WorldWideScience

Sample records for carbon nanotubes supported

  1. Production of defects in supported carbon nanotubes under ion irradiation

    International Nuclear Information System (INIS)

    Ion irradiation of individual carbon nanotubes deposited on substrates may be used for making metallic nanowires and studying effects of disorder on the electronic transport in low-dimensional systems. In order to understand the basic physical mechanisms of radiation damage production in supported nanotubes, we employ molecular dynamics and simulate ion impacts on nanotubes lying on different substrates, such as platinum and graphite. We show that defect production depends on the type of the substrate and that the damage is higher for metallic heavy-atom substrates than for light-atom substrates, since in the former case sputtered metal atoms and backscattered recoils produce extra damage in the nanotube. We further study the behavior of defects upon high-temperature annealing and demonstrate that although ions may severely damage nanotubes in a local region, the nanotube carbon network can heal such a strong localized damage due to defect migration and dangling-bond saturation. We also show that after annealing the residual damage in nanotubes is independent of the substrate type. We predict the pinning of nanotubes to substrates through nanotube-substrate bonds that appear near irradiation-induced defects

  2. Simulation of scanning tunneling spectroscopy of supported carbon nanotubes

    International Nuclear Information System (INIS)

    The angle and energy dependent transmission of wave packets was calculated through a jellium potential model of a scanning tunneling microscope (STM) junction containing different arrangements of carbon nanotubes. The total tunnel current as a function of STM bias was calculated by statistical averaging over a distribution of wave packets in the allowed energy window. Three tunneling situations were studied: (i) a STM tunnel junction with no nanotube present, (ii) one single wall nanotube in the STM junction, and (iii) a nanotube 'raft'. The effects of point contacts at the STM tip/nanotube, at the nanotube/substrate, and at both interfaces were also investigated. The theory allowed us to identify components of pure geometrical origin responsible for the asymmetry in the scanning tunneling spectroscopy (STS) spectrum of the carbon nanotubes with respect to bias voltage polarity. The calculations show that for tip negative bias the angular dependence of the transmission is determined by the tip shape. The particular tip shape introduces an asymmetry on the negative side of the STS spectrum. For tip positive bias the angular dependence of the transmission depends strongly on the nature of the nanosystem in the STM gap. While the transmission of the STM tunnel junction with no nanotube present can be well represented by a one dimensional model, all other geometries cause a large normal-transverse momentum mixing of the wave packet. A diffraction-grating-like behavior is seen in the angular dependence of the transmission of the nanotube raft. Point contacts between the nanotube and the substrate cause an asymmetry in the positive side of the STS spectrum. Calculated STS spectra are compared to experimental ones

  3. Support effect on carbon nanotube growth by methane chemical vapor deposition on cobalt catalysts

    International Nuclear Information System (INIS)

    The influence of the support on carbon nanotube production by methane chemical vapor deposition (CVD) on cobalt catalysts was investigated. N2 physisorption, X-ray diffractometry (XRD), temperature programmed reduction (TPR) and H2 and CO chemisorption techniques were used to characterize the structure of cobalt catalysts supported on different metal oxides (Al2O3, SiO2, Nb2O5 and TiO2). Raman spectroscopy, temperature programmed oxidation (TPO) and scanning electron microscopy (SEM) were used for the characterization and quantification of produced carbon species. On carbon nanotube growth, the catalyst produced three main carbon species: amorphous carbon, single walled carbon nanotubes (SWNT) and multi walled carbon nanotubes (MWNT). The characterization techniques showed that the catalyst selectivity to each kind of nanotube depended on the cobalt particle size distribution, which was influenced by the textural properties of the support. Co/TiO2 showed the highest selectivity towards single wall nanotube formation. This high selectivity results from the narrow size distribution of cobalt particles on TiO2. (author)

  4. Novel Carbon Nanotubes-supported NiB Amorphors Alloy Catalyst for Benzene Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Mei Hua YANG; Rong Bin ZHANG; Feng Yi LI

    2004-01-01

    The NiB amorphous alloy catalysts supported on CNTs and alumina were prepared by impregnation and chemical reduction. The gas-phase benzene hydrogenation was used as a probe reaction to evaluate the catalytic activity. The result showed that the NiB amorphous alloy catalyst supported on carbon nanotubes exhibited higher activity than that supported on alumina.

  5. Catalytic production of carbon nanotubes over first row transition metal oxides supported on montmorillonite

    International Nuclear Information System (INIS)

    Clay-carbon nanotube composites were prepared by employing the catalytic chemical vapor deposition method (CCVD) over different transition metal oxides supported on montmorillonite. Various analytical techniques including SEM, TEM, XRD and DTA/TGA were used for the characterization of the final composite materials. The morphology, quality and structure of the produced nanotubes is shown to be dependent on the type of transition metals

  6. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    OpenAIRE

    Yangchuan Xing; Liang Li

    2009-01-01

    Carbon nanotubes (CNTs) have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt 53 Ru 47 /CNT, Pt 69 Ru 31 /CNT and Pt 77 Ru 23 /CNT, were prepared and investigated in detail. Experiments were conducted at ...

  7. CARBON NANOTUBES VIA METHANE DECOMPOSITION ON AN ALUMINA SUPPORTED COBALT AEROGEL CATALYST

    Institute of Scientific and Technical Information of China (English)

    Lingyu Piao; Jiuling Chen; Yongdan Li

    2003-01-01

    An alumina-supported cobalt aerogel catalyst prepared from a sol-gel and a supercritical drying method was used in the catalytic decomposition of methane. The physical-chemical properties of the catalyst were characterized and its activity for methane decomposition was investigated. The effects of calcination and reaction temperatures on the activity of the catalyst and the morphology of the carbon nanotubes produced were discussed. A CoAl2O4 spinel structure formed in the calcined catalyst. The quantity of the nanotubes produced in the reaction increases with the amount of cobalt in the reduced catalyst. A higher reaction temperature leads to a higher reaction rate, though faster deactivation of the catalyst occurs with the change. The carbon nanotubes grown on the catalyst have smooth walls and uniform diameter distribution.

  8. Two types of carbon nanocomposites: Graphite encapsulated iron nanoparticles and thin carbon nanotubes supported on thick carbon nanotubes, synthesized using PECVD

    International Nuclear Information System (INIS)

    In this work, graphite encapsulated Fe nanoparticles and thin carbon nanotubes (CNTs) supported on the pristine CNTs, respectively, were synthesized using plasma enhanced chemical vapor deposition via efficiently controlling the flow rate of discharging CH4 and H2 gas. The properties of the obtained hybrid materials were characterized with superconducting quantum interference and field emission measurements. The results showed that the encapsulated Fe nanoparticles had diameters ranging from 1 to 30 nm, and this hybrid nanocomposite exhibited a ferromagnetic behavior at room temperature. Thin CNTs with an average diameter of 6 nm were attached to the surface of the prepared CNTs, which exhibited a lower turn-on field and higher emission current density than the pristine CNTs. The Fe nanoparticles either encapsulated with graphite or used as catalyst for thin CNTs growth were all originated from the pyrolysis of ferrocene. - Graphical abstract: Graphite encapsulated Fe nanoparticles and thin carbon nanotubes supported on the pristine carbon nanotubes, respectively, were synthesized using plasma enhanced chemical vapor deposition.

  9. Multi-wall carbon nanotubes supported on carbon fiber paper synthesized by simple chemical vapor deposition

    International Nuclear Information System (INIS)

    Highlights: • We deposited multi-wall carbon nanotubes on carbon fiber paper with a simple CVD. • We investigated the inherent mechanism of Ni particle's self-dispersion. • The MWCNTs/CFP composite possesses wonderful electrical conductivity. - Abstract: Aiming at developing a novel carbon/carbon composite as an electrode in the electrochemical capacitor applications, multi-wall carbon nanotubes (MWCNTs)/carbon fiber paper (CFP) composite has been synthesized using a simple chemical vapor deposition, in which different metal catalysts such as Fe, Ni and Cu are used. However, randomly oriented MWCNTs were only obtained on Ni particles. The mechanism for this unique phenomenon is investigated in this article. The physical and electrochemical properties of as-prepared MWCNTs/CFP composite are characterized and the results show that the as-prepared composite is a promising substrate for electrochemical capacitor applications

  10. CATALYTIC WET AIR OXIDATION OF INDUSTRIAL EFFLUENTS USING A Pt CATALIST SUPPORTED ON MULTIWALLED CARBON NANOTUBES

    OpenAIRE

    Gabriel Ovejero; José L. Sotelo; Araceli Rodríguez; Ana Vallet; Juan García

    2011-01-01

    In this work, catalytic wet air oxidation in a batch reactor was studied by catalytic wet air oxidation to treat industrial wastewater. Basic Yellow 11, a basic dye, was employed as a model compound and platinum supported over multi-walled nanotubes (Pt/MWNT) was used as catalyst. Additionally, two different industrial wastewaters were tested. The results prove the high effectivity of this treatment, showing high extents of total organic carbon and toxicity removal of the final effluent. We c...

  11. Synthesis and characterization of platinum nanoparticles on single-walled Carbon nanotube 'nanopaper' support

    International Nuclear Information System (INIS)

    We prepared several samples of carbon-nanotube-supported Pt nanoparticles that are potentially promising electrocatalysts for hydrogen fuel cells. Commercially obtained single-walled carbon nanotubes (SWNTs) were characterized by Raman Spectroscopy, SEM, TEM, EDS, and XANES. This multi-technique characterization allowed us to quantify the size and composition of metal impurities (Mo, Co) in SWNTs, to choose the best method to remove them, and characterize the effectiveness of their removal. After synthesizing a 'nanopaper' (10-20 micrometer thick, free standing sheets of self-assembled SWNTs) we decorated it with Pt nanoparticles by electroless deposition. Formation of Pt nanoparticles was verified by EXAFS, and quantitative information about their size and structure was obtained.

  12. Carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts for methanol electro-oxidation.

    Science.gov (United States)

    Li, Xingwei; Wei, Jiadi; Chai, Yuzheng; Zhang, Shuo

    2015-07-15

    Carbon nanotubes/tin oxide nanocomposite (MWCNTs-SnO2) was obtained via the hydrolysis of SnCl4 in the presence of multi-walled carbon nanotubes (MWCNTs) and subsequent calcinations. And carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts (Pt/MWCNTs-SnO2) were prepared by in-situ liquid phase reduction using H2PtCl6 as a metal precursor. As-prepared catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), and their catalytic performances were evaluated by chronoamperometry (CA) and cyclic voltammetry (CV). Desirable catalytic performance for methanol electro-oxidation was observed with a reduced size and an improved dispersion of Pt catalysts on the MWCNTs-SnO2 nanocomposite. The calcination temperature of MWCNTs-SnO2 nanocomposite was a key factor for controlling the catalytic performance of Pt/MWCNTs-SnO2 catalysts. PMID:25801135

  13. Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation

    International Nuclear Information System (INIS)

    Palladium nanoparticles were produced and supported on multiwalled carbon nanotubes (MWCNT) by gamma irradiation. A solution with a specific ratio of 2:1 of water-isopropanol was prepared and mixed with palladium chloride and the surfactant sodium dodecyl sulfate (SDS). The gamma radiolysis of water ultimately produces Pd metallic particles that serve as nucleation seeds. Isopropanol is used as an ion scavenger to balance the reaction, and the coalescence of the metal nanoparticles was controlled by the addition of SDS as a stabilizer. The size and distribution of nanoparticles on the carbon nanotubes (CNT) were studied at different surfactant concentrations and radiation doses. SEM, STEM and XPS were used for morphological, chemical and structural characterization of the nanostructure. Nanoparticles obtained for doses between 10 and 40 kGy, ranged in size 5-30 nm. The smaller nanoparticles were obtained at the higher doses and vice versa. Histograms of particle size distributions at different doses are presented. - Highlights: → Palladium nanoparticles deposited on multiwalled carbon nanotubes by gamma irradiation. → Dependence of size and distribution of the nanoparticles on dose and surfactant evaluated. → Interaction of Pd and CNTs explained by the formation of Pd-O on the surface of the CNTs. → Distribution of palladium particles with an average size of 5 nm obtained at 40 kGy and 0.07 M SDS.

  14. Plasma Syntheses of Carbon Nanotube-Supported Pt-Pd Nanoparticles

    Science.gov (United States)

    Song, Ye; Wang, Qi; Meng, Yuedong

    2016-04-01

    It is reported that the highly dispersed Pt nanoparticles on carbon nanotubes can be synthesized under mild conditions by in situ plasma treatment. The carbon nanotube was pretreated by O2 plasma to transform into oxide carbon nanotubes (O-CNTs), and then it was mixed with the precursors (the mixture of H2PtCl6 and PdCl6). After that, the O-CNTs and the precursors were simultaneously treated by H2 plasma. The precursors were transformed into Pt-Pd nanoparticles (NPs) and the O-CNTs transformed into CNT. The synthesized CNT-based Pt-Pd nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. All the analysis showed that the Pt-Pd nanoparticles were deposited on CNT as a form of face-centered cubical structure. supported by National Natural Science Foundation of China (Nos. 11305218,11575253), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015262), the CASHIPS Director's Fund (No. YZJJ201505) and Anhui Provincial Natural Science Foundation for Distinguished Young Scholars of China (No. 1608085J03)

  15. Single-walled carbon nanotube buckypapers as electrocatalyst supports for methanol oxidation

    OpenAIRE

    Sieben, J.M.; Ansón Casaos, Alejandro; Martínez, M.Teresa; E. Morallón

    2013-01-01

    This work studies the use of various single-walled carbon nanotube (SWCNT) buckypapers as catalyst supports for methanol electro-oxidation in acid media. Buckypapers were obtained by vacuum filtration from pristine and oxidized SWCNT suspensions in different liquid media. Pt-Ru catalysts supported on the buckypapers were prepared by multiple potentiostatic pulses using a diluted solution of Pt and Ru salts (2 mM H2PtCl6 + 2 mM RuCl3) in acid media. The resulting materials were characterized v...

  16. thesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts

    Directory of Open Access Journals (Sweden)

    Sanja Ratković

    2009-10-01

    Full Text Available Carbon nanotubes (CNTs were synthesized by a catalytic chemical vapor deposition method (CCVD of ethylene over alumina and silica supported bimetallic catalysts based on Fe, Co and Ni. The catalysts were prepared by a precipitation method, calcined at 600 °C and in situ reduced in hydrogen flow at 700 °C. The CNTs growth was carried out by a flow the mixture of C2H4 and nitrogen over the catalyst powder in a horizontal oven. The structure and morphology of as-synthesized CNTs were characterized using SEM. The as-synthesized nanotubes were purified by acid and basic treatments in order to remove impurities such as amorphous carbon, graphite nanoparticles and metal catalysts. XRD and DTA/TG analyses showed that the amounts of by-products in the purified CNTs samples were reduced significantly. According to the observed results, ethylene is an active carbon source for growing high-density CNTs with high yield but more on alumina-supported catalysts than on their silica- supported counterparts. The last might be explained by SMSI formed in the case of alumina-supported catalysts, resulting in higher active phase dispersion.

  17. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  18. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    International Nuclear Information System (INIS)

    Highlights: ► Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. ► MnOx were supported on MWCNTs to serve as catalyst for ozonation. ► MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. ► MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. ► MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO·) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide–OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on MnOx/MWCNT catalytic ozonation.

  19. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  20. Plumbing carbon nanotubes

    Science.gov (United States)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  1. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  2. Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application

    Science.gov (United States)

    Wei, Guanjie; Jia, Chuankun; Liu, Jianguo; Yan, Chuanwei

    2012-12-01

    A modified electrode for vanadium redox flow battery (VRFB) has been developed in this paper. The electrode is based on a traditional carbon felt (CF) grafted with the short-carboxylic multi-walled carbon nanotubes (MWCNTs). The microstructure and electrochemical property of the modified electrode as well as the performance of the VRFB single cell with it have been characterized. The results show that the MWCNTs are evenly dispersed and adhere to the surface of carbon fibres in the CF. The electrochemical activities of the modified CF electrode have been improved dramatically and the reversibility of the VO2+/VO2+ and V3+/V2+ redox couples increased greatly. The VRFB single cell with the modified CF exhibits higher coulombic efficiency (93.9%) and energy efficiency (82.0%) than that with the pristine CF. The SEM analysis shows that the MWCNTs still cohere with carbon fibres after charge and discharge test, indicating the stability of the MWCNTs in flowing electrolyte. Therefore, the composite electrode presents considerable potential for the commercial application of CF in VRFB.

  3. Particle size effects in Fischer-Tropsch synthesis by Co catalyst supported on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Ali Nakhaei Pour; Elham Hosaini; Mohammad Izadyar; Mohammad Reza Housaindokht

    2015-01-01

    The effect of Co particle size on the Fischer-Tropsch synthesis (FTS) activity of carbon nanotube (CNT)-supported Co catalysts was investigated. Microemulsion (using water-to-surfactant molar ratios of 2 to12) and impregnation techniques were used to prepare catalysts with different Co particle sizes. Kinetic studies were performed to understand the effect of Co particle size on catalytic activity. Size-dependent kinetic parameters were developed using a thermodynamic method, to evaluate the structural sensitivity of the CNT-supported Co catalysts. The size-independent FTS reaction rate constant and size-independent adsorption parameter increased with increasing reac-tion temperature. The Polani parameter also depended on catalyst particle size, because of changes in the catalyst surface coverage.

  4. Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support

    International Nuclear Information System (INIS)

    Highlights: → Multi-walled carbon nanotubes (MWCNTs) were used as a support for Pt nanoparticles. → Modification of oxidized MWCNTs by ethylenediamine is necessary for high Pt loading. → Pt nanoparticles are homogenously distributed on the support without agglomeration. → The activity of the catalyst for oxygen reduction matches the commercial catalyst. - Abstract: Multi-walled carbon nanotubes (MWCNTs) were used as a support for Pt nanoparticles prepared by the microwave-assisted polyol method. The MWCNTs were pretreated by chemical oxidation (o-MWCNTs) followed by modification by ethylenediamine (eda-MWCNTs). Characterization of both oxidized and eda-modified materials by UV-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy revealed that the modification by eda leads to (i) agglomeration of the MWCNTs, (ii) a decrease in the capacitance of the material and (iii) reduced rate of electron transfer between the MWCNTs and solution species. However, the Pt loading of Pt/o-MWCNTs was only 2 mass% while the loading of Pt/eda-MWCNTs was 20 mass%. Much higher efficiency of Pt deposition on eda-MWCNTs than on o-MWCNTs was ascribed to the shift in pHpzc value of the MWCNT surface from 2.43 to 5.91 upon modification by eda. Transmission electron microscopy revealed that the mean diameter of the Pt particles in Pt/eda-MWCNTs is 2.5 ± 0.5 nm and that their distribution on the support is homogenous with no evidence of pronounced particle agglomeration. Cyclic voltammetry of a Pt/eda-MWCNT thin film indicated a clean Pt surface with well-resolved peaks characteristic of polycrystalline Pt. Its electrocatalytic activity for oxygen reduction was examined and the results corresponded to the commercial Pt nanocatalyst. This study shows that modification of o-MWCNTs by eda helps to achieve homogenous distribution of small Pt nanoparticles and does not impede its electrocatalytic activity.

  5. Silver nanoparticles supported on carbon nanotube carpets: influence of surface functionalization.

    Science.gov (United States)

    Karumuri, Anil K; Oswal, Dhawal P; Hostetler, Heather A; Mukhopadhyay, Sharmila M

    2016-04-01

    The effectiveness of nanoparticle-based functional devices depends strongly on the surface morphology and area of the support. An emerging powerful approach of increasing the available surface area without decreasing strength or increasing bulk is to attach arrays of suitable nanotubes on the surface, and to attach the necessary nanoparticles to them. Earlier publications by this team have shown that carpet-like arrays of carbon nanotubes (CNTs) can be successfully grown on a variety of larger carbon substrates such as graphite, foams and fabric, which offer hierarchical multiscale supporting architecture suitable for the attachment of silver nanoparticles (AgNPs). A limiting factor of pure CNT arrays in fluid-based applications is their hydrophobicity, which can reduce the percolation of an aqueous medium through individual nanotubes. Previous studies have demonstrated that the treatment of CNT carpets with dry (oxygen) plasma can induce reversible wettability, and treatment with wet (sol-gel) coating can impart permanent wettability. In this paper, we report the influence of such treatments on the attachment of AgNPs, and their effectiveness in water disinfection treatments. Both types of hydrophilic surface treatment show an increase in silver loading on the CNT carpets. Oxygen-plasma treated surfaces (O-CNT) show fine and densely packed AgNPs, whereas silica-coated nanotubes (silica-CNT) show uneven clusters of AgNPs. However, O-CNT surfaces lose their hydrophilicity during AgNP deposition, whereas silica-CNT surfaces remain hydrophilic. This difference significantly impacts the antibacterial effectiveness of these materials, as tested in simulated water containing Gram negative Escherichia coli (E. coli, JM109). AgNPs on silica-coated CNT substrates showed significantly higher reduction rates of E. coli compared to AgNPs on plasma-treated CNT substrates, despite the finer and better dispersed AgNP distribution in the latter. These results provide important

  6. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  7. Carbon nanotubes decorating methods

    OpenAIRE

    A.D. Dobrzańska-Danikiewicz; D. Łukowiec; D. Cichock; W. Wolany

    2013-01-01

    Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studie...

  8. Functionalization of Carbon Nanotubes

    OpenAIRE

    Abraham, Jürgen

    2005-01-01

    Carbon nanotubes have an enormous potential due to their outstanding electronic, optical, and mechanical properties. However, any technological application is still hindered due to problems regarding the processibility of the pristine carbon nanotubes. In the past few years, it has been shown that the chemical modification of the carbon nanotubes is an inevitable step prior to their application. The first part of this work (chapter 3.1) was focused on the purification of pristine laser ablati...

  9. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    Science.gov (United States)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  10. Preparation and Characterization of Carbon Nanotubes-Coated Cordierite for Catalyst Supports

    Institute of Scientific and Technical Information of China (English)

    Jianmei Wang; Rong Wang; Xiujin Yu; Jianxin Lin; Feng Xie; Kemei Wei

    2006-01-01

    The carbon nanotubes-coated cordierite (CNTs-cordierite) was fabricated by pyrolysis of ethine on cordierite with iron catalyst, which was penetrated into the cordierite substrate by vacuum impregnation. The cordierite substrate, carbon naontubes, and CNTs-cordierite were characterized by SEM, TEM/HREM, BET, and TGA. The results show that the carbon nanotubes were distributed uniformly on the surface of cordierite. A significant increase in BET surface area and pore volume was observed, and a suitable pore-size distribution was obtained. On the CNTs-cordierite, carbon nanotubes penetrated into the cordierite substrate, which led to a remarkable stability of the CNTs against ultrasound maltreatment. Growth time is an important factor for thermostability and texture of the sample. The mass increased but the purity decreased with the growth time, which caused the exothermic peak shift to low temperature, and the corresponding full width half maximum (FWHM) of the peak in DTG increased.

  11. Room-temperature synthesis and electrocatalysis of carbon nanotubes supported palladium–iron alloy nanoparticles

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) supported palladium–iron bimetallic nanoparticles (Pd–Fe/CNTs) catalyst is synthesized using palladium hexacyanoferrate (PdHCF) as reaction precursor. In this method, the negatively charged PdHCF nanoparticles self-assemble on the positively charged polydiallyldimethylammonium chloride (PDDA) functionalized CNTs through electrostatic interaction, and then are reduced to Pd–Fe alloy nanoparticles by sodium borohydride. The physicochemical properties of Pd–Fe/CNTs are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). These structural analyses reveal that the Pd–Fe/CNTs catalyst possesses the high alloying degree and the small particle size. Electrochemical measurements show that the eletrocatalytic activity of the Pd–Fe/MWCNTs catalyst for the methanol oxidation is better than that of the Pd/CNTs catalyst, which originates from the synergistic effect between Pd atom and Fe atom

  12. CO2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes

    Indian Academy of Sciences (India)

    Ly May Chew; Holger Ruland; Hendrik J Schulte; Wei Xia; Martin Muhler

    2014-03-01

    Hydrogenation of CO2 to hydrocarbons over iron nanoparticles supported on oxygenfunctionalized multi-walled carbon nanotubes was studied in a fixed-bed U-tube reactor at 25 bar with a H2:CO2 ratio of 3. Conversion of CO2 was approximately 35% yielding C1-C5 products at 360°C with methane and CO as major products. The CO2 equilibrium conversion for temperatures in the range of 320° to 420°C was analysed by using CHEMCAD simulation software. Comparison between experimental and simulated degrees of CO2 conversion shows that reverse water gas shift equilibrium had been achieved in the investigated temperature range and that less than 47% of CO2 can be converted to CO at 420°C.

  13. Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell

    Science.gov (United States)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Martins da Silva, Júlio César; Antonio de Sá, Osvaldo; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Coelho dos Santos, Mauro

    2015-02-01

    Pd and PdSn (Pd:Sn atomic ratios of 90:10), supported on Multi Wall Carbon Nanotubes (MWCNT) or Carbon (C), are prepared by an electron beam irradiation reduction method. The obtained materials are characterized by X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV). The activity for ethanol electro-oxidation is tested in alkaline medium, at room temperature, using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct ethanol fuel cell (ADEFC), in the temperature range of 60-90 °C. CV analysis finds that Pd/MWCNT and PdSn/MWCNT presents onset potentials changing to negative values and high current values, compared to Pd/C and PdSn/C electrocatalysts. ATR-FTIR analysis, performed during the CV, identifies acetate and acetaldehyde as principal products formed during the ethanol electro-oxidation, with low conversion to CO2. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 ethanol in 2.0 mol L-1 KOH solutions, the electrocatalysts supported on MWCNT, also, show higher power densities, compared to the materials supported on carbon: PdSn/MWCNT, presents the best result (36 mW cm-2). The results show that the use of MWCNT, instead of carbon, as support, plus the addition of small amounts of Sn to Pd, improves the electrocatalytic activity for Ethanol Oxidation Reaction (EOR).

  14. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes

    Indian Academy of Sciences (India)

    B Rajesh; K Ravindranathan Thampi; J -M Bonard; B Viswanathan

    2000-10-01

    The template carbonization of polyphenyl acetylene yields hollow, uniform cylindrical carbon nanotubes with outer diameter almost equal to pore diameter of the template used. High resolution transmission electron microscopic investigation reveals that Pt–Ru nanoparticles are highly dispersed inside the tube with an average particle size of 1.7 nm.

  15. One-step synthesis of carbon nanotubes-copper composites for fabricating catalyst supports of methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shaoyan; Fan Guoli; Zhang Chunfang [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029 (China); Li Feng, E-mail: lifeng_70@163.com [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029 (China)

    2012-07-16

    One-step synthesis of carbon nanotubes-copper composites was established by catalytic chemical vapor deposition (CCVD) of acetylene over Co-Cu-Al mixed metal oxides derived from layered double hydroxides (LDHs). Power X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Raman spectra, thermogravimetric and differential thermal analysis (TG-DTA) and N{sub 2} adsorption-desorption measurements revealed that multi-walled carbon nanotubes were synthesized during cobalt-catalyzed CCVD, and copper nanoparticles were simultaneously in situ formed in CNTs matrix. Electrodes modified with platinum particles supported on as-fabricated CNTs-Cu composites showed much higher electrocatalytic activity for the oxidation of methanol than that modified with Pt particles supported on the commercial CNTs. The present study greatly enlarges the practical application of hybrid CNTs-based nanocomposites. - Highlights: Black-Right-Pointing-Pointer Carbon nanotubes-copper composites were prepared directly. Black-Right-Pointing-Pointer Copper nanoparticles were simultaneously in situ formed in carbon nanotubes. Black-Right-Pointing-Pointer Electrodes were modified with platinum particles supported on such composites. Black-Right-Pointing-Pointer Electrodes showed excellent electrocatalytic activity for oxidation of methanol.

