pollution. In addition to assessing respondents' understanding of how long carbon dioxide and common air pollution stay in the atmosphere, we also explored the extent to which people correctly identified causes of climate change and how their beliefs affect support for action. With climate change at the forefront of politics and mainstream media, informing discussions of policy is increasingly important. Confusion about the causes and consequences of climate change, and especially about carbon dioxide's long atmospheric residence time, could have profound implications for sustained support of policies to achieve reductions in carbon dioxide emissions and other greenhouse gases. © 2017 Society for Risk Analysis.

  18. Energy use, emissions and air pollution reduction strategies in Asia

    International Nuclear Information System (INIS)

    Foell, W.; Green, C.; Amann, M.; Bhattacharya, S.; Carmichael, G.; Chadwick, M.; Cinderby, S.; Haugland, T.; Hettelingh, J.-P.; Hordijk, L.; Kuylenstierna, J.; Shah, J.; Shrestha, R.; Streets, D.; Zhao, D.

    1995-01-01

    In contrast to Europe and North America, air pollution in Asia is increasing rapidly, resulting in both local air quality problems and higher acidic depositions. In 1989, an east-west group of scientists initiated a multi-institutional research project on Acid Rain and Emissions Reduction in Asia, funded for the past two years by the World Bank and the Asian Development Bank. Phase I, covering 23 countries of Asia, focused on the development of PC-based software called the Regional Air Pollution Information and Simulation Model (RAINS-ASIA). A 94-region Regional Energy Scenario Generator was developed to create alternative energy/emission scenarios through the year 2020. A long-range atmospheric transport model was developed to calculate dispersion and deposition of sulfur, based upon emissions from area and large point sources, on a one-degree grid of Asia. The resulting impacts of acidic deposition on a variety of vegetation types were analyzed using the critical loads approach to test different emissions management strategies, including both energy conservation measures and sulfur abatement technologies. 14 refs., 7 figs

  19. ENVIRONMENTAL CHARACTERISTICS AFFECTING REDUCTIVE TRANSFORMATION OF ORGANIC POLLUTANTS IN ANOXIC SEDIMENTS

    Science.gov (United States)

    Reductive transformations are important processes for determining the fate of organic pollutants in anoxic environments. These processes are most often microbially mediated by both direct and indirect means. For example, specific bacteria transform organic pollutants directly as ...

  20. Carbon reduction in the NHS : a role for finance

    OpenAIRE

    Brown, Steve

    2009-01-01

    HFMA briefing sponsored by ACCA NHS bodies’ performance on carbon reduction is increasingly having an impact on annual audit assessments, and a new energy efficiency scheme, involving the purchase and trading of carbon emissions allowances, will provide real financial consequences for under or over consumption of carbon. But perhaps the biggest driver for the finance community is the fact that carbon reduction should in fact help them meet their key challenge – the need for efficienc...

  1. Regional scale temperature and circulation impacts of short-lived climate pollutants reductions

    Science.gov (United States)

    Oudar, T.; Kushner, P. J.; Fyfe, J. C.; von Salzen, K.; Shrestha, R.

    2017-12-01

    The role of anthropogenic aerosols on climate is still not clearly understood. Aerosol forcing is spatially heterogeneous and their emissions are controlled by regional economic and regulatory factors. For example, it is known that black carbon is responsible for a global net warming but its regional impacts are less understood. We evaluate the regional climate impacts of anthropogenic aerosol emission changes over the recent past and near future. Specifically, we report on numerical experiments using aerosol emissions from the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE, Stohl et al., 2015) project. These scenarios are alternative mitigation pathways for black carbon and organic aerosol over the period from 1990 to 2050. With these scenarios, we carried out three sets of simulation using the second generation Canadian Earth System Model (CanESM2): 1) A current legislation emission (CLE) scenario for black carbon and organic aerosols; 2) A mitigation (MIT) scenario for black carbon and organic aerosols, and; 3) A black carbon only mitigation scenario (MIT-BC). Five simulations were carried out for each scenario and the response analyzed in the context of a large fifty-member initial condition ensemble of simulations using historical anthropogenic aerosol forcings to 2005 as well as those forcing from the RCP8.5 scenario to 2020. Our main finding is a significant springtime cooling over the Northern midlatitudes that attributable to black carbon. Other cooling signals attributable to black carbon reductions are found in the boreal summer over Southern Europe as well as over the Northern Hemisphere midlatitudes and tropical troposphere in boreal summer and fall. All of these cooling signals are to some degree offset by simultaneous reductions in organic aerosols. As a check on the robustness, we will also report on results of five-member draws from the large ensemble over periods of comparably strong radiative forcing changes, to

  2. Markets for renewable energy and pollution emissions: Environmental claims, emission-reduction accounting, and product decoupling

    International Nuclear Information System (INIS)

    Moore, Michael R.; Lewis, Geoffrey McD.; Cepela, Daniel J.

    2010-01-01

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO 2 and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices.

  3. Markets for renewable energy and pollution emissions. Environmental claims, emission-reduction accounting, and product decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael R.; Cepela, Daniel J. [University of Michigan, MI (United States); Lewis, Geoffrey McD. [University of Waterloo, ON (Canada)

    2010-10-15

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO{sub 2} and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices. (author)

  4. Markets for renewable energy and pollution emissions: Environmental claims, emission-reduction accounting, and product decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael R., E-mail: micmoore@umich.ed [University of Michigan, MI (United States); Lewis, Geoffrey McD. [University of Waterloo, ON (Canada); Cepela, Daniel J. [University of Michigan, MI (United States)

    2010-10-15

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO{sub 2} and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices.

  5. 78 FR 39533 - Power Sector Carbon Pollution Standards

    Science.gov (United States)

    2013-07-01

    ... Sector Carbon Pollution Standards Executive Order 13647--Establishing the White House Council on Native... speeding the transition to more sustainable sources of energy. The Environmental Protection Agency (EPA.... (Presidential Sig.) THE WHITE HOUSE, Washington, June 25, 2013. [FR Doc. 2013-15941 Filed 6-28-13; 11:15 am...

  6. Environmental policy. Resolution of the German Federal Government concerning the Air Pollution Abatement Programme of the Federal Republic of Germany based on the fourth report of the Interdepartmental Working Group on Carbon Dioxide Reduction (IMA `CO{sub 2} Reduction`); Umweltpolitik. Beschluss der Bundesregierung zum Klimaschutzprogramm der Bundesrepublik Deutschland auf der Basis des Vierten Berichts der Interministeriellen Arbeitsgruppe ``CO{sub 2}-Reduktion`` (IMA ``CO{sub 2}-Reduktion``)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Air pollution abatement is a key issue in German environmental policy. This was stressed again in the 4th report of the Interdepartmental Working Group on Carbon Dioxide Reduction (IMA `CO{sub 2}-Reduktion`), in which the Federal Government confirmed its goal of a 25% reduction of carbon dioxide emissions by 2005 as referred to 1990. This report contains the government decision, the formulatio of the task assigned to the IMA, and the 4th report of the IMA. (orig./SR) [Deutsch] Klimavorsorge ist ein Schwerpunkt der deutschen Umweltpolitik. Dies hat das Bundeskabinett mit der Verabschiedung des 4. Berichts der Interministeriellen Arbeitsgruppe (IMA) ``CO{sub 2}-Reduktion`` nachdruecklich unterstrichen. Mit diesem Beschluss bekraeftigt die Bundesregierung erneut ihr Ziel, die CO{sub 2} Emissionen bis 2005 um 25 % gegenueber 1990 zu senken. Der vorliegende Bericht enthaelt den Beschluss, der Bundesregierung, den Auftrag der Bundesregierung an die Interministerielle Arbeitsgruppe (IMA) und den 4. Bericht der IMA ``CO{sub 2}-Reduktion``. (orig./SR)

  7. A dynamic model of optimal reduction of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Deissenberg, C. [CEFI-CNRS, Les Milles (France); Gottinger, H.W. [International Inst. for Environmental Economics and Management, Bad Waldsee (Germany); Gurman, V. [RAS, Program Systems Inst., Pereslavl-Zalessky (Russian Federation); Marinushkin, D. [Pereslavl Univ., Pereslavl-Zalessky (Russian Federation)

    2001-07-01

    This paper proposes a system of dynamic models to describe the interactive behaviour of different agents (polluters, inspectors, and a principal pollution control agency) involved in the processes of marine oil pollution and of its prevention and purification, under some realistic assumptions, In particular, short- and long-term economic responses of polluters to monitoring efforts, as well as possible collusions between polluters and inspectors, are taken into account. A numerical example is considered using the results of Deissenberg et al., (2001), which show the existence of optimal fines and inspector wage rates that minimize (along with other variables) a simple and visual 'social damage' criterion. (Author)

  8. Indoor air pollution produced by man (carbon dioxide, odors)

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, H U

    1982-01-01

    Man contributes to indoor air pollution by the release of heat, humidity, carbon dioxide, particles, micro-organisms and body odours. The rise in temperature and the concentrations of the different pollutants depend on the number of persons in a room, the utilization of the room and the activities of the persons. Current parameters for the evaluation of man-made pollution in indoor air are carbon monoxide and odours. Experiments have been carried out in a test chamber under controlled conditions in order to determine the relations between carbon monoxide and odours, since these are two current parameters for the evaluation of man-made pollution in indoor air. In these experiments the variables were the number of persons in the room, the activity of the persons and the ventilation rate. For the measurement of odours a special method has been developed in which the undiluted air is tested by a test panel and compared with air containing two different pyridine concentrations. A significant relationship has been observed between the odour intensity and the carbon dioxide content of the air, and the correlation did not depend on the number of persons and the ventilation rate. At ventilation rates of 12 to 15 m3 per person and hour the carbon dioxide concentration was below 0.15% and the odour intensity was characterized as being only little annoying. Higher ventilation rates are necessary during physical activity and in rooms with tobacco smoke. The minimum ventilation rates as deduced from the laboratory experiments are compared to known standards.

  9. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  10. Can environmental innovation facilitate carbon emissions reduction? Evidence from China

    International Nuclear Information System (INIS)

    Zhang, Yue-Jun; Peng, Yu-Lu; Ma, Chao-Qun; Shen, Bo

    2017-01-01

    Environmental innovation has been recognized as an efficient way of addressing environmental problems. However, how environmental innovation may affect carbon emissions in China and whether the effect may differ among various environmental innovation variables remain to be investigated. Therefore, based on the panel data of China’s 30 provinces during 2000–2013, we use a system generalized method of moments (SGMM) technique to estimate the effect of environmental innovation on carbon emissions in China. Also, we evaluate the effect on carbon emission reduction of China’s initial carbon emissions trading (CET) scheme. Empirical results indicate that, most environmental innovation measures in China reduce carbon emissions effectively. Among the various environmental innovation factors, energy efficiency exerts the most evident effect on carbon emissions abatement in China; meanwhile, resources for innovation and knowledge innovation also play prominent roles in this regard. However, the impact of governmental environmental policies on curbing carbon emissions reduction suffers from a lag effect, which mainly occurred during 2006–2013. Finally, despite the short time of operation and incomplete market mechanism, the pilot CET in China has appeared relatively promising with regard to carbon emissions reduction. - Highlights: • The SGMM is used for the effect of environmental innovation on carbon emissions. • Energy efficiency proves the most effective way to reduce China’s carbon emissions. • Innovation resources and knowledge innovation are conducive for carbon reduction. • The governmental environmental policies have lag effect on carbon reduction. • The effect of China’s initial CET on carbon emissions reduction has appeared.

  11. Atmospheric carbon reduction by urban trees

    International Nuclear Information System (INIS)

    Nowak, D.J.

    1993-01-01

    Trees, because they sequester atmospheric carbon through their growth process and conserve energy in urban areas, have been suggested as one means to combat increasing levels of atmospheric carbon. Analysis of the urban forest in Oakland, California (21% tree cover), reveals a tree carbon storage level of 11·0 metric tons/hectare. Trees in the area of the 1991 fire in Oakland stored approximately 14,500 metric tons of carbon, 10% of the total amount stored by Oakland's urban forest. National urban forest carbon storage in the United States (28% tree cover) is estimated at between 350 and 750 million metric tons. Establishment of 10 million urban trees annually over the next 10 years is estimated to sequester and offset the production of 363 million metric tons of carbon over the next 50 years-less than 1% of the estimated carbon emissions in the United States over the same time period. Advantages and limitations of managing urban trees to reduce atmospheric carbon are discussed. 36 refs., 2 figs., 3 tabs

  12. Research on numerical method for multiple pollution source discharge and optimal reduction program

    Science.gov (United States)

    Li, Mingchang; Dai, Mingxin; Zhou, Bin; Zou, Bin

    2018-03-01

    In this paper, the optimal method for reduction program is proposed by the nonlinear optimal algorithms named that genetic algorithm. The four main rivers in Jiangsu province, China are selected for reducing the environmental pollution in nearshore district. Dissolved inorganic nitrogen (DIN) is studied as the only pollutant. The environmental status and standard in the nearshore district is used to reduce the discharge of multiple river pollutant. The research results of reduction program are the basis of marine environmental management.

  13. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  14. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  15. Fish, fishing, and pollutant reduction in the Baltic Sea

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Almesjö, L.; Hansson, S.

    2004-01-01

    The Baltic Sea is heavily polluted yet supports major Commercial fisheries for cod (Gadus morhua), herring (Clupea harengus), and sprat (Sprattus sprattus). Emissions of persistent organic pollutants, such as polychlorinated biphenyls (PCBs) and DDT, were high during the 1960s and 1970s, and conc......The Baltic Sea is heavily polluted yet supports major Commercial fisheries for cod (Gadus morhua), herring (Clupea harengus), and sprat (Sprattus sprattus). Emissions of persistent organic pollutants, such as polychlorinated biphenyls (PCBs) and DDT, were high during the 1960s and 1970s...

  16. Mixed Carbon Policies Based on Cooperation of Carbon Emission Reduction in Supply Chain

    Directory of Open Access Journals (Sweden)

    Yongwei Cheng

    2017-01-01

    Full Text Available This paper established cooperation decision model for a mixed carbon policy of carbon trading-carbon tax (environmental tax in a two-stage S-M supply chain. For three different cooperative abatement situations, we considered the supplier driven model, the manufacturer driven model, and the equilibrium game model. We investigated the influence of mixed carbon policy with constraint of reduction targets on supply chain price, productivity, profits, carbon emissions reduction rate, and so on. The results showed that (1 high-strength carbon policies do not necessarily encourage enterprises to effectively reduce emissions, and increasing market acceptance of low carbon products or raising the price of carbon quota can promote the benign reduction; (2 perfect competitive carbon market has a higher carbon reduction efficiency than oligarch carbon market, but their optimal level of cooperation is the same and the realized reduction rate is in line with the intensity of carbon policy; (3 the policy sensitivity of the carbon trading mechanism is stronger than the carbon tax; “paid quota mechanism” can subsidize the cost of abatement and improve reduction initiative. Finally, we use a numerical example to solve the optimal decisions under different market situations, validating the effectiveness of model and the conclusions.

  17. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  18. Urban traffic pollution reduction for sedan cars using petrol engines by hydro-oxide gas inclusion.

    Science.gov (United States)

    Al-Rousan, Ammar A; Alkheder, Sharaf; Musmar, Sa'ed A

    2015-12-01

    Petrol cars, in particular nonhybrid cars, contribute significantly to the pollution problem as compared with other types of cars. The originality of this article falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/hr). Results indicated that through using hydro-oxy gas, a noticeable reduction in pollution was recorded. Oxygen (O2) percentage has increased by about 2.5%, and nitric oxide (NO) level has been reduced by about 500 ppm. Carbon monoxide (CO) has decreased by about 2.2%, and also CO2 has decreased by 2.1%. It's worth mentioning that for hybrid system in cars at speeds between 10 and 50 km/hr, the emission percentage change is zero. However, hybrid cars are less abundant than petrol cars. The originality of this paper falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/h).

  19. Air pollution impacts from carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Harmelen, T. van; Horssen, A. van; Jozwicka, M.; Pulles, T. (TNO, Delft (Netherlands)); Odeh, N. (AEA Technology, Harwell (United Kingdom)); Adams, M. (EEA, Copenhagen (Denmark))

    2011-11-15

    This report comprises two separate complementary parts that address the links between CCS implementation and its subsequent impacts on GHG and air pollutant emissions on a life-cycle basis: Part A discusses and presents key findings from the latest literature, focusing upon the potential air pollution impacts across the CCS life-cycle arising from the implementation of the main foreseen technologies. Both negative and positive impacts on air quality are presently suggested in the literature - the basis of scientific knowledge on these issues is rapidly advancing. Part B comprises a case study that quantifies and highlights the range of GHG and air pollutant life-cycle emissions that could occur by 2050 under a low-carbon pathway should CCS be implemented in power plants across the European Union under various hypothetical scenarios. A particular focus of the study was to quantify the main life-cycle emissions of the air pollutants taking into account the latest knowledge on air pollutant emission factors and life-cycle aspects of the CCS life-cycle as described in Part A of the report. Pollutants considered in the report were the main GHGs CO{sub 2}, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) and the main air pollutants with potential to harm human health and/or the environment - nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}), ammonia (NH{sub 3}), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM{sub 10}). (Author)

  20. Carbothermal Reduction of Quartz and Carbon Pellets at Elevated Temperatures

    Science.gov (United States)

    Li, Fei; Tangstad, Merete; Ringdalen, Eli

    2018-02-01

    In this study, the carbothermal reduction of pellets composed of quartz and carbon at temperatures between 1898 K and 1948 K (1625 °C and 1675 °C) are investigated. The main product from this reaction is silicon carbide (SiC). The reduction of quartz with carbon black, charcoal, coke, coal, and pre-heated coal in the pellet were compared to investigate the different carbon resources used in silicon production. Charcoal and coke have high SiO reactivity, while carbon black and coal (pre-heated coal) have low SiO reactivity. Charcoal and carbon black show better matching between quartz/carbon reactivity and SiO reactivity, and will lose less SiO gas than coke and pre-heated coal. Coal has a high volatile content and is thus not recommended as a raw material for the pellets.

  1. Carbothermal Reduction of Quartz and Carbon Pellets at Elevated Temperatures

    Science.gov (United States)

    Li, Fei; Tangstad, Merete; Ringdalen, Eli

    2018-06-01

    In this study, the carbothermal reduction of pellets composed of quartz and carbon at temperatures between 1898 K and 1948 K (1625 °C and 1675 °C) are investigated. The main product from this reaction is silicon carbide (SiC). The reduction of quartz with carbon black, charcoal, coke, coal, and pre-heated coal in the pellet were compared to investigate the different carbon resources used in silicon production. Charcoal and coke have high SiO reactivity, while carbon black and coal (pre-heated coal) have low SiO reactivity. Charcoal and carbon black show better matching between quartz/carbon reactivity and SiO reactivity, and will lose less SiO gas than coke and pre-heated coal. Coal has a high volatile content and is thus not recommended as a raw material for the pellets.

  2. Pervious concrete physical characteristics and effectiveness in stormwater pollution reduction.

    Science.gov (United States)

    2016-04-01

    The objective of this research was to investigate the physical/chemical and water flow characteristics of various previous concrete : mixes made of different concrete materials and their effectiveness in attenuating water pollution. Four pervious con...

  3. Managing Air Quality - Control Strategies to Achieve Air Pollution Reduction

    Science.gov (United States)

    Considerations in designing an effective control strategy related to air quality, controlling pollution sources, need for regional or national controls, steps to developing a control strategy, and additional EPA resources.

  4. Impact of Sustainable Environmental Expenditures Policy on Air Pollution Reduction, During European Integration Framework

    Directory of Open Access Journals (Sweden)

    Ionel Bostan

    2016-05-01

    Full Text Available Pursuant to the growth of society, against the boosting of scientific and technological progress, also arises the negative effect of pollution acceleration. In this context, we relate to risks that imply the growth of pollution, especially against nuisance air pollution increase (CO, SO2, NO etc. with major implications on the growth of greenhouse effect, the melting of the ice fields, respectively the pollution of the soil with nitrates from fertilizers intensively used in agriculture. Our study is up-to-date, as pursuant to the ONU Conference from Paris (France 2015, Conference on Climate Changes, they reached an agreement and the adopted text admits the menace of climate modifications is far more important than previously acknowledged and engages the participants to reduce their pollutant emissions. The researchers’ current concerns focus on studying the effects of the redistribution of financial resources obtained by practising the ‘green’ fiscal policy on dependent variables. Observing them, we integrate the respective variables into complex models analysed by multiple regression (both standard and robust and the fixed effects panel on 20 European countries which also reflect the different effects on the environmental policy and the expenses it incurred. The main purpose of the analysis we aim to accomplish is the impact of the policy for environment expenditure tenable within the European framework on against nuisance air pollution attenuation. The statistical analysis aims at identifying these effects by means of regression equations (OLS, robust regression (M method, fixed and random effects, using panel data from 18 EU countries, as well as Switzerland and Turkey due to their position in relation to the community block; we will analyse the period between 1995-2013. Further to the application of multiple regression statistical methods (OLS and robust M, our results show that teimiqgdp expenses played a major role in the reduction

  5. POLLUTION PREVENTION RESEARCH ONGOING - EPA'S RISK REDUCTION ENGINEERING LABORATORY

    Science.gov (United States)

    The mission of the Risk Reduction Engineering Laboratory is to advance the understanding, development and application of engineering solutions for the prevention or reduction of risks from environmental contamination. This mission is accomplished through basic and applied researc...

  6. Relating black carbon content to reduction of snow albedo

    Science.gov (United States)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation

  7. Carbon footprint reductions via grid energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Trevor S. [Naval Facilities Engineering Service Center, 1100 23rd Avenue, Port Huenem, CA 93043 (United States); Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas (United States); Weeks, Kelly [Department of Maritime Administration, Texas A and M University at Galveston, Galveston, TX 77553 (United States); Tucker, Coleman [Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas 77002 (United States)

    2011-07-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

  8. On the Chinese Carbon Reduction Target

    Directory of Open Access Journals (Sweden)

    Michinori Uwasu

    2010-06-01

    Full Text Available In November 2009, China pledged a 40–45% decrease in CO2 emissions per GDP by 2020, as compared with the 2005 level. Although carbon intensity (emission targets by nature are ambiguous, this study demonstrates that China’s pledge is consistent with the current Chinese domestic agenda that simultaneously pursues economic growth and energy security. The target numbers in the pledge seem reasonable, given the technological feasibility and measures, considered along with the assumption that moderate economic growth will occur. However, the study also argues that financial and institutional constraints exist as potential obstacles to achieving the target if the trend of the current economic tendencies continues.

  9. Inventory of pollution reduction options for an aluminium pressure die casting plant

    NARCIS (Netherlands)

    Neto, B.A.F.; Kroeze, C.; Hordijk, L.; Costa, C.

    2009-01-01

    This study presents an overview of options aiming to reduce emissions to air, soil and water from an aluminium die casting plant located in Portugal. We identify eighteen pollution reduction options and then estimate their potential to reduce the pollution, and the costs associated with their

  10. Air pollution removal and temperature reduction by Gainesville's urban forest

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Poor air quality is a common problem in many urban areas. It can lead to human health problems and reduced visibility, and it can impair the health of plants and wildlife. The urban forest can help improve air quality by removing pollutants and by reducing air temperature through shading and transpiration. Trees also emit volatile...

  11. Impact assessment of the carbon reduction strategy for transport, low carbon transport : a greener future

    Science.gov (United States)

    2009-07-01

    This is an impact assessment for the Carbon Reduction Strategy for Transport (DfT, 2009), Low Carbon Transport: A Greener Future, which is part of the UK Governments wider UK Low Carbon Transition Plan (DECC, 2009), Britains path to ta...

  12. Supply Chain Coordination and Consumer Awareness for Pollution Reduction

    Directory of Open Access Journals (Sweden)

    Bowon Kim

    2016-04-01

    Full Text Available To understand the dynamics of the manufacturer’s effort to reduce pollution in a supply chain consisting of manufacturer, retailer, and consumers, we analyze four cases according to consumer awareness of the pollution’s harmful effect, i.e., environmentally aware versus ignorant, and supply chain coordination, i.e., competitive versus cooperative. Applying differential games, we derive managerial implications: the most significant is that the supply chain coordination strategy becomes irrelevant to reducing the pollution, if the consumers are not environmentally aware or sensitive enough. It highlights the critical role played by the consumer awareness in curbing the pollution in the supply chain. In addition, we find the transfer price and the potential market size are important factors to determine each case’s relative effectiveness. Under a regular condition, where the transfer price from the retailer to the manufacturer is sufficiently high, the consumer-aware and competitive case can generate a better outcome in reducing the pollution than those with ignorant consumers. However, the opposite might occur if the transfer price is excessively low, giving the manufacturer little motivation to make an effort to reduce the pollution. For the cooperative supply chain, it is the potential market size that determines whether the consumer-aware case is better than the consumer-ignorant. In fact, it turns out that there is a stronger result, i.e., the feasibility condition enforces that the market is always big enough to make the consumer-aware cooperative case better than the consumer-ignorant cases. We further discuss managerial as well as policy implications of these analysis outcomes.

  13. Electricity generation: options for reduction in carbon emissions.

    Science.gov (United States)

    Whittington, H W

    2002-08-15

    Historically, the bulk production of electricity has been achieved by burning fossil fuels, with unavoidable gaseous emissions, including large quantities of carbon dioxide: an average-sized modern coal-burning power station is responsible for more than 10 Mt of CO(2) each year. This paper details typical emissions from present-day power stations and discusses the options for their reduction. Acknowledging that the cuts achieved in the past decade in the UK CO(2) emissions have been achieved largely by fuel switching, the remaining possibilities offered by this method are discussed. Switching to less-polluting fossil fuels will achieve some measure of reduction, but the basic problem of CO(2) emissions continues. Of the alternatives to fossil fuels, only nuclear power represents a zero-carbon large-scale energy source. Unfortunately, public concerns over safety and radioactive waste have still to be assuaged. Other approaches include the application of improved combustion technology, the removal of harmful gases from power-station flues and the use of waste heat to improve overall power-station efficiency. These all have a part to play, but many consider our best hope for emissions reduction to be the use of renewable energy. The main renewable energy contenders are assessed in this paper and realistic estimates of the contribution that each could provide are indicated. It appears that, in the time-scale envisaged by planners for reduction in CO(2) emission, in many countries renewable energy will be unlikely to deliver. At the same time, it is worth commenting that, again in many countries, the level of penetration of renewable energy will fall short of the present somewhat optimistic targets. Of renewable options, wind energy could be used in the short to medium term to cover for thermal plant closures, but for wind energy to be successful, the network will have to be modified to cope with wind's intermittent nature. Globally, hydroelectricity is currently the

  14. Balance of the air pollution reduction effect of new technologies in East Germany

    International Nuclear Information System (INIS)

    Kampet, T.; Broege, M.; Jappe, H.; Jones, E.; Koerner, T.; Lindner, H.

    1992-01-01

    Between 1989 and 2010, the energy supply in the new Federal States of Germany must undergo a reduction of environmental pollution. This is possible by changing of energy sources (e.g. reduction of using of brown coal), reduction of energy losses, reduction of emissions by improvements in the quality of fuel and by technical improvements for keeping air clean (e.g. dust filters). (VT)

  15. [Awareness of health co-benefits of carbon emissions reduction in urban residents in Beijing: a cross-sectional survey].

    Science.gov (United States)

    Gao, J H; Zhang, Y; Wang, J; Chen, H J; Zhang, G B; Liu, X B; Wu, H X; Li, J; Li, J; Liu, Q Y

    2017-05-10

    Objective: To understand the awareness of the health co-benefits of carbon emission reduction in urban residents in Beijing and the influencing factors, and provide information for policy decision on carbon emission reduction and health education campaigns. Methods: Four communities were selected randomly from Fangshan, Haidian, Huairou and Dongcheng districts of Beijing, respectively. The sample size was estimated by using Kish-Leslie formula for descriptive analysis. 90 participants were recruited from each community. χ (2) test was conducted to examine the associations between socio-demographic variables and individuals' awareness of the health co-benefits of carbon emission reduction. Ordinal logistic regression analysis was performed to investigate the factors influencing the awareness about the health co-benefits. Results: In 369 participants surveyed, 12.7 % reported they knew the health co-benefits of carbon emission reduction. The final logistic regression analysis revealed that age ( OR =0.98), attitude to climate warming ( OR =0.72) and air pollution ( OR =1.59), family monthly average income ( OR =1.27), and low carbon lifestyle ( OR =2.36) were important factors influencing their awareness of the health co-benefits of carbon emission reduction. Conclusion: The awareness of the health co-benefits of carbon emissions reduction were influenced by people' socio-demographic characteristics (age and family income), concerns about air pollution and climate warming, and low carbon lifestyle. It is necessary to take these factors into consideration in future development and implementation of carbon emission reduction policies and related health education campaigns.

  16. Sulfate reduction and carbon removal during kraft char burning

    Energy Technology Data Exchange (ETDEWEB)

    Waag, K.J.; Frederick, W.J.; Sricharoenchaikul, V [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemical Engineering; Grace, T.M. [T.M. Grace Company, Appleton, WI (United States); Kymalainen, M. [Tampella Power, Tampere (Finland)

    1995-12-31

    An improved mathematical model of char burning during black liquor combustion was described. Enhancements include a proper treatment of CO{sub 2} and H{sub 2}O gasification, reactions between oxygen and combustibles in the boundary layer, and integration of sulfate reduction and sulfide reoxidation into the char burning process. Gasification of char carbon by reaction with H{sub 2}O and CO{sub 2} proved to be the most important means of carbon release under typical recovery furnace conditions. Sulfate reduction was shown to be responsible for only a minor part of the carbon release. Simulations showed that for typical recovery boiler conditions, char burning behavior is independent of oxygen concentration up to the point of carbon depletion. After carbon depletion, sulfide reoxidation occurs at a rate determined by oxygen mass transfer. Process variables that had the biggest effect on char burning behavior were initial black liquor drop diameter and temperature; also there was a direct link between char burnout times and the amount of sulfate reduction. At a given temperature, any variable that shortened the char burnout time resulted in proportionately less reduction. 22 refs., 10 figs., 2 tabs.

  17. A carbon risk prediction model for Chinese heavy-polluting industrial enterprises based on support vector machine

    International Nuclear Information System (INIS)

    Zhou, Zhifang; Xiao, Tian; Chen, Xiaohong; Wang, Chang

    2016-01-01

    Chinese heavy-polluting industrial enterprises, especially petrochemical or chemical industry, labeled low carbon efficiency and high emission load, are facing the tremendous pressure of emission reduction under the background of global shortage of energy supply and constrain of carbon emission. However, due to the limited amount of theoretic and practical research in this field, problems like lacking prediction indicators or models, and the quantified standard of carbon risk remain unsolved. In this paper, the connotation of carbon risk and an assessment index system for Chinese heavy-polluting industrial enterprises (eg. coal enterprise, petrochemical enterprises, chemical enterprises et al.) based on support vector machine are presented. By using several heavy-polluting industrial enterprises’ related data, SVM model is trained to predict the carbon risk level of a specific enterprise, which allows the enterprise to identify and manage its carbon risks. The result shows that this method can predict enterprise’s carbon risk level in an efficient, accurate way with high practical application and generalization value.

  18. Pollution Reduction Technology Program, Turboprop Engines, Phase 1

    Science.gov (United States)

    Anderson, R. D.; Herman, A. S.; Tomlinson, J. G.; Vaught, J. M.; Verdouw, A. J.

    1976-01-01

    Exhaust pollutant emissions were measured from a 501-D22A turboprop engine combustor and three low emission combustor types -- reverse flow, prechamber, and staged fuel, operating over a fuel-air ratio range of .0096 to .020. The EPAP LTO cycle data were obtained for a total of nineteen configurations. Hydrocarbon emissions were reduced from 15.0 to .3 lb/1000 Hp-Hr/cycle, CO from 31.5 to 4.6 lb/1000 Hp-Hr/cycle with an increase in NOx of 17 percent, which is still 25% below the program goal. The smoke number was reduced from 59 to 17. Emissions given here are for the reverse flow Mod. IV combustor which is the best candidate for further development into eventual use with the 501-D22A turboprop engine. Even lower emissions were obtained with the advanced technology combustors.

  19. Electrochemical carbon dioxide reduction on rough copper surfaces

    NARCIS (Netherlands)

    Kas, Recep

    2016-01-01

    Sustainable development and climate change is considered to be one of the top challenges of humanity. Electrochemical carbon dioxide (CO2) reduction to fuels or fuel precursor using renewable electricity is a very promising way to recycle CO2 and store the electricity. This would also provide

  20. Electrochemical reduction of dilute chromate solutions on carbon felt electrodes

    NARCIS (Netherlands)

    Frenzel, Ines; Frenzel, I.; Holdik, Hans; Barmashenko, Vladimir; Stamatialis, Dimitrios; Wessling, Matthias

    2006-01-01

    Carbon felt is a potential material for electrochemical reduction of chromates. Very dilute solutions may be efficiently treated due to its large specific surface area and high porosity. In this work, the up-scaling of this technology is investigated using a new type of separated cell and

  1. Rewiring the Carbon Economy: Engineered Carbon Reduction Listening Day Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Illing, Lauren [BCS Inc., Laurel, MD (United States); Natelson, Robert [BCS Inc., Laurel, MD (United States); Resch, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rowe, Ian [USDOE Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States). Bioenergy Technologies Office (EE-3B); Babson, David [USDOE Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States). Bioenergy Technologies Office (EE-3B)

    2018-02-01

    On July 8, 2017, the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) sponsored the Engineered Carbon Reduction Listening Day: Advanced Strategies to Bypass Land Use for the Emerging Bioeconomy in La Jolla, California. This event explored non-photosynthetic carbon dioxide–reduction technologies, including electrocatalytic, thermocatalytic, photocatalytic, and biocatalytic approaches. BETO has summarized stakeholder input from the listening day in a summary report.

  2. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  3. Reduction of Wastewater Pollutants of Mandalay City Slaughterhouse

    International Nuclear Information System (INIS)

    May Thant Zin; Sint Soe

    2010-12-01

    Slaughterhouse (Meat Production Factor)under Mandaly City Development Committee (MCDC) in Myanmar has been discharging raw wastewater directly into Tat Thay Pont which is located at the back side of the slaughterhouse.It can cause some water pollutants in water source and need to prevent environmental impact. This paper was studied on the treatment of slaughterhouse wastewater using appropriate technique available in local area. Sample collection of slaughterhouse waste, analysing of waste quality on current situation,different ways of pre-treating and anaerobically digestion without recycling were done. Screening, coagulation, sedimentation and charcoal filtration were included as pre-treating steps before major anaerobic digestion. Ferric chloride and aluminum sulphate chemicals of both commercial and analytical grades were used as coagulants. Laboratory-scaled anaerobic reactor constructed with polyvinyl chloride (PVC) material was 15 cm diameter and 90 cm heigh. MCDC slaughterhouse wastewater containing 98.56% of total coarse particles was removed via minimum size of 1500 micron screen. Aluminium sulphate gave the best removal of fine solid particles. It was observed that pre-treating steps can reduce 56.72% of initial biological oxygen demand (BOD), 51.482% of initial chemical oxygen demand (COD) and 45.18% of inital total suspended solid (TSS) and anaerobic digester after 30 days can reduce 77.4% of influent BOD,81.5% of influent COD and 87.3% of influent TSS.

  4. Reduction of environmental pollution through optimization of energy use in cement industries

    Energy Technology Data Exchange (ETDEWEB)

    Karbassi, A.R.; Jafari, H.R.; Yavari, A.R.; Hoveidi, H. [Univ. of Tehran (Iran). Graduate Faculty of the Environment; Sid Kalal, H. [J.I.H. Research Laboratories, Tehran (Iran). Nuclear Science and Technology Research Inst.

    2010-01-01

    Industrial development has lead to higher energy consumption, emission of greenhouse gases, as well as air pollutants. Cement factories play an important role in overall greenhouse emissions. This study aims to investigate the role of Iranian cement industries and their contribution of greenhouse gases contribution. The measured emission factors for oil and fuel gas shows that carbon dioxide contribution from fuel oil based cement industries is almost 2.7 times higher than gas based cement factories. The strength, weakness, opportunity and threat technique analysis showed that the best strategy to combat greenhouse gases from Iranian cement factory is to implement energy efficiency measures. Further, strategic position and action evaluation matrix analysis indicates that Iranian cement industries fall within invasive category. Therefore, exploitation of opportunities must carefully be used. One of these opportunities is the utilization of financial assistance provided by clean development mechanism. The results show that replacement of ball mills with vertical roller mill can reduce the electricity consumption from 44.6 to 28 kWh/ton. As a result of such substitution about 720 million kWh/y of electricity would be saved (almost a power plant of 125 MW capacities). Though implementation of new mills may not be economic for the cement industries' owner, but the overall gain for the government of Iran will be about US$ 304 million. If the duration of such efficiency measure is considered as about 12 y, then the overall carbon dioxide (CO{sub 2}) reduction/phase-out would be around 4.3 million tons.

  5. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  6. Low-carbon energy policy and ambient air pollution in Shanghai, China: A health-based economic assessment

    International Nuclear Information System (INIS)

    Chen Changhong; Chen Bingheng; Wang Bingyan; Huang Cheng; Zhao Jing; Dai Yi; Kan Haidong

    2007-01-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM 10 -related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis

  7. Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment.

    Science.gov (United States)

    Chen, Changhong; Chen, Bingheng; Wang, Bingyan; Huang, Cheng; Zhao, Jing; Dai, Yi; Kan, Haidong

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis.

  8. Monumental heritage exposure to urban black carbon pollution

    Science.gov (United States)

    Patrón, D.; Lyamani, H.; Titos, G.; Casquero-Vera, J. A.; Cardell, C.; Močnik, G.; Alados-Arboledas, L.; Olmo, F. J.

    2017-12-01

    In this study, aerosol light-absorption measurements obtained at three sites during a winter campaign were used to analyse and identify the major sources of Black Carbon (BC) particles in and around the Alhambra monument, a UNESCO World Heritage Site that receives over 2 million visitors per year. The Conditional Bivariate Probability Function and the Aethalometer model were employed to identify the main sources of BC particles and to estimate the contributions of biomass burning and fossil fuel emissions to the total Equivalent Black Carbon (EBC) concentrations over the monumental complex. Unexpected high levels of EBC were found at the Alhambra, comparable to those measured in relatively polluted European urban areas during winter. EBC concentrations above 3.0 μg/m3, which are associated with unacceptable levels of soiling and negative public reactions, were observed at Alhambra monument on 13 days from 12 October 2015 to 29 February 2016, which can pose a risk to its long-term conservation and may cause negative social and economic impacts. It was found that road traffic emissions from the nearby urban area and access road to the Alhambra were the main sources of BC particles over the monument. However, biomass burning emissions were found to have very small impact on EBC concentrations at the Alhambra. The highest EBC concentrations were observed during an extended stagnant episode associated with persistent high-pressure systems, reflecting the large impact that can have these synoptic conditions on BC over the Alhambra.

  9. Pollution prevention through energy efficiency: methodology for evaluating greenhouse gas reductions

    International Nuclear Information System (INIS)

    Widge, V.; Arnold, F.; Karmali, A.

    1992-01-01

    This paper outlines an analytical framework for evaluating the potential for greenhouse gas emission reductions through investments in energy efficiency. In particular, it will describe a model called the Energy and Technology Switching (ETS) model which has been developed at ICF Incorporated. The ETS model has several useful capabilities - it can assess the implications of changing the energy efficiency of new shipments and existing stock of equipment and appliances, or even changes in patterns of fuel use. The ETS model predicts energy use, emissions of related carbon dioxide and other greenhouse gases, and private and social costs (such as energy costs, avoided capital and fuel costs). It also tracks changes in fuel and technology use over time for a user specified end-use application. The paper is organized into three parts: - The first part of the paper describes the methodology used in estimating the reduction in greenhouse gas emissions and the associated net costs of policies that could affect energy use. - In order to demonstrate the model's capabilities, in the second part of the paper, a sample analysis is presented. ICF incorporated has used the ETS model to estimate for the Global Change Division of the U.S. Environmental Protection Agency the costs of reducing greenhouse gas emissions in the residential and commercial sectors of the U.S. economy, encompassing a wide range of technologies and fuel-types. The assumptions and results of this analysis are presented. - Finally, the paper outlines some of the potential uses of this model in assessing pollution prevention opportunities through energy efficient measures. 11 figs

  10. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio. Copyright © 2015

  11. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    International Nuclear Information System (INIS)

    Pitstick, M.E.; Santini, D.J.; Chauhan, H.

    1992-01-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO 2 ). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO 2 equivalent emission rate. Both CO 2 and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO 2 was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO 2 ). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO 2 from fuel consumption

  12. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    Energy Technology Data Exchange (ETDEWEB)

    Pitstick, M.E.; Santini, D.J. [Argonne National Lab., IL (United States); Chauhan, H. [Delaware Univ., Newark, DE (United States). Dept. of Civil Engineering

    1992-08-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO{sub 2}). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO{sub x}). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO{sub 2} equivalent emission rate. Both CO{sub 2} and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO{sub 2} was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO{sub 2}). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO{sub 2} from fuel consumption.

  13. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    Energy Technology Data Exchange (ETDEWEB)

    Pitstick, M.E.; Santini, D.J. (Argonne National Lab., IL (United States)); Chauhan, H. (Delaware Univ., Newark, DE (United States). Dept. of Civil Engineering)

    1992-01-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO{sub 2}). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO{sub x}). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO{sub 2} equivalent emission rate. Both CO{sub 2} and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO{sub 2} was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO{sub 2}). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO{sub 2} from fuel consumption.

  14. Greenhouse gas and air pollutant emission reduction potentials of renewable energy--case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan.

    Science.gov (United States)

    Kuo, Yu-Ming; Fukushima, Yasuhiro

    2009-03-01

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study.

  15. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    International Nuclear Information System (INIS)

    Ruiz Montoya, Mercedes; Pintado, Sara; Rodriguez Mellado, Jose Miguel

    2010-01-01

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H 2 SO 4 ) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH a ), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK a the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  16. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, Mercedes, E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, Sara; Rodriguez Mellado, Jose Miguel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' , E-14014 Cordoba (Spain)

    2010-03-30

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H{sub 2}SO{sub 4}) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH < pK{sub a}), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK{sub a} the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  17. Vibration of carbon nanotubes with defects: order reduction methods

    Science.gov (United States)

    Hudson, Robert B.; Sinha, Alok

    2018-03-01

    Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.

  18. Do Voluntary Pollution Reduction Programs (VPRs) Spur Innovation in Environmental Technology

    OpenAIRE

    Carrion-Flores, Carmen E.; Innes, Robert; Sam, Abdoul G.

    2006-01-01

    In the context of the EPA's 33/50 program, we study whether a VPR can prompt firms to develop new environmental technologies that yield future emission reduction benefits. Because pollutant reductions generally require costly reformulations of products and/or production processes, environmental over-compliance induced by a VPR may potentially spur environmental innovation that can reduce these costs. Conversely, a VPR may induce a participating firm to divert resources from environmental rese...

  19. Progress in the reduction of carbon monoxide levels in major urban areas in Korea

    International Nuclear Information System (INIS)

    Kim, Ki-Hyun; Sul, Kyung-Hwa; Szulejko, Jan E.; Chambers, Scott D.; Feng, Xinbin; Lee, Min-Hee

    2015-01-01

    Long-term trends in observed carbon monoxide (CO) concentrations were analyzed in seven major South Korean cities from 1989 to 2013. Temporal trends were evident on seasonal and annual timescales, as were spatial gradients between the cities. As CO levels in the most polluted cities decreased significantly until the early 2000s, the data were arbitrarily divided into two time periods (I: 1989–2000 and II: 2001–2013) for analysis. The mean CO concentration of period II was about 50% lower than that of period I. Long-term trends of annual mean CO concentrations, examined using the Mann–Kendall (MK) method, confirm a consistent reduction in CO levels from 1989 to 2000 (period I). The abrupt reduction in CO levels was attributed to a combination of technological improvements and government administrative/regulatory initiatives (e.g., emission mitigation strategies and a gradual shift in the fuel/energy consumption mix away from coal and oil to natural gas and nuclear power). - Highlights: • As one of the criteria pollutants, CO has been extensively studied worldwide. • The concentration of CO in ambient air should be reduced to a more manageable level. • The spatiotemporal characteristics of CO in Korea are analyzed for 1989–2013. • Our efforts will help develop systematic strategies to reduce CO emissions. - The efficacy of CO mitigation strategies adopted throughout Korea is highlighted along with the limitations faced to improving air quality due to cross-boundary pollution transport.

  20. Carbon emissions and an equitable emission reduction criterion

    International Nuclear Information System (INIS)

    Golomb, Dan

    1999-01-01

    In 1995 the world-wide carbon emissions reached 5.8 billion metric tonnes per year (GTC/y). The Kyoto protocol calls for a reduction of carbon emissions from the developed countries (Annex I countries) of 6-8% below 1990 levels on the average, and unspecified commitments for the less developed (non-Annex I) countries. It is doubtful that the Kyoto agreement will be ratified by some parliaments, especially the USA Congress. Furthermore, it is shown that if the non-Annex I countries will not curtail their carbon emissions drastically, the global emissions will soar to huge levels by the middle of the next century. An equitable emission criterion is proposed which may lead to a sustainable rate of growth of carbon emissions, and be acceptable to all countries of the world. The criterion links the rate of growth of carbon emissions to the rate of growth of the Gross Domestic Product (GDP). A target criterion is proposed R = 0.15 KgC/SGDP, which is the current average for western European countries and Japan. This allows for both the growth of the GDP and carbon emissions. However, to reach the target in a reasonable time, the countries for which R≤ 0.3 would be allowed a carbon emission growth rate of 1%./y, and countries for which R≥ 0.3, 0.75%/y. It is shown that by 2050 the world-wide carbon emissions would reach about 10 GTC/y, which is about 3 times less than the Kyoto agreement would allow. (Author)

  1. A healthy reduction in oil consumption and carbon emissions

    International Nuclear Information System (INIS)

    Higgins, P.A.T.; Higgins, Millicent

    2005-01-01

    Reliance on oil as an energy source for private transportation produces increasingly unfavorable social, political and environmental conditions including climate change, dependence on foreign oil, and the need for difficult choices between oil production and protection of biological systems. At the same time, the population is increasingly sedentary due largely to our reliance on the automobile for transportation. Adoption and maintenance of healthy weights and healthier lifestyles by substituting walking or biking for short trips currently taken by car could simultaneously improve health and reduce oil consumption and carbon dioxide emissions. We calculate the reduction in oil consumption and carbon dioxide emissions possible in the United States if (1) obese and overweight conditions were eliminated from the adult population through the use of walking or biking for transportation, and (2) individuals between the ages of 10 and 64 adopted previously recommended levels of daily exercise by walking or biking instead of driving. Substantial co-benefits accompany widespread adoption of physical activity. Assuming substitution of cycling for driving, the reduction in gasoline demand is equivalent to 34.9% of current domestic oil consumption. This constitutes considerably more oil than is recoverable from the Arctic National Wildlife Refuge. The concomitant reduction in US carbon dioxide emissions would constitute approximately 10.9% relative to 1990 net US emissions and would be a substantial step toward satisfying the Kyoto Protocol

  2. A healthy reduction in oil consumption and carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, P.A.T. [Stanford Univ., CA (United States). Dept. of Biological Sciences; Higgins, M. [Michigan Univ., Ann Arbor, MI (United States). School of Public Health

    2005-01-01

    Reliance on oil as an energy source for private transportation produces increasingly unfavorable social, political and environmental conditions including climate change, dependence on foreign oil, and the need for difficult choices between oil production and protection of biological systems. At the same time, the population is increasingly sedentary due largely to our reliance on the automobile for transportation. Adoption and maintenance of healthy weights and healthier lifestyles by substituting walking or biking for short trips currently taken by car could simultaneously improve health and reduce oil consumption and carbon dioxide emissions. We calculate the reduction in oil consumption and carbon dioxide emissions possible in the United States if (1) obese and overweight conditions were eliminated from the adult population through the use of walking or biking for transportation, and (2) individuals between the ages of 10 and 64 adopted previously recommended levels of daily exercise by walking or biking instead of driving. Substantial co-benefits accompany widespread adoption of physical activity. Assuming substitution of cycling for driving, the reduction in gasoline demand is equivalent to 34.9% of current domestic oil consumption. This constitutes considerably more oil than is recoverable from the Arctic National Wildlife Refuge. The concomitant reduction in US carbon dioxide emissions would constitute approximately 10.9% relative to 1990 net US emissions and would be a substantial step toward satisfying the Kyoto Protocol. (author)

  3. Carbon emissions reduction in China's food industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Lei, Xiaojing

    2015-01-01

    In this paper, we evaluate the changes in carbon dioxide emissions from energy consumption in China's food industry from 1986 to 2010 based on the Logarithmic Mean Divisia Index (LMDI) method. The results show that energy intensity (EI) and industrial activity (IA) are the main determinants of the changes in carbon dioxide. Energy intensity (EI) contributes to decrease in emissions within 25 years while industrial activity (IA) acts in a positive way to increase the emissions level. Industry scale (IS) mostly contributes to increase in emissions except for the time interval 1996–2000. However, for both carbon intensity (CI) and energy structure (ES), they have a volatile but not significant influence on emissions in the different time intervals. To further understand the effects, we analyze the cumulative emission during the whole period 1986–2010. The results further testify that energy intensity and industrial activity are the most important factors affecting reduction and growth of carbon emissions. The results indicate that efforts to reduce emission in China's food industry should focus on the enhancement of energy efficiency, the optimization of industrial scale and the restructuring energy use. Finally, recommendations are provided for the reduction of carbon dioxide in China's food industry. - Highlights: • We analyze the energy consumption and CO 2 emissions in China's food industry. • LMDI decomposition analysis is conducted for finding out the driving forces. • Industrial activity is the main driving force of CO 2 emissions in this industry. • Energy intensity is the main factor mitigating carbon emissions in this industry. • Main advice: improving energy efficiency, optimizing industrial scale.

  4. Estimating mortality risk reduction and economic benefits from controlling ozone air pollution

    National Research Council Canada - National Science Library

    Committee on Estimating Mortality Risk Reduction Benefits from Decreasing Tropospheric Ozone Exposure

    2008-01-01

    ... in life expectancy, and to assess methods for estimating the monetary value of the reduced risk of premature death and increased life expectancy in the context of health-benefits analysis. Estimating Mortality Risk Reduction and Economic Benefits from Controlling Ozone Air Pollution details the committee's findings and posits several recommendations to address these issues.

  5. Reduction in Surface Ocean Carbon Storage across the Middle Miocene

    Science.gov (United States)

    Babila, T. L.; Sosdian, S. M.; Foster, G. L.; Lear, C. H.

    2017-12-01

    During the Middle Miocene, Earth underwent a profound climate shift from the warmth of the Miocene Climatic Optimum (MCO; 14-17 Ma) to the stable icehouse of today during the Middle Miocene Climate transition (MMCT). Elevated atmospheric carbon dioxide concentrations (pCO2) revealed by boron isotope records (δ11B) link massive volcanic outputs of Columbia River Flood Basalts to the general warmth of MCO. Superimposed on the long-term cooling trend (MMCT) is a gradual pCO2 decline and numerous positive carbon isotope (δ13C) excursions that indicate dynamic variations in the global carbon cycle. Enhanced organic carbon burial via marine productivity, increased silicate weathering and volcanic emission cessation are each invoked to explain the drawdown of pCO2. To better constrain the oceanic role in carbon sequestration over the Middle Miocene detailed records of carbonate chemistry are needed. We present high resolution Boron/Calcium (B/Ca) and δ13C records in planktonic foraminifer T.trilobus spanning 12-17 Ma at ODP 761 (tropical eastern Indian Ocean) to document changes in surface ocean carbonate chemistry. An overall 30% increase in B/Ca ratios is expressed as two stepwise phases occurring at 14.7 and 13 Ma. Cyclic B/Ca variations are coherent with complimentary δ13C records suggesting a tight coupling between ocean carbonate chemistry parameters. Lower resolution B/Ca data at DSDP 588 (Pacific) and ODP 926 (Atlantic) corroborate the trends observed at ODP 761. We employ a paired approach that combines B/Ca (this study) to δ11B (Foster et al., 2012) and an ad hoc calibration to estimate changes in surface ocean dissolved inorganic carbon (DIC). We estimate a substantial decrease in surface ocean DIC spanning the Middle Miocene that culminates with modern day like values. This gradual decline in surface ocean DIC is coeval with existing deep-ocean records which together suggests a whole ocean reduction in carbon storage. We speculate that enhanced weathering

  6. Overview of the U.S. Environmental Protection Agency's Hazardous Air Pollutant Early Reduction Program

    International Nuclear Information System (INIS)

    Laznow, J.; Daniel, J.

    1992-01-01

    Under provision of the Clean Air Act Amendments of 1990 Title III, the EPA has proposed a regulation (Early Reduction Program) to allow a six-year compliance extension from Maximum Achievable Control Technology (MACT) standards for sources that voluntarily reduce emissions of Hazardous Air Pollutants (HAPs) by 90% or more (95% or more for particulates) from a base year of 1987 or later. The emission reduction must be made before the applicable MACT standard is proposed for the source category or be subject to an enforceable commitment to achieve the reduction by January 1, 1994 for sources subject to MACT standards prior to 1994. The primary purpose of this program is to encourage reduction of HAPs emissions sooner than otherwise required. Industry would be allowed additional time in evaluating emission reduction options and developing more cost-effective compliance strategies, although, under strict guidelines to ensure actual, significant and verifiable emission reductions occur

  7. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    Science.gov (United States)

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  8. Carbon flow analysis and Carbon emission reduction of FCC in Chinese oil refineries

    Science.gov (United States)

    Jia, Fengrui; Wei, Na; Ma, Danzhu; Liu, Guangxin; Wu, Ming; Yue, Qiang

    2017-08-01

    The major problem of the energy production in oil refineries is the high emission of CO2 in China. The fluid catalytic cracking unit (FCC) is the key source of carbon emission in the oil refineries. According to the statistical data, the carbon emission of FCC unit accounts for more than 31% for the typical oil refineries. The carbon flow of FCC in the typical Chinese oil refineries were evaluated and analysed, which aimed at the solution of CO2 emission reduction. The method of substances flow analysis (SFA) and the mathematical programming were used to evaluate the carbon metabolism and optimize the carbon emission. The results indicated that the combustion emission of the reaction-regeneration subsystem (RRS) was the major source of FCC. The quantity of CO2 emission of RSS was more than 90%. The combustion efficiency and the amount of residual oil affected the carbon emission of RRS most according to the optimized analysis of carbon emission reduction. Moreover, the fractionation subsystem (TFS) had the highest environmental efficiency and the absorption-stabilization subsystem (ASS) had the highest resource efficiency (approximately to 1) of carbon.

  9. Air pollution reduction and control in south asia need for a regional agreement

    International Nuclear Information System (INIS)

    Khwaja, M.A.; Shaheen, N.; Sherazi, A.; Shaheen, F.H.

    2012-01-01

    With increasing urbanization and economic growth, air pollution is becoming an urgent concern in South Asia. The objective of this study is to look into and discuss the socioeconomic situation of South Asia, the existing situation of air pollution in the countries of the region, resulting health impacts of air pollution on the population and the responses, if any, of national governments to combat this problem. With the increase in industrial activity and exponential growth in number of vehicles and population, the contribution of each South Asian country to the regional air pollution will increase over time. As evident from the review of the available country data, sulfur dioxides, nitrogen oxides and particulate matter (PM) emissions have been rising steadily over past few decades. The air pollutants can be transported across state and national boundaries, therefore, pollutants produced by one country can, as well, have adverse impacts on the environment and public health of neighboring countries. It has been reported by the country national health authorities that air pollution has pushed respiratory diseases up in the ranks as the leading cause of hospitalization. To minimize the socio-economic and health impacts, resulting from air pollution, South Asian states have developed environmental legal and regulatory frameworks in their respective countries. However, the implementation of country national environmental action plan has been limited due to lack of financial resources and technical know-how. Recommendations have been made for policy actions, including a legally binding agreement for South Asia (LBA-SA), for strengthening the framework for air pollution reduction at regional and national levels in South Asia. (author)

  10. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Patthanaissaranukool, Withida; Polprasert, Chongchin; Englande, Andrew J.

    2013-01-01

    Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO 2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of

  11. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    Khan, Gulzar; Kim, Young Kwang; Choi, Sung Kyu; Han, Dong Suk; Abdelwahab, Ahmed; Park, Hyunwoong

    2013-01-01

    TiO 2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H 2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H 2 production as compared to bare TiO 2 . Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO 2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO 2 /carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  12. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    International Nuclear Information System (INIS)

    Thayer, G.R.; Hardie, R.W.; Barrera-Roldan, A.

    1993-01-01

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linear function of the reduction of hydrocarbon and NO x emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO x . The relationship between ozone levels and the hydrocarbon and NO x concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy

  13. Carbon Reduction Strategies Based on an NW Small-World Network with a Progressive Carbon Tax

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2017-09-01

    Full Text Available There is an increasingly urgent need to reduce carbon emissions. Devising effective carbon tax policies has become an important research topic. It is necessary to explore carbon reduction strategies based on the design of carbon tax elements. In this study, we explore the effect of a progressive carbon tax policy on carbon emission reductions using the logical deduction method. We apply experience-weighted attraction learning theory to construct an evolutionary game model for enterprises with different levels of energy consumption in an NW small-world network, and study their strategy choices when faced with a progressive carbon tax policy. The findings suggest that enterprises that adopt other energy consumption strategies gradually transform to a low energy consumption strategy, and that this trend eventually spreads to the entire system. With other conditions unchanged, the rate at which enterprises change to a low energy consumption strategy becomes faster as the discount coefficient, the network externality, and the expected adjustment factor increase. Conversely, the rate of change slows as the cost of converting to a low energy consumption strategy increases.

  14. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  15. Upstream-Downstream Joint Carbon Reduction Strategies Based on Low-Carbon Promotion

    Directory of Open Access Journals (Sweden)

    Xiqiang Xia

    2018-06-01

    Full Text Available A differential game model is established to analyze the impact of emissions reduction efforts and low-carbon product promotion on the reduction strategies of low-carbon product manufacturers (subsequently referred to as manufacturers and the retailers of such products in a dynamic environment. Based on this model, changes in emissions reduction efforts and promotional efforts are comparatively analyzed under three scenarios (retailers bearing the promotional cost, manufacturers bearing the promotional cost, and centralized decision-making. The results are as follows: (1 the trajectory of carbon emissions reduction per product unit is the highest when the supply chain is under centralized decision-making, followed by when manufacturers bear the promotional cost, and lastly when retailers bear the cost; (2 when manufacturers bear the promotional cost, the market demand, emissions reduction effort, and promotional effort are higher, although the unit retail price is higher than when retailers bear the promotional cost; and (3 under centralized decision-making, the unit retail price is the lowest; however, sales volume, the emissions reduction effort, and the promotional effort are all higher than those in the other scenarios.

  16. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    International Nuclear Information System (INIS)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-01-01

    Highlights: • Supported g-C_3N_4 on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C_3N_4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C_3N_4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C_3N_4 to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C_3N_4/AC catalyst within 20 min with PMS, while g-C_3N_4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C_3N_4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO_4·"−) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C)_3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  17. Carbon-14 as an indicator of CO2 pollution in cities

    International Nuclear Information System (INIS)

    Vogel, J.C.; Uhlitzsch, I.

    1975-01-01

    The combustion of fossil fuels in cities, and especially in industrial areas, releases large quantities of carbon dioxide into the local atmosphere. This carbon dioxide does not contain carbon-14, with the result that the carbon-14 content of the atmospheric carbon dioxide is locally depleted. The degree of depletion provides a measure for the carbon dioxide pollution at the sampling site. Since growing plants represent a convenient average sample of the carbon dioxide in the air, the leaves of deciduous trees can be used for comparing the magnitude of local pollution in different localities during the summer growing period. A series of leaf samples collected in 1973 from Europe, North America and South Africa reveals the expected differences in the degree of pollution. Extreme instances occur in Scholven (Ruhrgebiet, Germany), where the average day-time carbon dioxide content during the summer months is found to be 8.7% above normal, and in Manhatten, New York City, where the corresponding figure is 6.4%. The technique can easily be extended to include the winter months by directly absorbing carbon dioxide in a hydroxide solution during different seasons. The proposed method is sensitive but much less time-consuming than the continuous measurement of the carbon dioxide concentration in the air. It thus lends itself to the monitoring of impact areas of pollution. (author)

  18. Water Quality Improvement through Reductions of Pollutant Loads on Small Scale of Bioretention System

    Science.gov (United States)

    Elyza Muha, Norshafa; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Bioretention system is introduced as an important topic namely Urban Storm Water Management Manual for Malaysia (MSMA) by the Department of Irrigation and Drainage Malaysia (DID) in May 2012. The main objective of this paper is to evaluate the performance of water quality for small scale bioretention system under tropical climate via MUSIC model. Two bioretention systems 1 and 2 are observed based on the difference media depth. The result of bioretention system is compared with a reference model which has infrastructure with Urban Stormwater Improvement Conceptualisation (MUSIC) for pollutants load reduction and water quality results. Assessment of results via MUSIC software indicates a significant percentage of reduction for Total Suspended Solid (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). The prediction of pollutant reduction via using MUSIC has the harmony for requirement in MSMA. TSS pollutant reduction is more than 80%, while for TP and TN more than 50%. The outcome of this study can be helpful for improvement of the existing MSMA guidelines for application of bioretention systems in Malaysia.

  19. Effects of airborne black carbon pollution on maize

    Science.gov (United States)

    Illes, Bernadett; Anda, Angela; Soos, Gabor

    2013-04-01

    The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, P<0.05), than the LAI of the control maize in the rainfed plot and in the ET chambers, respectively. The albedo of the BC contaminated maize decreased (15-30%, P<0.05) in all three years. We also detected that the green plant surface of maize increased on BC contaminated treatment. These results may suggest that the plant is able to absorb the additional carbon source through the leaves. The albedo decreased

  20. Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China

    Directory of Open Access Journals (Sweden)

    Ye Li

    2016-11-01

    Full Text Available In recent years, emissions from the road transportation industry in China have been increasing rapidly. To evaluate the reduction potential of greenhouse gas and pollutant emissions of the industry in China, its emission inventory was calculated and scenario analysis was created for the period between 2012 and 2030 in this paper. Based on the Long-range Energy Alternatives Planning System (LEAP model, the development of China’s road transportation industry in two scenarios (the business-as-usual (BAU scenario and the comprehensive-mitigation (CM scenario was simulated. In the Comprehensive Mitigation scenario, there are nine various measures which include Fuel Economy Standards, Auto Emission Standards, Energy-saving Technology, Tax Policy, Eco-driving, Logistics Informatization, Vehicle Liquidation, Electric Vehicles, and Alternative Fuels. The cumulative energy and emission reductions of these specific measures were evaluated. Our results demonstrate that China’s road transportation produced 881 million metric tons of CO2 and emitted 1420 thousand tons of CO, 2150 thousand tons of NOx, 148 thousand tons of PM10, and 745 thousand tons of HC in 2012. The reduction potential is quite large, and road freight transportation is the key mitigation subsector, accounting for 85%–92% of the total emission. For energy conservation and carbon emission mitigation, logistics informatization is the most effective method, potentially reducing 1.80 billion tons of coal equivalent and 3.83 billion tons of CO2 from 2012 to 2030. In terms of air pollutant emission mitigation, the auto emission standards measure performs best with respect to NOx, PM10, and HC emission mitigation, and logistic informatization measure is the best in CO emission reduction. In order to maximize the mitigation potential of China’s road transportation industry, the government needs to implement various measures in a timely and strict fashion.

  1. Chromate Reduction in Serratia marcescens Isolated from Tannery Effluent and Potential Application for Bioremediation of Chromate Pollution

    Directory of Open Access Journals (Sweden)

    M.A. Mondaca

    2002-01-01

    Full Text Available Pollution of aquatic systems by heavy metals has resulted in increasing environmental concern because they cannot be biodegraded. One metal that gives reason for concern due to its toxicity is chromium. Cr(VI and Cr(III are the principal forms of chromium found in natural waters. A chromate-resistant strain of the bacterium S. marcescens was isolated from tannery effluent. The strain was able to reduce Cr(VI to Cr(III, and about 80% of chromate was removed from the medium. The reduction seems to occur on the cell surface. Transmission electron microscopic examination of cells revealed that particles were deposited on the outside of bacterial cells. A stable biofilm was formed in less than 10 h, reaching around 1010 cfu attached per milligram of activated carbon. These findings demonstrate that immobilized S. marcescens might be used in industrial waste treatment processes.

  2. Pollutants removal onto novel activated carbons made from lignocellulosic precursors

    OpenAIRE

    Valente Nabais, Joao; Laginhas, Carlos; Carrott, Manuela; Carrott, Peter; Gomes, Jose; Suhas, Suhas; Ramires, Ana; Roman, Silvia

    2009-01-01

    The adsorption of phenol and mercury from dilute aqueous solutions onto new activated carbons was studied. These included activated carbons produced from novel precursors, namely rapeseed, vine shoots and kenaf, and samples oxidised with nitric acid in liquid phase. The results have shown the significant potential of rapeseed, vine shoots and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface...

  3. Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment

    Science.gov (United States)

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition (13C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ13C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ13C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ13C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  4. Complex Physiological Response of Norway Spruce to Atmospheric Pollution - Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment.

    Science.gov (United States)

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition ((13)C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ(13)C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ(13)C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ(13)C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  5. The Benefit Impact of Air Pollution Reduction Through ATCS Implementation at Intersections

    Science.gov (United States)

    Budihardjo, Mochamad Arief; Huboyo, Haryono Setiyo; Samadikun, Budi Prasetyo

    2018-02-01

    The field study in five intersections that had ATCS, such as Krapyak, Tugu Muda, Polda, Bangkong and Fatmawati were done to investigate the effectivity of air pollution reduction. The study was done by estimating the differences between the vehicle speed due to the cycle duration of green light by field observation and video recording in each intersection. In five intersections that had been observed, the percentage of fuel consumption savings for two-wheeled vehicles were between 15 - 18%, meanwhile for four-wheel vehicles were between 30 - 46%. Based on the calculation that adopt the emission factor from CORINAIR and USEPA emission, the emission reduction based on pollutant types were TSP (12-17%), NOx (22-36%), CO (15-25%), HC (16-28%) and SO2 (22-35%). The result to the vehicles' speed that passed the intersections through ATCS has also indicated that the ATCS could increase vehicle speed and consequently reduce the emission.

  6. Air pollution emission reduction techniques in combustion plants; Technique de reduction des emissions de polluants atmospheriques dans les installations de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bouscaren, R. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1996-12-31

    Separating techniques offer a large choice between various procedures for air pollution reduction in combustion plants: mechanical, electrical, filtering, hydraulic, chemical, physical, catalytic, thermal and biological processes. Many environment-friendly equipment use such separating techniques, particularly for dust cleaning and fume desulfurizing and more recently for the abatement of volatile organic pollutants or dioxins and furans. These processes are briefly described

  7. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    Science.gov (United States)

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.

  8. Ni0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium

    Science.gov (United States)

    Yao, Yunjin; Zhang, Jie; Chen, Hao; Yu, Maojing; Gao, Mengxue; Hu, Yi; Wang, Shaobin

    2018-05-01

    N-doped carbon nanotubes encapsulating Ni0 nanoparticles (Ni@N-C) were fabricated via thermal reduction of dicyandiamide and NiCl2·6H2O, and used to remove CrVI in polluted water. The resultant products present an excellent catalytic activity for CrVI reduction using formic acid under relatively mild conditions. The CrVI reduction efficiency of Ni@N-C was significantly affected by the preparation conditions including the mass of nickel salt and synthesis temperatures. The impacts of several reaction parameters, such as initial concentrations of CrVI and formic acid, solution pH and temperatures, as well as inorganic anions in solution on CrVI reduction efficiency were also evaluated in view of scalable industrial applications. Owing to the synergistic effects amongst tubes-coated Ni0, doped nitrogen, oxygen containing groups, and the configuration of carbon nanotubes, Ni@N-C catalysts exhibit excellent catalytic activity and recyclable capability for CrVI reduction. Carbon shell can efficiently protect inner Ni0 core and N species from corrosion and subsequent leaching, while Ni0 endows the Ni@N-C catalysts with ferromagnetism, so that the composites can be easily separated via a permanent magnet. This study opens up an avenue for design of N-doped carbon nanotubes encapsulating Ni0 nanoparticles with high CrVI removal efficiency and magnetic recyclability as low-cost catalysts for industrial applications.

  9. Atmospheric pollution

    International Nuclear Information System (INIS)

    Lambrozo, J.; Guillossou, G.

    2008-01-01

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  10. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Preble, Chelsea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Hadley, Odelle [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Gadgil, Ashok [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions. This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.

  11. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Mingyu; Gao, Long; Li, Jun [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Fang, Jia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Cai, Wenxuan [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Xu, Aihua, E-mail: xahspinel@sina.com [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073 (China)

    2016-10-05

    Highlights: • Supported g-C{sub 3}N{sub 4} on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C{sub 3}N{sub 4}/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C{sub 3}N{sub 4} was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C{sub 3}N{sub 4} to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C{sub 3}N{sub 4}/AC catalyst within 20 min with PMS, while g-C{sub 3}N{sub 4}+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C{sub 3}N{sub 4} loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO{sub 4}·{sup −}) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C){sub 3} group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  12. Influence of large changes in public transportation (Transantiago) on the black carbon pollution near streets

    Science.gov (United States)

    Gramsch, E.; Le Nir, G.; Araya, M.; Rubio, M. A.; Moreno, F.; Oyola, P.

    2013-02-01

    In 2006 a large transformation was carried out on the public transportation system in Santiago de Chile. The original system (before 2006) had hundreds of bus owners with about 7000 diesel buses. The new system has only 13 firms with about 5900 buses which operate in different parts of the city with little overlap between them. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. Measurements were carried out during May-July of 2005 (before Transantiago) and June-July of 2007 (after Transantiago). We have used the Wilcoxon rank-sum test to evaluate black carbon concentration in four streets in year 2005 and 2007. The results show that a statistically significant reduction between year 2005 (before Transantiago) and year 2007 (after Transantiago) in Alameda street, which changed from a mean of 18.8 μg m-3 in 2005 to 11.9 μg m-3 in 2007. In this street there was a decrease in the number of buses as well as the number of private vehicles and an improvement in the technology of public transportation between those years. Other two streets (Usach and Departamental) did not change or experienced a small increase in the black carbon concentration in spite of having less flux of buses in 2007. Eliodoro Yañez Street, which did not have public transportation in 2005 or 2007 experienced a 15% increase in the black carbon concentration between those years. Analysis of the data indicates that the change is related to a decrease in the total number of vehicles or the number of other diesel vehicles in the street rather than a decrease in the number of buses only. These results are an indication that in order to decrease pollution near a street is not enough to reduce the number of buses or improve its quality, but to reduce the total number of vehicles.

  13. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy

    Directory of Open Access Journals (Sweden)

    Li Xueying

    2017-03-01

    Full Text Available Under the background of a low carbon economy, this paper examines the impact of carbon tax policy on supply chain network emission reduction. The integer linear programming method is used to establish a supply chain network emission reduction such a model considers the cost of CO2 emissions, and analyses the impact of different carbon price on cost and carbon emissions in supply chains. The results show that the implementation of a carbon tax policy can reduce CO2 emissions in building supply chain, but the increase in carbon price does not produce a reduction effect, and may bring financial burden to the enterprise. This paper presents a reasonable carbon price range and provides decision makers with strategies towards realizing a low carbon building supply chain in an economical manner.

  14. Cost-Sharing Contracts for Energy Saving and Emissions Reduction of a Supply Chain under the Conditions of Government Subsidies and a Carbon Tax

    Directory of Open Access Journals (Sweden)

    Yi Yuyin

    2018-03-01

    Full Text Available To study the cooperation of upstream and downstream enterprises of a supply chain in energy saving and emissions reduction, we establish a Stackelberg game model. The retailer moves first to decide a cost-sharing contract, then the manufacturer determines the energy-saving level, carbon-emission level, and wholesale price successively. In the end, the retailer determines the retail price. As a regulation, the government provides subsidies for energy-saving products, while imposing a carbon tax on the carbon emitted. The results show that (1 both the energy-saving cost-sharing (ECS and the carbon emissions reduction cost-sharing (CCS contracts are not the dominant strategy of the two parties by which they can facilitate energy savings and emissions reductions; (2 compared with single cost-sharing contracts, the bivariate cost-sharing (BCS contract for energy saving and emissions reduction is superior, although it still cannot realise prefect coordination of the supply chain; (3 government subsidy and carbon tax policies can promote the cooperation of both the upstream and downstream enterprises of the supply chain—a subsidy policy can always drive energy saving and emissions reductions, while a carbon tax policy does not always exert positive effects, as it depends on the initial level of pollution and the level of carbon tax; and (4 the subsidy policy reduces the coordination efficiency of the supply chain, while the influences of carbon tax policy upon the coordination efficiency relies on the initial carbon-emission level.

  15. Reduction of the environmental concentration of air pollutants by proper geometrical orientation of industrial line sources

    International Nuclear Information System (INIS)

    Tadmor, J.

    1980-01-01

    An account is given of an Israeli study of two line sources, one composed of 10 and the other of 20 individual sources. The height of release ranged from 15.7 to 39.6 m, with a uniform rate of release of a gaseous pollutant of 1 Ci/s for each source. Average pollutant concentration was plotted as a function of the rotation angle of the line sources. Reduction of pollutant concentration by a particular rotation of the line sources attained values of up to 50%. At certain rotation angles of the line sources, the environmental concentration was lower even as compared with a single high source. Results also depended on atmospheric conditions. It is suggested that considering the increase in cost of augmenting the height of release as a means of reducing the air pollutant concentration, determination of the optimum geometric orientation of the line sources should be considered as an economical means of improving environmental air quality. (U.K.)

  16. Constructing post-carbon institutions: Assessing EU carbon reduction efforts through an institutional risk governance approach

    International Nuclear Information System (INIS)

    LaBelle, Michael

    2012-01-01

    This paper examines three different governance approaches the European Union (EU) and Member States (MS) are relying on to reach a low carbon economy by 2050. Current governance literature explains the operational methods of the EU's new governance approach to reduce carbon emissions. However, the literature neglects to account for the perceived risks that inhibit the roll-out of new low carbon technology. This article, through a novel approach, uses a grounded theoretical framework to reframe traditional risk literature and provides a connection to governance literature in order to assess the ability of EU governance mechanisms to reduce carbon emissions. The empirical research is based on responses from European energy stakeholders who participated in a Delphi method discussion and in semi-structured interviews; these identified three essential requirements for carbon emissions to be reduced to near zero by 2050: (1) an integrated European energy network, (2) carbon pricing and (3) demand reduction. These features correspond to institutionalized responses by the EU and MS: the Agency for the Cooperation of Energy Regulators (ACER); European Union Emission Trading Scheme (EU ETS) and energy efficiency directives and policies integrated into existing MS institutions. The theoretical and empirical findings suggest that governance by facilitation (energy efficiency) fails to induce significant investment and new policy approaches and cannot be relied on to achieve requisite reductions in demand. Governance by negotiation (ACER) and governance by hierarchy (EU ETS) do reduce risks and may encourage the necessary technological uptake. The term ‘risk governance’ is used to explain the important role governance plays in reducing risks and advancing new technology and thereby lowering carbon emissions in the energy sector. - Highlights: ► This article assesses the role of EU institutions in reducing carbon emissions by 2050. ► Empirical research is based on Delphi

  17. Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe

    Energy Technology Data Exchange (ETDEWEB)

    Mohn, W.W.; Tiedje, J.M. (Michigan State Univ., East Lansing (USA))

    1990-04-01

    Strain DCB-1 is a strict anaerobe capable of reductive dehalogenation. We elucidated metabolic processes in DCB-1 which may be related to dehalogenation and which further characterize the organism physiologically. Sulfoxy anions and CO2 were used by DCB-1 as catabolic electron acceptors. With suitable electron donors, sulfate and thiosulfate were reduced to sulfide. Sulfate and thiosulfate supported growth with formate or hydrogen as the electron donor and thus are probably respiratory electron acceptors. Other electron donors supporting growth with sulfate were CO, lactate, pyruvate, butyrate, and 3-methoxybenzoate. Thiosulfate also supported growth without an additional electron donor, being disproportionated to sulfide and sulfate. In the absence of other electron acceptors, CO2 reduction to acetate plus cell material was coupled to pyruvate oxidation to acetate plus CO2. Pyruvate could not be fermented without an electron acceptor. Carbon monoxide dehydrogenase activity was found in whole cells, indicating that CO2 reduction probably occurred via the acetyl coenzyme A pathway. Autotrophic growth occurred on H2 plus thiosulfate or sulfate. Diazotrophic growth occurred, and whole cells had nitrogenase activity. On the basis of these physiological characteristics, DCB-1 is a thiosulfate-disproportionating bacterium unlike those previously described.

  18. Children's Urinary Environmental Carbon Load. A Novel Marker Reflecting Residential Ambient Air Pollution Exposure?

    Science.gov (United States)

    Saenen, Nelly D; Bové, Hannelore; Steuwe, Christian; Roeffaers, Maarten B J; Provost, Eline B; Lefebvre, Wouter; Vanpoucke, Charlotte; Ameloot, Marcel; Nawrot, Tim S

    2017-10-01

    Ambient air pollution, including black carbon, entails a serious public health risk because of its carcinogenic potential and as climate pollutant. To date, an internal exposure marker for black carbon particles that have cleared from the systemic circulation into the urine does not exist. To develop and validate a novel method to measure black carbon particles in a label-free way in urine. We detected urinary carbon load in 289 children (aged 9-12 yr) using white-light generation under femtosecond pulsed laser illumination. Children's residential black carbon concentrations were estimated based on a high-resolution spatial temporal interpolation method. We were able to detect urinary black carbon in all children, with an overall average (SD) of 98.2 × 10 5 (29.8 × 10 5 ) particles/ml. The urinary black carbon load was positively associated with medium-term to chronic (1 mo or more) residential black carbon exposure: +5.33 × 10 5 particles/ml higher carbon load (95% confidence interval, 1.56 × 10 5 to 9.10 × 10 5 particles/ml) for an interquartile range increment in annual residential black carbon exposure. Consistently, children who lived closer to a major road (≤160 m) had higher urinary black carbon load (6.93 × 10 5 particles/ml; 95% confidence interval, 0.77 × 10 5 to 13.1 × 10 5 ). Urinary black carbon mirrors the accumulation of medium-term to chronic exposure to combustion-related air pollution. This specific biomarker reflects internal systemic black carbon particles cleared from the circulation into the urine, allowing investigators to unravel the complexity of particulate-related health effects.

  19. The pollution reduction technology program for can-annular combustor engines - Description and results

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Diehl, L.

    1976-01-01

    Pollutant reduction and performance characteristics were determined for three successively more advanced combustor concepts. Program Element I consisted of minor modifications to the current production JT8D combustor and fuel system to evaluate means of improved fuel preparation and changes to the basic airflow distribution. Element II addressed versions of the two-staged Vorbix (vortex burning and mixing) combustor and represented a moderate increase in hardware complexity and difficulty of development. The concept selected for Element III employed vaporized fuel as a means of achieving minimum emission levels and represented the greatest difficulty of development and adaptation to the JT8D engine. Test results indicate that the Element I single-stage combustors were capable of dramatic improvement in idle pollutants. The multistage combustors evaluated in Program Elements II and III simultaneously reduced CO, THC and NOx emissions, but were unable to satisfy the current 1979 EPA standards.

  20. Regulation and perceived compliance: Nonpoint pollution reduction programs in four states

    International Nuclear Information System (INIS)

    Floyd, D.W.; MacLeod, M.A.

    1993-01-01

    Examining nonpoint-source water pollution programs in foresty is one way of looking at the complicated policy questions of striking a balance between voluntary and regulatory approaches to forest management on private lands. States have developed a variety of approaches in this area from completely voluntary to highly regulatory to archeive compliance. This article looks at several aspects: federal requirements, program types, predictive behavior theories, and specific state programs (Ohio, West Virginia, Maryland, Massachusetts). The study results indicate a significant difference in preceived compliance based on program type: as stringency increases, perceived compliance increases. The authors suggest that successful forestry nonpoint source water pollution reduction plans should combine regulatory and educational elements. 16 refs., 3 tabs

  1. A new porous hybrid material derived from silica fume and alginate for sustainable pollutants reduction

    Science.gov (United States)

    Zanoletti, Alessandra; Vassura, Ivano; Venturini, Elisa; Monai, Matteo; Montini, Tiziano; Federici, Stefania; Zacco, Annalisa; Treccani, Laura; Bontempi, Elza

    2018-03-01

    In this work a new mesoporous adsorbent material obtained from a natural, high abundant raw material and a high volume industrial by-product is presented. The material is consolidated by the gelling properties of alginate and by decomposition of sodium-bicarbonate controlled porosity at low temperatures (70-80°C) at different scale lengths. The structural, thermal, and morphological characterization shows that the material is a mesoporous organic-inorganic hybrid. The material is tested as adsorbent, showing high performances. Methylene blue, used as model pollutant, can be adsorbed and removed from aqueous solutions even at a high concentration with efficiency up to 94%. By coating the material with a 100 nm thin film of titania, good photodegradation performance (more than 20%) can be imparted. Based on embodied energy and carbon footprint of its primary production, the sustainability of the new obtained material is evaluated and quantified in respect to activated carbon as well. It is shown that the new proposed material has an embodied energy lower than one order of magnitude in respect to the one of activated carbon, which represents the gold standards. The versatility of the new material is also demonstrated in terms of its design and manufacturing possibilities. In addition, this material can be printed in 3D. Finally, preliminary results about its ability to capture diesel exhaust particulate matter are reported. The sample exposed to diesel contains a large amount of carbon in its surface. At the best of our knowledge this is the first time that hybrid porous materials are proposed as a new class of sustainable materials, produced to reduce pollutants in the wastewaters and in the atmosphere.