  16. Platinum Nanoparticles Supported on Nitrobenzene-Functionalized Multiwalled Carbon Nanotube as Efficient Electrocatalysts for Methanol Oxidation Reaction

    International Nuclear Information System (INIS)

    Graphical abstract: Multiwalled carbon nanotube was functionalized with nitrobenzene as a promising support material for Pt-based electrocatalysts (Pt-NB-MWCNT) for methanol oxidation. The as-prepared catalysts have higher electrocatalytic activity in terms of both mass and specific activities, and improved durability for methanol oxidation reaction than as compared to the undoped materials. - Highlights: • Multiwalled carbon nanotube was functionalized with nitrobenzene as a support material for Pt-based electrocatalysts for methanol oxidation. • The electronic properties of carbon nanotubes were modified by the nitrobenzene functionalization. • Nitrobenzene-functionalized electrocatalysts revealing the improved electrocatalytic performance of Pt-NB-MWCNT catalyst for the methanol oxidation reaction. - Abstract: A novel method of molecular covalently functionalized multiwalled carbon nanotube using nitrobenzene group is prepared and used as a promising support material of Pt-based electrocatalysts (denoted as Pt-NB-MWCNT) for methanol oxidation reaction. The physical and chemical characteristics are performed by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric and X-ray photoelectron spectroscopy. The electrocatalytic are evaluated by cyclic voltammetry and chronoamperometry techniques. Compared with the un-functionalized Pt-MWCNT catalyst, Pt-NB-MWCNTs show more uniform particle dispersion, smaller particle size, improved activity and durability for methanol oxidation reaction. The nitrobenzene group is demonstrated to promote the electrocatalytic activity of Pt-MWCNT for methanol oxidation significantly. The results represent a novel approach to functionalize MWCNT in a simple and economic way to prepare efficient electrocatalysts for methanol oxidation

  17. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst

    International Nuclear Information System (INIS)

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C12H15N3O2S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 oC. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H2NCONH2·H2O2) as oxidizing agent and methanol (CH3OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N2 (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  18. The effect of carbon supports on the performance of platinum/carbon nanotubes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    In this study, platinum/carbon nanotubes (Pt/CNTs) are prepared using a wet-chemical process (colloidal method), which are served as the electrocatalysts for proton exchange membrane fuel cells. Three CNTs are used as Pt supports: citric acid-oxidized CNTs (cCNT), citric acid-oxidized nitrogen-doped CNTs (cCN), and monoethanolamine-treated CNTs (nCNT), where the CNTs are commercial products and the nitrogen-doped CNTs are prepared using chemical vapor deposition. The Pt/CNTs are characterized using high-resolution transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and cyclic voltammetry. A catalyst-coated membrane is used to prepare the membrane electrode assembly for the polarization test. The results show that the Pt nanoparticles are uniformly dispersed on the surface of CNTs using the colloidal method and the mean size of the Pt on Pt/cCNT, Pt/cCN and Pt/nCNT is 3.98 ± 1.23, 2.91 ± 1.18 and 4.40 ± 1.57 nm, respectively. The temperatures for the maximum rate of weight loss are 506 (Pt/cCNT), 515 (Pt/cCN) and 508 (Pt/nCNT) °C. The electrochemical surface areas for Pt/cCNT, Pt/cCN and Pt/nCNT are calculated to be 59.5, 40.4 and 48.4 m2/g, respectively. The results for a single fuel cell test show that the current density at 0.6 V, using Pt/C (Johnson Matthey) as anode catalyst and Pt/cCNT, Pt/cCN or Pt/nCNT as a cathode catalyst, is 658, 441, or 684 mA/cm2, and the peak power density is 661, 441, or 575 mW/cm2. The results show that Pt/CNTs prepared by colloidal method exhibit excellent cell performance. - Highlights: • Carbon nanotube supported platinum nanocatalysts have excellent cell performance. • Nitrogen atoms in carbon nanotubes facilitate the deposition of Pt nanoparticles. • High percentage of Pto improves the oxygen diffusion to active catalytic sites

  19. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting

    Science.gov (United States)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-01

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  20. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    Science.gov (United States)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media. PMID:27389659

  1. Preparation of Co/Pd alloy particles dispersed multiwalled carbon nanotube supported nanocatalysts via gamma irradiation

    International Nuclear Information System (INIS)

    New multiwalled carbon nanotube/silica supported cobalt-palladium bimetallic nanocatalysts (MWNT-silica/Co–Pd NPs) were prepared by a simple one step gamma irradiation method. The method involves the in-situ surface modification of MWNT with silica (MWNT-silica) and simultaneous formation of Co–Pd bimetallic NPs using gamma irradiation. The bimetallic NPs were stabilized by silica particles formed over the surface of MWNT. Extensive characterization studies have been performed on structural, morphological, and electrochemical, aspects of MWNT-silica/Co–Pd NPs. MWNT-silica/Co–Pd NPs were characterized by field emission scanning microscopy (FESEM), UV–visible spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy. The influence of irradiation dosage levels on the stabilizing effect of silica particles has been studied. The electrolytic activities of the MWNT-silica/Co–Pd NPs were investigated by cyclic voltammetry. - Highlights: ► New supported cobalt–palladium bimetallic nanocatalysts were prepared. ► Structural, morphological and electrochemical properties are reported. ► Electrocatalytic reduction of oxygen has been demonstrated for the new catalysts.

  2. Carbon nanotube-supported bimetallic palladium-gold electrocatalysts for electro-oxidation of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng-Han; Liou, Wei-Jen; Lin, Hong-Ming; Wu, She-Huang [Department of Materials Engineering, Tatung University, Taipei (China); Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr [Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Kurzydlowski, Krzysztof [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland)

    2010-05-15

    It is known that palladium-based catalysts are initially very active in direct formic acid oxidation but they suffer from fast deactivation caused by a strongly adsorbed CO intermediate. Reactivation of the catalysts involving application of anodic potential may cause palladium dissolution. The aim of the present study is to increase the stability and performance of palladium-based catalysts in direct formic acid fuel cells (DFAFCs). Preparation and characterization of palladium/multiwalled carbon nanotubes (Pd/MWCNTs) and towards formic acid oxidation via different treatments are described. The catalysts were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry (CV). It was shown that the Pd and Pd-Au MWCNTs supported catalysts after reduction in H{sub 2}-Ar at 200 C (R200 treatment) were highly active in formic acid electro-oxidation, whereas the catalysts after heating in argon at 250 C (C250 treatment) were inactive. The catalysts after hydrogen treatment have smaller metal particles and better contact with MWCNTs support. CV, simulating reactivation of the catalysts, showed that the Pd catalyst suffers from severe Pd dissolution, whereas for the Pd-Au selective leaching of Pd is considerably slower. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Applications of Carbon Nanotubes

    Science.gov (United States)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  4. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  5. Carbon nanotube macroelectronics

    Science.gov (United States)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  6. Synthesis of Vertically Aligned Carbon Nanotubes on Silicalite-1 Monolayer-Supported Substrate

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2014-01-01

    Full Text Available Monodisperse magnetic Fe3O4 nanoparticles (NPs with the size of ca. 3.5 nm were prepared and used as the catalysts for the synthesis of vertically aligned carbon nanotube (VACNT arrays. A silicalite-1 microcrystal monolayer was used as the support layer between catalyst NPs and the silicon substrate. Compared to our previous report which used radio-frequency- (rf- sputtered Fe2O3 film as the catalyst, Fe3O4 NPs that were synthesized by wet chemical method showed an improved catalytic ability with less agglomeration. The silicalite-1 crystal monolayer acted as an effective “buffer” layer to prevent the catalyst NPs from agglomerating during the reaction process. It is believed that this is the first report that realizes the vertical alignment of CNTs over the zeolite monolayer, namely, silicalite-1 microcrystal monolayer, instead of using the intermediate anodic aluminum oxide (AAO scaffold to regulate the growth direction of CNT products.

  7. Conducting carbonized polyaniline nanotubes

    Science.gov (United States)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  8. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  9. FLUIDIZATION OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    Fei Wei; Cang Huang; Yao Wang

    2005-01-01

    Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.

  10. Carbon nanotubes: Fibrillar pharmacology

    Science.gov (United States)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  11. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  12. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  13. Purification of Carbon Nanotubes Synthesized by Catalytic Decomposition of Methane using Bimetallic Fe-Co Catalysts Supported on MgO

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Beh Hoe; Ramli, Irmawati [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia); Yahya, Noorhana [Fundamental and Applied Science Department Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Pah, Lim Kean, E-mail: irmawati@science.upm.edu.my [Physics department, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    This work reports the synthesis of carbon nanotubes by catalytic decomposition of methane using bimetallic Fe-Co catalysts supported on MgO. Transmission electron microscopy (TEM) results show the as-prepared carbon nanotubes are multi-walled carbon nanotubes (MWCNTs) with diameter in the range of 15nm to 45nm. Purification of as-prepared MWCNTs was carried out by acid and heat treatment method. EDX results show the Fe, Co and MgO catalysts were successfully removed by refluxing the as-prepared MWCNTs in 3M H{sub 2}SO{sub 4}.

  14. Carbon nanotubes decorating methods

    Directory of Open Access Journals (Sweden)

    A.D. Dobrzańska-Danikiewicz

    2013-06-01

    Full Text Available Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studies carried out with the HRTEM and SEM techniques have confirmed differences in morphology, homogeneity and density of depositing platinum nanoparticles on the surface of carbon nanotubes and its structure.Research limitations/implications: The studies conducted pertained to the process of decorating carbon nanotubes with platinum nanoparticles. Further works are planned aimed at extending the application scope of the newly developed methodology to include the methods of nanotubes decorating with the nanoparticles of other precious metals (mainly palladium and rhodium.Practical implications: CNTs-NPs (Carbon NanoTube-NanoParticles composites can be used as the active elements of sensors featuring high sensitivity, fast action, high selectivity and accuracy, in particular in medicine as cholesterol and glucoses sensors; in the automotive industry for the precision monitoring of working parameters in individual engine components; in environmental conservation to examine CO2, NOx, and CH4 concentrations and for checking leak-tightness and detecting hazardous substances in household and industrial gas installations.Originality/value: The comprehensive characterisation of the methods employed for fabricating nanocomposites consisting of carbon nanotubes deposited with Pt, Pd, Rh, Au, Ag nanoparticles with special consideration to the colloidal process.

  15. Modified Sol-Gel Synthesis of Carbon Nanotubes Supported Titania Composites with Enhanced Visible Light Induced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Quanjie Wang

    2016-01-01

    Full Text Available Multiwalled carbon nanotube (MWCNT enhanced MWCNT/TiO2 nanocomposites were synthesized by surface coating of carbon nanotube with mixed phase of anatase and rutile TiO2 through a modified sol-gel approach using tetrabutyl titanate as raw material. The morphological structures and physicochemical properties of the nanocomposites were characterized by FT-IR, XRD, DTA-TG, TEM, and UV-Vis spectra. The results show that TiO2 nanoparticles with size of around 15 nm are closely attached on the sidewall of MWCNT. The nanocomposites possess good absorption properties not only in the ultraviolet but also in the visible light region. Under irradiation of ultraviolet lamp, the prepared composites have the highest photodegradation efficiency of 83% within 4 hours towards the degradation of Methyl Orange (MO aqueous solution. The results indicate that the carbon nanotubes supported TiO2 nanocomposites exhibit high photocatalytic activity and stability, showing great potentials in the treatment of wastewater.

  16. The electrochemical properties of carbon nanotubes and carbon XC-72R and their application as Pt supports

    Directory of Open Access Journals (Sweden)

    MAJA D. OBRADOVIĆ

    2010-10-01

    Full Text Available The electrocatalytic behavior of reduced nicotinamide adenine di-nucleotide (NADH was studied at the surface of a rutin biosensor, using various electrochemical methods. According to the results, the rutin biosensor had a strongly electrocatalytic effect on the oxidation of NADH with the overpotential being decreased by about 450 mV as compared to the process at a bare glassy carbon electrode, GCE. The results of an investigation of two samples of commercial multi-walled carbon nanotubes and a sample of carbon black, in the raw and activated state, were presented in the lecture. The activation of the carbon materials led to the formation of an abundance of oxygen-containing functional groups on the surface, an increased electrochemically active surface area, an enhanced charge storage ability and a promotion of the electron-transfer kinetics. It was presented that the morphology of the carbon nanotubes is important for the electrochemical properties, because nanotubes with a higher proportion of edge and defect sites showed faster electron transfer and pseudocapacitive redox kinetics. Modification of oxidized nanotubes by ethylenediamine and wrapping by poly(diallyldimethylammonium chloride led to a decrease in the electrochemically active surface area and to reduced electron-transfer kinetics. Pt nanoparticles prepared by the microwave-assisted polyol method were deposited at the investigated carbon materials. A much higher efficiency of Pt deposition was observed on the modified CNTs than on the activated CNTs. The activity of the synthesized catalyst toward electrochemical oxygen reduction was almost the same as the activity of the commercial Pt/XC-72 catalyst.

  17. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  18. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  19. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  20. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  1. Self-assembled monolayers of pyridylthio-functionalized carbon nanotubes used as a support to immobilize cytochrome c

    OpenAIRE

    Sun, Qing; Liu, Jiang; Huang, Hong-Xiang; Chen, Meng; Qian, Dong-Jin

    2013-01-01

    Self-assembled monolayers (SAMs) of pyridylthio-functionalized multiwalled carbon nanotubes (pythio-MWNTs) have been constructed on the gold substrate surface, which were used as a support to immobilize cytochrome c (Cyt c). The assembly processes of the SAMs and adsorption of Cyt c were monitored by using quartz crystal microbalance (QCM). Based on the frequency change of the QCM resonator, the surface coverage for the SAMs of pythio-MWNTs was estimated to be about 5.2 μg/cm2, and that of th...

  2. Carbon nanotube junctions and devices

    OpenAIRE

    Postma, H. W. Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconducting behaviour. Due to their small diameter, electronic motion is directed in the length direction of the nanotube, making them ideal systems to study e.g. one-dimensional transport phenomena. First...

  3. Cyclophosphazene based conductive polymer-carbon nanotube composite as novel supporting material for methanol fuel cell applications.

    Science.gov (United States)

    Prasanna, Dakshinamoorthy; Selvaraj, Vaithilingam

    2016-06-15

    This present study reports the development of novel catalyst support of amine terminated cyclophosphazene/cyclophosphazene/hexafluoroisopropylidenedianiline-carbon nanotube (ATCP/CP/HFPA-CNT) composite. The ATCP/CP/HFPA-CNT composite has been used as a catalyst support for platinum (Pt) and platinum-gold (Pt-Au) nanoparticles towards electrooxidation of methanol in alkaline medium. The obtained anode materials were characterized by X-ray diffraction, transmission electron microscope and energy dispersive X-ray analysis. Electrocatalytic performances of Pt/ATCP/CP/HFPA-CNT and Pt-Au/ATCP/CP/HFPA-CNT catalysts were investigated by cyclic voltammetry, CO stripping and chronoamperometric techniques. The electrooxidation of methanol and CO stripping results conclude that the metal nanocatalyst embedded with ATCP/CP/HFPA-CNT composite shows significantly higher anodic oxidation current, more CO tolerance and lower onset potential when compared to that of the Pt/CNT and Pt/C (Vulcan carbon) catalysts. PMID:27016917

  4. Transport Through Carbon Nanotube Wires

    Science.gov (United States)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  5. Carbon nanotubes: synthesis and functionalization

    OpenAIRE

    Andrews, Robert

    2007-01-01

    This thesis focuses on two of the major challenges of carbon nanotube (CNT) research: understanding the growth mechanism of nanotubes by chemical vapour deposition (CVD) and the positioning of nanotubes on surfaces. The mechanism of growth of single–walled nanotubes (SWNTs) has been studied in two ways. Firstly, a novel iron nanoparticle catalyst for the production of single–walled nanotubes was developed. CVD conditions were established that produced high quality tubes. These optimised C...

  6. Fantastic improvement in quality and quantity of carbon nanotubes synthesized on Al2O3-SiO2 supports by N2 pretreatment.

    Science.gov (United States)

    Ghanbari, H; Aghababazadeh, R; Mirhabibi, A; Brydson, R M

    2011-10-01

    The raw materials, condition and the method of preparing the catalysts play an important role in the growth of high quality Carbon Nanotubes by Catalytic Chemical Vapor Deposition method. In this work, the efficiency of Carbon Nanotubes growth was increased by a simple controlled preheating of the catalyst in N2 atmosphere. Supports were prepared by mixing alumina powder with tetraethyl orthosilicate (TEOS) by a chemical method at low temperature. Afterwards, the supports were impregnated with iron. The dried and ground catalyst was heated in N2 atmosphere at 500 degrees C for 1 hour followed by cooling down to room temperature. Methane was passed over the prepared catalyst bed at 900 degrees C. Supports, supported catalysts and Carbon Nanotubes samples have been characterized by Transmission Electron Microscopy, Scanning Electron Microscopy, Gas Adsorption/Desorption Analysis, X-Ray Diffraction and Raman Spectroscopy. Scanning Electron Microscopy images of the nanotubes showed a drastic increase in the growth rate, length and straightness of the Nanotubes in comparison to the growth without preheating and even preheating in air atmosphere. Raman Spectroscopy of the samples and Transmission Electron Microscopy pictures showed bundles, mostly equi-diameter Single Wall Nanotubes. In fact, the growth rate, length, and purity of the Nanotubes, also the homogeneity of the tubes improved. The conclusion can be made with the help of proposed theory of nucleation and growth of Nanotubes based on comparative results of the characterizations with and without preheat-treatment. It seems that the preheat-treatment in N2 affected the catalyst structure and its interaction with support as well as distribution of the catalyst particles on the support. These changes in return affect the quality and quantity of final production. PMID:22400268

  7. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    Science.gov (United States)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  8. Carbon nanotubes-supported palladium nanoparticles for the Suzuki reaction in supercritical carbon dioxide: A facile method for the synthesis of tetrasubstituted olefins

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A facile and efficient method for the synthesis of tetrasubstituted olefins in supercritical carbon dioxide was developed by using carbon nanotubes-supported palladium nanoparticles (Pd/CNTs) as the catalyst. Compared with common Pd/C, Pd/CNTs could more effectively catalyze the reaction of dibromo-substituted olefins with boronic acids, affording the corresponding tetrasubstituted olefins with moderate to good yields. This environmentally benign route with an easy-to-handle catalyst provides an appealing alternative to the currently available methods.

  9. Electro-Deposition Pt Catalysts Supported on Carbon-Nanotubes for Methanol Oxidation

    Institute of Scientific and Technical Information of China (English)

    Hailin Song; Peixia Yang; Xiaoyu Wen; Maozhong An; Jinqiu Zhang

    2015-01-01

    In order to study the properties of supporting Pt catalysts for methanol oxidation, carbon⁃nanotubes are used by electrochemical deposition method. Different deposition turns, different cyclic voltammetry scanning speeds and processing time with ascorbic acid are investigated in this paper. The micrographs of Pt/CNTs catalysts are characterized by scanning electron microscopy, the electro⁃catalytic properties of Pt/CNTs catalysts for methanol oxidation are investigated by cycle voltammetry and chronoamperometry. The results show that the size of platinum will be greater with the faster scanning speed. After dissolution in ascorbic acid, Pt nano⁃particles disperse uniformly. The obtained Pt/CNTs catalysts show a high electro⁃catalytic activity and stability.

  10. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    Science.gov (United States)

    Liu, Wei; Jiang, Xinyu; Chen, Xiaoqing

    2015-09-01

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions.

  11. Carbon nanotube fiber spun from wetted ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  12. Synthesis of single- and double-walled carbon nanotubes using the calcined MgO supported commercial metal oxide as catalysts

    International Nuclear Information System (INIS)

    Simple, low-cost and environment-friendly catalysts for synthesizing carbon nanotubes were prepared by simply calcining the mixture of commercial transition metal oxide powders and porous or crystalline MgO at 950 °C. The commercial metal oxide powders, including Fe2O3, Co2O3, Ni2O3, Fe3O4 and Co3O4, were directly used without any pretreatment. Calcination of the MgO supported Fe2O3 catalysts results in the formation of MgFe2O4/MgO solid solution or the dissolution of metal into MgO lattices. High quality single- and double-walled carbon nanotubes were synthesized by thermal decomposition of methane, and were characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy. The results bring forward an effective way to prepare the catalyst for synthesizing single- and double-walled carbon nanotubes. - Highlights: ► MgO supported catalysts for synthesizing carbon nanotubes were prepared. ► Commercial metal oxides were chosen as catalyst precursors. ► Single- and double-walled carbon nanotubes were synthesized.

  13. Synthesis of single- and double-walled carbon nanotubes using the calcined MgO supported commercial metal oxide as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Mao-Lin; Jia, Yong, E-mail: yjiaahedu@163.com; Fang, Fang; Zhou, Shuang-Sheng; Wu, Pei-Yun; Peng, Dai-Yin

    2012-12-15

    Simple, low-cost and environment-friendly catalysts for synthesizing carbon nanotubes were prepared by simply calcining the mixture of commercial transition metal oxide powders and porous or crystalline MgO at 950 Degree-Sign C. The commercial metal oxide powders, including Fe{sub 2}O{sub 3}, Co{sub 2}O{sub 3}, Ni{sub 2}O{sub 3}, Fe{sub 3}O{sub 4} and Co{sub 3}O{sub 4,} were directly used without any pretreatment. Calcination of the MgO supported Fe{sub 2}O{sub 3} catalysts results in the formation of MgFe{sub 2}O{sub 4}/MgO solid solution or the dissolution of metal into MgO lattices. High quality single- and double-walled carbon nanotubes were synthesized by thermal decomposition of methane, and were characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy. The results bring forward an effective way to prepare the catalyst for synthesizing single- and double-walled carbon nanotubes. - Highlights: Black-Right-Pointing-Pointer MgO supported catalysts for synthesizing carbon nanotubes were prepared. Black-Right-Pointing-Pointer Commercial metal oxides were chosen as catalyst precursors. Black-Right-Pointing-Pointer Single- and double-walled carbon nanotubes were synthesized.

  14. Carbon nanotubes supported Cu-Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    International Nuclear Information System (INIS)

    Multi-walled carbon nanotubes (MWCNTs) supported Cu-Ni bimetallic catalysts for the direct synthesis of dimethyl carbonate (DMC) from CH3OH and CO2 were synthesized and investigated. The supporting materials and the synthesized catalysts were fully characterized using FTIR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS) techniques. The catalytic activities were investigated by performing micro-reactions. The experimental results showed that the metal phase and Cu-Ni alloy phase in the catalyst were partially formed during the calcination and activation step. Active metal particles were dispersed homogeneously on the surface of the MWCNTs. Cu-Ni/MWCNTs catalysts were efficient for the direct synthesis of DMC. The highest conversion of CH3OH was higher than 4.3% and the selectivity of DMC was higher than 85.0% under the optimal catalytic conditions of 120 deg. C and around 1.2 MPa. The high catalytic activity of Cu-Ni/MWCNTs in DMC synthesis can be attributed to the synergetic effects of metal Cu, Ni and Cu-Ni alloy in the activation of CH3OH and CO2, the unique structure of MWCNTs and the interaction between the metal particles and the supports.

  15. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.

    Science.gov (United States)

    Akbayrak, Serdar; Ozkar, Saim

    2012-11-01

    Ruthenium(0) nanoparticles supported on multiwalled carbon nanotubes (Ru(0)@MWCNT) were in situ formed during the hydrolysis of ammonia-borane (AB) and could be isolated from the reaction solution by filtration and characterized by ICP-OES, XRD, TEM, SEM, EDX, and XPS techniques. The results reveal that ruthenium(0) nanoparticles of size in the range 1.4-3.0 nm are well-dispersed on multiwalled carbon nanotubes. They were found to be highly active catalyst in hydrogen generation from the hydrolysis of AB with a turnover frequency value of 329 min⁻¹. The reusability experiments show that Ru(0)@MWCNTs are isolable and redispersible in aqueous solution; when redispersed they are still active catalyst in the hydrolysis of AB exhibiting a release of 3.0 equivalents of H₂ per mole of NH₃BH₃ and preserving 41% of the initial catalytic activity even after the fourth run of hydrolysis. The lifetime of Ru(0)@MWCNTs was measured as 26400 turnovers over 29 h in the hydrolysis of AB at 25.0 ± 0.1 °C before deactivation. The work reported here also includes the kinetic studies depending on the temperature to determine the activation energy of the reaction (E(a) = 33 ± 2 kJ/mol) and the effect of catalyst concentration on the rate of the catalytic hydrolysis of AB, respectively. PMID:23113804

  16. Fe-Ni Nanoparticles supported on carbon nanotube-co-cyclodextrin polyurethanes for the removal of trichloroethylene in water

    International Nuclear Information System (INIS)

    Nanoscale bimetallic particles of nickel on iron were supported on carbon nanotubes and then co-polymerized with β-cyclodextrin (CNTs/CD) and the resulting polymers applied to the degradation of pollutants in water. The bimetallic nanoparticles (BMNPs) were first embedded on functionalized carbon nanotubes (f-CNTs) before being copolymerized with beta cyclodextrin (β-CD) and hexamethylene diisocyanate (HMDI) forming a water-insoluble polyurethane. The particle size and distribution of BMNPs were determined by Transmission Electron Microscopy (TEM), and the surface area was determined by using the Brunauer-Emmett-Teller (BET) method. Energy dispersive X-ray spectroscopy (EDXS) was used to confirm the formation of the BMNPs. Degradation of trichloroethylene (TCE) as a model pollutant was studied and more than 98% reduction in TCE was achieved by the polymers. Polymers with the BMNPs maintained their efficiency in degrading TCE after several cycles compared to metal-free polymers. The degradation was monitored by using gas chromatography-mass spectrometry (GC-MS), while the production of chlorides was verified by using ion chromatography (IC). Atomic absorption spectroscopy (AAS) was employed to determine the possible leaching of the BMNPs from the polymer, and confirmed to be extremely low.

  17. Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    The performance of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes is evaluated under various conditions. Electrocatalysts are reduced on multiwalled carbon nanotubes by NaH2PO2 and electrodes are investigated using scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and fuel cell testing. The maximum power density decreases with increasing NaBH4 concentration, likely owing to increases in NaBH4 decomposition and crossover rates and to production of increasing amounts of NaBO2. In contrast, the maximum power density increases with increasing H2O2 concentration, likely owing to increases in reactant concentrations. Moreover, increased operating temperatures improve decomposition and electrochemical reaction rates. A thin membrane increases fuel crossover, whereas a thick membrane decreases the maximum power density; consequently, the Nafion 212 membrane is the optimal thickness for use in fuel cells such as those studied here. Under selected conditions, the maximum power density is 101.9 mW/cm2. As operation time increases, fuel cell performance is degraded by oxidation and Na deposition. - Highlights: • Maximum power density decreases as NaBH4 (sodium borohydride) concentration increases. • Maximum power density increases as H2O2 (hydrogen peroxide) concentration increases. • High operating temperatures cause fast electrochemical and decomposition reactions. • Nafion 212 is the most suitable membrane owing to its thickness. • Fuel cell performance decreases owing to oxidation and Na deposition

  18. Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media

    Institute of Scientific and Technical Information of China (English)

    Shengzhou Chen; Fei Ye; Weiming Lin

    2009-01-01

    Carbon nanotubes-Nafion (CNTs-Nafion) composites were prepared by impregnated CNTs with Nafion in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by microwave-assisted polyol process. The physical and electrochemical properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), CO stripping voltammetry, cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the Nafion incorporation in CNTs-Nafion composites did not significantly alter the oxygen-containing groups on the CNTs surface. The Pt-Ru catalyst supported on CNTs-Nafion composites with 2 wt% Nafion showed good dispersion and the best CO oxidation and methanol electro-oxidation activities.

  19. Effect of Surface Oxygen Containing Groups on the Catalytic Activity of Multi-walled Carbon Nanotube Supported Pt Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    X Wang; N Li; J Webb; L Pfefferle; G Haller

    2011-12-31

    Multi-walled carbon nanotubes (MWNT) supported platinum catalysts were employed to study the support functionalization on their catalytic performances. The MWNT were subjected to HNO{sub 3} functionalization, in which oxygen-containing-groups (OCGs) were introduced to improve Pt dispersion. The MWNT supports were characterized by nitrogen physisorption and NEXAFS, and the Pt supported on differently functionalized MWNT characterized by X-ray absorption, TEM and both hydrogen and CO chemisorption. Compared to the as received MWNT supports, Pt dispersion is improved on the HNO3 treated MWNT supports, but the turnover frequency (TOF) of aqueous phase reforming decreases by half. The TOF can be recovered by removing the OCGs via high temperature annealing. To further investigate the OCGs effect, different probe reactions, including both steam reforming and liquid phase reforming of hydrocarbon oxygenates and dehydrogenation of alkanes in the liquid and gas phases, have been performed on the MWNT supported catalysts with different OCGs. A comparison of these reaction results suggests that OCGs are only detrimental to reactions in a binary mixture with two components of different hydrophilicity due to their competitive adsorption on the catalyst supports.

  20. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  1. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  2. Carbon nanotube IR detectors (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  3. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  4. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization (China)

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  5. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    International Nuclear Information System (INIS)

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high

  6. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  7. Carbon Nanotubes Supported Pt-Ru-Ni as Methanol Electro-Oxidation Catalyst for Direct Methanol Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Ye; Shengzhou Chen; Xinfa Dong; Weiming Lin

    2007-01-01

    Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of the catalysts were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis, and the catalytic activity and stability for methanol electro-oxidation were measured by electrochemical impedance spectroscopy (EIS), linear sweep voltammetries (LSV), and chronoamperometry (CA). The results show that the catalysts exhibit face-centered cubic (fcc) structure.The particle size of Pt-Ru-Ni/CNTs catalyst is about 4.8 nm. The catalytic activity and stability of the Pt-Ru-Ni/CNTs catalyst are higher than those of Pt-Ru/CNTs catalyst.

  8. Analytical modeling of glucose biosensors based on carbon nanotubes

    OpenAIRE

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-01

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization...

  9. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  10. Teslaphoresis of Carbon Nanotubes.

    Science.gov (United States)

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  11. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  12. Preparation of isolated carbon nanotubes

    International Nuclear Information System (INIS)

    Full text: Carbon nanotubes are of great interest for a large range of applications from physical chemistry, solid state physics to molecular quantum optics. We propose the preparation of molecular beams of isolated carbon nanotubes for future matter wave experiments, as well as for applications in the material sciences and spectroscopy. Carbon nanotubes may be particularly interesting for quantum experiments because of their low ionization threshold, high mechanical stability and high polarizability. This is expected to facilitate the cooling, coherent manipulation and efficient detection of such molecular beams. For this purpose we are investigating different methods of solvation, isolation and shortening of carbon nanotubes from commercial bundles. Length and diameter distributions are recorded by SPM whereas the unbundling of the tubes is determined by absorption spectroscopy. Established methods from physical chemistry, such as laser desorption are currently being modified and studied as potential tools for generating beams of nanotubes in the mass range of around 50.000-100.000 amu. (author)

  13. Synthesis of carbon nanotubes by CVD method using iron and molybdenum-based catalysts supported on ceramic matrices

    International Nuclear Information System (INIS)

    Molybdenum is known for its synergistic effect in the synthesis of carbon nanotubes (CNs) by chemical vapor deposition (CVD method). When added to typical catalysts like iron, nickel, and cobalt, even in small quantities, it is increases the yield of these nanostructures. The presence of Mo also has an influence on the type and number of CN walls formed. Although this effect is widely documented in the literature, there is not yet a consensus about the mechanism of action of molybdenum in catalytic systems. The objective of the present work is to study the influence of molybdenum on the catalytic activity of iron nanoparticle-based catalysts supported on magnesium oxide (Fe/MgO system) in the synthesis of carbon nanotubes by the CVD method. The Mo concentration was systematically varied from null to molar ratio values four times greater than the quantity of Fe, and the obtained material (catalysts and carbon nanotubes) were broadly characterized by different techniques. In order to also study the influence of the preparation method on the final composition of the catalytic system phases, the catalytic systems (Fe/MgO e FeMox/MgO) were synthesized by two different methods: co-precipitation and impregnation. The greatest CN yields were observed for the catalysts prepared by coprecipitation. The difference was attributed to better dispersion of the Fe and Mo phases in the catalyst ceramic matrix. In the precipitation stage, it was observed the formation of layered double hydroxides whose concentration increased with the Mo content up to the ratio of Mo/Fe equal to 0.2. This phase is related to a better distribution of Fe and Mo in this concentration range. Another important characteristic observed is that the ceramic matrix is not inert. It can react both with Fe and Mo and form the iron solid solution in the magnesium oxide and the phases magnesium-ferrite (MgFe204) and magnesium molybdate (MgMo04). The MgFe204 phase is observed in all catalytic systems, while the Mg

  14. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  15. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  16. Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications

    Directory of Open Access Journals (Sweden)

    Sarah C. Motshekga

    2012-01-01

    Full Text Available The study of coating carbon nanotubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nanotubes in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of carbon nanotubes and metal/oxides is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. The synthesis of these composites is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors. These techniques based on thermal heating can be time consuming and often lack control of particle size and morphology. Hence, there is interest in microwave technology recently, where using microwaves represents an alternative way of power input into chemical reactions through dielectric heating. This paper covers the synthesis and applications of carbon-nanotube-coated metal/oxides nanoparticles prepared by a microwave-assisted method. The reviewed studies show that the microwave-assisted synthesis of the composites allows processes to be completed within a shorter reaction time with uniform and well-dispersed nanoparticle formation.