  2. Mortality reduction following the air pollution control measures during the 2010 Asian Games

    Science.gov (United States)

    Lin, Hualiang; Zhang, Yonghui; Liu, Tao; Xiao, Jianpeng; Xu, Yanjun; Xu, Xiaojun; Qian, Zhenmin; Tong, Shilu; Luo, Yuan; Zeng, Weilin; Ma, Wenjun

    2014-07-01

    Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1-December 21) in 2010 with the same calendar date of baseline years (2006-2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73-0.86), 0.77 (95% CI: 0.66-0.89) and 0.68 (95% CI: 0.57-0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.

  3. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Yacovitch, Tara I.; Fortner, Edward C.; Roscioli, Joseph R.; Floerchinger, Cody; Herndon, Scott C.; Kolb, Charles E.; Knighton, Walter B.; Paramo, Victor Hugo; Zirath, Sergio; Mejía, José Antonio; Jazcilevich, Aron

    2017-12-01

    Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC), organic carbon (OC), and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41-2.48 g kg-1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO), CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios measured in California using

  4. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2017-12-01

    Full Text Available Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC, organic carbon (OC, and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM, as well as carbon monoxide (CO, nitrogen oxides (NOx, sulfur dioxide (SO2, ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41–2.48 g kg−1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO, CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios

  5. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  6. Black carbon reduction will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  7. Reduction in Heart Rate Variability with Traffic and Air Pollution in Patients with Coronary Artery Disease

    Science.gov (United States)

    Zanobetti, Antonella; Gold, Diane R.; Stone, Peter H.; Suh, Helen H.; Schwartz, Joel; Coull, Brent A.; Speizer, Frank E.

    2010-01-01

    Introduction Ambient particulate pollution and traffic have been linked to myocardial infarction and cardiac death risk. Possible mechanisms include autonomic cardiac dysfunction. Methods In a repeated-measures study of 46 patients 43–75 years of age, we investigated associations of central-site ambient particulate pollution, including black carbon (BC) (a marker for regional and local traffic), and report of traffic exposure with changes in half-hourly averaged heart rate variability (HRV), a marker of autonomic function measured by 24-hr Holter electrocardiogram monitoring. Each patient was observed up to four times within 1 year after a percutaneous intervention for myocardial infarction, acute coronary syndrome without infarction, or stable coronary artery disease (4,955 half-hour observations). For each half-hour period, diary data defined whether the patient was home or not home, or in traffic. Results A decrease in high frequency (HF; an HRV marker of vagal tone) of −16.4% [95% confidence interval (CI), −20.7 to −11.8%] was associated with an interquartile range of 0.3-μg/m3 increase in prior 5-day averaged ambient BC. Decreases in HF were independently associated both with the previous 2-hr averaged BC (−10.4%; 95% CI, −15.4 to −5.2%) and with being in traffic in the previous 2 hr (−38.5%; 95% CI, −57.4 to −11.1%). We also observed independent responses for particulate air matter with aerodynamic diameter ≤ 2.5 μm and for gases (ozone or nitrogen dioxide). Conclusion After hospitalization for coronary artery disease, both particulate pollution and being in traffic, a marker of stress and pollution, were associated with decreased HRV. PMID:20064780

  8. Preparation of activated carbon from banana peel waste for reducing air pollutant from motorcycle muffler

    Directory of Open Access Journals (Sweden)

    Chafidz Achmad

    2018-01-01

    Full Text Available The exhaust gas or emission from motor vehicle contains various pollutants and some of them are toxic and very harmful for human health. In the present work, we prepared an activated carbon to reduce the toxic pollutants (via adsorption process from the exhaust gas of the motor vehicle (particularly motorcycle in this work. The activated carbon was prepared from local banana peel which considered as an agricultural waste without economic value. To prepare the activated carbon, banana peel was carbonized using furnace at 500°C. Then the resulted carbon was activated using chemical activation with ZnCl2 and physical activation with either microwave (300 W or furnace (700°C. The prepared activated carbon was then characterized using Scanning Electron Microscope (SEM and Fourier Transform Infrared (FT-IR analysis. The SEM result showed that the pore of microwave induced ZnCl2 activated carbon (ACM was larger than the pore of virgin char/carbon and furnace induced ZnCl2 activataed carbon (ACF. The FT-IR spectrum of ACM showed some peaks at 3408.59 cm-1, 1589.25 cm-1, and 1093.63 cm-1. They are assigned to O-H stretching, C=O stretching, and C-OH stretching. Additionally, the adsorption performance of the prepared activation carbon to reduce the pollutants concentration (i.e. CO and CH from the exhaust gas of motor vehicle was investigated. The results showed that the activated carbon induced by microwave and ZnCl2 activation (ACM gave the best result. The adsorption or removal efficiency of gas CO reached approximately 97.64 %vol.

  9. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  10. The Benefit Impact of Air Pollution Reduction Through ATCS Implementation at Intersections

    Directory of Open Access Journals (Sweden)

    Arief Budihardjo Mochamad

    2018-01-01

    Full Text Available The field study in five intersections that had ATCS, such as Krapyak, Tugu Muda, Polda, Bangkong and Fatmawati were done to investigate the effectivity of air pollution reduction. The study was done by estimating the differences between the vehicle speed due to the cycle duration of green light by field observation and video recording in each intersection. In five intersections that had been observed, the percentage of fuel consumption savings for two-wheeled vehicles were between 15 – 18%, meanwhile for four-wheel vehicles were between 30 – 46%. Based on the calculation that adopt the emission factor from CORINAIR and USEPA emission, the emission reduction based on pollutant types were TSP (12-17%, NOx (22-36%, CO (15-25%, HC (16-28% and SO2 (22-35%. The result to the vehicles' speed that passed the intersections through ATCS has also indicated that the ATCS could increase vehicle speed and consequently reduce the emission.

  11. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  12. Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-01-01

    Highlights: • Activated carbon fiber with mild activation condition is useful as adsorbent for polar pollutants. • Diverse variations are investigated for developing an effective adsorbent. • Surface functional group is the most important factor for capacity as a adsorbent. • Surface functional groups on ACFs are investigated using micro-ATR FTIR. -- Abstract: Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital

  13. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  14. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  15. Reduction of solar photovoltaic resources due to air pollution in China.

    Science.gov (United States)

    Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L

    2017-11-07

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.

  16. Carbon Dioxide Reduction Post-Processing Sub-System Development

    Science.gov (United States)

    Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary; Barton, Katherine

    2012-01-01

    The state-of-the-art Carbon Dioxide (CO2) Reduction Assembly (CRA) on the International Space Station (ISS) facilitates the recovery of oxygen from metabolic CO2. The CRA utilizes the Sabatier process to produce water with methane as a byproduct. The methane is currently vented overboard as a waste product. Because the CRA relies on hydrogen for oxygen recovery, the loss of methane ultimately results in a loss of oxygen. For missions beyond low earth orbit, it will prove essential to maximize oxygen recovery. For this purpose, NASA is exploring an integrated post-processor system to recover hydrogen from CRA methane. The post-processor, called a Plasma Pyrolysis Assembly (PPA) partially pyrolyzes methane to recover hydrogen with acetylene as a byproduct. In-flight operation of post-processor will require a Methane Purification Assembly (MePA) and an Acetylene Separation Assembly (ASepA). Recent efforts have focused on the design, fabrication, and testing of these components. The results and conclusions of these efforts will be discussed as well as future plans.

  17. A Cost Benefit Analysis of an Active Travel Intervention with Health and Carbon Emission Reduction Benefits

    Science.gov (United States)

    Grams, Mark; Witten, Karen; Woodward, Alistair

    2018-01-01

    Active travel (walking and cycling) is beneficial for people’s health and has many co-benefits, such as reducing motor vehicle congestion and pollution in urban areas. There have been few robust evaluations of active travel, and very few studies have valued health and emissions outcomes. The ACTIVE before-and-after quasi-experimental study estimated the net benefits of health and other outcomes from New Zealand’s Model Communities Programme using an empirical analysis comparing two intervention cities with two control cities. The Programme funded investment in cycle paths, other walking and cycling facilities, cycle parking, ‘shared spaces’, media campaigns and events, such as ‘Share the Road’, and cycle-skills training. Using the modified Integrated Transport and Health Impacts Model, the Programme’s net economic benefits were estimated from the changes in use of active travel modes. Annual benefits for health in the intervention cities were estimated at 34.4 disability-adjusted life years (DALYs) and two lives saved due to reductions in cardiac disease, diabetes, cancer, and respiratory disease. Reductions in transport-related carbon emissions were also estimated and valued. Using a discount rate of 3.5%, the estimated benefit/cost ratio was 11:1 and was robust to sensitivity testing. It is concluded that when concerted investment is made in active travel in a city, there is likely to be a measurable, positive return on investment. PMID:29751618

  18. A Modeled Carbon Emission Analysis Of Rampal Power Plant In Bangladesh And A Review Of Carbon Reduction Technologies

    Directory of Open Access Journals (Sweden)

    Gour Chand Mazumder

    2015-08-01

    Full Text Available todays most important concern of Bangladesh is power generation. Government has planned a 1320 MW coal-fired power station at Rampal near Sundarbans. Environmentalists have indicated that this plant will face environmental issues. So we tried finding the capability of Sundarbans to face carbon emissions. We figured out approximate carbon emission of that power plant using an arbitrary operational model. We found 3.16MKg of carbon emission daily. We used mangroves carbon sequestration rate to calculate the carbon tolerance level of Sundarbans and found approximately 4.2 MKg of carbon per day.The amount of emission we found here is marginal with the ability of Sundarbans as it is already contributing to sequester carbon from other sources. We studied and showed technology wise carbon reductions. It is possible to reduce 90 to 95 carbon emissioby using these technologies. We recommend these advanced technologies to ensure sundarbans environmental safety.

  19. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, Jette B.; Jensen, Dorthe Lærke; Grøn, Christian

    1998-01-01

    Samples of dissolved organic carbon (DOG) were obtained from landfill leachate-polluted groundwater at Vejen Landfill, Denmark. The humic acids, fulvic acids and the hydrophilic fraction were isolated and purified. Based on DOC measurements, the fulvic acid fraction predominated, accounting...

  20. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    Science.gov (United States)

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  1. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  2. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    Science.gov (United States)

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  3. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  4. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis

    Science.gov (United States)

    John L. Campbell; Alan A. Ager

    2013-01-01

    Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term...

  5. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality

    Science.gov (United States)

    Jiang, Lei; Worden, Richard H.; Yang, Changbing

    2018-02-01

    Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.

  6. An Integrated Carbon Policy-Based Interactive Strategy for Carbon Reduction and Economic Development in a Construction Material Supply Chain

    Directory of Open Access Journals (Sweden)

    Liming Zhang

    2017-11-01

    Full Text Available Carbon emissions from the construction material industry have become of increasing concern due to increasingly urbanization and extensive infrastructure. Faced with serious atmospheric deterioration, governments have been seeking to reduce carbon emissions, with carbon trading and carbon taxes being considered the most effective regulatory policies. Over time, there has been a global consensus that integrated carbon trading/carbon tax policies are more effective in reducing carbon emissions. However, in an integrated carbon reduction policy framework, balancing the relationship between emission reductions and low-carbon benefits has been found to be a critical issue for governments and enterprises in both theoretical research and carbon emission reduction practices. As few papers have sought to address these issues, this paper seeks to reach a trade-off between economic development and environmental protection involving various stakeholders: regional governments which aim to maximize social benefits, and producers who seek economic profit maximization. An iterative interactive algorithmic method with fuzzy random variables (FRVs is proposed to determine the satisfactory equilibrium between these decision-makers. This methodology is then applied to a real-world case to demonstrate its practicality and efficiency.

  7. The impact of a forced reduction in traffic volumes on urban air pollution

    International Nuclear Information System (INIS)

    Yuval; Broday, D.M.

    2008-01-01

    The Middle East military conflict of summer 2006 resulted in a few weeks in which the city of Haifa, Israel, and its environs experienced very profound variations in the commercial and personal activities. Large industrial plants continued almost normal operations but activities of small scale industry, shopping, and personal commuting were drastically reduced, leading to a dramatic decrease in the commercial and personal traffic volumes. This period of reduced activity serves as a real life experiment for assessment and demonstration of the impact that human activity, and mainly road traffic, may have on the air pollution levels in a bustling middle-sized city. The analysis is made especially sharp and reliable due to the abruptness of the beginning and the end of the reduced activity period, its length, and the stable summer meteorological conditions in the eastern Mediterranean region. The reduced traffic volumes resulted in lowered levels of NO 2 , hydrocarbons and particulate matter. The decrease in these pollutants' mean concentration was significantly larger than the reduction in the mean traffic volume. Slightly higher mean O 3 concentrations were observed during the reduced traffic period. (author)

  8. Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2015-01-01

    Energy saving and carbon dioxide emission reduction in China is attracting increasing attention worldwide. At present, China is in the phase of rapid urbanization and industrialization, which is characterized by rapid growth of energy consumption. China's transport sector is highly energy-consuming and pollution-intensive. Between 1980 and 2012, the carbon dioxide emissions in China's transport sector increased approximately 9.7 times, with an average annual growth rate of 7.4%. Identifying the driving forces of the increase in carbon dioxide emissions in the transport sector is vital to developing effective environmental policies. This study uses Vector Autoregressive model to analyze the influencing factors of the changes in carbon dioxide emissions in the sector. The results show that energy efficiency plays a dominant role in reducing carbon dioxide emissions. Private vehicles have more impact on emission reduction than cargo turnover due to the surge in private car population and its low energy efficiency. Urbanization also has significant effect on carbon dioxide emissions because of large-scale population movements and the transformation of the industrial structure. These findings are important for the relevant authorities in China in developing appropriate energy policy and planning for the transport sector. - Highlights: • The driving forces of CO 2 emissions in China's transport sector were investigated. • Energy efficiency plays a dominant role in reducing carbon dioxide emissions. • Urbanization has significant effect on CO 2 emissions due to large-scale migration. • The role of private cars in reducing emissions is more important than cargo turnover

  9. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts

    NARCIS (Netherlands)

    Ma, Ming; Trześniewski, Bartek J.; Xie, Jie; Smith, Wilson A.

    2016-01-01

    In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a

  10. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...

  11. Achieving carbon emission reduction through industrial and urban symbiosis: A case of Kawasaki

    International Nuclear Information System (INIS)

    Dong, Huijuan; Ohnishi, Satoshi; Fujita, Tsuyoshi; Geng, Yong; Fujii, Minoru; Dong, Liang

    2014-01-01

    Industry and fossil fuel combustion are the main sources for urban carbon emissions. Most studies focus on energy consumption emission reduction and energy efficiency improvement. Material saving is also important for carbon emission reduction from a lifecycle perspective. IS (Industrial symbiosis) and U r S (urban symbiosis) have been effective since both of them encourage byproduct exchange. However, quantitative carbon emission reduction evaluation on applying them is still lacking. Consequently, the purpose of this paper is to fill such a gap through a case study in Kawasaki Eco-town, Japan. A hybrid LCA model was employed to evaluate to the lifecycle carbon footprint. The results show that lifecycle carbon footprints with and without IS and U r S were 26.66 Mt CO 2 e and 30.92 Mt CO 2 e, respectively. The carbon emission efficiency was improved by 13.77% with the implementation of IS and U r S. The carbon emission reduction was mainly from “iron and steel” industry, cement industry and “paper making” industry, with figures of 2.76 Mt CO 2 e, 1.16 Mt CO 2 e and 0.34 Mt CO 2 e, respectively. Reuse of scrape steel, blast furnace slag and waste paper are all effective measures for promoting carbon emission reductions. Finally, policy implications on how to further promote IS and U r S are presented. - Highlights: • We evaluate carbon emission reduction of industrial and urban symbiosis (IS/U r S). • Hybrid LCA model was used to evaluate lifecycle carbon footprint. • Carbon emission efficiency was improved by 13.77% after applying IS/U r S. • The importance of U r S in responding carbon reduction was addressed in the paper

  12. Municipal wastewater characteristics in Thailand and effects of soft intervention measures in households on pollutant discharge reduction.

    Science.gov (United States)

    Tsuzuki, Y; Koottatep, T; Jiawkok, S; Saengpeng, S

    2010-01-01

    In developing countries with large Millennium Development Goals (MDGs) sanitation indicator, pollutant discharge reduction function of wastewater treatment systems should be considered. In this paper, pollutant generations per capita (PGCs) and pollutant discharges per capita (PDCs) are estimated as a base dataset for wastewater management in Thailand. PDCs of black water, i.e. toilet wastewater, are found to be much smaller than PGCs of black water. However, PDCs of gray water, i.e. municipal wastewater other than toilet wastewater are large. Gray water is often discharged without treatment and contributes much to ambient water deterioration. Moreover, possible 5-day biological oxygen demand (BOD5) discharge reductions with "soft interventions", i.e. measurements in households to reduce wastewater pollutant discharge such as using a paper filter or a plastic net in kitchen sinks and so on, are estimated as 39, 21 and 34% for BOD5, total Kjeldahl nitrogen (TKN) and phosphate (PO4-P), respectively. For the estimation, environmental accounting housekeeping (EAH) books of domestic wastewater, spreadsheets with pollutant discharges by water usages and possible effects of "soft interventions" are applied. The framework of this study with "soft intervention" effects on pollutant discharge reductions should enhance wastewater management especially in the areas under development of wastewater treatment systems.

  13. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    DEFF Research Database (Denmark)

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C

    2011-01-01

    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  15. Model studies of limitation of carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    1992-01-01

    The report consists of two papers concerning mitigation of CO 2 emissions in Sweden, ''Limitation of carbon dioxide emissions. Socio-economic effects and the importance of international coordination'', and ''Model calculations for Sweden's energy system with carbon dioxide limitations''. Separate abstracts were prepared for both of the papers

  16. Modification of activated carbon using nitration followed by reduction for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Shafeeyan, Mohammad Saleh; Houshmand, Amirhossein; Arami-Niya, Arash; Daud, Wan Mohd AshiWan [Dept. of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Razaghizadeh, Hosain [Dept. of Faculty of Environment and Energy, Research and Science Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Activated carbon (AC) samples were modified using nitration followed by reduction to enhance their CO{sub 2} adsorption capacities. Besides characterization of the samples, investigation of CO{sub 2} capture performance was conducted by CO{sub 2} isothermal adsorption, temperature-programmed (TP) CO{sub 2} adsorption, cyclic CO{sub 2} adsorption–desorption, and dynamic CO{sub 2} adsorption tests. Almost all modified samples showed a rise in the amount of CO{sub 2} adsorbed when the comparison is made in unit surface area. On the other hand, some of the samples displayed a capacity superior to that of the parent material when compared in mass unit, especially at elevated temperatures. Despite ⁓65% decrease in the surface area, TP-CO{sub 2} adsorption of the best samples exhibited increases of ⁓10 and 70% in CO{sub 2} capture capacity at 30 and 100 °C, respectively.

  17. Forests and wood consumption on the carbon balance. Carbon emission reduction by use of wood products

    International Nuclear Information System (INIS)

    Sikkema, R.; Nabuurs, G.J.

    1995-01-01

    Until now studies on the greenhouse effect paid much attention to carbon fixation by forests, while the entire CO2 cycle of forests and forest products remained underexposed. Utilization of wood products instead of energy-intensive materials (plastics/steel) and fossil fuels (coal) proves to play an important role as well. The effect of utilization is even greater than that of fixation. In all, additional forests together with the multiple use of trees can contribute substantially to the reduction of CO2 emissions. The contribution can run from 5.3 ton CO2/ha/yr for a mixed forest of oak/beech to 18.9 ton CO2/ha/yr for energy plantations (poplar). 2 figs., 3 tabs

  18. Cobenefits of climate and air pollution regulations. The context of the European Commission Roadmap for moving to a low carbon economy in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Koelemeijer, R.; Eerens, H.; Van Velze, K. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands); Colette, A.; Schucht, S.; Pere, J.C.; Bessagnet, B.; Rouil, L. [Institut National de l' Environnement Industriel et des Risques INERIS, Verneuil-en-Halatte (France); Mellios, G. [EMISIA, Thessaloniki (Greece)

    2012-03-15

    In 2011, the European Commission published its roadmap towards a competitive low-carbon economy for 2050. For this roadmap the possibilities of a far-reaching reduction in greenhouse gas emissions in Europe were assessed (a decrease of 80% by 2050 compared to 1990 levels). This report was written at the request of the European Environment Agency and examines the effects of such a reduction on air quality. Analysis of several existing scenarios indicates that climate policy, in general, leads to a decrease in air pollution in Europe.

  19. Black Carbon And Co-Pollutants Emissions And Energy Efficiency From Bricks Production In Guanajuato, Mexico

    Science.gov (United States)

    Molina, L. T.; Zavala, M.; Maiz, P.; Monsivais, I.; Chow, J.; Munguia, J.

    2013-12-01

    In many parts of the world, small-scale traditional brick kilns are a notorious informal sector source of urban air pollution. Many are both inefficient and burn highly polluting fuels that emit significant levels of black carbon and other pollutants into local communities and to the atmosphere, resulting in severe health and environmental impacts. It is estimated that there are nearly 20,000 traditional brick kilns in Mexico, in which bricks are still produced as they have been for centuries. They are made by hand, dried in the sun, and generally fired in small, one chamber kilns that use various types of fuels, including plastic refuse, used tires, manure, wood scrap, and used motor oil. Three brick kilns, two traditional kilns and an improved kiln (MK2), were sampled as part of the SLCFs-Mexico campaign in Guanajuato, Mexico during March of 2013. The concept of the MK-2 involves covering the kiln with a dome and channeling the output of an active kiln through a second, identical loaded kiln for its additional filtration of the effluents. The results of energy efficiency and carbon mass balance calculations are presented for comparing the production efficiency and carbon emissions from the sampled kilns. Measurements included PM2.5 mass with quartz filters and temporally-resolved elemental carbon and organic carbon composition obtained using thermo-optical methods. The carbon emissions obtained with the mass balance method are compared with concurrent, high- time resolution, emissions measurements obtained using the Aerodyne mobile laboratory employing the tracer method (see abstract by Fortner et al.)

  20. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    Science.gov (United States)

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  1. Impact of carbon-dosing on micro-pollutants removal in MBBR post-denitrification systems

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Torresi, Elena; Plósz, Benedek G.

    and indigenous micro-pollutants concentrations, different methanol and ethanol dosages were used to manipulate the carbon-to-nitrate ratio in two MBBRs. Atenolol, citalopram and trimethoprim were efficiently removed in both reactors. However, type or concentration of carbon did not correlate to micro......-pollutant removal rates. Second, an anoxic-batch test with spiked micropollutants was conducted. The batch test showed that acetyl-sulfadiazine, atenolol, citalopram, propranolol and trimethoprim were easily removed in both reactors. Ibuprofen, clarithromycin, iopromide, metoprolol, iohexol, iomeprol, venlafaxine......, erythromycin and sotalol were moderately removed while diatrizoic acid, iopamidol, carbamazepine and diclofenac showed to be hardly biodegradable. The fact that both reactors gave similar removal rate constants for easily degradable compounds, could suggest that diffusion through the biofilm determined...

  2. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.

    Science.gov (United States)

    Björklund, Karin; Li, Loretta Y

    2017-07-15

    Adsorption filters have the potential to retain suspended pollutants physically, as well as attracting and chemically attaching dissolved compounds onto the adsorbent. This study investigated the adsorption of eight hydrophobic organic compounds (HOCs) frequently detected in stormwater - including four polycyclic aromatic hydrocarbons (PAHs), two phthalates and two alkylphenols - onto activated carbon produced from domestic sewage sludge. Adsorption was studied using batch tests. Kinetic studies indicated that bulk adsorption of HOCs occurred within 10 min. Sludge-based activated carbon (SBAC) was as efficient as tested commercial carbons for adsorbing HOCs; adsorption capacities ranged from 70 to 2800 μg/g (C initial  = 10-300 μg/L; 15 mg SBAC in 150 mL solution; 24 h contact time) for each HOC. In the batch tests, the adsorption capacity was generally negatively correlated to the compounds' hydrophobicity (log K ow ) and positively associated with decreasing molecule size, suggesting that molecular sieving limited adsorption. However, in repeated adsorption tests, where competition between HOCs was more likely to occur, adsorbed pollutant loads exhibited strong positive correlation with log K ow . Sewage sludge as a carbon source for activated carbon has great potential as a sustainable alternative for sludge waste management practices and production of a high-capacity adsorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  4. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    International Nuclear Information System (INIS)

    Amouroux, Jacques; Cavadias, Simeon

    2017-01-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO 2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C–400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO 2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C–400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO 2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO 2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst. (paper)

  5. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    Science.gov (United States)

    Amouroux, Jacques; Cavadias, Simeon

    2017-11-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C-400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C-400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst.

  6. Carbon tariffs on Chinese exports: Emissions reduction, threat, or farce?

    International Nuclear Information System (INIS)

    Hübler, Michael

    2012-01-01

    (1) We estimate CO 2 implicitly exported via commodities relative to a region's total emissions: We find −15% for the industrialized, 12% for the developing region, and 24% for China. (2) We analyze a Contraction and Convergence climate regime in a CGE model including international capital mobility and technology diffusion: When China does not participate in the regime and instead a carbon tariff is imposed on its exports, it will likely be worse off than when participating. This result does not hold for the developing region in general. Meanwhile, the effect on emissions appears small. - Highlights: ► Carbon intensities and contents of trade by commodity and region using GTAP 7. ► Net carbon exports: industrialized region −15%, developing region 12%, China 24%. ► CGE analysis of carbon tariffs based on our carbon intensities. ► The tariffs make China worse off than climate policy and are ambiguous for the developing region. ► They have a small impact on reducing global emissions.

  7. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  8. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  9. Economic feasibility of surface flow constructed (SFCW) wetlands for reduction of water pollution from agricultural fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, Søren Marcus; Kjaergaard, Charlotte

    2014-01-01

    Constructed wetlands have been proposed as cost effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as study cases...

  10. Trading our health: Ontario Power Generation's plan to violate its air pollution reduction commitment

    International Nuclear Information System (INIS)

    Gibbons, J.; Bjorkquist, S.

    1999-01-01

    Amid growing concerns about nitrogen oxide (Nox) emissions, the Ontario Clean Air Alliance is recommending in this report that the Ontario government restrict Nox emissions from Ontario Power Generation (OPG) in the year 2000 and not let the corporation meet its emissions cap by on a net basis by retiring Pilot Emission Reduction Trading (PERT) Nox emission reduction credits. Instead the alliance believes the Ontario government should require OPG to achieve emissions compliance by curtailing coal-fired electricity exports, purchasing renewable and natural-gas electricity and promoting energy efficiency. OPG's inventory of PERT Nox reduction credits are assessed against whether they will cause an increase in the year 2000 as a result of trading. Ontario Power Generation's Nox emissions are a central chemical component of acid rain and smog and are produced from its coal-fired electricity generators. The utility would like to achieve Nox reductions by establishing demand management programs which would reduce the demand for electricity by 5200 megawatts (MW), by purchasing 3100 MW of non-utility generation and by undertaking combustion process modifications at its Lambton and Nanticoke coal-fired generating stations. It has not met its 2000 demand management and non-utility generation targets, and specifically, as of December 31, 1998, Ontario Hydro's successor companies demand management programs have only reduced electricity demand by approximately 1300 MW. Furthermore, the successor companies will have only approximately 1700 MW of non-utility generation capacity under contract by December 31, 1999. The report describes the criteria for ensuring that Nox emissions trading will not lead to a net increase in Ontario's emissions in any given year, and a description is included of why the 'Draft Rules for Emission Trading in Ontario' rules do not meet these criteria. Permitting OPG to use its PERT credits to meet its Nox cap, will allow them to increase coal

  11. Impacts of black carbon and co-pollutant emissions from transportation sector in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Almanza, Victor; Garcia, Agustin; Jazcilevich, Aron; Lei, Wenfang; Molina, Luisa

    2016-04-01

    Black carbon is one of the most important short-lived climate-forcing agents, which is harmful to human health and also contributes significantly to climate change. Transportation is one of the largest sources of black carbon emissions in many megacities and urban complexes, with diesel vehicles leading the way. Both on-road and off-road vehicles can emit substantial amounts of harmful BC-containing particulate matter (PM) and are also responsible for large emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and many other co-emitted volatile organic compounds (VOCs). Regionally, black carbon emissions contributions from mobile sources may vary widely depending on the technical characteristics of the vehicle fleet, the quality and chemical properties of the fuels consumed, and the degree of local development and economic activities that foster wider and more frequent or intensive use of vehicles. This presentation will review and assess the emissions of black carbon from the on-road and off-road transportation sector in the Mexico City Metropolitan Area. Viable mitigation strategies, including innovative technological alternatives to reduce black carbon and co-pollutants in diesel vehicles and their impacts on climate, human health and ecosystems will be described.

  12. Substantial reductions in ambient PAHs pollution and lives saved as a co-benefit of effective long-term PM2.5 pollution controls.

    Science.gov (United States)

    Kong, Shaofei; Yan, Qin; Zheng, Huang; Liu, Haibiao; Wang, Wei; Zheng, Shurui; Yang, Guowei; Zheng, Mingming; Wu, Jian; Qi, Shihua; Shen, Guofeng; Tang, Lili; Yin, Yan; Zhao, Tianliang; Yu, Huan; Liu, Dantong; Zhao, Delong; Zhang, Tao; Ruan, Jujun; Huang, Mingzhi

    2018-05-01

    Under great efforts in fighting against serious haze problem of China since 2013, decreasing of air pollutants especially for fine particles (PM 2.5 ) has been revealed for several key regions. This study tried to answer whether the reduction of PM 2.5 -bound polycyclic aromatic hydrocarbons (PAHs) was coincident with PM 2.5 because of long-term pollution control measures (PCM), and to assess source-oriented health risks associated with inhalation exposure to PAHs. Field measurements were carried out before and after the publishing of local air pollution protection plan for Nanjing, a mega-city in east China. Results indicated that the air quality was substantially improving, with a significant reduction in annual average PM 2.5 by 34%, and moreover, PM 2.5 -bound PAHs significantly reduced by 63% (p atmospheric circulation patterns, surface meteorological conditions, and atmospheric chemical reaction. Four PAHs sources including coal combustion (CC), petroleum and oil burning (PO), wood burning (WB) and vehicle emission (VE) were identified. On an annual basis, contributions to ambient PM 2.5 -PAHs from WB, PO, CC and VE sources in the period before the action of control measures were 2.26, 2.20, 1.96 and 5.62 ng m -3 , respectively. They reduced to 1.09, 0.37, 1.31 and 1.77 ng m -3 for the four source types, with the reduction percentages as 51, 83, 33 and 68%, respectively. The estimated reduction in lifetime lung cancer risk was around 61%. The study that firstly assessed the health effects of PAHs reduction as a co-benefit raised by air PCM sustained for a long period is believed to be applicable and referential for other mega-cities around the world for assessing the benefits of PCM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Investigations on pollutant reduction in iron murd from the Schlema-Alberoda and Poehla pits

    International Nuclear Information System (INIS)

    Knappik, R.; Fleischer, K.; Meyer, J.

    1998-01-01

    By examplary investigations with two typical iron muds from the Schlema-Alberoda and Poehla pits it was examined whether a reducing agent in flushing water is able to contribute to changes in flushing water quality by dissolution of muds. Two closed circuit apparatuses are used, in which soluted sodium dithionite as reducing agent was added periodically and the reaction progress was monitored by in-situ-measuring of redox potential and pH as well as by sampling. The experiments were planned as to apply the results for worst-case assessment. Two very different typs of mining muds regarding to their mobilizing behavior were detected. The reaction consists of the following steps: consumption of oxygen in solution, mobilization of Fe and Mn, increasing reduction of Fe(III) to Fe(II) in the solid phase. The extent of concentration change of Fe(II), Mn, As, U and other components in flushing water at conditioning as well as depending on geochemical milieu (number of reduction steps) was discussed. On experimental conditions a complete dissolution of all iron compounds is impossible even at excess of reducing agent. On the base of estimed substance potential and reaction turn-over this results may be transferred to conditions in the mines. A partial dissolution at optimal hydrodynamic conditions does not result in mobilization of pollutants (uranium, radium, arsene) but in formation of Fe(II) and Mn(II), the extent depending on potential of mud and reducing agent. The redox buffer range will not be exceeded. (orig.)

  14. [Impact of industrial pollution on emission of carbon dioxide by soils in the Kola Subarctic Region].

    Science.gov (United States)

    Koptsik, G N; Kadulin, M S; Zakharova, A I

    2015-01-01

    Soil emission of carbon dioxide, the key component of carbon cycle and the characteristic of soil biological activity, has been studied in background and polluted ecosystems in the Kola subarctic, the large industrial region of Russia. Long-term air pollution by emissions of "Pechenganikel" smelter, the largest source of sulphur dioxide and heavy metals in Northern Europe, has caused the technogenic digression of forest ecosystems. As a result of the digression, the tree layer was destructed, the number of plant species was diminished, the activity of soil biota was weakened, the soils were polluted and exhausted, biogeochemical cycles of elements were disturbed and productivity of ecosystems shrunk. Field investigations revealed the decrease of the in.situ soil respiration in average from 190-230 mg C-CO2/m2 x per h in background pine forests to 130-160, 100, and 20 mg C-CO2/m2.per h at the stages of pine defoliation, sparse pine forest and technogenic barrens of the technogenic succession, respectively. The soil respira- tion in birch forests was more intense than in pine forests and tended to decrease from about 290 mg C-CO2/m2 x per h in background forests to 210-220 and 170-190 mg C-CO2/m2 x per h in defoliating forests and technogenic sparse forests, respectively. Due to high spatial variability of soil respiration in both pine and birch forests significant differences from the background level were found only in technogenic sparse forests and barrens. Soil respiration represents total production of carbon dioxide by plant roots and soil microorganisms. The decrease in share of root respiration in the total soil respiration with the rise of pollution from 38-57% in background forests up to zero in technogenic barrens has been revealed for the first time for this region. This indicates that plants seem to be more sensitive to pollution as compared to relatively resistant microorganisms. Soil respiration and the contribution of roots to the total respiration

  15. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  16. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    Science.gov (United States)

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Carbon reduction potentials of China's industrial parks: A case study of Suzhou Industry Park

    International Nuclear Information System (INIS)

    Wang, Hongsheng; Lei, Yue; Wang, Haikun; Liu, Miaomiao; Yang, Jie; Bi, Jun

    2013-01-01

    Industrial parks are the economic engines for many China regions, but they also consume a great deal of energy and emit greenhouse gases. However, few empirical studies have examined these special communities. We selected SIP (Suzhou Industrial Park) as a case study. Carbon emissions from SIP were accounted from the consumption perspective to analyze their characteristics. Results showed total carbon emissions grew 85.2% from 2005 to 2010, and carbon intensity (carbon emissions per unit of GDP (gross domestic product)) decreased by 9%. Scenario analysis was then used to depict emissions trajectories under three different pathways. The total carbon emissions and per capita carbon emissions for SIP will undoubtedly increase in the near future under a business-as-usual scenario, improved-policy scenario, and low-carbon scenario; the carbon intensity will decrease by 38% under low-carbon scenario, but it will still be difficult to reach the national mitigation target. In addition, geographic-boundary-based accounting methodology was applied for comparison analysis, carbon emissions show a large gap of 42.4–65.1% from 2005 to 2010, due to failure to account for cross-boundary emissions from imported electricity. Therefore, comprehensive analysis from a consumption perspective is necessary to provide a fair and comprehensive tool for China's local decision-makers to evaluate carbon mitigation potentials. - Highlights: ► Carbon reduction potentials of industrial parks, which are important communities in China, were analyzed. ► Comprehensive carbon emission inventories were developed for a China's industrial park. ► Policies were recommended for industrial parks to achieve low-carbon development target. ► Consumption-based emission inventory is necessary for local government to evaluate carbon reduction potentials

  18. Carbon dioxide reduction in housing: experiences in urban renewal projects in the Netherlands

    NARCIS (Netherlands)

    Waals, F.M. van der; Vermeulen, W.J.V.; Glasbergen, P.

    2003-01-01

    It is increasingly being recognised that the housing sector can contribute to reductions in the levels of carbon dioxide (CO2 ). The renewal of existing residential areas offers opportunities to reduce CO2 emissions. However, technical options for CO2-reduction, such as insulation, solar energy,

  19. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model

  20. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    Science.gov (United States)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar

  1. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide

    DEFF Research Database (Denmark)

    Xu, Junyuan; Kan, Yuhe; Huang, Rui

    2016-01-01

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst’s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90% current efficiency...... for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2C). The initial...

  2. Current status of waste power generation in Japan and its impact on carbon dioxide reduction

    International Nuclear Information System (INIS)

    Takaoka, Masaki; Takeda, Nobuo; Yamagata, Naruo; Masuda, Takahiro

    2010-01-01

    In this research, we discuss current status of waste power generation (WPG) in Japan and various scenarios about the indirect reduction of carbon dioxide by WPG. The numbers of WPG facilities are 291 domestically as of 2006. Power generation capacity achieves 1584 MW and power generation amount is 7179 G Wh/ year. When we consider to reduce the used electricity for operation and office by WPG and emission coefficient of electricity for operation and office is to be 0.555 kg-CO 2 / kWh in default value, then carbon dioxide reduction amount is calculated to 3.9 million tons, which is equivalent to 26.7 % of 14.6 million tons of carbon dioxide emitted by municipal solid waste incinerator (MSWI) in 2005. Using various existing technological options, it finds that the efficiency of power generation will achieve more than 20 % in MSWI with the power generation efficiency of 20% as a feasible assumption, the total power generation amount and the carbon dioxide reduction amount will become 16540 G Wh/ year and 9.18 million tons, respectively. So, it is equivalent to 62.7% of carbon dioxide emitted by MSWI. Also, the ratio of additional reduction amount of carbon dioxide by WPG to total additional reduction amount in Japan during the first commitment period is 26.3%, which suggests that the promotion of WPG in MSWI is one of effective options for prevention of global warming. (author)

  3. Watershed Controls on the Proper Scale of Economic Markets for Pollution Reduction

    Science.gov (United States)

    Rigby, J.; Doyle, M. W.; Yates, A.

    2010-12-01

    Markets for tradable discharge permits (TDPs) are an increasingly popular policy instrument for obtaining cost-effective nutrient reduction targets across watersheds. Such markets are also an emerging, dynamic coupling between economic institutions and stream hydrology/biogeochemistry as trading markets become explicit determinants for the spatial distribution of stream nutrient loads. A central problem in any environmental market program is setting the size of the market, as there are distinct trade-offs for large versus small markets. While the overall cost-effectiveness of permit trading increases with the size of the market, the potential for localized and highly damaging nutrient concentrations, or “hotspots”, also increases. Smaller market size reduces the potential for hot spots by dispersing the location of trades, but this may increase the net costs of water quality compliance significantly through both the restriction of possible trading partners and price manipulation by market participants. This project couples a microeconomic model for TDPs (based on possible configurations of mutually exclusive trading zones within the basin) with a semi-distributed water quality model to examine watershed controls on the configuration and scale of such markets. Our results show a wide variation in total annual cost of pollution abatement based on choice of market design -- often with large differences in cost between very similar configurations. This framework is also applied to a 10-member trading program among wastewater treatment plants in the Neuse River, NC, in order to assess (1) the optimum market design for the Upper Neuse basin and (2) how these costs compare with expected costs under alternative market structures (e.g., trading ratio system) and (3) the cost improvements over traditional command-and-control regulatory frameworks. We find that the optimal zone configuration is almost always a lower cost option when compared to a trading ratio scheme and

  4. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    Science.gov (United States)

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  5. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  6. Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate

    Science.gov (United States)

    Shen, Feng-xia; Shi, Jin; Chen, Tian-you; Shi, Feng; Li, Qing-yuan; Zhen, Jian-zheng; Li, Yun-fei; Dai, Yong-nian; Yang, Bin; Qu, Tao

    2018-02-01

    Developing low cost and high efficient electrode for carbon dioxide (CO2) reduction in organic media is essential for practical application. Zn is a cheap metal and has high catalytic effects on CO2 reduction to carbon monoxide (CO) in aqueous solution. However, little attention has been given to investigate the performance of Zn in organic media for CO2 reduction. In present work, we have conducted CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate on Zn due to that propylene carbonate is a widely used industrial absorber, and tetrabutylammonium perchlorate is a commonly used organic supporting electrolyte. In addition, because electrochemical reduction of CO2 to CO naturally produces H2O, we have discussed water effects on CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate+6.8 wt % H2O. Our experiment results reveal that the faradaic efficiency for CO formation reaches to 83%, and the current density remains stable at 6.72 mA/cm2 at voltage -2.3 V for 4 h. Interestingly, Zn presents higher catalytic activity than Ag, and slightly lower than Au. X-ray photoelectron spectroscopy results confirm that no poisonous species is formed and absorbed on the cathode, which is an important advantage in practical application.

  7. A carbon emissions reduction index: Integrating the volume and allocation of regional emissions

    International Nuclear Information System (INIS)

    Chen, Jiandong; Cheng, Shulei; Song, Malin; Wu, Yinyin

    2016-01-01

    Highlights: • We build a carbon emissions reduction index (CERI). • The aim is to quantify the pressure on policymakers to reduce emissions. • Scale-related effects and carbon emissions allocations are included in the CERI. • Different standards of carbon emissions allocations are also considered. • We decompose the Gini coefficient to evaluate the effects of three factors. - Abstract: Given the acceleration of global warming and rising greenhouse gas emissions, all countries are facing the harsh reality of the need to reduce carbon emissions. In this study, we propose an index to quantify the pressure faced by policymakers to reduce such emissions, termed the carbon emissions reduction index. This index allows us to observe the effect of carbon emissions volume on the pressure faced by policymakers and study the impact of optimizing interregional carbon emissions on reducing this pressure. In addition, we account for several carbon emissions standards in constructing the index. We conclude that the variation in the index is likely to be attributable to carbon emissions volume, regional ranking, and population (population can also be replaced by GDP, resource endowment, or other factors). In addition, based on empirical data on the world’s largest emitter of carbon dioxide (China), this study analyzes the evolution of pressure to reduce emissions on a country’s policymakers. The results show that the growing volume and unsuitable allocation of carbon emissions from 1997 to 2012 imposed increasing pressure on the Chinese government in this regard. In addition, reductions in carbon emissions volume and regional ranking are primary factors that impact pressure on policymakers.

  8. Cooperation control strategies for China's cross-region pollution in a lake basin based on green reduction cost.

    Science.gov (United States)

    Li, Changmin; Sun, Dong; Xie, Xiaoqiang; Xue, Jian

    2016-05-01

    The cross-region water pollution issue has always been the widespread concern around the world. It becomes especially critical for China due to the imbalance relates to environmental costs that have accompanied rapid growth of economy. Though the government makes great efforts to improve it, the potential for water pollution conflict is still great. We consider the problem of determining combined control strategies for China's cross-region lake pollution based on the environmental green costs. The problem is first formulated as a generalized bilevel mathematical program where the upper level consists in each region that reduces environmental green costs including three parts: the reduction cost, pollution permit trade cost and cost of environment damage, while the lower level is represented by pollution permit equilibrium market. Finally, we take an empirical analysis in Taihu lake. The numerical study shows that the minimum costs of both total and regional are obviously superior to the current processing costs, which provides theoretical basis for the price of emission permits. Today, China's rapid gross domestic product (GDP) growth has come at a very high cost, as real estate prices have skyrocketed, the wealth gap has widened, and environmental pollution has worsened. China's central government is urged to correct the GDP-oriented performance evaluation system that is used to judge administrative region leaders. The cross-region water pollution issue has become a troubling issue that urgently needs to be resolved in China. This paper will not only actively aid efforts to govern Lake Taihu and other cross-region valleys, but it will also provide a supplement for theoretical research on cross-region pollution issues.

  9. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

    NARCIS (Netherlands)

    Shen, J.; Kortlever, R.; Kas, Recep; Mul, Guido; Koper, M.T.M.

    2015-01-01

    The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low

  10. Spectroscopic and thermal characterization of carbon nanotubes functionalized through diazonium salt reduction

    International Nuclear Information System (INIS)

    Pandurangappa, Malingappa; Ramakrishnappa, Thippeswamy

    2010-01-01

    Chemical reduction of anthraquinone diazonium chloride (Fast Red AL salt) in presence of hypophosphorous acid and carbon nanotubes results in anthraquinonyl functionalized carbon nanotubes. The surface functionalized moieties have been examined electrochemically by immobilizing them onto the surface of basal plane pyrolytic graphite electrode and studying its voltammetric behaviour. The effect of pH, and scan rate has revealed that the modified species are confined on the electrode surface. The spectroscopic characterization of the modified single walled carbon nanotubes using Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, thermogravimetric analysis and transmission electron microscopy have revealed that the modifier molecules are covalently bonded on the surface of carbon nanotubes.

  11. Spectroscopic and thermal characterization of carbon nanotubes functionalized through diazonium salt reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pandurangappa, Malingappa, E-mail: mprangachem@gmail.com [Department of Chemistry, Bangalore University, Central College Campus, Dr Ambedkar Veedhi, Bangalore 560 001 (India); Ramakrishnappa, Thippeswamy [Department of Chemistry, Bangalore University, Central College Campus, Dr Ambedkar Veedhi, Bangalore 560 001 (India)

    2010-08-01

    Chemical reduction of anthraquinone diazonium chloride (Fast Red AL salt) in presence of hypophosphorous acid and carbon nanotubes results in anthraquinonyl functionalized carbon nanotubes. The surface functionalized moieties have been examined electrochemically by immobilizing them onto the surface of basal plane pyrolytic graphite electrode and studying its voltammetric behaviour. The effect of pH, and scan rate has revealed that the modified species are confined on the electrode surface. The spectroscopic characterization of the modified single walled carbon nanotubes using Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, thermogravimetric analysis and transmission electron microscopy have revealed that the modifier molecules are covalently bonded on the surface of carbon nanotubes.

  12. Uranium reduction by carbon oxide during ore formation

    International Nuclear Information System (INIS)

    Matyash, I.V.; Gavrusevich, I.B.; Pasal'skaya, L.F.; Shcherba, D.I.

    1981-01-01

    Using the method of gas chromatography the gas content in Pre-Cambrian granitoils of various types and in natrometasomatites associted with them is studied. It is established that granites associated with ore-bearing albitites have sharply elevated amounts of CO as compared with granites, which do not include mineralization. Simultaneously in ore samples the absence or sharply low amounts of CO as compared with ore-free samples is observed, that is reverse dependence of CO and ore components. Carbon oxide is the reducing agent of uranium mineralization and alongside with other reducing agents can be a geochemical barrier in the process of ore formation [ru

  13. Black carbon, organic carbon, and co-pollutant emissions and energy efficiency from artisanal brick production in Mexico

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Maiz, Pablo; Monsivais, Israel; Chow, Judith C.; Watson, John G.; Munguia, Jose Luis; Cardenas, Beatriz; Fortner, Edward C.; Herndon, Scott C.; Roscioli, Joseph R.; Kolb, Charles E.; Knighton, Walter B.

    2018-04-01

    In many parts of the developing world and economies in transition, small-scale traditional brick kilns are a notorious source of urban air pollution. Many are both energy inefficient and burn highly polluting fuels that emit significant levels of black carbon (BC), organic carbon (OC) and other atmospheric pollutants into local communities, resulting in severe health and environmental impacts. However, only a very limited number of studies are available on the emission characteristics of brick kilns; thus, there is a need to characterize their gaseous and particulate matter (PM) emission factors to better assess their overall contribution to emissions inventories and to quantify their ecological, human health, and climate impacts. In this study, the fuel-, energy-, and brick-based emissions factors and time-based emission ratios of BC, OC, inorganic PM components, CO, SO2, CH4, NOx, and selected volatile organic compounds (VOCs) from three artisanal brick kilns with different designs in Mexico were quantified using the tracer ratio sampling technique. Simultaneous measurements of PM components, CO, and CO2 were also obtained using a sampling probe technique. Additional measurements included the internal temperature of the brick kilns, mechanical resistance of bricks produced, and characteristics of fuels employed. Average fuel-based BC emission factors ranged from 0.15 to 0.58 g (kg fuel)-1, whereas BC/OC mass ratios ranged from 0.9 to 5.2, depending on the kiln type. The results show that both techniques capture similar temporal profiles of the brick kiln emissions and produce comparable emission factors. A more integrated inter-comparison of the brick kilns' performances was obtained by simultaneously assessing emissions factors, energy efficiency, fuel consumption, and the quality of the bricks produced.

  14. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R; Collins, Donald R; Molina, Mario J; Zhang, Renyi

    2016-04-19

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  15. Microbial-induced remediation of Zn2+ pollution based on the capture and utilization of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Qiwei Zhan

    2016-01-01

    Conclusions: The TG-DSC results showed that weight loss of the precipitates occurred around 253°C. The FTIR and TG-DSC results were in accord with the XRD and EDS results and proved again that the precipitates were basic zinc carbonate. This work thus demonstrates a new method for processing Zn2+ pollution based on the utilization of carbon dioxide.

  16. Measurement and Simulation of Pollutant Emissions from Marine Diesel Combustion Engine and Their Reduction by Ammonia Injection

    Directory of Open Access Journals (Sweden)

    Nader Larbi

    2009-01-01

    Full Text Available Taking into account the complexity and cost of a direct experimental approach, the recourse to a tool of simulation, which can also predict inaccessible information by measurement, offers an effective and fast alternative to apprehend the problem of pollutant emissions from internal combustion engines. An analytical model based on detailed chemical kinetics employed to calculate the pollutant emissions of a marine diesel engine gave satisfactory results, in general, compared to experimentally measured results. Especially the NO emission values are found to be higher than the limiting values tolerated by the International Maritime Organization (IMO. Thus, this study is undertaken in order to reduce these emissions to the maximum level. The reduction of pollutant emissions is apprehended with ammonia injection.

  17. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    Science.gov (United States)

    Guo, Qia; Dai, Xiaohu

    2017-11-01

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.

    Science.gov (United States)

    Zhang, Afeng; Bian, Rongjun; Li, Lianqing; Wang, Xudong; Zhao, Ying; Hussain, Qaiser; Pan, Genxing

    2015-12-01

    Soil amendment of biochar (BSA) had been shown effective for mitigating greenhouse gas (GHG) emission and alleviating metal stress to plants and microbes in soil. It has not yet been addressed if biochar exerts synergy effects on crop production, GHG emission, and microbial activity in metal-polluted soils. In a field experiment, biochar was amended at sequential rates at 0, 10, 20, and 40 t ha(-1), respectively, in a cadmium- and lead-contaminated rice paddy from the Tai lake Plain, China, before rice cropping in 2010. Fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored using a static chamber method during the whole rice growing season (WRGS) of 2011. BSA significantly reduced soil CaCl2 extractable pool of Cd, and DTPA extractable pool of Cd and Pb. As compared to control, soil CO2 emission under BSA was observed to have no change at 10 t ha(-1) but decreased by 16-24% at 20 and 40 t ha(-1). In a similar trend, BSA at 20 and 40 t ha(-1) increased rice yield by 25-26% and thus enhanced ecosystem CO2 sequestration by 47-55% over the control. Seasonal total N2O emission was reduced by 7.1, 30.7, and 48.6% under BSA at 10, 20, and 40 t ha(-1), respectively. Overall, a net reduction in greenhouse gas balance (NGHGB) by 53.9-62.8% and in greenhouse gas intensity (GHGI) by 14.3-28.6% was observed following BSA at 20 and 40 t ha(-1). The present study suggested a great potential of biochar to enhancing grain yield while reducing carbon emission in metal-polluted rice paddies.

  19. Advanced airflow distribution methods for reduction of personal exposure to indoor pollutants

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kosonen, Risto; Melikov, Arsen

    2016-01-01

    The main objective of this study is to recognize possible airflow distribution methods to protect the occupants from exposure to various indoor pollutants. The fact of the increasing exposure of occupants to various indoor pollutants shows that there is an urgent need to develop advanced airflow ...... distribution methods to reduce indoor exposure to various indoor pollutants. This article presents some of the latest development of advanced airflow distribution methods to reduce indoor exposure in various types of buildings.......The main objective of this study is to recognize possible airflow distribution methods to protect the occupants from exposure to various indoor pollutants. The fact of the increasing exposure of occupants to various indoor pollutants shows that there is an urgent need to develop advanced airflow...

  20. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    Science.gov (United States)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems

  1. Electrochemical reduction of trinitrotoluene on core-shell tin-carbon electrodes

    International Nuclear Information System (INIS)

    Grigoriants, Irena; Markovsky, Boris; Persky, Rachel; Perelshtein, Ilana; Gedanken, Aharon; Aurbach, Doron; Filanovsky, Boris; Bourenko, Tatiana; Felner, Israel

    2008-01-01

    In this work, we studied the electrochemical process of 2,4,6-trinitrotoluene (TNT) reduction on a new type of electrodes based on a core-shell tin-carbon Sn(C) structure. The Sn(C) composite was prepared from the precursor tetramethyl-tin Sn(CH 3 ) 4 , and the product contained a core of submicron-sized tin particles uniformly enveloped with carbon shells. Cyclic voltammograms of Sn(C) electrodes in aqueous sodium chloride solutions containing TNT show three well-pronounced reduction waves in the potential range of -0.50 to -0.80 V (vs. an Ag/AgCl/Cl - reference electrode) that correspond to the multistep process of TNT reduction. Electrodes containing Sn(C) particles annealed at 800 deg. C under argon develop higher voltammetric currents of TNT reduction (comparing to the as-prepared tin-carbon material) due to stabilization of the carbon shell. It is suggested that the reduction of TNT on core-shell tin-carbon electrodes is an electrochemically irreversible process. A partial oxidation of the TNT reduction products occurred at around -0.20 V. The electrochemical response of TNT reduction shows that it is not controlled by the diffusion of the active species to/from the electrodes but rather by interfacial charge transfer and possible adsorption phenomena. The tin-carbon electrodes demonstrate significantly stable behavior for TNT reduction in NaCl solutions and provide sufficient reproducibility with no surface fouling through prolonged voltammetric cycling. It is presumed that tin nanoparticles, which constitute the core, are electrochemically inactive towards TNT reduction, but Sn or SnO 2 formed on the electrodes during TNT reduction may participate in this reaction as catalysts or carbon-modifying agents. The nitro-groups of TNT can be reduced irreversibly (via two possible paths) by three six-electron transfers, to 2,4,6-triaminotoluene, as follows from mass-spectrometric studies. The tin-carbon electrodes described herein may serve as amperometric sensors

  2. Reviews on current carbon emission reduction technologies and projects and their feasibilities on ships

    Science.gov (United States)

    Wang, Haibin; Zhou, Peilin; Wang, Zhongcheng

    2017-06-01

    Concern about global climate change is growing, and many projects and researchers are committed to reducing greenhouse gases from all possible sources. International Maritime (IMO) has set a target of 20% CO2 reduction from shipping by 2020 and also presented a series of carbon emission reduction methods, which are known as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operation Indicator (EEOI). Reviews on carbon emission reduction from all industries indicate that, Carbon Capture and Storage (CCS) is an excellent solution to global warming. In this paper, a comprehensive literature review of EEDI and EEOI and CCS is conducted and involves reviewing current policies, introducing common technologies, and considering their feasibilities for marine activities, mainly shipping. Current projects are also presented in this paper, thereby illustrating that carbon emission reduction has been the subject of attention from all over the world. Two case ship studies indicate the economic feasibility of carbon emission reduction and provide a guide for CCS system application and practical installation on ships.

  3. Constructing carbon offsets: The obstacles to quantifying emission reductions

    International Nuclear Information System (INIS)

    Millard-Ball, Adam; Ortolano, Leonard

    2010-01-01

    The existing literature generally ascribes the virtual absence of the transport sector from the Clean Development Mechanism (CDM) to the inherent complexity of quantifying emission reductions from mobile sources. We use archival analysis and interviews with CDM decision-makers and experts to identify two additional groups of explanations. First, we show the significance of aspects of the CDM's historical evolution, such as the order in which methodologies were considered and the assignment of expert desk reviewers. Second, we highlight inconsistencies in the treatment of uncertainty across sectors. In contrast to transport methodologies, other sectors are characterized by a narrow focus on sources of measurement uncertainty and a neglect of economic effects ('market leakages'). We do not argue that the rejection of transport methodologies was unjustified, but rather than many of the same problems are inherent in other sectors. Thus, the case of transport sheds light on fundamental problems in quantifying emission reductions under the CDM. We argue that a key theoretical attraction of the CDM-equalization of marginal abatement costs across all sectors-has been difficult to achieve in practice.

  4. N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen

    Directory of Open Access Journals (Sweden)

    Cinthia Alegre

    2017-09-01

    Full Text Available Durability and limited catalytic activity are key impediments to the commercialization of polymer electrolyte fuel cells. Carbon materials employed as catalyst support can be doped with different heteroatoms, like nitrogen, to improve both catalytic activity and durability. Carbon xerogels are nanoporous carbons that can be easily synthesized in order to obtain N-doped materials. In the present work, we introduced melamine as a carbon xerogel precursor together with resorcinol for an effective in-situ N doping (3–4 wt % N. Pt nanoparticles were supported on nitrogen-doped carbon xerogels and their activity for the oxygen reduction reaction (ORR was evaluated in acid media along with their stability. Results provide new evidences of the type of N groups aiding the activity of Pt for the ORR and of a remarkable stability for N-doped carbon-supported Pt catalysts, providing appropriate physico-chemical features.

  5. Properties and effects of remaining carbon from waste plastics gasifying on iron scale reduction.

    Science.gov (United States)

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2011-06-01

    The carbonous activities of three kinds of carbon-bearing materials gasified from plastics were tested with coal coke as reference. The results showed that the carbonous activities of these remaining carbon-bearing materials were higher than that of coal-coke. Besides, the fractal analyses showed that the porosities of remaining carbon-bearing materials were higher than that of coal-coke. It revealed that these kinds of remaining carbon-bearing materials are conducive to improve the kinetics conditions of gas-solid phase reaction in iron scale reduction. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  7. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    Sagar, A.D.

    1995-01-01

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective and immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed

  8. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    Science.gov (United States)

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  9. Carbonic Anhydrase as Pollution Biomarker: An Ancient Enzyme with a New Use

    Directory of Open Access Journals (Sweden)

    Trifone Schettino

    2012-11-01

    Full Text Available The measurement of cellular and sub-cellular responses to chemical contaminants (referred to as biomarkers in living organisms represents a recent tool in environmental monitoring. The review focuses on carbonic anhydrase, a ubiquitous metalloenzyme which plays key roles in a wide variety of physiological processes involving CO2 and HCO3−. In the last decade a number of studies have demonstrated the sensitivity of this enzyme to pollutants such as heavy metals and organic chemicals in both humans and wildlife. The review analyses these studies and discusses the potentiality of this enzyme as novel biomarker in environmental monitoring and assessment.

  10. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOx emissions.

    Science.gov (United States)

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-07-01

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NO x emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NO x emissions during the study period, while energy efficiency and technology improvement factors offset total NO x emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NO x emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NO x emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Carbon dioxide sequestration by mineral carbonation. Feasibility of enhanced natural weathering as a CO2 emission reduction technology

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.

    2007-01-01

    A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonates. Potential advantages of mineral CO2 sequestration compared to, e.g., geological CO2 storage include (1) the permanent and inherently safe sequestration of CO2, due to the thermodynamic stability of the carbonate product formed and (2) the vast potential sequestration capacity, because of the widespread and abundant occurrence of suitable feedstock. In addition, carbonation is an exothermic process, which potentially limits the overall energy consumption and costs of CO2 emission reduction. However, weathering processes are slow, with timescales at natural conditions of thousands to millions of years. For industrial implementation, a reduction of the reaction time to the order of minutes has to be achieved by developing alternative process routes. The aim of this thesis is an investigation of the technical, energetic, and economic feasibility of CO2 sequestration by mineral carbonation. In Chapter 1 the literature published on CO2 sequestration by mineral carbonation is reviewed. Among the potentially suitable mineral feedstock for mineral CO2 sequestration, Ca-silicates, more particularly wollastonite (CaSiO3), a mineral ore, and steel slag, an industrial alkaline solid residue, are selected for further research. Alkaline Ca-rich residues seem particularly promising, since these materials are inexpensive and available near large industrial point sources of CO2. In addition, residues tend to react relatively rapidly with CO2 due to their (geo)chemical instability. Various process routes have been proposed for mineral carbonation, which often include a pre-treatment of the solid feedstock (e.g., size reduction and

  12. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongliang [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States); Magara-Gomez, Kento T. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Environmental Engineering Department, Pontificia Bolivariana University-Bucaramanga, Km 7 Vía Piedecuesta, Bucaramanga (Colombia); Olson, Michael R. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Okuda, Tomoaki [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Walz, Kenneth A. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Madison Area Technical College, 3550 Anderson Street, Madison, WI 53704 (United States); Schauer, James J. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Kleeman, Michael J., E-mail: mjkleeman@ucdavis.edu [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States)

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  13. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.; Kleeman, Michael J.

    2015-01-01

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  14. Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2015-11-01

    Full Text Available We report on the direct conversion of carbon dioxide (CO2 in a photoelectrochemical cell consisting of germanium doped gallium nitride nanowire anode and copper (Cu cathode. Various products including methane (CH4, carbon monoxide (CO, and formic acid (HCOOH were observed under light illumination. A Faradaic efficiency of ∼10% was measured for HCOOH. Furthermore, this photoelectrochemical system showed enhanced stability for 6 h CO2 reduction reaction on low cost, large area Si substrates.

  15. Preventing industrial pollution at its source: the final report of the Michigan source reduction initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report describes a collaborative effort between NRDC, Dow Chemical, and Michigan Environmental Groups. The effort resulted in the identification and implementation of 17 pollution prevention projects that reduced substantial quantities of wastes and emissions and saved Dow considerable money.

  16. Preventing industrial pollution at its source: the final report of the Michigan source reduction initiative; FINAL

    International Nuclear Information System (INIS)

    None

    1999-01-01

    This report describes a collaborative effort between NRDC, Dow Chemical, and Michigan Environmental Groups. The effort resulted in the identification and implementation of 17 pollution prevention projects that reduced substantial quantities of wastes and emissions and saved Dow considerable money

  17. Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China

    Science.gov (United States)

    Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.

    2017-12-01

    The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.

  18. Reductive coupling of carbon monoxide to C sub 2 products

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, J.L.

    1991-08-01

    We first prepared Tp{prime}(CO){sub 2}W{equivalent to}CH from a conversion of the cationic phosphonium carbyne Tp{prime}(CO){sub 2}W{equivalent to}CPMe{sub 3}+ to a neutral carbene by hydride addition at carbon. Removal of PMe{sub 3} with a Lewis acid trap yielded milligram quantities of the desired terminal carbyne. More recently we have prepared a silylcarbyne precursor which reacts with Bu{sub 4}NF in wet THF to form substantial amounts of the CH carbyne. Dimerization to form an unusual vinylidene bridged complex is a facile decomposition route which consumes the Tp{prime}(CO){sub 2}M{equivalent to}CH monometer for both M=MO and M=W,. Preparation of other carbyne complexes has been achieved using Tp{prime}(CO){sub 2}W{equivalent to}C-Cl as a reagent. Another carbyne derivative was synthesized from Tp{prime}(CO){sub 2}M{equivalent to}C-Cl by adding K(CpFe(Co){sub 2}) to displace the chloride. Organometallic products formed from the reaction of an electrophilic iron carbene complex with nitrosoarenes or azobenzene reflect net insertion of the ArN-X moiety into the Fe=CHAr bond. Cp(CO){sub 2}Fe-O-N(Ar{prime})=CHAr+ and Cp(CO){sub 2}FeN(Ph)-N(Pha)=CHAr+ have been isolated and spectroscopically characterized. More promising results for long term progress in building electrophilic nitrene complexes have been achieved with Group VI reagents. Simple methods for generating Tp{prime}(CO){sub 2}W=NHR for R= Ar and Bu{sup t} are encouraging. Furthermore, removal of H{sup minus} from the amido ligand with either I{sub 2} or (Ph{sub 3}C)(BF{sub 4}) provides access to cationic nitrene complexes.

  19. Quantitative Decision Making Model for Carbon Reduction in Road Construction Projects Using Green Technologies

    Directory of Open Access Journals (Sweden)

    Woosik Jang

    2015-08-01

    Full Text Available Numerous countries have established policies for reducing greenhouse gas emissions and have suggested goals pertaining to these reductions. To reach the target reduction amounts, studies on the reduction of carbon emissions have been conducted with regard to all stages and processes in construction projects. According to a study on carbon emissions, the carbon emissions generated during the construction stage of road projects account for approximately 76 to 86% of the total carbon emissions, far exceeding the other stages, such as maintenance or demolition. Therefore, this study aims to develop a quantitative decision making model that supports the application of green technologies (GTs to reduce carbon emissions during the construction stage of road construction projects. First, the authors selected environmental soundness, economic feasibility and constructability as the key assessment indices for evaluating 20 GTs. Second, a fuzzy set/qualitative comparative analysis (FS/QCA was used to establish an objective decision-making model for the assessment of both the quantitative and qualitative characteristics of the key indices. To support the developed model, an expert survey was performed to assess the applicability of each GT from a practical perspective, which was verified with a case study using two additional GTs. The proposed model is expected to support practitioners in the application of suitable GTs to road projects and reduce carbon emissions, resulting in better decision making during road construction projects.

  20. Threshold amounts of organic carbon needed to initiate reductive dechlorination in groundwater systems

    Science.gov (United States)

    Chapelle, Francis H.; Thomas, Lashun K.; Bradley, Paul M.; Rectanus, Heather V.; Widdowson, Mark A.

    2012-01-01

    Aquifer sediment and groundwater chemistry data from 15 Department of Defense facilities located throughout the United States were collected and analyzed with the goal of estimating the amount of natural organic carbon needed to initiate reductive dechlorination in groundwater systems. Aquifer sediments were analyzed for hydroxylamine and NaOH-extractable organic carbon, yielding a probable underestimate of potentially bioavailable organic carbon (PBOC). Aquifer sediments were also analyzed for total organic carbon (TOC) using an elemental combustion analyzer, yielding a probable overestimate of bioavailable carbon. Concentrations of PBOC correlated linearly with TOC with a slope near one. However, concentrations of PBOC were consistently five to ten times lower than TOC. When mean concentrations of dissolved oxygen observed at each site were plotted versus PBOC, it showed that anoxic conditions were initiated at approximately 200 mg/kg of PBOC. Similarly, the accumulation of reductive dechlorination daughter products relative to parent compounds increased at a PBOC concentration of approximately 200 mg/kg. Concentrations of total hydrolysable amino acids (THAA) in sediments also increased at approximately 200 mg/kg, and bioassays showed that sediment CO2 production correlated positively with THAA. The results of this study provide an estimate for threshold amounts of bioavailable carbon present in aquifer sediments (approximately 200 mg/kg of PBOC; approximately 1,000 to 2,000 mg/kg of TOC) needed to support reductive dechlorination in groundwater systems.

  1. Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries

    International Nuclear Information System (INIS)

    Chang, Zhen-zhen; Yu, Bao-jun; Wang, Cheng-yang

    2015-01-01

    ABSTRACT: Lignin as a by-product of fuel alcohol industry is used to prepare hard carbon materials by acetone extraction, stabilization in N 2 at 300 °C, carbonization in N 2 and subsequent H 2 reduction at 800 °C. The effect of H 2 reduction after carbonization process on the performances of the prepared samples is systematically studied and a simple mechanism is proposed. Excitingly, it is demonstrated that the process of H 2 reduction has a favorable influence on both structures and electrochemical performances of pyrolysis sample and an obvious improvement of capacity performance is obtained with reduction treatment. A first discharge/ charge capacity of 882.2/550.5 mA h g −1 (coulombic efficiency (CE) of 62.4%) is achieved at 0.1 C (1C = 372 mA g −1 ), and even after 200 cycles at 2 C a charge capacity of 228.8 mA h g −1 (about 92.8% retention ratio) remains and CE is above 99% during cycles for H 2 reduced sample. The fabulous electrochemical performance could be attributed to high purity of acetone-extracted lignin, low surface oxygen-containing functional groups and relatively high graphitization degree of reduction sample. In a word, both the simple pyrolysis process and excellent electrochemical performance make lignin-based hard carbon a promising anode material for high-capacity and high-stability lithium ion batteries (LIBs)

  2. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    Science.gov (United States)

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  3. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  4. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Ruibin Zhang

    2014-09-01

    Full Text Available In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  5. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  6. Modeling speed and width parameters of vehicle tires for prediction of the reduction in vehicle noise pollution

    Directory of Open Access Journals (Sweden)

    Amir Esmael Forouhid

    2016-06-01

    Full Text Available Introduction: Safe driving requires the ability of the driver to receive the messages and complying with them. The most significant consequences of noise pollution are on the human auditory system. Disorders in the auditory system can have harmful side effects for human health. By reducing this kind of pollution in large cities, the quality of life, which is one of the biggest goals of the governments, can be considerably increased. Hence, in the present research, some parameters of vehicle tires were examined as a source of noise pollution, and the results can be taken into consideration in noise pollution reduction. Material and Method: Several vehicles with different tire width were selected for measuring sound level. The sound levels were measured for moving vehicles with the use of the Statistical Pass By Method (SPB, ISO 11819-1. Following sound level measurements for moving vehicles and by considering tire width, mathematical model of noise level was predicted on the basis of the obtained information and by usage of SPSS program and considering vehicle tire parameters. Result: The result of this study showed that the vehicle speed and tire width can affect different sound levels emitted by moving tire on road surface. The average speed of vehicles can play an important role in the noise pollution. By increasing speed, rotation of the the tires on the asphalt is increased, as it is a known factors for noise pollution. Moreover, changing the speed of vehicles is accompanied with abnormal sounds of vehicle engine. According to regression model analysis, the obtained value of R2 for the model is 0.8367 which represents the coefficient of determination. Conclusion: The results suggest the main role of the vehicle speed and tire width in increasing the noise reaches to the drivers and consequent noise pollution, which demonstrates the necessity for noise control measures. According to the obtained model, it is understood that changes in noise

  7. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution

    International Nuclear Information System (INIS)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli; Zhang, Zhaohong; Yuan, Tianxin; Tian, Fangyuan; Dionysiou, Dionysios D.

    2016-01-01

    Highlights: • Microwave-induced CNTs-based catalytic degradation technology is developed. • Microwave catalytic activities of CNTs with different diameters are compared. • Organic pollutants with different structure can be degraded in MW/CNTs system. • The 10–20 nm CNTs shows the higher catalytic activity under MW irradiation. - Abstract: In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10–20 nm, 20–40 nm, and 40–60 nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10–20 nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10–20 nm CNTs within 7.0 min irradiation when 25 mL MO solution (25 mg/L), 1.2 g/L catalyst dose, 450 W, 2450 MHz, and pH = 6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10–20 nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168 min"−"1, respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  8. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli [School of Environment Science, Liaoning University, Shenyang 110036 (China); Zhang, Zhaohong, E-mail: lnuhjhx@163.com [School of Environment Science, Liaoning University, Shenyang 110036 (China); Yuan, Tianxin; Tian, Fangyuan [School of Environment Science, Liaoning University, Shenyang 110036 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-06-05

    Highlights: • Microwave-induced CNTs-based catalytic degradation technology is developed. • Microwave catalytic activities of CNTs with different diameters are compared. • Organic pollutants with different structure can be degraded in MW/CNTs system. • The 10–20 nm CNTs shows the higher catalytic activity under MW irradiation. - Abstract: In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10–20 nm, 20–40 nm, and 40–60 nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10–20 nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10–20 nm CNTs within 7.0 min irradiation when 25 mL MO solution (25 mg/L), 1.2 g/L catalyst dose, 450 W, 2450 MHz, and pH = 6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10–20 nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168 min{sup −1}, respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  9. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  10. Si-based technologies for reduction of the pollutant leaching from landfills and mine tails.

    Science.gov (United States)

    Bocharnikova, E; Matichenkov, V; Jiang, J; Yuejin, C

    2017-07-01

    Monosilicic and polysilicic acids were shown to react with different types of the pollutants. The direction of these reactions can be managed by changing the monosilicic and polysilicic acid concentration in soil or water media. The objective of this study was to determine the effect of Si-treated calcium metallurgical slag and battery slag on the As, Se, Cd, Pb, Ni, Cr, and Hg mobility and bioavailability in mine tailings (Xikuangshan mine, Hunan, China). The results of column experiment showed that the Si-activated slags reduced leaching of As, Se, Cd, Pb, Ni, Cr, and Hg by 13-89% and transformed them into plant-unavailable forms. The greenhouse test has demonstrated that the Si-treated slags provided reinforced plant resistance to heavy metal toxicity and reduced pollutants in barley and pea leaves. Si-treated local solid slags could be used for creating the biogeochemical barriers on the pollutant streams from landfills or mine tailings sites.

  11. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane

    OpenAIRE

    Khadka, Nimesh; Dean, Dennis R.; Smith, Dayle; Hoffman, Brian M.; Raugei, Simone; Seefeldt, Lance C.

    2016-01-01

    The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination (re) of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild type nitrogenase and a nitrogenase having amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by 2 or 8 electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it i...

  12. Solar Energy as an Alternative to Energy Saving and Pollutant Emissions Reduction

    Directory of Open Access Journals (Sweden)

    Arina Negoițescu

    2016-10-01

    Full Text Available In the paper is analyzed thermal solar systems efficiency from the point of view of energy savings and pollutant emissions concentrations exhausted during these installations operation. For this purpose were taking into account four versions of solar panel systems combined with different types of conventional heating sources, for which were simulated the operation conditions. As a result of the simulation, there were obtained the values of energy savings and pollutant emissions during the four systems operation. By analyzing these values, the combined thermal system optimum solution was selected.

  13. Carbon dioxide reduction through urban forestry: guidelines for professional and volunteer tree planters

    Science.gov (United States)

    E. Gregory McPherson; James R. Simpson

    1999-01-01

    Carbon dioxide reduction through urban forestry—Guidelines for professional and volunteer tree planters has been developed by the Pacific Southwest Research Station’s Western Center for Urban Forest Research and Education as a tool for utilities, urban foresters and arborists, municipalities, consultants, non-profit organizations and others to...

  14. Carbon Reduction Measures-Based LCA of Prefabricated Temporary Housing with Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ling Dong

    2018-03-01

    Full Text Available Temporary housing plays an important role in providing secure, hygienic, private, and comfortable shelter in the aftermath of disaster (such as flood, fire, earthquake, etc.. Additionally, temporary housing can also be used as a sustainable form of on-site residences for construction workers. While most of the building components used in temporary housing can be manufactured in a plant, prefabrication technology improves the production efficiency of temporary housing; furthermore, integrated renewable energy systems, for example, solar photovoltaic (PV system, offer benefits for temporary housing operations. In order to assess the environmental impacts of prefabricated temporary housing equipped with renewable energy systems, this study first divides the life cycle of temporary housing into six stages, and then establishes a life cycle assessment (LCA model for each stage. Furthermore, with the aim of reducing the environmental impacts, life cycle carbon reduction measures are proposed for each stage of temporary housing. The proposed methodology is demonstrated using a case study in China. Based on the proposed carbon reduction measures, the LCA of a prefabricated temporary housing case study building equipped with renewable energy systems indicates a carbon emissions intensity of 35.7 kg/m2·per year, as well as a reduction in material embodied emissions of 18%, assembly emissions of 17.5%, and operational emissions of 91.5%. This research proposes a carbon reduction-driven LCA of temporary housing and contributes to promoting sustainable development of prefabricated temporary housing equipped with renewable energy systems.

  15. REDUCTIVE DEHALOGENATION OF HEXACHLOROETHANE, CARBON TETRACHLORIDE, AND BROMOFORM BY ANTHRAHYDROQUINONE DISULFONATE AND HUMIC ACID

    Science.gov (United States)

    The reductive dehalogenation of hexachloroethane (CzCLj), carbon tetrachloride (CC14), and bromoform (CHBr3) was examined at 50 “C in aqueous solutions containing ei- ther (1) 500 pM of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 pM Fe2+, or (3) 250 pM HS-. The pH ranged ...

  16. Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide

    Science.gov (United States)

    Saquib, Mohammad; Halder, Aditi

    2018-02-01

    Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.

  17. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  18. Soil carbon and nitrogen budget in Scots pine (Pinus sylvestris L.) stands along an air pollution gradient in eastern Germany

    International Nuclear Information System (INIS)

    Fischer, T.; Bergmann, C.; Huettl, R.F.

    1995-01-01

    Litterfall, bio- and necromass of the forest floor vegetation, decomposition of recent organic material, soil respiration and humus stocks were examined in 3 Scots pine stands along an air pollution gradient in eastern Germany. One site, Rosea, received heavy deposition loads from chemical industries and brown coal fired power plants. The site Taura received moderate air pollution due to lower deposition of coarse and calcium rich dust particles; the third site, Neuglobsow was afforested and represents a low polluted control site. High nitrogen loads and increased pH value due to Ca deposition caused shifts in the vegetation structure, and higher biomass production of the forest floor vegetation, whereas needle litter production was not impacted. Simultaneously, decomposition rates of the recently harvested forest floor vegetation decreased with increasing pollutant loads, but needle litter and soil organic matter decomposition rates did not differ between the sites. Consequently, soil carbon and nitrogen stocks increased with increasing pollutant input. 19 refs., 5 figs., 1 tab

  19. Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface

    Science.gov (United States)

    Zhang, Bin; Xue, Yong; Qiang, Li; Gao, Kaixong; Liu, Qiao; Yang, Baoping; Liang, Aiming; Zhang, Junyan

    2017-11-01

    Friction properties of carbon nanotubes have been widely studied and reported, however, the friction properties of carbon nanotubes related on state of itself. It is showing superlubricity under nanoscale, but indicates high shear adhesion as aligned carbon nanotube film. However, friction properties under high load (which is commonly in industry) of carbon nanotube films are seldom reported. In this paper, carbon nanotube films, via mechanical rubbing method, were obtained and its tribology properties were investigated at high load of 5 to 15 N. Though different couple pairs were employed, the friction coefficients of carbon nanotube films are nearly the same. Compared with bare stainless steel, friction coefficients and wear rates under carbon nanotube films lubrication reduced to, at least, 1/5 and 1/(4.3-14.5), respectively. Friction test as well as structure study were carried out to reveal the mechanism of the significant reduction wear and friction on steel surface. One can conclude that sliding and densifying of carbon nanotubes at sliding interface contribute to the sufficient decrease of friction coefficients and wear rates.

  20. Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia

    Directory of Open Access Journals (Sweden)

    Tomoko Hasegawa

    2016-12-01

    Full Text Available We investigated the key mitigation options for achieving the mid-term target for carbon emission reduction in Indonesia. A computable general equilibrium model coupled with a land-based mitigation technology model was used to evaluate specific mitigation options within the whole economic framework. The results revealed three primary findings: (1 If no climate policy were implemented, Indonesia’s total greenhouse gas emissions would reach 3.0 GtCO2eq by 2030; (2 To reduce carbon emissions to meet the latest Intended Nationally-Determined Contributions (INDC target, ~58% of total reductions should come from the agriculture, forestry and other land use sectors by implementing forest protection, afforestation and plantation efforts; (3 A higher carbon price in 2020 suggests that meeting the 2020 target would be economically challenging, whereas the INDC target for 2030 would be more economically realistic in Indonesia.

  1. The impact of the gulf war on the Arabian environment—I. Particulate pollution and reduction of solar irradiance

    Science.gov (United States)

    El-Shobokshy, Mohammad S.; Al-Saedi, Yaseen G.

    This paper investigates some of the air pollution problems which have been created as a result of the Gulf war in early 1991. Temporary periods of increased dust storm activity have been observed in Saudi Arabia. This is presumably due to disturbance of the desert surface by the extremely large number of tanks and other war machines before and during the war. The concentrations of inhalable dust particles (oil fields in Kuwait. The direct normal solar insolation were also measured at the photovoltaic solar power plant in Riyadh during these days and significant reductions were observed due to the effective absorption of solar radiation by soot particles. The generated power from the plant has been reduced during days with a polluted atmosphere by about 50-80% of the expected value for such days, if the atmosphere were dry and clear.