  17. Durability of Carbon Nanofiber (CNF) & Carbon Nanotube (CNT) as Catalyst Support for Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Lund, Peter;

    2013-01-01

    a standard polyol method were prepared and fabricated as cathodes of Membrane Electrode Assemblies (MEA) for PEMFC. Both the catalysts as such and the MEAs made out of them were evaluated regarding to thermal and electrochemical stability using traditional carbon black (Vulcan XC72) as a reference. Thermal...... gravimetric analysis (TGA), cyclic voltammetry (CV), polarization curve and impedance spectroscopy were applied on the samples under accelerated stress conditions. The carbon nano-materials demonstrated better stability as support for nano-sized platinum catalyst under PEMFC related operating conditions. Due...... to different morphology of the nano carbons compared to Vulcan XC 72 the electrode structures may still need optimization to improve overall cell performance....

  18. Preparation of highly dispersed Pt-SnOx nanoparticles supported on multi-walled carbon nanotubes for methanol oxidation

    Science.gov (United States)

    Hu, Chuangang; Cao, Yanxia; Yang, Lin; Bai, Zhengyu; Guo, Yuming; Wang, Kui; Xu, Pengle; zhou, Jianguo

    2011-07-01

    To maximize the utilization of catalysts and thereby reduce the high price, a new strategy was developed to prepare highly dispersed Pt-SnOx nanoparticles supported on 8-Hydroxyquinoline (HQ) functionalized multi-walled carbon nanotubes (MWCNTs). HQ functionalized MWCNTs (HQ-MWCNTs) provide an ideal support for improving the utilization of platinum-based catalysts, and the introduction of SnOx to the catalyst prevents the CO poisoning effectively. The as-prepared catalysts are characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. It is found that the HQ functionalization process preserves the integrity and electronic structure of MWCNTs, and the resulting Pt-SnOx particles are well dispersed on the HQ-MWCNTs with an average diameter of ca. 2.2 nm. Based on the electrochemical properties characterized by cyclic voltammetry and chronoamperometry, the Pt-SnOx/HQ-MWCNTs catalyst displays better electrocatalytic activity and stability for the methanol oxidation. It is worth mentioning that the forward peak current density of Pt-SnOx/HQ-MWCNTs catalyst is ca. 1.9 times of that of JM commercial 20% Pt/C catalyst, which makes it the preferable catalyst for direct methanol fuel cells.

  19. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    , microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis of......The use of nanomaterials in separation science has increased rapidly in the last decade. The reason for this is to take advantage of the unique properties of these materials, such as a very high surface-to-volume ratio and favourable sorbent behaviour. Carbon nanostructures, such as carbon...... nanotubes are very interesting for integration in especially microfluidic devices, because they can readily be grown on planar substrates by means of chemical vapour deposition. In this way the cumbersome process of packing of the stationary phase in the finished microfluidic channels is avoided and the CNT...

  20. Torsional Electromechanics of Carbon Nanotubes

    Science.gov (United States)

    Joselevich, Ernesto; Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.

    2007-03-01

    Carbon nanotubes are known to be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multi-walled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different subbands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Our experiments indicate that carbon nanotubes could be used as self-sensing torsional springs for nanoelectromechanical systems (NEMS). [1] E. Joselevich, Twisting nanotubes: From torsion to chirality, ChemPhysChem 2006, 7, 1405. [2] T. Cohen-Karni, L. Segev, O. Srur-Lavi, S. R. Cohen, E. Joselevich, Torsional electromechanical quantum oscillations in carbon nanotubes, Nature Nanotechnology, 2006, 1, 36.

  1. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  2. Carbon nanotube optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  3. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  4. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  5. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  6. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol−1, which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  7. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  8. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  9. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  10. Carbon nanotubes for coherent spintronics

    Directory of Open Access Journals (Sweden)

    F. Kuemmeth

    2010-03-01

    Full Text Available Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications.

  11. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    OpenAIRE

    Ram Pavani; Kodithyala Vinay

    2011-01-01

    Carbon nanotubes (CNTs) are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Funct...

  12. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts.

    Science.gov (United States)

    Lolli, Giulio; Zhang, Liang; Balzano, Leandro; Sakulchaicharoen, Nataphan; Tan, Yongqiang; Resasco, Daniel E

    2006-02-01

    The (n,m) population distribution of single-walled carbon nanotubes obtained on supported CoMo catalysts has been determined by photoluminescence and optical absorption. It has been found that the (n,m) distribution can be controlled by varying the gaseous feed composition, the reaction temperature, and the type of catalyst support used. When using CO as a feed over CoMo/SiO2 catalysts, increasing the synthesis temperature results in an increase in nanotube diameter, without a change in the chiral angle. By contrast, by changing the support from SiO2 to MgO, nanotubes with similar diameter but different chiral angles are obtained. Finally, keeping the same reaction conditions but varying the composition of the gaseous feed results in different (n,m) distribution. The clearly different distributions obtained when varying catalysts support and/or reaction conditions demonstrate that the (n,m) distribution is a result of differences in the growth kinetics, which in turn depends on the nanotube cap-metal cluster interaction. PMID:16471791

  13. Microwave-assisted synthesis and characterization of bimetallic PtRu alloy nanoparticles supported on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rahsepar, Mansour, E-mail: rahsepar@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz, 7134851154 (Iran, Islamic Republic of); Kim, Hasuck, E-mail: hasuckim@snu.ac.kr [Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-747 (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of)

    2015-11-15

    Multiwalled carbon nanotube (MWCNT) supported PtRu nanoparticles were synthesized by using a microwave-assisted improved impregnation technique. X-ray diffraction, transmission electron microscopy and X-ray photo electron spectroscopy were used to characterize the prepared PtRu/MWCNT nanoparticles. The PtRu nanoparticles with a satisfactory dispersion were formed on the external surface of MWCNTs. The CO stripping experiment was performed to evaluate the poisoning resistance of the prepared PtRu/MWCNT nanoparticles. Results of electrochemical measurements indicate that the prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning. The results of characterization revealed that microwave-assisted improved impregnation technique have a high yield of alloy phase formation and could be effectively used as a simple, quick and efficient technique for preparation of bimetallic PtRu/MWCNT nanoparticles. - Highlights: • Highly dispersed PtRu/MWCNTs were formed without use of any stabilizing agent. • Microwave irradiation enhances the uniform dispersion of the PtRu nanoparticles. • Microwave-assisted improved impregnation have a high yield of alloy phase formation. • The prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning.

  14. Synthesis of carbon nanotubes over Ni- and Co-supported CaCO3 catalysts using catalytic chemical vapor deposition

    International Nuclear Information System (INIS)

    Multi-layered carbon nanotubes (CNTs) have been successfully synthesized by using the catalytic chemical vapor deposition over Ni- and Co-supported CaCO3 catalysts at different reaction temperatures in a fluidized bed reactor. The as-grown CNTs were characterized by N2 physisorption, high-resolution transmission electron microscopy, and X-ray diffraction. The CNT products are found to be mainly mesoporous, i.e., mesopore fraction: 84-92%. After chemical-wet purification, the CNTs appear as a multi-layered crystalline structure and their layer numbers show an increasing trend with growth temperature according to the calculation of Debye-Scherrer's equation. Through the calculation of Arrhenius plots, the apparent activation energies are found to be 104.6 kJ mol-1 for Ni-catalyst and 61.6 kJ mol-1 for Co-catalyst. Additionally, a linear relationship between the growth rate and the partial pressure of acetylene indicated that the reaction order of CNT growth is of first order in the fluidized bed reactor

  15. Polarization losses under dynamic load cycle using multiwall carbon nanotube supported Pt catalyst in PEM fuel cell

    Science.gov (United States)

    Irmawati, Yuyun; Indriyati, Chaldun, Elsy Rahimi; Devianto, Hary

    2016-02-01

    Durability is one of the most important issues that are still being a hindrance for commercialization of polymer electrolyte membrane fuel cell (PEMFC). In this study, the degradation of PEMFC using multiwall carbon nanotube supported Pt catalyst (Pt/CNT) was investigated under dynamic load cycle procedure. The degradation was characterized by current density-voltage curves, cross-sectional scanning electron microscopy (SEM) images, and Fourier transforms infrared spectroscopy (FTIR) spectra. The load-cycle procedure was carried out for 50 cycles, where one cycle consisted of three steps (OCV-load current-constant voltage). An analysis of cell overpotentials indicated that the predominant source of performance degradation was due to ohmic losses, especially significant increase in the area specific resistance (Ra). After 50 cycles, Ra was calculated three times higher than that before durability test, from 0.67 to 1.74 Ωcm2. Based on the results from SEM images and FTIR spectra, there was no evidence of membrane degradation or thinning. Noticeable degradation was only observed from the increase in the interface gap between membrane, catalyst layer, and gas diffusion layer.

  16. Microwave-assisted synthesis and characterization of bimetallic PtRu alloy nanoparticles supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Multiwalled carbon nanotube (MWCNT) supported PtRu nanoparticles were synthesized by using a microwave-assisted improved impregnation technique. X-ray diffraction, transmission electron microscopy and X-ray photo electron spectroscopy were used to characterize the prepared PtRu/MWCNT nanoparticles. The PtRu nanoparticles with a satisfactory dispersion were formed on the external surface of MWCNTs. The CO stripping experiment was performed to evaluate the poisoning resistance of the prepared PtRu/MWCNT nanoparticles. Results of electrochemical measurements indicate that the prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning. The results of characterization revealed that microwave-assisted improved impregnation technique have a high yield of alloy phase formation and could be effectively used as a simple, quick and efficient technique for preparation of bimetallic PtRu/MWCNT nanoparticles. - Highlights: • Highly dispersed PtRu/MWCNTs were formed without use of any stabilizing agent. • Microwave irradiation enhances the uniform dispersion of the PtRu nanoparticles. • Microwave-assisted improved impregnation have a high yield of alloy phase formation. • The prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning

  17. Sulfur supported by carbon nanotubes and coated with polyaniline: Preparation and performance as cathode of lithium-sulfur cell

    International Nuclear Information System (INIS)

    Highlights: • Composite of MWCNTs-S@PANIwas developed as cathode of Li/S battery. • MWCNTs-S was prepared by direct chemical deposition of S on MWCNTs. • PANI was coated on S via in situ polymerization under control of ascorbic acid. • The composite exhibits excellent cyclic stability and rate capability. - Abstract: We report a novel composite, sulfur supported by multi-walled carbon nanotubes and coated with polyaniline (denoted as MWCNTs-S@PANI), as cathode of lithium-sulfur battery. MWCNTs-S is prepared by loading sulfur on MWCNTs via chemical deposition and coated with polyaniline via in situ polymerization under the control of ascorbic acid. The physical and electrochemical performances of the resulting MWCNTs-S@PANI are investigated by nitrogen adsorption-desorption isotherms, X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy, and charge/discharge test. It is found that MWCNTs-S@PANI exhibits good cyclic stability and rate capability compared to MWCNTs-S as cathode of lithium-sulfur battery

  18. Immobilization of enzymes onto carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prlainović Nevena Ž.

    2011-01-01

    Full Text Available The discovery of carbon nanotubes (CNTs has opened a new door in nanotechnology. With their high surface area, unique electronic, thermal and mechanical properties, CNTs have been widely used as carriers for protein immobilization. In fact, carbon nanotubes present ideal support system without diffusional limitations, and also have the possibility of surface covalent functionalization. It is usually the oxidation process that introduces carboxylic acid groups. Enzymes and other proteins could be adsorbed or covalently attached onto carbon nanotubes. Adsorption of enzyme is a very simple and inexpensive immobilization method and there are no chemical changes of the protein. It has also been found that this technique does not alter structure and unique properties of nanotubes. However, a major problem in process designing is relatively low stability of immobilized protein and desorption from the carrier. On the other hand, while covalent immobilization provides durable attachment the oxidation process can reduce mechanical and electronic properties of carbon nanotubes. It can also affect the active site of enzyme and cause the loss of enzyme activity. Bioimmobilization studies have showed that there are strong interactions between carbon nanotubes surface and protein. The retention of enzyme structure and activity is critical for their application and it is of fundamental interest to understand the nature of these interactions. Atomic force microscopy (AFM, transmission electron microscopy (TEM, scanning electron microscopy (SEM and circular dichroism (CD spectroscopy provide an insight into the structural changes that occur during the immobilization. The aim of this paper is to summarize progress of protein immobilization onto carbon nanotubes.

  19. Connecting carbon nanotubes using Sn.

    Science.gov (United States)

    Mittal, Jagjiwan; Lin, Kwang Lung

    2013-08-01

    Process of Sn coating on mutiwalled carbon nanotubes (MWCNT) and formation of interconnections among nanotubes are studied using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX). Surface oxidation of nanotubes during heating with HNO3 prior to the SnCl2 treatment and the bonding between functional groups and Sn are found to be responsible for the coating and its stability. Open nanotubes are filled as well as coated during tin chloride treatment. Coating and filling are converted into the coatings on the inner as well as outer walls of the nanotubes during reduction with H2/N2. EDX studies show the formation of intermetallic compounds e.g., Cu6Sn5 and Cu3Sn at the joints between nanotubes. Formation of intermetallic compounds is supposed to be responsible for providing the required strength for bending and twisting of nanotubes joining of nanotubes. Paper presents a detailed mechanism of coating and filling processes, and interconnections among nanotubes. PMID:23882800

  20. Deformations and nanomechanical energy storage in twisted carbon nanotube ropes

    Science.gov (United States)

    Tomanek, David; Fthenakis, Zacharias G.; Seifert, Gotthard; Teich, David

    2013-03-01

    We determine the deformation energetics and energy density of twisted carbon nanotube ropes that effectively constitute a torsional spring. Due to the unprecedented stiffness and resilience of constituent carbon nanotubes, a twisted nanotube rope becomes an efficient energy carrier. Using ab initio and parameterized density functional calculations, we identify structural changes in these systems and determine their elastic limits. The deformation energy of twisted nanotube ropes contains contributions associated not only with twisting, but also with stretching, bending and compression of individual nanotubes. We quantify these energy contributions and show that their relative role changes with the number of nanotubes in the rope. The calculated reversible nanomechanical energy storage capacity of carbon nanotube ropes surpasses that of advanced Li-ion batteries by up to a factor of ten. Supported by the National Science Foundation Cooperative Agreement #EEC-0832785, titled ``NSEC: Center for High-rate Nanomanufacturing''.

  1. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  2. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the...

  3. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  4. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  5. Kondo physics in carbon nanotubes

    OpenAIRE

    Nygard, Jesper; Cobden, David Henry; Lindelof, Poul Erik

    2000-01-01

    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo ph...

  6. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  7. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  8. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  9. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  10. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  11. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  12. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  13. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  14. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  15. Gears Based on Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  16. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  17. Study of Carbon Nanotube-Substrate Interaction

    OpenAIRE

    Soares, Jaqueline S.; Ado Jorio

    2012-01-01

    Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the ...

  18. Epoxide composite materials with carbon nanotubes

    International Nuclear Information System (INIS)

    Methods of formation and physical properties of epoxide composite materials reinforced with carbon nanotubes are considered. An analogy is made between the relaxation properties of carbon nanotubes and macromolecules. The concentration dependences of the electrical conductivity of the epoxy polymers filled with single-walled and multi-walled carbon nanotubes are discussed. Modern views on the mechanism of reinforcement of polymers with nanotubes are outlined. The bibliography includes 143 references.

  19. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  20. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  1. Study of the biosensor based on platinum nanoparticles supported on carbon nanotubes and sugar-lectin biospecific interactions for the determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjuan [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.c [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Zhong Huaan; Wang Yan [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-04-15

    Research highlights: This work described the synthesis of Pt nanoparticles supported on carbon nanotubes. The Pt{sub nano}-CNTs were used to construct biosensor for the determination of glucose. GOD can be assembled into multilayer thin films via sugar-lectin affinity. The protocol can avoid the chemical denaturation of the enzyme. It improve the stability and sensitivity of the enzyme biosensor. - Abstract: Highly sensitive electrochemical platform based on Pt nanoparticles supported on carbon nanotubes (Pt{sub nano}-CNTs) and sugar-lectin biospecific interactions is developed for the direct electrochemistry of glucose oxidase (GOD). Firstly, Pt{sub nano}-CNTs nanocomposites were prepared in the presence of carbon nanotubes (CNTs), and then the mixture was cast on a glassy carbon electrode (GCE) using chitosan as a binder. Thereafter, concanavalin A (Con A) was adsorbed onto the precursor film by the electrostatic force between positively charged chitosan and the negatively charged Con A. Finally, the multilayers of Con A/GOD films were prepared based on biospecific affinity of Con A and GOD via layer-by-layer (LBL) self-assembly technique. The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The electrochemical parameters of GOD in the film were calculated with the results of the electron transfer coefficient ({alpha}) and the apparent heterogeneous electron transfer rate constant (k{sub s}) as 0.5 and 5.093 s{sup -1}, respectively. Experimental results show that the biosensor responded linearly to glucose in the range from 1.2 x 10{sup -6} to 2.0 x 10{sup -3} M, with a detection limit of 4.0 x 10{sup -7} M under optimized conditions.

  2. Study of the biosensor based on platinum nanoparticles supported on carbon nanotubes and sugar-lectin biospecific interactions for the determination of glucose

    International Nuclear Information System (INIS)

    Research highlights: → This work described the synthesis of Pt nanoparticles supported on carbon nanotubes. → The Ptnano-CNTs were used to construct biosensor for the determination of glucose. → GOD can be assembled into multilayer thin films via sugar-lectin affinity. → The protocol can avoid the chemical denaturation of the enzyme. → It improve the stability and sensitivity of the enzyme biosensor. - Abstract: Highly sensitive electrochemical platform based on Pt nanoparticles supported on carbon nanotubes (Ptnano-CNTs) and sugar-lectin biospecific interactions is developed for the direct electrochemistry of glucose oxidase (GOD). Firstly, Ptnano-CNTs nanocomposites were prepared in the presence of carbon nanotubes (CNTs), and then the mixture was cast on a glassy carbon electrode (GCE) using chitosan as a binder. Thereafter, concanavalin A (Con A) was adsorbed onto the precursor film by the electrostatic force between positively charged chitosan and the negatively charged Con A. Finally, the multilayers of Con A/GOD films were prepared based on biospecific affinity of Con A and GOD via layer-by-layer (LBL) self-assembly technique. The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The electrochemical parameters of GOD in the film were calculated with the results of the electron transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.5 and 5.093 s-1, respectively. Experimental results show that the biosensor responded linearly to glucose in the range from 1.2 x 10-6 to 2.0 x 10-3 M, with a detection limit of 4.0 x 10-7 M under optimized conditions.

  3. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis of carbon nanotubes with Ni/CNTs catalyst

    Institute of Scientific and Technical Information of China (English)

    LI; Chunhua; (李春华); YAO; Kefu; (姚可夫); RUAN; Dianbo; (阮殿波); LIANG; Ji; (梁; 吉); XU; Cailu; (徐才录); WU; Dehai; (吴德海)

    2003-01-01

    Carbon nanotubes (CNTs), owing to their large specific area, good chemical stability and modifiable surface properties after acidic or basic treatment, can be used as catalytic support materials. In this paper, the activities and selectivities of two catalysts, i. e. Ni catalyst supported by carbon nanotubes (Ni/CNTs) and that supported by diatomite (Ni/SiO2), are compared. It is found that the quality of the carbon nanotubes synthesized by the two catalysts is similar, but the yield of the former is 1.5 times higher than that of the latter. The excellent performance of the Ni/CNTs catalyst should be ascribed to the larger specific surface area and proper pore distribution and the structure of the carbon nanotube support.

  5. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  6. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149. ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  7. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ram Pavani

    2011-07-01

    Full Text Available Carbon nanotubes (CNTs are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Functionalized carbon nanotubes can also act as vaccine delivery systems.Carbon nanotubes (CNTs are considered to be one of the innovative resources in nanotechnology with possible use in wide range of biomedical applications viz. cancer treatment, bioengineering, cardiac autonomic regulation, platelet activation and tissue regeneration. The effect of CNTs on cells and tissues are extremely important for their use in various complex biological systems. With the increasing interest shown by the nanotechnology research community in this field, it is expected that plenty of applications of CNTs will be explored in future.

  8. Thermoelectrics: Carbon nanotubes get high

    Science.gov (United States)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  9. Synthesis of Carbon Nanotubes by MWPCVD at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    王升高; 汪建华; 王传新; 马志彬; 满卫东

    2002-01-01

    Growth of carbon nanotubes (CNTs) at low temperature is very important to the applications of nanotubes. In this paper, under the catalytic effect of cobalt nanoparticles supported by SiO2, CNTs were synthesized by microwave plasma chemical vapor deposition (MWPCVD)below 500℃. It demonstrates that MWPCVD can be a very efficient process for the synthesis of CNTs at low temperature.

  10. Singlewall Carbon Nanotubes As Springs In A Nanotorsional Device

    Science.gov (United States)

    Hall, Adam; Superfine, Richard

    2005-11-01

    We present on the fabrication and characterization of a nanoelectromechanical device incorporating an individual single wall carbon nanotube as a support for a small, lithographically defined and fully suspended metal platform. The device can be actuated electrostatically through the use of a back gate, causing a concomitant twist in the nanotube. We discuss future potential of such a nanoelectromechanical system.

  11. Comparative Study of Different Cross-Linking Agents for the Immobilization of Functionalized Carbon Nanotubes within a Chitosan Film Supported on a Graphite−Epoxy Composite Electrode

    OpenAIRE

    Pauliukaite, Rasa; Ghica, Mariana Emilia; Fatibello-Filho, Orlando; Brett, Christopher M. A.

    2009-01-01

    The effectiveness of immobilization of functionalized carbon nanotubes into chitosan using different cross-linking agents has been evaluated. The cross-linkers used were glyoxal (GO), glutaraldehyde (GA), epichlorohydrin (ECH), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide together with N-hydroxysuccinimide (EDC-NHS), and the nanotubes were retained on graphite epoxy resin composite electrodes. The nanotube modified electrodes have been characterized by cyclic voltammetry (CV) and electr...

  12. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  13. Electrochemiluminescent sensing of dopamine using CdTe quantum dots capped with thioglycolic acid and supported with carbon nanotubes

    International Nuclear Information System (INIS)

    We have synthesized water-dispersible CdTe quantum dots (QDs) capped with thioglycolic acid. Their quantum yield is higher than 54%. A sensitive electrochemiluminescence (ECL) method was established based on the modification of the composite of the QDs, carbon nanotubes and chitosan on indium tin oxide glass. The sensor displays efficient and stable anodic ECL which is quenched by dopamine. A respective sensor was designed that responds to dopamine linearly in the range of 50 pM to 10 nM, and the detection limit is 24 pM. Dopamine was determined with this sensor in spiked cerebro-spinal fluid with average recoveries of 95.7%. (author)

  14. Quantum transport in carbon nanotubes

    Science.gov (United States)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  15. Roping and wrapping carbon nanotubes

    Science.gov (United States)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  16. Highly effective metal vapor absorbents based on carbon nanotubes

    Science.gov (United States)

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  17. The enhanced electrocatalytic activity and stability of supported Pt nanopartciles for methanol electro-oxidation through the optimized oxidation degree of carbon nanotubes

    Science.gov (United States)

    Xiao, Meiling; Zhu, Jianbing; Ge, Junjie; Liu, Changpeng; Xing, Wei

    2015-05-01

    Carbon nanotubes (CNTs) with different oxidation degrees are synthesized by the modified Hummer's method and used as the support materials for platinum (Pt) catalysts. The effect of their oxidation degree on the catalytic activity and stability of the supported Pt catalysts for methanol electrooxidation is investigated for the first time. The electrocatalytic activity for methanol oxidation reaction increases with increasing the oxidation degree due to more oxygen-containing species introduced to CNTs, which improves the dispersion of Pt nanoparticles and also modifies the electronic structure of Pt catalysts. However, under more severe oxidation condition, the stability of Pt catalysts decreases due to the destruction of graphitic structure of CNTs. Therefore, the optimized treatment condition for the CNTs is mild oxidation, which provides the supported Pt catalysts with both excellent catalytic activity and stability.

  18. High frequency carbon nanotube devices

    Science.gov (United States)

    Goffman, M. F.; Chimot, N.; Mile, E.; Monteverde, M. C.; Bourgoin, J.-P.; Derycke, V.

    2008-08-01

    We investigate high frequency electrical and mechanical performances of carbon nanotube based devices. Using configurations with multiple single-wall nanotubes in parallel, we show that HF nanotube transistors with intrinsic cut-off frequencies as high as 30 GHz can be obtained on rigid substrates. Adapting our process to plastic substrates, we also obtained highly flexible HF transistors showing constant transconductances up to at least 6 GHz, as-measured cut-off frequencies as high as 1 GHz (5-8 GHz after de-embedding) and stable DC performances upon bending. We probed electromechanical properties of individual suspended carbon multiwall nanotubes by using a modified AFM. DC deflection measurements on different devices are in agreement with a continuum model prediction and consistent with a Young's modulus of 0.4 TPa. Preliminary HF measurements on a doubly clamped device showed a resonant frequency of 200MHz consistent with a Young's modulus of 0.43 TPa. This implies that built-in mechanical stress in the case of MWNTs is negligeable.

  19. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    Science.gov (United States)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  20. Nanoscale fluid transportation through individual carbon nanotubes

    Science.gov (United States)

    He, Jin; Cao, Di; Pang, Pei; Luo, Tao; Lindsay, Stuart; Kristic, Predrag; Nuckolls, Colin

    2011-03-01

    There are great interest in both simulation and experiment of fluid flow on the nanoscale. Carbon nanotubes, with their extremely small inner diameter (usually below 2 nm) and atomic smooth inner surface, are ideal materials for studying nanoconfinement and ion and molecule nanoscale translocation. The excellent electrical properties of CNTs can also be integrated to achieve nanoelectrofluidic device. This presentation describes our recent progress in studying fluid transport through individual carbon nanotubes, including simultaneously ionic and electronic measurements during water, ion and molecule translocation. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01).

  1. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Ashok Srivastava; Yao Xu; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  2. Characterization methods of carbon nanotubes: a review

    International Nuclear Information System (INIS)

    Carbon nanotubes due to their specific atomic structure have interesting chemical and physical properties according to those of graphite and diamond. This review covers the characterization methods of carbon nanotubes which are most employed today. The structure of carbon nanotubes is first briefly summarized followed by a description of the characterization methods such as STM, TEM, neutron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, infrared and Raman spectroscopy. The most interesting features are indexed for each technique

  3. Structure and properties of carbon nanotubes

    OpenAIRE

    MEYER, Jannik

    2006-01-01

    The properties of nanoscopic objects depend critically on the position of each atom, since finite-size and quantization effects play an important role. For carbon nanotubes, the electronic, mechanical, and vibrational properties vary significantly depending on their structure. For example, a carbon nanotube can be metallic or semiconducting with varying band-gaps depending on its lattice structure. Yet, most investigations on individual carbon nanotubes are carried out on objects with unknown...

  4. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  5. Photonics based on carbon nanotubes

    OpenAIRE

    Gu, Qingyuan; Gicquel-Guézo, Maud; Loualiche, Slimane; Pouliquen, Julie Le; Batte, Thomas; Folliot, Hervé; Dehaese, Olivier; Grillot, Frederic; Battie, Yann; Loiseau, Annick; Liang, Baolai; Huffaker, Diana

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the effi...

  6. Photoluminescence Study of Carbon Nanotubes

    OpenAIRE

    Han, H. X.; Li, G. H.; Ge, W. K.; Wang, Z. P.; Xu, Z. Y.; Xie, S. S.; Chang, B H; Sun, L. F.; Wang, B S; G. Xu; Su, Z.B.

    2000-01-01

    ultiwalled carbon nanotubes, prepared by both electric arc discharge and chemical vapor deposition methods, show a strong visible light emission in photoluminescence experiments. All the samples employed in the experiments exhibit nearly same super-linear intensity dependence of the emission bands on the excitation intensity, and negligible temperature dependence of the central position and the line shapes of the emission bands. Based upon theoretical analysis of the electronic band structure...