  2. Viability of LPG use in low-power outboard engines for reduction in consumption and pollutant emissions

    International Nuclear Information System (INIS)

    Murillo, S.; Miguez, J.L.; Porteiro, J.; Hernandez, J.J.; Lopez-Gonzalez, L.M.

    2003-01-01

    This study presents the viability of the use of liquefied petroleum gases (LPG) dosage systems in order to solve the fuel supply in four-stroke outboard engines in compliance with regulations concerning emissions of immediate application pollutants. Results obtained show an important decrease in specific fuel consumption (nearly 20%) provoking a small power loss (about 5%), with an extra saving when making use of bottled fuel, which does not suffer spills in the bunkers and maintenance operations. Laboratory tests have been carried out on 8 and 15 HP Yamaha outboard engines, obtaining reductions in pollutants (CO, HC and NO x ) of 60% and of 95% for each power, respectively. These trials have been contrasted with tests carried out in the Vigo estuary and the river Milno waterways, both located in the South of Galicia (Spain). (Author)

  3. Study on the reduction and hysteresis effect of soil nitrogen pollution by Alfalfa in channel buffer bank

    Science.gov (United States)

    Chi, Yixia; Xue, Lianqing; Zhang, Zhanyu; Li, Dongying

    2018-01-01

    Based on the simulation experiments of solute transport in channel buffer bank and pot experiments, this study analyzed the transport of nitrogen pollution from farmland drains along the South-North Water Transfer east route project; and compared the nitrogen transport rule and purification effect of alfalfa in channel buffer bank soil under situations of bare land and alfalfa mulching. The results showed that: (1) soil nitrogen content decreased gradually with the width increase of channel buffer bank by the soil adsorption and decomposition; (2) the migration rates of nitrogen were 0.06 g·kg-1 by the alfalfa mulching; (3) the removed rates of nitrogen from the soil were 0.088 g·kg-1 by cutting alfalfa; (4) the residual nitrogen of soil with alfalfa was 10% of the bare land. Alfalfa in channel buffer bank had obvious reduction and hysteresis effect to soil nitrogen pollution.

  4. The reduction of oil pollutants of petroleum products storage-tanks sludge using low-cost adsorbents

    Directory of Open Access Journals (Sweden)

    Mokhtari-Hosseini Zahra Beagom

    2017-01-01

    Full Text Available Disposal of storage tank sludge in oil depots is a major environmental concern due to the high concentration of hydrocarbons involved. This paper investigates the reduction of the sludge oil pollutants with initial oil and grease concentration of about 50 mass% using low cost adsorbents. Among the examined adsorbents, sawdust indicated the maximum removal of oil and grease. The screening and optimizing of process parameters were evaluated employing Plackett-Burman design and response surface method. For the optimized conditions, more than 60 mass% of oil and grease from the sludge was removed. Moreover, it was found that sawdust adsorption of the oil and grease approximately followed the Freundlich isotherm. The results indicated that oil pollutants of sludge could be reduced using sawdust as a low-cost, available and flammable adsorbent so that thus saturated adsorbents could be used as fuel in certain industries.

  5. Heteroatom-doped porous carbon from methyl orange dye wastewater for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Yiqing Wang

    2018-04-01

    Full Text Available Banana peel-derived porous carbon (BPPC was prepared from banana peel and used as an adsorbent for methyl orange (MO wastewater removal. BPPC-MO50 is a N,S-doped BPPC obtained via secondary carbonization. The BPPC-MO50 exhibited a high specific surface area of 1774.3 m2/g. Heteroatom-doped porous carbon (PC was successfully synthesized from the BPPC absorbed MO at high temperature and used for oxygen reduction. The BPPC-MO50 displayed the highest ORR onset potential among all carbon-based electrocatalysts, i.e., 0.93 V vs. reversible hydrogen electrode (RHE. This is the first report to describe porous carbon-activated materials from agriculture and forestry waste that is used for adsorption of dyes from wastewater via an enhanced heteroatom (N,S content. These results may contribute to the sustainable development of dye wastewater treatment by transforming saturated PC into an effective material and has potential applications in fuel cells or as energy sources. Keywords: Banana peel, Dye wastewater, Porous carbon, Heteroatom doping, Oxygen reduction reaction

  6. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    Science.gov (United States)

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Scavenging of priority organic pollutants from aqueous waste using granular activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Yenkie, M.K.N. [Central Fuel Research Institute, Nagpur (India)

    2006-04-15

    Many organic compounds present in industrial and domestic wastewaters are carcinogenic in nature. Removal of these organic compounds from wastewater has become a great challenge to wastewater treatment technologies, as many of them are non-biodegradable in nature. Adsorption on granular activated carbon (GAC) has emerged an efficient and economically viable technology for removal of final traces of a broad spectrum of toxic organic compounds from domestic and industrial wastewater. In the present investigation adsorption of some priority organic pollutants, namely phenol, o-cresol, p-nitrophenol, m-methoxyphenol, benzoic acid and salicylic acid on granular activated carbon, was studied in a batch system at laboratory scale. Experiments were carried out to determine adsorption isotherms and kinetics for adsorbate when present in aqueous solutions as single, bi- and tri-solute systems. The commercially available bituminous coal based granular activated carbon Filtrasorb 300 (F-300) was used as adsorbent. The results indicate that p-nitrophenol is most strongly adsorbed as compared to other phenols studied. Aqueous phase solubility of the adsorbate plays a deciding role in multi-component systems as more hydrophobic p-nitrophenol adsorbs to a greater extent than less hydrophobic phenol, o-cresol and m-methoxyphenol. The preferential adsorption of strongly adsorbable solute over a weakly adsorbable one has been observed, as the solutes are competing for the available surface area of the adsorbent for adsorption.

  8. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification

    NARCIS (Netherlands)

    Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y.; Liu, Junguo; Schulin, Rainer

    2018-01-01

    Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We

  9. Setting priorities for research on pollution reduction functions of agricultural buffers

    Science.gov (United States)

    Michael G. Dosskey

    2002-01-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An...

  10. Reduction of Air Pollution Levels Downwind of a Road with an Upwind Noise Barrier

    Science.gov (United States)

    We propose a dispersion model to characterize the impact of an upwind solid noise barrier next to a highway on air pollution concentrations downwind of the road. The model is based on data from wind tunnel experiments conducted by Heist et al. (2009). The model assumes that the...

  11. Comparing estimates of EMEP MSC-Wand UFORE models in air pollutant reduction by urban trees

    Czech Academy of Sciences Publication Activity Database

    Guidolotti, G.; Salvatio, M.; Calfapietra, Carlo

    2016-01-01

    Roč. 23, č. 19 (2016), s. 19541-19550 ISSN 0944-1344 Institutional support: RVO:67179843 Keywords : i-Tree * UFORE, EMEP/MSC-Wmodel * urban forest * atmospheric pollutants * O3 * NO2 * PM10 Subject RIV: EF - Botanics Impact factor: 2.741, year: 2016

  12. MIKADO: a decision support tool for pollution reduction in aluminium pressure die casting

    NARCIS (Netherlands)

    Neto, B.A.F.

    2007-01-01

    Industrial activities cause a variety of environmental problems. These are largely caused by emissions of air pollutants, the production of waste and depletion of natural resources. As a consequence, industrial managers face a complex problem when assessing the overall environmental pressure on the

  13. Coal and carbon dioxide reduction: What does it mean for our power production future?

    International Nuclear Information System (INIS)

    Weinstein, R.E.

    1994-01-01

    Carbon dioxide (CO 2 ) is not a pollutant. It is a limiting nutrient, like water and oxygen, necessary for life to exist on earth. It helps retain heat from the sun keeping the earth comfortably warm. Though scientifically controversial, some segments of the public are nonetheless concerned that increasing amounts of carbon dioxide (and other gases) emitted by mankind's activity may contribute to what they perceive as mankind-induced global warming trend, the so-called open-quotes greenhouse effect.close quotes The 1992 Earth Summit in Rio De Janeiro addressed this, and in response, the U.S. signed agreements to roll back its greenhouse gas emissions to 1990 levels. Carbon dioxide is of concern as a greenhouse gas because of the quantity produced by the combustion of fossil fuels. Because coal is mostly carbon, when burned, it produces more carbon dioxide per Btu of energy released of any of the common fossil fuels. With 54 percent of our electricity generated by coal, capping carbon dioxide emissions without disrupting the economy will be no mean feat for the United States. The U.S. also relies on its huge reserves for its energy independence, so altering policies that affect coal use must be carefully assessed. A growing population and economy demand more energy. One can use other fuels than coal: natural gas releases only 56 percent the carbon dioxide coal does, and nuclear energy produces none. One can also employ higher efficiency coal plants to reduce the amount of carbon dioxide produced for a given power output. The highest efficiency coal units projected are magnetohydrodynamics (MHD) plants the focus of this conference which are projected to produce electricity at 60 percent energy efficiency, extraordinary by today's standards. Does this mean that the Rio de Janeiro agreement then encourages the earlier introduction of MHD and other emerging high efficiency coal technologies?

  14. A "Carbon Reduction Challenge" as tool for undergraduate engagement on climate change

    Science.gov (United States)

    Cobb, K. M.; Toktay, B.

    2017-12-01

    Institutions of higher education must meet the challenges of educating the generation that must make significant progress towards stabilizing atmospheric greenhouse gases. However, the interdisciplinary nature of the climate change problem, and the fact that solutions will necessarily involve manipulating natural systems, advancing energy technologies, and developing innovative policy instruments means that traditional disciplinary tracks are not well-suited for the task. Furthermore, institutions must not only equip students with fundamental knowledge about climate and energy, but they must empower a generation of students to become part of the climate change solution. Here we present the cumulative results of the `Carbon Reduction Challenge' - a team-based competition to reduce CO2 that is conducted in an interdisciplinary undergraduate class called "Energy, the Environment, and Society" at Georgia Institute of Technology. Working with 30 undergraduate students from all years and all majors, we demonstrate how student teams move through a highly-structured timeline of deliverables towards achieving their team's end-of-semester goals. We discuss the importance of student creativity, ingenuity, initiative, and perseverance in achieving project outcomes, which in 2017 topped 5 million pounds of CO2 reductions - the all-time record for the class. Student-driven reductions on a year-to-year basis track an exponential growth curve through time. Based on the success of a pilot Carbon Reduction Challenge conducted in the summer of 2017, we present evidence that student-led partnerships with large corporations represents the area of largest potential for student success. Such partnerships deliver significant value added to students (professional conduct, on-the-job training, networking), the corporate partner (cost savings, talent recruitment, and public relations), and to the higher education institution (corporate relations contacts). In summary, the Carbon Reduction

  15. APPLICATION OF E-COMMERCE IN LOCAL HOME SHOPPING AND ITS CONSEQUENCES ON ENERGY CONSUMPTION AND AIR POLLUTION REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Tehrani and A. R. Karbassi

    2005-10-01

    Full Text Available Methyl Tert-Butyl Ether (MTBE is one of the ether oxygenates which its use has been increased within the last twenty years. This compound is produced from isobutylene and methanol reaction that is used as octane index enhancer and also increases dissolved oxygen in gasoline and decreases carbon monoxide emission in four phased motors because of better combustion of gasoline. High solubility in water (52 g/L, high vapor pressure (0.54 kg/cm3, low absorption to organic carbon of soil and presence of MTBE in the list of potentially-carcinogens of U.S EPA has made its use of great concern. The culture media used in this study was Mineral Salt Medium (MSM. The study lasted for 236 days and in three different concentrations of MTBE of 200, 5 and 0.8 mg/L. A control sample was also used to compare the results. This research studied the isolation methods of microbial consortium in the MTBE polluted soils in Tehran and Abadan petroleum refinery besides MTBE degradation. The results showed the capability of bacteria in consuming MTBE as carbon source. Final microbial isolation was performed with several microbial passages as well as keeping consortium in a certain amount of MTBE as the carbon source.

  16. Seasonal and diurnal variations of methane and carbon dioxide in the highly polluted Kathmandu Valley, Nepal

    Science.gov (United States)

    Mahata, Khadak; Panday, Arnico; Rupakheti, Maheswar; Lawrence, Mark

    2016-04-01

    Anthropogenic emissions of carbon dioxide and methane - key greenhouse gases (GHGs) - are primary causes of global warming and resultant impacts. The atmospheric warming is more pronounced and likely to cause more serious damage in vulnerable areas such as the Hindukush-Karakorum-Himalayan region (HKH). The HKH region is a data gap region according to the 5th Assessment report of the intergovernmental panel on climate change (IPCC). In order to understand the mixing ratios and variability of the key GHGs in the foothills of the Central Himalaya, we carried out continuous measurements of CO2, CH4, CO, and water vapor at Bode (an urban site in the Kathmandu valley, Nepal) for a year (March 2013 - Feb 2014), and again at Bode and at Chanban (a background outside the Valley) for 3 months (July 15 - Oct 3, 2015), with two state-of-the-art cavity ring-down instruments (Picarro G2401). The measurements were carried out as a part of the international air pollution measurement campaign: SusKat- ABC (Sustainable atmosphere for the Kathmandu Valley - Atmospheric Brown Clouds). The annual average CO2 and CH4 concentrations at Bode were 419 ± 24 and 2.192 ± 0.224 ppm, respectively, which are notably higher than those observed at the background site at Mauna Loa Observatory in the same period. The CO2concentration at Bode was high during the pre-monsoon period and low during the monsoon, while CH4 was high in winter and lower during the pre-monsoon period. The monthly CO2concentration was highest in April. Forest fires and agro-waste burning in the region, and the local emissions in the Kathmandu valley were the main sources of the high CO2 in the pre-monsoon period. CH4 showed a maximum in September due to additional emissions from paddy fields. Seasonally, winter has the highest CH4 concentration which is due to brick production, which is a seasonal activity, and other local sources combined with the shallow mixing layer height in winter. The diurnal pattern of CO2 and CH4

  17. Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance

    International Nuclear Information System (INIS)

    Chaurey, A.; Kandpal, T.C.

    2009-01-01

    About 78 million rural households in India reportedly lack access to grid electricity. About 67 million of them use kerosene for lighting. Government of India is promoting the use of solar home systems (SHS) as one of the options for meeting lighting requirements in households in remote and less inhabited villages. About 363,399 SHS were reportedly disseminated across the country by December 2007. Apart from meeting the basic lighting need of the households, SHS also help in abating the emissions of green house gases (GHGs) by directly displacing the use of kerosene in households that currently use it for lighting. This study has attempted at estimating the CO 2 mitigation potential of SHS in India by studying the potential for their diffusion and the appropriate baseline. Subsequently, the scope for cost reduction to the user due to carbon finance, if received, is also studied. It is found that carbon finance could reduce the effective burden of SHS to the user by 19% if carbon prices were $10/tCO 2 and no transaction costs were involved in getting the carbon revenues. These benefits are also estimated for scenarios where transaction costs are incurred by the project proponent in getting the carbon benefits

  18. Strategies for cost-effective carbon reductions: A sensitivity analysis of alternative scenarios

    International Nuclear Information System (INIS)

    Gumerman, Etan; Koomey, Jonathan G.; Brown, Marilyn

    2001-01-01

    Analyses of alternative futures often present results for a limited set of scenarios, with little if any sensitivity analysis to identify the factors affecting the scenario results. This approach creates an artificial impression of certainty associated with the scenarios considered, and inhibits understanding of the underlying forces. This paper summarizes the economic and carbon savings sensitivity analysis completed for the Scenarios for a Clean Energy Future study (IWG, 2000). Its 19 sensitivity cases provide insight into the costs and carbon-reduction impacts of a carbon permit trading system, demand-side efficiency programs, and supply-side policies. Impacts under different natural gas and oil price trajectories are also examined. The results provide compelling evidence that policy opportunities exist to reduce carbon emissions and save society money

  19. Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ehlen, Ali [Center for Energy Efficiency and Renewable Technologies, Sacramento, CA (United States); Caldwell, James H. [Center for Energy Efficiency and Renewable Technologies, Sacramento, CA (United States)

    2016-01-07

    The California 2030 Low Carbon Grid Study (LCGS) analyzes the grid impacts of a variety of scenarios that achieve 50% carbon emission reductions from California's electric power sector. Impacts are characterized based on several key operational and economic metrics, including production costs, emissions, curtailment, and impacts on the operation of gas generation and imports. The modeling results indicate that achieving a low-carbon grid (with emissions 50% below 2012 levels) is possible by 2030 with relatively limited curtailment (less than 1%) if institutional frameworks are flexible. Less flexible institutional frameworks and a less diverse generation portfolio could lead to higher curtailment (up to 10%), operational costs (up to $800 million higher), and carbon emissions (up to 14% higher).

  20. Political economy of low sulfurization and air pollution control policy in Japan : SOx emission reduction by fuel conversion

    OpenAIRE

    Terao, Tadayoshi

    2013-01-01

    In the early stages of the development of Japan’s environmental policy, sulfur oxide (SOx) emissions, which seriously damage health, was the most important air pollution problem. In the second half of the 1960s and the first half of the 1970s, the measures against SOx emissions progressed quickly, and these emissions were reduced drastically. The most important factor of the reduction was the conversion to a low-sulfur fuel for large-scale fuel users, such as the electric power industry. Howe...

  1. Reduction of uranyl carbonate and hydroxyl complexes and neptunyl carbonate complexes studied with chemical-electrochemical methods and rixs spectroscopy

    International Nuclear Information System (INIS)

    Butorin, Sergei; Nordgren, Joseph; Ollila, Kaija; Albinsson, Yngve; Werme, Lars

    2003-10-01

    actinides have been mobilised through oxidation, they can migrate away from this potentially oxidising region and will encounter an oxygen free, reducing environment caused by the anaerobic corrosion of the cast iron insert. The actinyl species are no longer thermodynamically stable and reduction to the tetravalent state will be possible. There is, however, an open question whether the reduction kinetics will be sufficiently high to cause reduction in solution and if sorption onto the corroding iron surface will be accompanied by an electron transfer sufficiently rapid to reduce the actinide back to the tetravalent state. This report contains the results of experimental studies of uranium reduction-depletion from water solutions in the presence of corroding iron and spectroscopic studies of the oxidation state of uranium and neptunium sorbed/precipitated onto iron under oxygen free conditions using resonant inelastic soft x-ray scattering (RIXS) spectroscopy. The RIXS measurements show that at least partial reduction of both uranyl carbonate complexes and neptunyl carbonate complexes take place on the corroding iron surface. The chemical/electrochemical measurements indicate that reduction of uranyl carbonate complexes also take place in solution in a system containing corroding iron, i.e. sorption onto the iron/iron oxide surface may not be necessary in order for reduction to take place. Reduction of uranyl hydroxyl complexes was also found to take place in solution, but at a rate that was noticeably lower than for the uranyl carbonate complexes

  2. Comparison of biological activated carbon (BAC) and membrane bioreactor (MBR) for pollutants removal in drinking water treatment.

    Science.gov (United States)

    Tian, J Y; Chen, Z L; Liang, H; Li, X; Wang, Z Z; Li, G B

    2009-01-01

    Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 approximately 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.

  3. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  4. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  5. Structural insights into photocatalytic performance of carbon nitrides for degradation of organic pollutants

    Science.gov (United States)

    Oh, Junghoon; Shim, Yeonjun; Lee, Soomin; Park, Sunghee; Jang, Dawoon; Shin, Yunseok; Ohn, Saerom; Kim, Jeongho; Park, Sungjin

    2018-02-01

    Degradation of organic pollutants has a large environmental impact, with graphitic carbon nitride (g-C3N4) being a promising metal-free, low cost, and environment-friendly photocatalyst well suited for this purpose. Herein, we investigate the photocatalytic performance of g-C3N4-based materials and correlate it with their structural properties, using three different precursors (dicyandiamide, melamine, and urea) and two heating processes (direct heating at 550 °C and sequential heating at 300 and 550 °C) to produce the above photocatalysts. We further demonstrate that sequential heating produces photocatalysts with grain sizes and activities larger than those of the catalysts produced by direct heating and that the use of urea as a precursor affords photocatalysts with larger surface areas, allowing efficient rhodamine B degradation under visible light.

  6. Obtaining carbon nanotubes/ZnO for use in the photocatalytic organic pollutants

    International Nuclear Information System (INIS)

    Dalt, S. da; Pulcinelli, N.O.; Bergmann, C.P.

    2016-01-01

    This study aims to obtain nanocomposites of carbon nanotubes (CNTs) with nanostructured zinc oxide (ZnO), and characterize the samples as its structure and photocatalytic activity, for their application in the degradation of organic pollutants, in the case organic dye methyl orange. The nanocomposites were obtained from commercial NTC (Baytubes®), commercial ZnO, produced by Merck and ZnO obtained from the synthesis by combustion. The NTC-ZnO nanocomposites were prepared in solution from the physical mixture of materials, and subsequently analyzed structurally and investigated for their photocatalytic activity, employing them as catalysts in degradation of the dye in aqueous solution under ultraviolet radiation. Samples were analyzed by X-ray diffraction and specific surface area (BET). The photocatalytic performance of nanocomposites can be correlated to the phase found and the surface area measured. (author)

  7. Reduction of lead pollution from vehicular emissions in cairo Part 1: Comparison of alternative solutions

    International Nuclear Information System (INIS)

    El-Haggar, S.M.; Saleh, S.K.; El-Kady, M.A.

    1996-01-01

    It has been recognized for decades that the major source of lead pollution is lead additives to automotive fuels. This problem has been countered in most countries in europe and Usa by introducing alternative anti-knock chemicals and unleaded gasoline. In egypt lead is still being added to gasoline in large quantities. However, progress has been made, and unleaded gasoline is currently being produced in Alexandria. Nevertheless, the major pollution problem remains in the Greater Cairo region as indicated by the atmospheric lead levels and the lead blood levels of the children in Cairo. The aim of the present study is to find an optimum solution to this problem. A comparison of the different solutions is conducted in order to come up with the most feasible solution to this urgent problem. In conclusion it has been demonstrated that the elimination of lead additives, with its huge positives effects on the country environment, proved to be profitable. 4 figs., 2 tabs

  8. Comparative Studies on Vehicle Related Policies for Air Pollution Reduction in Ten Asian Countries

    Directory of Open Access Journals (Sweden)

    Keiko Hirota

    2010-01-01

    Full Text Available Asian countries are facing major air pollution problems due to rapid economic growth, urbanization and motorization. Mortality and respiratory diseases caused by air pollution are believed to be endemic in major cities of these countries. Regulations and standards are the first requirement for reducing emissions from both fixed and mobile sources. This paper emphasizes monitoring problems such as vehicle registration systems, inspection and maintenance (I/M systems and fuel quality monitoring systems for vehicles in use. Monitoring problems in developing countries share similar characteristics such as a weakness in government initiatives and inadequate operation of government agencies, which results from a lack of human resources and availability of adequate facilities. Finally, this paper proposes a method to assure air quality improvements under the different shares of emission regulations in these Asian countries and introduces an example of an evaluation method based on a policy survey to improve air quality.

  9. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  10. Research of pollution by volatile organic compounds in ambient air and its reduction in oil terminals

    OpenAIRE

    Paulauskienė, Tatjana

    2008-01-01

    This day environment pollution research and modern environment protection technology installation became a prior aspect not only in our country, but also in the whole world. The intensification and development of the industrial processes has a negative impact on human’s health and environment. As a result, it increases waste products accumulation. It also has a disbalance of natural processes and reckless waste of natural resources. All of the above can cause greenhouse effect formation. Beca...

  11. Estimation of pollutant source contribution to the Pampanga River Basin using carbon and nitrogen isotopes

    International Nuclear Information System (INIS)

    Castaneda, Solidad S.; Sta Maria, Efren J.; Ramirez, Jennyvi D.; Collado, Mario B.; Samar, Edna D.

    2013-01-01

    This study assessed and estimated the percentage contribution of potential pollution sources in Pampanga River Basin using carbon and nitrogen isotopes as environmental tracers. The δ 13 C and δ 15 N values were determined in particulate organic matter, surface sediment, and plant tissue samples from point and non-point sources from several land use areas, namely domestic, croplands, livestock, fishery and forestry. Investigations were conducted in the wet and dry seasons (2012 and 2013). Some N sources do not have unique δ 15 N and there is overlapping among different N- sources type. δ 13 C data from the N sources provided an additional dimension which distinguished animal manure, human waste (septic and sewage), leaf litter, and synthetic fertilizer. Characterization of the non-point N-sources based on the isotopic fingerprints obtained from the point sources revealed that domestic, cropland, livestock, and fishery, influenced the isotopic composition of the materials but domestic and cropland land use provided the most significant influence. Livestock also contributed to a lesser extent. Isotope mixing model revealed that cropland sources generally contributed the most to pollutant loading during the wet season, from 22% to 98%, while domestic waste contributed higher in the dry season, from 55% to 65%. (author)

  12. The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2017-10-01

    Full Text Available Semiconductor based photocatalytic process is of great potential for solving the fossil fuels depletion and environmental pollution. Loading cocatalysts for the modification of semiconductors could increase the separation efficiency of the photogenerated hole-electron pairs, enhance the light absorption ability of semiconductors, and thus obtain new composite photocatalysts with high activities. Kinds of carbon allotropes, such as activated carbon, carbon nanotubes, graphene, and carbon quantum dots have been used as effective cocatalysts to enhance the photocatalytic activities of semiconductors, making them widely used for photocatalytic energy generation, and pollutants degradation. This review focuses on the loading of different carbon allotropes as cocatalysts in photocatalysis, and summarizes the recent progress of carbon materials based photocatalysts, including their synthesis methods, the typical applications, and the activity enhancement mechanism. Moreover, the cocatalytic effect among these carbon cocatalysts is also compared for different applications. We believe that our work can provide enriched information to harvest the excellent special properties of carbon materials as a platform to develop more efficient photocatalysts for solar energy utilization.

  13. Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weimin; Chen, Jun; Wagner, Pawel; Wallace, Gordon G. [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong NSW 2522 (Australia); Swiegers, Gerhard F. [CSIRO Molecular and Health Technologies, Bag 10, Clayton VIC 3169 (Australia)

    2008-04-15

    A thin-layer of polypyrrole (PPy) film, immobilized with neutral 5,10,15,20-tetraphenylporphyrinato cobalt (II) (Co-TPP), was successfully and uniformly deposited onto mesoporous carbon fibre paper (CFP) via vapor-phase polymerization. The resulting PPy/Co-TPP-modified carbon fibre paper (PPy/Co-TPP-CFP) electrode was characterized by cyclic voltammetry, SEM and EDX-ray mapping. Its electrochemical stability and long-term electrocatalytic performance were investigated in a half-fuel cell testing system. The electrode displayed significant electrocatalytic performance for oxygen reduction at 0.0 V (vs. Ag/AgCl), with notable long-term stability. (author)

  14. Interaction of carbon reduction and green energy promotion in a small fossil-fuel importing economy

    International Nuclear Information System (INIS)

    Pethig, Ruediger; Wittlich, Christian

    2009-01-01

    We study the incidence of carbon-reduction and green-energy promotion policies in an open fossil-fuel importing general equilibrium economy. The focus is on mixed price-based or quantity-based policies. Instruments directed toward promoting green energy are shown to reduce also carbon emissions and vice versa. Their direct effects are stronger than their side effects, the more so, the greater is the elasticity of substitution in consumption between energy and the consumption good. We calculate the effects of variations in individual policy parameters, especially on energy prices and welfare costs, and determine the impact of exogenous fossil-fuel price shocks on the economy. (orig.)

  15. PREPARATION OF WC-Co POWDER BY DIRECT REDUCTION AND CARBONIZATION

    Institute of Scientific and Technical Information of China (English)

    Zhonglai Yi; Gangqin Shao; Xinglong Duan; Peng Sun; Xiaoliang Shi; Zhen Xiong; Jingkun Guo

    2005-01-01

    A new approach to produce superfine WC-Co powder by direct reduction and carbonization is proposed.Water-soluble salts containing W and Co were used as raw materials. Tungsten and cobalt oxide powder (CoWO4/WO3)was first formed by a spray-pyrolysis technique, which was then mixed with carbon black and converted to WC-Co composite powder at 950℃ for 4 h in N2 atmosphere. The resulting powder has a particle size of 100-300 nm.

  16. Limiting Factors for Microbial Fe(III)-Reduction In a Landfill Leachate Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas Højlund

    1995-01-01

    Aquifer sediment samples from two locations within the anaerobic leachate plume of a municipal landfill were compared with respect to microbiology (especially Fe(III)-reduction) and geochemistry. The samples close to the landfill were characterized by low contents of Fe(III), whereas samples from...... the more distant cluster were rich in Fe(III)-oxides. The active microbial population seemed to be less dense in samples more distant from the landfill (measured by ATP and phospholipid fatty acids (PLFA)), but the microbial communities were very similar in the two sample clusters according...... to the composition of PLFA. Very little, if any, Fe(III)-reduction was observed close to the landfill, but all the more distant samples showed evident microbially mediated Fe(III)-reduction. After amendment with both acetate and Fe(III), all the samples showed a potential for Fe(III)-reduction, and the in situ Fe...

  17. Primary Aluminum Reduction Industry - National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    National emission standards for each new or existing potline, paste production operation, and anode bake furnace associated with a primary aluminum reduction plant. Includes rule history, implementation information and additional resources.

  18. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    Science.gov (United States)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  19. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  20. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R.; Werth, Charles J.

    2012-01-01

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  1. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  2. Rapid Reduction of Alkenes and Alkynes over Pd Nanoparticles Supported on Sulfonated Porous Carbon

    Directory of Open Access Journals (Sweden)

    Arash Shokrolahi

    2013-01-01

    Full Text Available A novel method has been introduced for rapid reduction of alkenes and alkynes, which may be attractive for chemical industries. This method has some advantages such as simplicity and low cost of reactants. Pd supported on sulfonated porous carbon (SPC was used as a new catalyst for reduction of alkenes and alkynes to the corresponding alkanes using sodium borohydride. The heterogeneous reaction was conducted in open air at room temperature to produce the desired saturated compounds in high yields (over 96% and in short reaction time (15 minutes.

  3. Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study

    Science.gov (United States)

    Orellana, Walter

    2012-07-01

    The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.

  4. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    Energy Technology Data Exchange (ETDEWEB)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo [Dipartimento di Energetica, Politecnico di Milano, via La Masa, 34, 20156 Milano (Italy)

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  5. Carbide Nanoparticles Encapsulated in the Caves of Carbon Nanotubes by an In Situ Reduction-Carbonization Route

    Directory of Open Access Journals (Sweden)

    Chunli Guo

    2011-01-01

    Full Text Available Carbides (TiC, WC, and NbC nanoparticles fully encapsulated in the caves of carbon nanotubes (CNTs were synthesized via an in situ reduction-carbonization route at 600∘C in an autoclave. The structural features and morphologies of as-obtained products were investigated using by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM. HRTEM studies showed that the average diameter of CNTs encapsulated with carbide nanoparticles are in the range of 15–40 nm. The reaction temperature, the reaction time, and the metal catalyst are found to play crucial roles to the product morphology. The growth mechanism of carbide nanoparticles encapsulated in CNTs was discussed in detail.

  6. 76 FR 76259 - National Emissions Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants

    Science.gov (United States)

    2011-12-06

    ... Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene...). The rule is applicable to facilities with affected sources associated with the production of aluminum... are subject to the requirements of this NESHAP: 14 primary aluminum production plants and one carbon...

  7. Carbon Footprint Reduction in Transportation Activity by Emphasizing the Usage of Public Bus Services Among Adolescents

    Science.gov (United States)

    Sukor, Nur Sabahiah Abdul; Khairiyah Basri, Nur; Asmah Hassan, Sitti

    2017-08-01

    Transportation is one of the sectors that contributes to the Greenhouse Gases (GHGs) emissions. In terms of carbon footprint, transportation is among the major contributors of high carbon intensity in the urban area. This study was conducted to reduce the carbon footprint contributed by the transportation sector in Penang Island by emphasizing the use of public buses. Secondary school students were the target group for this study. They were asked to report their daily travel behaviour and fuel consumption in a travel journal. The fuel consumption data from the travel journal were used to calculate each individual’s carbon emission level. After the analyses, the value of carbon emissions was revealed to the students. Next, they were encouraged to use public transport in a motivation session and were asked to record their fuel consumption in the travel journal once again. The results showed that there was a significant difference in fuel consumption before and after the motivation session, as the students preferred to use public buses instead of private vehicles after the motivation session. This indicates that the motivation programme had been successful in creating the awareness towards carbon footprint reduction among the adolescents.

  8. Quantifying carbon footprint reduction opportunities for U.S. households and communities.

    Science.gov (United States)

    Jones, Christopher M; Kammen, Daniel M

    2011-05-01

    Carbon management is of increasing interest to individuals, households, and communities. In order to effectively assess and manage their climate impacts, individuals need information on the financial and greenhouse gas benefits of effective mitigation opportunities. We use consumption-based life cycle accounting techniques to quantify the carbon footprints of typical U.S. households in 28 cities for 6 household sizes and 12 income brackets. The model includes emissions embodied in transportation, energy, water, waste, food, goods, and services. We further quantify greenhouse gas and financial savings from 13 potential mitigation actions across all household types. The model suggests that the size and composition of carbon footprints vary dramatically between geographic regions and within regions based on basic demographic characteristics. Despite these differences, large cash-positive carbon footprint reductions are evident across all household types and locations; however, realizing this potential may require tailoring policies and programs to different population segments with very different carbon footprint profiles. The results of this model have been incorporated into an open access online carbon footprint management tool designed to enable behavior change at the household level through personalized feedback.

  9. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  10. Coal derivates for reduction of SO{sub 2} N0{sub x}; Derivados del Carbon para la Reduccion de SO{sub 2}-NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    moulding stage). Potassium containing briquettes exhibit a considerable capacity for NO{sub x} reduction and, interestingly, are quite selective towards NO{sub x} reduction against oxygen gasification. This behaviour is very important, taking into account that one of the main disadvantages of carbonaceous materials in NO{sub x} pollution control is the great consumption of carbon due to oxygen combustion.

  11. Removal of triazine-based pollutants from water by carbon nanotubes: Impact of dissolved organic matter (DOM) and solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-12-01

    Adsorption of organic pollutants by carbon nanotubes (CNTs) in the environment or removal of pollutants during water purification require deep understanding of the impacts of the presence of dissolved organic matter (DOM). DOM is an integral part of environmental systems and plays a key role affecting the behavior of organic pollutants. In this study, the effects of solution chemistry (pH and ionic strength) and the presence of DOM on the removal of atrazine and lamotrigine by single-walled CNTs (SWCNTs) was investigated. The solubility of atrazine slightly decreased (∼5%) in the presence of DOM, whereas that of lamotrigine was significantly enhanced (by up to ∼70%). Simultaneous introduction of DOM and pollutant resulted in suppression of removal of both atrazine and lamotrigine, which was attributed to DOM-pollutant competition or blockage of adsorption sites by DOM. However the decrease in removal of lamotrigine was also a result of its complexation with DOM. Pre-introduction of DOM significantly reduced pollutant adsorption by the SWCNTs, whereas introduction of DOM after the pollutant resulted in the release of adsorbed atrazine and lamotrigine from the SWCNTs. These data imply that DOM exhibits higher affinity for the adsorption sites than the triazine-based pollutants. In the absence of DOM atrazine was a more effective competitor than lamotrigine for adsorption sites in SWCNTs. However, competition between pollutants in the presence of DOM revealed lamotrigine as the better competitor. Our findings help unravel the complex DOM-organic pollutant-CNT system and will aid in CNT-implementation in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Possibilities for Carbon Dioxide Emission Reduction Resulting from Nuclear Power Use

    International Nuclear Information System (INIS)

    Bozicevic, M.; Tomsic, Z.; Kovacevic, T.

    1998-01-01

    Each energy resource is connected to certain environmental impacts and risks which must be taken into account. In recent years attention has been focused on the climate change effects of the burning fossil fuels, especially coal, due to the carbon dioxide which this releases into the atmosphere. If the electric energy produced in nuclear power plants were produced in coal-fired plants, global CO 2 emissions would rise for more than 2000 million tons, a significant value in comparison with 4000 million tons which is recommended as a target for emission reduction by the year 2005 at the Toronto Conference on the Changing Atmosphere. Possibilities for carbon dioxide emission reduction which would be the result of the nuclear option acceptance are discussed in this paper. (author)

  13. Applications of pulsed power in advanced oxidation and reduction processes for pollution control

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Coogan, J.J.; Secker, D.A.; Smith, J.D.

    1993-01-01

    A growing social awareness of the adverse impact of pollutants on our environment and the promulgation of environmental laws and regulations has recently stimulated the development of technologies for pollution abatement and hazardous waste destruction. Pulsed power shows strong promise for contributing to the development of innovative technologies aimed at these applications. At Los Alamos we are engaged in two projects which apply pulsed power technology to the environment: the use of relativistic electron beams and nonequilibrium plasmas for the destruction of hazardous organic compounds in aqueous-based and gaseous-based medial, respectively. Electron beams and nonequilibrium plasmas have also been applied to the treatment of flue gases such as SO x and NO x by other researchers. In this paper, we will describe our electron-beam and plasma experiments carried out on hazardous waste destruction. Additionally, we will describe the scaling of electron-beam and nonequilibrium plasma systems to industrial sizes, including discussions of electron accelerator architecture, comparison of continuous-duty versus repetitively pulsed accelerators, plasma-discharge modulators, and needed pulsed power technology development

  14. Bio-inspired carbon electro-catalysis for the oxygen reduction reaction

    OpenAIRE

    Preuss, Kathrin; Kannuchamy, Vasanth Kumar; Marinovic, Adam; Isaacs, Mark; Wilson, Karen; Abrahams, Isaac; Titirici, Maria-Magdalena

    2016-01-01

    We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a po...

  15. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... membrane fuel cell based on H3PO4-doped PBI for operation at temperatures between 150 and 200 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved....

  16. Pollution reduction technology program for small jet aircraft engines, phase 1

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1977-01-01

    A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine.

  17. Reduction of air pollutants - a tool for control of atmospheric corrosion

    Directory of Open Access Journals (Sweden)

    Kucera, V.

    2003-12-01

    Full Text Available In most urban areas in Europe and Northern America serious corrosion impacts on buildings and cultural monuments have been caused by emissions of pollutants. The rapidly increasing pollution levels in many of the developing countries also exert a serious threat to materials. Beside the very important role of SO2 also the direct or synergistic effect of NOx and O3, the particulates and rain acidity may contribute in an important way to materials degradation. Results from extensive international field exposure programs i.e. within the UN/ECE have enabled development of dose-response relations which describe the effect of dry and wet deposition of pollutants on corrosion of different material groups. In most of the industrialized countries decreasing trends of sulphur and nitrogen pollutants and of acidity of precipitation have resulted in decreased corrosion rates. The concept of acceptable levels of pollutants is a useful tool in planning of abatement strategies and for defining of conditions for a suitable development in the field of corrosion of constructions in the atmosphere.

    La contaminación de la atmósfera ha sido la principal razón del grave deterioro de las edificaciones y de los monumentos en numerosas ciudades de Europa y Norteamérica. De otro lado, el acelerado incremento de los niveles de contaminación en los países menos desarrollados está poniendo en peligro la estabilidad de los materiales utilizados. Además del importante papel que en este sentido juega el SO2, la acción directa o el efecto sinérgico de los NOx y el O3, al igual que el material particulado y las lluvias acidas contribuyen a agravar el problema. Resultados de vastos programas internacionales de investigación como, por ejemplo, el UN/ECE, han permitido desarrollar relaciones dosis-respuesta que describen el efecto de la deposición de los contaminantes sobre la corrosión de

  18. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  19. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  20. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  1. Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system

    International Nuclear Information System (INIS)

    Ford, Andrew

    2008-01-01

    This paper describes a computer simulation analysis of carbon dioxide emissions in the electric power system in the western United States. Legislation at both the state and federal level would impose a price on emissions via cap-and-trade in allowances for carbon dioxide emissions. The simulation scenarios for the western system indicate that dramatic reductions in emissions are possible with generating technologies that exist today. Wind and biomass generators play a key role even with conservative assumptions about their future costs. In contrast, generation from advanced technologies provide only a minor contribution by the year 2025. These scenarios provide support to those who argue that the US should move expeditiously to put a price on carbon dixoide emissions

  2. A study on the isotope effects in the reduction of carbon dioxide by zinc

    International Nuclear Information System (INIS)

    Senegacnik, M.

    1957-06-01

    We have determined the isotope effects which occur in the reduction of carbon dioxide by zinc. It has been shown that in the case of irreversible surface reactions, Bernstein's equation which permits the calculation of the fractionation factor is still valid. These experimental factors are in good agreement with those obtained by calculating the partition functions of the adsorbed activated complexes. In the reaction mechanism used, the model of the activated complex corresponds to the dissociation of one of the carbon oxygen bonds CO 2 → CO + O. Perturbations arising from the slight reversibility of the reaction Zn + CO 2 ↔ ZnO + CO on the isotope effects on the carbon and oxygen atoms have also been calculated. (author) [fr

  3. Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Dumitru, Anca; Mamlouk, M.; Scott, K.

    2014-01-01

    The electrochemical reduction of oxygen on chemically modified multi-walled carbon nanotubes (CNTs) electrodes in 1 M KOH solution has been studied using the rotating ring disc electrode (RDE). The surface modification of CNTs has been estimated by XPS and Raman spectroscopy. The effect of different oxygen functionalities on the surface of carbon nanotube for the oxygen reduction reaction (ORR) is considered in terms of the number of electrons (n) involved. Electrochemical studies indicate that in the case of the modification of CNTs with citric acid and diazonium salts the n values were close to two in the measured potential range, and the electrochemical reduction is limited to the production of peroxide as the final product. In the case of the modification of carbon nanotubes with peroxymonosulphuric acid, in the measured potential range, the n value is close to 4 indicating the four-electron pathway for the ORR. By correlating ORR measurements with the XPS analysis, we propose that the increase in electrocatalytic activity towards the ORR, for CNT can be attributed to the increase in C-O groups on the surface of CNTs after modification with peroxymonosulphuric acid

  4. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract.

    Science.gov (United States)

    Qin, Juanjuan; Zhao, Yuhui; Xia, Liangjie

    2018-04-13

    Motivated by the industrial practices, this work explores the carbon emission reductions for the manufacturer, while taking into account the capital constraint and the cap-and-trade regulation. To alleviate the capital constraint, two contracts are analyzed: greening financing and cost sharing. We use the Stackelberg game to model four cases as follows: (1) in Case A1, the manufacturer has no greening financing and no cost sharing; (2) in Case A2, the manufacturer has greening financing, but no cost sharing; (3) in Case B1, the manufacturer has no greening financing but has cost sharing; and, (4) in Case B2, the manufacturer has greening financing and cost sharing. Then, using the backward induction method, we derive and compare the equilibrium decisions and profits of the participants in the four cases. We find that the interest rate of green finance does not always negatively affect the carbon emission reduction of the manufacturer. Meanwhile, the cost sharing from the retailer does not always positively affect the carbon emission reduction of the manufacturer. When the cost sharing is low, both of the participants' profits in Case B1 (under no greening finance) are not less than that in Case B2 (under greening finance). When the cost sharing is high, both of the participants' profits in Case B1 (under no greening finance) are less than that in Case B2 (under greening finance).

  5. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Chongmin; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Wang, Xiqing; Dai, Sheng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-04-02

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H{sub 2}PtCl{sub 6}) in ethylene glycol. Pt nanoparticles of {proportional_to}3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of {proportional_to}2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials. (author)

  6. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract

    Science.gov (United States)

    Qin, Juanjuan; Zhao, Yuhui; Xia, Liangjie

    2018-01-01

    Motivated by the industrial practices, this work explores the carbon emission reductions for the manufacturer, while taking into account the capital constraint and the cap-and-trade regulation. To alleviate the capital constraint, two contracts are analyzed: greening financing and cost sharing. We use the Stackelberg game to model four cases as follows: (1) in Case A1, the manufacturer has no greening financing and no cost sharing; (2) in Case A2, the manufacturer has greening financing, but no cost sharing; (3) in Case B1, the manufacturer has no greening financing but has cost sharing; and, (4) in Case B2, the manufacturer has greening financing and cost sharing. Then, using the backward induction method, we derive and compare the equilibrium decisions and profits of the participants in the four cases. We find that the interest rate of green finance does not always negatively affect the carbon emission reduction of the manufacturer. Meanwhile, the cost sharing from the retailer does not always positively affect the carbon emission reduction of the manufacturer. When the cost sharing is low, both of the participants’ profits in Case B1 (under no greening finance) are not less than that in Case B2 (under greening finance). When the cost sharing is high, both of the participants’ profits in Case B1 (under no greening finance) are less than that in Case B2 (under greening finance). PMID:29652859

  7. Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase

    International Nuclear Information System (INIS)

    Nogala, Wojciech; Celebanska, Anna; Szot, Katarzyna; Wittstock, Gunther; Opallo, Marcin

    2010-01-01

    Carbon ceramic electrodes were prepared by sol-gel processing of a hydrophobic precursor - methyltrimethoxysilane (MTMOS) - together with dispersed graphite microparticles according to a literature procedure. Bilirubin oxidase (BOx) was adsorbed on this electrode from buffer solution and this process was followed by atomic force microscopy (AFM). The electrodes exhibited efficient mediatorless electrocatalytic activity towards dioxygen reduction. The activity depends on the time of adsorption of the enzyme and the pH. The electrode remains active in neutral solution. The bioelectrocatalytic activity is further increased when a fraction of the carbon microparticles is replaced by sulfonated carbon nanoparticles (CNPs). This additive enhances the electrical communication between the enzyme and the electronic conductor. At pH 7 the carbon ceramic electrode modified with bilirubin oxidase retains ca. half of its highest activity. The role of the modified nanoparticles is confirmed by experiments in which a film embedded in a hydrophobic silicate matrix also exhibited efficient mediatorless biocatalytic dioxygen reduction. Scanning electrochemical microscopy (SECM) of the studied electrodes indicated a rather even distribution of the catalytic activity over the electrode surface.

  8. Black carbon emission reduction strategies in healthcare industry for effective global climate change management.

    Science.gov (United States)

    Raila, Emilia Mmbando; Anderson, David O

    2017-04-01

    Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO 2 ). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.

  9. Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Mao, Yan-Peng; Zhu, Hai-Song; Cheng, Jing-Yi; Long, Xiang-Li; Yuan, Wei-Kang [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2010-07-15

    The wet ammonia (NH{sub 3}) desulfurization process can be retrofitted to remove nitric oxide (NO) and sulfur dioxide (SO{sub 2}) simultaneously by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used as a catalyst to regenerate hexaminecobalt(II), Co(NH{sub 3}){sub 6}{sup 2+}, so that NO removal efficiency can be maintained at a high level for a long time. In this study, the catalytic performance of pitch-based spherical activated carbon (PBSAC) in the simultaneous removal of NO and SO{sub 2} with this wet ammonia scrubbing process has been studied systematically. Experiments have been performed in a batch stirred cell to test the catalytic characteristics of PBSAC in the catalytic reduction of hexaminecobalt(III), Co(NH{sub 3}){sub 6}{sup 3+}. The experimental results show that PBSAC is a much better catalyst in the catalytic reduction of Co(NH{sub 3}){sub 6}{sup 3+} than palm shell activated carbon (PSAC). The Co(NH{sub 3}){sub 6}{sup 3+} reduction reaction rate increases with PBSAC when the PBSAC dose is below 7.5 g/L. The Co(NH{sub 3}){sub 6}{sup 3+} reduction rate increases with its initial concentration. Best Co(NH{sub 3}){sub 6}{sup 3+} conversion is gained at a pH range of 2.0-6.0. A high temperature is favorable to such reaction. The intrinsic activation energy of 51.00 kJ/mol for the Co(NH{sub 3}){sub 6}{sup 3+} reduction catalyzed by PBSAC has been obtained. The experiments manifest that the simultaneous elimination of NO and SO{sub 2} by the hexaminecobalt solution coupled with catalytic regeneration of hexaminecobalt(II) can maintain a NO removal efficiency of 90% for a long time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  11. Facile fabrication of carbon brush with reduced graphene oxide (rGO) for decreasing resistance and accelerating pollutants removal in bio-electrochemical systems.

    Science.gov (United States)

    Cui, Dan; Yang, Li-Ming; Liu, Wen-Zong; Cui, Min-Hua; Cai, Wei-Wei; Wang, Ai-Jie

    2018-07-15

    Low electrode resistance is crucial for achieving efficient reactions in bio-electrochemical system (BES), especially considering the factors of BES scaling-up and microbial effects. Graphene has revealed a cornucopia of potential applications due to its high conductivity and extraordinary electrochemical properties. Here, significant reduction of electrode resistance and increment of electrochemical activity were achieved by fabricating the three-dimensional carbon brush using reduced graphene oxide (rGO/carbon brush) through one-step electro-deposition without any binder. The rGO/carbon brush was employed as cathode in BES equipped with bio-anode for azo compound (AO7) removal. The charge transfer resistances of cathode part and whole cell were decreased by 89% and 65%, respectively. The reactor showed quickly start-up within 48 h with peak cycle current six fold increase relative to the control. AO7 decolorization efficiency reached 91.1 ± 0.1% at 4 h and 97.6 ± 0.4% at 6 h. Effective decolorization of AO7 was at rate up to 650.7 g AO7/m 3 ·h. The results indicated that the advantages of graphene and three-dimensional carbon brush successfully improved the overall performance of BES and enhanced refractory pollutants removal when applied to specific wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt

    International Nuclear Information System (INIS)

    Chen, Zhigang; Gu, Yuxing; Du, Kaifa; Wang, Xu; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2017-01-01

    Highlights: •The potential of electrolytic carbon as catalyst for oxygen reduction was evaluated. •A molten salt method for electrolytic-carbon modification was demonstrated. •The electrolytic carbon was activated for the ORR by the molten salt sulfidation. •Sulfur and cobalt dual modification further improved the ORR activity of the carbon. -- Abstract: The electrolytic carbon (E-carbon) derived from greenhouse gas CO 2 in molten carbonates at mild temperature possesses high electrical conductivity and suitable specific surface area. In this work, its potential as catalyst is investigated towards oxygen reduction reaction (ORR). It is revealed that the pristine E-carbon has no electrocatalytic activity for the ORR due to its high surface content of carboxyl group. The carbon was then treated in a Li 2 SO 4 containing Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 molten salt at 550 °C. Sulfur modified E-carbon was obtained in the melt via a galvanic sulfidation reaction, in which Li 2 SO 4 served as a nontoxic sulfur source and an oxidant. The sulfur modified E-carbon showed a significantly improved electrocatalytic activity. Subsequently, a sulfur/cobalt dual modified carbon with much higher catalysis activity was successfully prepared by treating an E-carbon/CoSO 4 composite in the same melt. The dual modified E-carbon showed excellent catalytic performance with activity close to the commercial Pt/C catalyst but a high tolerance towards methanol.

  13. Noise pollution of air compressor and its noise reduction procedures by using an enclosure

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Conclusions: An overall noise reduction by 25 dB with the use of mineral wool as an extra liner on the inside of the enclosure, suggests that the effectiveness of the enclosure can be increased by using such absorber materials.

  14. Pollution reduction technology program for small jet aircraft engines: Class T1

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  15. Evidence for Microbial Iron Reduction in a Landfill Leachate-Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1994-01-01

    Aquifer sediment samples obtained from the anaerobic part of a landfill leachate plume in Vejen, Denmark, were suspended in groundwater or in an artificial medium and incubated. The strictly anaerobic suspensions were tested for reduction of ferric iron (Fe(III)) oxides, which was measured...

  16. Seat-integrated localized ventilation for exposure reduction to air pollutants in indoor environments

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Rezgals, Lauris; Melikov, Arsen Krikor

    2016-01-01

    A novel ventilation method for minimizing the spread of bioeffluent contaminants generated from sedentary people indoors was developed and studied. The concept of the method consists of a ventilated cushion which is able to suck the human bioeffluents at the area of the body where they are mainly...... generated before they disperse around a room. The polluted near the body air is exhausted into the cushion and it is removed from the room by a separate exhaust system. The performance of the method was studied in series of experiments. Full-scale room and a dressed thermal manikin sitting in front....... The experiments were conducted at 26°C room air temperature. The performance of the VC in conjunction with mixing total-volume background ventilation at 1 air change per hour (ACH) was compared with that of mixing background ventilation alone operating at 1, 1.5, 3 and 6 ACH. Experiments at exhaust airflow rate...

  17. Reductive Dechlorination of Carbon Tetrachloride by Soil With Ferrous and Bisulfide

    Science.gov (United States)

    Choi, K.; Lee, W.

    2008-12-01

    Batch and column experiments were conducted to investigate the effect of concentration of reductants, contact time to activate reductive capacity, and pH on reductive dechlorination by soil with Fe(II) and HS- in this study. Carbon tetrachloride (CT) was used as a representative target organic compound. Sorption kinetic and isotherm tests were performed to investigate the influence of adsorption on the soil surface. Target compound in the soil suspension reached sorption equilibrium in 4 hours and the type of isotherm was well fitted by a linear type isotherm. In batch experiment, kinetic rate constants for the reductive dechlorination of CT increased with increasing the concentration of the reductants (Fe(II) and HS-). However, Fe(II) was a much more effective reductant, producing higher k values than those of HS-. The contact time of one day for the soil with HS- and that of four hours with Fe(II) showed the highest reaction rates. Additionally, the rate constants increased with the increase of pH in soil suspension with Fe(II) (5.2~8) and HS- (8.3~10.3), respectively. In column experiment, the soil column with Fe(II) showed larger bed volumes (13.76) to reach a column breakthrough than that with HS- indicating the treatment of Fe(II) is more effective for the reductive dechlorination of CT. To enhance reductive capacity of soil column under an acidic condition, CaO addition to the column treated with Fe(II) showed better results for the reductive dechlorination of CT than that of HS-. Fe(II) showed better CT dechlorination than HS- in batch and column reactors therefore, it can be used as an effective reducing agent for the treatment of soil contaminated with chlorinated organic compounds.

  18. A mineralogical investigation of the reduction of Mamatwan manganese ore with carbon

    International Nuclear Information System (INIS)

    Koursaris, A.; Kleyenstueber, A.S.E.; Finn, C.W.P.

    1983-01-01

    The paper describes two research programmes: small-scale experiments in which cubes (with sides of 20 mm) were heated with coke, coal, or graphite to temperatures of between 1 200 and 1 500 degrees Celsius for 1, 2 or 3 hours in an argon atmosphere; and large-scale experiments in which 4 kg charges of ore and coal, or of ore and coke, in stoichiometric proportions, were heated to temperatures between 1 300 and 1 600 degrees Celsius for up to four hours. The reacted charges were examined by microscopy, by X-ray diffraction analysis, and by X-ray microanalysis using an energy-dispersive system on a scanning electron microscope. It was found that the early stages of reduction involve complex mineralogical changes including the breakdown of braunite and gangue minerals, the reduction of the higher manganese oxides to manganous oxide and of hematite to metallic iron, and the formation of slag as a result of reaction between gangue and manganous oxides. Further reduction of the ore involves the carburisation of the metallic phase and the reduction of solid manganous oxide, or of manganous oxide dissolved in the slag, by solid carbon or carbon dissolved in the metal

  19. DOES A DIFFERENTIATED, CARBONATE-RICH, ROCKY OBJECT POLLUTE THE WHITE DWARF SDSS J104341.53+085558.2?

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093-0424 (United States); Dufour, P., E-mail: cmelis@ucsd.edu [Institut de Recherche sur les Exoplanètes (iREx), Université de Montréal, Montréal, QC H3C 3J7 (Canada)

    2017-01-01

    We present spectroscopic observations of the dust- and gas-enshrouded, polluted, single white dwarf star SDSS J104341.53+085558.2 (hereafter SDSS J1043+0855). Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet spectra combined with deep Keck HIRES optical spectroscopy reveal the elements C, O, Mg, Al, Si, P, S, Ca, Fe, and Ni and enable useful limits for Sc, Ti, V, Cr, and Mn in the photosphere of SDSS J1043+0855. From this suite of elements we determine that the parent body being accreted by SDSS J1043+0855 is similar to the silicate Moon or the outer layers of Earth in that it is rocky and iron-poor. Combining this with comparison to other heavily polluted white dwarf stars, we are able to identify the material being accreted by SDSS J1043+0855 as likely to have come from the outermost layers of a differentiated object. Furthermore, we present evidence that some polluted white dwarfs (including SDSS J1043+0855) allow us to examine the structure of differentiated extrasolar rocky bodies. Enhanced levels of carbon in the body polluting SDSS J1043+0855 relative to the Earth–Moon system can be explained with a model where a significant amount of the accreted rocky minerals took the form of carbonates; specifically, through this model the accreted material could be up to 9% calcium-carbonate by mass.

  20. Reduction of sources of error and simplification of the Carbon-14 urea breath test

    International Nuclear Information System (INIS)

    Bellon, M.S.

    1997-01-01

    Full text: Carbon-14 urea breath testing is established in the diagnosis of H. pylori infection. The aim of this study was to investigate possible further simplification and identification of error sources in the 14 C urea kit extensively used at the Royal Adelaide Hospital. Thirty six patients with validated H. pylon status were tested with breath samples taken at 10,15, and 20 min. Using the single sample value at 15 min, there was no change in the diagnostic category. Reduction or errors in analysis depends on attention to the following details: Stability of absorption solution, (now > 2 months), compatibility of scintillation cocktail/absorption solution. (with particular regard to photoluminescence and chemiluminescence), reduction in chemical quenching (moisture reduction), understanding counting hardware and relevance, and appropriate response to deviation in quality assurance. With this experience, we are confident of the performance and reliability of the RAPID-14 urea breath test kit now available commercially

  1. Electrocatalytic reduction of carbon dioxide on electrodeposited tin-based surfaces

    Science.gov (United States)

    Alba, Bianca Christina S.; Camayang, John Carl A.; Mopon, Marlon L.; del Rosario, Julie Anne D.

    2017-08-01

    The electrocatalytic reduction of carbon dioxide to small organic molecular compounds provides a means of generating alternative fuel source while suppressing climate change. Suitable catalysts, however, are necessary to optimize its reaction kinetics towards more valuable products. Consequently, in this study, electrodeposited Sn electrodes have been developed as catalysts for CO2 electroreduction. Deposition potential was varied to produce different Sn catalysts. SEM showed varying morphologies and increasing amount as the applied potential becomes more negative. Cyclic voltammetry and chronoamperometry showed that the activity and stability of the catalysts towards CO2 reduction depend on the morphology and presence of tin oxides. These results provide a better understanding on the performance of electrodeposited Sn-based surfaces as catalysts for CO2 reduction.

  2. Carbon emission reduction targeting through process integration and fuel switching with mathematical modeling

    International Nuclear Information System (INIS)

    Tiew, B.J.; Shuhaimi, M.; Hashim, H.

    2012-01-01

    Highlights: ► CO 2 emissions reduction targeting for existing plant were categorized into three groups. ► Model for CO 2 emissions reduction targeting via combination approach was developed. ► Effect of combination approach onto HEN area efficiency was discussed. ► Proposed execution strategy can avoid HEN area efficiency deterioration. -- Abstract: Carbon emission reduction targeting is an important and effective effort for industry to contribute in controlling greenhouse gases concentration in atmosphere. Graphical approach has been proposed for CO 2 emissions reduction targeting via HEN retrofit and fuel switching. However, it involves potentially time consuming manual procedures and the quality of solutions produced greatly depends on designer’s experience and judgment. Besides, graphical approach hardly account for the cost factor during the design phase, thus potentially generate complex design. This paper introduces an MINLP model for simultaneous CO 2 emissions reduction targeting via fuel switching and HEN retrofit. A sequential model execution was proposed along with the proposed model. The application of the model on a crude preheat train case study has demonstrated its workability to generate optimal solution for targeted CO 2 emissions reduction at minimum payback period.

  3. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  4. Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Kai Wan

    2015-06-01

    Full Text Available Nitrogen-doped ordered mesoporous carbon was synthesized by using polyaniline as the carbon source and SBA-15 as the template. The microstructure, composition and electrochemical behavior were extensively investigated by the nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry and rotating ring-disk electrode. It is found that the pyrolysis temperature yielded a considerable effect on the pore structure, elemental composition and chemical configuration. The pyrolysis temperature from 800 to 1100 °C yielded a volcano-shape relationship with both the specific surface area and the content of the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic activity followed a similar volcano-shape relationship, and the carbon catalyst synthesized at 1000 °C yielded the best performance. The post-treatment in NH3 was found to further increase the specific surface area and to enhance the nitrogen doping, especially the edge-type nitrogen, which favored the oxygen reduction reaction in both acid and alkaline media. The above findings shed light on electrocatalysis and offer more strategies for the controllable synthesis of the doped carbon catalyst.

  5. Energy and environmental implications of carbon emission reduction targets: Case of Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Rajbhandari, Salony

    2010-01-01

    This paper analyzes the sectoral energy consumption pattern and emissions of CO 2 and local air pollutants in the Kathmandu Valley, Nepal. It also discusses the evolution of energy service demands, structure of energy supply system and emissions from various sectors under the base case scenario during 2005-2050. A long term energy system planning model of the Kathmandu Valley based on the MARKet ALlocation (MARKAL) framework is used for the analyses. Furthermore, the paper analyzes the least cost options to achieve CO 2 emission reduction targets of 10%, 20% and 30% below the cumulative emission level in the base case and also discusses their implications for total cost, technology-mix, energy-mix and local pollutant emissions. The paper shows that a major switch in energy use pattern from oil and gas to electricity would be needed in the Valley to achieve the cumulative CO 2 emission reduction target of 30% (ER30). Further, the share of electricity in the cumulative energy consumption of the transport sector would increase from 12% in the base case to 24% in the ER30 case.

  6. Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system.

    Science.gov (United States)

    Li, Yuanqing; Kemper, Jerome M; Datuin, Gwen; Akey, Ann; Mitch, William A; Luthy, Richard G

    2016-07-01

    Low molecular weight, uncharged, halogenated disinfection byproducts (DBPs) are poorly removed by the reverse osmosis and advanced oxidation process treatment units often applied for further treatment of municipal wastewater for potable reuse. Granular activated carbon (GAC) treatment effectively sorbed 22 halogenated DBPs. Conversion of the GAC to a cathode within an electrolysis cell resulted in significant degradation of the 22 halogenated DBPs by reductive electrolysis at -1 V vs. Standard Hydrogen Electrode (SHE). The lowest removal efficiency over 6 h electrolysis was for trichloromethane (chloroform; 47%) but removal efficiencies were >90% for 13 of the 22 DBPs. In all cases, DBP degradation was higher than in electrolysis-free controls, and degradation was verified by the production of halides as reduction products. Activated carbons and charcoal were more effective than graphite for electrolysis, with graphite featuring poor sorption for the DBPs. A subset of halogenated DBPs (e.g., haloacetonitriles, chloropicrin) were degraded upon sorption to the GAC, even without electrolysis. Using chloropicrin as a model, experiments indicated that this loss was attributable to the partial reduction of sorbed chloropicrin from reducing equivalents in the GAC. Reducing equivalents depleted by these reactions could be restored when the GAC was treated by reductive electrolysis. GAC treatment of an advanced treatment train effluent for potable reuse effectively reduced the concentrations of chloroform, bromodichloromethane and dichloroacetonitrile measured in the column influent to below the method detection limits. Treatment of the GAC by reductive electrolysis at -1 V vs. SHE over 12 h resulted in significant degradation of the chloroform (63%), bromodichloromethane (96%) and dichloroacetonitrile (99%) accumulated on the GAC. The results suggest that DBPs in advanced treatment train effluents could be captured and degraded continuously by reductive electrolysis

  7. Turboprop Engine Nacelle Optimization for Flight Increased Safety and Pollution Reduction

    Directory of Open Access Journals (Sweden)

    Cristian DOROBAT

    2018-03-01

    Full Text Available Commuter airplanes defined in CS-23 as being propeller driven, twin-engine, nineteen seats and maximum certified take-off weight of 8618 Kg had lately a special development due to advantages of turboprop engine compared with piston or jet engines. Nacelle optimization implies a sound and vibrations proof engine frame, engine fuel consumption reduction (through smaller nacelle drag and weight, better lift, better pressure recovery in air induction system, smaller drag of exhaust nozzles, engine cooling and nacelle ventilation more efficient, composite nacelle fairings with noise reduction properties, etc.. Nacelle aerodynamic experimental model, air induction experimental model and other nacelle experimental systems tested independently allow construction efficiency due to minimizing modifications on nacelle assembly and more safety in operation [1].

  8. Observed changes in ocean acidity and carbon dioxide exchange in the coastal Bay of Bengal - a link to air pollution

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Krishna, M.S.; Paul, Y.S.; Murty, V.S.N.

    acidity and carbon dioxide exchange in the coastal Bay of Bengal � a link to air pollution By V. V. S. S. SARMA*, M. S. KRISHNA, Y. S. PAUL and V. S. N. MURTY, CSIR�National Institute of Oceanography, 176 Lawsons Bay Colony, Visakhapatnam, India... atmosphere boundary layer over the Bay of Bengal (mean: 5.7 mg m�3) compared to fluxes in the Arabian Sea (mean: 2.9 mg m�3), indicating that the former receives more pollutants than the latter region during January to April when air flow from land to sea...

  9. Carbon Emission Reduction with Regard to Retailer’s Fairness Concern and Subsidies

    Directory of Open Access Journals (Sweden)

    Linghong Zhang

    2018-04-01

    Full Text Available This paper considers the impact of consumer environmental awareness (CEA, retailer’s fairness concern, and government subsidies on the two echelon supply chain with one manufacturer and one retailer. The manufacturer produces green products with carbon emission reduction. The government provides two types of alternative subsidies: a fixed subsidy (referred to as an F-type subsidy or a discount subsidy (referred to as a D-type subsidy to encourage the manufacturer to produce a product with a high carbon emission reduction rate. We aim to provide optimal solutions to the manufacturer and the retailer with regard to the retailer’s fairness concern and government subsidies; thus we discuss four decision scenarios: the benchmark model without the fairness concern and subsidy, the model with the retailer’s fairness concern, the model with fairness concern and the F-type subsidy, and the model with fairness concern and the D-type subsidy. We provide explicit solutions and numerical examples of the optimal carbon emission reduction rate, wholesale price, and retail price. Our study has four main findings: firstly, high consumer environmental awareness will benefit both the manufacturer and the retailer in the above four scenarios; secondly, the fairness concern and subsidy have a counter effect on the optimal strategies (the subsidy could alleviate the negative influence caused by retailer’s fairness concern; thirdly, the government could subsidize the retailer when there is unfairness in the supply chain so that the manufacturer could produce a product with lower carbon emission; finally, using the subsidy related to the environmental quality will be more helpful for improving environment quality, especially when the government has a budget constraint.

  10. A Joint Optimal Decision on Shipment Size and Carbon Reduction under Direct Shipment and Peddling Distribution Strategies

    Directory of Open Access Journals (Sweden)

    Daiki Min

    2017-11-01

    Full Text Available Recently, much research has focused on lowering carbon emissions in logistics. This paper attempts to contribute to the literature on the joint shipment size and carbon reduction decisions by developing novel models for distribution systems under direct shipment and peddling distribution strategies. Unlike the literature that has simply investigated the effects of carbon costs on operational decisions, we address how to reduce carbon emissions and logistics costs by adjusting shipment size and making an optimal decision on carbon reduction investment. An optimal decision is made by analyzing the distribution cost including not only logistics and carbon trading costs but also the cost for adjusting carbon emission factors. No research has explicitly considered the two sources of carbon emissions, but we develop a model covering the difference in managing carbon emissions from transportation and storage. Structural analysis guides how to determine an optimal shipment size and emission factors in a closed form. Moreover, we analytically prove the possibility of reducing the distribution cost and carbon emissions at the same time. Numerical analysis follows validation of the results and demonstrates some interesting findings on carbon and distribution cost reduction.

  11. Investigation of industrial-scale carbon dioxide reduction using pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, G. M.; Apruzese, J. P.; Petrova, Tz. B.; Wolford, M. F. [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5346 (United States)

    2016-03-14

    Carbon dioxide is the most important greenhouse gas contributing to global warming. To help mitigate increasing CO{sub 2} concentrations, we investigate a method of carbon dioxide reduction using high-power electron beams, which can be used on an industrial scale. A series of experiments are conducted in which the reduction of CO{sub 2} is measured for different gas compositions and power deposition rates. An electron beam deposition model is applied to compute reduction rates of CO{sub 2} and energy cost for breaking a CO{sub 2} molecule in flue gas and pure carbon dioxide at atmospheric pressure. For flue gas consisting of 82% N{sub 2}, 6% O{sub 2}, and 12% CO{sub 2}, the calculated energy cost is 85 eV per molecule. In order to dissociate 50% of the CO{sub 2} molecules, beam energy density deposition on the order of 20 J/cm{sup 3} is required. Electron beam irradiation of 12.6 liter gas volume containing 90% CO{sub 2} and 10% CH{sub 4} at beam energy density deposition of 4.2 J/cm{sup 3}, accumulated over 43 shots in a 20 min interval, reduced the CO{sub 2} concentration to 78%. Analogous experiments with a gas mixture containing 11.5% CO{sub 2}, 11.5% CH{sub 4}, and balance of Ar, reduced the CO{sub 2} concentration to below 11% with energy deposition 0.71 J/cm{sup 3}, accumulated over 10 shots in a 5 min interval. The experimental data and the theoretical predictions of CO{sub 2} reduction using pulsed electron beams are in agreement within the experimental error. Other techniques to enhance the removal of CO{sub 2} with pulsed electron beams are also explored, yielding new possible avenues of research.

  12. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Shi Qiaofang; Diao Guowang

    2011-01-01

    Highlights: ► The deposition of palladium on a GC electrode was performed by cyclic voltammetry. ► SEM images showed palladium nanoparticles deposited on a glassy carbon (GC) electrode. ► The Pd/GC electrode can effectively catalyze m-nitrophenol in aqueous media. ► The reduction of m-nitrophenol on the Pd/GC electrode depended on potential and pH. ► XPS spectra of the Pd/GC electrodes demonstrated the presence of palladium. - Abstract: Palladium nanoparticles modified glassy carbon electrodes (Pd/GC) were prepared via the electrodeposition of palladium on a glassy carbon (GC) electrode using cyclic voltammetry in different sweeping potential ranges. The scanning electron microscope images of palladium particles on the GC electrodes indicate that palladium particles with diameters of 20–50 nm were homogeneously dispersed on the GC electrode at the optimal deposition conditions, which can effectively catalyze the reduction of m-nitrophenol in aqueous solutions, but their catalytic activities are strongly related to the deposition conditions of Pd. The X-ray photoelectron spectroscopy spectra of the Pd/GC electrode confirmed that 37.1% Pd was contained in the surface composition of the Pd/GC electrode. The cyclic voltammograms of the Pd/GC electrode in the solution of m-nitrophenol show that the reduction peak of m-nitrophenol shifts towards the more positive potentials, accompanied with an increase in the peak current compared to the bare GC electrode. The electrocatalytic activity of the Pd/GC electrode is affected by pH values of the solution. In addition, the electrolysis of m-nitrophenol under a constant potential indicates that the reduction current of m-nitrophenol on the Pd/GC electrode is approximately 20 times larger than that on the bare GC electrode.

  13. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    International Nuclear Information System (INIS)

    You, Jung-Min; Kim, Daekun; Jeon, Seungwon

    2012-01-01

    Highlights: ► Novel thiolated carbon nanostructures – platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. ► The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H 2 O 2 for the first time. ► The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H 2 O 2 . ► The proposed H 2 O 2 biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures – multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H 2 O 2 . The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors’ performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H 2 O 2 analysis.

  14. Use of submicron carbon filaments in place of carbon black as a porous reduction electrode in lithium batteries with a catholyte comprising bromine chloride in thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Wilson Greatbatch, Ltd., Clarence, NY (United States); Shui, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

    1995-12-31

    Submicron carbon filaments used in place of carbon black as porous reduction electrodes in carbon limited lithium batteries in plate and jellyroll configurations with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8,700 mAh/g carbon, compared to a value of up to 2,900 mAh/g carbon for carbon black. The high specific capacity per g carbon (demonstrating superior carbon efficiency) for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity and without a binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode.

  15. Study of the potential of low carbon energy development and its contribution to realize the reduction target of carbon intensity in China

    International Nuclear Information System (INIS)

    Li Hongqiang; Wang Limao; Shen Lei; Chen Fengnan

    2012-01-01

    Appraising low carbon energy potential in China and studying its contribution to China's target of cutting CO 2 emissions by 40–45% per unit of GDP by 2020 is crucial for taking countermeasures against climate change and identifying low carbon energy development strategies. This paper presents two scenarios and evaluates the development potential for low carbon energy and its various sources. Based on the evaluation, we analyze how low carbon energy contributes to achieving China's national target of carbon intensity reduction. We draw several conclusions from the analysis. First, low carbon energy will contribute 9.74% (minimum) to 24.42% (maximum) toward the 2020 carbon intensity target under three economic development schemes. Second, the contribution will decrease when the GDP growth rate increases. Third, to maintain the same contribution with high GDP growth rates, China should not only strengthen its investment and policy stimulation for low carbon energy but also simultaneously optimize economic structures and improve carbon productivity. - Highlights: ► Low carbon energy can substitute at least 659.5 Mtce of fossil energy in 2020. ► Potential of hydropower ranks first among all low carbon energy sources in 2020. ► Low carbon energy will contribute at least 9.47% to reach carbon target in 2020. ► China should formulate and implement comprehensive measures to cut carbon emission.

  16. Newly emerging opportunity for pollution reduction using hydrogen as vehicular fuel

    International Nuclear Information System (INIS)

    Krepec, T.; Hong, H.

    1998-01-01

    There is a new important development in automotive technology in recent years which is aimed towards more efficient and less polluting vehicles. This is one of the goals of the Partnership for a New Generation of Vehicles (PNGV) launched in 1993 by the USA Government in cooperation with the three big auto makers Chrysler, Ford and General Motors. The objective is to achieve 80 miles per gallon of gasoline by a mid size sedan, i.e. to triple the existing mileage and to reduce proportionally the emissions. Similar activity was undertaken in Europe with the goal of a 3 liter/100 km car, and also in Japan. The recent demonstration results are confirming the feasibility of such a car in the near future. This is creating new opportunity for hydrogen fueled cars where the hydrogen storage limitations could be overcome with an acceptable size of hydrogen tank and additional energy from the electric battery. Such hybrid hydrogen electric vehicle would be a zero emission vehicle. Still, the commercialization of such a car, which would also provide the customer with adequate performance, drive ability and comfort, requires several advanced solutions which are already emerging from the R and D work initiated by the PNGV. (author)

  17. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets

    International Nuclear Information System (INIS)

    Calderón, Silvia; Alvarez, Andrés Camilo; Loboguerrero, Ana María; Arango, Santiago; Calvin, Katherine; Kober, Tom; Daenzer, Kathryn; Fisher-Vanden, Karen

    2016-01-01

    In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. An assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper. - Highlights: • Four energy and economy-wide models under carbon mitigation scenarios are compared. • Baseline results show that CO

  18. Joint Decisions on Emission Reduction and Inventory Replenishment with Overconfidence and Low-Carbon Preference

    Directory of Open Access Journals (Sweden)

    Shoufeng Ji

    2018-04-01

    Full Text Available This paper presents a game-theoretical analysis of joint decisions on carbon emission reduction and inventory replenishment with overconfidence and consumer’s low-carbon preference for key supply chain players when facing effort-dependent demand. We consider respectively the overconfidence of a supplier who overestimates the impacts of his emission reduction efforts on product demand and the overconfidence of a retailer who underestimates the variability of the stochastic demand. We find, surprisingly, that the supplier’s overconfidence can mitigate “double marginalization” but hurt self-profit, while the retailer’s overconfidence can be an irrelevant factor for self-profit. The retailer aiming at short-term trading should actively seek an overconfident supplier, while the supplier should actively seek a rational retailer for whom the critical fractile is more than 0.5, whereas for an overconfident retailer, the critical fractile is less than or equal to 0.5. The study also underlines the effect of regulation parameters as an important contextual factor influencing low-carbon operations.

  19. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  20. Reduction of phosphate ores by carbon: Part I. Process variables for design of rotary kiln system

    Science.gov (United States)

    Mu, Jacob; Leder, Frederic; Park, Won C.; Hard, Robert A.; Megy, Joseph; Reiss, Howard

    1986-12-01

    Feasibility is established for the reduction of phosphate ores in a rotary kiln, avoiding electric submerged arc furnace technology. This represents a totally new approach to phosphoric acid. Reduction rates of phosphate ore-silica mixtures by carbon in the temperature range of 1100 to 1500 °C under several CO partial pressures in nitrogen were measured in thermogravimetric analyzers. Parameters such as carbon and silica contents, particle and pellet sizes, and gas flow rate were also evaluated with various domestic and foreign phosphate ores. Furthermore, a variety of carbon sources such as subbituminous coals, bituminous coals, anthracite, petroleum coke, and metallurgical coke were tested as reducing agents. Thermodynamic considerations elucidate the temperature dependence of overall conversion as well as the role of excess silica in establishing equilibrium pressure. These findings provide the background for analysis of the kinetics of conversion in Part II of this work. These studies, in conjunction with a previously published work, indicate the importance of intergranular melt phases in the kinetics of otherwise solid state reactions.

  1. The NASA pollution-reduction technology program for small jet aircraft engines

    Science.gov (United States)

    Fear, J. S.

    1976-01-01

    Three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts were well within the EPA smoke standard. Phase 2, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase 3, Combustor-Engine Demonstration Testing, are also described.

  2. The NASA Pollution-Reduction Technology Program for small jet aircraft engines - A status report

    Science.gov (United States)

    Fear, J. S.

    1976-01-01

    A three-phase experimental program is described which has the objective of enabling EPA Class T1 jet engines to meet the 1979 EPA emissions standards. In Phase I, three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts which will be carried forward into Phase II of the program were well within the EPA smoke standard. Phase II, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase III, Combustor-Engine Demonstration Testing, are also described.

  3. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  4. Process integration for biological sulfate reduction in a carbon monoxide fed packed bed reactor.

    Science.gov (United States)

    Kumar, Manoj; Sinharoy, Arindam; Pakshirajan, Kannan

    2018-05-09

    This study examined immobilized anaerobic biomass for sulfate reduction using carbon monoxide (CO) as the sole carbon source under batch and continuous fed conditions. The immobilized bacteria with beads made of 10% polyvinyl alcohol (PVA) showed best results in terms of sulfate reduction (84 ± 3.52%) and CO utilization (98 ± 1.67%). The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was investigated employing a 1L packed bed bioreactor containing the immobilized biomass. At 48, 24 and 12 h HRT, the sulfate removal was 94.42 ± 0.15%, 89.75 ± 0.47% and 61.08 ± 0.34%, respectively, along with a CO utilization of more than 90%. The analysis of variance (ANOVA) of the results obtained showed that only the initial CO concentration significantly affected the sulfate reduction process. The reactor effluent sulfate concentrations were 27.41 ± 0.44, 59.16 ± 1.08, 315.83 ± 7.33 mg/L for 250, 500 and 1000 mg/L of influent sulfate concentrations respectively, under the optimum operating conditions. The sulfate reduction rates matched well with low inlet sulfate loading rates, indicating stable performance of the bioreactor system. Overall, this study yielded very high sulfate reduction efficiency by the immobilized anaerobic biomass under high CO loading condition using the packed bed reactor system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  6. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction.

    Science.gov (United States)

    Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka; Li, Jingkun; Jia, Qingying; Stamatin, Serban; Harrington, George F; Lyth, Stephen Mathew; Krtil, Petr; Mukerjee, Sanjeev; Fonda, Emiliano; Jaouen, Frédéric

    2017-10-16

    Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN 4 C 12 , CoN 3 C 10,porp and CoN 2 C 5 . The O 2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O 2 -adsorption strength, we conclude that cobalt-based moieties bind O 2 too weakly for efficient O 2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

  7. The effects of changes in the UK energy demand and environmental legislation on atmospheric pollution by carbon dioxide

    International Nuclear Information System (INIS)

    Blakemore, F.B.; Davies, C.; Isaac, J.G.

    1998-01-01

    It has been demonstrated that the combustion of fossil fuel accounts for 97% of the carbon dioxide generated in the UK. The demand for primary energy over the 1970-1994 period has only marginally increased, however the demand for natural gas, which has a significantly lower carbon content per unit of energy than other fuels, accounts largely for the lowering of carbon dioxide emissions. The enactment UK/EU Environmental Legislation coupled with World Agreements accounts for a significant lowering of carbon dioxide emissions over this period. Future predictions suggest that a further downturn in carbon dioxide emissions will take place over the 1990-2000 period, followed by a pronounced increase over the 2000-2020 period. The expansion of the use of CCGT and/or the introduction of the IGCC and the SUPC in the power generating sector provides an opportunity for a further reduction in carbon dioxide emissions. (author)

  8. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-01-01

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts

  9. Adoption of voluntary water-pollution reduction technologies and water quality perception among Danish farmers

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Andersen, Laura Mørch; Pedersen, Søren Marcus

    2015-01-01

    The adoption of voluntary nutrient reduction technologies among Danish farmers is relatively low despite the introduction of a number of incentives to do so. With data from 267 farmers, this study analyzes the level of adoption of these technologies and the farmers’ perception of water quality......, existing regulatory measures and their implementation strategies. In general, farmers perceive the water quality to be above average and indicate a strong opposition to penalties for non-compliance. Results of two ordered probit models on adoption and perception show a significant importance of farm...... and soil types, farm size and slopes and information availability. These findings point to the need for increased information dissemination on water quality requirements both at national and regional levels and technical and institutional support for the existing and future incentives....