  7. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2015-12-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  8. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    Science.gov (United States)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  9. Carbon nanotube atomic force microscopy probes

    Science.gov (United States)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  10. Heteronuclear carbon nanotubes: applications to study carbon nanotube growth

    International Nuclear Information System (INIS)

    Full text: Synthesis of heteronuclear carbon nanotubes and their application for a variety of studies is presented. SWCNTs peapods encapsulating highly 13C enriched fullerenes and double wall carbon nanotubes (DWCNTs) based on the peapods were prepared. Raman studies indicate that the inner tubes are highly 13C enriched with no carbon exchange between the two walls during the synthesis. The material enables the straightforward identification of the inner and outer tube vibrational spectra. An inhomogeneous broadening, assigned to the random distribution of 12C and 13C nuclei is observed and is explained by ab initio vibrational analysis. The growth of inner tubes from organic solvents was proven by the use of 13C labeled organic materials such as toluene. The simultaneous encapsulation of fullerenes with the solvents was found crucial as these prevent the solvents from evaporating during the high temperature synthesis of the inner tubes. Nuclear magnetic resonance on the peapods and DWCNTs with highly 13C enriched fullerenes or inner walls proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases. The NMR experiment on the DWCNTs yield direct information on the electronic properties of small diameter SWCNTs. The significantly different chemical shift of the inner tubes is related to a curvature effect. Relaxation data on the inner tubes shows a deviation from a Fermi-liquid behavior. (author)

  11. Nanoengineering of carbon nanotubes for nanotools

    International Nuclear Information System (INIS)

    We have developed a well controlled method for manipulating carbon nanotubes. The first crucial process involved is to prepare a nanotube array, named a nanotube cartridge. We have discovered ac electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge. The nanotubes used were multiwalled and prepared by an arc discharge with a relatively high gas temperature. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope (SEM). Using this method, we have developed nanotube tips and nanotube tweezers that operate in a scanning probe microscope (SPM). The nanotube probes have been applied for the observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have demonstrated their motion in an SEM and have operated to carry nanomaterials in a SPM. We have also developed the electron ablation of a nanotube to adjust its length and the sharpening of a multiwall nanotube to have its inner layer with or without an end cap at the tip. For the sharpening process, the free end of a nanotube protruding from the cartridge was attached to a metal-coated Si tip and a voltage was applied to the nanotube. When a high voltage was used in the saturation current regime, the current decreased stepwise in the temporal variation, indicating the sequential destruction of individual nanotube layers. The nanotube was finally cut at the middle of the nanotube bridge, and its tip was sharpened to have an inner layer with an opened end. Moving up the cartridge before cutting enables us to extract the inner layer with an end cap. It is evidenced that the maximum current in each layer during the stepwise decrease depends on its circumference, and the force for extracting the inner layer with ∼5-nm diameter is ∼4-nN

  12. Highly enhanced vapor sensing of multiwalled carbon nanotube network sensors by n-butylamine functionalization

    OpenAIRE

    P. Slobodian; Riha, P.; Cavallo, P.; Barbero, C. A.; R. Benlikaya; Cvelbar, U.; Petras, D.; Saha, P.

    2014-01-01

    The sensing of volatile organic compounds by multiwall carbon nanotube networks of randomly entangled pristine nanotubes or the nanotubes functionalized by n-butylamine, which were deposited on polyurethane supporting electrospinned nonwoven membrane, has been investigated. The results show that the sensing of volatile organic compounds by functionalized nanotubes considerably increases with respect to pristine nanotubes. The increase is highly dependent on used vapor polarity. For the cas...

  13. Draw out Carbon Nanotube from Liquid Carbon

    OpenAIRE

    ZHANG, SHUANG; Hoshi, Takeo; Fujiwara, Takeo

    2006-01-01

    Carbon nanotube (CNT) is expected for much more important and broader applications in the future, because of its amazing electrical and mechanical properties. However, today, the prospect is detained by the fact that the growth of CNTs cannot be well controlled. In particular, controlling the chirality of CNTs seems formidable to any existing growth method. In addition, a systematic method for a designed interconnected network has not been established yet, which is focused particularly in nan...

  14. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  15. Surface plasmon observed for carbon nanotubes

    International Nuclear Information System (INIS)

    This paper presents parallel electron energy loss spectra (PEELS) results, obtained for individual carbon nanotubes, using nanoprobe techniques (1-2 nm diameter electron beam), energy resolution 0.5 eV and collection times of 4-25 sec. The aim was to use a nanoprobe to compare PEELS spectra from different parts of a tube, in order to search for variations in sp2/sp3 bonding ratios as well as to look for orientation dependent plasmon and core-loss phenomena. It also seemed interesting to compare results for nanotubes with those for other varieties of graphitized carbons. The most interesting result so far was the appearance of a 15 eV plasmon peak, which appeared only for tubes containing ≤ about 12 graphite-like layers. This peak did not shift significantly with tube size. A low-loss peaks at 6 eV of variable relative intensity was also observed this peak was relatively very weak for amorphous tubes; it appears to be characteristic of graphite-like layers, as found for nanotubes and, of course, graphite itself. This paper is restricted to discussion of the low-loss results. The experimental techniques are first described, including some details of the methods which may be used to disperse and support sooty carbons for high-resolution transmission electron microscopy. The results are then presented, followed by an interpretation of all the low-loss PEELS results, including those of the other authors. 14 refs., 2 figs

  16. Methanol Oxidation over TiO2-modified Multi-walled Carbon Nanotubes Supported Pt-Mo Electrocatalyst

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-yu; JIANG Yuan-sheng; ZHU Hong; ZHANG Jing-chang

    2011-01-01

    In order to develop a novel and high-performance catalytic material for direct methanol fuel cells(DMFC),molybdenum oxide as a co-catalyst with Pt on multi-walled carbon nanotubes which were modified by titanium dioxide(denoted as CNTs@TiO2) was investigated. The physicochemical characterizations of the catalysts were carried out via X-ray diffraction(XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS).Cyclic voltammetry(CV) showed that the CO-tolerance performance increased in the sequence of Pt/CNTs<Pt/CNTs@TiO2<Pt-Mo/CNTs@TiO2. The improved CO-tolerance performance of the Pt-Mo/CNTs@TiO2 catalyst can be attributed to the combined beneficial effects of highly dispersed Pt nanoparticles on the CNTs, the existence of oxygen holes in the MoO3 layer structure and the oxidation capability of TiO2.

  17. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  18. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  19. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  20. Functional Materials based on Carbon Nanotubes

    OpenAIRE

    Jung, Adrian Thomas

    2007-01-01

    Carbon nanotubes, no matter if they are single-walled or multi-walled, are an integral component in the vastly growing field of nanotechnology. Since their discovery by TEM and the invention of numerous large-scale production techniques, nanotubes are close to making their way into industrial products. Although many properties and modification processes are still under intensive research, the first real-market applications for carbon nanotubes have already been presented. However, if function...

  1. Dielectrophoretic assembly of carbon nanotube devices

    OpenAIRE

    Dimaki, Maria; BØGGILD, Peter

    2004-01-01

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane. The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an ele...

  2. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  3. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  4. Carbon Nanotubes and Other Nanostructures as Support Material for Nanoparticulate Noble-Metal Catalysts in Fuel Cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Veltzé, Sune; Skou, Eivind Morten

    platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1-5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible for...

  5. Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala;

    platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1–5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible for...

  6. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  7. Carbon nanotubes composites for microwave applications

    OpenAIRE

    Herrero Fernández, Diego

    2015-01-01

    Carbon nanotubes have become a focus of study due to the great applications you can have and its excellent properties. In this thesis the compounds formed by a host and a percentage of carbon nanotubes are modelled. The models used are the Debye model, the Maxwell Garnett model and McLachlan model. These models have been implemented in ...

  8. Carbon nanotube flow sensor device and method

    OpenAIRE

    Sood, Ajay Kumar; Ghosh, Shankar

    2004-01-01

    A method and device for measuring the flow of a liquid utilizes at least one carbon nanotube. More particularly, the velocity of a liquid along the direction of the flow is measured as a function of them current/voltage generated in at least one carbon nanotube due to the flow of the liquid along its surface.

  9. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    Science.gov (United States)

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs. PMID:27125360

  10. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode

    International Nuclear Information System (INIS)

    Heterogeneous electron transfer dynamics and oxygen reduction reaction (ORR) activities using octabutylsulphonylphthalocyanine complexes of iron (FeOBSPc) and cobalt (CoOBSPc) supported on multi-walled carbon nanotube (MWCNT) platforms have been described. The MWCNT-based electrodes (MWCNT-CoOBSPc and MWCNT-FeOBSPc) showed larger Faradaic current responses than the electrodes without the MWCNTs, interpreted as a consequence of the trapped electrolyte species within the porous layers of MWCNTs undergoing a redox process. The EPPGE-MWCNT-FeOBSPc showed onset potential (-0.01 V vs Ag|AgCl) which is comparable and even much lower than recent reports. The MWCNT-FeOBSPc showed the best ORR activity involving a direct 4-electron mechanism, with a Tafel slope of about 124 mV, indicating a 1-electron process in the rate-determining step.

  11. Conducting carbonized polyaniline nanotubes

    Czech Academy of Sciences Publication Activity Database

    Mentus, S.; Ciric-Marjanovic, G.; Trchová, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Roč. 20, č. 24 (2009), 245601/1-245601/10. ISSN 0957-4484 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymers * polyaniline * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.137, year: 2009

  12. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  13. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  14. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  15. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are...... an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  16. Growing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yoshinori Ando

    2004-10-01

    Full Text Available The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the subsequent discovery of ‘carbon nanotubes’ (CNTs, the elongated fullerene added a new dimension to the knowledge of technology2;. Today, ‘nanotechnology’ is a hot topic attracting scientists, industrialists, journalists, governments, and even the general public. Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc. at that length scale. CNTs are supposed to be a key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

  17. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    Science.gov (United States)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.

  18. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  19. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  20. Preparation and electrochemistry of graphene nanosheets–multiwalled carbon nanotubes hybrid nanomaterials as Pd electrocatalyst support for formic acid oxidation

    International Nuclear Information System (INIS)

    Highlights: ► Graphene nanosheets–MWCNTs (GNS–CNTs) composites as Pd electrocatalysts support were synthesized by in situ reduction method. ► The direct electrooxidation of HCOOH is improved on the GNS–CNTs based catalyst. ► Both activity and durability of GNS–CNTs based catalyst are improved greatly. ► Pd/GNS–CNTs catalysts exhibit excellent performance when the mass ratio of GO to CNTs is 5:1. - Abstract: Graphene nanosheets–MWCNTs (GNS–CNTs) composites were synthesized by in situ reduction method, and then palladium nanoparticles (NPs) were supported on the GNS–CNTs by a microwave-assisted polyol process. Microstructure measurements showed that the graphene nanosheets and the CNTs formed a uniform nanocomposite with CNTs absorbed on the graphene nanosheets surface and/or filled between the graphene nanosheets. Compared to Pd/Vulcan XC-72R carbon, Pd/GNS, or Pd/CNTs catalysts, the Pd/GNS–CNTs catalysts exhibit excellent electrocatalytic activity and stability for formic acid electro-oxidation when the mass ratio of GO to CNTs is 5:1. The superior performance of Pd/GNS–CNTs catalysts may arise from large surface area utilization for NPs and enhanced electronic conductivity of the supports. Therefore, the GNS–CNTs composite should be a promising carbon material for application as electrocatalyst support in fuel cells.

  1. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine

    International Nuclear Information System (INIS)

    Highlights: • A GCE was modified with carbon nanotubes and cobalt nanoparticles. • The composite material was obtained using an ultrasonic chemical deposition method. • The CoNPs/MWCNT/GCE was applied for the simultaneous determination of PAR and DA. • The presence of AA and UA did not affect the responses of PAR and DA. • Lower detection limits were obtained using the CoNPs/MWCNT/GCE. - Abstract: Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10−9–4.5 × 10−7 M (R2 = 0.9987) and 5.0 × 10−8–3.0 × 10−6 M (R2 = 0.9999), respectively. The detection limits of 1.0 × 10−9 M and 1.5 × 10−8 M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR

  2. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Aysegul; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2014-08-11

    Highlights: • A GCE was modified with carbon nanotubes and cobalt nanoparticles. • The composite material was obtained using an ultrasonic chemical deposition method. • The CoNPs/MWCNT/GCE was applied for the simultaneous determination of PAR and DA. • The presence of AA and UA did not affect the responses of PAR and DA. • Lower detection limits were obtained using the CoNPs/MWCNT/GCE. - Abstract: Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10{sup −9}–4.5 × 10{sup −7} M (R{sup 2} = 0.9987) and 5.0 × 10{sup −8}–3.0 × 10{sup −6} M (R{sup 2} = 0.9999), respectively. The detection limits of 1.0 × 10{sup −9} M and 1.5 × 10{sup −8} M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and

  3. Carbon nanotube cathode with capping carbon nanosheet

    Science.gov (United States)

    Li, Xin; Zhao, Dengchao; Pang, Kaige; Pang, Junchao; Liu, Weihua; Liu, Hongzhong; Wang, Xiaoli

    2013-10-01

    Here, we report a vertically aligned carbon nanotube (VACNT) film capped with a few layer of carbon nanosheet (FLCN) synthesized by chemical vapor deposition using a carbon source from iron phthalocyanine pyrolysis. The square resistance of the VACNT film is significantly reduced from 1500 Ω/□ to 300 Ω/□ when it is capped with carbon nanosheet. The VACNT capped with carbon nanosheet was transferred to an ITO glass substrate in an inverted configuration so that the carbon nanosheet served as a flexible transparent electrode at the bottom and the VACNT roots served as emission tips. Because all of the VACNTs start growing from a flat silicon substrate, the VACNT roots are very neat and uniform in height. A field emission test of the carbon nanosheet-capped VACNT film proved that the CNT roots show better uniformity in field emission and the carbon nanosheet cap could also potentially serve as a flexible transparent electrode, which is highly desired in photo-assisted field emission.

  4. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels;

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties of...... nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  6. Carbon Nanotube Paper-Based Electroanalytical Devices

    OpenAIRE

    Youngmi Koo; Vesselin N. Shanov; Yeoheung Yun

    2016-01-01

    Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The de...

  7. Ordered phases of cesium in carbon nanotubes

    International Nuclear Information System (INIS)

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  8. Ordered phases of cesium in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-10-15

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  9. Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy

    OpenAIRE

    Xue, Yongqiang; Datta, Supriyo

    1999-01-01

    At any metal-carbon nanotube interface there is charge transfer and the induced interfacial field determines the position of the carbon nanotube band structure relative to the metal Fermi-level. In the case of a single-wall carbon nanotube (SWNT) supported on a gold substrate, we show that the charge transfers induce a local electrostatic potential perturbation which gives rise to the observed Fermi-level shift in scanning tunneling spectroscopy (STS) measurements. We also discuss the relevan...

  10. Charge Screening Effect in Metallic Carbon Nanotubes

    OpenAIRE

    Sasaki, K

    2001-01-01

    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.

  11. Defect-Free Carbon Nanotube Coils.

    Science.gov (United States)

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  12. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  13. Functionalization of carbon nanotubes with silver clusters

    Science.gov (United States)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-09-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  14. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  15. Deconvoluting hepatic processing of carbon nanotubes

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  16. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  17. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  18. Calculating Young's modulus for a carbon nanotube

    Science.gov (United States)

    Alzubi, Feras; Cosby, Ronald

    2008-10-01

    Young's modulus for an armchair single-wall carbon nanotube was calculated using an atomistic approach and density functional theory (DFT). Atomic forces and total energies for strained carbon nanotube segments were computed using Atomistix's Virtual NanoLab (VNL) and ToolKit (ATK) software. For a maximum strain of one percent, elastic moduli were calculated using both force-strain and energy-strain data. The average values found for Young's modulus were in the range 1.2 to 3.9 TPa depending on the cross-sectional area taken for the carbon nanotube, consideration of Poisson's ratio, and the calculation method used. Three possible choices of cross-sectional area for the carbon nanotube are discussed and parameter and convergence tests for the DFT computations are described.

  19. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  20. Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    A highly efficient and CO tolerant PtRu electrocatalysts supported on amino-rich, cationic poly(ethyleneimine) polyelectrolyte functionalized multi-walled carbon nanotubes (PtRu/PEI-MWCNTs) has been developed. The catalysts were characterized by thermogravimetric analysis, Raman spectroscopy, cyclic voltammograms, CO stripping, chronoamperometry, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The PtRu particles with average size ∼2.5 nm are well dispersed on PEI-MWCNTs. The peak current for the methanol oxidation reaction on 40% PtRu/PEI-MWCNTs is 636mAmgPt−1, 5.7 times higher than 112mA mgPt−1 measured on the 40% PtRu supported on acid treated MWCNTs (PtRu/AO-MWCNTs) under identical conditions. PtRu/PEI-MWCNTs catalysts exhibit a superior electrocatalytic activity and stability for the methanol oxidation reaction due to its high tolerance toward CO poisoning as compared with PtRu/AO-MWCNTs for direct methanol fuel cells

  1. Preparation of highly dispersed Pt-SnO{sub x} nanoparticles supported on multi-walled carbon nanotubes for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Chuangang [College of Chemistry and Environmental Science, Henan Normal University, Engineering Technology Research Center of Motive Power and Key Materials of Henan Province, Xinxiang 453007 (China); Cao Yanxia [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Yang Lin, E-mail: yanglin1819@163.com [College of Chemistry and Environmental Science, Henan Normal University, Engineering Technology Research Center of Motive Power and Key Materials of Henan Province, Xinxiang 453007 (China); Bai Zhengyu; Guo Yuming; Wang Kui; Xu Pengle; Zhou Jianguo [College of Chemistry and Environmental Science, Henan Normal University, Engineering Technology Research Center of Motive Power and Key Materials of Henan Province, Xinxiang 453007 (China)

    2011-07-01

    To maximize the utilization of catalysts and thereby reduce the high price, a new strategy was developed to prepare highly dispersed Pt-SnO{sub x} nanoparticles supported on 8-Hydroxyquinoline (HQ) functionalized multi-walled carbon nanotubes (MWCNTs). HQ functionalized MWCNTs (HQ-MWCNTs) provide an ideal support for improving the utilization of platinum-based catalysts, and the introduction of SnO{sub x} to the catalyst prevents the CO poisoning effectively. The as-prepared catalysts are characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. It is found that the HQ functionalization process preserves the integrity and electronic structure of MWCNTs, and the resulting Pt-SnO{sub x} particles are well dispersed on the HQ-MWCNTs with an average diameter of ca. 2.2 nm. Based on the electrochemical properties characterized by cyclic voltammetry and chronoamperometry, the Pt-SnO{sub x}/HQ-MWCNTs catalyst displays better electrocatalytic activity and stability for the methanol oxidation. It is worth mentioning that the forward peak current density of Pt-SnO{sub x}/HQ-MWCNTs catalyst is ca. 1.9 times of that of JM commercial 20% Pt/C catalyst, which makes it the preferable catalyst for direct methanol fuel cells.

  2. Composition-dependent electrocatalytic activity of palladium-iridium binary alloy nanoparticles supported on the multiwalled carbon nanotubes for the electro-oxidation of formic acid.

    Science.gov (United States)

    Bao, Jianming; Dou, Meiling; Liu, Haijing; Wang, Feng; Liu, Jingjun; Li, Zhilin; Ji, Jing

    2015-07-22

    Surface-functionalized multiwalled carbon nanotubes (MWCNTs) supported Pd100-xIrx binary alloy nanoparticles (Pd100-xIrx/MWCNT) with tunable Pd/Ir atomic ratios were synthesized by a thermolytic process at varied ratios of bis(acetylacetonate) palladium(II) and iridium(III) 2,4-pentanedionate precursors and then applied as the electrocatalyst for the formic acid electro-oxidation. The X-ray diffraction pattern (XRD) and transmission electron microscope (TEM) analysis showed that the Pd100-xIrx alloy nanoparticles with the average size of 6.2 nm were uniformly dispersed on the MWCNTs and exhibited a single solid solution phase with a face-centered cubic structure. The electrocatalytic properties were evaluated through the cyclic voltammetry and chronoamperometry tests, and the results indicated that both the activity and stability of Pd100-xIrx/MWCNT were strongly dependent on the Pd/Ir atomic ratios: the best electrocatalytic performance in terms of onset potential, current density, and stability against CO poisoning was obtained for the Pd79Ir21/MWCNT. Moreover, compared with pure Pd nanoparticles supported on MWCNTs (Pd/MWCNT), the Pd79Ir21/MWCNT exhibited enhanced steady-state current density and higher stability, as well as maintained excellent electrocatalytic activity in high concentrated formic acid solution, which was attributed to the bifunctional effect through alloying Pd with transition metal. PMID:26132867

  3. Highly Enhanced Vapor Sensing of Multiwalled Carbon Nanotube Network Sensors by n-Butylamine Functionalization

    Directory of Open Access Journals (Sweden)

    P. Slobodian

    2014-01-01

    Full Text Available The sensing of volatile organic compounds by multiwall carbon nanotube networks of randomly entangled pristine nanotubes or the nanotubes functionalized by n-butylamine, which were deposited on polyurethane supporting electrospinned nonwoven membrane, has been investigated. The results show that the sensing of volatile organic compounds by functionalized nanotubes considerably increases with respect to pristine nanotubes. The increase is highly dependent on used vapor polarity. For the case of highly polar methanol, the functionalized MWCNT network exhibits even more than eightfold higher sensitivity in comparison to the network prepared from pristine nanotubes.

  4. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  5. Electromechanical instability in suspended carbon nanotubes

    OpenAIRE

    Jonsson, L. M.; Gorelik, L. Y.; Shekhter, R. I.; Jonson, M.

    2005-01-01

    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system.

  6. Crosstalk analysis of carbon nanotube bundle interconnects

    OpenAIRE

    Zhang, Kailiang; Tian, Bo; Zhu, Xiaosong; WANG, FANG; Wei, Jun

    2012-01-01

    Carbon nanotube (CNT) has been considered as an ideal interconnect material for replacing copper for future nanoscale IC technology due to its outstanding current carrying capability, thermal conductivity, and mechanical robustness. In this paper, crosstalk problems for single-walled carbon nanotube (SWCNT) bundle interconnects are investigated; the interconnect parameters for SWCNT bundle are calculated first, and then the equivalent circuit has been developed to perform the crosstalk analys...

  7. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  8. Electrical Transport in Carbon Nanotubes and Graphene

    OpenAIRE

    Liu, Gang

    2010-01-01

    This thesis summarizes our work in the past few years in the field of transport studies of carbon nanotubes and graphene. The first half of the thesis focuses on carbon nanotube (CNT) Josephson junctions (JJ) formed by coupling CNTs to superconducting electrodes. They exhibited Fabry Perot resonance patterns, enhanced differential conductance peaks, multiple Andreev reflection peaks, gate-tunable supercurrent transistor behaviors, hysteretic current-voltage line shape and "superconductor-insu...

  9. ALUMINUM FOIL REINFORCED BY CARBON NANOTUBES

    OpenAIRE

    A. V. Alekseev; PREDTECHENSKIY M.R.

    2016-01-01

    In our research, the method of manufacturing an Al-carbon nanotube (CNT) composite by hot pressing and cold rolling was attempted. The addition of one percent of multi-walled carbon nanotubes synthesized by OCSiAl provides a significant increase in the ultimate tensile strength of aluminum. The tensile strength of the obtained composite material is at the tensile strength level of medium-strength aluminum alloys.

  10. Transport theory of carbon nanotube Y junctions

    International Nuclear Information System (INIS)

    We describe a generalization of Landauer-Buettiker theory for networks of interacting metallic carbon nanotubes. We start with symmetric starlike junctions and then extend our approach to asymmetric systems. While the symmetric case is solved in closed form, the asymmetric situation is treated by a mixture of perturbative and non-perturbative methods. For N > 2 repulsively interacting nanotubes, the only stable fixed point of the symmetric system corresponds to an isolated node. Detailed results for both symmetric and asymmetric systems are shown for N = 3, corresponding to carbon nanotube Y junctions

  11. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  12. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    OpenAIRE

    Deepak, FL; Govindaraj, A.; Rao, CNR

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives ...

  13. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Bimetallic of group VIII/MgO catalysts were tested for methane decomposition reaction. • Fe–Co/MgO catalyst showed superior activity and stability toward H2 production. • Both Ni–Fe and Ni–Co catalysts exhibited lower catalytic activities. • The formation of MgxNi(1−x)O leads to the inhibition of catalytic activity. • High quality MWCNTs were obtained over all binary catalysts. - Abstract: Bimetallic Ni–Fe, Ni–Co and Fe–Co supported on MgO catalysts with a total metals content of 50 wt.% were evaluated for decomposition of methane to CO/CO2 free hydrogen and carbon nanomaterials. The catalytic runs were carried out at 700 °C under atmospheric pressure using fixed bed horizontal flow reactor. The materials were characterized by XRD, TEM, Raman spectroscopy, surface analysis and TGA–DTG. The data showed that the bimetallic 25% Fe–25%Co/MgO catalyst exhibited remarkable higher activity and stability up to ∼10 h time-on-stream with respect to H2 production. However, the catalytic activity and durability was greatly declined after incorporating 25%Ni to either 25%Fe or 25%Co/MgO catalysts at all time on stream. The main reason for the catalytic inhibition of Ni containing catalysts is consuming NiO during the formation of rock-salt MgxNi(1−x)O solid solution. However, the almost complete segregation of Fe2O3 and Co3O4 oxides played an important role for the high activity of the Fe–Co based catalyst. TEM images illustrate that the accumulated carbon over all catalysts are multi-walled carbon nanotubes in nature. The TG data showed that a higher yield of MWCNTs was achieved over bimetallic Fe–Co catalyst compared to the Ni–Fe or Ni–Co containing catalysts

  14. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  15. Manipulation and cutting of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanomanipulation plays an important role in nanofabrication, it is also a technology necessary in exploring the secrets of nanoworld, and it thus beco mesa start point to research future nanomachine. In this study, manipulation and cutting of carbon nanotubes have been conducted in order to examine whether we can move a nanocomponent from one site to another by using the tip of atomic fo rce microscope (AFM). The technique may also be valuable for providing the const ructive materials of nanofabrication. While exploring the method for manipulatin g and cutting of nanotubes, some new phenomena have been observed during the process. Results show that carbon nanotubes present a feature of deformation combin ing bending and distortion when subjected to large mechanical forces exerted by the tip of AFM. In special cases, long carbon nanotubes can be cut into two part s, by which we can remove the part where crystal lattice is flawed, and therefor e a perfect nanocomponent can be obtained.

  16. Fabrication of nylon-6/carbon nanotube composites

    Science.gov (United States)

    Xu, C.; Jia, Z.; Wu, D.; Han, Q.; Meek, T.

    2006-05-01

    A new technique to fabricate nylon-6/carbon nanotube (PA6/CNT) composites is presented. The method involves a pretreatment of carbon nanotubes synthesized by catalytic pyrolysis of hydrocarbon and an improved in-situ process for mixing nanotubes with the nylon 6 matrix. A good bond between carbon nanotubes and the nylon-6 matrix is obtained. Mechanical property measurements indicate that the tensile strength of PA6/CNT composites is improved significantly while the toughness and elongation are somewhat compromised. Scanning electron microscopy (SEM) analysis of the fractured tensile specimens reveals cracking initiated at the wrapping of the CNTs PA6 layer/PA6 matrix interface rather than at the PA6/CNT interface.

  17. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  18. Simulation and Optimization of a Carbon Nanotube Electron Source

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Radlička, Tomáš; Krátký, Stanislav

    2015-01-01

    Roč. 21, S4 (2015), s. 60-65. ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotube * electron beam lithography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  19. Design and simulation of a carbon nanotube electron source

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Radlička, Tomáš; Krátký, Stanislav

    Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014. s. 62. ISBN 978-80-87441-11-4. [International Conference on Charged Parrticle Optics /9./. 31.08.2014-05.09.2014, Brno] Institutional support: RVO:68081731 Keywords : field emission * carbon nanotube s * Monte-Carlo simulation s * finite element method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Atomic layer deposited highly dispersed platinum nanoparticles supported on non-functionalized multiwalled carbon nanotubes for the hydrogenation of xylose to xylitol

    International Nuclear Information System (INIS)

    Highly dispersed platinum nanoparticles were deposited on gram quantities of non-functionalized multiwalled carbon nanotubes (MWCNTs) by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. (Methylcyclopentadienyl) trimethylplatinum and oxygen were used as precursors. The results of TEM analysis showed that ∼1.3 nm Pt nanoparticles were highly dispersed on non-functionalized MWCNTs. The porous structures of MWCNTs did not change with the deposition of Pt nanoparticles. For comparison, the commercial 3 wt% Pt/C catalyst was also characterized. The ALD-prepared Pt/MWCNT was used for the hydrogenation of xylose to xylitol. The ALD-prepared Pt/MWCNT showed the best catalytic performance with 100 % conversion of xylose and 99.3 % selectivity to xylitol, compared to commercially available Pt/C, Ru/C, and Raney Ni catalysts. The stability of ALD produced Pt/MWCNT catalyst was higher than that of the commercial Pt/C, due to the presence of surface defects on the MWCNTs and the strong metal–support interaction for the ALD-prepared Pt/MWCNT catalyst

  1. Atomic layer deposited highly dispersed platinum nanoparticles supported on non-functionalized multiwalled carbon nanotubes for the hydrogenation of xylose to xylitol

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xinhua, E-mail: liangxin@mst.edu [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States); Jiang, Chengjun [Zhejiang University of Science and Technology, Department of Chemical and Biological Engineering (China)

    2013-09-15

    Highly dispersed platinum nanoparticles were deposited on gram quantities of non-functionalized multiwalled carbon nanotubes (MWCNTs) by atomic layer deposition (ALD) in a fluidized bed reactor at 300 Degree-Sign C. (Methylcyclopentadienyl) trimethylplatinum and oxygen were used as precursors. The results of TEM analysis showed that {approx}1.3 nm Pt nanoparticles were highly dispersed on non-functionalized MWCNTs. The porous structures of MWCNTs did not change with the deposition of Pt nanoparticles. For comparison, the commercial 3 wt% Pt/C catalyst was also characterized. The ALD-prepared Pt/MWCNT was used for the hydrogenation of xylose to xylitol. The ALD-prepared Pt/MWCNT showed the best catalytic performance with 100 % conversion of xylose and 99.3 % selectivity to xylitol, compared to commercially available Pt/C, Ru/C, and Raney Ni catalysts. The stability of ALD produced Pt/MWCNT catalyst was higher than that of the commercial Pt/C, due to the presence of surface defects on the MWCNTs and the strong metal-support interaction for the ALD-prepared Pt/MWCNT catalyst.

  2. A hybrid model of support vector regression with genetic algorithm for forecasting adsorption of malachite green onto multi-walled carbon nanotubes: central composite design optimization.

    Science.gov (United States)

    Ghaedi, M; Dashtian, K; Ghaedi, A M; Dehghanian, N

    2016-05-11

    The aim of this work is the study of the predictive ability of a hybrid model of support vector regression with genetic algorithm optimization (GA-SVR) for the adsorption of malachite green (MG) onto multi-walled carbon nanotubes (MWCNTs). Various factors were investigated by central composite design and optimum conditions was set as: pH 8, 0.018 g MWCNTs, 8 mg L(-1) dye mixed with 50 mL solution thoroughly for 10 min. The Langmuir, Freundlich, Temkin and D-R isothermal models are applied to fitting the experimental data, and the data was well explained by the Langmuir model with a maximum adsorption capacity of 62.11-80.64 mg g(-1) in a short time at 25 °C. Kinetic studies at various adsorbent dosages and the initial MG concentration show that maximum MG removal was achieved within 10 min of the start of every experiment under most conditions. The adsorption obeys the pseudo-second-order rate equation in addition to the intraparticle diffusion model. The optimal parameters (C of 0.2509, σ(2) of 0.1288 and ε of 0.2018) for the SVR model were obtained based on the GA. For the testing data set, MSE values of 0.0034 and the coefficient of determination (R(2)) values of 0.9195 were achieved. PMID:27119755

  3. Carbon linear chains inside multiwalled nanotubes

    Science.gov (United States)

    Cazzanelli, E.; Caputi, L.; Castriota, M.; Cupolillo, A.; Giallombardo, C.; Papagno, L.

    2007-09-01

    Multiwalled carbon nanotubes have been deposited on graphite cathodes by using an arc discharge technique in He atmosphere, with the insertion of a catalytic Ni-Cr mixture as well as without catalysers. The topography of such deposition has been investigated by SEM, while a parallel micro-Raman study has revealed, in particular regions of the deposited cathodes, strong bands in the range 1780-1860 cm -1, assignable to linear carbon chains inside the nanotubes. The variation of intensity, frequency and bandwidth of such bands has been investigated, in relation with the spectral characters of the host multiwalled carbon nanotube. In the cathode deposited without catalyst a quite ordered configuration of multiwalled carbon nanotubes is obtained in the central zone, while the maximum concentration of linear carbon chains is found in a ring shaped zone just inside the border. In sample obtained with catalyst the deposited multiwalled carbon nanotubes appear always more disordered, and a remarkable concentration of carbon chains appears in some zones, with a more casual distribution.

  4. Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them

    Science.gov (United States)

    Kim, Myung Jong; Nicholas, Nolan Walker; Kittrell, W. Carter; Schmidt, Howard K.

    2015-06-30

    According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.

  5. Modeling of carbon nanotubes and carbon nanotube-polymer composites

    Science.gov (United States)

    Pal, G.; Kumar, S.

    2016-01-01

    In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.

  6. Carbon Nanotube and Graphene Nanoelectromechanical Systems

    Science.gov (United States)

    Aleman, Benjamin Jose

    One-dimensional and two-dimensional forms of carbon are composed of sp 2-hybridized carbon atoms arranged in a regular hexagonal, honeycomb lattice. The two-dimensional form, called graphene, is a single atomic layer of hexagonally-bonded carbon atoms. The one-dimensional form, known as a carbon nanotube, can be conceptualized as a rectangular piece of graphene wrapped into a seamless, high-aspect-ratio cylinder or tube. This dissertation addresses the physics and applied physics of these one and two-dimensional carbon allotropes in nanoelectromechanical systems (NEMS). First, we give a theoretical background on the electrodynamics and mechanics of carbon nanotube NEMS. We then describe basic experimental techniques, such as electron and scanning probe microscopy, that we then use to probe static and dynamic mechanical and electronic behavior of the carbon nanotube NEMS. For example, we observe and control non-linear beam bending and single-electron quantum tunneling effects in carbon nanotube resonators. We then describe parametric amplification, self-oscillation behavior, and dynamic, non-linear effects in carbon nanotube mechanical resonators. We also report a novel approach to fabricate carbon nanotube atomic force microscopy (AFM) probes, and show that they can lead to exceptional lateral resolution enhancement in AFM when imaging both hard and soft (biological) materials. Finally, we describe novel fabrication techniques for large-area, suspended graphene membranes, and utilize these membranes as TEM-transparent, AFM-compatible, NEMS resonators. Laser-driven mechanical vibrations of the graphene resonators are detected by optical interferometry and several vibration harmonics are observed. A degeneracy splitting is observed in the vibrational modes of square-geometry resonators. We then attribute the observed degeneracy splitting to local mass inhomogeneities and membrane defects, and find good overall agreement with the developed theoretical model.

  7. Conception et Modélisation des Dispositifs de Biocaptage à Base de Nanotubes de Carbone

    OpenAIRE

    Roman, C.

    2006-01-01

    ISBN : 2-84813-086-5 At only fifteen years after their discovery by Sumio Iijima, carbon nanotubes can be considered as one of the support pylons of nanotechnology. The seamless geometry and one-dimensional nature confers to carbon nanotubes exceptional structural, mechanical, electronic and optical properties. Accordingly, nanotubes are expected to pervade key applications such as field emission displays, energy storage, structural composites, nanoelectronics, sensors and actuators, etc.T...

  8. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  9. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    Science.gov (United States)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is

  10. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  11. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  12. Thermal conductivity and thermal rectification in unzipped carbon nanotubes

    International Nuclear Information System (INIS)

    We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.

  13. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  14. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  15. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  16. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  17. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  18. Agglomeration defects on irradiated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steini Moura, Cassio [Faculty of Physics, Pontificia Universidade Catolica do Rio Grande do Sul, 90619-900, Porto Alegre, RS (Brazil); Balzaretti, Naira Maria; Amaral, Livio [Institute of Physics, Universidade Federal do Rio Grande do Sul, C.P.: 15051, 91501-070, Porto Alegre, RS (Brazil); Gribel Lacerda, Rodrigo; Pimenta, Marcos A. [Universidade Federal de Minas Gerais, C.P.: 702, 31270-901, Belo Horizonte, MG (Brazil)

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  19. Agglomeration defects on irradiated carbon nanotubes

    International Nuclear Information System (INIS)

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  20. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nanometre-sized quasi-unidimensional tubular structures (carbon nanotubes), as well as broad prospects for the use of nanomaterials based on them initiated numerous studies in the search for, and design of, nanotubular structures based in other compounds. Some properties and the main methods for the synthesis of non-carbon nanotubes are considered. Studies on the simulation of the electronic structures of these unique objects are analysed. Results of experimental and theoretical studies along these lines are discussed. The bibliography includes 328 references.

  1. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nano-sized quasi-unidimensional tubular structures (carbon nanotubes) and the broad prospects for the use of nanomaterials based on them have initiated numerous studies on the search and design of nanotubular structures of other substances. Some properties and the main methods of synthesis of non-carbon nanotubes based in particular, on boron compounds molybdenum, tungsten, niobium chalcogenides and vanadium oxides are considered. The works on the simulation of the electronic structures of these unique objects are analysed. The results of experimental and theoretical studies along these lines are discussed

  2. Multiscale simulation of carbon nanotube transistors

    OpenAIRE

    Maneux, Cristell; Roche, Stephan

    2013-01-01

    In recent years, the understanding and accurate simulation of carbon nanotube-based transistors has become very challenging. Conventional simulation tools of microelectronics are necessary to predict the performance and use of nanotube transistors and circuits, but the models need to be refined to properly describe the full complexity of such novel type of devices at the nanoscale. Indeed, many issues such as contact resistance, low dimensional electrostatics and screening effects, demand for...

  3. Efficiently Dispersing Carbon Nanotubes in Polyphenylene Sulfide

    OpenAIRE

    Sommer, Kevin M; Pipes, R. Byron

    2013-01-01

    Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolat...

  4. Optical trapping of carbon nanotubes and graphene

    OpenAIRE

    Vasi, S.; M. A. Monaca; Donato, M. G.; Bonaccorso, F.; Privitera, G; Trushkevych, O.; G. Calogero; Fazio, B.; Irrera, A.; M.A. Iati'; Saija, R.; Denti, P.; F. Borghese; Jones, P H; Ferrari, A. C.

    2011-01-01

    We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fuctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double ...

  5. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  6. Localized Excitons in Carbon Nanotubes.

    Science.gov (United States)

    Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei

    2015-03-01

    It has been historically known that unintentional defects in carbon nanotubes (CNTs) may fully quench the fluorescence. However, some dopants may enhance the fluorescence by one order of magnitude thus turning the CNTs, which are excellent light absorbers, in good emitters. We have correlated the experimentally observed photoluminescence spectra to the electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the lowest bright exciton peak. Our simulations suggest an association of these peaks with deep trap states tied to different specific chemical adducts. While the wave functions of excitons in undoped CNTs are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with the experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from scattering of acoustic phonons on localized excitons. Our work lays the foundation to utilize doping as a generalized route for wave function engineering and direct control of carrier dynamics in SWCNTs toward enhanced light emission properties for photonic applications.

  7. Does water dope carbon nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Robert A.; Payne, Michael C. [Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge (United Kingdom); Mostofi, Arash A. [Department of Materials and Department of Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  8. Carbon nanotube fiber terahertz polarizer

    Science.gov (United States)

    Zubair, Ahmed; Tsentalovich, Dmitri E.; Young, Colin C.; Heimbeck, Martin S.; Everitt, Henry O.; Pasquali, Matteo; Kono, Junichiro

    2016-04-01

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ˜-30 dB with a low insertion loss (fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  9. Carbon Nanotube Areas - Printed on Textile and Paper Substrates

    OpenAIRE

    Hubler, Arved C.; Lothar Kroll; Holg Elsner; Nora Wetzold; Thomas Fischer

    2011-01-01

    Mass printing processes are the key technology to produce mass products to the point of one-disposable. Carbon nanotube (CNT) based structures were prepared by flexographic printing using multi-walled carbon nanotube (MWCNT) dispersions in water. The carbon nanotubes were applied to a textile substrate made of polyester and polyamide microfilaments and to both-side coated paper to produce electrically conductive layers that can be used, for example, as heating elements. Carbon nanotube layers...

  10. PtNi alloy nanoparticles supported on carbon-doped TiO2 nanotube arrays for photo-assisted methanol oxidation

    International Nuclear Information System (INIS)

    To develop anode catalysts for photo-assisted direct methanol fuel cell (PDMFC), carbon-doped TiO2 nanotube arrays-supported PtNi alloy nanoparticles with different Pt/Ni atomic ratio (PtNi/C-TiO2NTs) prepared by pulsed electrodeposition method are evaluated as catalysts for photo-assisted methanol oxidation. The cyclic voltammetry (CV) and chronoamperometry results show that the PtNi/C-TiO2NTs prepared at tonPt:tonNi: = 10:7 (ton is the current-on time) with a Pt:Ni atomic ratio of 6.1:5.7 presents the highest catalytic activity for methanol oxidation both in the dark and under illumination. In addition, according to the results obtained from the CO stripping voltammetry and electrochemical impedance spectroscopy (EIS) tests, it was found that the light play an accelerative role in the oxidation of methanol on PtNi/C-TiO2NTs under illumination. The effect of illumination which enhancing the catalytic activity of PtNi/C-TiO2NTs are attributed to (1) methanol and the intermediates be oxidized directly on C-TiO2NTs for the light-induced catalytic effect; (2) more abundant oxygen-donating species be produced on C-TiO2NTs in the presence of light; (3) less COads adsorbing on catalysts due to the presence of stronger metal–support interactions between PtNi alloy nanoparticles and C-TiO2NTs under illumination

  11. Different Technical Applications of Carbon Nanotubes

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, Ahmed A.; Abdel-Daiem, A.

    2015-09-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  12. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  13. Deposition of the platinum crystals on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new technique and the affecting factors for depositing platinum on the carbon nanotubes were investigated. The results show that the deposited platinum crystals in the atmosphere of hydrogen or nitrogen have a small size and a homogeneous distribution on the surface of the carbon nanotubes. The pretreatment would decrease the platinum particles on the carbon nanotubes significantly.

  14. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  15. Carbon nanotube suspensions, dispersions, & composites

    Science.gov (United States)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  16. Geometric and electronic structure of carbon nanotube networks: 'super'-carbon nanotubes

    Science.gov (United States)

    Coluci, V. R.; Galvão, D. S.; Jorio, A.

    2006-02-01

    Structures of the so-called super-carbon nanotubes are proposed. These structures are built from single walled carbon nanotubes connected by Y-like junctions forming a 'super'-sheet that is then rolled into a seamless cylinder. Such a procedure can be repeated several times, generating a fractal structure. This procedure is not limited to carbon nanotubes, and can be easily modified for application to other systems. Tight binding total energy and density of states calculations showed that the 'super'-sheets and tubes are stable and predicted to present metallic and semiconducting behaviour.

  17. Modified Multiwall Carbon Nanotubes with Nanolumps for Nanocomposite Reinforcement

    Science.gov (United States)

    Wen, J. G.; Lao, J. Y.; Li, W. Z.; Ren, Z. F.; Department Of Physics Team

    2002-03-01

    The quality of the bonding between a polymer matrix and carbon nanotubes is critical in the development of carbon nanotube reinforced polymer composites. In this paper, we modified multiwall carbon nanotubes by growing boron carbide (a covalent bonding compound) nanolumps on carbon nanotubes to enhance load transfer from matrix to carbon nanotubes. Experimental results demonstrated that boron carbide nanolumps with the required morphology were formed on multiwall carbon nanotubes by a solid state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. We also found that inner layers of multiwall carbon nanotubes are bonded to boron carbide nanolumps probably through covalent bonding. Therefore, these multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal nano-scale reinforcement to improve load transfer between carbon nanotubes and the polymer matrix. For comparison, other nanolumps such as crystalline MgO, amorphous B2O3 are also grown on nanotubes.

  18. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  19. Modelling carbon nanotubes-based mediatorless biosensor.

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Petrauskas, Karolis; Razumiene, Julija

    2012-01-01

    This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments): a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate. PMID:23012537

  20. Modelling Carbon Nanotubes-Based Mediatorless Biosensor

    Directory of Open Access Journals (Sweden)

    Julija Razumiene

    2012-07-01

    Full Text Available This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments: a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate.

  1. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  2. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  3. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  4. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  5. Carbon Nanotubes Synthesis Through Gamma Radiation

    Science.gov (United States)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  6. Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells

    OpenAIRE

    Tom Grace; LePing Yu; Christopher Gibson; Daniel Tune; Huda Alturaif; Zeid Al Othman; Joseph Shapter

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in...

  7. Molecular Dynamics Modeling of Carbon Nanotubes and Their Composites

    Science.gov (United States)

    Jensen, Lars R.; Pyrz, Ryszard

    2004-06-01

    The tensile modulus of individual nanotubes and nanotube-polypropylene composites has been determined using molecular dynamics simulations. Simulations of individual single-walled carbon nanotubes showed that their tensile modulus was dependent on the tube structure and the diameter if the diameter was below 1,6 nm. The tensile modulus was determined for an infinite single-walled carbon nanotube embedded in an amorphous polypropylene matrix and for a finite and capped single-walled carbon nanotube embedded in a polypropylene matrix. For the infinite nanotube-polypropylene system the modulus was found to correspond to the one given by the Voigt approximation. For the finite nanotube-polypropylene system the reinforcing effect of the nanotube was not very pronounced. A pull out simulation showed that the length of the nanotube in the simulation was much smaller than the critical length and hence no load transfer between the nanotube and the matrix existed.

  8. Thermal Conductance for Single Wall Carbon Nanotubes

    OpenAIRE

    Zheng, Qing-Rong; Su, Gang; Jian WANG; Guo, Hong

    2002-01-01

    We report a theoretical analysis of the phonon thermal conductance, \\kappa (T), for single wall carbon nanotubes (SWCN). In a range of low temperatues up to 100K, \\kappa (T) of perfect SWCN is found to increase with temperature, approximately, in a parabolic fashion. This is qualitatively consistent with recent experimental measurements where the tube-tube interactions are negligibly weak. When the carbon-carbon bond length is slightly varied, \\kappa (T) is found to be qualitatively unaltered...

  9. Small-Sized Tungsten Nitride Particles Strongly Anchored on Carbon Nanotubes and their Use as Supports for Pt for Methanol Electro-oxidation.

    Science.gov (United States)

    Liu, Yuan; Yan, Haijing; Zhou, Xiaoguang; Li, Mingxia; Fu, Honggang

    2015-12-01

    The anchoring of small-sized WN (tungsten nitride) nanoparticles (NPs) with good dispersion on carbon nanotubes (CNTs) offers an effective means of obtaining promising materials for use in electrocatalysis. Herein, an effective method based on grinding treatment followed by a nitridation process is proposed to realize this goal. In the synthesis, a solution containing H4 [SiO4 (W3 O9 )4 ] (SiW12 ) and CNTs modified with polyethylenimine (PEI-CNTs) was ground to dryness. Small-sized WN NPs were anchored onto the CNTs with good dispersion after calcination under NH3 . Under hydrothermal assembly conditions (absence of grinding), WN particles of larger size and with inferior dispersion were obtained, demonstrating the important role of the grinding process. The benefit of the small-sized WN has been demonstrated by using WN/CNTs as a support for Pt to catalyze the methanol electro-oxidation reaction. The mass activity of Pt-WN/CNTs-G-70 (where G denotes the grinding treatment, and 70 is the loading amount (%) of WN in the WN/CNTs) was evaluated as about 817 mA mg(-1) Pt , better that those of commercial Pt/C (340 mA mg(-1) Pt ) and Pt/CNTs (162 mA mg(-1) Pt ). The Pt-WN/CNTs-G also displayed good CO tolerance. In contrast, Pt-WN/CNTs prepared without the grinding process displayed an activity of 344 mA mg(-1) Pt , verifying the key role of grinding treatment in the preparation of WN/CNTs with good co-catalytic effect. PMID:26503799

  10. Improving the stability and ethanol electro-oxidation activity of Pt catalysts by selectively anchoring Pt particles on carbon-nanotubes-supported-SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.J.; Wang, J.S.; Zhao, J.H.; Song, C.Y.; Wang, L.C. [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou (China); Guo, X. [Department of Chemistry, Tsinghua University, Beijing (China)

    2012-10-15

    To improve the stability and activity of Pt catalysts for ethanol electro-oxidation, Pt nanoparticles were selectively deposited on carbon-nanotubes (CNTs)-supported-SnO{sub 2} to prepare Pt/SnO{sub 2}/CNTs and Pt/CNTs was prepared by impregnation method for reference study. X-ray diffraction (XRD) was used to confirm the crystalline structures of Pt/SnO{sub 2}/CNTs and Pt/CNTs. The stabilities of Pt/SnO{sub 2}/CNTs and Pt/CNTs were compared by analyzing the Pt size increase amplitude using transmission electron microscopy (TEM) images recorded before and after cyclic voltammetry (CV) sweeping. The results showed that the Pt size increase amplitude is evidently smaller for Pt/SnO{sub 2}/CNTs, indicating the higher stability of Pt/SnO{sub 2}/CNTs. Although both catalysts exhibit degradation of electrochemical active surface area (EAS) after CV sweeping, the EAS degradation for the former is lower, further confirming the higher stability of Pt/SnO{sub 2}/CNTs. CV and potentiostatic current-time curves were recorded for ethanol electro-oxidation on both catalysts before and after CV sweeping and the results showed that the mass specific activity of Pt/CNTs increases more than that of Pt/SnO{sub 2}/CNTs, indicating that Pt/CNTs experiences more severe evolution and is less stable. The calculated area specific activity of Pt/SnO{sub 2}/CNTs is larger than that of Pt/CNTs, indicating SnO{sub 2} can co-catalyze Pt due to plenty of interfaces between SnO{sub 2} and Pt. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  12. Carbon nanotubes for in vivo cancer nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The latest progress of using carbon nanotubes(CNTs) for in vivo cancer nanotechnology is reviewed.CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications.In vivo behaviors and toxicology studies of CNTs are summarized,suggesting no significant toxicity of well functionalized CNTs to the treated mice.Owing to their unique chemical and physical properties,CNTs,especially single-walled carbon nanotubes(SWNTs),have been widely used for various modalities of in vivo cancer treatment and imaging.Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.

  13. Gigahertz frequency flexible carbon nanotube transistors

    Science.gov (United States)

    Chimot, N.; Derycke, V.; Goffman, M. F.; Bourgoin, J. P.; Happy, H.; Dambrine, G.

    2007-10-01

    We investigate the high frequency performances of flexible field-effect transistors based on carbon nanotubes. A large density of mostly aligned carbon nanotubes deposited on a flexible substrate by dielectrophoresis serves as the channel. The transistors display a constant transconductance up to at least 6GHz and a current gain cutoff frequency (fT) as high as 1GHz at VDS=-700mV. Bending tests show that the devices can withstand a high degree of flexion characterized by a constant transconductance for radius of curvature as small as 3.3mm.

  14. Magnetoresistance of Multiwalled Carbon Nanotube Yarns

    Institute of Scientific and Technical Information of China (English)

    SHENG Lei-Mei; GAO Wei; CAO Shi-Xun; ZHANG Jin-Cang

    2008-01-01

    We measure zero-field resistivity and magnetoresistance of multiwalled carbon nanotube yarns (CNTYs). The CNTYs are drawn from superaligned multiwalled carbon nanotube arrays synthesized by the low-pressure chemical vapour deposition method. The zero-field resistivity shows a logarithmic decrease from 2 K to 300 K. In the presence of a magnetic field applied perpendicular to the yarn axis, a pronounced negative magnetoresistance is observed. A magnetoresistance ratio of 22% is obtained. These behaviours can be explained by the weak localization effect.

  15. A carbon nanotube-based sensing element

    Institute of Scientific and Technical Information of China (English)

    YANG Xing; ZHOU Zhao-ying; WU Ying; ZHANG Jin; ZHANG Ying-ying

    2007-01-01

    A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes,carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on microelectrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.

  16. Piezoresistive effect in carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The piezoresistive effect of the pristine carbon nanotube (CNT) films has been studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition. The piezoresistive effect in the pristine CNT films was studied by a three-point bending test. The gauge factor for the pristine CNT films under 500 microstrains was found to be at least 65 at room temperature, and increased with temperature, exceeding that of polycrystalline silicon (30) at 35℃. The origin of the piezoresistivity in CNT films may be ascribed to a pressure-induced change in the band gap and the defects.

  17. Radial breathing mode of carbon nanotubes subjected to axial pressure

    OpenAIRE

    Lei, Xiao-Wen; Ni, Qing-Qing; Shi, Jin-Xing; Natsuki, Toshiaki

    2011-01-01

    In this paper, a theoretical analysis of the radial breathing mode (RBM) of carbon nanotubes (CNTs) subjected to axial pressure is presented based on an elastic continuum model. Single-walled carbon nanotubes (SWCNTs) are described as an individual elastic shell and double-walled carbon nanotubes (DWCNTs) are considered to be two shells coupled through the van der Waals force. The effects of axial pressure, wave numbers and nanotube diameter on the RBM frequency are investigated in detail. Th...

  18. Heat conduction analysis of randomly dispersed singlewalled carbon nanotubes

    OpenAIRE

    Felder, Eric D.

    2007-01-01

    This thesis studies the effective thermal conductivity of randomly oriented, percolated carbon nanotubes. To that end, a multiscale analysis approach was adopted. At the nanoscale, molecular dynamics simulation was performed to determine the thermal conductivity coefficient of a single carbon nanotube. Then, thermal conductivity of two carbon nanotubes positioned at different angles were studied after determining the equilibrium positions of the two nanotubes at various relative positions. F...

  19. Carbon nanotubes as tips for atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    国立秋; 徐宗伟; 赵铁强; 赵清亮; 张飞虎; 董申

    2004-01-01

    Ordinary AFM probes' characters prevent the AFM' s application in various scopes. Carbon nanotubes represent ideal AFM probe materials for their higher aspect ratio, larger Young' s modulus, unique chemical structure, and well-defined electronic property. Carbon nanotube AFM probes are obtained by using a new method of attaching carbon nanotubes to the end of ordinary AFM probes, and are then used for doing AFM experiments. These experiments indicated that carbon nanotube probes have higher elastic deformation, higher resolution and higher durability. And it was also found that carbon nanotube probes can accurately reflect the morphology of deep narrow gaps, while ordinary probes can not reflect.

  20. Computational Nanomechanics of Carbon Nanotubes and Composites

    Science.gov (United States)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  1. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth

    Directory of Open Access Journals (Sweden)

    Marijana Mionić

    2010-11-01

    Full Text Available The catalytic chemical vapor deposition (CCVD is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent results obtained from the water assisted growth and the equimolar C2H2-CO2 reaction are also discussed. Both procedures lead to significantly enhanced carbon nanotube growth. In particular, the latter allows growing carbon nanotubes on diverse substrate materials at low temperatures.

  2. Charge-induced actuation in carbon nanotubes and resistance changes in carbon nanotube networks

    Science.gov (United States)

    Sippel-Oakley, Jennifer Ann

    In 1999 it was demonstrated that macroscopic films comprised of single wall carbon nanotubes exhibited dimensional changes with charge injection onto the films. A fundamental mechanism was proposed for this effect related to the dimensional changes observed in graphite intercalation complexes upon charge transfer doping with the intercalant species. The major fraction of this thesis concerns experiments at the single nanotube level designed to test the validity of this mechanism. The metals compatible with our fabrication processes inevitably p-dope the nanotubes resulting in smaller dimensional changes. Additionally, there are contact barriers that prevent the injection of electrons onto the nanotubes. Although the proposed mechanism may still be responsible for the results seen in the nanotube films, the effect is too small to be consistently measured in individual nanotubes. The conductivity of a carbon nanotube can be varied by exposure to various chemicals having utility in chemical sensing applications. We use thin films of carbon nanotubes to exploit this effect. The films are made sensitive to hydrogen by association with palladium metal. Such sensors operate at room temperature with very low power dissipation of ˜0.25 mV.

  3. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    Science.gov (United States)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  4. Quantum Monte Carlo calculations for carbon nanotubes

    Science.gov (United States)

    Luu, Thomas; Lähde, Timo A.

    2016-04-01

    We show how lattice quantum Monte Carlo can be applied to the electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path-integral formalism and use methods developed within the lattice QCD community for our numerical work. Our lattice Hamiltonian is closely related to the hexagonal Hubbard model augmented by a long-range electron-electron interaction. We apply our method to the single-quasiparticle spectrum of the (3,3) armchair nanotube configuration, and consider the effects of strong electron-electron correlations. Our approach is equally applicable to other nanotubes, as well as to other carbon nanostructures. We benchmark our Monte Carlo calculations against the two- and four-site Hubbard models, where a direct numerical solution is feasible.

  5. Electronic structure of carbon-boron nitride nanotubes

    Science.gov (United States)

    Sanginés-Mendoza, Raúl; Martinez, Edgar

    2013-03-01

    Structures of carbon and boron nitride nanotubes (CNTs, BNNTs) are quite similar, conversely, electronic properties are radically different from each other. Carbon nanotubes, whose electronic properties can be either metallic or semiconducting depending on their chiral structure, boron nitride nanotubes are always semiconductors with bandgaps over 4 eV. We have looked to hybrid systems, to predict a new kind of nanostructures with novel electronic properties. In this way, we explore the electronic properties of C-BN nanotubes. In particular, we studied the electronic structure of armchair C-BN nanotubes. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation for the exchange-correlation energy functional. The band structure of most of these systems have semiconductor character with an indirect gap smaller than its analogous BNNTs. In addition, the most prominent feature of these systems is the existence of flat bands both at the valence band top and at the conduction band minimum. Such flat bands results in sharp and narrow peaks on the total density of states. The behavior of these flat bands mainly indicates that electrons are largely localized. Thus, a detailed analysis on the electronic band structure shows that hybridization between those orbitals on the interfaces is responsible to exhibit localization effects on the hybrid systems.This research was supported by Conacyt under Grant No. 133022.

  6. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    Institute of Scientific and Technical Information of China (English)

    夏丹; 袁喆; 李家明

    2002-01-01

    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  7. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Czaniková, K.; Torras, N.; Esteve, J.; Krupa, I.; Kasák, P.; Pavlova, Ewa; Račko, D.; Chodák, I.; Omastová, M.

    2013-01-01

    Roč. 186, September (2013), s. 701-710. ISSN 0925-4005 Institutional support: RVO:61389013 Keywords : actuator * carbon nanotubes * ethylene vinyl acetate copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.840, year: 2013

  8. Deconvoluting hepatic processing of carbon nanotubes.

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L J; Ulmert, Hans David S; Brea, Elliott J; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A; McDevitt, Michael R

    2016-01-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans. PMID:27468684

  9. Schottky barriers at metal-finite semiconducting carbon nanotube interfaces

    OpenAIRE

    Xue, Yongqiang; Mark A. Ratner

    2003-01-01

    Electronic properties of metal-finite semiconducting carbon nanotube interfaces are studied as a function of the nanotube length using a self-consistent tight-binding theory. We find that the shape of the potential barrier depends on the long-range tail of the charge transfer, leading to an injection barrier thickness comparable to half of the nanotube length until the nanotube reaches the bulk limit. The conductance of the nanotube junction shows a transition from tunneling to thermally-acti...

  10. Oscillation control of carbon nanotube mechanical resonator by electrostatic interaction induced retardation

    OpenAIRE

    Masaaki Yasuda; Kuniharu Takei; Takayuki Arie; Seiji Akita

    2016-01-01

    Despite the superb intrinsic properties of carbon nanotube mechanical resonators, the quality factors at room temperature are 1,000 or less, even in vacuum, which is much lower than that of mechanical resonators fabricated using a top-down approach. This study demonstrates the improvement of the quality factor and the control of nonlinearity of the mechanical resonance of the cantilevered nanotube by electrostatic interaction. The apparent quality factor of the nanotube supported by insulator...

  11. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  12. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders;

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  13. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  14. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  15. Reactions over catalysts confined in carbon nanotubes.