  10. Provincial Carbon Emissions Reduction Allocation Plan in China Based on Consumption Perspective

    Directory of Open Access Journals (Sweden)

    Xuecheng Wang

    2018-04-01

    Full Text Available China is a country with substantial differences in economic development, energy consumption mix, resources, and technologies, as well as the development path at the provincial level. Therefore, China’s provinces have different potential and degrees of difficulty to carry out carbon emission reduction (CER requirements. In addition, interprovincial trade, with a large amount of embodied carbon emissions, has become the fastest growing driver of China’s total carbon emissions. A reasonable CER allocation plan is, therefore, crucial for realizing the commitment that China announced in the Paris Agreement. How to determine a fair way to allocate provincial CER duties has become a significant challenge for both policy-makers and researchers. In this paper, ecological network analysis (ENA, combined with a multi-regional input-output model (MRIO, is adopted to build an ecological network of embodied emissions across 30 provinces. Then, by using flow analysis and utility analysis based on the ENA model, the specific relationships among different provinces were determined, and the amount of responsibility that a certain province should take quantified, with respect to the embodied carbon emission (ECE flows from interprovincial trade. As a result, we suggest a new CER allocation plan, based on the detailed data of interprovincial relationships and ECE flows.

  11. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  12. Role of sulfate reduction and methane production by organic carbon degradation ineutrophic fjord sediments (Limfjorden, Denmark)

    DEFF Research Database (Denmark)

    Jørgensen, Bo Barker; Parkes, R. John

    2010-01-01

    , accompanied by peaks in sulfide (4-6 mmol L21) and high dissolved inorganic carbon (30-50 mmol L21). Pore-water acetate concentrations were 2-10 mmol L21. 14C-acetate was oxidized to 14CO2 in the sulfate zone and reduced to 14CH4 at and below the SMT. CO2 reduction was the predominant pathway....... A comparison of the burial flux of organic carbon below the sulfate zone and the returning flux of methane indicated that the diffusion modeling of pore-water sulfate strongly underestimated in situ SRRs, whereas the 35S data may have overestimated the rates at depth. Modeled and measured SRR could...

  13. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates.

    Science.gov (United States)

    Wang, Zhijiang; Wu, Lina; Sun, Kun; Chen, Ting; Jiang, Zhaohua; Cheng, Tao; Goddard, William A

    2018-05-23

    We have explored functionalizing metal catalysts with surface ligands as an approach to facilitate electrochemical carbon dioxide reduction reaction (CO 2 RR). To provide a molecular level understanding of the mechanism by which this enhancement occurs, we combine in situ spectroscopy analysis with an interpretation based on quantum mechanics (QM) calculations. We find that a surface ligand can play a critical role in stabilizing the chemisorbed CO 2 , which facilitates CO 2 activation and leads to a 0.3 V decrease in the overpotential for carbon monoxide (CO) formation. Moreover, the presence of the surface ligand leads to nearly exclusive CO production. At -0.6 V (versus reversible hydrogen electrode, RHE), CO is the only significant product with a faradic efficiency of 93% and a current density of 1.9 mA cm -2 . This improvement corresponds to 53-fold enhancement in turnover frequency compared with the Ag nanoparticles (NPs) without surface ligands.

  14. Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges

    Science.gov (United States)

    Ma, Tao; Fan, Qun; Tao, Hengcong; Han, Zishan; Jia, Mingwen; Gao, Yunnan; Ma, Wangjing; Sun, Zhenyu

    2017-11-01

    Electrochemical CO2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.

  15. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Chuanxiang Zhang

    2014-12-01

    Full Text Available Se-modified ruthenium supporting on carbon (Sex–Ru/C electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR performance was improved by appearance of selenium oxides.

  16. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    Science.gov (United States)

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  17. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Dalcin Martins, Paula [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Bansal, Sheel [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Mills, Christopher T. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, Denver Federal Center Denver CO 80225 USA; Tfaily, Malak [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Tangen, Brian A. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Finocchiaro, Raymond G. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Johnston, Michael D. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; McAdams, Brandon C. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Solensky, Matthew J. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Smith, Garrett J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Chin, Yu-Ping [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Wilkins, Michael J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA

    2017-02-23

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR, and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations, or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield non-competitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  18. Reduction of deoxynivalenol in barley by treatment with aqueous sodium carbonate and heat.

    Science.gov (United States)

    Abramson, David; House, James D; Nyachoti, C Martin

    2005-11-01

    Naturally contaminated lots of Canadian barley containing either 18.4 or 4.3 microg/g deoxynivalenol (DON) were heated at 80 degrees C, with small amounts of water or 1 M sodium carbonate solution to study the rate of DON reduction. Samples were heated in sealed polypropylene containers for periods of up to 8 days. In the 18.4 microg/g DON barley, rapid reductions were observed: with no solutions added, DON declined to 14.7 microg/g after 1 day, and to 4.9 microg/g after 8 days solely due to heat; with water at 10 mL/100 g barley, DON levels reached 3.7 microg/g after 8 days; with 1 M sodium carbonate solution added at 10 mL/100 g barley, DON declined to 4.7 microg/g after 1 day, and to 0.4 microg/g after 8 days; with 20 mL/100 g barley, DON declined to 1.4 microg/g after 1 day and to near-zero levels after 8 days. In the 4.3 microg/g DON barley, more gradual reductions were evident: with no solutions added, DON declined to 2.9 microg/g after 8 days solely due to heat; with water at 10 mL/100 g barley, DON levels reached 2.3 microg/g after 8 days; with 1 M sodium carbonate solution added at 10 mL/100 g barley, DON declined to 2.7 microg/g after 1 day, and to near-zero levels after 8 days; with 20 mL/100 g barley, DON declined to 1.4 microg/g after 1 day and to near-zero levels after 3, 5 and 8 days.

  19. Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater.

    Science.gov (United States)

    Perdigón-Melón, J A; Carbajo, J B; Petre, A L; Rosal, R; García-Calvo, E

    2010-09-15

    A coupled coagulation-Fenton process was applied for the treatment of cosmetic industry effluents. In a first step, FeSO(4) was used as coagulant and the non-precipitated Fe(2+) remaining in dissolution was used as catalyst in the further Fenton process. In the coagulation process a huge decrease in total organic carbon (TOC) was achieved, but the high concentration of phenol derivatives was not diminished. The decrease in TOC in the coagulation step significantly reduces the amount of H(2)O(2) required in the Fenton process for phenol depletion. The coupled process, using a H(2)O(2) dose of only 2 g l(-1), reduced TOC and total phenol to values lower than 40 and 0.10 mg l(-1), respectively. The short reaction period (less than 15 min) in TOC and phenol degradation bodes well for improving treatment in a continuous regime. The combination of both processes significantly reduced the ecotoxicity of raw effluent and markedly increased its biodegradability, thus allowing easier treatment by the conventional biological units in conventional sewage treatment plants (STPs). Copyright 2010 Elsevier B.V. All rights reserved.

  20. Embodied carbon mitigation and reduction in the built environment - What does the evidence say?

    Science.gov (United States)

    Pomponi, Francesco; Moncaster, Alice

    2016-10-01

    Of all industrial sectors, the built environment puts the most pressure on the natural environment, and in spite of significant efforts the International Energy Agency suggests that buildings-related emissions are on track to double by 2050. Whilst operational energy efficiency continues to receive significant attention by researchers, a less well-researched area is the assessment of embodied carbon in the built environment in order to understand where the greatest opportunities for its mitigation and reduction lie. This article approaches the body of academic knowledge on strategies to tackle embodied carbon (EC) and uses a systematic review of the available evidence to answer the following research question: how should we mitigate and reduce EC in the built environment? 102 journal articles have been reviewed systematically in the fields of embodied carbon mitigation and reduction, and life cycle assessment. In total, 17 mitigation strategies have been identified from within the existing literature which have been discussed through a meta-analysis on available data. Results reveal that no single mitigation strategy alone seems able to tackle the problem; rather, a pluralistic approach is necessary. The use of materials with lower EC, better design, an increased reuse of EC-intensive materials, and stronger policy drivers all emerged as key elements for a quicker transition to a low carbon built environment. The meta-analysis on 77 LCAs also shows an extremely incomplete and short-sighted approach to life cycle studies. Most studies only assess the manufacturing stages, often completely overlooking impacts occurring during the occupancy stage and at the end of life of the building. The LCA research community have the responsibility to address such shortcomings and work towards more complete and meaningful assessments. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  2. Development of a reduction process of ammonium uranyl carbonate to uranium dioxide in a fluidized bed

    International Nuclear Information System (INIS)

    Gomes, R.P.; Riella, H.G.

    1990-07-01

    Laboratory development of ammonium uranyl carbonate (AUC) reduction to uranium dioxide (UO 2 ) using fluidized bed furnace technique is described. The reaction is carried out at 500-550 0 C using hydrogen, liberated from cracking of ammonia, as a reducing agent. As the AUC used is obtained from uranium hexafluoride (UF 6 ) it contains considerable amount of fluoride (approx. 500μg/g) as contaminant. The presence of fluoride leads to high corrosion rates and hence the fluoride concentration is reduced by pyrohydrolisis of UO 2 . Physical and Chemical properties of the final product (UO 2 ) obtained were characterized. (author) [pt

  3. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  4. Development of ammonium uranyl carbonate reduction to uranium dioxide using fluidized bed

    International Nuclear Information System (INIS)

    Gomes, R.P.; Riella, H.G.

    1988-01-01

    Laboratory development of Ammonium Uranyl Carbonate (AUC) reduction to uranium dioxide (UO 2 ) using fluidized bed furnace technique is described. The reaction is carried out at 500-550 0 C using hydrogen, liberated from cracking of ammonia, as a reducing agent. As the AUC used is obtained from uranium hexafluoride (UF 6 ) it contains considerable amounts of fluoride ( - 500μgF - /gTCAU) as contaminant. The presence of fluoride leads to high corrosion rates and hence the fluoride concentrations is reduced by pyrohydrolisis of UO 2 . Physical and Chemical proterties of the final product (UO 2 ) obtained were characterized. (author) [pt

  5. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  6. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2015-01-01

    Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  7. Adsorption and reduction of NO2 over activated carbon at low temperature

    International Nuclear Information System (INIS)

    Gao, Xiang; Liu, Shaojun; Zhang, Yang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2011-01-01

    The reactive adsorption of NO 2 over activated carbon (AC) was investigated at 50 C. Both the NO 2 adsorption and its reduction to NO were observed during the exposure of AC to NO 2 . Temperature programmed desorption (TPD) was then performed to evaluate the nature and thermal stability of the adsorbed species. Adsorption and desorption processes have been proposed based on the nitrogen and oxygen balance data. The micropores in AC act as a nano-reactor for the formation of -C(ONO 2 ) complexes, which is composed by NO 2 adsorption on existing -C(O) complexes and the disproportionation of adsorbed NO 2 . The generated -C(ONO 2 ) complexes are decomposed to NO and NO 2 in the desorption step. The remaining oxygen complexes can be desorbed as CO and CO 2 to recover the adsorptive and reductive capacity of AC. (author)

  8. The public perspective of carbon capture and storage for CO2 emission reductions in China

    International Nuclear Information System (INIS)

    Duan Hongxia

    2010-01-01

    To explore public awareness of carbon capture and storage (CCS), attitudes towards the use of CCS and the determinants of CCS acceptance in China, a study was conducted in July 2009 based on face-to-face interviews with participants across the country. The result showed that the awareness of CCS was low among the surveyed public in China, compared to other clean energy technologies. Respondents indicated a slightly supportive attitude towards the use of CCS as an alternative technology to CO 2 emission reductions. The regression model revealed that in addition to CCS knowledge, respondents' understanding of the characteristics of CCS, such as the maturity of the technology, risks, capability of CO2 emission reductions, and CCS policy were all significant factors in predicting the acceptance of CCS. The findings suggest that integrating public education and communication into CCS development policy would be an effective strategy to overcome the barrier of low public acceptance.

  9. Delivering energy efficiency and carbon reduction schemes in England: Lessons from Green Deal Pioneer Places

    International Nuclear Information System (INIS)

    Marchand, Robert D.; Koh, S.C. Lenny; Morris, Jonathan C.

    2015-01-01

    Against a background of growing international and national carbon reduction legislation, the UK government introduced the “Green Deal” to deliver a significant increase in housing energy efficiency and reduction in carbon emissions. This paper reflects on one English local authority's experience delivering a programme intended to foster local interest in the Green Deal. Drawing on social surveys and pre and post Green Deal intervention interviews with five demonstrator homes (households that applied to receive a Green Deal package fully funded by the scheme, providing a test bed for the Green Deal recruitment and installation process), this paper shows that awareness and understanding of the Green Deal scheme is low. There is opposition to the cost of finance offered but a strong interest in improving household warmth and for funding improvements through payments added to the electricity bill. Demonstrator home residents perceived Green Deals had improved the warmth and quality of their home, but saving money was the primary motivator for their involvement, not increasing warmth. Whilst Green Deal has not delivered the level of success that was hoped, much can be learned from the scheme to improve future energy efficiency schemes that will be necessary to deliver emission reduction commitments. -- Highlights: •Resident awareness and understanding of the Green Deal is low. •Green Deal assessment costs and loan interest rates are biggest barriers to uptake. •Funding energy improvements via a charge on electricity bill welcomed by residents. •Saving money rather than increasing warmth main motivator for scheme involvement. •Insights from this work should be used to inform future emission reduction schemes

  10. Quantifying non-energy benefits of a carbon reduction initiative for a glassware company

    Energy Technology Data Exchange (ETDEWEB)

    Willoughb-y, Sheri (World Wildlife Fund (United States)); Guo, Stephan (IKEA Trading (Hongkong) Ltd. (China)); Dahlgren, Maja (IKEA Trading Services Sp. z o.o. (Poland)); Schaefer, Thomas (IKEA of Sweden (Sweden)); Jia, Hongming (Hongwei Glassware Co. Ltd. (China))

    2011-07-01

    A glassware company in Yuncheng, China, which supplies to IKEA, upgraded its furnaces and switched the fuel source from coal to natural gas as a participant in an IKEA and WWF-led carbon reduction project. In addition to reducing its greenhouse gas emissions by 35 % (approx7,000 tons CO{sub 2}e) between 2009 and 2010, the company realized numerous non-energy benefits (NEBs) which improved the business case for their investment. While many NEBs can be difficult to quantify, the company calculated that improvements in product quality related to switching the pot furnaces from coal to natural gas directly reduced cost of products by 17 %. This cost reduction was realized from two primary NEBs: 1. Rate of available material: For one product, improved temperature stability in the natural gas furnace increased the output rate from 1,200 to 1,350 pieces, reducing each product's cost 12.5 %. 2. Improvement of qualified rate (non-rejects): For another product output increased from 900 to 1,050 pieces and the qualified rate increased from 75 to 80 percent. This gain was also due to increased temperature stability in the natural gas furnace which made the melted color and the material quality more stable. This resulted in a cost reduction of 5 % compared to the daily output from the coal furnace. While the glassware company had not yet broke even on its investment in the first year, the management had a very favourable view on this project due to the NEBs listed above as well as increased labor productivity due to improved working conditions (cleaner and cooler) and reduced risk of fines due to environmental regulation of coal. If a source of biogas could be secured, further carbon reductions could be realized while maintaining the NEBs achieved by switching to natural gas. This paper will further examine these and other non-energy benefits realized by the glassware company through the IKEA-WWF carbon reduction project

  11. Mobility and Noise Pollution. Noise-reduction Traditional Strategies and Green Mobility Ones

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2011-07-01

    Full Text Available The urbanized territories are quite complex environments in many ways, whose management requires, on the one hand, adequate skills to mediate among the different needs, often conflicting, and on the other hand a clear idea of the target to hit.One of these aspects is the need to ensure mobility in urban areas and, simultaneously, reduce noise levels below the values   that are compatible with the well-being of citizens.There are several sources of noise in an urban context  such as vehicle and rail traffic, the fixed sound sources due to craft and trade activities, as well as to equipment for buildings, to human activities related to recreation and tourism.It must be emphasized, however, that not all noise content has a negative value but there are noise sources such as the noise produced by the local markets and/or that produced by craft activities with historical value, the noise, or rather, the sounds perceived in public parks, town centres and/or areas on the sea which, on the contrary, have a positive value.They represent, in fact, the set of sounds that contribute to the perception of the “soundscape” of an area, which are to be preserved as they are not only appreciated but also sought after by citizens.The noise generated by vehicle traffic, however, while not disregarding the contribution to noise pollution produced by other infrastructure for mobility in urban area, represents one of the major contributor to the noise levels recorded in urban areas, disturbing, firstly, people exposed to it and, secondly, masking the perception of pleasant sounds by altering the “soundscape” of the area.In this context, strategies and interventions to reduce noise caused by road traffic, both the traditional ones (regulations on vehicles, circulation, road, city planning and the new ones related to green mobility, have a twofold purpose as they not only reduce the amount of noise generated by road traffic, but at the same time, help to bring

  12. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    Science.gov (United States)

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  13. Study on the associated removal of pollutants from coal-firing flue gas using biomass activated carbon pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiping; Yuan, Wanli [Qingdao Univ., Shandong (China). Electrical and Mechanical Engineering College; Qi, Haiying [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2013-07-01

    A pilot-scale multi-layer system was developed for the adsorption of SO{sub 2}/NO{sub x}/Hg from flue gas (real flue gases of an heating boiler house) at various operating conditions, including operating temperature and activated carbon materials. Excellent SO{sub 2}/NO{sub x}/Hg removal efficiency was achieved with the multi-layer design with carbons pellets. The SO{sub 2} removal efficiency achieved with the first layer adsorption bed clearly decreased as the operating temperature was increased due to the decrease of physisorption performance. The NO{sub x} removal efficiency measured at the second layer adsorption bed was very higher when the particle carbon impregnated with NH{sub 3}. The higher amounts of Hg absorbed by cotton-seed-skin activated carbon (CSAC) were mainly contributed by chlorinated congeners content. The simultaneously removal of SO{sub 2}/NO{sub x}/Hg was optimization characterized with different carbon layer functions. Overall, The alkali function group and chloride content in CSAC impelled not only the outstanding physisorption but also better chemisorptions. The system for simultaneously removal of multi-pollutant-gas with biomass activated carbon pellets in multi-layer reactor was achieved and the removal results indicated was strongly depended on the activated carbon material and operating temperature.

  14. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites

    International Nuclear Information System (INIS)

    Zhang Yufan; Zeng Lijun; Bo Xiangjie; Wang Huan; Guo Liping

    2012-01-01

    Graphical abstract: A one-step microwave-assisted route for rapidly synthesizing Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites (PNMPC) has been reported. As a novel electrode material, the excellent electrochemical behavior of nitrobenzene was investigated thoroughly at the PNMPC modified glassy carbon electrode. And moreover, the modified electrode was successfully applied to the determination of nitrobenzene in real samples. Highlights: ► One-step microwave-assisted heating synthesis Pt nanoparticles/macroporous carbon hybrid nanocomposites (PNMPC). ► Catalytic rate constant being 3.14 × 10 4 M −1 s −1 for NB in pH 7.0. ► Sensitive electrochemical detection of NB at the PNMPC/Nafion/GC electrode. ► The electrode showing excellent anti-interference ability and good stability for NB. - Abstract: Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 10 4 M −1 s −1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM −1 ), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.

  15. Co- and defect-rich carbon nanofiber films as a highly efficient electrocatalyst for oxygen reduction

    Science.gov (United States)

    Kim, Il To; Song, Myeong Jun; Shin, Seoyoon; Shin, Moo Whan

    2018-03-01

    Many efforts are continuously devoted to developing high-efficiency, low-cost, and highly scalable oxygen reduction reaction (ORR) electrocatalysts to replace precious metal catalysts. Herein, we successfully synthesize Co- and defect-rich carbon nanofibers (CNFs) using an efficient heat treatment approach involving the pyrolysis of electrospun fibers at 370 °C under air. The heat treatment process produces Co-decorated CNFs with a high Co mass ratio, enriched pyridinic N, Co-pyridinic Nx clusters, and defect-rich carbon structures. The synergistic effects from composition and structural changes in the designed material increase the number of catalytically active sites for the ORR in an alkaline solution. The prepared Co- and defect-rich CNFs exhibit excellent ORR activities with a high ORR onset potential (0.954 V vs. RHE), a large reduction current density (4.426 mA cm-2 at 0.40 V), and a nearly four-electron pathway. The catalyst also exhibits a better long-term durability than commercial Pt/C catalysts. This study provides a novel hybrid material as an efficient ORR catalyst and important insight into the design strategy for CNF-based hybrid materials as electrochemical electrodes.

  16. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jae Jak [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); National Institute of Agricultural Science and Technology, RDA, 249 Sedun, Suwon 702-701 (Korea, Republic of); Gustafsson, Orjan [Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm (Sweden); Kurt-Karakus, Perihan [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Breivik, Knut [Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, P.O. Box 1033, NO-0315 Oslo (Norway); Steinnes, Eiliv [Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Jones, Kevin C. [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)], E-mail: k.c.jones@lancaster.ac.uk

    2008-12-15

    Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds. - Total organic carbon and black carbon fractions can play an important role in the storage and cycling of persistent organic pollutants in background soils.

  17. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate

    International Nuclear Information System (INIS)

    Nam, Jae Jak; Gustafsson, Orjan; Kurt-Karakus, Perihan; Breivik, Knut; Steinnes, Eiliv; Jones, Kevin C.

    2008-01-01

    Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds. - Total organic carbon and black carbon fractions can play an important role in the storage and cycling of persistent organic pollutants in background soils

  18. Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery

    International Nuclear Information System (INIS)

    Haregewoin, Atetegeb Meazah; Leggesse, Ermias Girma; Jiang, Jyh-Chiang; Wang, Fu-Ming; Hwang, Bing-Joe; Lin, Shawn D.

    2014-01-01

    Mixed alkyl carbonates are widely used as solvent for a various lithium-ion battery applications. Understanding the behavior of each solvent in the mixed system is crucial for controlling the electrolyte composition. In this paper, we report a systematic electrochemical and spectroscopic comparison of the reduction of propylene carbonate (PC), ethylene carbonate (EC), and diethyl carbonate (DEC) when used as single (PC), binary (EC/PC, EC/DEC), and ternary (EC/PC/DEC) solvent systems. The reduction products are identified based on Fourier transform infrared spectroscopy (FTIR) after employing linear sweep voltammetry to certain potential regions and their possible formation mechanisms are discussed. FTIR analyses revealed that the reduction of EC and PC was not considerably influenced by the presence of other alkyl carbonates. However, DEC exhibited a different reduction product when used in EC/DEC and EC/PC/DEC solvent systems. The reduction of EC occurred before that of PC and DEC and produced a passivating surface film that prevented carbon exfoliation caused by PC. Battery performance test, cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscope is employed to study the surface films formed. The binary EC/DEC solvent system demonstrated more favorable performance, smaller impedance, and higher Li + ion diffusivity than did the other solvent systems used in this study

  19. Surface carbon influences on the reductive transformation of TCE in the presence of granular iron.

    Science.gov (United States)

    Firdous, R; Devlin, J F

    2018-04-05

    To gain insight into the processes of transformations in zero-valent iron systems, electrolytic iron (EI) has been used as a surrogate for the commercial products actually used in barriers. This substitution facilitates mechanistic studies, but may not be fully representative of all the relevant processes at work in groundwater remediation. To address this concern, the kinetic iron model (KIM) was used to investigate sorption and reactivity differences between EI and Connelly brand GI, using TCE as a probe compound. It was observed that retardation factors (R app ) for GI varied non-linearly with influent concentrations to the columns (C o ), and declined significantly as GI aged. In contrast, R app values for EI were small and insensitive to C o , and changed minimally with iron aging. Moreover, although declines in the rate constants (k) and increases in the sorption coefficients were observed for both iron types, they were most pronounced in the case of EI. SEM scans of the EI surface before and after aging (90 days) established the appearance of carbon on the older surface. This work provides evidence that iron with a higher surface carbon content outperforms pure iron, suggesting that the carbon is actively involved in promoting TCE reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ordered hierarchically porous carbon codoped with iron and nitrogen as electrocatalyst for the oxygen reduction reaction.

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Yao, Lan; Liu, Sisi; Xu, Zhuang; Zhang, Huamin

    2014-12-01

    N-doped carbon catalysts have attracted great attention as potential alternatives to expensive Pt-based catalysts used in fuel cells. Herein, an ordered hierarchically porous carbon codoped with N and Fe (Fe-NOHPC) is prepared by an evaporation-induced self-assembly process followed by carbonization under ammonia. The soft template and Fe species promote the formation of the porous structure and facilitate the oxygen reduction reaction (ORR).The catalyst possesses an ordered hierarchically porous structure with a large surface area (1172.5 m(2) g(-1) ) and pore volume of 1.03 cm(3) g(-1) . Compared to commercial 20% Pt/C, it exhibits better ORR catalytic activity and higher stability as well as higher methanol tolerance in an alkaline electrolyte, which demonstrates its potential use in fuel cells as a nonprecious cathode catalyst. The N configuration, Fe species, and pore structure of the catalysts are believed to correlate with its high catalytic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon

    Directory of Open Access Journals (Sweden)

    Yanan Chen

    2018-02-01

    Full Text Available Cr adsorption on wood-based powdered activated carbon (WPAC was characterized by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS. The highest Cr(VI adsorption (40.04% was obtained under acidic conditions (pH 3, whereas Cr removal at pH 10 was only 0.34%. The mechanism of Cr(VI removal from aqueous solutions by WPAC was based on the reduction of Cr(VI to Cr(III with the concomitant oxidation of C-H and C-OH to C-OH and C=O, respectively, on the surface of WPAC, followed by Cr(III adsorption. Raman spectroscopy revealed a change in the WPAC structure in terms of the D/G band intensity ratio after Cr(VI adsorption. SEM-EDS analysis showed that the oxygen/carbon ratio on the WPAC surface increased from 9.85% to 17.74%. This result was confirmed by XPS measurements, which showed that 78.8% of Cr adsorbed on the WPAC surface was in the trivalent state. The amount of oxygen-containing functional groups on the surface increased due to the oxidation of graphitic carbons to C-OH and C=O groups.

  2. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  3. Light pollution and solid-state lighting: reducing the carbon dioxide footprint is not enough

    Science.gov (United States)

    Bará, Salvador

    2013-11-01

    Public and private lighting account for a relevant share of the overall electric power consumption worldwide. The pressing need of reducing the carbon dioxide emissions as well as of lowering the lumen•hour price tag has fostered the search for alternative lighting technologies to substitute for the incandescent and gas-discharge based lamps. The most successful approach to date, solid-state lighting, is already finding its way into the public lighting market, very often helped by substantial public investments and support. LED-based sources have distinct advantages: under controlled coditions their efficacy equals or surpasses that of conventional solutions, their small source size allows for an efficient collimation of the lightbeam (delivering the photons where they are actually needed and reducing lightspill on the surrounding areas), and they can be switched and/or dimmed on demand at very high rates, thus allowing for a taylored schedule of lighting. However, energy savings and carbon dioxide reduction are not the only crucial issues faced by present day lighting. A growing body of research has shown the significance of the spectral composition of light when it comes to assess the detrimental effects of artificial light-at-night (ALAN). The potential ALAN blueshift associated to the deployment of LED-based lighting systems has raised sensible concerns about its scientific, cultural, ecological and public health consequences, which can be further amplified if an increased light consumption is produced due to the rebound effect. This contribution addresses some of the challenges that these issues pose to the Optics and Photonics community.

  4. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  5. Electrocatalytic reduction of dioxygen by cobalt porphyrin-modified glassy carbon electrode with single-walled carbon nanotubes and nafion in aqueous solutions

    International Nuclear Information System (INIS)

    Choi, Ayoung; Jeong, Haesang; Kim, Songmi; Jo, Suhee; Jeon, Seungwon

    2008-01-01

    Cobalt porphyrin (CoP)-modified glassy carbon electrode (GCE) with single-walled carbon nanotubes (SWNTs) and Nafion demonstrated a higher electrocatalytic activity for the reduction of dioxygen in 0.1 M H 2 SO 4 solution. Cyclic and hydrodynamic voltammetry at the CoP-SWNTs/GCE-modified electrodes in O 2 -saturated aqueous solutions was used to study the electrocatalytic pathway. Compared with the CoP/GCE-modified electrodes, the reduction potential of dioxygen at the CoP-SWNTs/GCE-modified electrodes was shifted to the positive direction and the limiting current was greatly increased. Especially, the Co(TMPP)-SWNTs/GCE-modified electrode was catalyzed effectively by the 4e - reduction of dioxygen to water, because hydrodynamic voltammetry revealed the transference of approximately four electrons for dioxygen reduction and the minimal generation of hydrogen peroxide in the process of dioxygen reduction

  6. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode.

    Science.gov (United States)

    Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju

    2006-03-01

    The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.

  7. Efficient Catalytic Reduction of Hexavalent Chromium With Pd-decorated Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Dang; Choi, Hyun Chul [Chonnam National University, Gwangju (Korea, Republic of)

    2016-05-15

    Heavy metal pollution is currently a serious environmental issue. Chromium (Cr) and chromium compounds are commonly found in wastewater discharged by various industries such as wood preservation, leather tanning, electroplating, metal finishing, and the production of chemicals. Pd nanoparticles can easily be introduced into CNTs by performing DCC-activated amidation. Our TEM and XRD results indicate that well-dispersed metallic Pd nanoparticles are anchored on the surface of the amidated CNTs. The XPS results suggest that the Pd content of the sample is approximately 9.8 atomic %. In comparison with the commercial Pd catalyst, the prepared Pd-CNTs were demonstrated to exhibit good catalytic activity in the reduction of 4-NP by NaBH4. Moreover, the Pd-CNT catalyst can easily be separated by performing a simple filtration and reused over at least 10 cycles. This Pd-CNT catalyst is therefore believed to have significant potential for use as a reusable catalyst in the reduction of Cr(Vi)

  8. Nitrogen fertilization decouples roots and microbes: Reductions in belowground carbon allocation limit microbial activity

    Science.gov (United States)

    Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.

    2017-12-01

    Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.

  9. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  10. [Analysis of carbon balance and study on mechanism in anoxic-oxic-settling-anaerobic sludge reduction process].

    Science.gov (United States)

    Zhai, Xiao-Min; Gao, Xu; Zhang, Man-Man; Jia, Li; Guo, Jin-Song

    2012-07-01

    In order to deeply explore the mechanism of sludge reduction in OSA system, carbon balance was performed in an anoxic-oxic-settling-anaerobic (A + OSA) system and a reference AO system to investigate effects of inserting a sludge holding tank in sludge cycle line on the sludge reduction process. Meanwhile, carbon mass change in each reaction unit was identified in terms of solid, liquid and gas phases. The causes of excess sludge reduction in A + OSA system were deduced. The carbon balance results show that when the hydraulic retention time in the sludge holding tank is 7.14 h, carbon percent in solid phase of the sludge reduction system is nearly 50% higher than that of the reference system, supporting the consequence that sludge reduction rate of 49.98% had been achieved. The insertion of a sludge holding tank in the sludge return circuit can be effective in sludge reduction. Carbon changes in each unit reveal that the amount of carbon consumed for biosynthesis in the anoxic and oxic tanks (main reaction zone) of the sludge reduction system is higher than in that of the reference system. Sludge decay is observed in the sludge holding tank. Furthermore, CH4 released from the sludge holding tank is significantly higher than that from the main reaction zone. The DGGE profiles show that there are hydrolytic-fermentative bacteria in the sludge holding tank related to sludge decay. The excess sludge reduction in the A + OSA system could be a result of the combination of sludge decay in the sludge holding tank and sludge compensatory growth in the main reaction cell.

  11. Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    Feng Yongjun; Alonso-Vante, Nicolas

    2012-01-01

    Highlights: ► Cubic CoSe 2 a non-precious metal electrocatalyst for oxygen reduction in KOH. ► The catalyst shows four-electron transfer pathway in overall reaction. ► Catalyst has higher methanol tolerance than commercial Pt/C catalyst. - Abstract: A Carbon-supported CoSe 2 nanocatalyst has been developed as an alternative non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in alkaline medium. The catalyst was prepared via a surfactant-free route and its electrocatalytic activity for the ORR has been investigated in detail in 0.1 M KOH electrolyte at 25 °C using rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. The prepared catalyst showed promising catalytic activity towards ORR in a four-electron transfer pathway and higher tolerance to methanol compared to commercial Pt/C catalyst in 0.1 M KOH. To some extent, the increase of CoSe 2 loading on the electrode favors a faster reduction of H 2 O 2 intermediate to H 2 O.

  12. Oxygen reduction at platinum nanoparticles supported on carbon cryogel in alkaline solution

    Directory of Open Access Journals (Sweden)

    N. R. ELEZOVIC

    2007-07-01

    Full Text Available The oxygen reduction reaction was investigated in 0.1 M NaOH solution, on a porous coated electrode formed of Pt particles supported on carbon cryogel. The Pt/C catalyst was characterized by the X-ray diffraction (XRD, transmission electron microscopy (TEM and cyclic voltammetry techniques. The results demonstrated a successful reduction of Pt to metallic form and homogenous Pt particle size distribution with a mean particle size of about 2.7 nm. The ORR kinetics was investigated by linear sweep polarization at a rotating disc electrode. The results showed the existence of two E – log j regions, usually referred to polycrystalline Pt in acid and alkaline solution. At low current densities (lcd, the Tafel slope was found to be close to –2.3RT/F, while at high current densities (hcd it was found to be close to –2×2.3RT/F. It is proposed that the main path in the ORR mechanism on Pt particles was the direct four-electron process, with the transfer of the first electron as the rate determining step. If the activities are expressed through the specific current densities, a small enhancement of the catalytic activity for Pt/C was observed compared to that of polycrystalline Pt. The effect of the Pt particle size on the electrocatalysis of oxygen reduction was ascribed to the predominant (111 facets of the platinum crystallites.

  13. Dihydropyridine-fused and pyridine-fused coumarins: Reduction on a glassy carbon electrode in dimethylformamide

    International Nuclear Information System (INIS)

    Nuñez-Vergara, Luis J.; Pardo-Jiménez, V.; Barrientos, C.; Olea-Azar, C.A.; Navarrete-Encina, P.A.; Squella, J.A.

    2012-01-01

    In this study, two series of dihydropyridine-fused and pyridine-fused coumarins were synthesised and electrochemically characterised in aprotic medium. In both series, the most easily reducible groups were the endocyclic carbonyl groups. The electrochemical mechanism for both types of compounds is strongly dependent on the experimental time-scale. Cyclic voltammetric (CV) reduction on a glassy carbon electrode (GCE) of the endocyclic carbonyl group of dihydropyridine-fused coumarins involves an ECEC mechanism with two electron transfer steps that are coupled with chemical reactions to produce the corresponding hemiacetal derivative. In the case of pyridine-fused coumarins, CV reduction of the endocyclic carbonyl group involves an EEC mechanism. ESR studies revealed the presence of a stabilised intermediate only for the pyridine-fused derivatives. Our theoretical study showed a spin density map of radical species delocalised mainly within the coumarin ring, indicating the reduction of the endocyclic carbonyl group. In the case of the dihydropyridine-fused derivatives, the mildly acid hydrogen of the dihydropyridine ring destabilises the radical via a father–son type reaction.

  14. Large reductions in urban black carbon concentrations in the United States between 1965 and 2000

    Science.gov (United States)

    Kirchstetter, Thomas W.; Preble, Chelsea V.; Hadley, Odelle L.; Bond, Tami C.; Apte, Joshua S.

    2017-02-01

    Long-term pollutant concentration trends can be useful for evaluating air quality effects of emission controls and historical transitions in energy sources. We employed archival records of coefficient of haze (COH), a now-retired measure of light-absorbing particulate matter, to re-construct historical black carbon (BC) concentrations at urban locations in the United States (U.S.). The following relationship between COH and BC was determined by reinstating into service COH monitors beside aethalometers for two years in Vallejo and one year in San Jose, California: BC (μg m-3) = 6.7COH + 0.1, R2 = 0.9. Estimated BC concentrations in ten states stretching from the East to West Coast decreased markedly between 1965 and 1980: 5-fold in Illinois, Ohio, and Virginia, 4-fold in Missouri, and 2.5-fold in Pennsylvania. Over the period from the mid-1960s to the early 2000s, annual average BC concentrations in New Jersey and California decreased from 13 to 2 μg m-3 and 4 to 1 μg m-3, respectively, despite concurrent increases in fossil fuel consumption from 1.6 to 2.1 EJ (EJ = 1018 J) in New Jersey and 4.2 to 6.4 EJ in California. New Jersey's greater reliance on BC-producing heavy fuel oils and coal in the 1960s and early 1970s and subsequent transition to cleaner fuels explains why the decrease was larger in New Jersey than California. Patterns in seasonal and weekly BC concentrations and energy consumption trends together indicate that reducing wintertime emissions - namely substituting natural gas and electricity for heavy fuel oil in the residential sector - and decreasing emissions from diesel vehicles contributed to lower ambient BC concentrations. Over the period of study, declining concentrations of BC, a potent and short-lived climate warming pollutant, contrast increasing fossil fuel carbon dioxide (CO2) emissions in the U.S. Declining BC emissions may have had the benefit of mitigating some atmospheric warming driven by increased CO2 emissions with

  15. Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions

    International Nuclear Information System (INIS)

    Barrett, Sophie E.; Watmough, Shaun A.

    2015-01-01

    The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. - Highlights: • Surface peat in wetlands in Sudbury is contaminated with Cu and Ni. • The pH of peat is positively related to species richness and diversity. • Metal levels in peat is negatively related to vascular vegetation and Sphagnum cover. • Loss of Sphagnum at contaminated peatlands may impede recovery. - Sudbury peatlands remain impacted by industrial activities as indicated by elevated copper and nickel concentrations and diminished vascular plant cover and Sphagnum frequency.

  16. Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Mercier, Arnaud; Cormos, Calin-Cristian; Peteves, Stathis D.

    2007-01-01

    This paper investigates the impact of capture of carbon dioxide (CO 2 ) from fossil fuel power plants on the emissions of nitrogen oxides (NO X ) and sulphur oxides (SO X ), which are acid gas pollutants. This was done by estimating the emissions of these chemical compounds from natural gas combined cycle and pulverized coal plants, equipped with post-combustion carbon capture technology for the removal of CO 2 from their flue gases, and comparing them with the emissions of similar plants without CO 2 capture. The capture of CO 2 is not likely to increase the emissions of acid gas pollutants from individual power plants; on the contrary, some NO X and SO X will also be removed during the capture of CO 2 . The large-scale implementation of carbon capture is however likely to increase the emission levels of NO X from the power sector due to the reduced efficiency of power plants equipped with capture technologies. Furthermore, SO X emissions from coal plants should be decreased to avoid significant losses of the chemicals that are used to capture CO 2 . The increase in the quantity of NO X emissions will be however low, estimated at 5% for the natural gas power plant park and 24% for the coal plants, while the emissions of SO X from coal fired plants will be reduced by as much as 99% when at least 80% of the CO 2 generated will be captured

  17. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    SAROFIM, A F; LISAUSKAS, R; RILEY, D; EDDINGS, E G; BROUWER, J; KLEWICKI, J P; DAVIS, K A; BOCKELIE, M J; HEAP, M P; PERSHING, D

    1998-01-01

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers,"in-furnace NOx control," which includes: staged low-NOx burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of "in-furnace" NOx control, processes. 2) To devise new, or improve existing, approaches for maximum "in-furnace" NOx control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NOx burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NOx burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NOx burners. 3 Determine the limits on NO control by in-furnace NOx control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NOx burners and coal reburning systems. 6 Modify the char burnout model in REI's coal

  18. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    Science.gov (United States)

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  19. Comparative estimation of soil and plant pollution in the impact area of air emissions from an aluminium plant after technogenic load reduction.