    Science.gov (United States)

    Pan, Xiulian; Bao, Xinhe

    2008-12-21

    We review a new concept for modifying the redox properties of transition metals via confinement within the channels of carbon nanotubes (CNTs), and thus tuning their catalytic performance. Attention is also devoted to novel techniques for homogeneous dispersion of metal nanoparticles inside CNTs since these are essential for optimization of the catalytic activity. PMID:19048128

  16. Scalable dielectrophoresis of single walled carbon nanotubes

    Science.gov (United States)

    Fitzhugh, William A.

    Single Walled Carbon Nanotubes (SWNTs) have attracted much attention as a candidate material for future nano-scale 'beyond silicon' devices. However industrial scale operations have been impeded by difficulties in separating the metallic and semiconducting species. This paper addresses the use of highly inhomogeneous alternating electric fields, dielectrophoresis, to isolate SWNT species in scaled systems. Both numerical and experimental methods will be discussed.

  17. A new mechanism for carbon nanotube evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Key discoveries on the growth mechanism of carbon nanotubes(CNTs) have recently been achieved by CAS researcher ZHU Zhenping and his research group at the State Key Laboratory of Coal Conversion,the Institute of Coal Chemistry of CAS, funded by the National Natural Science Foundation of China and the CAS Bairen Program.

  18. Electrochemical Metal Deposition on Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Dunsch, L.; Janda, Pavel; Mukhopadhyay, K.; Shinohara, H.

    2001-01-01

    Roč. 11, č. 6 (2001), s. 427-435. ISSN 1344-9931 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon nanotubes * electrodeposition * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 0.800, year: 2001

  19. A New Resistance Formulation for Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2008-01-01

    Full Text Available A new resistance formulation for carbon nanotubes is suggested using fractal approach. The new formulation is also valid for other nonmetal conductors including nerve fibers, conductive polymers, and molecular wires. Our theoretical prediction agrees well with experimental observation.

  20. Chiral Anomaly in Toroidal Carbon Nanotubes

    OpenAIRE

    Sasaki, K.

    2001-01-01

    It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in toroidal carbon nanotubes on a planar geometry with varying magnetic field. We show that the chiral anomaly is closely connected with the persistent current in a one-dimensional metallic ring.

  1. Heat Transport in Liquid Polyester Resin with Carbon Nanotubes

    Science.gov (United States)

    Vales-Pinzón, C.; Quiñones-Weiss, G.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.

    2015-11-01

    Carbon nanotubes represent one of the most important materials in nanoscience and nanotechnology, due to their outstanding structural, mechanical, electrical, and thermal properties. It has been shown that when incorporated in a polymeric matrix, carbon nanotubes can improve its physical properties. In this work, thermal-diffusivity measurements of composite materials, prepared by mixing carbon nanotubes in liquid polyester resin, were performed by means of the thermal-wave resonant cavity. The results show an increase of the thermal diffusivity when the volume fraction of carbon nanotubes grows. It is also shown that this increase depends strongly on the diameter of the nanotubes.

  2. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14C-labeled MWCNTs into 14CO2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14C-labeled multiwall carbon nanotubes can be degraded to 14CO2 and other byproducts by a bacteria community under natural conditions

  3. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  4. Interfacing of DNA with carbon nanotubes for nanodevice applications

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Richa, E-mail: richa.bend@gmail.com [Biomolecular Electronics and Nanotechnology Division (BEND), Central Scientific Instruments Organisation (CSIO), Sector-30C, Chandigarh 160030 (India); Centre of Advanced Studies in Physics, Punjab University, Sector-14, Chandigarh 160014 (India); Dhindsa, Navneet [Biomolecular Electronics and Nanotechnology Division (BEND), Central Scientific Instruments Organisation (CSIO), Sector-30C, Chandigarh 160030 (India); Suri, C. Raman [Biosensor Division, Institute of Microbial Technology (IMTECH), Sector-39, Chandigarh 160039 (India); Pant, B.D. [Central Electronics Engineering Research Institute, Pilani, Rajasthan (India); Tripathi, S.K. [Centre of Advanced Studies in Physics, Punjab University, Sector-14, Chandigarh 160014 (India); Kaur, Inderpreet; Bharadwaj, Lalit M. [Biomolecular Electronics and Nanotechnology Division (BEND), Central Scientific Instruments Organisation (CSIO), Sector-30C, Chandigarh 160030 (India)

    2012-08-15

    In nanotechnology, carbon nanotubes are evolving as 'hot spot' due to their applications as most sensitive biosensors. Thus, study of effect of biomolecular interaction is prerequisite for their electrical application in biosensors and bioelectronics. Here, we have explored this effect on electrical properties of carbon nanotubes with DNA as a model biomolecule. A stable conjugate of carbon nanotubes with DNA is formed via covalent methodology employing quantum dot as fluoropore and characterized with various spectroscopic, fluoroscopic and microscopic techniques. CNT-DNA adduct showed decreased transconductance (from 614.46 {mu}S to 1.34 {mu}S) and shift of threshold voltage (from -0.85 V to 2.5 V) due to change in Schottky barriers at metal-nanotube contact. In addition, decrease in hole mobility (from 4.46 Multiplication-Sign 10{sup 6} to 9.72 Multiplication-Sign 10{sup 3} cm{sup 2} V{sup -1} s{sup -1}) and increase in ON-linear resistance (from 74 k Ohm-Sign to 0.44 M Ohm-Sign ) conclude large change in device parameters. On the one hand, this substantial change in device parameters after interfacing with biomolecules supports application of carbon nanotubes in the field of biosensors while on the other hand, the same can limit their use in future power electronic devices where stability in device parameters is essential. -- Graphical abstract: Carbon nanotubes are interfaced with DNA via covalent interactions and characterized with spectroscopic, fluoroscopic and microscopic techniques. Electrical characterization of this stable SWNT-DNA conjugate shows decreased transconductance and shift of threshold voltage towards positive gate voltages. On the one hand, this substantial change in device parameters after interfacing with biomolecules supports application of carbon nanotubes in the field of biosensors while on the other hand, the same can limit their use in future power electronic devices where stability in device parameters is essential

  5. Interfacing of DNA with carbon nanotubes for nanodevice applications

    International Nuclear Information System (INIS)

    In nanotechnology, carbon nanotubes are evolving as ‘hot spot’ due to their applications as most sensitive biosensors. Thus, study of effect of biomolecular interaction is prerequisite for their electrical application in biosensors and bioelectronics. Here, we have explored this effect on electrical properties of carbon nanotubes with DNA as a model biomolecule. A stable conjugate of carbon nanotubes with DNA is formed via covalent methodology employing quantum dot as fluoropore and characterized with various spectroscopic, fluoroscopic and microscopic techniques. CNT–DNA adduct showed decreased transconductance (from 614.46 μS to 1.34 μS) and shift of threshold voltage (from −0.85 V to 2.5 V) due to change in Schottky barriers at metal–nanotube contact. In addition, decrease in hole mobility (from 4.46 × 106 to 9.72 × 103 cm2 V−1 s−1) and increase in ON-linear resistance (from 74 kΩ to 0.44 MΩ) conclude large change in device parameters. On the one hand, this substantial change in device parameters after interfacing with biomolecules supports application of carbon nanotubes in the field of biosensors while on the other hand, the same can limit their use in future power electronic devices where stability in device parameters is essential. -- Graphical abstract: Carbon nanotubes are interfaced with DNA via covalent interactions and characterized with spectroscopic, fluoroscopic and microscopic techniques. Electrical characterization of this stable SWNT–DNA conjugate shows decreased transconductance and shift of threshold voltage towards positive gate voltages. On the one hand, this substantial change in device parameters after interfacing with biomolecules supports application of carbon nanotubes in the field of biosensors while on the other hand, the same can limit their use in future power electronic devices where stability in device parameters is essential. Highlights: ► Effect of biomolecular (DNA) interaction on electrical properties

  6. Preparation of double-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; WEI Jinquan; CI Lijie; WU Dehai

    2004-01-01

    Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200℃; the catalyst vapor temperature is 80℃; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.

  7. Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    This paper reports an investigation of the influence of initial stress on the flexural vibration of an individual multi-wall carbon nanotube with simply supported ends, based on a laminated elastic beam model considering the van der Waals force interaction between two adjacent nanotubes. The results obtained show that the influence of initial stress in carbon nanotubes on their natural frequency is obvious, but the influence of initial stress in carbon nanotubes on the intertube resonant frequency of multi-wall carbon nanotubes is not obvious, especially for large aspect ratios. The influence of initial stress in carbon nanotubes on their flexural vibration modes is dependent on the tension or compression forms of the initial stress. This investigation on the influences of initial stress in multi-wall carbon nanotubes on natural frequency and intertube resonant frequency may be used as a useful reference for the application and design of nano-oscillators, nano-drive devices, nano-sensors and actuators in which multi-wall carbon nanotubes act as basic elements

  8. Advanced materials based on carbon nanotube arrays, yarns and papers

    Science.gov (United States)

    Bradford, Phlip David

    Carbon nanotubes have hundreds of potential applications but require innovative processing techniques to manipulate the microscopic carbon dust into useful devices and products. This thesis describes efforts to process carbon nanotubes (CNTs) using novel methods with the goals of: (1) improving the properties of energy absorbing and composite carbon nanotube materials and (2) increasing understanding of fundamental structure-property relationships within these materials. Millimeter long CNTs, in the form of arrays, yarns and papers, were used to produce energy absorbing foams and high volume fraction CNT composites. Vertically aligned CNT arrays were grown on silicon substrates using chemical vapor deposition (CVD) of ethylene gas over iron nano-particles. The low density, millimeter thick arrays were tested under compression as energy absorbing foams. With additional CVD processing steps, it was possible to tune the compressive properties of the arrays. After the longest treatment, the compressive strength of the arrays was increased by a factor of 35 with a density increase of only six fold, while also imparting recovery from compression to the array. Microscopy revealed that the post-synthesis CVD treatment increased the number of CNT walls through an epitaxial type radial growth on the surface of the as-grown tubes. The increase in tube radius and mutual support between nanotubes explained the increases in compressive strength while an increase in nanotube roughness was proposed as the morphological change responsible for recovery in the array. Carbon nanotube yarns were used as the raw material for macroscopic textile preforms with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. In prior tensile tests, composites produced from the 3-D braids exhibited unusual mechanical behavior effects. The proposed physical hypotheses explained those effects by molecular level interactions and

  9. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  10. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    CERN Document Server

    Magadur, G; Alain-Rizzo, V; Voisin, C; Roussignol, Ph; Deleporte, E; Delaire, J A

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching of the TPPS emission while the photoluminescence intensity of the nanotubes is enhanced when the excitation laser is in resonance with the porphyrin absorption band. This reveals an efficient excitation transfer from the TPPS to the carbon nanotube.

  11. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li+/Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient dLi decreases with an increase of Li ion concentration in carbon nanotube host

  12. Nonlinear Optical Properties of Carbon Nanotube Hybrids in Polymer Dispersions

    OpenAIRE

    Wang, Jun; Liao, Kang-Shyang; Früchtl, Daniel; Tian, Ying; Gilchrist, Aisling, , T; Alley, Nigel; Andreoli, Enrico; Aitchison, Brad; Nasibulin, Albert; Byrne, Hugh; Kauppinen, Esko I.; Zhang, Long; Blau, Werner; Curran, Seamus

    2012-01-01

    A series of double-walled carbon nanotubes (DWNTs) and multi-walled nanotubes (MWNTs) functionalized with selected organic chromophores, fluorescein 5(6)-isothiocyanate (FITC), rhodamine B isothiocyanate (RITC) and fullerene (C60) were synthesized by covalently linking these electron-donor groups to the metallic nanotubes. These versatile carbon nanotube composites show remarkable nonlinear optical (NLO) performance, due to a merged effect of the complementary NLO characteristics of the moiet...

  13. Mechanical properties of carbon nanotube/polymer composites

    OpenAIRE

    B. Arash; Wang, Q.(The University of Kansas, Lawrence, USA); Varadan, V. K.

    2014-01-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the compos...

  14. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities

    OpenAIRE

    Watahiki, R.; Shimada, T; Zhao, P; Chiashi, S.; Iwamoto, S.; Arakawa, Y; Maruyama, S.; Kato, Y. K.

    2012-01-01

    Photonic crystal nanocavities are used to enhance photoluminescence from single-walled carbon nanotubes. Micelle-encapsulated nanotubes are deposited on nanocavities within Si photonic crystal slabs and confocal microscopy is used to characterize the devices. Photoluminescence spectra and images reveal nanotube emission coupled to nanocavity modes. The cavity modes can be tuned throughout the emission wavelengths of carbon nanotubes, demonstrating the ability to enhance photoluminescence from...

  15. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities

    OpenAIRE

    Watahiki, R.; Shimada, T; Zhao, P; Chiashi, S.; Iwamoto, S.; Arakawa, Y; Maruyama, S.; Kato, Y. K.

    2012-01-01

    Photonic crystal nanocavities are used to enhance photoluminescence from single-walled carbon nanotubes. Micelle-encapsulated nanotubes are deposited on nanocavities within Si photonic crystal slabs and confocal microscopy is used to characterize the devices.Photoluminescencespectra and images reveal nanotube emission coupled to nanocavity modes. The cavity modes can be tuned throughout the emission wavelengths of carbon nanotubes, demonstrating the ability to enhance photoluminescence from a...

  16. Nicotine adsorption on single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Eduardo C. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil); Fagan, Solange B.; Zanella, Ivana [Area de Ciencias Tecnologicas, Centro Universitario Franciscano - UNIFRA, 97010-032 Santa Maria, RS (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil)

    2010-12-15

    This work reports a theoretical study of nicotine molecules interacting with single wall carbon nanotubes (SWCNTs) through ab initio calculations within the framework of density functional theory (DFT). Different adsorption sites for nicotine on the surface of pristine and defective (8,0) SWCNTs were analyzed and the total energy curves, as a function of molecular position relative to the SWCNT surface, were evaluated. The nicotine adsorption process is found to be energetically favorable and the molecule-nanotube interaction is intermediated by the tri-coordinated nitrogen atom from the nicotine. It is also predicted the possibility of a chemical bonding between nicotine and SWCNT through the di-coordinated nitrogen.

  17. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    S R C Vivekchand; A Govindaraj

    2003-10-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

  18. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane. The elect...... and semiconducting. Raman spectra taken from samples assembled at different frequencies directly contradicted theoretical predictions as well as previously published experimental results.......The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane...... nanotubes dispersed in a number of different liquids. As a result of these test experiments a cantilever probe was designed specifically for the dielectrophoretic assembly of carbon nanotubes and a prototype was fabricated in the MIC (now Danchip) cleanroom. The prototype is not yet fully operational...

  19. Low temperature electrical transport in modified carbon nanotube fibres

    International Nuclear Information System (INIS)

    Carbon nanotube fibres are a new class of materials highly promising for many electrical/electronic applications. The range of applications could be extended through the modification of their electrical transport properties by inclusions of foreign materials. However, the changes in electrical transport are often difficult to assess. Here, we propose that the analysis of resistance–temperature dependencies of modified fibres supported by a recently developed theoretical model may aid research in this area and accelerate real life applications of the fibres

  20. Diffusion through Carbon Nanotube Semipermeable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bakajin, O

    2006-02-13

    The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization

  1. Mechanical properties of functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) used to reinforce polymer matrix composites are functionalized to form covalent bonds with the polymer in order to enhance the CNT/polymer interfaces. These bonds destroy the perfect atomic structures of a CNT and degrade its mechanical properties. We use atomistic simulations to study the effect of hydrogenization on the mechanical properties of single-wall carbon nanotubes. The elastic modulus of CNTs gradually decreases with the increasing functionalization (percentage of C-H bonds). However, both the strength and ductility drop sharply at a small percentage of functionalization, reflecting their sensitivity to C-H bonds. The cluster C-H bonds forming two rings leads to a significant reduction in the strength and ductility. The effect of carbonization has essentially the same effect as hydrogenization

  2. On the Nanoindentation of the Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Petre P. Teodorescu

    2010-01-01

    Full Text Available A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would initiate in the outermost shell, when nanotubes are short. The nanoindentation technique is simulated for the axially compressed of individual nanotubes, in order to evaluate the load-unloaded-displacement, the curve critical buckling and the appropriate values for local Lamé constants.

  3. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  4. Ag-catalysed cutting of multi-walled carbon nanotubes

    Science.gov (United States)

    La Torre, A.; Rance, G. A.; Miners, S. A.; Herreros Lucas, C.; Smith, E. F.; Fay, M. W.; Zoberbier, T.; Giménez-López, M. C.; Kaiser, U.; Brown, P. D.; Khlobystov, A. N.

    2016-04-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon-carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes.

  5. The electronic properties of doped single walled carbon nanotubes and carbon nanotube sensors

    Directory of Open Access Journals (Sweden)

    E. Tetik

    2014-12-01

    Full Text Available We present ab initio calculations on the band structure and density of states of single wall semiconducting carbon nanotubes with high degrees (up to 25% of B, Si and N substitution. The doping process consists of two phases: different carbon nanotubes (CNTs for a constant doping rate and different doping rates for the zigzag (8, 0 carbon nanotube. We analyze the doping dependence of nanotubes on the doping rate and the nanotube type. Using these results, we select the zigzag (8, 0 carbon nanotube for toxic gas sensor calculation and obtain the total and partial densities of states for CNT (8, 0. We have demonstrated that the CNT (8, 0 can be used as toxic gas sensors for CO and NO molecules, and it can partially detect Cl2 toxic molecules but cannot detect H2S. To overcome these restrictions, we created the B and N doped CNT (8, 0 and obtained the total and partial density of states for these structures. We also showed that B and N doped CNT (8, 0 can be used as toxic gas sensors for such molecules as CO, NO, Cl2 and H2S.

  6. Carbon Nanotubes for Space Photovoltaic Applications

    Science.gov (United States)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  7. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  8. Synthesis of Carbon Nanotubes Using Sol Gel Route

    Science.gov (United States)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  9. Growth of straight carbon nanotubes by simple thermal chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOTO; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700 ℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.

  10. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  11. Carbon nanotubes and graphene in analytical sciences

    International Nuclear Information System (INIS)

    Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6 years in (bio)analytical chemistry in general, and in biosensing in particular. (author)

  12. Developing Carbon Nanotube Standards at NASA

    Science.gov (United States)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  13. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  14. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  15. Atomic and electronic structure of divacancies in carbon nanotubes

    Science.gov (United States)

    Berber, Savas; Oshiyama, Atsushi

    2008-04-01

    We present atomic and electronic structure of divacancies in carbon nanotubes, which is calculated using the density functional theory. Divacancies in carbon nanotubes self-heal by spontaneous reconstructions, which consist of concerted bond formations. Divacancy formation energies EDV , which strongly depend on the divacancy orientation with respect to the tube axis, are in the range of 2.8 4.3 eV for favorable orientations in the nanotubes of 4 9Å diameter, making divacancies more probable than monovacancies in carbon nanotubes. Defect related states lead to a higher density of states around the Fermi level. Semiconducting nanotubes develop midgap levels that may adversely affect the functionality of carbon nanotube based devices. Our spin polarized density functional calculations show that the exchange splitting of defect-related bands in nonsemiconducting defective nanotubes leads to net spin polarizations of ρ↑-ρ↓≤0.5μB per divacancy for some divacancy orientations.

  16. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    Science.gov (United States)

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted. PMID:25855947

  17. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance and...

  18. Automated circuit fabrication and direct characterization of carbon nanotube vibrations.

    Science.gov (United States)

    Zeevi, G; Shlafman, M; Tabachnik, T; Rogachevsky, Z; Rechnitz, S; Goldshtein, I; Shlafman, S; Gordon, N; Alchanati, G; Itzhak, M; Moshe, Y; Hajaj, E M; Nir, H; Milyutin, Y; Izraeli, T Y; Razin, A; Shtempluck, O; Kotchtakov, V; Yaish, Y E

    2016-01-01

    Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion. PMID:27396506

  19. CARBON NANOTUBES: AN APPROACH TO NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. H. Alai et al.

    2012-01-01

    Full Text Available Carbon nanotubes are cylindrical carbon molecules have novel properties, making them potentially useful in many applications in nanotechnology, electronics, optics, and other fields of material science as well as potential uses in architectural fields. They have unique electronic, mechanical, optical and chemical properties that make them good candidates for a wide variety of applications, including drug transporters, new therapeutics, delivery systems and diagnostics. Their unique surface area, stiffness, strength and resilience have led to much excitement in the field of pharmacy. Nanotubes are categorized as single-walled nanotubes, multiple walled nanotubes. Various techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, chemical vapor deposition. They can pass through membranes, carrying therapeutic drugs, vaccines and nucleic acids deep into the cell to targets previously unreachable. Purification of the tubes can be divided into a couple of main techniques: oxidation, acid treatment, annealing, sonication, filtering and functionalization techniques. The main problem of insolubility in aqueous media has been solved by developing a synthetic protocol that allows highly water-soluble carbon NTs to be obtained. The modifications are done to improve efficiency of carbon nanotubes by formulating luminescent carbon nanotubes, ultrathin carbon nanoneedles, magnetically guided nanotubes. The application of carbon nanotube in tissue engineering, drug carrier release system, wound healing, in cancer treatment and as biosensor. Researchers have recently developed a new approach to Boron Neutron Capture Therapy in the treatment of cancer using substituted Carborane-Appended Water-Soluble single-wall carbon nanotubes.

  20. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  1. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ian, E-mail: ian.holt@rjah.nhs.uk [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Gestmann, Ingo, E-mail: Ingo.Gestmann@fei.com [FEI Europe B.V., Achtseweg Noord 5, 5651 Eindhoven (Netherlands); Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Glyndwr University, Plas Coch, Mold Rd, Wrexham LL11 2AW (United Kingdom)

    2013-10-15

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth.

  2. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    International Nuclear Information System (INIS)

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth

  3. Thermal Spreading in Carbon Nanotube Coating.

    Science.gov (United States)

    Kim, Duckjong; Shin, Dong-Sig; Yu, Jeonghwan; Kim, Haesik; Kim, Jae-Hyun; Woo, Chang-Su

    2015-11-01

    Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, have attracted significant attention as good candidates for next-generation heat-spreading materials because of their high thermal conductivity, mechanical flexibility, etc. Regarding the thermal spreading performance of carbon-based nanofilms, remarkable test results have been reported mainly from the industrial side, but their validity and the physical mechanism underlying the heat transfer enhancement are still under debate. In this study, we assess the thermal spreading performance of a multi-walled CNT film on a copper foil using a non-contact characterization method in a simple and methodical manner, and discuss the possibility of carbon nanofilms as heat spreaders based on the experimental and numerical results. This study provides useful information on heat transfer enhancement by carbon nanofilms and could contribute to the development of high-performance carbon-based heat-spreading coatings. PMID:26726629

  4. Electrostatic Simulation of Charge Trapping in Carbon Nanotube Vertical Organic Field Effect Transistors

    Science.gov (United States)

    Crawford, Jennifer; Rinzler, Andrew; Hershfield, Selman

    The carbon nanotube vertical organic field effect transistor is a vertical sequence consisting of a gate electrode, gate dielectric, thin nanotube network source electrode, organic semiconducting channel and finally the drain electrode. The drain current is modulated by the gate voltage which varies a Schottky barrier between source and channel layers. Hysteresis in the current-voltage characteristic has been observed when a electret charge trapping layer is placed between the nanotube source and the gate dielectric. We provide a model for charge injection into a trapping layer placed in contact with the carbon nanotube film and solve self-consistently for the electrostatics and the occupancy of the traps. For a range of applied gate voltages the simulations demonstrate hysteresis of the carbon nanotubes' charge as a result of the electric field produced by the trapped charge. This affects the current by modulating the Schottky barrier. This work was supported by the NSF Grant DMR-1461019.

  5. Mechanical Reinforcement of Diopside Bone Scaffolds with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2014-10-01

    Full Text Available Carbon nanotubes are ideal candidates for the mechanical reinforcement of ceramic due to their excellent mechanical properties, high aspect ratio and nanometer scale diameter. In this study, the effects of multi-walled carbon nanotubes (MWCNTs on the mechanical properties of diopside (Di scaffolds fabricated by selective laser sintering were investigated. Results showed that compressive strength and fracture toughness improved significantly with increasing MWCNTs from 0.5 to 2 wt %, and then declined with increasing MWCNTs to 5 wt %. Compressive strength and fracture toughness were enhanced by 106% and 21%, respectively. The reinforcing mechanisms were identified as crack deflection, MWCNTs crack bridging and pull-out. Further, the scaffolds exhibited good apatite-formation ability and supported adhesion and proliferation of cells in vitro.

  6. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes

    Science.gov (United States)

    Vimalanathan, Kasturi; Gascooke, Jason R.; Suarez-Martinez, Irene; Marks, Nigel A.; Kumari, Harshita; Garvey, Christopher J.; Atwood, Jerry L.; Lawrance, Warren D.; Raston, Colin L.

    2016-03-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes.

  7. Electrical transport in carbon nanotube coatings of silica fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenevich, Vitaly [Department of Physics, Belarus State University, Nezalezhnastsi ave. 4, 220030 Minsk (Belarus); Dauzhenka, Taras [Department of Physics, Belarus State University, Nezalezhnastsi ave. 4, 220030 Minsk (Belarus); CNRS; LNCMI, 143 Avenue de Rangueil, 31400 Toulouse (France); Universite de Toulouse, UPS, INSA; LNCMI; 31077 Toulouse (France); Seliuta, Dalius; Kasalynas, Irmantas; Kivaras, Tomas; Valusis, Gintaras [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania); Galibert, Jean [CNRS; LNCMI, 143 Avenue de Rangueil, 31400 Toulouse (France); Universite de Toulouse, UPS, INSA; LNCMI; 31077 Toulouse (France); Helburn, Robin [Department of Chemistry, Pace University, New York, NY 10038 (United States); Lu, Qi [Department of Physics, St. John' s University, Queens, NY 11439 (United States); Samuilov, Vladimir [Department of Physics, Belarus State University, Nezalezhnastsi ave. 4, 220030 Minsk (Belarus); Department of Physics, St. John' s University, Queens, NY 11439 (United States); Universite de Toulouse, UPS, INSA, LNCMP, 31077 Toulouse (France)

    2009-12-15

    Electrical properties and magnetoresistance (MR) of single-wall carbon nanotubes coatings of silica fibers were investigated in temperature range 1.8-300 K and magnetic fields up to 8 T. The dependence of resistance vs temperature, R (T), and MR within the range of 2{proportional_to}8 K can be explained by a 3D variable range hopping transport. In the temperature range of 8-300 K, R (T) dependencies can be interpreted by fluctuation-induced tunnelling model. The determined carrier transport features were supported by additional measurements of change in conductivity in strong 10 GHz microwave fields and measurements of THz radiation induced photocurrent at various lattice temperatures. The features of carrier transport in SWCNTs-SiO{sub 2} coatings are compared with those in free-standing single walled carbon nanotube fibers. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Novel Ru - K/Carbon Nanotubes Catalyst for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel ammonia synthesis catalyst, potassium-promoted ruthenium supported on carbon nanotubes, was developed. It was found that the Ru-K/carbon nanotubes catalyst had higher activity for ammonia synthesis ( 20.85 ml NH 3 /h/g-cat ) than the Ru-K/fullerenes ( 13.3 ml NH 3 /h/g-cat ) at atmospheric ressure and 623 K. The catalyst had activity even at 473 K, and had the highest activity ( 23.46 ml NH 3 /h/g-cat ) at 643 K. It was suggested that the multi-walled structure favored the electron transfer, the hydrogen-storage and the hydrogen-spill which were favorable to ammonia synthesis.

  9. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes.

    Science.gov (United States)

    Vimalanathan, Kasturi; Gascooke, Jason R; Suarez-Martinez, Irene; Marks, Nigel A; Kumari, Harshita; Garvey, Christopher J; Atwood, Jerry L; Lawrance, Warren D; Raston, Colin L

    2016-01-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes. PMID:26965728

  10. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  11. A statistical mechanics model of carbon nanotube macro-films

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Carbon nanotube macro-films are two-dimensional films with micrometer thickness and centimeter by centimeter in-plane dimension.These carbon nanotube macroscopic assemblies have attracted significant attention from the material and mechanics communities recently because they can be easily handled and tailored to meet specific engineering needs.This paper reports the experimental methods on the preparation and characterization of single-walled carbon nanotube macro-films,and a statistical mechanics model on ...

  12. Ab initio simulation of helium inside carbon nanotubes

    International Nuclear Information System (INIS)

    In present work we consider the complex behaviour of quantum liquids like liquid He-4 inside carbon nanotubes. Interactions between helium atoms and carbon atoms of the short-length atomistic model and model with periodical boundary conditions of carbon nanotube were studied via ab initio quantum simulations. Effects of geometrical confinement of the tube on the He behaviour inside CNT (13,0) have been explored. Nanotubes with typical average diameter of 10 angstroms are under consideration.

  13. Characterization of Multienzyme-Antibody-Carbon Nanotube Bioconjugates for Immunosensors

    OpenAIRE

    Jensen, Gary C.; Yu, Xin; Gong, Joseph D.; Munge, Bernard; Bhirde, Ashwin; Kim, Sang N.; Papadimitrakopoulos, Fotios; Rusling, James F.

    2009-01-01

    Characterization studies of a multi-enzyme-antibody-carbon nanotube bioconjugate designed for the amplification of electrochemical immunosensing are described. Secondary antibodies for prostate specific antigen (PSA) were covalently linked to highly carboxylated multi-walled carbon nanotube (CNT) along with multiple horseradish peroxidase (HRP) enzyme labels. These bioconjugates provide ultra-sensitive amperometric detection of PSA on a single-wall carbon nanotube forest sandwich immunosensor...

  14. Carbon Nanotube Composites for Electronic Packaging Applications: A Review

    OpenAIRE

    Lavanya Aryasomayajula; Klaus-Juergen Wolter

    2013-01-01

    Composite engineering comprises of metal matrix composites. They have high strength-weight ratio, better stiffness, economical production, and ease of availability of raw materials. The discovery of carbon nanotubes has opened new possibilities to face challenges better. Carbon Nanotubes are known for their high mechanical strength, excellent thermal and electrical properties. Recent research has made progress in fabricating carbon nanotube metal matrix and polymer-based composites. The metho...

  15. Varied morphology carbon nanotubes and method for their manufacture

    Science.gov (United States)

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  16. Carbon Nanotubes Technology for Removal of Arsenic from Water

    OpenAIRE

    Ali Naghizadeh; Ahmad Reza Yari; Hamid Reza Tashauoei; Mokhtar Mahdavi; Elham Derakhshani; Rahman Rahimi; Pegah Bahmani; Hiva Daraei; Esmaeil Ghahremani

    2012-01-01

    Please cite this article as: Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P. Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 2012;1(1):6-11. Aims of the Study: This study was aimed to investigate the adsorption mechanism of the arsenic removal from water by using carbon nanotubes in continuous adsorption column. Materials & Methods: Independent variables including carbon nanotubes dosage, contact time and breakthrough poi...

  17. Multi-wall carbon nanotubes with nitrogen-containing carbon coating

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava; Šálek, Petr; Kovářová, Jana; Zemek, Josef; Cieslar, M.; Prokeš, J.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1054-1065. ISSN 0366-6352 R&D Projects: GA ČR GPP108/11/P763; GA ČR GAP205/12/0911; GA ČR GA202/09/0428 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline coating * carbonization * multi-wall carbon nanotubes Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.193, year: 2013

  18. A Carbon Nanotube Cable for a Space Elevator

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…

  19. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  20. Advanced technology for functionalization of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Lingjie Meng; Chuanlong Fu; Qinghua Lu

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) has attracted considerable interest in the fields of physics, chemistry, material science and biology. The functionalized CNTs exhibit improved properties enabling facile fabrication of novel nanomaterials and nanodevices. Most of the functionalization approaches developed at present could be categorized into the covalent attachment of functional groups and the non-covalent adsorption of various functional molecules onto the surface of CNTs. This review highlights recent development and our work in functionalization of carbon nanotubes, leading to bio-compatible CNTs, fluorescent CNTs and transition metal func-tionalizcd CNTs. These novel methods possess advantages such as simplified technical procedures and reduced cost of novel nanoma-terials and nanodcvices fabrication.

  1. Printed Carbon Nanotube Electronics and Sensor Systems.

    Science.gov (United States)

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. PMID:26880046

  2. Carbon Nanotube Flexible and Stretchable Electronics

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  3. Carbon nanotubes: do they toughen brittle matrices?

    Czech Academy of Sciences Publication Activity Database

    Chao, J.; Inam, F.; Reece, M.J.; Chlup, Zdeněk; Dlouhý, Ivo; Shaffer, M.S.P.; Boccaccini, A. R.

    2011-01-01

    Roč. 46, č. 14 (2011), s. 4770-4779. ISSN 0022-2461 R&D Projects: GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : fracture toughness * carbon nanotube * silica glass Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.015, year: 2011 http://www.springerlink.com/content/74106l0458326n91/

  4. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  5. Electromechanical sensors based on carbon nanotube networks

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Petráš, D.; Machovský, M.; Sáha, P.

    Palmerston North: Massey University, 2010 - (Mukhopadhyay, S.; Fuchs, A.; Sen Gupta, G.; Lay-Ekuakille, A.), s. 542-547 ISBN 978-0-473-16942-8. [International Conference on Sensing Technology /4./. Lecce (IT), 03.06.2010-05.06.2010] R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: BK - Fluid Dynamics

  6. On the Nanoindentation of the Carbon Nanotubes

    OpenAIRE

    Petre P.Teodorescu; Veturia Chiroiu; Ligia Munteanu; Valeria Moşneguţu

    2010-01-01

    A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT) is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would ...

  7. Carbon nanotube-polymer nanocomposite infrared sensor.

    Science.gov (United States)

    Pradhan, Basudev; Setyowati, Kristina; Liu, Haiying; Waldeck, David H; Chen, Jian

    2008-04-01

    The infrared photoresponse in the electrical conductivity of single-walled carbon nanotubes (SWNTs) is dramatically enhanced by embedding SWNTs in an electrically and thermally insulating polymer matrix. The conductivity change in a 5 wt % SWNT-polycarbonate nanocomposite is significant (4.26%) and sharp upon infrared illumination in the air at room temperature. While the thermal effect predominates in the infrared photoresponse of a pure SWNT film, the photoeffect predominates in the infrared photoresponse of SWNT-polycarbonate nanocomposites. PMID:18333623

  8. Methane in carbon nanotube - molecular dynamics simulation

    OpenAIRE

    Bartuś, Katarzyna; Bródka, Aleksander

    2011-01-01

    Abstract The behaviour of methane molecules inside carbon nanotube at room temperature is studied using classical molecular dynamics simulations. A methane molecule is represented either by a shapeless super-atom or by rigid set of 5 interaction centres localised on atoms. Different loadings of methane molecules ranging from the dense gas density to the liquid density, and the influence of flexibility of the CNT on structural and dynamics properties of confined molecules are consid...

  9. Detection of gas atoms with carbon nanotubes

    OpenAIRE

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases....

  10. Osmotic water transport through carbon nanotube membranes

    OpenAIRE

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuatio...

  11. Photon drag effect in carbon nanotube yarns

    Science.gov (United States)

    Obraztsov, Alexander N.; Lyashenko, Dmitry A.; Fang, Shaoli; Baughman, Ray H.; Obraztsov, Petr A.; Garnov, Sergei V.; Svirko, Yuri P.

    2009-06-01

    We demonstrate that in graphitic nanocarbon materials, combination of ballistic conductivity and strong electron photon coupling opens a unique opportunity to observe transfer of momentum of the electromagnetic radiation to free carriers. The resulting drag of quasiballistically propagating electrons can be employed, in particular, to visualize the temporal profile, polarization, and propagation direction of the laser pulse. In this letter, we report the giant photon drag effect in yarns made of multiwall carbon nanotubes.

  12. Magnetic Carbon Nanotubes for Protein Separation

    OpenAIRE

    Xiaobin Fan; Fengbao Zhang; Guoliang Zhang; Xiuhui Diao; Hongyu Chen

    2012-01-01

    Magnetic separation is a promising strategy in protein separation. Owing to their unique one-dimensional structures and desired magnetic properties, stacked-cup carbon nanotubes (CSCNTs) with magnetic nanoparticles trapped in their tips can serve as train-like systems for protein separation. In this study, we functionalized the magnetic CSCNTs with high density of carboxyl groups by radical addition and then anchored 3-aminophenylboronic acid (APBA) through amidation reaction to achieve orien...

  13. Scaling Law in Carbon Nanotube Electromechanical Devices

    OpenAIRE

    Lefevre, R.; Goffman, M.F.; Derycke, V.; Miko, C.; Forro, L.; Bourgoin, J. P.; Hesto, P.

    2005-01-01

    We report a method for probing electromechanical properties of multiwalled carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law cons...

  14. Bio-inspired Hybrid Carbon Nanotube Muscles

    OpenAIRE

    Tae Hyeob Kim; Cheong Hoon Kwon; Changsun Lee; Jieun An; Tam Thi Thanh Phuong; Sun Hwa Park; Lima, Márcio D.; Baughman, Ray H.; Tong Mook Kang; Seon Jeong Kim

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with p...

  15. Fermentation based carbon nanotube multifunctional bionic composites

    OpenAIRE

    Luca Valentini; Silvia Bittolo Bon; Stefano Signetti; Manoj Tripathi; Erica Iacob; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extr...

  16. Fermentation based carbon nanotube bionic functional composites

    OpenAIRE

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique mechanical and physical properties that are not produced by abiotic processes. Based on grape must and bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at r...

  17. Composites with polymer-grafted carbon nanotubes

    OpenAIRE

    Paiva, M. C.; Novais, R. M.; Covas, J. A.

    2014-01-01

    Carbon nanotube (CNT)/polymer composites exhibit the processability advantages of plastics, while conveying electrical conductivity characteristics suitable for electric transport, or for sensing functionalities. The success of their application depends on the ability to homogeneously disperse the CNT in the polymer matrices to form a stable conductive network. The structural strength of the nanocomposite is also desirable, and may be a requirement. The chemical functionalization of the CNT i...

  18. An ultrafast carbon nanotube terahertz polarisation modulator

    Energy Technology Data Exchange (ETDEWEB)

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B., E-mail: m.johnston@physics.ox.ac.uk [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

    2014-05-28

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  19. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang(College of William and Mary); Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  20. Spontaneous exciton dissociation in carbon nanotubes

    OpenAIRE

    Kumamoto, Y.; Yoshida, M.; Ishii, A; Yokoyama, A.; Shimada, T; Kato, Y. K.

    2013-01-01

    Simultaneous photoluminescence and photocurrent measurements on individual single-walled carbon nanotubes reveal spontaneous dissociation of excitons into free electron-hole pairs. Correlation of luminescence intensity and photocurrent shows that a significant fraction of excitons are dissociating during their relaxation into the lowest exciton state. Furthermore, the combination of optical and electrical signals also allows for extraction of the absorption cross section and the oscillator st...

  1. Fabrication and Characterization of Suspended Carbon Nanotube Devices in Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Artyukhin, A; Stadermann, M; Stroeve, P; Bakajin, O; Noy, A

    2006-10-30

    Suspended carbon nanotube devices are a promising platform for future bio-electronic applications. Suspended carbon nanotube transistors have been previously fabricated in air; however all previous attempts to bring them into liquid failed. We analyze forces acting on the suspended nanotube devices during immersion into liquids and during device operation and show that surface tension forces acting on the suspended nanotubes during transfer into the liquid phase are responsible for the nanotube damage. We have developed a new strategy that circumvents these limitations by coating suspended nanotubes with a rigid inorganic shell in the gas phase. The coating reinforces the nanotubes and allows them to survive transfer through the interface. Subsequent removal of the coating in the solution phase restores pristine suspended nanotubes. We demonstrate that devices fabricated using this technique preserve their original electrical characteristics.

  2. Upper bound to the thermal conductivity of carbon nanotube pellets

    Science.gov (United States)

    Chalopin, Yann; Volz, Sebastian; Mingo, Natalio

    2009-04-01

    Using atomistic Green's function calculations, we find that the phonon thermal conductivity of pellets composed of ˜μm long carbon nanotubes has an upper bound of a few W/m K. This is in striking contrast with the extremely high thermal conductivity of individual nanotubes (˜3000 W/m K). We show that, at room temperature, this upper bound does not depend on the nanotube diameter. Conversely, for low temperatures, an inverse proportionality with nanotube diameter is predicted. We present concrete results as a function of nanotube length and chirality, pellet density, and temperature. These results imply that carbon nanotube pellets belong to the category of thermal insulators, contrasting with the good conducting properties of parallel nanotube arrays, or individual nanotubes.

  3. Vibration and Buckling of In-Plane Loaded Double-Walled Carbon Nano-Tubes

    OpenAIRE

    ECE, Metin AYDOĞDU and Mehmet Cem

    2007-01-01

    The paper studies vibration and buckling of in-plane loaded double-walled carbon nanotubes. Timoshenko beam theory was used to investigate the vibration and buckling behavior of double-walled and simply supported carbon nanotubes. The influence of in-plane loads on the natural frequencies was determined. The results show that while the natural frequencies decrease with increasing compressive in-plane loads an increase in frequencies is observed for tension type of in-plane loads. T...

  4. Gram scale production of singlewall carbon nanotubes by catalytic decomposition of hydrocarbons

    International Nuclear Information System (INIS)

    The quality of singlewall carbon nanotubes produced by catalytic decomposition of hydrocarbons depends on the synthesis conditions but also on the scale of production. Singlewall nanotubes are produced by the decomposition of methane over cobalt based catalyst supported on magnesium oxide. The characteristics of the samples produced at different gas flows are studied by TEM, TGA, XRD, PIXE and Raman spectroscopy. A process is suggested to remove amorphous carbon and a part of the cobalt particles from the samples

  5. Quantification of tip-broadening in non-contact atomic force microscopy with carbon nanotube tips

    DEFF Research Database (Denmark)

    Meinander, Kristoffer; Jensen, Thomas N.; Simonsen, Soren B.;

    2012-01-01

    Carbon nanotube terminated atomic force microscopy (AFM) probes have been used for the imaging of 5 nm wide surface supported Pt nanoclusters by non-contact (dynamic mode) AFM in an ultra-high vacuum. The results are compared to AFM measurements done with conventional Si-tips, as well...... with geometrically limited conventional probes. Superior durability also stands out as a defining feature of carbon nanotube terminated probes, allowing them to give results with a greatly enhanced reproducibility....

  6. Simulation of the Band Structure of Graphene and Carbon Nanotube

    International Nuclear Information System (INIS)

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model and LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  7. Preparation of single-walled carbon nanotube reinforced magnesia films

    OpenAIRE

    Du, C S; Pan, Ning

    2004-01-01

    Single-walled carbon nanotube (SWNT)/MgO composite films were fabricated by growing carbon nanotubes while simultaneously sintering a MgO film. The effect of iron and molybdenum concentrations in liquid catalysts and the effect of the density of carbon nanotubes in the composite films on the quality of the films were investigated. Microstructure analysis showed that SWNTs were uniformly grown in the MgO film. The presence of a controlled amount of carbon nanotubes in MgO films is believed to ...

  8. Conformational changes of fibrinogen in dispersed carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Park SJ

    2012-08-01

    Full Text Available Sung Jean Park,1 Dongwoo Khang21College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea; 2School of Nano and Advanced Materials Science Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South KoreaAbstract: The conformational changes of plasma protein structures in response to carbon nanotubes are critical for determining the nanotoxicity and blood coagulation effects of carbon nanotubes. In this study, we identified that the functional intensity of carboxyl groups on carbon nanotubes, which correspond to the water dispersity or hydrophilicity of carbon nanotubes, can induce conformational changes in the fibrinogen domains. Also, elevation of carbon nanotube density can alter the secondary structures (ie, helices and beta sheets of fibrinogen. Furthermore, fibrinogen that had been in contact with the nanoparticle material demonstrated a different pattern of heat denaturation compared with free fibrinogen as a result of a variation in hydrophilicity and concentration of carbon nanotubes. Considering the importance of interactions between carbon nanotubes and plasma proteins in the drug delivery system, this study elucidated the correlation between nanoscale physiochemical material properties of carbon nanotubes and associated structural changes in fibrinogen.Keywords: carbon nanotubes, fibrinogen, nanotoxicity, conformational change, denaturation

  9. Electrochemical properties of double wall carbon nanotube electrodes

    Directory of Open Access Journals (Sweden)

    Pumera Martin

    2007-01-01

    Full Text Available AbstractElectrochemical properties of double wall carbon nanotubes (DWNT were assessed and compared to their single wall (SWNT counterparts. The double and single wall carbon nanotube materials were characterized by Raman spectroscopy, scanning and transmission electron microscopy and electrochemistry. The electrochemical behavior of DWNT film electrodes was characterized by using cyclic voltammetry of ferricyanide and NADH. It is shown that while both DWNT and SWNT were significantly functionalized with oxygen containing groups, double wall carbon nanotube film electrodes show a fast electron transfer and substantial decrease of overpotential of NADH when compared to the same way treated single wall carbon nanotubes.

  10. Simulation of the Band Structure of Graphene and Carbon Nanotube

    Science.gov (United States)

    Mina, Aziz N.; Awadallah, Attia A.; Phillips, Adel H.; Ahmed, Riham R.

    2012-02-01

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model & LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  11. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  12. Fast Electromechanical Switches Based on Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  13. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  14. Hydrogen storage in single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Claims have emerged recently, of high hydrogen storage capacities at room temperature and above, for carbons such as single-wall and multi-walled nanotubes. We have been unable to verify any claims of high capacities at room temperature and low pressure. For (10,10) single wall carbon nanotubes, we used a computer controlled Sievert's apparatus to measure an adsorption at RT of 0.07 wt% gravimetric density at 1 bar, typical of what is expected on the basis of BET surface area measurements for carbons. At high pressures of > 60 bar and temperatures of 80K gravimetric densities up to ∼ 8 wt% are obtained, but more typically ∼ 7 wt% after a few adsorption desorption cycles. These values and isotherm shapes can be attributed to rearrangement of the rope structure that is formed by condensed nanotubes. Certain fullerites can also exhibit adsorption/desorption cycle dependent capacity, ranging from 2.5 to 4 wt% at 80K and 120 bar. (author)

  15. Ferroelectric–carbon nanotube memory devices

    International Nuclear Information System (INIS)

    One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNT–inorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Low–loss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Current–voltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectric–carbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. (paper)

  16. Vibrations of carbon nanotube-reinforced composites

    Science.gov (United States)

    Formica, Giovanni; Lacarbonara, Walter; Alessi, Roberto

    2010-05-01

    This work deals with a study of the vibrational properties of carbon nanotube-reinforced composites by employing an equivalent continuum model based on the Eshelby-Mori-Tanaka approach. The theory allows the calculation of the effective constitutive law of the elastic isotropic medium (matrix) with dispersed elastic inhomogeneities (carbon nanotubes). The devised computational approach is shown to yield predictions in good agreement with the experimentally obtained elastic moduli of composites reinforced with uniformly aligned single-walled carbon nanotubes (CNTs). The primary contribution of the present work deals with the global elastic modal properties of nano-structured composite plates. The investigated composite plates are made of a purely isotropic elastic hosting matrix of three different types (epoxy, rubber, and concrete) with embedded single-walled CNTs. The computations are carried out via a finite element (FE) discretization of the composite plates. The effects of the CNT alignment and volume fraction are studied in depth to assess how the modal properties are influenced both globally and locally. As a major outcome, the lowest natural frequencies of CNT-reinforced rubber composites are shown to increase up to 500 percent.

  17. Preparation of carbon nanotubes by MPECVD

    International Nuclear Information System (INIS)

    Microwave plasma-enhanced chemical vapor deposition (MPECVD) method has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the large area growth, the lower growth temperature, uniform heat distribution and the good control of the different growth parameters. In this work we present our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapor deposition MPECVD. Well aligned, curly and coiled carbon nanotubes have been prepared. We have investigated the effect of the different growth condition parameters such as type of the catalyst, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results were showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. There is a linear relation between the growth rate and the methane to hydrogen ratio. We found that the growth rate has a great dependence on the amount of methane. For example the growth rate varied from the value 1,34 μm/min when the methane flow rate was 10 sccm to more than 14 μm/min when the methane flow rate was raised to 50 sccm. This growth rate is greater than that reported in the literature. The effect of the gas pressure on the CNTs was also studied. The Raman spectra (excitation wavelength 473 nm) of all samples show D-band peak at around 1300 cm-1 and G-band peak at around 1580 cm-1, which indicate that our CNTs are multi wall CNTs (MWCNTs). The D-band and the G-band correspond to sp2 and sp3 carbon stretching modes relatively, and their intensity ratio is a measure of the amount of disorder in the CNTs. The D-band is known to be attributed to the carbonaceous particles, defects in the curved graphitic sheet and tube ends. It has been suggested that lower Ig/Id ratios and narrower first and second order D and G bands are suggestive of well-aligned NNTs. The photoluminescence PL

  18. Carbon Nanotubes:from Nanoscale Building Blocks to Macrostructures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Carbon nanotubes (CNTs) have fascinating properties.In order to use these novel one-dimensional structures for applications such as in nano-electronic,nano-mechanical and electrochemical energy storage device and as structural elements in various composites,the structure of nanotubes needs to be tailored and various architectures and macroscale assembles have to be configured using nanotube building blocks.Nanotube macrostructures are macroscopically organized groups of CNTs,which are expecte...

  19. Synthesis and characterization of carbon nanotube reinforced copper thin films

    OpenAIRE

    Otto, Cornelia

    2006-01-01

    Two model composites of copper and carbon nanotubes were fabricated by very different deposition methods. Copper electrodeposition in a plating bath containing nanotubes created a 3D matrix of randomly oriented CNTs within a thick, 20 micron Cu film. In contrast, sandwiching a layer of well-separated nanotubes between two sub-micron sputtered Cu layers produced a 2D-composite with nanotubes lying parallel to the substrate surface. These composites, which were mechanically tested using var...

  20. Electronic transport properties of metallic single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    曹觉先; 颜晓红; 肖杨; 丁建文

    2003-01-01

    We have calculated the differential conductance of metallic carbon nanotubes by the scatter matrix method. It is found that the differential conductance of metallic nanotube-based devices oscillates as a function of the bias voltage between the two leads and the gate voltage. Oscillation period T is directly proportional to the reciprocal of nanotube length. In addition, we found that electronic transport properties are sensitive to variation of the length of the nanotube.

  1. Inherent-opening-controlled pattern formation in carbon nanotube arrays

    OpenAIRE

    Huang, Xiao; Zhou, Jijie J.; Sansom, Elijah; Gharib, Morteza; Haur, Sow Chorng

    2007-01-01

    We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting–dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension...

  2. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    OpenAIRE

    Magadur, Gurvan; Lauret, Jean-Sébastien; Alain-Rizzo, Valérie; C. Voisin; Roussignol, Ph.; Deleporte, Emmanuelle; Delaire, Jacques,

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching ...

  3. Exciton decay dynamics in individual carbon nanotubes at room temperature

    OpenAIRE

    Gokus, Tobias; Hartschuh, Achim; Harutyunyan, Hayk; Allegrini, Maria; Hennrich, Frank; Kappes, Manfred; Green, Alexander A.; Hersam, Mark C.; Araujo, Paulo T.; Jorio, Ado

    2008-01-01

    We studied the exciton decay dynamics of individual semiconducting single-walled carbon nanotubes at room temperature using time-resolved photoluminescence spectroscopy. The photoluminescence decay from nanotubes of the same (n,m) type follows a single exponential decay function, however, with lifetimes varying between about 1 and 40 ps from nanotube to nanotube. A correlation between broad photoluminescence spectra and short lifetimes was found and explained by defects promoting both nonradi...

  4. Studies of DNA-carbon nanotube interactions

    Science.gov (United States)

    Hughes, Mary Elizabeth

    2008-10-01

    Recently a new biomaterial consisting of a DNA-wrapped single-walled carbon nanotube, and known as a DNA/SWNT, has been discovered. The possible applications of this hybrid are varied and range from genomic sequencing to nanoscale electronics to molecular delivery. The realization of these potential applications requires more knowledge about the microscopic properties of this material. In this thesis, I present studies of: the orientation of nucleobases on the nanotube sidewall; the sequence and length dependence of the DNA-nanotube interaction; and solution conditions to manipulate the DNA/SWNT hybrid. The measurement of the UV optical absorbance of DNA/SWNT and the nucleotide absorbance from DNA/SWNT provide the first experimental confirmation that DNA binds to nanotubes through pi-stacking. Because the hypochromic absorbance typical of pi-stacked structures are expected to occur primarily for DNA dipole transitions that lie along the axis of the optically anisotropic SWNTs, the absorbance changes following binding of DNA to the nanotubes reveals the preferred orientation assumed by each of the four bound nucleotides with respect to the nanotube's long axis. The first observations of pronounced sequence- and length-dependent variations in the binding between ssDNA and SWNTs in aqueous solution are presented. These observations rely on the discovery that there exists a range of DNA lengths able to hybridize with SWNTs that can nevertheless be dissociated at temperatures below the boiling point of water. Quantitative results comparing the isochronal dissociation temperatures and binding energies of DNA/SWNT composed of differing DNA sequences and lengths are given. These results indicate variability and complexity in the binding mechanism responsible for the stability of the hybrid system that transcends simple models based on the sum of independent base-nanotube interactions. Binding energies between a DNA base and nanotube (0.05 to 0.09 eV per base) are similar

  5. Terahertz response of carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    The terahertz (THz) research field is expected to serve as a new platform for studying low-energy excitation in solids and higher-order structures in large molecules, and for realizing applications in medicine, agriculture, security, and high-capacity communications. The THz frequency region, however, is located between the electronic and photonic bands, hampering the development of basic components like detectors and sources. This article presents an overview of basic background information about THz waves and THz detector applications and describes the THz response of carbon-based low-dimensional systems, such as single carbon nanotubes (CNT), CNT-array films, and graphene. (author)

  6. Carbon Nanotubes Used in Electroanalysis

    Science.gov (United States)

    Hu, C. G.; Feng, B.

    The fabrication of the carboxyl-modified CNT electrode was described. The electroanalytical investigation of sulfadiazine has been conducted in alkaline aqueous solution at the CNT electrode by voltammetry. Highly reproducible and well-defined cyclic voltammograms were obtained for sulfadiazine with a very good signal to background (S/B) ratio. However, no fouling of the electrode was observed at the CNT electrode within the experimental period of several hours, which illustrated that the CNT electrode was much better than traditional electrodes. Meanwhile, the detection of trace sulfadiazine in milk was also conducted by cyclic voltammetry with satisfactory ratio of recovery, indicating that the nanotube electrode can be used in routine monitoring of sulfadiazine residues in food.

  7. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Jarillo-Herrero, P.D.

    2005-01-01

    Electronic transport through nanostructures can be very different from trans- port in macroscopic conductors, especially at low temperatures. Carbon na- notubes are tiny cylinders made of carbon atoms. Their remarkable electronic and mechanical properties, together with their small size (a few nm in

  8. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  9. Aligned Carbon Nanotubes as Porous Materials for Selective Gas Adsorption

    OpenAIRE

    Rahimi, Mahshid

    2016-01-01

    Carbon dioxide and sulfur dioxide are environmentally noxious components of flue and exhaust gases. Hence, new solutions for carbon dioxide and sulfur dioxide sequestration and storage are highly important. We used grand-canonical Monte Carlo simulations to understand the adsorption of carbon dioxide and sulfur dioxide in bundles of regular parallel arrays of carbon nanotubes of different tube diameters and different intertube distances. Such carbon nanotube arrays have recently become availa...

  10. Structural and electronic characteristics of perhydrogenated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, Jukka T.; Linnolahti, Mikko; Karttunen, Antti J. [Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80100 Joensuu (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80100 Joensuu (Finland)], E-mail: Tapani.Pakkanen@joensuu.fi

    2007-11-09

    The structural and electronic characteristics of fully hydrogenated armchair and zigzag carbon nanotubes have been determined by quantum chemical methods. With use of line group symmetries, the structures of nanotubes up to 10 nm in diameter could be optimized by periodic B3LYP calculations. 'In-out' isomerism is shown to significantly stabilize perhydrogenated carbon nanotubes, the energetically most favorable structures being those with 1/3-1/2 of the carbon atoms endo-hydrogenated. In favored nanotubes the ratio of endo- to exo-hydrogens is 1:1, the stabilities increasing as a function of the diameter of the nanotube. The calculated band gaps indicate that the perhydrogenated carbon nanotubes are insulators.

  11. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  12. Synthesis and characterizations of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) functionalized multi-walled carbon nanotubes with superior activity for NaBH4 hydrolysis

    International Nuclear Information System (INIS)

    Highlights: • Simple strategy for the synthesis of CoPt-PEDOT:PSS/MWCNTs. • PEDOT:PSS as a modifier of MWCNTs can improve the particles dispersion. • Superior catalytic activities for the NaBH4 hydrolysis reaction. - Abstract: We present here a facile strategy for synthesis of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) functionalized multi-walled carbon nanotubes (MWCNTs). The as-prepared CoPt-PEDOT:PSS/MWCNT catalyst was characterized with UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron. The well-supported and low-Pt-content nanostructure catalyst exhibits superior catalytic activity for the NaBH4 hydrolysis reaction with a 47.3 kJ mol−1 of activation energy. The maximum hydrogen generation rate is 6900 mL min−1 g−1 at 298 K

  13. Controlling growth of aligned carbon nanotubes from porous silicon templates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fabricating well-aligned carbon nanotubes, especially, on a silicon substrate is very important for their applications. In this paper, an aligned carbon nanotube array has been prepared by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) templates. High-magnification transmission electron microscopy images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of carbon nanotubes and the diameters of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.

  14. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja;

    2013-01-01

    We present here a proof of concept for a novel fabrication method of vertically aligned carbon nanotube forests, utilizing black silicon nanograss (a forest of silicon nanometer-sized spikes created with reactive ion etching) coated with titanium tungsten diffusion barrier as a template. The method...... allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  15. Electrotransport Properties of Irradiated with Ultraviolet Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    T.A. Len

    2016-03-01

    Full Text Available The electrical resistance of irradiated with ultraviolet carbon nanotubes were investigated. It is established that ultraviolet irradiation results in insignificant fuctionalization of carbon nanotubes surface, that doesn’t substantially affect on the nanotubes resistivity. It is shown that carbon nanotubes fuctionalization with strong oxidizers leads to a significant increase of resistivity by breaking electrinic system and localization of electrons by functional groups, and also to increase of contact resistance between the individual tubes by reducing the contact area between them

  16. Preparation of array of long carbon nanotubes and fibers therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  17. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites.

    Science.gov (United States)

    Li, Jianbo; Wang, Xiaojiao; Duan, Huimin; Wang, Yanhui; Luo, Chuannan

    2016-07-01

    A highly efficient and sensitive electrochemical sensor for EP based on reduced graphene and multi-walled carbon nanotube hybrid nanocomposites loaded TiO2-Au nano-clusters modified glassy carbon electrode was developed. The surface nature and morphology of the nanocomposite film and the electrochemical properties of the sensor were characterized by Raman spectra, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectra (EDX), Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. Carbon nanomaterials were widely used in sensing due to its large electroactive surface area, fast electron transport and strong adsorption capacity. Meanwhile, TiO2-Au nano-clusters could accelerate the electron transfer, increase reactive site and extend electrochemical response window. The nanocomposite film could greatly enhance the response sensitivity and decrease the overpotential. The resulting sensor showed an excellent electrocatalytic activity toward EP. Under the optimum conditions (i.e. pH6.0, 0.1M PBS, preconcentration for 110s), Differential pulse voltammetry was employed to detect ultra-trace amounts of EP. The result of a wide linear range of 1.0-300nM and limited of detection 0.34nM (S/N=3) were obtained. The constructed sensor exhibited excellent accuracy and precision, the relative standard deviation (RSD) was less than 5%. The nanocomposite film sensor was successfully used to accurately detect the content of EP in practical samples, and the recoveries for the standards added are 97%-105%. PMID:27127069

  18. Simulations of nanosensors based on single walled carbon nanotubes

    International Nuclear Information System (INIS)

    The potential of single-walled carbon nanotubes as mass sensors is examined. The change in mass leads to proportional changes in the nanotube vibrational frequencies, which are monitored during atomistic simulations. We observed a frequency shift as a result of replacement of carbon C12 with its isotope C13. For a zigzag (12,0) nanotube of about 10 nm length, we found zeptogram sensitivity.

  19. Thermodynamics of Water Entry in Hydrophobic Channels of Carbon Nanotubes

    OpenAIRE

    Kumar, Hemant; Mukherjee, Biswaroop; Dasgupta, Shiang-Tai Lin Chandan; Sood, A. K.; Maiti, Prabal K.

    2011-01-01

    Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermody- namic understanding of this phenomenon, we use the recently developed Two Phase Thermodynamics (2PT) method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rota...

  20. Metallic single-walled carbon nanotubes for conductive nanocomposites.

    Science.gov (United States)

    Wang, Wei; Fernando, K A Shiral; Lin, Yi; Meziani, Mohammed J; Veca, L Monica; Cao, Li; Zhang, Puyu; Kimani, Martin M; Sun, Ya-Ping

    2008-01-30

    This article reports an unambiguous demonstration that bulk-separated metallic single-walled carbon nanotubes offer superior performance (consistently and substantially better than the as-produced nanotube sample) in conductive composites with poly(3-hexylthiophene) and also in transparent conductive coatings based on PEDOT:PSS. The results serve as a validation on the widely held view that the carbon nanotubes are competitive in various technologies currently dominated by conductive inorganic materials (such as indium tin oxide). PMID:18173271

  1. Raman Spectroscopic Studies of Carbon Nanotube Composite Fibres

    OpenAIRE

    Deng, Libo

    2011-01-01

    The project has been concerned with structure/property relationships in a series of different carbon nanotube (CNT) composite fibres. Raman spectroscopy has been proved to be a powerful technique to characterise the CNT-containing fibres. Electrospinning has been used to prepare poly(vinyl alcohol) (PVA) nanofibres containing single-wall carbon nanotubes (SWNTs). The effect of the processing conditions including the polymer concentration, electric voltage, tip-to-collector distance, nanotube ...

  2. Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding

    OpenAIRE

    Ferreira, Tânia; Paiva, M. C.; Pontes, A. J.

    2013-01-01

    The focus of this study was to investigate the dispersion state of pure and functionalized carbon nanotubes in polyamide 6, on composites prepared by twin-screw extrusion and then processed by microinjection moulding. Nanocomposites were prepared with different carbonvnanotube compositions, with and without functionalization. The nanotubes were functionalized by the 1,3-dipolar cycloaddition reaction. The dispersion of the carbon nanotube agglomerates was quantified using optical microscop...

  3. Laser patterning of vertically grown carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won Seok [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2012-12-15

    The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large area patterning. The CNTs grown by plasma enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

  4. Batch fabrication of carbon nanotube bearings

    International Nuclear Information System (INIS)

    Relative displacements between the atomically smooth, nested shells in multiwalled carbon nanotubes (MWNTs) can be used as a robust nanoscale motion enabling mechanism. Here, we report on a novel method suited for structuring large arrays of MWNTs into such nanobearings in a parallel fashion. By creating MWNT nanostructures with nearly identical electrical circuit resistance and heat transport conditions, uniform Joule heating across the array is used to simultaneously engineer the shell geometry via electric breakdown. The biasing approach used optimizes process metrics such as yield and cycle-time. We also present the parallel and piecewise shell engineering at different segments of a single nanotube to construct multiple, but independent, high density bearings. We anticipate this method for constructing electromechanical building blocks to be a fundamental unit process for manufacturing future nanoelectromechanical systems (NEMS) with sophisticated architectures and to drive several nanoscale transduction applications such as GHz-oscillators, shuttles, memories, syringes and actuators

  5. Carbon nanotube as a gramicidin analogue

    Science.gov (United States)

    Hilder, Tamsyn A.; Chung, Shin-Ho

    2011-01-01

    We have designed a carbon nanotube that is selectively permeable to monovalent cations, binds divalent cations and rejects anions. The nanotubes, with an effective radius of 4.53 Å and length of 36 Å, are terminated with hydrogen atoms and are exohydrogenated in two regions near the entrance and exit. Using molecular and stochastic dynamics simulations we examine the free energy, current-voltage-concentration profiles and ion binding sites. The characteristics of this channel are comparable to the antibiotic gramicidin-A, but the potassium current is six times larger. At 40 mM calcium concentration the current is reduced from 26 pA to 4 pA due to a calcium ion binding at the channel entrance.

  6. Carbon nanotube DNA sensor and sensing mechanism.

    Science.gov (United States)

    Tang, Xiaowu; Bansaruntip, Sarunya; Nakayama, Nozomi; Yenilmez, Erhan; Chang, Ying-Lan; Wang, Qian

    2006-08-01

    We report the fabrication of single-walled carbon nanotube (SWNT) DNA sensors and the sensing mechanism. The simple and generic protocol for label-free detection of DNA hybridization is demonstrated with random sequence 15mer and 30mer oligonucleotides. DNA hybridization on gold electrodes, instead of on SWNT sidewalls, is mainly responsible for the acute electrical conductance change due to the modulation of energy level alignment between SWNT and gold contact. This work provides concrete experimental evidence on the effect of SWNT-DNA binding on DNA functionality, which will help to pave the way for future designing of SWNT biocomplexes for applications in biotechnology in general and also DNA-assisted nanotube manipulation techniques. PMID:16895348

  7. A carbon nanotube immunosensor for Salmonella

    Directory of Open Access Journals (Sweden)

    Mitchell B. Lerner

    2011-12-01

    Full Text Available Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (<1000 cfu/ml. In contrast, the carrier mobility is affected comparably by Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml.

  8. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  9. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  10. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    covered nano patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  11. A New Application of Carbon Nanotubes Constructing Biosensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon nanotubes used for constructing biosensor was described for the first time. Single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups were used to immobilize glucose oxidase forming a glucose biosensor. The biosensor response can be determined by amperometric method at a low applied potential (0.40 V).

  12. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  13. DNA translocating through a carbon nanotube can increase ionic current

    International Nuclear Information System (INIS)

    Translocation of DNA through a narrow, single-walled carbon nanotube can be accompanied by large increases in ion current, recently observed in contrast to the ion current blockade. We use molecular dynamics simulations to show that large electro-osmotic flow can be turned into a large net current via ion-selective filtering by a DNA molecule inside the carbon nanotube. (paper)

  14. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  15. Softening of the Radial Breathing Mode in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H. (ed.); Sasaki, K.; Kalbáč, Martin; Hofmann, M.; Saito, R.; Dresselhaus, M. S.; Kong, J.

    2009-01-01

    Roč. 102, č. 12 (2009), 126804-1-126804-4. ISSN 0031-9007 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic carbon nanotubes * radial breathing mode * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.328, year: 2009

  16. Very short functionalized carbon nanotubes for membrane applications

    NARCIS (Netherlands)

    Fonseca, A.; Reijerkerk, S.R.; Potreck, J.; Nijmeijer, D.C.; Mekhalif, Z.; Delhalle, J.

    2010-01-01

    The cutting and functionalization of carbon nanotubes is described, applying a single-step ball-mill based process. Very short carbon nanotubes bearing primary amine functions were produced, characterized and incorporated in polymeric membranes. The gas separation performance of the composite membra

  17. Cross-linking of multiwalled carbon nanotubes with polymeric amines

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Stuart, M. C. A.; Landaluce, T. F.; Fausti, D.; Rudolf, P.; Picchioni, F.

    2008-01-01

    Functionalization of carbon nanotubes is considered as an essential step to enable their manipulation and application in potential end-use products. In this paper we introduce a new approach to functionalize multiwalled carbon nanotubes (MWNTs) by applying an amidation-type grafting reaction with am

  18. Bouncing Water Droplet on a Superhydrophobic Carbon Nanotube Array

    OpenAIRE

    Aria, Adrianus I.; Gharib, Morteza

    2010-01-01

    Over the past few decades, superhydrophobic materials have attaracted a lot of interests, due to their numerous practical applications. Among various superhydrophobic materials, carbon nanotube arrays have gained enormous attentions simply because of their outstanding properties. The impact dynamic of water droplet on a superhydrophobic carbon nanotube array is shown in this fluid dynamics video.

  19. Super-Bridges Suspended Over Carbon Nanotube Cables

    OpenAIRE

    Carpinteri, Alberto; Pugno, Nicola M.

    2008-01-01

    In this paper the new concept of super-bridges, i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of 3.

  20. Multifunctional Carbon Nanotube Sensors for Environmental Monitoring

    Science.gov (United States)

    Liu, Yu

    As a one dimensional material, a Single-walled Carbon Nanotube (SWNT) is made of a rolled up graphene sheet. With a diameter of 1˜2 nm, the SWNTs exhibit many unique properties, such as high aspect ratios, ballistic carrier transport, high mechanical strength and thermal stability. These properties enable SWNTs to have superior performances in various applications including electronics and sensors. SWNT based sensors are extremely sensitive to slight electrostatic changes in their environment and have a fast response where conductance of an SWNT is observed to change in less than 2 sec upon exposure. In addition, SWNT sensors have size advantage over traditional sensors. Hence, SWNTs have been widely explored as active sensing elements for chemical and biomolecule detection. Despite high sensitivities observed from nanotube sensors, one drawback is their lack of selectivity. The conductance of SWNTs is susceptible to many gas molecules in air, including oxygen and moisture which are abundantly present in the ambient environment. Due to this nonspecificity, the presence of any type of gas vapors can possibly interfere with the induced signals from the target gas vapors and hence reduce S/N ratio during detection. To minimize the effects of undesirable interference signals from the environment, several functionalization methods have been developed to customize the affinities of SWNTs to specific targets, including metal nano particles, conducting polymers and biomolecules. The objective of this thesis is to utilize SWNTs in environmental applications. The proposed research topics include: investigating the sensing characteristics of RNA oligomers on carbon nanotubes; analyzing the sensing characteristics of DNA with different sequence lengths on carbon nanotubes; integration of DNA decorated SWNTs onto CMOS chip for toxic and explosive gas monitoring; building nanosensor array based on multi-functionalized SWNTs for air quality monitoring and exploring the sensing

  1. Massive radius-dependent flow slippage in carbon nanotubes.

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter. PMID:27604947

  2. Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kai, E-mail: kyan@lakeheadu.ca; Lafleur, Todd [Lakehead University, Department of Chemistry (Canada); Liao, Jiayou [Tianjin University, School of Chemical Engineering and Technology (China)

    2013-09-15

    Different loading of palladium (Pd) nanoparticles were successfully fabricated on multi-walled carbon nanotubes using Pd acetylacetonate as the precursor via a simple liquid impregnation method. The crystal phase, morphology, textural structure and the chemical state of the resulting Pd nanoparticles (Pd/CNT) catalysts were studied and the characterization results indicated that the uniform dispersion of small Pd nanoparticles with the size range of 1.0-4.5 nm was achieved. The synthesized Pd/CNT catalysts exhibited efficient performance for the catalytic hydrogenation of biomass-derived levulinic acid into biofuel {gamma}-valerolactone. In comparison with the commercial 5 wt% Pd/C and the 5 wt% Pd/CNT catalyst prepared by Pd nitrate precursor, much higher activities were achieved, whereas the biofuel {gamma}-valerolactone was highly produced with 56.3 % yield at 57.6 % conversion of levulinic acid on the 5 wt% Pd/CNT catalyst under mild conditions. The catalyst developed in this work may be a good candidate for the wide applications in the hydrogenation.

  3. Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid

    International Nuclear Information System (INIS)

    Different loading of palladium (Pd) nanoparticles were successfully fabricated on multi-walled carbon nanotubes using Pd acetylacetonate as the precursor via a simple liquid impregnation method. The crystal phase, morphology, textural structure and the chemical state of the resulting Pd nanoparticles (Pd/CNT) catalysts were studied and the characterization results indicated that the uniform dispersion of small Pd nanoparticles with the size range of 1.0–4.5 nm was achieved. The synthesized Pd/CNT catalysts exhibited efficient performance for the catalytic hydrogenation of biomass-derived levulinic acid into biofuel γ-valerolactone. In comparison with the commercial 5 wt% Pd/C and the 5 wt% Pd/CNT catalyst prepared by Pd nitrate precursor, much higher activities were achieved, whereas the biofuel γ-valerolactone was highly produced with 56.3 % yield at 57.6 % conversion of levulinic acid on the 5 wt% Pd/CNT catalyst under mild conditions. The catalyst developed in this work may be a good candidate for the wide applications in the hydrogenation

  4. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.

    Science.gov (United States)

    Duan, Haiming; Rosén, Arne; Harutyunyan, Avetik; Curtarolo, Stefano; Bolton, Kim

    2008-11-01

    Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred. PMID:19198360

  5. Multiple electronic Raman scatterings in a single metallic carbon nanotube

    Science.gov (United States)

    Zhang, Daqi; Yang, Juan; Hasdeo, Eddwi H.; Liu, Can; Liu, Kaihui; Saito, Riichiro; Li, Yan

    2016-06-01

    We observe multiple electronic Raman scatterings (ERSs) in a single suspended metallic single-walled carbon nanotube. The ERS process originates from the inelastic scattering of photoexcited excitons by a continuum of low-lying electron-hole pairs. In previous work, the observed Fano factor of the G band line shape is always negative; however, in this work we find that the Fano factor can be either positive or negative depending on the relative position of the nearest ERS with respect to the G band. This supports the idea that the origin of the G band asymmetry is an interference between the discrete G band and the continuous ERS. We also report that the ERS position and intensity are sensitive to the nanotube bundling effect and the laser heating effect.

  6. ELECTROCHEMICAL INVESTIGATION ON CARBON NANOTUBE FILM WITH DIFFERENT PRETREATMENTS

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; Y. Ma; W. Zhu

    2003-01-01

    Wide potential windows were found at carbon nanotube film electrodes in neutral solutions after being treated with nitric acid and mixed acid. Electrochemical reversibility was investigated at carbon nanotube films with different pretreatments for ferri/ferrocyanide and quinone /hydroquinone. Carbon nanotube film electrodes presented quasi-reversible electrochemical behavior for both electrolytes. In the range of scan rate, carbon nanotube film electrodes treated with acids showed heterogeneous electron-transfer properties, which was mainly controlled by its electron state density on the surface of the film. On the whole, the carbon nanotube electrode with nitric acid treatment presented the best electrochemical behaviors, so we chose it as an analytical electrode to determine the trace compound in dilute solution. The results demonstrated that this new electrode material exhibits superior performance characteristics for the detection of azide anion.

  7. An improved fabrication method for carbon nanotube probe

    Institute of Scientific and Technical Information of China (English)

    XU Zong-wei; GUO Li-qiu; DONG Shen; ZHAO Qing-liang

    2008-01-01

    An improved arc discharge method is developed to fabricate the carbon nanotube probe.In this method,the silicon probe and the carbon nanotube were manipulated under an optical microscope.When the silicon probe and the carbon nanotube were very close,30-60 V dc or ac was applied between them,and the carbon nanotube was divided and attached to the end of the silicon probe.Comparing with the arc discharge method,the new method need not coat the silicon probe with metal in advance,which Can greatly reduce the fabrication difficulty and cost.The fabricated carbon nanotube probe exhibits the good property of hish aspect ratio and can reflect the true topography more accurately than the silicon probe.

  8. Thermophoretic Motion of Water Nanodroplets confined inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Koumoutsakos, Petros;

    2009-01-01

    We study the thermophoretic motion of water nanodroplets confined inside carbon nanotubes using molecular dynamics simulations. We find that the nanodroplets move in the direction opposite the imposed thermal gradient with a terminal velocity that is linearly proportional to the gradient. The...... translational motion is associated with a solid body rotation of the water nanodroplet coinciding with the helical symmetry of the carbon nanotube. The thermal diffusion displays a weak dependence on the wetting of the water-carbon nanotube interface. We introduce the use of the Moment Scaling Spectrum (MSS) in...... order to determine the characteristics of the motion of the nanoparticles inside the carbon nanotube. The MSS indicates that affinity of the nanodroplet with the walls of the carbon nanotubes is important for the isothermal diffusion, and hence for the Soret coefficient of the system....

  9. Single-walled carbon nanotube electromechanical switching behavior with shoulder slip

    International Nuclear Information System (INIS)

    Several electromechanical devices, each consisting of a small bundle of single-walled carbon nanotubes suspended over an actuation electrode, have been fabricated and operated electrically. The nanotubes are assembled on the electrodes using dielectrophoresis, a potential high-rate nanomanufacturing process. A large decrease in the threshold voltage was seen after the first actuation. This is a result of the nanotubes sliding inward on their supports as they are pulled down toward the actuation electrode, leaving slack in the nanotube bundle for subsequent actuations. The electrical measurements agree well with an electromechanical model that uses a literature-reported value of the shear stress between the nanotubes and the SiO2 shoulders. Electrical measurements were performed in dry nitrogen as a large build-up of contamination was seen when the measurements were performed in lab air. We present measurements as well as a detailed mechanics model that support the interpretation of the data.

  10. Influence of surface chemistry on inkjet printed carbon nanotube films

    International Nuclear Information System (INIS)

    Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.

  11. Carbon Nanotube Integration with a CMOS Process

    Science.gov (United States)

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  12. Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [North Carolina State University; Yong, Zhenzhong [Suzhou Institute of Nano-Tech and Nano-Bionics; Li, Qingwen [Suzhou Institute of Nano-Tech and Nano-Bionics; Bradford, Philip D. [North Carolina State University; Liu, Wei [Donghua University, Shanghai, China; Tucker, Dennis S. [Tucker Technical Solutions; Cai, Wei [ORNL; Wang, Hsin [ORNL; Yuan, Fuh-Gwo [North Carolina State University; Zhu, Yuntian [North Carolina State University

    2012-01-01

    Carbon nanotubes (CNTs) are an order of magnitude stronger than any current engineering fiber. However, for the past two decades it has been a challenge to utilize their reinforcement potential in composites. Here we report CNT composites with unprecedented multifunctionalities, including record high strength (3.8 GPa), Young s modulus (293 GPa), electrical conductivity (1230 S cm-1) and thermal conductivity (41 W m-1 K-1). These superior properties are derived from the long length, high volume fraction, good alignment and reduced waviness of the CNTs, which were produced by a novel processing approach that can be easily scaled up for industrial production.

  13. Cell mobility after endocytosis of carbon nanotubes

    Science.gov (United States)

    Pirbhai, Massooma; Flores, Thomas; Jedlicka, Sabrina; Rotkin, Slava

    2013-03-01

    Directed cell movement plays a crucial role in cellular behaviors such as neuronal cell division, cell migration, and cell differentiation. There is evidence in preclinical in vivo studies that small fields have successfully been used to enhance regrowth of damages spinal cord axons but with a small success rate. Fortunately, the evolution of functional biomaterials and nanotechnology may provide promising solutions for enhancing the application of electric fields in guiding neuron migration and neurogenesis within the central nervous system. In this work, we studied how endocytosis and subsequent retention of carbon nanotubes affects the mobility of cells under the influence of an electric field, including the directed cell movement.

  14. Metallic Carbon Nanotubes and Ag Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  15. Drain Voltage Scaling in Carbon Nanotube Transistors

    OpenAIRE

    Radosavljevic, M.; Heinze, S.; Tersoff, J.; Avouris, Ph.

    2003-01-01

    While decreasing the oxide thickness in carbon nanotube field-effect transistors (CNFETs) improves the turn-on behavior, we demonstrate that this also requires scaling the range of the drain voltage. This scaling is needed to avoid an exponential increase in Off-current with drain voltage, due to modulation of the Schottky barriers at both the source and drain contact. We illustrate this with results for bottom-gated ambipolar CNFETs with oxides of 2 and 5 nm, and give an explicit scaling rul...

  16. Direct pressure sensor using carbon nanotubes nanocomposite

    OpenAIRE

    Dinh, Nghia Trong

    2016-01-01

    Im Gegensatz zu herkömmlichen Dehnungsmessstreifen können Carbon nanotube (CNT)-basierte Komposite zusätzlich eine ausgeprägte Druck-abhängigkeit des Widerstandes aufweisen. Deshalb können Drucksensoren aus CNT-Nanokomposite ohne den Einsatz von Verformungskörpern wie z. B. Biegebalken aufgebaut werden. Die möglichen Anwendungsgebiete für diese direkt messenden Sensoren wurden in der vorliegenden Arbeit bei drei industriellen Anwendungen wie z. B. bei Robotergreifarmen gezeigt. Die Zielstellu...

  17. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  18. Carbon nanotubes: controlled growth and application

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2013-01-01

    Full Text Available Notable progress has been made on the synthesis, properties and uses of carbon nanotubes (CNTs in the past two decades. However, the controlled growth of single-wall CNTs (SWCNTs with predefined and uniform structures remains a big challenge, and making full use of CNTs in applications still requires great effort. In this article, our strategies and recent progress on the controlled synthesis of SWCNTs by chemical vapor deposition are reviewed, and the applications of CNTs in lithium-ion batteries, transparent conductive films, and as connectors of metal atomic chains are discussed. Finally, future prospects for CNTs are considered.

  19. Carbon Nanotube Integration with a CMOS Process

    Directory of Open Access Journals (Sweden)

    Maximiliano S. Perez

    2010-04-01

    Full Text Available This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture.

  20. Carbon nanotube alignment driven rapid actuations

    International Nuclear Information System (INIS)

    Suspended micro-beams made from aligned carbon nanotubes and parylene deflect reversibly in an ac field and the deflection rate is three orders of magnitude greater than those for existing devices. The direction of beam deflection is determined by the area moment of inertia and the actuation mechanism involves rapid accumulation of charges at tube surfaces, the creation of Coulomb repulsive forces between tubes, beam dilation and the formation of compressive stresses at beam ends. Tube alignment plays a crucial role in the first step as is verified by experimental data and calculation. (paper)

  1. Scaling Law in Carbon Nanotube Electromechanical Devices

    Science.gov (United States)

    Lefèvre, R.; Goffman, M. F.; Derycke, V.; Miko, C.; Forró, L.; Bourgoin, J. P.; Hesto, P.

    2005-10-01

    We report a method for probing electromechanical properties of multiwalled carbon nanotubes (CNTs). This method is based on atomic force microscopy measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law constitute a very useful tool for designing actuators and in general conducting nanowire-based nanoelectromechanical systems.

  2. Coating Carbon Nanotubes with Europium Oxide

    Institute of Scientific and Technical Information of China (English)

    Hui Qun CAO; Guang Yan HONG; Jing Hui YAN; Ji Lin ZHANG; Gui Xia LIU

    2003-01-01

    Carbon nanotubes (CNTS) coating with europium oxide by a simple method is reported in this letter for the first time. The CNTS were refluxed in a solution of nitric acid containing europium nitrate, and the pH value was subsequently ajusted with ammonia solution. At last, the mixture was filtered and annealed. The TEM micrograph showed that the CNTS were covered with a uniform thin layer with thickness of about 15 nm. The XRD results revealed that the CNTS were coated with europium oxide.

  3. Multiwalled carbon nanotube: Luttinger versus Fermi liquid

    OpenAIRE

    Tarkiainen, R.; Ahlskog, M; Penttilä, J; Roschier, L.; Hakonen, Pertti J.; Paalanen, M.; Sonin, E.

    2001-01-01

    We have measured IV curves of multiwalled carbon nanotubes using end contacts. At low voltages, the tunneling conductance obeys non-Ohmic power law, which is predicted both by the Luttinger liquid and the environment-quantum-fluctuation theories. However, at higher voltages we observe a crossover to Ohm’s law with a Coulomb-blockade offset, which agrees with the environment-quantum-fluctuation theory, but cannot be explained by the Luttinger-liquid theory. From the high-voltage tunneling cond...

  4. Fibrous composites comprising carbon nanotubes and silica

    Science.gov (United States)

    Peng, Huisheng; Zhu, Yuntian Theodore; Peterson, Dean E.; Jia, Quanxi

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  5. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  6. Increased Alignment in Carbon Nanotube Growth

    Science.gov (United States)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  7. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    International Nuclear Information System (INIS)

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  8. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    Science.gov (United States)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  9. Modification of Carbon Nanotube Powder Microelectrode and Nitrite Reduction

    Institute of Scientific and Technical Information of China (English)

    PeiFangLIU; JunFuHU

    2002-01-01

    The properties of the carbon nanotube powder microelectroes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.

  10. Modification of Carbon Nanotube Powder Microelectrode and Nitrite Reduction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The properties of the carbon nanotube powder microelectrodes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.

  11. Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes.

    Science.gov (United States)

    Hofmann, Matthias S; Noé, Jonathan; Kneer, Alexander; Crochet, Jared J; Högele, Alexander

    2016-05-11

    We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes. PMID:27105355

  12. Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Thorn-like, organometallic-functionalized carbon nanotubes were successfully developed via a novel microwave hydrothermal route. The organometallic complex with methyl orange and iron (III) chloride served as reactive seed template, resulting in the oriented polymerization of pyrrole on the modified carbon nanotubes without the assistance of other oxidants. Morphological and structural characterizations of the carbon nanotube/methyl orange-iron (III) chloride and polypyrrole/carbon nanotube composites were examined using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), infrared spectroscopy and X-ray diffraction (XRD). The electrochemical property of the polypyrrole/carbon nanotube composite was elucidated by cyclic voltammetry and galvanostatic charge-discharge. A specific capacitance of 304 F g-1 was obtained within the potential range of -0.5-0.5 V in 1 M KCl solution.

  13. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport.

    Science.gov (United States)

    Kim, Sangil; Jinschek, Joerg R; Chen, Haibin; Sholl, David S; Marand, Eva

    2007-09-01

    We present a simple, fast, and practical route to vertically align carbon nanotubes on a porous support using a combination of self-assembly and filtration methods. The advantage of this approach is that it can be easily scaled up to large surface areas, allowing the fabrication of membranes for practical gas separation applications. The gas transport properties of thus constructed nanotube/polymer nanocomposite membranes are analogous to those of carbon nanotube membranes grown by chemical vapor deposition. This paper shows the first data for transport of gas mixtures through carbon nanotube membranes. The permeation of gas mixtures through the membranes exhibits different properties than those observed using single-gas experiments, confirming that non-Knudsen transport occurs. PMID:17685662

  14. High strain rate fracture and C-chain unraveling in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    1998-01-01

    Full Text Available Exceedingly high strength hasbeen anticipated for carbon nanotubes since their discovery, promising novel material applications. The strength of carbon bonds and their perfect arrangement within the walls suggests indeed an extreme stiffness along the axis, combined with resilience in other directions. Both experimental evidence and computer simulations support this notion. Although the nanotubes sustain all kinds of twisting and bending, there should be some way to break them. How strong in tension is a carbon nanotube? It is too small to be pulled apart with one's hands, and too strong for tiny “optical tweezers”, for example? The proper instruments are still to be built, or experimentalists should wait until nanotubes grow longer in chemists' laboratories. In the meantime, some tests are being done in computer modeling.

  15. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H2 = 1/1, 100 cm3/min, at 620 oC under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H2 = 1/1, total gas flow rate 100 cm3/min, at 620 oC for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  16. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    Science.gov (United States)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  17. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    Directory of Open Access Journals (Sweden)

    Giuseppe Cirillo

    2014-01-01

    Full Text Available The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior. The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review.

  18. Synthesis of Aligned Carbon Nanotubes by Thermal Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Gang; ZHOU Ming; MA Weiwei; CAI Lan

    2009-01-01

    Single crystal silicon was found to be very beneficial to the growth of aligned carbon nanotubes by chemical vapor deposition with C2H2 as carbon source. A thin film of Ni served as catalyst was deposited on the Si substrate by the K575X Peltier Cooled High Resolution Sputter Coater before growth. The growth properties of carbon nanotubes were studied as a function of the Ni catalyst layer thickness. The diameter, growth rate and areal density of the carbon nanotubes were controlled by the initial thickness of the catalyst layer. Steric hindrance between nanotubes forces them to grow in well-aligned manner at an initial stage of growth. Transmission electron microscope analysis revealed that nanotubes grew by a tip growth mechanism.

  19. Morphology of polyamide 6 confined into carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Piegat Agnieszka

    2015-06-01

    Full Text Available The preparation of polymer nanocomposites filled with carbon nanotubes requires the nanotubes to be uniformly dispersed and compatible with the polymer matrix. In this work we report a preparation method of polyamide 6 (PA 6 based nanocomposite containing multi-walled carbon nanotubes (MWCNT without any additional surface modification and obtained by in situ polymerization, as a simple method for composites production. The process was assisted by ultrasounds prior to synthesis.With such a method, an interesting morphology of polyamide 6 confined into a multiwalled carbon nanotube as well as grafted on a carbon nanotube surface was observed. For comparative purpose, PA 6 nanocomposites were also prepared from commercially available master batch by melt compounding.

  20. Charge-induced strains in single-walled carbon nanotubes.

    Science.gov (United States)

    Li, Chun-Yu; Chou, Tsu-Wei

    2006-09-28

    This paper investigates the electromechanical coupling in single-walled carbon nanotubes. In the model system, the extra electric charge of the nanotube is assumed to be uniformly distributed on carbon atoms. The electrostatic interactions between charged carbon atoms are calculated using the Coulomb law. The deformation of the charged nanotube is obtained by using the molecular structural mechanics method and considering the electrostatic interactions as an external loading acting on carbon atoms. The axial strain is found to be a symmetric function of applied charge, and our predictions are in very good agreement with those from ab initio calculations. The present results indicate that the nanotube aspect ratio has a strong effect on the axial strain when the ratio is less than 10 and the general trend is that the strain increases with the aspect ratio. The peak axial and radial strains occur at nanotube diameters of around 1.2-1.5 nm. PMID:21727586