    Science.gov (United States)

    Evdokimova, Galina A; Mozgova, Natalya P

    2015-01-01

    The work provides a comparative analysis of changes in soil properties in the last 10-13 years along the pollution gradient of air emissions from Kandalaksha aluminium plant in connection with the reduction of their volume. The content of the priority pollutant fluorine (F) in atmospheric precipitation and in the organic horizon of soil in the plant impact zone significantly decreased in 2011-2013 compared to 2001. The aluminium concentrations reduced only in immediate proximity to the plant (2 km). The fluorine, calcium (Ca) and magnesium (Mg) concentrations are higher in liquid phase compared to solid phase thus these elements can migrated to greater distances from the pollution source (up to 15-20 km). Silicon (Si), aluminium (Al), iron (Fe) and phosphorus (P) can be found only in solid phases and in fall-out within the 5 km. The acidity of soil litter reduced by 2 pH units in the proximity to the plot within the 2 km. The zone of maximum soil contamination decreased from 2.5 km to 1.5 km from the emission source, the zones of heavy and moderate pollution reduced by 5 km in connection with the reduction of pollutant emissions in the plant. A high correlation between the fluorine concentrations in vegetables and litter was found. Higher fluorine concentrations in the soil result in its accumulation in plants. Mosses accumulate fluorine most intensively.

  20. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.

    Science.gov (United States)

    Khadka, Nimesh; Dean, Dennis R; Smith, Dayle; Hoffman, Brian M; Raugei, Simone; Seefeldt, Lance C

    2016-09-06

    The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild-type nitrogenase and a nitrogenase with amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by two or eight electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it is demonstrated that nitrogenase preferentially reduces CO2 by two electrons/protons to formate (HCOO(-)) at rates >10 times higher than rates of CO2 reduction to CO and CH4. Quantum mechanical calculations on the doubly reduced FeMo-cofactor with a Fe-bound hydride and S-bound proton (E2(2H) state) favor a direct reaction of CO2 with the hydride ("direct hydride transfer" reaction pathway), with facile hydride transfer to CO2 yielding formate. In contrast, a significant barrier is observed for reaction of Fe-bound CO2 with the hydride ("associative" reaction pathway), which leads to CO and CH4. Remarkably, in the direct hydride transfer pathway, the Fe-H behaves as a hydridic hydrogen, whereas in the associative pathway it acts as a protic hydrogen. MoFe proteins with amino acid substitutions near FeMo-cofactor (α-70(Val→Ala), α-195(His→Gln)) are found to significantly alter the distribution of products between formate and CO/CH4.

  1. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    Science.gov (United States)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  2. Electroless reductions on carbon nanotubes: How critical is the diameter of a nanotube

    KAUST Repository

    Guo, Yong

    2013-01-01

    Detailed experimental and theoretical studies have been performed to investigate the influence of the diameter of multi-walled carboxy-functionalized carbon nanotubes (CFCNTs) on their ability to reduce PdCl4 2- salt to Pd nanoparticles on their surface at room temperature. The obtained results (inductively-coupled plasmaspectrometry and cyclic voltammetry) show that the reduction ability of CFCNTs with 5 nm diameter (CFCNT5) is stronger than that of CFCNTs with 15 nm diameter (CFCNT15). Density Functional Theory (DFT) calculations suggest that a more negative charge distribution exists on CFCNT5, which makes it a better electron donor to PdCl42-. This journal is © The Royal Society of Chemistry.

  3. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    Science.gov (United States)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  4. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Energy Technology Data Exchange (ETDEWEB)

    Jose, Jiya; Giridhar, Rajesh; Anas, Abdulaziz [National Institute of Oceanography (CSIR), Regional Centre, PB 1913, Cochin, Kerala 682018 (India); Loka Bharathi, P.A. [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India); Nair, Shanta, E-mail: shanta@nio.org [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India)

    2011-10-15

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: > Substantial proliferation of heavy metal pollution in Cochin estuary. > 90-100% of bacteria were resistant against heavy metals. > Proteobacteria dominated in the hot spot sites. > Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  5. A Universal Method to Engineer Metal Oxide-Metal-Carbon Interface for Highly Efficient Oxygen Reduction.

    Science.gov (United States)

    Lv, Lin; Zha, Dace; Ruan, Yunjun; Li, Zhishan; Ao, Xiang; Zheng, Jie; Jiang, Jianjun; Chen, Hao Ming; Chiang, Wei-Hung; Chen, Jun; Wang, Chundong

    2018-03-27

    Oxygen is the most abundant element in the Earth's crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes and energy converting/storage systems. Developing techniques toward high-efficiency ORR remains highly desired and a challenge. Here, we report a N-doped carbon (NC) encapsulated CeO 2 /Co interfacial hollow structure (CeO 2 -Co-NC) via a generalized strategy for largely increased oxygen species adsorption and improved ORR activities. First, the metallic Co nanoparticles not only provide high conductivity but also serve as electron donors to largely create oxygen vacancies in CeO 2 . Second, the outer carbon layer can effectively protect cobalt from oxidation and dissociation in alkaline media and as well imparts its higher ORR activity. In the meanwhile, the electronic interactions between CeO 2 and Co in the CeO 2 /Co interface are unveiled theoretically by density functional theory calculations to justify the increased oxygen absorption for ORR activity improvement. The reported CeO 2 -Co-NC hollow nanospheres not only exhibit decent ORR performance with a high onset potential (922 mV vs RHE), half-wave potential (797 mV vs RHE), and small Tafel slope (60 mV dec -1 ) comparable to those of the state-of-the-art Pt/C catalysts but also possess long-term stability with a negative shift of only 7 mV of the half-wave potential after 2000 cycles and strong tolerance against methanol. This work represents a solid step toward high-efficient oxygen reduction.

  6. Air pollution

    OpenAIRE

    MacKenbach, JP; Henschel, S; Goodman, P; McKee, M

    2013-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  7. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Directory of Open Access Journals (Sweden)

    S. C. Anenberg

    2011-07-01

    Full Text Available As a component of fine particulate matter (PM2.5, black carbon (BC is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m−3 (1.8 % and avoids 157 000 (95 % confidence interval, 120 000–194 000 annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %, followed by South Asia (India; 31 %, however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times

  8. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting

  9. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium

    International Nuclear Information System (INIS)

    Feng Yongjun; He Ting; Alonso-Vante, Nicolas

    2009-01-01

    We investigated the effect of CoSe 2 /C nanoparticle loading rate on oxygen reduction reaction (ORR) activity and H 2 O 2 production using the rotating disk electrode and the rotating ring-disk electrode techniques. We prepared carbon-supported CoSe 2 nanoparticles with different nominal loading rates and evaluated these samples by means of powder X-ray diffraction. All the catalysts had an OCP value of 0.81 V vs. RHE. H 2 O 2 production during the ORR process decreased with an increase in catalytic layer thickness. This decrease was related to the CoSe 2 loading on the disk electrode. H 2 O 2 production also decreased with increasing catalytic site density, a phenomenon related to the CoSe 2 loading rate on the carbon substrate. The cathodic current density significantly increased with increasing catalytic layer thickness, but decreased with increasing catalytic site density. In the case of 20 wt% CoSe 2 /C nanoparticles at 22 μg cm -2 , we determined that the transfer process involves about 3.5 electrons.

  10. Investing in finite-life carbon emissions reduction program under risk and idiosyncratic uncertainty

    International Nuclear Information System (INIS)

    Fouilloux, Jessica; Moraux, Franck; Viviani, Jean-Laurent

    2015-01-01

    This paper aims at emphasizing the ability of new frameworks of real option model to highlight key characteristics of industrial Carbon Emissions Reduction Program investment decision. We develop both theoretical arguments and numerical simulations with structural parameters calibrated on real-life data. We find that both radical uncertainty and risk lead to speed-up green investments, compared to the predictions of real option models that are normally used in green investment literature. The conventional “wait and see” attitude, questioned in recent developments of the real option theory, is not validated. In conclusion, our results should foster companies to implement green investments and help governments to define appropriate incentives to encourage green investments. Of particular note, the paper highlights that finance theory is not necessarily an obstacle to green investment decisions. -- Highlights: •We use real option model to identify key features of CERP investment decision. •We determine the optimal carbon price threshold to undertake a CERP. •Investment decision is a non-monotonic function of idiosyncratic uncertainty. •Increasing uncertainty until a moderate level can accelerate investment decision. •Decreasing idiosyncratic risk can accelerate investment decision

  11. A Pt-free Electrocatalyst Based on Pyrolized Vinazene-Carbon Composite for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Akinpelu, Akeem; Merzougui, Belabbes; Bukola, Saheed; Azad, Abdul-Majeed; Basheer, Rafil A.; Swain, Greg M.; Chang, Qiaowan; Shao, Minhua

    2015-01-01

    The 2-vinyl-4, 5-dicyanoimidazole (Vinazene) was used as a nitrogen precursor to synthesize a promising non-precious metal (NPM) catalyst for oxygen reduction reaction (ORR). Vinazene together with an iron source was impregnated into a carbon matrix and pyrolyzed at 900 °C in N 2 atmosphere. The structure of the resulting Fe–N–C nanocomposite was analyzed by X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. Both rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) experiments showed excellent ORR activity for the obtained catalyst with low H 2 O 2 formation (∼3.0%) in 0.1 M KOH. The catalyst was found to be rich in mesoporous structure along with high percentage of pyrrolic-N function with surface area of about 673 m 2 g −1 and pore size of 4.2 nm. In addition to its excellent ORR activity, the catalyst showed remarkable tolerance towards methanol oxidation and demonstrates good stability over 10,000 potential cycles (0.6–1.0 V Vs RHE). We believe that this N-rich Vinazene molecule will be beneficial to further development of nitrogen doped carbon electrocatalysts

  12. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    Science.gov (United States)

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

  13. Analysis of Carbon Emission Reduction in a Dual-Channel Supply Chain with Cap-And-Trade Regulation and Low-Carbon Preference

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    2018-02-01

    Full Text Available This paper focuses on the reduction of carbon emissions driven by cap-and-trade regulation and consumers’ low-carbon preference in a dual-channel supply chain. Under the low-carbon environment, we also discuss the pricing strategies and the profits for the supply chain members using the Stackelberg game model in two cases. In the first (second case where the initial proportion of consumers who prefer the online direct channel (traditional retail channel is “larger”, the direct sale price of low-carbon products could be set higher than (equal to the wholesale price. And it is shown that in both cases, tighter cap-and-trade regulation and higher low-carbon preference stimulate the manufacturer to cut carbon emissions in its production process. However, improving consumers’ low-carbon preference is more acceptable to the supply chain members. It always benefits the manufacturer and the retailer. In comparison, the firm’s profit increases with carbon price only when the clean production level is relatively high. Our findings can provide useful managerial insights for policy-makers and firms in the development of low-carbon sustainability.

  14. The reduction of Winterveld chrome spinel at 1300 degrees Celsius under an argon atmosphere in the presence of carbon

    International Nuclear Information System (INIS)

    Kuecuekkaragoz, C.S.; Algie, S.H.; Finn, C.W.P.

    1984-01-01

    The reduction of a mixture of particles of gangue-free spinel in the size range 106 to 90 μm and particles of graphite in the same size range was studied by the use of a recording thermobalance. The partially reduced material was analysed chemically, as well as by X-ray diffraction, optical microscopy, and electron-microprobe analysis. The reaction is shown to be sequential, the ferric iron being reduced to ferrous iron before a metallic reduction product appears. Almost one-half of the iron is reduced before the reduction of chromium becomes significant, and, by the time about one-half of the chromium has been reduced, almost no unreduced iron remains in the oxide. Carbon appears in the reduced material after the reduction of chromium has started. The carbon content rises as the reaction proceeds, and beyond the stage at which all the iron has been reduced, the reduced product is an iron-chromium carbide. The product is therefore in a state of near equilibrium with the partially reduced spinel. This indicates that, up to about 60 per cent reduction, the transfer of carbon to the oxide is a controlling factor in the reduction. This conclusion is supported by the observation that the reduced product is confined to the surface of the chromite particle, which retains its external shape while becoming progressively more porous as reduction proceeds. Under hydrogen, a metallic reduction product is formed within the internal pores as well as on the surface. The second half of the reduction proceeds at a reproducible decreasing rate that can be modelled on the basis of the diffusion of chromium from within the particle to the surface. The initial reduction rate is slow but accelerating, and is not reproducible. Further investigation of this stage of the reduction process is recommended

  15. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    International Nuclear Information System (INIS)

    Yang, Liuqing; Liu, Xiaoying; Lu, Qiujun; Huang, Na; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H 2 O 2 ) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H 2 O 2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  16. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    Science.gov (United States)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  17. Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction

    Science.gov (United States)

    Hu, Tian-Hang; Yin, Zhong-Shu; Guo, Jian-Wei; Wang, Cheng

    2014-12-01

    Fe nanoparticles immobilized on polyaniline-covered carbon nanotube (CNT) surfaces (Fe NPs-PANI/CNT) are prepared by reducing FeCl3 in the mixing solution of aniline and CNT. Significantly, the structure of such composites can be effectively optimized by pretreating FeCl3 with sodium citrate (CA). In the absence of CNTs, we found these two routes have large differences in reduction behaviors and different PANI states with varied conductivities. Therefore, the self-assembly mechanism in the preparation is proposed and the controlled self-assembly manner in the pretreating route is disclosed. Under acid condition, both catalysts demonstrate high oxygen reduction reaction (ORR) activity with four-electron pathway, and high electrochemical durability, revealing a promising application in the proton exchange membrane fuel cells. However, the high Tafel slopes relating to the surface red-ox couple and porous conductivity are still the main obstacles to improve their ORR dynamic, and more efforts on these aspects are needed to drive non-noble catalyst application in future.

  18. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity.

    Science.gov (United States)

    Yang, Wulin; Watson, Valerie J; Logan, Bruce E

    2016-08-16

    Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes.

  19. PENURUNAN KADAR PROTEIN LIMBAH CAIR TAHU DENGAN PEMANFAATAN KARBON BAGASSE TERAKTIVASI (Protein Reduction of Tofu Wastewater Using Activated Carbon Bagasse

    Directory of Open Access Journals (Sweden)

    Candra Purnawan

    2014-10-01

    Full Text Available ABSTRAK Penurunan kadar protein limbah tahu telah dilakukan dengan pemanfaatan karbon Bagasse teraktivasi. Tujuan dari penelitian ini adalah untuk mengetahui kondisi optimum dari karbon teraktivasi NaOH dan H2SO4 dalam menurunkan kadar protein limbah cair tahu dan mengetahui jenis isoterm adsorpsi dari karbon aktif yang digunakan untuk menyerap protein limbah cair tahu. Hasil penelitian menunjukkan konsentrasi NaOH yang optimum untuk aktivasi karbon aktif 15%, massa optimum karbon bagasse teraktivasi NaOH adalah 2 g dan penurunan kadar proteinnya 71,95%, sedangkan massa optimum karbon bagasse teraktivasi H2SO4 adalah 1 g dengan penurunan kadar protein sebesar 38,19%. Waktu kontak optimum karbon bagasse teraktivasi  NaOH dan H2SO4 adalah 12 jam. Adsorpsi protein oleh karbon bagasse teraktivasi NaOH mengikuti isoterm adsorpsi Langmuir dan Freundlich sedangkan karbon bagasse teraktivasi H2SO4 dominan mengikuti isoterm Freundlich.   ABSTRACT The protein reduction of tofu wastewater using activated carbon from bagasse  had been conducted. The purposes of this research were to analysis optimum condition of activated carbon bagsse using NaOH and H2SO4 for reduction protein in tofu wastewater, and analysis adsorption isotherm of activated carbon with protein. The result showed that optimum mass of carbon bagasse activated NaOH was  2 g with 71.95% protein reduction, while carbon bagasse activated H2SO4 has 1 g with 38.19% protein reduction. The optimum contact time between protein and activated carbon (with NaOH and H2SO4 was happened in 12 hours. Adsorption protein with carbon bagasse activated NaOH had followed Langmuir and Freundlich adsorption isotherm, while adsorption with carbon bagasse activated H2SO4 dominantlyhad followed Freundlich adsorption isotherm

  20. A study on the isotope effects in the reduction of carbon dioxide by zinc; Etude des effets isotopiques dans la reduction du gaz carbonique par le zinc

    Energy Technology Data Exchange (ETDEWEB)

    Senegacnik, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-06-15

    We have determined the isotope effects which occur in the reduction of carbon dioxide by zinc. It has been shown that in the case of irreversible surface reactions, Bernstein's equation which permits the calculation of the fractionation factor is still valid. These experimental factors are in good agreement with those obtained by calculating the partition functions of the adsorbed activated complexes. In the reaction mechanism used, the model of the activated complex corresponds to the dissociation of one of the carbon oxygen bonds CO{sub 2} {yields} CO + O. Perturbations arising from the slight reversibility of the reaction Zn + CO{sub 2} {r_reversible} ZnO + CO on the isotope effects on the carbon and oxygen atoms have also been calculated. (author) [French] Nous avons etudie les effets isotopiques qui ont lieu dans la reduction du gaz carbonique par le zinc. La validite de l'equation de Bernstein qui permet de calculer le facteur de fractionnement a ete demontree pour le cas d'une reaction irreversible de surface. Ces facteurs de fractionnement experimentaux sont en bon accord avec ceux obtenus par le calcul des fonctions de partition isotopiques des complexes actives adsorbes. Dans le mecanisme de reaction utilise, le modele du complexe active correspond a la dissociation d'une des liaisons carbone oxygene CO{sub 2} {yields} CO + O. Les effets perturbateurs de la reversibilite de la reduction Zn + CO{sub 2} {r_reversible} ZnO + CO sur les effets isotopiques du carbone et ceux de l'oxygene ont ete egalement evalues. (auteur)

  1. A study on the isotope effects in the reduction of carbon dioxide by zinc; Etude des effets isotopiques dans la reduction du gaz carbonique par le zinc

    Energy Technology Data Exchange (ETDEWEB)

    Senegacnik, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-06-15

    We have determined the isotope effects which occur in the reduction of carbon dioxide by zinc. It has been shown that in the case of irreversible surface reactions, Bernstein's equation which permits the calculation of the fractionation factor is still valid. These experimental factors are in good agreement with those obtained by calculating the partition functions of the adsorbed activated complexes. In the reaction mechanism used, the model of the activated complex corresponds to the dissociation of one of the carbon oxygen bonds CO{sub 2} {yields} CO + O. Perturbations arising from the slight reversibility of the reaction Zn + CO{sub 2} {r_reversible} ZnO + CO on the isotope effects on the carbon and oxygen atoms have also been calculated. (author) [French] Nous avons etudie les effets isotopiques qui ont lieu dans la reduction du gaz carbonique par le zinc. La validite de l'equation de Bernstein qui permet de calculer le facteur de fractionnement a ete demontree pour le cas d'une reaction irreversible de surface. Ces facteurs de fractionnement experimentaux sont en bon accord avec ceux obtenus par le calcul des fonctions de partition isotopiques des complexes actives adsorbes. Dans le mecanisme de reaction utilise, le modele du complexe active correspond a la dissociation d'une des liaisons carbone oxygene CO{sub 2} {yields} CO + O. Les effets perturbateurs de la reversibilite de la reduction Zn + CO{sub 2} {r_reversible} ZnO + CO sur les effets isotopiques du carbone et ceux de l'oxygene ont ete egalement evalues. (auteur)

  2. Role of a gas phase in the kinetics of zinc and iron reduction with carbon from slag melts

    Science.gov (United States)

    Chumarev, V. M.; Selivanov, E. N.

    2013-03-01

    The influence of the mass transfer conditions in the gas phase having formed at the carbon-slag melt interface on CO regeneration is approximately estimated in the framework of a two-stage scheme of metal reduction from slag melts by carbon. The effect of zinc vapors on the combined reduction of iron and zinc from slags is considered. The influence of the slag composition and temperature on the critical concentration of zinc oxide above which no iron forms as an individual phase is explained.

  3. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Bessa, Vanessa M.T.; Prado, Racine T.A.

    2015-01-01

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO 2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO 2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  4. Significantly Reduced Health Burden from Ambient Air Pollution in the United States under Emission Reductions from 1990 to 2016

    Science.gov (United States)

    The 2015 Global Burden of Disease (GBD) study has listed air pollution as the fourth-ranking global mortality risk factor. Few studies have attempted to understand how these burdens change through time, especially in the United States (US). Here we aim to estimate air pollution-r...

  5. Significantly reduced health burden from ambient air pollution in the United States under emission reductions from 1990 to 2010

    Science.gov (United States)

    The 2015 Global Burden of Disease (GBD) study has listed air pollution as the fourth-ranking global mortality risk factor. Many studies have estimated the global or national burden of disease attributed to air pollution. However, little effort has been focused on understanding ho...

  6. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    Science.gov (United States)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  7. Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction

    Science.gov (United States)

    Feng, Tong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Shi, Dongping; Guo, Chaozhong; Huang, Yu; Wang, Yi; Cheng, Jing; Li, Yanrong; Diao, Qizhi

    2017-11-01

    Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.

  8. Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes - A Step Towards the Electrochemical CO2 Refinery

    KAUST Repository

    Wang, Hong; Jia, Jia; Song, Pengfei; Wang, Qiang; Li, Debao; Min, Shixiong; Qian, Chenxi; Wang, Lu; Li, Young Feng; Ma, Chun; Wu, Tao; Yuan, Jiayin; Antonietti, Markus; Ozin, Geoffrey A.

    2017-01-01

    The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of renewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.

  9. Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes - A Step Towards the Electrochemical CO2 Refinery

    KAUST Repository

    Wang, Hong

    2017-05-12

    The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of renewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.

  10. Electrochemical characterization of glassy carbon electrode modified with 1,10-phenanthroline groups by two pathways: reduction of the corresponding diazonium ions and reduction of phenanthroline

    International Nuclear Information System (INIS)

    Shul, Galyna; Weissmann, Martin; Bélanger, Daniel

    2015-01-01

    The electrochemical behaviour of 1,10-phenanthroline molecules immobilized on a glassy carbon electrode surface by electrochemical reduction of the corresponding in-situ generated diazonium ions in an aqueous solution was investigated. Firstly, the derivatization of glassy carbon electrode was confirmed by the presence of the barrier effect in the solution of a redox probe. Secondly, atomic force microscopy measurements revealed the deposition of thin (< 2 nm) uniform 1,10-phenanthroline film on the surface of pyrolyzed photoresist film electrode. Thirdly, the initially electrochemically inactive grafted organic film became electroactive after being subjected to electrochemical reduction and oxidation. Fourthly, the electrochemical behaviour of phenanthroline modified electrode by electrochemical reduction of the corresponding diazonium cations was found to be similar to that of electrode modified by electrochemical reduction of only phenanthroline dissolved in an aqueous acid solution. Finally, cyclic voltammetry experiments using various methyl substituted phenanthroline derivatives provided direct evidence that functional groups responsible for the film electroactivity are formed at 5 or/and 6 positions of grafted phenanthroline molecules. On the other hand, a phenanthroline derivative having these positions blocked by methyl groups can also display electroactivity with position 7 being most likely involved in the observed redox process

  11. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation.

    Science.gov (United States)

    Wang, Jing; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2018-01-01

    Metal-free carbon materials have been presented to be potential alternatives to metal-based catalysts for heterogeneous catalytic ozonation, yet the catalytic performance still needs to be enhanced. Doping carbon with non-metallic heteroatoms (e.g., N, B, and F) could alter the electronic structure and electrochemical properties of original carbon materials, has been considered to be an effective method for improving the catalytic activity of carbon materials. Herein, fluorine-doped carbon nanotubes (F-CNTs) were synthesized via a facile method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The as-synthesized F-CNTs exhibited notably enhanced catalytic activity towards catalytic ozonation for the degradation of organic pollutants. The oxalic acid removal efficiency of optimized F-CNTs was approximately two times as much as that of pristine CNTs, and even exceeded those of four conventional metal-based catalysts (ZnO, Al 2 O 3 , Fe 2 O 3 , and MnO 2 ). The XPS and Raman studies confirmed that the covalent CF bonds were formed at the sp 3 C sites instead of sp 2 C sites on CNTs, not only resulting in high positive charge density of C atoms adjacent to F atoms, but remaining the delocalized π-system with intact carbon structure of F-CNTs, which then favored the conversion of ozone molecules (O 3 ) into reactive oxygen species (ROS) and contributed to the high oxalic acid removal efficiency. Furthermore, electron spin resonance (ESR) studies revealed that superoxide radicals (O 2 - ) and singlet oxygen ( 1 O 2 ) might be the dominant ROS that responsible for the degradation of oxalic acid in these catalytic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    International Nuclear Information System (INIS)

    Rogers, Karyne M.

    2003-01-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature (δ 15 N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature (δ 13 C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months

  13. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Karyne M

    2003-07-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature ({delta}{sup 15}N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature ({delta}{sup 13}C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months.

  14. Game Theoretic Analysis of Carbon Emission Reduction and Sales Promotion in Dyadic Supply Chain in Presence of Consumers’ Low-Carbon Awareness

    Directory of Open Access Journals (Sweden)

    Liangjie Xia

    2014-01-01

    Full Text Available The paper studies how the combination of the manufacturer’s carbon emission reduction and the retailer’s emission reduction relevant promotion impacts the performances of a dyadic supply chain in low-carbon environment. We consider three typical scenarios, that is, centralized and decentralized without or with side-payment. We compare measures of supply chain performances, such as profitabilities, emission reduction efficiencies, and effectiveness, in these scenarios. To improve chain-wide performances, a new side-payment contract is designed to coordinate the supply chain and numerical experiments are also conducted. We find the following. (1 In decentralized setting, the retailer will provide emission cutting allowance to the manufacturer only if their unit product profit margin is higher enough than the manufacturer’s, and the emission reduction level of per unit product is a monotonically increasing function with respect to the cost pooling proportion provided by the retailer; (2 the new side-payment contract can coordinate the dyadic supply chain successfully due to its integrating sales promotion effort and emission reduction input, which results in system pareto optimality under decentralized individual rationality but achieves a collective rationality effect in the centralized setting; (3 when without external force’s regulation, consumers’ low-carbon awareness is to enhance consumers’ utility and decrease profits of supply chain firms.

  15. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    Science.gov (United States)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ambient carbon monoxide and daily mortality in three Chinese cities: the China Air Pollution and Health Effects Study (CAPES).

    Science.gov (United States)

    Chen, Renjie; Pan, Guowei; Zhang, Yanping; Xu, Qun; Zeng, Guang; Xu, Xiaohui; Chen, Bingheng; Kan, Haidong

    2011-11-01

    Ambient carbon monoxide (CO) is an air pollutant primarily generated by traffic. CO has been associated with increased mortality and morbidity in developed countries, but few studies have been conducted in Asian developing countries. In the China Air Pollution and Health Effects Study (CAPES), the short-term associations between ambient CO and daily mortality were examined in three Chinese cities: Shanghai, Anshan and Taiyuan. Poisson regression models incorporating natural spline smoothing functions were used to adjust for long-term and seasonal trend of mortality, as well as other time-varying covariates. Effect estimates were obtained for each city and then for the cities combined. In both individual-city and combined analysis, significant associations of CO with both total non-accidental and cardiovascular mortality were observed. In the combined analysis, a 1 mg/m(3) increase of 2-day moving average concentrations of CO corresponded to 2.89% (95%CI: 1.68, 4.11) and 4.17% (95%CI: 2.66, 5.68) increase of total and cardiovascular mortality, respectively. CO was not significantly associated with respiratory mortality. Sensitivity analyses showed that our findings were generally insensitive to alternative model specifications. In conclusion, ambient CO was associated with increased risk of daily mortality in these three cities. Our findings suggest that the role of exposure to CO and other traffic-related air pollutants should be further investigated in China. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Radiative Absorption by Light Absorbing Carbon: Uncertainty, Temporal and Spatial Variation in a Typical Polluted City in Yangtze River Delta

    Science.gov (United States)

    Chen, D.; Zhao, Y.; Lyu, R.

    2017-12-01

    The optical properties of light absorbing carbon (LAC) in atmospheric aerosols, including their uncertainties, temporal change and spatial pattern were studied at suburban, urban and industrial sites in Nanjing, a typical polluted city in Yangtze River Delta (YRD). The optical properties of black carbon (BC) and the uncertainty in radiative absorption of BC were quantified combining cavity attenuated phase shift (CAPS) and thermal-optical techniques. It was found that applying a constant value from previous studies for multiple scattering factor could not well represent the actual absorption characteristics of aerosols in Nanjing. The relative deviation between calculated and measured absorption coefficient of BC was up to 56 ± 34%. A significant positive correlation (R2=0.95) was found between multiple scattering factor (C*) and the mixing state of EC (ECopt/EC) within the ECopt/EC ranged 0.43 0.92 (C*=1.64(ECopt/EC)+1.47, 0.43opt/ECcities with heavy particle pollution, since MSOC served as a surrogate for BrC and EC was measured with reliable and effective methods.

  18. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan [School of Environment, Northeast Normal University, Changchun 130117 (China); Yuan, Xing, E-mail: yuanx@nenu.edu.cn [School of Environment, Northeast Normal University, Changchun 130117 (China); Li, Baikun, E-mail: baikun@engr.uconn.edu [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2017-02-15

    Highlights: • Graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed. • The cytotoxicity detection vessel was miniaturized to the 96-well plate. • The electrochemical behavior of HepG2 cell was investigated for the first time. • The mixture signal of adenine and hypoxanthine was separated successfully. • The biosensor was used to assess the toxicity of heavy metals and phenols. - Abstract: The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24 h IC{sub 50} values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology.

  19. Air pollution

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Air pollution has accompanied and developed with the industrial age, since its beginnings. This very complete review furnishes the toxicological data available for the principal pollutants and assesses the epidemiologic studies thus far conducted. It also describes European regulations and international commitments for the reduction of emissions. (author)

  20. Can air pollutant controls change global warming?

    International Nuclear Information System (INIS)

    Strefler, Jessica; Luderer, Gunnar; Kriegler, Elmar; Meinshausen, Malte

    2014-01-01

    Highlights: • Air pollution policies do not affect long-term climate targets. • Reduction of aerosols counteracts a fraction of the reduction of Kyoto forcing. • Air pollution policies may affect the rate of climate change in the short term. • There is no tradeoff between clean air and climate policies. - Abstract: In this paper we analyze the interaction between climate and air pollution policies using the integrated assessment model REMIND coupled to the reduced-form climate model MAGICC. Since overall, aerosols tend to cool the atmosphere, there is a concern that a reduction of pollutant emissions could accelerate global warming and offset the climate benefits of carbon dioxide emission reductions. We investigate scenarios which independently reduce emissions from either large-scale sources, such as power plants, or small-scale sources, such as cooking and heating stoves. Large-scale sources are likely to be easier to control, but their aerosol emissions are characterized by a relatively high sulfur content, which tends to result in atmospheric cooling. Pollution from small-scale sources, by contrast, is characterized by a high share of carbonaceous aerosol, which is an important contributor to global warming. We find that air pollution policies can significantly reduce aerosol emissions when no climate policies are in place. Stringent climate policies lead to a large reduction of fossil fuel use, and therefore result in a concurrent reduction of air pollutant emissions. These reductions partly reduce aerosol masking, thus initially counteracting the reduction of greenhouse gas forcing, however not overcompensating it. If climate policies are in place, air pollution policies have almost no impacts on medium- and long-term radiative forcing. Therefore there is no conflict of objectives between clean air and limiting global warming. We find that the stringency of air pollution policies may influence the rate of global temperature change in the first decade

  1. Metal- and Carbon-Based Materials as Heterogeneous Electrocatalysts for CO₂ Reduction.

    Science.gov (United States)

    Khan, Azam; Ullah, Haseeb; Nasir, Jamal Abdul; Shuda, Suzanne; Chen, Wei; Khan, M Abdullah

    2018-05-01

    Climate change caused by continuous rising level of CO2 and the depletion of fossil fuels reserves has made it highly desirable to electrochemically convert CO2 into fuels and commodity chemicals. Implementing this approach will close the carbon cycle by recycling CO2 providing a sustainable way to store energy in the chemical bonds of portable molecular fuels. In order to make the process commercially viable, the challenge of slow kinetics of CO2 electroreduction and low energy efficiency of the process need to be addressed. To this end, this review summarizes the progress made in the past few years in the development of heterogeneous electrocatalysts with a focus on nanostructured material for CO2 reduction to CO, HCOOH/HCOO-, CH2O, CH4, H2C2O4/HC2O-4, C2H4, CH3OH, CH3CH2OH, etc. The electrocatalysts presented here are classified into metals, metal alloys, metal oxides, metal chalcogenides and carbon based materials on the basis of their elemental composition, whose performance is discussed in light of catalyst activity, product selectivity, Faradaic efficiency (FE), catalytic durability and in selected cases mechanism of CO2 electroreduction. The effect of particle size, morphology and solution-electrolyte type and composition on the catalyst property/activity is also discussed and finally some strategies are proposed for the development of CO2 electroreduction catalysts. The aim of this article is to review the recent advances in the field of CO2 electroreduction in order to further facilitate research and development in this area.

  2. Radiolytic and photochemical reduction of carbon dioxide in solution catalyzed by transition metal complexes with some selected macrocycles

    International Nuclear Information System (INIS)

    Grodkowski, J.

    2004-01-01

    The main goal of the work presented in this report is an explanation of the mechanism of carbon dioxide (CO 2 ) reduction catalyzed by transition metal complexes with some selected macrocycles. The catalytic function of two electron exchange centers in the reduction of CO 2 , an inner metal and a macrocycle ring, was defined. Catalytic effects of rhodium, iron and cobalt porphyrins, cobalt and iron phthalocyanines and corroles as well as cobalt corrins have been investigated. CO 2 reduction by iron ions without presence of macrocycles and also in presence of copper compounds in aqueous solutions have been studied as well

  3. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  4. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    Science.gov (United States)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  5. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  6. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area,

  7. Aging of black carbon particles under polluted urban environments: timescale, hygroscopicity and enhanced absorption and direct radiative forcing

    Science.gov (United States)

    Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Levy Zamora, M.; Shao, M.; Wu, Y.; Zheng, J.; Wang, Y.; Zeng, L.; Collins, D. R.; Molina, M.; Zhang, R.

    2017-12-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the hygroscopic and optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using an outdoor environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. The κ (kappa) values of coating materials are calculated as 0.04 at both subsaturation and supersaturation conditions, respectively, indicating that the initial photochemical aging of BC particles does not appreciably alter the BC hygroscopicity. Our findings suggest that BC aging under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  8. New market mechanism and its implication for carbon reduction in China

    International Nuclear Information System (INIS)

    Gao, Shuai; Smits, Mattijs; Mol, Arthur P.J.; Wang, Can

    2016-01-01

    This article presents a detailed review and analysis of the discussions around the new market mechanism (NMM) and explores its potential in China. It contributes to the current discussion of the NMM in three aspects. First, this article attempts to streamline ideas about the NMM. The term NMM is considered to be an umbrella concept for emission trading systems which all Parties can engage in on a voluntary basis in the implementation of their intended nationally determined contributions, and which need to satisfy three criteria: (i) having a large scale scope; (ii) aiming to facilitate a net emission reduction; (iii) allowing flexibility for the host country. We also present a framework to clarify the NMM. Based on this framework, major options with a high implementation potential are identified. Second, we argue that the national-level operational framework determines the chance of successful implementation of the NMM. We identify different options based on a literature survey and evaluate them with respect to effectiveness and efficiency. Third, we choose China, a highly influential country regarding climate change polices, as a case to analyze the potential contributions and challenges of the NMM and its implementation at different stages of national development. - Highlights: • The paper aims to contribute to the discussion of the NMM for further development. • A framework including four key elements to conceptualize the NMM is established. • The national-level operational framework of the NMM is presented and assessed. • Four contributions of the NMM are explored for carbon reduction in China. • Implementation of the NMM at different stages of China's development is explored.

  9. Missing carbon reductions? Exploring rebound and backfire effects in UK households

    International Nuclear Information System (INIS)

    Druckman, Angela; Chitnis, Mona; Sorrell, Steve; Jackson, Tim

    2011-01-01

    Households are expected to play a pivotal role in reducing the UK's greenhouse gas (GHG) emissions, and the UK Government is encouraging specific household actions to help meet its targets. However, due to the rebound effect, only a portion of the GHG emission reductions estimated by simple engineering calculations are generally achieved in practice. For example, replacing short car journeys by walking or cycling reduces consumption of motor fuels. But this frees up money that may be spent on, for example, purchasing extra clothes or flying on vacation. Alternatively, the money may be put into savings. Since all of these options lead to GHG emissions, total GHG savings may be less than anticipated. Indeed, in some instances, emissions may increase-a phenomenon known as 'backfire'. We estimate that the rebound effect for a combination of three abatement actions by UK households is approximately 34%. Targeting re-spending on goods and services with a low GHG intensity reduces this to a minimum of around 12%, while re-spending on goods and services with a high GHG intensity leads to backfire. Our study highlights the importance of shifting consumption to lower GHG intensive categories and investing in low carbon investments. - Highlights: → Policy-makers should be mindful of the rebound effect when developing strategies. → Due to rebound, only around two thirds of expected GHG reductions may be achieved. → Re-use of avoided expenditure is critical; in extreme case backfire may occur. → Higher savings reduce rebound: 'green' investments minimise rebound. → Theoretically negative rebound is possible through 'green' technology investment.

  10. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    Science.gov (United States)

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  11. Chapter 19: The carbon isotope composition of plants and soils as biomarkers of pollution

    Science.gov (United States)

    DE Pataki; JT Eanderson; W Want; MK Herzenach; NE Grulke

    2010-01-01

    Urban environments have been compared to the global environment predicted at the end of the twenty-first century, in that urban areas are currently experiencing elevated atmospheric C02 concentrations, warmer temperatures, increased nitrogen loads, and elevated concentrations of pollutants (Grimm et al. 2000). It is extremely difficult to predict...

  12. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    NARCIS (Netherlands)

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater

  13. Air pollution studies in terms of particulate matters, elements and black carbon in the aerosols collected at Andravoahangy-Antananarivo

    International Nuclear Information System (INIS)

    HARINOELY, M.

    2012-01-01

    This work was performed at the Institut National des Sciences et Techniques Nucleaires (Madagascar-INSTN) in the framework of RAF/4/019 project organized by the International Atomic Energy Agency. The main objective of this work is to study the level of air pollution in terms of particulate matters, elements and black carbon in the site of Andravoahangy-Antananarivo and to transmit the results obtained to the competent authorities so that they can make decisions to reduce the impacts of air pollution on the population. The total reflection X-ray fluorescence spectrometer is used for qualitative and quantitative analyses of the elements contained in the aerosols and the reflectometer M43D for the determination of the black carbon concentrations. The results showed that the average concentrations of the particulate matters PM 2,5-10 are higher than those of PM 2,5 . The average concentrations of PM 10 in the aerosols are exceeding the World Health Organisation (WHO) and European Union guidelines, set at 50 μg.m -3 and those of PM 2,5 are higher than the 2005 WHO (25 μg.m -3 ) and the United States Environmental Protection Agency (35 μg.m -3 ) guidelines. The identified elements in the aerosols are Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The concentrations of black carbon are higher in the fine particles, with a maximum value of 9.12 μg.m -3 . [fr

  14. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon

    Science.gov (United States)

    Dons, Evi; Van Poppel, Martine; Kochan, Bruno; Wets, Geert; Int Panis, Luc

    2013-08-01

    Land use regression (LUR) modeling is a statistical technique used to determine exposure to air pollutants in epidemiological studies. Time-activity diaries can be combined with LUR models, enabling detailed exposure estimation and limiting exposure misclassification, both in shorter and longer time lags. In this study, the traffic related air pollutant black carbon was measured with μ-aethalometers on a 5-min time base at 63 locations in Flanders, Belgium. The measurements show that hourly concentrations vary between different locations, but also over the day. Furthermore the diurnal pattern is different for street and background locations. This suggests that annual LUR models are not sufficient to capture all the variation. Hourly LUR models for black carbon are developed using different strategies: by means of dummy variables, with dynamic dependent variables and/or with dynamic and static independent variables. The LUR model with 48 dummies (weekday hours and weekend hours) performs not as good as the annual model (explained variance of 0.44 compared to 0.77 in the annual model). The dataset with hourly concentrations of black carbon can be used to recalibrate the annual model, resulting in many of the original explaining variables losing their statistical significance, and certain variables having the wrong direction of effect. Building new independent hourly models, with static or dynamic covariates, is proposed as the best solution to solve these issues. R2 values for hourly LUR models are mostly smaller than the R2 of the annual model, ranging from 0.07 to 0.8. Between 6 a.m. and 10 p.m. on weekdays the R2 approximates the annual model R2. Even though models of consecutive hours are developed independently, similar variables turn out to be significant. Using dynamic covariates instead of static covariates, i.e. hourly traffic intensities and hourly population densities, did not significantly improve the models' performance.

  15. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    Science.gov (United States)

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed