WorldWideScience

Sample records for carbon nanotubes potentiate

  1. Electrochemical potential at the interface between carbon nanotubes and electrolyte

    Institute of Scientific and Technical Information of China (English)

    LU Jian-wei; WANG Wan-lu; WU Zi-hua; WANG Yong-tian

    2004-01-01

    The dependences of electrochemical potential at the interface between carbon nanotubes and electrolyte upon temperature and electrolyte concentration are studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition with Si as the substrate. Four substances were tested: NaCl solution, KCl solution, water and alcohol. It is found that for NaCl and KCl solutions, at the interface, there is a large electrochemical potential which increases with temperature and is larger for an electrolyte of higher concentration. There is a significant field effect of carbon nanotubes with electrolyte as the gate,and the effect depends on the ionizability of the electrolyte. Such physicochemical property invests carbon nanotube a potential application in nanoelectronics.

  2. Carbon nanotubes buckypapers for potential transdermal drug delivery

    International Nuclear Information System (INIS)

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen

  3. Carbon nanotubes buckypapers for potential transdermal drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schwengber, Alex [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Prado, Héctor J. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Zilli, Darío A. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Bonelli, Pablo R. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); and others

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen.

  4. Carbon Nanotubes Potentialities in Directional Dark Matter Searches

    CERN Document Server

    Capparelli, L M; Mazzilli, D; Polosa, A D

    2014-01-01

    We propose a new solution to the problem of dark matter directional detection based on large parallel arrays of carbon nanotubes. The phenomenon of ion channeling in single wall nanotubes is simulated to calculate the expected number of recoiling carbon ions, due to the hypothetical scattering with dark matter particles, subsequently being driven along their longitudinal extension. As shown by explicit calculation, the relative orientation of the carbon nanotube array with respect to the direction of motion of the Sun has an appreciable effect on the channeling probability of the struck ion and this provides the required detector anisotropic response.

  5. Effect of chemical potential on the computer simulation of hydrogen storage in single walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Hong; WANG; Shaoqing; CHENG; Huiming

    2004-01-01

    Grand canonical Monte Carlo molecular simulations were carried out for hydrogen adsorption in single-walled carbon nanotubes. It was found that variations in chemical potential may result in a great change in the hydrogen storage capacity of single-walled carbon nanotubes. Hydrogen adsorption isotherms of single-walled carbon nanotubes at 298.15 K were calculated using a modified chemical potential, and the result obtained is closer to the experimental results. By comparing the experimental and simulation results, it is proposed that chemical adsorption may exist for hydrogen adsorption in single-walled carbon nanotubes.

  6. Potential of carbon nanotube field effect transistors for analogue circuits

    KAUST Repository

    Hayat, Khizar

    2013-05-11

    This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET\\'s potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.

  7. Potential release scenarios for carbon nanotubes used in composites

    Science.gov (United States)

    The expected widespread use of carbon nanotube (CNT)-composites in consumer products calls for an assessment of the possible release and exposure to workers, consumers and the environment. Release of CNTs may occur at all steps in the life cycle of products, but to date only limi...

  8. Functionalization of Carbon Nanotubes

    OpenAIRE

    Abraham, Jürgen

    2005-01-01

    Carbon nanotubes have an enormous potential due to their outstanding electronic, optical, and mechanical properties. However, any technological application is still hindered due to problems regarding the processibility of the pristine carbon nanotubes. In the past few years, it has been shown that the chemical modification of the carbon nanotubes is an inevitable step prior to their application. The first part of this work (chapter 3.1) was focused on the purification of pristine laser ablati...

  9. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  10. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos?

    Science.gov (United States)

    Kisin, E. R.; Murray, A.R.; Sargent, L.; Lowry, D.; Chirila, M.; Siegrist, K.J.; Schwegler-Berry, D.; Leonard, S.; Castranova, V.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A.

    2011-01-01

    The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf®-III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos>CNF>SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity. PMID:21310169

  11. Genotoxicity of carbon nanofibers: Are they potentially more or less dangerous than carbon nanotubes or asbestos?

    International Nuclear Information System (INIS)

    The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf (registered) -III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos > CNF > SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.

  12. The construction, development and application of potential simulation models to the filling of carbon nanotubes by molten salts

    OpenAIRE

    Bishop, C. L.

    2009-01-01

    Inorganic nanotube structures (INTs) can be synthesised through the direct �filling of carbon nanotube templates with molten salts. The resulting structures, usually rationalised in terms of known bulk crystal structures, are shown to be contained within a general set of structures classifi�ed in terms of folded sheets of in�finite squares and hexagons. A flexible model for the carbon nanotube is employed (using a Terso� II potential), a signifi�cant development on previous work in w...

  13. Potential in vitro effects of carbon nanotubes on human aortic endothelial cells

    International Nuclear Information System (INIS)

    Respiratory exposure of mice to carbon nanotubes induces pulmonary toxicity and adverse cardiovascular effects associated with atherosclerosis. We hypothesize that the direct contact of carbon nanotubes with endothelial cells will result in dose-dependent effects related to altered cell function and cytotoxicity which may play a role in potential adverse pulmonary and cardiovascular outcomes. To test this hypothesis, we examined the effects of purified single- and multi-walled carbon nanotubes (SWCNT and MWCNT) on human aortic endothelial cells by evaluating actin filament integrity and VE-cadherin distribution by fluorescence microscopy, membrane permeability by measuring the lactate dehydrogenase (LDH) release, proliferation/viability by WST-1 assay, and overall functionality by tubule formation assay. Marked actin filament and VE-cadherin disruption, cytotoxicity, and reduced tubule formation occurred consistently at 24 h post-exposure to the highest concentrations [50-150 μg/106 cells (1.5-4.5 μg/ml)] for both SWCNT and MWCNT tested in our studies. These effects were not observed with carbon black exposure and carbon nanotube exposure in lower concentrations [1-10 μg/106 cells (0.04-0.4 μg/ml)] or in any tested concentrations at 3 h post-exposure. Overall, the results indicate that SWCNT and MWCNT exposure induce direct effects on endothelial cells in a dose-dependent manner.

  14. Potential threshold of anode materials for foldable lithium-ion batteries featuring carbon nanotube current collectors

    Science.gov (United States)

    Wang, Qing Hui; Zhong, Sheng Wen; Hu, Jing Wei; Liu, Ting; Zhu, Xian Yan; Chen, Jing; Hong, Yin Yan; Wu, Zi Ping

    2016-04-01

    Flexible carbon nanotube macro-films (CMFs) are perfect current collectors for preparing foldable lithium-ion batteries (LIBs). However, selecting appropriate anodes for electrode is difficult because of the different potentials (vs. Li/Li+) of carbon nanotubes and traditional metallic current collector. This study demonstrated an additional reaction at potential below 0.9 V (vs. Li/Li+) caused by CMF, And Li+ will be constrained, which decreased capacity of anode/CMF electrode. Conversely, results changed when the anode potential exceeded 0.9 V (vs. Li/Li+) because Li+ passed the potential threshold, and the CMF retained its electrochemical inactivity. Consequently, the CMF-based foldable LIBs performed well. The potential threshold mechanism of anode is expected to provide new impetus to both academia and industry for exploring flexible or foldable LIBs.

  15. Carbon nanotube IR detectors (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  16. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  17. Environmental Impact Assessment for Potential Continuous Processes for the Production of Carbon Nanotubes

    OpenAIRE

    Aditi Singh; Helen H. Lou; Ralph W. Pike; Adedeji Agboola; Xiang Li; Jack R. Hopper; Carl L. Yaws

    2008-01-01

    As an emerging discipline, nanotechnology has the potential to improve environmental sustainability through its application in pollution prevention, treatment, remediation, etc. One challenging issue in the growth of nanotechnology is how to produce purified carbon nanotubes (CNT) in commercial quantities at affordable price and with low environmental impacts. A detailed assessment of such a manufacturing process from both economic and environmental aspects at the design phase will benefit bo...

  18. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material

    OpenAIRE

    Tanvir Manzur; Nur Yazdani; Md. Abul Bashar Emon

    2016-01-01

    Carbon nanotubes (CNTs) are a virtually ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. It is evident from contemporary research that utilization of CNT in producing new cement-based composite materials has a great potential. Consequently, possible practical application of CNT reinforced cementitious composites has immense prospect in the field of applied nanotechnology within construction industry. Several repair, retrofit, and strengthening techniques a...

  19. Potential energy, force distribution and oscillatory motion of chloride ion inside electrically charged carbon nanotubes

    Science.gov (United States)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-06-01

    In this research, a continuum-based model is presented to explore potential energy, force distribution and oscillatory motion of ions, and in particular chloride ion, inside carbon nanotubes (CNTs) decorated by functional groups at two ends. To perform this, van der Waals (vdW) interactions between ion and nanotube are modeled by the 6-12 Lennard-Jones (LJ) potential, whereas the electrostatic interactions between ion and functional groups are modeled by the Coulomb potential and the total interactions are analytically derived by summing the vdW and electrostatic interactions. Making the assumption that carbon atoms and charge of functional groups are all uniformly distributed over the nanotube surface and the two ends of nanotube, respectively, a continuum approach is utilized to evaluate the related interactions. Based on the actual force distribution, the equation of motion is also solved numerically to arrive at the time history of displacement and velocity of inner core. With respect to the proposed formulations, comprehensive studies on the variations of potential energy and force distribution are carried out by varying functional group charge and nanotube length. Moreover, the effects of these parameters together with initial conditions on the oscillatory behavior of system are studied and discussed in detail. It is found out that chloride ion escapes more easily from negatively charged CNTs which is followed by uncharged and positively charged ones. It is further shown that the presence of functional groups leads to enhancing the operating frequency of such oscillatory systems especially when the electric charges of ion and functional groups have different signs.

  20. Plumbing carbon nanotubes

    Science.gov (United States)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  1. Nitrogen-doped carbon nanotube as a potential metal-free catalyst for CO oxidation.

    Science.gov (United States)

    Lin, I-Hsiang; Lu, Yu-Huan; Chen, Hsin-Tsung

    2016-04-28

    We elucidate the possibility of nitrogen-doped carbon nanotube as a robust catalyst for CO oxidation. We have performed first-principles calculations considering the spin-polarization effect to demonstrate the reaction of CO oxidation catalyzed by the nitrogen-doped carbon nanotube. The calculations show that O2 species can be partially reduced with charge transfer from the nitrogen-doped carbon nanotube and directly chemisorbed on the C-N sites of the nitrogen-doped carbon nanotube. The partially reduced O2 species at the C-N sites can further directly react with a CO molecule via the Eley-Rideal mechanism with the barriers of 0.45-0.58 eV for the different diameter of nanotube. Ab initio molecular dynamics (AIMD) simulations were performed and showed that the oxidation of CO occurs by the Eley-Rideal mechanism. The relationship between the curvature and reactivity of the nitrogen doped carbon nanotube was also unraveled. It appears that the barrier height of the rate-limiting step depends on the curvature of the nitrogen-doped carbon nanotube in the trend of (3,3)-NCNT carbon nanotubes with different tube diameters. Our results reveal that the nitrogen doped carbon nanomaterials can be a good, low-cost, and metal-free catalyst for CO oxidation. PMID:27074831

  2. Preparation of isolated carbon nanotubes

    International Nuclear Information System (INIS)

    Full text: Carbon nanotubes are of great interest for a large range of applications from physical chemistry, solid state physics to molecular quantum optics. We propose the preparation of molecular beams of isolated carbon nanotubes for future matter wave experiments, as well as for applications in the material sciences and spectroscopy. Carbon nanotubes may be particularly interesting for quantum experiments because of their low ionization threshold, high mechanical stability and high polarizability. This is expected to facilitate the cooling, coherent manipulation and efficient detection of such molecular beams. For this purpose we are investigating different methods of solvation, isolation and shortening of carbon nanotubes from commercial bundles. Length and diameter distributions are recorded by SPM whereas the unbundling of the tubes is determined by absorption spectroscopy. Established methods from physical chemistry, such as laser desorption are currently being modified and studied as potential tools for generating beams of nanotubes in the mass range of around 50.000-100.000 amu. (author)

  3. Carbon nanotubes decorating methods

    OpenAIRE

    A.D. Dobrzańska-Danikiewicz; D. Łukowiec; D. Cichock; W. Wolany

    2013-01-01

    Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studie...

  4. Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics

    Directory of Open Access Journals (Sweden)

    K.G.S. Dilrukshi

    2015-07-01

    Full Text Available A thorough understanding on the mechanical properties of carbon nanotube (CNT is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO and adaptive intermolecular reactive bond order (AIREBO potential functions were considered in this regard. Young’s modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.

  5. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  6. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    OpenAIRE

    Ram Pavani; Kodithyala Vinay

    2011-01-01

    Carbon nanotubes (CNTs) are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Funct...

  7. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes

    Science.gov (United States)

    Chen, Zhaowei; Wang, Qixin; Asmani, Mohammadnabi; Li, Yan; Liu, Chang; Li, Changning; Lippmann, Julian M.; Wu, Yun; Zhao, Ruogang

    2016-01-01

    Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and genetic alterations in the lung tissue which lead to lung fibrosis. To screen the fibrogenic risk factor of specific types of MWCNT, we developed a human lung microtissue array device that allows real-time and in-situ readout of the biomechanical properties of the engineered lung microtissue upon MWCNT insult. We showed that the higher the MWCNT concentration, the more severe cytotoxicity was observed. More importantly, short type MWCNT at low concentration of 50 ng/ml stimulated microtissue formation and contraction force generation, and caused substantial increase in the fibrogenic marker miR-21 expression, indicating the high fibrogenic potential of this specific carbon nanotube type and concentration. The presented microtissue array system provides a powerful tool for high-throughput examination of the therapeutic and toxicological effects of target compounds in realistic tissue environment. PMID:27510174

  8. Silicon-doped carbon nanotubes: a potential resource for the detection of chlorophenols/chlorophenoxy radicals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Haihui; Zhang Dongju; Wang Ruoxi [Institute of Theoretical Chemistry, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100 (China)], E-mail: zhangdj@sdu.edu.cn

    2009-04-08

    Chlorinated phenols and chlorophenoxy radicals are known as predominant precursors for forming polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF), which are highly carcinogenic and persistent organic pollutants (POPs). Density functional theory (DFT) calculations have been carried out to explore the potential possibility of carbon nanotubes (CNTs) serving as the resource for detecting and/or adsorbing these PCDD/PCDF precursors. Based on the calculated results on a pristine (8, 0) CNT and a Si-doped (8, 0) CNT with and without the presence of a 2-chlorophenol (2-CP)/2-chlorophenoxy radical (2-CPR), the typical representative of chlorophenols/chlorophenoxy radicals, we propose that pristine carbon nanotubes (CNTs) may be unsuitable for the desired applications due to their poor capability for catching chlorinated phenols/chlorophenoxy radicals, on the other hand, Si-doped CNTs are expected to be a potential resource for detecting and/or adsorbing (concentrating) these PCDD/PCDF precursors. The present results provide a guide to the relevant experimentalists, who are exploring novel applications of CNT-based materials in nanoscience and nanotechnology, and/or searching for suitable resources for detecting chlorophenols/chlorophenoxy radicals.

  9. Silicon-doped carbon nanotubes: a potential resource for the detection of chlorophenols/chlorophenoxy radicals

    Science.gov (United States)

    Jiang, Haihui; Zhang, Dongju; Wang, Ruoxi

    2009-04-01

    Chlorinated phenols and chlorophenoxy radicals are known as predominant precursors for forming polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF), which are highly carcinogenic and persistent organic pollutants (POPs). Density functional theory (DFT) calculations have been carried out to explore the potential possibility of carbon nanotubes (CNTs) serving as the resource for detecting and/or adsorbing these PCDD/PCDF precursors. Based on the calculated results on a pristine (8, 0) CNT and a Si-doped (8, 0) CNT with and without the presence of a 2-chlorophenol (2-CP)/2-chlorophenoxy radical (2-CPR), the typical representative of chlorophenols/chlorophenoxy radicals, we propose that pristine carbon nanotubes (CNTs) may be unsuitable for the desired applications due to their poor capability for catching chlorinated phenols/chlorophenoxy radicals, on the other hand, Si-doped CNTs are expected to be a potential resource for detecting and/or adsorbing (concentrating) these PCDD/PCDF precursors. The present results provide a guide to the relevant experimentalists, who are exploring novel applications of CNT-based materials in nanoscience and nanotechnology, and/or searching for suitable resources for detecting chlorophenols/chlorophenoxy radicals.

  10. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes.

    Science.gov (United States)

    Chen, Zhaowei; Wang, Qixin; Asmani, Mohammadnabi; Li, Yan; Liu, Chang; Li, Changning; Lippmann, Julian M; Wu, Yun; Zhao, Ruogang

    2016-01-01

    Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and genetic alterations in the lung tissue which lead to lung fibrosis. To screen the fibrogenic risk factor of specific types of MWCNT, we developed a human lung microtissue array device that allows real-time and in-situ readout of the biomechanical properties of the engineered lung microtissue upon MWCNT insult. We showed that the higher the MWCNT concentration, the more severe cytotoxicity was observed. More importantly, short type MWCNT at low concentration of 50 ng/ml stimulated microtissue formation and contraction force generation, and caused substantial increase in the fibrogenic marker miR-21 expression, indicating the high fibrogenic potential of this specific carbon nanotube type and concentration. The presented microtissue array system provides a powerful tool for high-throughput examination of the therapeutic and toxicological effects of target compounds in realistic tissue environment. PMID:27510174

  11. Three-dimensional heterostructure of metallic nanoparticles and carbon nanotubes as potential nanofiller

    OpenAIRE

    Kim, Whi Dong; Huh, Jun Young; Ahn, Ji Young; Lee, Jae Beom; Lee, Dongyun; Hong, Suck Won; Kim, Soo Hyung

    2012-01-01

    The effect of the dimensionality of metallic nanoparticle-and carbon nanotube-based fillers on the mechanical properties of an acrylonitrile butadiene styrene (ABS) polymer matrix was examined. ABS composite films, reinforced with low dimensional metallic nanoparticles (MNPs, 0-D) and carbon nanotubes (CNTs, 1-D) as nanofillers, were fabricated by a combination of wet phase inversion and hot pressing. The tensile strength and elongation of the ABS composite were increased by 39% and 6%, respe...

  12. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  13. Applications of Carbon Nanotubes

    Science.gov (United States)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  14. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  15. Carbon nanotube macroelectronics

    Science.gov (United States)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  16. Direct Electrochemical Oxidation of NADPH at a Low Potential on the Carbon Nanotube Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    CHEN, Jing(陈静); CAI, Chen-Xin(蔡称心)

    2004-01-01

    NADPH can be directly oxidized on a carbon nanotube modified glassy carbon (CNT/GC) electrode in phosphate buffer solution (pH=6.0) with a diminution of the overpotential of more than 700 mV. The anodic peak currents increase linearly with the increase of concentration of NADPH in the range of 5×10-7 to 1×10-3 mol/L with a detection limit of about 1×10-7 mol/L. The CNT/GC electrode exhibits high sensitivity, low potential and stability in detecting NADPH and thus might be used in biosensors to study the electrocatalytic reaction of important dehydrogenase-based biological systems.

  17. Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient

    Science.gov (United States)

    Zheng, Jie; Lennon, Erin M.; Tsao, Heng-Kwong; Sheng, Yu-Jane; Jiang, Shaoyi

    2005-06-01

    In this work, we report a dual-control-volume grand canonical molecular dynamics simulation study of the transport of a water and methanol mixture under a fixed concentration gradient through nanotubes of various diameters and surface chemistries. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is intermediate between nonpolar and strongly polar molecules. Carboxyl acid (-COOH) groups are anchored onto the inner wall of a carbon nanotube to alter the hydrophobic surface into a hydrophilic one. Results show that the transport of the mixture through hydrophilic tubes is faster than through hydrophobic nanotubes although the diffusion of the mixture is slower inside hydrophilic than hydrophobic pores due to a hydrogen network. Thus, the transport of the liquid mixture through the nanotubes is controlled by the pore entrance effect for which hydrogen bonding plays an important role.

  18. Conducting carbonized polyaniline nanotubes

    Science.gov (United States)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  19. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  20. FLUIDIZATION OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    Fei Wei; Cang Huang; Yao Wang

    2005-01-01

    Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.

  1. Carbon nanotubes: Fibrillar pharmacology

    Science.gov (United States)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  2. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  3. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Lengálová, A.; Svoboda, P.; Sáha, P.

    2011-01-01

    Roč. 49, č. 7 (2011), s. 2499-2507. ISSN 0008-6223 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * KMnO 4 oxidation * electrical resistance * organic vapor detection * adsorption/desorption cycles Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.378, year: 2011

  4. Carbon nanotubes decorating methods

    Directory of Open Access Journals (Sweden)

    A.D. Dobrzańska-Danikiewicz

    2013-06-01

    Full Text Available Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studies carried out with the HRTEM and SEM techniques have confirmed differences in morphology, homogeneity and density of depositing platinum nanoparticles on the surface of carbon nanotubes and its structure.Research limitations/implications: The studies conducted pertained to the process of decorating carbon nanotubes with platinum nanoparticles. Further works are planned aimed at extending the application scope of the newly developed methodology to include the methods of nanotubes decorating with the nanoparticles of other precious metals (mainly palladium and rhodium.Practical implications: CNTs-NPs (Carbon NanoTube-NanoParticles composites can be used as the active elements of sensors featuring high sensitivity, fast action, high selectivity and accuracy, in particular in medicine as cholesterol and glucoses sensors; in the automotive industry for the precision monitoring of working parameters in individual engine components; in environmental conservation to examine CO2, NOx, and CH4 concentrations and for checking leak-tightness and detecting hazardous substances in household and industrial gas installations.Originality/value: The comprehensive characterisation of the methods employed for fabricating nanocomposites consisting of carbon nanotubes deposited with Pt, Pd, Rh, Au, Ag nanoparticles with special consideration to the colloidal process.

  5. Early evaluation of potential environmental impacts of carbon nanotube synthesis by chemical vapor deposition.

    Science.gov (United States)

    Plata, Desirée L; Hart, A John; Reddy, Christopher M; Gschwend, Philip M

    2009-11-01

    The carbon nanotube (CNT) industry is expanding rapidly, yet little is known about the potential environmental impacts of CNT manufacture. Here, we evaluate the effluent composition of a representative multiwalled CNT synthesis by catalytic chemical vapor deposition (CVD) in order to provide data needed to design strategies for mitigating any unacceptable emissions. During thermal pretreatment of the reactant gases (ethene and H(2)), we found over 45 side-products were formed, including methane, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This finding suggests several environmental concerns with the existing process, including potential discharges of the potent greenhouse gas, methane (up to 1.7%), and toxic compounds such as benzene and 1,3-butadiene (up to 36000 ppmv). Extrapolating these laboratory-scale data to future industrial CNT production, we estimate that (1) contributions of atmospheric methane will be negligible compared to other existing sources and (2) VOC and PAH emissions may become important on local scales but will be small when compared to national industrial sources. As a first step toward reducing such unwanted emissions, we used continuous in situ measures of CNT length during growth and sought to identify which thermally generated compounds correlated with CNT growth rate. The results suggested that, in future CNT production approaches, key reaction intermediates could be delivered to the catalyst without thermal treatment. This would eliminate the most energetically expensive component of CVD synthesis (heating reactant gases), while reducing the formation of unintended byproducts. PMID:19924971

  6. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  7. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  8. Carbon Nanotube-based Cold Cathode for High Power MicrowaveVacuum Electronic Devices: A Potential Field Emitter

    OpenAIRE

    Verma, P.; S Gautam; Pal, S.; Kumar, P.; Chaturvedi, P; J.S.B.S. Rawat; P. K. Chaudhary; Dr. Harsh; Basu, P K; P. K. Bhatanagar

    2008-01-01

    Carbon nanotubes (CNTs) can be grown in the form of small, sharp spikes capable of carrying very highcurrent densities which suggest great potential application of CNTs as cold cathode in high power microwavevacuum device applications. These cold cathode vacuum microwave devices are expected to be ideally suitedfor air-borne and space applications. This paper  reports the initial efforts made in the development of coldcathode using PECVD grown vertically-aligned matrix of CNTs with uniform he...

  9. Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro

    OpenAIRE

    Gasser Michael; Wick Peter; Clift Martin JD; Blank Fabian; Diener Liliane; Yan Bing; Gehr Peter; Krug Harald F; Rothen-Rutishauser Barbara

    2012-01-01

    Abstract Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind...

  10. Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro

    OpenAIRE

    Gasser, Michael; Wick, Peter; Clift, Martin JD; Blank, Fabian; Diener, Liliane; Yan, Bing; Gehr, Peter; Harald F. Krug; Rothen-Rutishauser, Barbara

    2012-01-01

    Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to M...

  11. Carbon nano-tubes: some potential applications related to adsorption on, confinement within and functionalization of the graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    McRae, E.; Varlot, K.; Dupont-Pavlovsky, N.; Duval, X.

    2001-05-01

    After a short review of carbon nano-tube characteristics, some of the potential real-world uses of these novel materials are presented within the three domains indicated in the title. Some of the possible areas of application which are discussed include gas storage and sensing, quantum sieving, nano-metric test tubes and formation of 1{delta} wires with interesting magnetic, electrical or superconducting properties, catalysis,, chemical force microscopy, composite materials for mechanical, electrical or device-related purposes. (authors)

  12. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  13. Environmental Impact Assessment for Potential Continuous Processes for the Production of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Aditi Singh

    2008-01-01

    Full Text Available As an emerging discipline, nanotechnology has the potential to improve environmental sustainability through its application in pollution prevention, treatment, remediation, etc. One challenging issue in the growth of nanotechnology is how to produce purified carbon nanotubes (CNT in commercial quantities at affordable price and with low environmental impacts. A detailed assessment of such a manufacturing process from both economic and environmental aspects at the design phase will benefit both the industry and the society. In this work, an LCA type of environmental impact assessment is conducted for the conceptual design of two catalytic, chemical vapor deposition processes (CNT-PFR and CNT-FBR used for continuous large–scale production of CNT. The core of both processes is a high-temperature catalytic reactor. Mineral acids are used in the purification steps, from which liquid and solid wastes are generated and must be treated before discharge. Based on the simulation results, the environmental impacts of each process are calculated. The results provide vital information that can be used during the design phase of these processes for better decision-making.

  14. Anomalous electrostatic potential properties in carbon nanotube thin films under a weak external electric field

    OpenAIRE

    Ishiyama, U; Cuong, Nguyen Thanh; Okada, Susumu

    2016-01-01

    Using density functional theory, we studied the electronic properties of carbon nanotube (CNT) thin films under an electric field. The carrier accumulation due to the electric field depends strongly on the CNT species forming the thin films. Under a low electron concentration, the injected electrons are distributed throughout the CNTs, leading to an unusual electric field between CNTs, the direction of which is opposite to that of the applied field. This unusual field response of CNT thin fil...

  15. Studies of fullerenes and carbon nanotubes by an extended bond order potential

    OpenAIRE

    Che, Jianwei; Çağin, Tahir; Goddard, William A.

    1999-01-01

    We present a novel approach to combine bond order potentials with long-range nonbond interactions. This extended bond order potential consistently takes into account bond terms and nonbond terms. It not only captures the advantages of the bond order potentials (i.e. simulating bond forming and breaking), but also systematically includes the nonbond contributions to energy and forces in studying the structure and dynamics of covalently bonded systems such as graphite, diamond, nanotubes, fulle...

  16. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  17. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  18. Carbon nanotube junctions and devices

    OpenAIRE

    Postma, H. W. Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconducting behaviour. Due to their small diameter, electronic motion is directed in the length direction of the nanotube, making them ideal systems to study e.g. one-dimensional transport phenomena. First...

  19. Transport Through Carbon Nanotube Wires

    Science.gov (United States)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  20. Surface potential investigation on single wall carbon nanotubes by Kelvin probe force microscopy and atomic force microscope potentiometry

    International Nuclear Information System (INIS)

    Surface potentials of single wall carbon nanotubes (SWNTs) connecting two metallic electrodes have been investigated by both Kelvin probe force microscopy (KFM) and atomic force microscope potentiometry (AFMP). By comparing the surface potential measurements obtained by both methods, we also studied the major factors affecting the potential measurements of the SWNTs, such as the surroundings, stray electric fields, and the effect of the AFM tip size, which can be larger than the SWNT diameter. In this study, we used KFM based on non-contact AFM and AFMP using the point-by-point contact mode in which the AFM tip worked as a voltage probe

  1. Carbon nanotubes: synthesis and functionalization

    OpenAIRE

    Andrews, Robert

    2007-01-01

    This thesis focuses on two of the major challenges of carbon nanotube (CNT) research: understanding the growth mechanism of nanotubes by chemical vapour deposition (CVD) and the positioning of nanotubes on surfaces. The mechanism of growth of single–walled nanotubes (SWNTs) has been studied in two ways. Firstly, a novel iron nanoparticle catalyst for the production of single–walled nanotubes was developed. CVD conditions were established that produced high quality tubes. These optimised C...

  2. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

    OpenAIRE

    Khan, Azam; Edberg, Jesper; Nur, Omer; Willander, Magnus

    2014-01-01

    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires ...

  3. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ram Pavani

    2011-07-01

    Full Text Available Carbon nanotubes (CNTs are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Functionalized carbon nanotubes can also act as vaccine delivery systems.Carbon nanotubes (CNTs are considered to be one of the innovative resources in nanotechnology with possible use in wide range of biomedical applications viz. cancer treatment, bioengineering, cardiac autonomic regulation, platelet activation and tissue regeneration. The effect of CNTs on cells and tissues are extremely important for their use in various complex biological systems. With the increasing interest shown by the nanotechnology research community in this field, it is expected that plenty of applications of CNTs will be explored in future.

  4. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are...... an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  5. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels;

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties of...... nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  6. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  7. Three-dimensional heterostructure of metallic nanoparticles and carbon nanotubes as potential nanofiller

    Science.gov (United States)

    Kim, Whi Dong; Huh, Jun Young; Ahn, Ji Young; Lee, Jae Beom; Lee, Dongyun; Hong, Suck Won; Kim, Soo Hyung

    2012-03-01

    The effect of the dimensionality of metallic nanoparticle-and carbon nanotube-based fillers on the mechanical properties of an acrylonitrile butadiene styrene (ABS) polymer matrix was examined. ABS composite films, reinforced with low dimensional metallic nanoparticles (MNPs, 0-D) and carbon nanotubes (CNTs, 1-D) as nanofillers, were fabricated by a combination of wet phase inversion and hot pressing. The tensile strength and elongation of the ABS composite were increased by 39% and 6%, respectively, by adding a mixture of MNPs and CNTs with a total concentration of 2 wt%. However, the tensile strength and elongation of the ABS composite were found to be significantly increased by 62% and 55%, respectively, upon addition of 3-D heterostructures with a total concentration of 2 wt%. The 3-D heterostructures were composed of multiple CNTs grown radially on the surface of MNP cores, resembling a sea urchin. The mechanical properties of the ABS/3-D heterostructured nanofiller composite films were much improved compared to those of an ABS/mixture of 0-D and 1-D nanofillers composite films at various filler concentrations. This suggests that the 3-D heterostructure of the MNPs and CNTs plays a key role as a strong reinforcing agent in supporting the polymer matrix and simultaneously serves as a discrete force-transfer medium to transfer the loaded tension throughout the polymer matrix.

  8. Photonics based on carbon nanotubes

    OpenAIRE

    Gu, Qingyuan; Gicquel-Guézo, Maud; Loualiche, Slimane; Pouliquen, Julie Le; Batte, Thomas; Folliot, Hervé; Dehaese, Olivier; Grillot, Frederic; Battie, Yann; Loiseau, Annick; Liang, Baolai; Huffaker, Diana

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the effi...

  9. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  10. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  11. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  12. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  13. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  14. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    Science.gov (United States)

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes. PMID:23408252

  15. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  16. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    Institute of Scientific and Technical Information of China (English)

    夏丹; 袁喆; 李家明

    2002-01-01

    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  17. Amperometric Low-Potential Detection of Malic Acid Using Single-Wall Carbon Nanotubes Based Electrodes

    Directory of Open Access Journals (Sweden)

    Camelia Bala

    2008-03-01

    Full Text Available The electrocatalytical property of single-wall carbon nanotube (SWNTmodified electrode toward NADH detection was explored by cyclic voltammetry andamperometry techniques. The experimental results show that SWNT decrease theovervoltage required for oxidation of NADH (to 300 mV vs. Ag/AgCl and this propertymake them suitable for dehydrogenases based biosensors. The behavior of the SWNTmodified biosensor for L-malic acid was studied as an example for dehydrogenasesbiosensor. The amperometric measurements indicate that malate dehydrogenase (MDHcan be strongly adsorbed on the surface of the SWNT-modified electrode to form anapproximate monolayer film. Enzyme immobilization in Nafion membrane can increasethe biosensor stability. A linear calibration curve was obtained for L-malic acidconcentrations between 0.2 and 1mM.

  18. Potential application of carbon nanotube core as nanocontainer and nanoreactor for the encapsulated nanomaterial

    Science.gov (United States)

    Tyagi, Pawan K.; Kumari, Reetu; Bhatta, Umananda M.; Juluri, Raghavendra Rao; Rath, Ashutosh; Kumar, Sanjeev; Satyam, P. V.; Gautam, Subodh K.; Singh, Fouran

    2016-07-01

    Fe3C nanorod filled inside carbon nanotube has been irradiated inside transmission electron microscope at both room and high temperature. In-situ response of Fe3C nanorod as well as CNT walls has been studied. It has been found that when electron irradiation is performed at room temperature (RT), nanorod first bends and then tip makes at the end whereas at high temperature (∼490 °C) nanorod slides along the tube axis and then transforms into a faceting particle. Extrusion of solid particle filled in the core of CNT has also been demonstrated. It is suggested that these morphological changes in nanorod may have happened due to the compression which was generated either by shrinkage of tube or by local electron beam heating. Presented results demonstrate that CNT core could be used as nano-container or reactor.

  19. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  20. Schottky barriers at metal-finite semiconducting carbon nanotube interfaces

    OpenAIRE

    Xue, Yongqiang; Mark A. Ratner

    2003-01-01

    Electronic properties of metal-finite semiconducting carbon nanotube interfaces are studied as a function of the nanotube length using a self-consistent tight-binding theory. We find that the shape of the potential barrier depends on the long-range tail of the charge transfer, leading to an injection barrier thickness comparable to half of the nanotube length until the nanotube reaches the bulk limit. The conductance of the nanotube junction shows a transition from tunneling to thermally-acti...

  1. Functionalization of carbon nanotubes with silver clusters

    Science.gov (United States)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-09-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  2. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  3. Theoretical Study on the Propagation of Acoustic Phonon Modes in Single-Wall Carbon Nanotubes by Different Potential Models

    International Nuclear Information System (INIS)

    Propagation of a heat pulse in (10,0) zig-zag carbon nanotubes, modeled by the Brenner-II and Tersoff bond-order potentials, respectively, is investigated using a molecular dynamics simulation. The longitudinal acoustic mode, twisting phonon mode, and second sound waves are observed in the simulation. The time variations of speed and intensity of the above three phonon modes are in good agreement with the previous works based on the Brenner-I potential. Higher speed and weaker peak intensity are observed in the simulation of the Tersoff potential. The inherent over-binding of radicals and the non-local effects in Tersoff's covalent-bonding formula may play an important role in the heat pulse propagating simulation. (condensed matter: electronicstructure, electrical, magnetic, and optical properties)

  4. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  5. Teslaphoresis of Carbon Nanotubes.

    Science.gov (United States)

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  6. Image potential in the interaction of fast ions with carbon nanotubes: A comparison between the one- and two-fluid hydrodynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Karbunar, L., E-mail: ziloot@verat.net [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Borka, D., E-mail: dusborka@vin.bg.ac.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Radović, I., E-mail: iradovic@vin.bg.ac.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Mišković, Z.L., E-mail: zmiskovi@uwaterloo.ca [Department of Applied Mathematics, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-09-01

    Highlights: • We study the interaction of protons with carbon nanotubes under channeling conditions. • We use the linearized, 2D, one-fluid and two-fluid hydrodynamic models. • The image potential for a proton moving parallel to the nanotube axis is calculated. • Results for the image potential are compared for different types of nanotubes. • We also compute the angular and spatial distributions of channeled protons. - Abstract: We study the interaction of charged particles with four different types of single-walled carbon nanotubes (SWNTs) under channeling conditions by means of the linearized, two dimensional, one-fluid and two-fluid hydrodynamic models. The models are used to calculate the image potential for protons moving parallel to the axis of the SWNTs at the speeds up to 10 a.u. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. We also compute the spatial and angular distributions of protons and compare them for the two models.

  7. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  8. Photobleaching effect in azo-dye containing epoxy resin films: the potentiality of carbon nanotubes as azo-dye dispensers

    Science.gov (United States)

    Díaz Costanzo, Guadalupe; Goyanes, Silvia; Ledesma, Silvia

    2015-04-01

    Azo-dye molecules may suffer from bleaching under certain illumination conditions. When this photoinduced process occurs, it generates an irreversible effect that is characterized by the loss of absorption of the dye molecule. Moreover, the well-known isomerization of azodye molecules does not occur anymore. In this work it is shown how the addition of a small amount of multi-walled carbon nanotubes (MWCNTs) helps to decrease the bleaching effect in a photosensitive guest-host azo-polymer film. Two different systems were fabricated using an epoxy resin as polymer matrix. An azo-dye, Disperse Orange 3, was used as photosensitive material in both systems and MWCNTs were added into one of them. The optical response of the polymeric systems was studied considering the degree of photoinduced birefringence. Photobleaching of the azo-dye was observed in all cases however, the effect is lower for the composite material containing 0.2 wt % MWCNTs. The weak interaction between MWCNTs and dye molecules is less favorable when the material is heated. The optical behavior of the heated composite material suggests that carbon nanotubes can be potentially used as azo dye dispensers. The results are interpreted in terms of the non-covalent interaction between azo-dye molecules and MWCNTs.

  9. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  10. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  11. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li+/Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient dLi decreases with an increase of Li ion concentration in carbon nanotube host

  12. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  13. Torsional Electromechanics of Carbon Nanotubes

    Science.gov (United States)

    Joselevich, Ernesto; Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.

    2007-03-01

    Carbon nanotubes are known to be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multi-walled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different subbands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Our experiments indicate that carbon nanotubes could be used as self-sensing torsional springs for nanoelectromechanical systems (NEMS). [1] E. Joselevich, Twisting nanotubes: From torsion to chirality, ChemPhysChem 2006, 7, 1405. [2] T. Cohen-Karni, L. Segev, O. Srur-Lavi, S. R. Cohen, E. Joselevich, Torsional electromechanical quantum oscillations in carbon nanotubes, Nature Nanotechnology, 2006, 1, 36.

  14. Carbon nanotube cathode with capping carbon nanosheet

    Science.gov (United States)

    Li, Xin; Zhao, Dengchao; Pang, Kaige; Pang, Junchao; Liu, Weihua; Liu, Hongzhong; Wang, Xiaoli

    2013-10-01

    Here, we report a vertically aligned carbon nanotube (VACNT) film capped with a few layer of carbon nanosheet (FLCN) synthesized by chemical vapor deposition using a carbon source from iron phthalocyanine pyrolysis. The square resistance of the VACNT film is significantly reduced from 1500 Ω/□ to 300 Ω/□ when it is capped with carbon nanosheet. The VACNT capped with carbon nanosheet was transferred to an ITO glass substrate in an inverted configuration so that the carbon nanosheet served as a flexible transparent electrode at the bottom and the VACNT roots served as emission tips. Because all of the VACNTs start growing from a flat silicon substrate, the VACNT roots are very neat and uniform in height. A field emission test of the carbon nanosheet-capped VACNT film proved that the CNT roots show better uniformity in field emission and the carbon nanosheet cap could also potentially serve as a flexible transparent electrode, which is highly desired in photo-assisted field emission.

  15. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  16. Carbon nanotube optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  17. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  18. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  19. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  20. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  1. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  2. Carbon nanotubes for coherent spintronics

    Directory of Open Access Journals (Sweden)

    F. Kuemmeth

    2010-03-01

    Full Text Available Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications.

  3. Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices

    Directory of Open Access Journals (Sweden)

    Rafael Vargas-Bernal

    2013-01-01

    Full Text Available The design of nanometric electronic devices requires novel materials for improving their electrical performance from stages of design until their fabrication. Until now, several DC electrical conductivity models for composite materials have been proposed. However, these models must be valued to identify main design parameters that more efficiently control the electrical properties of the materials to be developed. In this paper, four different models used for modeling DC electrical conductivity of carbon nanotube-polymer composites are studied with the aim of obtaining a complete list of design parameters that allow guarantying to the designer an increase in electrical properties of the composite by means of carbon nanotubes.

  4. CARBON NANOTUBES: AN APPROACH TO NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. H. Alai et al.

    2012-01-01

    Full Text Available Carbon nanotubes are cylindrical carbon molecules have novel properties, making them potentially useful in many applications in nanotechnology, electronics, optics, and other fields of material science as well as potential uses in architectural fields. They have unique electronic, mechanical, optical and chemical properties that make them good candidates for a wide variety of applications, including drug transporters, new therapeutics, delivery systems and diagnostics. Their unique surface area, stiffness, strength and resilience have led to much excitement in the field of pharmacy. Nanotubes are categorized as single-walled nanotubes, multiple walled nanotubes. Various techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, chemical vapor deposition. They can pass through membranes, carrying therapeutic drugs, vaccines and nucleic acids deep into the cell to targets previously unreachable. Purification of the tubes can be divided into a couple of main techniques: oxidation, acid treatment, annealing, sonication, filtering and functionalization techniques. The main problem of insolubility in aqueous media has been solved by developing a synthetic protocol that allows highly water-soluble carbon NTs to be obtained. The modifications are done to improve efficiency of carbon nanotubes by formulating luminescent carbon nanotubes, ultrathin carbon nanoneedles, magnetically guided nanotubes. The application of carbon nanotube in tissue engineering, drug carrier release system, wound healing, in cancer treatment and as biosensor. Researchers have recently developed a new approach to Boron Neutron Capture Therapy in the treatment of cancer using substituted Carborane-Appended Water-Soluble single-wall carbon nanotubes.

  5. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance and...

  6. Connecting carbon nanotubes using Sn.

    Science.gov (United States)

    Mittal, Jagjiwan; Lin, Kwang Lung

    2013-08-01

    Process of Sn coating on mutiwalled carbon nanotubes (MWCNT) and formation of interconnections among nanotubes are studied using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX). Surface oxidation of nanotubes during heating with HNO3 prior to the SnCl2 treatment and the bonding between functional groups and Sn are found to be responsible for the coating and its stability. Open nanotubes are filled as well as coated during tin chloride treatment. Coating and filling are converted into the coatings on the inner as well as outer walls of the nanotubes during reduction with H2/N2. EDX studies show the formation of intermetallic compounds e.g., Cu6Sn5 and Cu3Sn at the joints between nanotubes. Formation of intermetallic compounds is supposed to be responsible for providing the required strength for bending and twisting of nanotubes joining of nanotubes. Paper presents a detailed mechanism of coating and filling processes, and interconnections among nanotubes. PMID:23882800

  7. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Azam, E-mail: azam.khan@liu.se; Edberg, Jesper; Nur, Omer; Willander, Magnus [Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden)

    2014-07-21

    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential.

  8. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

    Science.gov (United States)

    Khan, Azam; Edberg, Jesper; Nur, Omer; Willander, Magnus

    2014-07-01

    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential.

  9. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

    International Nuclear Information System (INIS)

    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential.

  10. Physisorbed o-carborane onto lyso-phosphatidylcholine-functionalized, single-walled carbon nanotubes: a potential carrier system for the therapeutic delivery of boron

    Energy Technology Data Exchange (ETDEWEB)

    Yannopoulos, S N; Bouropoulos, N [Foundation for Research and Technology, Hellas-Institute of Chemical Engineering and High Temperature Chemical Processes-FORTH/ICE-HT, PO Box 1414, GR-26504 Patras (Greece); Zouganelis, G D [School of Biological Sciences, University of Portsmouth, St Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom); Nurmohamed, S; Smith, J R; Fatouros, D G; Tsibouklis, J [School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom); Calabrese, G, E-mail: sny@iceht.forth.gr, E-mail: dimitris.fatouros@port.ac.uk [School of Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE (United Kingdom)

    2010-02-26

    A combination of data from ICP-MS, Raman spectroscopy, UV-vis spectrometry, atomic force microscopy, {zeta}-potential measurements and gel electorphoresis studies has shown that o-carborane may be immobilized on stable aqueous dispersions of lyso-phosphatidylcholine-functionalized single-walled carbon nanotubes, which in turn indicates the potential of such structures for deployment as carrier vehicles in boron neutron capture therapy.

  11. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  12. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the...

  13. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  14. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  15. Kondo physics in carbon nanotubes

    OpenAIRE

    Nygard, Jesper; Cobden, David Henry; Lindelof, Poul Erik

    2000-01-01

    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo ph...

  16. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders;

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  17. Carbon Nanotubes Synthesis Through Gamma Radiation

    Science.gov (United States)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  18. A New Application of Carbon Nanotubes Constructing Biosensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon nanotubes used for constructing biosensor was described for the first time. Single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups were used to immobilize glucose oxidase forming a glucose biosensor. The biosensor response can be determined by amperometric method at a low applied potential (0.40 V).

  19. Cross-linking of multiwalled carbon nanotubes with polymeric amines

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Stuart, M. C. A.; Landaluce, T. F.; Fausti, D.; Rudolf, P.; Picchioni, F.

    2008-01-01

    Functionalization of carbon nanotubes is considered as an essential step to enable their manipulation and application in potential end-use products. In this paper we introduce a new approach to functionalize multiwalled carbon nanotubes (MWNTs) by applying an amidation-type grafting reaction with am

  20. Simulations of nanosensors based on single walled carbon nanotubes

    International Nuclear Information System (INIS)

    The potential of single-walled carbon nanotubes as mass sensors is examined. The change in mass leads to proportional changes in the nanotube vibrational frequencies, which are monitored during atomistic simulations. We observed a frequency shift as a result of replacement of carbon C12 with its isotope C13. For a zigzag (12,0) nanotube of about 10 nm length, we found zeptogram sensitivity.

  1. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  2. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  3. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  4. Coadsorption of Doxorubicin and Selected Dyes on Carbon Nanotubes. Theoretical Investigation of Potential Application as a pH-Controlled Drug Delivery System.

    Science.gov (United States)

    Panczyk, Tomasz; Wolski, Pawel; Lajtar, Leszek

    2016-05-17

    This work shows results of a theoretical survey, based on molecular dynamics simulation, of potential applicability of doxorubicin coadsorption with various dyes molecules on/in carbon nanotubes as a drug delivery system. The central idea is to take advantage of the dyes charge distribution change upon switching the pH of the environment from neutral (physiological 7.4) to acidic one (∼5.5 which is typical for tumor tissues). This work discusses results obtained for four dye molecules revealing more or less interesting behavior. These were bromothymol blue, methyl red, neutral red, and p-phenylenediamine. All of them reveal pKa in the range 5-7 and thus will undergo protonation in that pH range. We considered coadsorption on external walls of carbon nanotubes and sequential filling of the nanotubes inner hollow space by drug and dyes. The latter approach, with the application of neutral red and p-phenylenediamine as blockers of doxorubicin, led to the most promising results. Closer analysis of these systems allowed us to state that neutral red can be particularly useful as a long-term blocker of doxorubicin encapsulated in the inner cavity of (30,0) carbon nanotube at neutral pH. At acidic pH we observed a spontaneous release of neutral red from the nanotube and unblocking of doxorubicin. We also confirmed, by analysis of free energy profiles, that unblocked doxorubicin can spontaneously leave the nanotube interior at the considered conditions. Thus, that system can realize pH controlled doxorubicin release in acidic environment of tumor tissues. PMID:27133585

  5. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  6. Highly Ordered Carbon Nanotube Arrays with Open Ends Grown in Anodic Alumina Nanoholes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Highly ordered multiwalled carbon nanotube arrays were fabricated by pyrolysis of acetylene within anodic alumina templates.Nanotubes are very uniform in diameter and open at both ends. High resolution transmission electron microscopy and electron diffraction analysis show that the carbon nanotubes are well graphitized. These standing and open carbon nanotubes are possible to offer a potential elegant technique for electron emitting devices,chemical functionalization and nanotube composites.

  7. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  8. Gears Based on Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  9. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  10. Study of Carbon Nanotube-Substrate Interaction

    OpenAIRE

    Soares, Jaqueline S.; Ado Jorio

    2012-01-01

    Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the ...

  11. Epoxide composite materials with carbon nanotubes

    International Nuclear Information System (INIS)

    Methods of formation and physical properties of epoxide composite materials reinforced with carbon nanotubes are considered. An analogy is made between the relaxation properties of carbon nanotubes and macromolecules. The concentration dependences of the electrical conductivity of the epoxy polymers filled with single-walled and multi-walled carbon nanotubes are discussed. Modern views on the mechanism of reinforcement of polymers with nanotubes are outlined. The bibliography includes 143 references.

  12. Carbon Nanotube-based Cold Cathode for High Power MicrowaveVacuum Electronic Devices: A Potential Field Emitter

    Directory of Open Access Journals (Sweden)

    P. Verma

    2008-09-01

    Full Text Available Carbon nanotubes (CNTs can be grown in the form of small, sharp spikes capable of carrying very highcurrent densities which suggest great potential application of CNTs as cold cathode in high power microwavevacuum device applications. These cold cathode vacuum microwave devices are expected to be ideally suitedfor air-borne and space applications. This paper  reports the initial efforts made in the development of coldcathode using PECVD grown vertically-aligned matrix of CNTs with uniform height and optimum tip densityon silicon substrate. The high aspect ratio (of the order of 10,000 and novel electrical, mechanical, and thermalproperties of the CNT are found to be very attractive characteristics for emission of large and stable currentdensities at reasonably low field. The field emission current voltage characteristics of a typical cathode gaveemission current density in excess of 35 mA/cm2 at reasonably low field. The emission current in most of thesamples is found to be stable over long period of time but is greatly effected by the vacuum condition duringmeasurement. The initial measured data suggests great promise for achieving high current densities at practicalelectric fields.Defence Science Journal, 2008, 58(5, pp.650-654, DOI:http://dx.doi.org/10.14429/dsj.58.1688

  13. Nanosecond pulse electrical fields used in conjunction with multi-wall carbon nanotubes as a potential tumor treatment

    International Nuclear Information System (INIS)

    The objectives of this communication were to fabricate pure samples of multi-walled carbon nanotubes (MWCNTs) and to determine their toxicity in tumor cell lines. MWCNTs were dispersed in a concentration of the surfactant T80 that was minimally toxic. Cell-type variation in toxicity to MWCNTs was observed but was not significantly different to unexposed controls. Additionally, we investigated the increased cell killing of the pancreatic cancer cell line PANC1 when exposed to ultrashort (nanosecond) pulsed electrical fields (nsPEF) in the presence of MWCNTs as a potential form of cancer therapy. We hypothesized that the unique electronic properties of MWCNTs disrupt cell function, leading to cell death, when cells are exposed to nsPEF. We observed a 2.3-fold reduction in cell survival in cells pulsed in the presence of MWCNTs compared to pulsed controls. This study demonstrates that ultrashort pulse electrical field applications have enhanced killing effects when cells are previously grown in the presence of MWCNTs, suggesting that the electrical properties of MWCNTs play a vital role in this process and is suggestive of a synergistic interaction between these nanomaterials and electrical fields. (communication)

  14. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Rajkumar; Ghosh, S., E-mail: santanu1@physics.iitd.ac.in [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi-16 (India); Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Gordan, O. D.; Zahn, D. R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Jha, M.; Ganguli, A. K. [Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-16 (India); Schmidt, H. [Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Schulze, S. [Solid Surfaces Analysis, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Schmidt, O. G. [Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2014-03-07

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB{sub 6}) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB{sub 6}-coated CNT film when compared to pristine CeB{sub 6} film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB{sub 6} nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB{sub 6} nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB{sub 6} films. The enhanced FE properties of the CeB{sub 6} coated CNT films are correlated to the microstructure of the films.

  15. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    International Nuclear Information System (INIS)

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB6) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB6-coated CNT film when compared to pristine CeB6 film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB6 nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB6 nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB6 films. The enhanced FE properties of the CeB6 coated CNT films are correlated to the microstructure of the films

  16. Examination of the toxicity and inflammatory potential of multi-walled carbon nanotubes in vitro and in vivo

    OpenAIRE

    Sternad, Karl Alexander

    2010-01-01

    The rise of nanotechnology industries has led to the design and production of new nano-scaled materials such as quantum dots, nano-metals, carbon nanotubes, fullerenes and a myriad of functionalised derivatives. Extensive work concerning well characterised pathogenic fibres has led to the development of a fibre paradigm that suggests respirable fibres vary in their ability to cause disease based on length and pulmonary bio-persistence. Induction of oxidative stress is also a ce...

  17. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  18. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  19. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14C-labeled MWCNTs into 14CO2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14C-labeled multiwall carbon nanotubes can be degraded to 14CO2 and other byproducts by a bacteria community under natural conditions

  20. Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs influences their oxidative and pro-inflammatory potential in vitro

    Directory of Open Access Journals (Sweden)

    Gasser Michael

    2012-05-01

    Full Text Available Abstract Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs. Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i human monocyte derived macrophages (MDM monocultures, and (ii a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf or not. The effect of MWCNTs surface charge was also investigated in terms of amino (−NH2 and carboxyl (−COOH surface modifications. Results Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α. In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8 was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. Conclusions The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary

  1. ELECTROCHEMICAL INVESTIGATION ON CARBON NANOTUBE FILM WITH DIFFERENT PRETREATMENTS

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; Y. Ma; W. Zhu

    2003-01-01

    Wide potential windows were found at carbon nanotube film electrodes in neutral solutions after being treated with nitric acid and mixed acid. Electrochemical reversibility was investigated at carbon nanotube films with different pretreatments for ferri/ferrocyanide and quinone /hydroquinone. Carbon nanotube film electrodes presented quasi-reversible electrochemical behavior for both electrolytes. In the range of scan rate, carbon nanotube film electrodes treated with acids showed heterogeneous electron-transfer properties, which was mainly controlled by its electron state density on the surface of the film. On the whole, the carbon nanotube electrode with nitric acid treatment presented the best electrochemical behaviors, so we chose it as an analytical electrode to determine the trace compound in dilute solution. The results demonstrated that this new electrode material exhibits superior performance characteristics for the detection of azide anion.

  2. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  3. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149. ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  4. Thermoelectrics: Carbon nanotubes get high

    Science.gov (United States)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  5. Growing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yoshinori Ando

    2004-10-01

    Full Text Available The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the subsequent discovery of ‘carbon nanotubes’ (CNTs, the elongated fullerene added a new dimension to the knowledge of technology2;. Today, ‘nanotechnology’ is a hot topic attracting scientists, industrialists, journalists, governments, and even the general public. Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc. at that length scale. CNTs are supposed to be a key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

  6. Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes.

    Science.gov (United States)

    Hofmann, Matthias S; Noé, Jonathan; Kneer, Alexander; Crochet, Jared J; Högele, Alexander

    2016-05-11

    We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes. PMID:27105355

  7. Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Thorn-like, organometallic-functionalized carbon nanotubes were successfully developed via a novel microwave hydrothermal route. The organometallic complex with methyl orange and iron (III) chloride served as reactive seed template, resulting in the oriented polymerization of pyrrole on the modified carbon nanotubes without the assistance of other oxidants. Morphological and structural characterizations of the carbon nanotube/methyl orange-iron (III) chloride and polypyrrole/carbon nanotube composites were examined using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), infrared spectroscopy and X-ray diffraction (XRD). The electrochemical property of the polypyrrole/carbon nanotube composite was elucidated by cyclic voltammetry and galvanostatic charge-discharge. A specific capacitance of 304 F g-1 was obtained within the potential range of -0.5-0.5 V in 1 M KCl solution.

  8. Electronic Transport Parameter of Carbon Nanotube Metal-Semiconductor On-Tube Heterojunction

    OpenAIRE

    Sukirno; Satria Zulkarnaen Bisri; Irmelia

    2009-01-01

    Carbon Nanotubes research is one of the top five hot research topics in physics since 2006 because of its unique properties and functionalities, which leads to wide-range applications. One of the most interesting potential applications is in term of nanoelectronic device. It has been modeled carbon nanotubes heterojunction, which was built from two different carbon nanotubes, that one is metallic and the other one is semiconducting. There are two different carbon nanotubes metal-semiconductor...

  9. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  10. On the Nanoindentation of the Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Petre P. Teodorescu

    2010-01-01

    Full Text Available A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would initiate in the outermost shell, when nanotubes are short. The nanoindentation technique is simulated for the axially compressed of individual nanotubes, in order to evaluate the load-unloaded-displacement, the curve critical buckling and the appropriate values for local Lamé constants.

  11. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.

    Science.gov (United States)

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2016-01-01

    Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP. PMID:26447230

  12. Small Diameter Few- Walled Carbon Nanotubes: An Alternative for Single Walled nanotubes in Bulk Applications

    Institute of Scientific and Technical Information of China (English)

    Jie Liu

    2005-01-01

    @@ 1Introduction Although Single walled carbon nanotubes have shown tremendous potential in many applications due to their unique electrical and mechanical properties, the lack of a large scale synthesis method at low cost is still the main limiting factor for the realization of the full potential of this unique materials. On the other hand, multiwalled carbon nanotubes are being made in tons per year quantity and found their application in conducting plastic and other bulk applications.

  13. Singlewall Carbon Nanotubes As Springs In A Nanotorsional Device

    Science.gov (United States)

    Hall, Adam; Superfine, Richard

    2005-11-01

    We present on the fabrication and characterization of a nanoelectromechanical device incorporating an individual single wall carbon nanotube as a support for a small, lithographically defined and fully suspended metal platform. The device can be actuated electrostatically through the use of a back gate, causing a concomitant twist in the nanotube. We discuss future potential of such a nanoelectromechanical system.

  14. Quantum transport in carbon nanotubes

    Science.gov (United States)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  15. Roping and wrapping carbon nanotubes

    Science.gov (United States)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  16. Carbon Nanotubes as Active Components for Gas Sensors

    Directory of Open Access Journals (Sweden)

    Wei-De Zhang

    2009-01-01

    Full Text Available The unique structure of carbon nanotubes endows them with fantastic physical and chemical characteristics. Carbon nanotubes have been widely studied due to their potential applications in many fields including conductive and high-strength composites, energy storage and energy conversion devices, sensors, field emission displays and radiation sources, hydrogen storage media, and nanometer-sized semiconductor devices, probes, and quantum wires. Some of these applications have been realized in products, while others show great potentials. The development of carbon nanotubes-based sensors has attracted intensive interest in the last several years because of their excellent sensing properties such as high selectivity and prompt response. Carbon nanotube-based gas sensors are summarized in this paper. Sensors based on single-walled, multiwalled, and well-aligned carbon nanotubes arrays are introduced. Modification of carbon nanotubes with functional groups, metals, oxides, polymers, or doping carbon nanotubes with other elements to enhance the response and selectivity of the sensors is also discussed.

  17. High frequency carbon nanotube devices

    Science.gov (United States)

    Goffman, M. F.; Chimot, N.; Mile, E.; Monteverde, M. C.; Bourgoin, J.-P.; Derycke, V.

    2008-08-01

    We investigate high frequency electrical and mechanical performances of carbon nanotube based devices. Using configurations with multiple single-wall nanotubes in parallel, we show that HF nanotube transistors with intrinsic cut-off frequencies as high as 30 GHz can be obtained on rigid substrates. Adapting our process to plastic substrates, we also obtained highly flexible HF transistors showing constant transconductances up to at least 6 GHz, as-measured cut-off frequencies as high as 1 GHz (5-8 GHz after de-embedding) and stable DC performances upon bending. We probed electromechanical properties of individual suspended carbon multiwall nanotubes by using a modified AFM. DC deflection measurements on different devices are in agreement with a continuum model prediction and consistent with a Young's modulus of 0.4 TPa. Preliminary HF measurements on a doubly clamped device showed a resonant frequency of 200MHz consistent with a Young's modulus of 0.43 TPa. This implies that built-in mechanical stress in the case of MWNTs is negligeable.

  18. On the Nanoindentation of the Carbon Nanotubes

    OpenAIRE

    Petre P.Teodorescu; Veturia Chiroiu; Ligia Munteanu; Valeria Moşneguţu

    2010-01-01

    A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT) is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would ...

  19. An ultrafast carbon nanotube terahertz polarisation modulator

    Energy Technology Data Exchange (ETDEWEB)

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B., E-mail: m.johnston@physics.ox.ac.uk [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

    2014-05-28

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  20. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    Science.gov (United States)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  1. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    Science.gov (United States)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  2. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Ashok Srivastava; Yao Xu; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  3. Characterization methods of carbon nanotubes: a review

    International Nuclear Information System (INIS)

    Carbon nanotubes due to their specific atomic structure have interesting chemical and physical properties according to those of graphite and diamond. This review covers the characterization methods of carbon nanotubes which are most employed today. The structure of carbon nanotubes is first briefly summarized followed by a description of the characterization methods such as STM, TEM, neutron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, infrared and Raman spectroscopy. The most interesting features are indexed for each technique

  4. Structure and properties of carbon nanotubes

    OpenAIRE

    MEYER, Jannik

    2006-01-01

    The properties of nanoscopic objects depend critically on the position of each atom, since finite-size and quantization effects play an important role. For carbon nanotubes, the electronic, mechanical, and vibrational properties vary significantly depending on their structure. For example, a carbon nanotube can be metallic or semiconducting with varying band-gaps depending on its lattice structure. Yet, most investigations on individual carbon nanotubes are carried out on objects with unknown...

  5. Carbon nanotube-polymer composites manufacture, properties, and applications

    CERN Document Server

    Grady, Brian P

    2011-01-01

    The accessible compendium of polymers in carbon nanotubes (CNTs) Carbon nanotubes (CNTs)-extremely thin tubes only a few nanometers in diameter but able to attain lengths thousands of times greater-are prime candidates for use in the development of polymer composite materials. Bringing together thousands of disparate research works, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications covers CNT-polymers from synthesis to potential applications, presenting the basic science and engineering of this dynamic and complex area in an accessible, readable way. Desi

  6. Effect of anti-biofouling potential of multi-walled carbon nanotubes-filled polydimethylsiloxane composites on pioneer microbial colonization.

    Science.gov (United States)

    Sun, Yuan; Lang, Yanhe; Sun, Qian; Liang, Shuang; Liu, Yongkang; Zhang, Zhizhou

    2016-09-01

    In this paper, two carbon nanotube (CNT) nanofillers, namely the multi-walled carbon nanotubes (MWCNTs) and the carboxyl-modified MWCNTs (cMWCNTs), were introduced into the polydimethylsiloxane (PDMS) matrix respectively, in order to produce the PDMS composites with reinforced anti-biofouling properties. The anti-biofouling capacity of the silicone-based coatings, including the unfilled PDMS (P0), the MWCNTs-filled PDMS (PM) and the cMWCNTs-filled PDMS (PC), was examined via the field assays conducted in Weihai, China. The effect of different silicone-based coatings on the dynamic variations of the pioneer microbial-community diversity was analyzed using the single-strand conformation polymorphism (SSCP) technique. The PM and PC surfaces have exhibited excellent anti-biofouling properties in contrast to that of the PDMS surface, with extremely low attachment of the early colonizers, such as juvenile invertebrates, seaweeds and algae sporelings. The PM and PC surfaces can effectively prevent biofouling for more than 12 weeks. These combined results suggest that the incorporation of MWCNTs or cMWCNTs into the PDMS matrix can dramatically reinforce its anti-biofouling properties. The SSCP analysis reveals that compared with the PDMS surfaces, the PM and PC surfaces have strong modulating effect on the pioneer prokaryotic and eukaryotic communities, particularly on the colonization of pioneer eukaryotic microbes. The significantly reduced pioneer eukaryotic-community diversity may contribute to the weakening of the subsequent colonization of macrofoulers. PMID:27137800

  7. Photoluminescence Study of Carbon Nanotubes

    OpenAIRE

    Han, H. X.; Li, G. H.; Ge, W. K.; Wang, Z. P.; Xu, Z. Y.; Xie, S. S.; Chang, B H; Sun, L. F.; Wang, B S; G. Xu; Su, Z.B.

    2000-01-01

    ultiwalled carbon nanotubes, prepared by both electric arc discharge and chemical vapor deposition methods, show a strong visible light emission in photoluminescence experiments. All the samples employed in the experiments exhibit nearly same super-linear intensity dependence of the emission bands on the excitation intensity, and negligible temperature dependence of the central position and the line shapes of the emission bands. Based upon theoretical analysis of the electronic band structure...

  8. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2015-12-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  9. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    International Nuclear Information System (INIS)

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  10. Carbon Nanotube Flexible and Stretchable Electronics

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  11. Determination of the intershell conductance in a multiwall carbon nanotube

    Science.gov (United States)

    Stetter, A.; Vancea, J.; Back, C. H.

    2008-10-01

    We have measured the current induced voltage drop along an individual multiwall carbon nanotube as a function of the distance to the current injecting electrode. The measurements have been performed at room temperature using scanning probe potentiometry combined with scanning electron microscopy. For a nanotube with an incomplete outer shell, a sharp potential jump was observed at the end of the outermost shell. The electric potential variation along the carbon nanotube has been used to determine the contact resistance between metal electrodes and the tube, the intrashell resistance, and the intershell conductance.

  12. Direct integration of carbon nanotubes in Si microstructures

    International Nuclear Information System (INIS)

    In this paper we present a low-cost, room-temperature process for integrating carbon nanotubes on Si microsystems. The process uses localized resistive heating by controlling current through suspended microbridges, to provide local temperatures high enough for CVD growth of carbon nanotubes. Locally grown carbon nanotubes make electrical connections through guidance by electric fields, thus eventually making circuits. The process is scalable to a wafer level batch process. Furthermore, it is controlled electrically, thus enabling automated control. Direct integration of carbon nanotubes in microstructures has great promise for nano-functional devices, such as ultrasensitive chemical sensors. Initial measurements demonstrate the Si–carbon nanotube–Si circuit's potential as a NH3 sensor. (paper)

  13. Carbon nanotube atomic force microscopy probes

    Science.gov (United States)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  14. Heteronuclear carbon nanotubes: applications to study carbon nanotube growth

    International Nuclear Information System (INIS)

    Full text: Synthesis of heteronuclear carbon nanotubes and their application for a variety of studies is presented. SWCNTs peapods encapsulating highly 13C enriched fullerenes and double wall carbon nanotubes (DWCNTs) based on the peapods were prepared. Raman studies indicate that the inner tubes are highly 13C enriched with no carbon exchange between the two walls during the synthesis. The material enables the straightforward identification of the inner and outer tube vibrational spectra. An inhomogeneous broadening, assigned to the random distribution of 12C and 13C nuclei is observed and is explained by ab initio vibrational analysis. The growth of inner tubes from organic solvents was proven by the use of 13C labeled organic materials such as toluene. The simultaneous encapsulation of fullerenes with the solvents was found crucial as these prevent the solvents from evaporating during the high temperature synthesis of the inner tubes. Nuclear magnetic resonance on the peapods and DWCNTs with highly 13C enriched fullerenes or inner walls proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases. The NMR experiment on the DWCNTs yield direct information on the electronic properties of small diameter SWCNTs. The significantly different chemical shift of the inner tubes is related to a curvature effect. Relaxation data on the inner tubes shows a deviation from a Fermi-liquid behavior. (author)

  15. Fast Electromechanical Switches Based on Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  16. Nanoengineering of carbon nanotubes for nanotools

    International Nuclear Information System (INIS)

    We have developed a well controlled method for manipulating carbon nanotubes. The first crucial process involved is to prepare a nanotube array, named a nanotube cartridge. We have discovered ac electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge. The nanotubes used were multiwalled and prepared by an arc discharge with a relatively high gas temperature. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope (SEM). Using this method, we have developed nanotube tips and nanotube tweezers that operate in a scanning probe microscope (SPM). The nanotube probes have been applied for the observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have demonstrated their motion in an SEM and have operated to carry nanomaterials in a SPM. We have also developed the electron ablation of a nanotube to adjust its length and the sharpening of a multiwall nanotube to have its inner layer with or without an end cap at the tip. For the sharpening process, the free end of a nanotube protruding from the cartridge was attached to a metal-coated Si tip and a voltage was applied to the nanotube. When a high voltage was used in the saturation current regime, the current decreased stepwise in the temporal variation, indicating the sequential destruction of individual nanotube layers. The nanotube was finally cut at the middle of the nanotube bridge, and its tip was sharpened to have an inner layer with an opened end. Moving up the cartridge before cutting enables us to extract the inner layer with an end cap. It is evidenced that the maximum current in each layer during the stepwise decrease depends on its circumference, and the force for extracting the inner layer with ∼5-nm diameter is ∼4-nN

  17. Draw out Carbon Nanotube from Liquid Carbon

    OpenAIRE

    ZHANG, SHUANG; Hoshi, Takeo; Fujiwara, Takeo

    2006-01-01

    Carbon nanotube (CNT) is expected for much more important and broader applications in the future, because of its amazing electrical and mechanical properties. However, today, the prospect is detained by the fact that the growth of CNTs cannot be well controlled. In particular, controlling the chirality of CNTs seems formidable to any existing growth method. In addition, a systematic method for a designed interconnected network has not been established yet, which is focused particularly in nan...

  18. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  19. Molecular dynamics simulation on mechanical property of carbon nanotube torsional deformation

    Institute of Scientific and Technical Information of China (English)

    Chen Ming-Jun; Liang Ying-Chun; Li Hong-Zhu; Li Dan

    2006-01-01

    In this paper torsional deformation of the carbon nanotubes is simulated by molecular dynamics method. The Brenner potential is used to set up the simulation system. Simulation results show that the carbon nanotubes can bear larger torsional deformation, for the armchair type (10,10) single wall carbon nanotubes, with a yielding phenomenon taking place when the torsional angle is up to 63°(1.1rad). The influence of carbon nanotube helicity in torsional deformation is very small. The shear modulus of single wall carbon nanotubes should be several hundred GPa, not 1 GPa as others reports.

  20. Carbon Nanotubes as Electrodes for Dielectrophoresis of DNA

    OpenAIRE

    Tuukkanen, Sampo; Toppari, J. Jussi; Kuzyk, Anton; Hirviniemi, Lasse; Hytonen, Vesa P.; Ihalainen, Teemu; Torma, Paivi

    2006-01-01

    Dielectrophoresis can potentially be used as an efficient trapping tool in the fabrication of molecular devices. For nanoscale objects, however, the Brownian motion poses a challenge. We show that the use of carbon nanotube electrodes makes it possible to apply relatively low trapping voltages and still achieve high enough field gradients for trapping nanoscale objects, e.g., single molecules. We compare the efficiency and other characteristics of dielectrophoresis between carbon nanotube ele...

  1. Theory of superconductivity of carbon nanotubes and graphene

    OpenAIRE

    K. Sasaki; Jiang, J.; R. Saito; Onari, S.; Tanaka, Y.

    2006-01-01

    We present a new mechanism of carbon nanotube superconductivity that originates from edge states which are specific to graphene. Using on-site and boundary deformation potentials which do not cause bulk superconductivity, we obtain an appreciable transition temperature for the edge state. As a consequence, a metallic zigzag carbon nanotube having open boundaries can be regarded as a natural superconductor/normal metal/superconductor junction system, in which superconducting states are develop...

  2. Carbon nanotube suspensions, dispersions, & composites

    Science.gov (United States)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  3. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  4. Functional Materials based on Carbon Nanotubes

    OpenAIRE

    Jung, Adrian Thomas

    2007-01-01

    Carbon nanotubes, no matter if they are single-walled or multi-walled, are an integral component in the vastly growing field of nanotechnology. Since their discovery by TEM and the invention of numerous large-scale production techniques, nanotubes are close to making their way into industrial products. Although many properties and modification processes are still under intensive research, the first real-market applications for carbon nanotubes have already been presented. However, if function...

  5. Dielectrophoretic assembly of carbon nanotube devices

    OpenAIRE

    Dimaki, Maria; BØGGILD, Peter

    2004-01-01

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane. The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an ele...

  6. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  7. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  8. Ferroelectric–carbon nanotube memory devices

    International Nuclear Information System (INIS)

    One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNT–inorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Low–loss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Current–voltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectric–carbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. (paper)

  9. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  10. Carbon nanotubes composites for microwave applications

    OpenAIRE

    Herrero Fernández, Diego

    2015-01-01

    Carbon nanotubes have become a focus of study due to the great applications you can have and its excellent properties. In this thesis the compounds formed by a host and a percentage of carbon nanotubes are modelled. The models used are the Debye model, the Maxwell Garnett model and McLachlan model. These models have been implemented in ...

  11. Carbon nanotube flow sensor device and method

    OpenAIRE

    Sood, Ajay Kumar; Ghosh, Shankar

    2004-01-01

    A method and device for measuring the flow of a liquid utilizes at least one carbon nanotube. More particularly, the velocity of a liquid along the direction of the flow is measured as a function of them current/voltage generated in at least one carbon nanotube due to the flow of the liquid along its surface.

  12. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    Science.gov (United States)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  13. Effect of temperature on deformation of carbon nanotube under compression

    Institute of Scientific and Technical Information of China (English)

    王宇; 倪向贵; 王秀喜; 吴恒安

    2003-01-01

    The mechanical behaviour of carbon nanotubes is one of the basic research fields on the nanotube composites and nano machinery.Molecular dynamics is an effective way for investigating the behaviour of nano structure.The compression deformation of carbon nanotubes(CNTs)under different temperature is simulated,by using the Tersoff-Brenner potential to describe the interactions in CNTs.The results show that thermal fluctuations may induce the strained CNT to overcome the local energy barrier and develop the plastic deformation.

  14. Conducting carbonized polyaniline nanotubes

    Czech Academy of Sciences Publication Activity Database

    Mentus, S.; Ciric-Marjanovic, G.; Trchová, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Roč. 20, č. 24 (2009), 245601/1-245601/10. ISSN 0957-4484 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymers * polyaniline * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.137, year: 2009

  15. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  16. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  17. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  18. Single-Walled Carbon Nanotubes for Flexible Electronics and Sensors

    Institute of Scientific and Technical Information of China (English)

    Xiuyun SUN; Yugang SUN

    2008-01-01

    This article reviews the use of electronic quality single-walled carbon nanotubes grown via chemical vapor deposition (CVD) approaches at high temperatures as building blocks for fabricating flexible field-effect devices, such as thin-film transistors (TFTs) and chemical sensors. Dry transfer printing technique is developed for forming films of CVD nanotubes on low-temperature plastic substrates. Examples of TFTs with the use of nanotubes and thin dielectrics and hydrogen sensors with the use of nanotubes decorated with palladium nanoparticles are discussed in detail to demonstrate the promising potentiality of single-walled carbon nanotubes for building high performance flexible devices, which can find applications where traditional devices on rigid substrates are not suitable.

  19. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  20. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  1. Ballistic transport and electrostatics in metallic carbon nanotubes

    OpenAIRE

    Svizhenko, A.; Anantram, M. P.; Govindan, T. R.

    2005-01-01

    We calculate the current and electrostatic potential drop in metallic carbon nanotube wires self-consistently, by solving the Green's function and electrostatics equations in the ballistic case. About one tenth of the applied voltage drops across the bulk of a nanowire, independent of the lengths considered here. The remaining nine tenths of the bias drops near the contacts, thereby creating a non linear potential drop. The scaling of the electric field at the center of the nanotube with leng...

  2. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  3. Studies of DNA-carbon nanotube interactions

    Science.gov (United States)

    Hughes, Mary Elizabeth

    2008-10-01

    Recently a new biomaterial consisting of a DNA-wrapped single-walled carbon nanotube, and known as a DNA/SWNT, has been discovered. The possible applications of this hybrid are varied and range from genomic sequencing to nanoscale electronics to molecular delivery. The realization of these potential applications requires more knowledge about the microscopic properties of this material. In this thesis, I present studies of: the orientation of nucleobases on the nanotube sidewall; the sequence and length dependence of the DNA-nanotube interaction; and solution conditions to manipulate the DNA/SWNT hybrid. The measurement of the UV optical absorbance of DNA/SWNT and the nucleotide absorbance from DNA/SWNT provide the first experimental confirmation that DNA binds to nanotubes through pi-stacking. Because the hypochromic absorbance typical of pi-stacked structures are expected to occur primarily for DNA dipole transitions that lie along the axis of the optically anisotropic SWNTs, the absorbance changes following binding of DNA to the nanotubes reveals the preferred orientation assumed by each of the four bound nucleotides with respect to the nanotube's long axis. The first observations of pronounced sequence- and length-dependent variations in the binding between ssDNA and SWNTs in aqueous solution are presented. These observations rely on the discovery that there exists a range of DNA lengths able to hybridize with SWNTs that can nevertheless be dissociated at temperatures below the boiling point of water. Quantitative results comparing the isochronal dissociation temperatures and binding energies of DNA/SWNT composed of differing DNA sequences and lengths are given. These results indicate variability and complexity in the binding mechanism responsible for the stability of the hybrid system that transcends simple models based on the sum of independent base-nanotube interactions. Binding energies between a DNA base and nanotube (0.05 to 0.09 eV per base) are similar

  4. Charge-tunable insertion process of carbon nanotubes into DNA nanotubes.

    Science.gov (United States)

    Liang, Lijun; Zhang, Zhisen; Kong, Zhe; Liu, Yong; Shen, Jia-Wei; Li, Debing; Wang, Qi

    2016-05-01

    Control over interactions with biomolecules holds the key of the applications of carbon nanotubes (CNTs) in biotechnology. Here we report a molecule dynamics study on the encapsulation process of different charged CNTs into DNA nanotubes. Our results demonstrated that insertion process of CNTs into DNA nanotubes are charge-tunable. The positive charged CNTs could spontaneously encapsulate and confined in the hollow of DNA nanotubes under the combination of electrostatic and vdW interaction in our ns scale simulation. The conformation of DNA nanotubes is very stable even after the insertion of CNTs. For pristine CNTs, it could not entirely encapsulated by DNA nanotubes in simulation scale in this study. The encapsulation time of pristine CNTs into DNA nanotubes was estimated about 21.9s based on the potential of mean force along the reaction coordination of encapsulation process of CNTs into DNA nanotubes. In addition, the encapsulation process was also affected by the diameter of CNTs. These findings highlight the charge-tunable self-assembly process of nanomaterials and biomolecules. Our study suggests that the encapsulated CNTs-DNA nanotubes could be used as building blocks for constructing organic-inorganic hybrid materials and has the potential applications in the field of biosensor, drug delivery system and biomaterials etc. PMID:27017425

  5. Silicon/Carbon Nanotube/BaTiO3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential.

    Science.gov (United States)

    Lee, Byoung-Sun; Yoon, Jihyun; Jung, Changhoon; Kim, Dong Young; Jeon, Seung-Yeol; Kim, Ki-Hong; Park, Jun-Ho; Park, Hosang; Lee, Kang Hee; Kang, Yoon-Sok; Park, Jin-Hwan; Jung, Heechul; Yu, Woong-Ryeol; Doo, Seok-Gwang

    2016-02-23

    We report on the synergetic effects of silicon (Si) and BaTiO3 (BTO) for applications as the anode of Li-ion batteries. The large expansion of Si during lithiation was exploited as an energy source via piezoelectric BTO nanoparticles. Si and BTO nanoparticles were dispersed in a matrix consisting of multiwalled carbon nanotubes (CNTs) using a high-energy ball-milling process. The mechanical stress resulting from the expansion of Si was transferred via the CNT matrix to the BTO, which can be poled, so that a piezoelectric potential is generated. We found that this local piezoelectric potential can improve the electrochemical performance of the Si/CNT/BTO nanocomposite anodes. Experimental measurements and simulation results support the increased mobility of Li-ions due to the local piezoelectric potential. PMID:26815662

  6. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    OpenAIRE

    Wei, Chenyu; Srivastava, Deepak; Cho, Kyeongjae

    2002-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and Van der Waals forces for polymer-nanotube interfaces are used to invetigate the thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Additions of carbon nanotubes to polymer matrix are found to increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. These findings could have implic...

  7. Assembly and Applications of Carbon Nanotube Thin Films

    Institute of Scientific and Technical Information of China (English)

    Hongwei ZHU; Bingqing WEI

    2008-01-01

    The ultimate goal of current research on carbon nanotubes (CNTs) is to make breakthroughs that advance nanotechnological applications of bulk CNT materials. Especially, there has been growing interest in CNT thin films because of their unique and usually enhanced properties and tremendous potential as components for use in nano-electronic and nano-mechanical device applications or as structural elements in various devices. If a synthetic or a post processing method can produce high yield of nanotube thin films, these structures will provide tremendous potential for fundamental research on these devices. This review will address the synthesis, the post processing and the device applications of self-assembled nanotube thin films.

  8. A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites.

    Science.gov (United States)

    Yang, Yonglai; Gupta, Mool C; Dudley, Kenneth L; Lawrence, Roland W

    2005-06-01

    Electromagnetic interference shielding properties of carbon nanofiber- and multi-walled carbon nanotube-filled polystyrene composites were investigated in the frequency range of 8.2-12.4 GHz (X-band). It was observed that the shielding effectiveness of composites was frequency independent, and increased with the increase of carbon nanofiber or nanotube loading. At the same filler loading, multi-walled carbon nanotube-filled polystyrene composites exhibited higher shielding effectiveness compared to those filled with carbon nanofibers. In particular, carbon nanotubes were more effective than nanofibers in providing high EMI shielding at low filler loadings. The experimental data showed that the shielding effectiveness of the composite containing 7 wt% carbon nanotubes could reach more than 26 dB, implying that such a composite can be used as a potential electromagnetic interference shielding material. The dominant shielding mechanism of carbon nanotube-filled polystyrene composites was also discussed. PMID:16060155

  9. Nanoscale Etching and Indentation of Silicon Surfaces with Carbon Nanotubes

    Science.gov (United States)

    Dzegilenko, Fedor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanolithography of silicon and germanium surfaces with bare carbon nanotube tips of scanning probe microscopy devices is considered with large scale classical molecular dynamics (MD) simulations employing Tersoff's reactive many-body potential for heteroatomic C/Si/Ge system. Lithography plays a key role in semiconductor manufacturing, and it is expected that future molecular and quantum electronic devices will be fabricated with nanolithographic and nanodeposition techniques. Carbon nanotubes, rolled up sheets of graphene made of carbon, are excellent candidates for use in nanolithography because they are extremely strong along axial direction and yet extremely elastic along radial direction. In the simulations, the interaction of a carbon nanotube tip with silicon surfaces is explored in two regimes. In the first scenario, the nanotubes barely touch the surface, while in the second they are pushed into the surface to make "nano holes". The first - gentle scenario mimics the nanotube-surface chemical reaction induced by the vertical mechanical manipulation of the nanotube. The second -digging - scenario intends to study the indentation profiles. The following results are reported in the two cases. In the first regime, depending on the surface impact site, two major outcomes outcomes are the selective removal of either a single surface atom or a surface dimer off the silicon surface. In the second regime, the indentation of a silicon substrate by the nanotube is observed. Upon the nanotube withdrawal, several surface silicon atoms are adsorbed at the tip of the nanotube causing significant rearrangements of atoms comprising the surface layer of the silicon substrate. The results are explained in terms of relative strength of C-C, C-Si, and Si-Si bonds. The proposed method is very robust and does not require applied voltage between the nanotube tips and the surface. The implications of the reported controllable etching and hole-creating for

  10. Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [North Carolina State University; Yong, Zhenzhong [Suzhou Institute of Nano-Tech and Nano-Bionics; Li, Qingwen [Suzhou Institute of Nano-Tech and Nano-Bionics; Bradford, Philip D. [North Carolina State University; Liu, Wei [Donghua University, Shanghai, China; Tucker, Dennis S. [Tucker Technical Solutions; Cai, Wei [ORNL; Wang, Hsin [ORNL; Yuan, Fuh-Gwo [North Carolina State University; Zhu, Yuntian [North Carolina State University

    2012-01-01

    Carbon nanotubes (CNTs) are an order of magnitude stronger than any current engineering fiber. However, for the past two decades it has been a challenge to utilize their reinforcement potential in composites. Here we report CNT composites with unprecedented multifunctionalities, including record high strength (3.8 GPa), Young s modulus (293 GPa), electrical conductivity (1230 S cm-1) and thermal conductivity (41 W m-1 K-1). These superior properties are derived from the long length, high volume fraction, good alignment and reduced waviness of the CNTs, which were produced by a novel processing approach that can be easily scaled up for industrial production.

  11. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  12. Carbon nanotube fiber spun from wetted ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  13. Carbon Nanotube Paper-Based Electroanalytical Devices

    OpenAIRE

    Youngmi Koo; Vesselin N. Shanov; Yeoheung Yun

    2016-01-01

    Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The de...

  14. Ordered phases of cesium in carbon nanotubes

    International Nuclear Information System (INIS)

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  15. Ordered phases of cesium in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-10-15

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  16. Charge Screening Effect in Metallic Carbon Nanotubes

    OpenAIRE

    Sasaki, K

    2001-01-01

    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.

  17. Defect-Free Carbon Nanotube Coils.

    Science.gov (United States)

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  18. Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes

    OpenAIRE

    Hofmann, Matthias S.; Noé, Jonathan; Kneer, Alexander; Crochet, Jared J.; Högele, Alexander

    2016-01-01

    We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wal...

  19. In situ, controlled and reproducible attachment of carbon nanotubes onto conductive AFM tips

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • An effective and controllable method was developed to fabricate CNT AFM probes in-situ. • Individual carbon nanotube was assembled. • The alignment angle and protruding length of as-produced CNT probes are excellent. - Abstract: Owing to the small diameter, wear resistance, high aspect ratio of their cylindrical structure and outstanding young's modulus, carbon nanotubes are regarded as excellent probes for atomic force microscope (AFM) imaging and various applications. To take the best out of carbon nanotubes’ potentials as AFM probes, we present a facile and reliable method to attach a single carbon nanotube onto an AFM probe covered with conductive Au layer. The method involves the following steps: positioning the AFM probe exactly onto a designated multiple-walled carbon nanotube growing vertically on a conductive substrate, establishing physical contact of the probe apex to the carbon nanotube with an appropriate force, and finally flowing a DC current of typically 100 μA from the AFM probe to the substrate through the carbon nanotube. The current flow results in the fracture and attachment of the carbon nanotube onto the AFM probe. Our method is similar to that reported in previous studies to cut and assemble carbon nanotubes by flowing current under SEM, but by our method we succeed to achieve superior control of protruding length and reproducible attachment angle of the carbon nanotube in one step. Moreover, it is now possible to reliably prepare carbon nanotube probes in-situ during AFM experiments

  20. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  1. Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites

    International Nuclear Information System (INIS)

    The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites

  2. Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Suhn, Jonghwan [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2014-01-15

    The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites.

  3. Multifunctional Carbon Nanotube Sensors for Environmental Monitoring

    Science.gov (United States)

    Liu, Yu

    As a one dimensional material, a Single-walled Carbon Nanotube (SWNT) is made of a rolled up graphene sheet. With a diameter of 1˜2 nm, the SWNTs exhibit many unique properties, such as high aspect ratios, ballistic carrier transport, high mechanical strength and thermal stability. These properties enable SWNTs to have superior performances in various applications including electronics and sensors. SWNT based sensors are extremely sensitive to slight electrostatic changes in their environment and have a fast response where conductance of an SWNT is observed to change in less than 2 sec upon exposure. In addition, SWNT sensors have size advantage over traditional sensors. Hence, SWNTs have been widely explored as active sensing elements for chemical and biomolecule detection. Despite high sensitivities observed from nanotube sensors, one drawback is their lack of selectivity. The conductance of SWNTs is susceptible to many gas molecules in air, including oxygen and moisture which are abundantly present in the ambient environment. Due to this nonspecificity, the presence of any type of gas vapors can possibly interfere with the induced signals from the target gas vapors and hence reduce S/N ratio during detection. To minimize the effects of undesirable interference signals from the environment, several functionalization methods have been developed to customize the affinities of SWNTs to specific targets, including metal nano particles, conducting polymers and biomolecules. The objective of this thesis is to utilize SWNTs in environmental applications. The proposed research topics include: investigating the sensing characteristics of RNA oligomers on carbon nanotubes; analyzing the sensing characteristics of DNA with different sequence lengths on carbon nanotubes; integration of DNA decorated SWNTs onto CMOS chip for toxic and explosive gas monitoring; building nanosensor array based on multi-functionalized SWNTs for air quality monitoring and exploring the sensing

  4. Control of multiple excited Rydberg states around segmented carbon nanotubes

    Science.gov (United States)

    Schmelcher, Peter; Sadeghpour, Hossein; Knoerzer, Johannes; Fey, Christian

    2016-05-01

    Electronic image Rydberg states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored long-range interacting quantum systems.

  5. Control of multiple excited image states around segmented carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Knörzer, J., E-mail: johannes.knoerzer@physnet.uni-hamburg.de; Fey, C., E-mail: christian.fey@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761 (Germany); Sadeghpour, H. R. [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Schmelcher, P. [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761 (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761 (Germany)

    2015-11-28

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.

  6. Deconvoluting hepatic processing of carbon nanotubes

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  7. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  8. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  9. Calculating Young's modulus for a carbon nanotube

    Science.gov (United States)

    Alzubi, Feras; Cosby, Ronald

    2008-10-01

    Young's modulus for an armchair single-wall carbon nanotube was calculated using an atomistic approach and density functional theory (DFT). Atomic forces and total energies for strained carbon nanotube segments were computed using Atomistix's Virtual NanoLab (VNL) and ToolKit (ATK) software. For a maximum strain of one percent, elastic moduli were calculated using both force-strain and energy-strain data. The average values found for Young's modulus were in the range 1.2 to 3.9 TPa depending on the cross-sectional area taken for the carbon nanotube, consideration of Poisson's ratio, and the calculation method used. Three possible choices of cross-sectional area for the carbon nanotube are discussed and parameter and convergence tests for the DFT computations are described.

  10. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  11. Characterization of Multiwalled Carbon Nanotubes Dispersing in Water and Association with Biological Effects

    OpenAIRE

    Xuelian Cheng; Jun Zhong; Jie Meng; Man Yang; Fumin Jia; Zhen Xu; Hua Kong; Haiyan Xu

    2011-01-01

    Biomedical application potentials of carbon nanotubes-based materials have been investigated intensively in recent years; however, characterization and metrology are still facing great technical challenges when the materials are intended to be used as carriers for therapeutics in aqueous solutions. Systematic characterization on the dispersing carbon nanotubes is urgently required and therefore of significance. In this paper multiwalled carbon nanotubes (MWCNTs) with different average lengths...

  12. Numerical Modeling of the I-V Characteristics of Carbon Nanotube Field Effect Transistors

    OpenAIRE

    Marulanda, Jose Mauricio; Srivastava, Ashok

    2010-01-01

    Previous works in carbon nanotubes describing a relationship between the gate voltage and the carbon nanotube potential have made possible the implementation of a current equation, which can be solved numerically using any mathematical software, in order to find the current voltage characteristic for any given CNT-FET. The results presented provide designers with useful mathematical relations describing the properties of conductivity of carbon nanotubes and their response in circuit applicati...

  13. Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy

    OpenAIRE

    Xue, Yongqiang; Datta, Supriyo

    1999-01-01

    At any metal-carbon nanotube interface there is charge transfer and the induced interfacial field determines the position of the carbon nanotube band structure relative to the metal Fermi-level. In the case of a single-wall carbon nanotube (SWNT) supported on a gold substrate, we show that the charge transfers induce a local electrostatic potential perturbation which gives rise to the observed Fermi-level shift in scanning tunneling spectroscopy (STS) measurements. We also discuss the relevan...

  14. Surface Functionalization of Multiwalled Carbon Nanotube with Trifluorophenyl

    Directory of Open Access Journals (Sweden)

    Li-Pei Zhang

    2006-09-01

    Full Text Available A new approach to dispersion of multiwalled carbon nanotube (MWNT in common polar solvents was reported. Here, a detailed study of nanotube chemistry by using trifluorophenyl (TFP to modify the surface of MWNT was discussed, which was not reported before. A characterization of the reaction products using a variety of techniques was provided. The results confirmed that the surface of MWNT was successfully functionalized. Furthermore, trifluorophenyl multiwalled carbon nanotube (TFP-MWNT was well dispersed in polar solvents, such as tetrahydrofuran (THF, acetic acid (Ac, N,N-dimethyl formamide (DMF, dimethyl sulfoxide (DMSO, due to the adsorption of trifluorophenyl groups on the surface of raw MWNT. Following chemical modification, dispersed individual nanotube suggests the potentials for wide applications.

  15. Electromechanical instability in suspended carbon nanotubes

    OpenAIRE

    Jonsson, L. M.; Gorelik, L. Y.; Shekhter, R. I.; Jonson, M.

    2005-01-01

    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system.

  16. Crosstalk analysis of carbon nanotube bundle interconnects

    OpenAIRE

    Zhang, Kailiang; Tian, Bo; Zhu, Xiaosong; WANG, FANG; Wei, Jun

    2012-01-01

    Carbon nanotube (CNT) has been considered as an ideal interconnect material for replacing copper for future nanoscale IC technology due to its outstanding current carrying capability, thermal conductivity, and mechanical robustness. In this paper, crosstalk problems for single-walled carbon nanotube (SWCNT) bundle interconnects are investigated; the interconnect parameters for SWCNT bundle are calculated first, and then the equivalent circuit has been developed to perform the crosstalk analys...

  17. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  18. Electrical Transport in Carbon Nanotubes and Graphene

    OpenAIRE

    Liu, Gang

    2010-01-01

    This thesis summarizes our work in the past few years in the field of transport studies of carbon nanotubes and graphene. The first half of the thesis focuses on carbon nanotube (CNT) Josephson junctions (JJ) formed by coupling CNTs to superconducting electrodes. They exhibited Fabry Perot resonance patterns, enhanced differential conductance peaks, multiple Andreev reflection peaks, gate-tunable supercurrent transistor behaviors, hysteretic current-voltage line shape and "superconductor-insu...

  19. ALUMINUM FOIL REINFORCED BY CARBON NANOTUBES

    OpenAIRE

    A. V. Alekseev; PREDTECHENSKIY M.R.

    2016-01-01

    In our research, the method of manufacturing an Al-carbon nanotube (CNT) composite by hot pressing and cold rolling was attempted. The addition of one percent of multi-walled carbon nanotubes synthesized by OCSiAl provides a significant increase in the ultimate tensile strength of aluminum. The tensile strength of the obtained composite material is at the tensile strength level of medium-strength aluminum alloys.

  20. Molecular Dynamics Simulations of Carbon Nanotubes in Water

    Science.gov (United States)

    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P.

    2000-01-01

    We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular dynamics simulations. The energetics of the carbon-water interface are mainly dispersive but in the present study augmented with a carbon quadrupole term acting on the charge sites of the water. The simulations indicate that this contribution is negligible in terms of modifying the structural properties of water at the interface. Simulations of two carbon nanotubes in water display a wetting and drying of the interface between the nanotubes depending on their initial spacing. Thus, initial tube spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 A remain wet during the course of the simulation. Finally, we present a novel particle-particle-particle-mesh algorithm for long range potentials which allows for general (curvilinear) meshes and "black-box" fast solvers by adopting an influence matrix technique.

  1. Transport theory of carbon nanotube Y junctions

    International Nuclear Information System (INIS)

    We describe a generalization of Landauer-Buettiker theory for networks of interacting metallic carbon nanotubes. We start with symmetric starlike junctions and then extend our approach to asymmetric systems. While the symmetric case is solved in closed form, the asymmetric situation is treated by a mixture of perturbative and non-perturbative methods. For N > 2 repulsively interacting nanotubes, the only stable fixed point of the symmetric system corresponds to an isolated node. Detailed results for both symmetric and asymmetric systems are shown for N = 3, corresponding to carbon nanotube Y junctions

  2. Carbon nanotube electrodes for effective interfacing with retinal tissue

    Directory of Open Access Journals (Sweden)

    Asaf Shoval

    2009-04-01

    Full Text Available We have investigated the use of carbon nanotube microelectrodes as an interface material for retinal recording and stimulation applications. Test devices were micro-fabricated and consisted of 60 pristine 30 um electrodes coated with chemical vapor deposited carbon nanotubes, resulting in conducting, three dimensional surfaces with a high effective interfacial area. These attributes are important both for the quality of the cell-surface coupling as well as for electro-chemical interfacing efficiency. The entire chip was packaged to fit a commercial multielectrode recording and stimulation system. Electrical recordings of spontaneous spikes from whole-mount neonatal mouse retinas were consistently obtained minutes after retinas were placed over the electrodes, exhibiting typical bursting and propagating waves. Most importantly, the signals obtained with carbon nanotube electrodes have exceptionally high signal to noise ratio, reaching values as high as 75. Moreover, spikes are marked by a conspicuous gradual increase in amplitude recorded over a period of minutes to hours, suggesting improvement in cell-electrode coupling. This phenomenon is not observed in conventional commercial electrodes. Electrical stimulation using carbon nanotube electrodes was also achieved. We attribute the superior performances of the carbon nanotube electrodes to their three dimensional nature and the strong neuro-carbon nanotube affinity. The results presented here show the great potential of carbon nanotube electrodes for retinal interfacing applications. Specifically, our results demonstrate a route to achieve a reduction in the electrode size down to few micrometers in order to achieve high efficacy local stimulation needed in retinal prosthetic devices.

  3. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    OpenAIRE

    Deepak, FL; Govindaraj, A.; Rao, CNR

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives ...

  4. Simulation of scanning tunneling spectroscopy of supported carbon nanotubes

    International Nuclear Information System (INIS)

    The angle and energy dependent transmission of wave packets was calculated through a jellium potential model of a scanning tunneling microscope (STM) junction containing different arrangements of carbon nanotubes. The total tunnel current as a function of STM bias was calculated by statistical averaging over a distribution of wave packets in the allowed energy window. Three tunneling situations were studied: (i) a STM tunnel junction with no nanotube present, (ii) one single wall nanotube in the STM junction, and (iii) a nanotube 'raft'. The effects of point contacts at the STM tip/nanotube, at the nanotube/substrate, and at both interfaces were also investigated. The theory allowed us to identify components of pure geometrical origin responsible for the asymmetry in the scanning tunneling spectroscopy (STS) spectrum of the carbon nanotubes with respect to bias voltage polarity. The calculations show that for tip negative bias the angular dependence of the transmission is determined by the tip shape. The particular tip shape introduces an asymmetry on the negative side of the STS spectrum. For tip positive bias the angular dependence of the transmission depends strongly on the nature of the nanosystem in the STM gap. While the transmission of the STM tunnel junction with no nanotube present can be well represented by a one dimensional model, all other geometries cause a large normal-transverse momentum mixing of the wave packet. A diffraction-grating-like behavior is seen in the angular dependence of the transmission of the nanotube raft. Point contacts between the nanotube and the substrate cause an asymmetry in the positive side of the STS spectrum. Calculated STS spectra are compared to experimental ones

  5. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  6. The in vitro biomineralization and cytocompatibility of polydopamine coated carbon nanotubes

    International Nuclear Information System (INIS)

    In this work, polydopamine coated carbon nanotubes were firstly prepared by a simple and feasible route. Then, for comparison, the in vitro bioactivity and cytocompatibility of the carbon nanotubes and the polydopamine coated carbon nanotubes were assessed by immersion study in simulated body fluids and 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide test using osteoblast cells (MC3T3-E1), respectively. As a result, it has been demonstrated that the introduction of polydopamine coating can greatly enhance the bioactivity and promote cell proliferation of the carbon nanotubes. The improvement of bioactive behavior is attributed to the good combination of catecholamines structure of the polydopamine and the structural advantages of carbon nanotubes as a framework material. It is anticipated that the polydopamine coated carbon nanotubes would find potential applications in bone tissue engineering and other biomedical areas.

  7. Manipulation and cutting of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanomanipulation plays an important role in nanofabrication, it is also a technology necessary in exploring the secrets of nanoworld, and it thus beco mesa start point to research future nanomachine. In this study, manipulation and cutting of carbon nanotubes have been conducted in order to examine whether we can move a nanocomponent from one site to another by using the tip of atomic fo rce microscope (AFM). The technique may also be valuable for providing the const ructive materials of nanofabrication. While exploring the method for manipulatin g and cutting of nanotubes, some new phenomena have been observed during the process. Results show that carbon nanotubes present a feature of deformation combin ing bending and distortion when subjected to large mechanical forces exerted by the tip of AFM. In special cases, long carbon nanotubes can be cut into two part s, by which we can remove the part where crystal lattice is flawed, and therefor e a perfect nanocomponent can be obtained.

  8. Fabrication of nylon-6/carbon nanotube composites

    Science.gov (United States)

    Xu, C.; Jia, Z.; Wu, D.; Han, Q.; Meek, T.

    2006-05-01

    A new technique to fabricate nylon-6/carbon nanotube (PA6/CNT) composites is presented. The method involves a pretreatment of carbon nanotubes synthesized by catalytic pyrolysis of hydrocarbon and an improved in-situ process for mixing nanotubes with the nylon 6 matrix. A good bond between carbon nanotubes and the nylon-6 matrix is obtained. Mechanical property measurements indicate that the tensile strength of PA6/CNT composites is improved significantly while the toughness and elongation are somewhat compromised. Scanning electron microscopy (SEM) analysis of the fractured tensile specimens reveals cracking initiated at the wrapping of the CNTs PA6 layer/PA6 matrix interface rather than at the PA6/CNT interface.

  9. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  10. Carbon nanotubes field effect transistors biosensors

    Directory of Open Access Journals (Sweden)

    M.P. Marco

    2012-03-01

    Full Text Available Carbon nanotube transistor arrays (CNTFETs wereused as biosensors to detect DNA hybridization andto recognize two anabolic steroids, stanozolol (Stzand methylboldenone (MB. Single strand DNA andantibodies specific for STz and MB were immobilizedon the carbon nanotubes (CNTs in situ in the deviceusing two different approaches: direct noncovalentbonding of antibodies to the devices and covalentlytrough a polymer previously attached to theCNTFETs. A new approach to ensure specificadsorption of the biomolecules to the nanotubeswas developed. The polymer poly(methylmethacrylate0.8-co-poly (ethyleneglycolmethacrylate0.8-co-N-succinimidyl methacrylate0.1was synthesized and bonded noncovalently to thenanotube. Aminated single-strand DNA or antibodiesspecific for Stz and MB were then attached covalentlyto the polymer. Statistically significant changes wereobserved in key transistor parameters for both DNAhybridization and steroids recognition. Regardingthe detection mechanism, in addition to chargetransfer, Schottky barrier, SB, modification, andscattering potential reported by other authors, anelectron/hole trapping mechanism leading tohysteresis modification has been determined. Thepresence of polymer seems to hinder the modulationof the electrode-CNT contact.

  11. Multiwalled carbon nanotube film for strain sensing

    International Nuclear Information System (INIS)

    We have studied the possibility of using multiwalled carbon nanotube (MWCNT) films as strain sensors. The MWCNT films were prepared by a solution/filtration method and were bonded directly onto specimens by a nonconductive adhesive. For comparison, conventional foil strain gages were also bonded to the structure on the opposite side. The specimens then underwent a uniaxial tensile load-unload cycle to evaluate them as strain sensors. To ensure good electrical contact between carbon nanotube film and the wires, a thin layer of copper was thermally deposited on both ends of the film as electrodes, and the wires were connected to the electrodes by silver ink. Wheatstone bridges were used to convert the resistance changes of the MWCNTs to voltage output. Results indicated that the output voltages were proportional to the strain readings from the stain indicator. The effect of temperature on the resistance was measured and the MWCNT film resistance was found to be independent of temperature over the range 273-363 K. The optimal film dimension for strain sensing was evaluated as well. Dynamic tests suggest that the MWCNTs were able to extract the structural signature. Our results indicate that MWCNT film is potentially useful for structural health monitoring and vibration control applications

  12. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  13. Carbon linear chains inside multiwalled nanotubes

    Science.gov (United States)

    Cazzanelli, E.; Caputi, L.; Castriota, M.; Cupolillo, A.; Giallombardo, C.; Papagno, L.

    2007-09-01

    Multiwalled carbon nanotubes have been deposited on graphite cathodes by using an arc discharge technique in He atmosphere, with the insertion of a catalytic Ni-Cr mixture as well as without catalysers. The topography of such deposition has been investigated by SEM, while a parallel micro-Raman study has revealed, in particular regions of the deposited cathodes, strong bands in the range 1780-1860 cm -1, assignable to linear carbon chains inside the nanotubes. The variation of intensity, frequency and bandwidth of such bands has been investigated, in relation with the spectral characters of the host multiwalled carbon nanotube. In the cathode deposited without catalyst a quite ordered configuration of multiwalled carbon nanotubes is obtained in the central zone, while the maximum concentration of linear carbon chains is found in a ring shaped zone just inside the border. In sample obtained with catalyst the deposited multiwalled carbon nanotubes appear always more disordered, and a remarkable concentration of carbon chains appears in some zones, with a more casual distribution.

  14. Quantum rainbow characterization of short chiral carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ćosić, M., E-mail: mcosic@vinca.rs [Laboratory of Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Petrović, S.; Nešković, N. [Laboratory of Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2014-03-15

    In this work, we present a study of the quantum angular distributions of 1 MeV positrons channeled through the chiral (7, 3), (8, 5), (9, 7), (14, 4), (16, 5) and (17, 7) single walled carbon nanotubes (SWCNTs), having the same length of 200 nm and the corresponding nanotube radiuses of 0.35, 0.45, 0.55, 0.65, 0.75 and 0.85 nm, respectively. The continuum positron–nanotube interaction potential was obtained using the thermally averaged Molière’s positron–carbon interaction potential. A positron beam is treated as an ensemble of non-interacting quantum particles each represented by a Gaussian wave packet. Evolution of a channeled positron was obtained from the numerical solution of the corresponding time-dependent Schrödinger equation. For the comparison, the classical angular rainbows for cases under the consideration are investigated as well. They were obtained using the numerical solution of the corresponding Newton’s equations of positron motion in the transverse plane of carbon nanotube. We show that the quantum angular transmission patterns can be successfully used for the characterization of short chiral carbon nanotubes.

  15. Modeling of carbon nanotubes and carbon nanotube-polymer composites

    Science.gov (United States)

    Pal, G.; Kumar, S.

    2016-01-01

    In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.

  16. Carbon Nanotube and Graphene Nanoelectromechanical Systems

    Science.gov (United States)

    Aleman, Benjamin Jose

    One-dimensional and two-dimensional forms of carbon are composed of sp 2-hybridized carbon atoms arranged in a regular hexagonal, honeycomb lattice. The two-dimensional form, called graphene, is a single atomic layer of hexagonally-bonded carbon atoms. The one-dimensional form, known as a carbon nanotube, can be conceptualized as a rectangular piece of graphene wrapped into a seamless, high-aspect-ratio cylinder or tube. This dissertation addresses the physics and applied physics of these one and two-dimensional carbon allotropes in nanoelectromechanical systems (NEMS). First, we give a theoretical background on the electrodynamics and mechanics of carbon nanotube NEMS. We then describe basic experimental techniques, such as electron and scanning probe microscopy, that we then use to probe static and dynamic mechanical and electronic behavior of the carbon nanotube NEMS. For example, we observe and control non-linear beam bending and single-electron quantum tunneling effects in carbon nanotube resonators. We then describe parametric amplification, self-oscillation behavior, and dynamic, non-linear effects in carbon nanotube mechanical resonators. We also report a novel approach to fabricate carbon nanotube atomic force microscopy (AFM) probes, and show that they can lead to exceptional lateral resolution enhancement in AFM when imaging both hard and soft (biological) materials. Finally, we describe novel fabrication techniques for large-area, suspended graphene membranes, and utilize these membranes as TEM-transparent, AFM-compatible, NEMS resonators. Laser-driven mechanical vibrations of the graphene resonators are detected by optical interferometry and several vibration harmonics are observed. A degeneracy splitting is observed in the vibrational modes of square-geometry resonators. We then attribute the observed degeneracy splitting to local mass inhomogeneities and membrane defects, and find good overall agreement with the developed theoretical model.

  17. Electrical breakdown gas detector featuring carbon nanotube array electrodes.

    Science.gov (United States)

    Kim, Seongyul; Pal, Sunil; Ajayan, Pulickel M; Borca-Tasciuc, Theodorian; Koratkar, Nikhil

    2008-01-01

    We demonstrate here detection of dichloro-difluoro-methane and oxygen in mixtures with helium using a carbon nanotube electrical breakdown sensor device. The sensor is comprised of an aligned array of multiwalled carbon nanotubes deposited on a nickel based super-alloy (Inconel 600) as the anode; the counter electrode is a planar nickel sheet. By monitoring the electrical breakdown characteristics of oxygen and dichloro-difluoro-methane in a background of helium, we find that the detection limit for dichloro-difluoro-methane is approximately 0.1% and the corresponding limit for oxygen is approximately 1%. A phenomenologigal model is proposed to describe the trends observed in detection of the two mixtures. These results indicate that carbon nanotube based electrical breakdown sensors show potential as end detectors in gas-chromatography devices. PMID:18468093

  18. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  19. Simulation and fabrication of carbon nanotubes field emission pressure sensors

    International Nuclear Information System (INIS)

    A novel field emission pressure sensor has been achieved utilizing carbon nanotubes (CNTs) as the electron source. The sensor consists of the anode sensing film fabricated by wet etching process and multi-wall carbon nanotubes (MWNTs) cathode in the micro-vacuum chamber. MWNTs on the silicon substrate were grown by thermal CVD. The prototype pressure sensor has a measured sensitivity of about 0.17-0.77 nA/Pa (101-550 KPa). The work shows the potential use of CNTs-based field-emitter in microsensors, such as accelerometers and tactile sensors

  20. Covalent functionalization of multi-walled carbon nanotubes by lipase

    International Nuclear Information System (INIS)

    Lipase from Candida rugosa was covalently anchored onto acid-treated multi-walled carbon nanotubes (MWNTs) through a self-catalytic mechanism. A variety of characterization techniques including FTIR, Raman spectroscopy, and XPS were employed to demonstrate the formation of the ester linkage between lipase and MWNTs. The MWNTs-lipase biocomposites showed significantly increased solubility in some common-used organic solvents, such as THF, DMF and chloroform. This study may offer a novel and facile route for covalent modification of carbon nanotubes, and expand the potential utilization of both lipases and MWNTs in the fields of biocatalyst and biosensor

  1. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  2. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  3. Thermal conductivity and thermal rectification in unzipped carbon nanotubes

    International Nuclear Information System (INIS)

    We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.

  4. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  5. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    , microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis of......The use of nanomaterials in separation science has increased rapidly in the last decade. The reason for this is to take advantage of the unique properties of these materials, such as a very high surface-to-volume ratio and favourable sorbent behaviour. Carbon nanostructures, such as carbon...... nanotubes are very interesting for integration in especially microfluidic devices, because they can readily be grown on planar substrates by means of chemical vapour deposition. In this way the cumbersome process of packing of the stationary phase in the finished microfluidic channels is avoided and the CNT...

  6. Agglomeration defects on irradiated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steini Moura, Cassio [Faculty of Physics, Pontificia Universidade Catolica do Rio Grande do Sul, 90619-900, Porto Alegre, RS (Brazil); Balzaretti, Naira Maria; Amaral, Livio [Institute of Physics, Universidade Federal do Rio Grande do Sul, C.P.: 15051, 91501-070, Porto Alegre, RS (Brazil); Gribel Lacerda, Rodrigo; Pimenta, Marcos A. [Universidade Federal de Minas Gerais, C.P.: 702, 31270-901, Belo Horizonte, MG (Brazil)

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  7. Agglomeration defects on irradiated carbon nanotubes

    International Nuclear Information System (INIS)

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  8. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nanometre-sized quasi-unidimensional tubular structures (carbon nanotubes), as well as broad prospects for the use of nanomaterials based on them initiated numerous studies in the search for, and design of, nanotubular structures based in other compounds. Some properties and the main methods for the synthesis of non-carbon nanotubes are considered. Studies on the simulation of the electronic structures of these unique objects are analysed. Results of experimental and theoretical studies along these lines are discussed. The bibliography includes 328 references.

  9. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nano-sized quasi-unidimensional tubular structures (carbon nanotubes) and the broad prospects for the use of nanomaterials based on them have initiated numerous studies on the search and design of nanotubular structures of other substances. Some properties and the main methods of synthesis of non-carbon nanotubes based in particular, on boron compounds molybdenum, tungsten, niobium chalcogenides and vanadium oxides are considered. The works on the simulation of the electronic structures of these unique objects are analysed. The results of experimental and theoretical studies along these lines are discussed

  10. Immobilization of enzymes onto carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prlainović Nevena Ž.

    2011-01-01

    Full Text Available The discovery of carbon nanotubes (CNTs has opened a new door in nanotechnology. With their high surface area, unique electronic, thermal and mechanical properties, CNTs have been widely used as carriers for protein immobilization. In fact, carbon nanotubes present ideal support system without diffusional limitations, and also have the possibility of surface covalent functionalization. It is usually the oxidation process that introduces carboxylic acid groups. Enzymes and other proteins could be adsorbed or covalently attached onto carbon nanotubes. Adsorption of enzyme is a very simple and inexpensive immobilization method and there are no chemical changes of the protein. It has also been found that this technique does not alter structure and unique properties of nanotubes. However, a major problem in process designing is relatively low stability of immobilized protein and desorption from the carrier. On the other hand, while covalent immobilization provides durable attachment the oxidation process can reduce mechanical and electronic properties of carbon nanotubes. It can also affect the active site of enzyme and cause the loss of enzyme activity. Bioimmobilization studies have showed that there are strong interactions between carbon nanotubes surface and protein. The retention of enzyme structure and activity is critical for their application and it is of fundamental interest to understand the nature of these interactions. Atomic force microscopy (AFM, transmission electron microscopy (TEM, scanning electron microscopy (SEM and circular dichroism (CD spectroscopy provide an insight into the structural changes that occur during the immobilization. The aim of this paper is to summarize progress of protein immobilization onto carbon nanotubes.

  11. Multiscale simulation of carbon nanotube transistors

    OpenAIRE

    Maneux, Cristell; Roche, Stephan

    2013-01-01

    In recent years, the understanding and accurate simulation of carbon nanotube-based transistors has become very challenging. Conventional simulation tools of microelectronics are necessary to predict the performance and use of nanotube transistors and circuits, but the models need to be refined to properly describe the full complexity of such novel type of devices at the nanoscale. Indeed, many issues such as contact resistance, low dimensional electrostatics and screening effects, demand for...

  12. Efficiently Dispersing Carbon Nanotubes in Polyphenylene Sulfide

    OpenAIRE

    Sommer, Kevin M; Pipes, R. Byron

    2013-01-01

    Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolat...

  13. Optical trapping of carbon nanotubes and graphene

    OpenAIRE

    Vasi, S.; M. A. Monaca; Donato, M. G.; Bonaccorso, F.; Privitera, G; Trushkevych, O.; G. Calogero; Fazio, B.; Irrera, A.; M.A. Iati'; Saija, R.; Denti, P.; F. Borghese; Jones, P H; Ferrari, A. C.

    2011-01-01

    We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fuctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double ...

  14. Quantization of the Electric Conductivity in Carbon Nanotubes

    OpenAIRE

    M. Grado-Caffaro; M. A. Grado-Caffaro

    2001-01-01

    In this paper, the electric conductivity of carbon nanotubes is investigated by deriving a mathematical expression for the quantized conductance in an ideal one-dimensional potential well with a single electron moving in it. Our results are compared with experimental data.

  15. Synthesis, model and stability of helically coiled carbon nanotubes

    DEFF Research Database (Denmark)

    Fejes, Dora; Raffai, Manuella; Hernadi, Klara;

    2013-01-01

    Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenne...

  16. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  17. Localized Excitons in Carbon Nanotubes.

    Science.gov (United States)

    Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei

    2015-03-01

    It has been historically known that unintentional defects in carbon nanotubes (CNTs) may fully quench the fluorescence. However, some dopants may enhance the fluorescence by one order of magnitude thus turning the CNTs, which are excellent light absorbers, in good emitters. We have correlated the experimentally observed photoluminescence spectra to the electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the lowest bright exciton peak. Our simulations suggest an association of these peaks with deep trap states tied to different specific chemical adducts. While the wave functions of excitons in undoped CNTs are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with the experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from scattering of acoustic phonons on localized excitons. Our work lays the foundation to utilize doping as a generalized route for wave function engineering and direct control of carrier dynamics in SWCNTs toward enhanced light emission properties for photonic applications.

  18. Does water dope carbon nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Robert A.; Payne, Michael C. [Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge (United Kingdom); Mostofi, Arash A. [Department of Materials and Department of Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  19. Carbon nanotube fiber terahertz polarizer

    Science.gov (United States)

    Zubair, Ahmed; Tsentalovich, Dmitri E.; Young, Colin C.; Heimbeck, Martin S.; Everitt, Henry O.; Pasquali, Matteo; Kono, Junichiro

    2016-04-01

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ˜-30 dB with a low insertion loss (fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  20. Carbon Nanotube Areas - Printed on Textile and Paper Substrates

    OpenAIRE

    Hubler, Arved C.; Lothar Kroll; Holg Elsner; Nora Wetzold; Thomas Fischer

    2011-01-01

    Mass printing processes are the key technology to produce mass products to the point of one-disposable. Carbon nanotube (CNT) based structures were prepared by flexographic printing using multi-walled carbon nanotube (MWCNT) dispersions in water. The carbon nanotubes were applied to a textile substrate made of polyester and polyamide microfilaments and to both-side coated paper to produce electrically conductive layers that can be used, for example, as heating elements. Carbon nanotube layers...

  1. Non-covalent interactions between carbon nanotubes and conjugated polymers

    Science.gov (United States)

    Tuncel, Dönüs

    2011-09-01

    Carbon nanotubes (CNTs) are interest to many different disciplines including chemistry, physics, biology, material science and engineering because of their unique properties and potential applications in various areas spanning from optoelectronics to biotechnology. However, one of the drawbacks associated with these materials is their insolubility which limits their wide accessibility for many applications. Various approaches have been adopted to circumvent this problem including modification of carbon nanotube surfaces by non-covalent and covalent attachments of solubilizing groups. Covalent approach modification may alter the intrinsic properties of carbon nanotubes and, in turn make them undesirable for many applications. On the other hand, a non-covalent approach helps to improve the solubility of CNTs while preserving their intrinsic properties. Among many non-covalent modifiers of CNTs, conjugated polymers are receiving increasing attention and highly appealing because of a number of reasons. To this end, the aim of this feature article is to review the recent results on the conjugated polymer-based non-covalent functionalization of CNTs with an emphasis on the effect of conjugated polymers in the dispersibility/solubility, optical, thermal and mechanical properties of carbon nanotubes as well as their usage in the purification and isolation of a specific single-walled nanotube from the mixture of the various tubes.

  2. Different Technical Applications of Carbon Nanotubes

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, Ahmed A.; Abdel-Daiem, A.

    2015-09-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  3. Contact angles, ordering, and solidification of liquid mercury in carbon nanotube cavities

    OpenAIRE

    Kutana, A.; Giapis, K. P.

    2007-01-01

    Optimized model potentials for mercury-mercury and mercury-carbon interactions are used in molecular dynamics simulations to study wetting and solidification of liquid mercury encapsulated in single-walled carbon nanotubes. The contact angle of mercury in the nanotube cavity increases linearly with wall curvature. The solid-liquid transition becomes less well defined as nanotube diameter decreases, while the melting temperature drops exponentially. A concentric cylindrical-shell structure is ...

  4. Electronic Transport Parameter of Carbon Nanotube Metal-Semiconductor On-Tube Heterojunction

    Directory of Open Access Journals (Sweden)

    Sukirno

    2009-03-01

    Full Text Available Carbon Nanotubes research is one of the top five hot research topics in physics since 2006 because of its unique properties and functionalities, which leads to wide-range applications. One of the most interesting potential applications is in term of nanoelectronic device. It has been modeled carbon nanotubes heterojunction, which was built from two different carbon nanotubes, that one is metallic and the other one is semiconducting. There are two different carbon nanotubes metal-semiconductor heterojunction. The first one is built from CNT(10,10 as metallic carbon nanotube and CNT (17,0 as semiconductor carbon nanotube. The other one is built from CNT (5,5 as metallic carbon nanotube and CNT (8,0. All of the semiconducting carbon nanotubes are assumed to be a pyridine-like N-doped. Those two heterojunctions are different in term of their structural shape and diameter. It has been calculated their charge distribution and potential profile, which would be useful for the simulation of their electronic transport properties. The calculations are performed by using self-consistent method to solve Non-Homogeneous Poisson’s Equation with aid of Universal Density of States calculation method for Carbon Nanotubes. The calculations are done by varying the doping fraction of the semiconductor carbon nanotubes The electron tunneling transmission coefficient, for low energy region, also has been calculated by using Wentzel-Kramer-Brillouin (WKB approximation. From the calculation results, it is obtained that the charge distribution as well as the potential profile of this device is doping fraction dependent. It is also inferred that the WKB method is fail to be used to calculate whole of the electron tunneling coefficient in this system. It is expected that further calculation for electron tunneling coefficient in higher energy region as well as current-voltage characteristic of this system will become an interesting issue for this carbon nanotube based

  5. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  6. Deposition of the platinum crystals on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new technique and the affecting factors for depositing platinum on the carbon nanotubes were investigated. The results show that the deposited platinum crystals in the atmosphere of hydrogen or nitrogen have a small size and a homogeneous distribution on the surface of the carbon nanotubes. The pretreatment would decrease the platinum particles on the carbon nanotubes significantly.

  7. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  8. Fabrication of Microscale Carbon Nanotube Fibers

    Directory of Open Access Journals (Sweden)

    Gengzhi Sun

    2012-01-01

    Full Text Available Carbon nanotubes (CNTs have excellent mechanical, chemical, and electronic properties, but realizing these excellences in practical applications needs to assemble individual CNTs into larger-scale products. Recently, CNT fibers demonstrate the potential of retaining CNT's superior properties at macroscale level. High-performance CNT fibers have been widely obtained by several fabrication approaches. Here in this paper, we review several key spinning techniques including surfactant-based coagulation spinning, liquid-crystal-based solution spinning, spinning from vertical-aligned CNT arrays, and spinning from CNT aerogel. The method, principle, limitations, and recent progress of each technique have been addressed, and the fiber properties and their dependences on spinning parameters are also discussed.

  9. Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles

    Science.gov (United States)

    Kim, Il Tae; Nunnery, Grady; Jacob, Karl; Schwartz, Justin; Liu, Xiaotao; Tannenbaum, Rina

    2011-03-01

    We describe a novel, facile method for the synthesis of magnetic carbon nanotubes (m-CNTs) decorated with monodisperse γ - Fe 2 O3 magnetic (maghemite) nanoparticles and their aligned feature in a magnetic field. The tethering of the nanoparticles was achieved by the initial activation of the surface of the CNTs with carboxylic acid groups, followed by the attachment of the γ - Fe 2 O3 nanoparticles via a modified sol-gel process. Sodium dodecylbenzene sulfonate (NaDDBS) was introduced into the suspension to prevent the formation of an iron oxide 3D network. Various characterization methods were used to confirm the formation of well-defined maghemite nanoparticles. The tethered nanoparticles imparted magnetic characteristics to the CNTs, which became superparamagnetic. The m-CNTs were oriented parallel to the direction of a magnetic field. This has the potential of enhancing various properties, e.g. mechanical and electrical properties, in composite materials.

  10. Storing elastic energy in carbon nanotubes

    International Nuclear Information System (INIS)

    The potential performance of carbon nanotubes (CNTs) as springs for elastic energy storage is evaluated. Models are used to determine an upper bound on the energy density that can be stored in defect-free individual CNTs and in assemblies of such CNTs. The models reveal that optimal energy density may be achieved in small-diameter single-walled CNTs loaded in tension, with a maximum theoretical energy density for CNT groupings of 7.8 × 106 kJ m−3. Millimeter-scale CNT springs are constructed using 3 mm tall forests of multi-walled CNTs as the starting material, and tensile tests are performed to measure the springs' stiffness, strength and elastic properties. The measured strain energy density of these continuous CNT fibers is comparable to the energy density of steel springs

  11. Geometric and electronic structure of carbon nanotube networks: 'super'-carbon nanotubes

    Science.gov (United States)

    Coluci, V. R.; Galvão, D. S.; Jorio, A.

    2006-02-01

    Structures of the so-called super-carbon nanotubes are proposed. These structures are built from single walled carbon nanotubes connected by Y-like junctions forming a 'super'-sheet that is then rolled into a seamless cylinder. Such a procedure can be repeated several times, generating a fractal structure. This procedure is not limited to carbon nanotubes, and can be easily modified for application to other systems. Tight binding total energy and density of states calculations showed that the 'super'-sheets and tubes are stable and predicted to present metallic and semiconducting behaviour.

  12. Modified Multiwall Carbon Nanotubes with Nanolumps for Nanocomposite Reinforcement

    Science.gov (United States)

    Wen, J. G.; Lao, J. Y.; Li, W. Z.; Ren, Z. F.; Department Of Physics Team

    2002-03-01

    The quality of the bonding between a polymer matrix and carbon nanotubes is critical in the development of carbon nanotube reinforced polymer composites. In this paper, we modified multiwall carbon nanotubes by growing boron carbide (a covalent bonding compound) nanolumps on carbon nanotubes to enhance load transfer from matrix to carbon nanotubes. Experimental results demonstrated that boron carbide nanolumps with the required morphology were formed on multiwall carbon nanotubes by a solid state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. We also found that inner layers of multiwall carbon nanotubes are bonded to boron carbide nanolumps probably through covalent bonding. Therefore, these multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal nano-scale reinforcement to improve load transfer between carbon nanotubes and the polymer matrix. For comparison, other nanolumps such as crystalline MgO, amorphous B2O3 are also grown on nanotubes.

  13. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  14. Modelling carbon nanotubes-based mediatorless biosensor.

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Petrauskas, Karolis; Razumiene, Julija

    2012-01-01

    This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments): a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate. PMID:23012537

  15. Modelling Carbon Nanotubes-Based Mediatorless Biosensor

    Directory of Open Access Journals (Sweden)

    Julija Razumiene

    2012-07-01

    Full Text Available This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments: a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate.

  16. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  17. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  18. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  19. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  20. Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells

    OpenAIRE

    Tom Grace; LePing Yu; Christopher Gibson; Daniel Tune; Huda Alturaif; Zeid Al Othman; Joseph Shapter

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in...

  1. Molecular Dynamics Modeling of Carbon Nanotubes and Their Composites

    Science.gov (United States)

    Jensen, Lars R.; Pyrz, Ryszard

    2004-06-01

    The tensile modulus of individual nanotubes and nanotube-polypropylene composites has been determined using molecular dynamics simulations. Simulations of individual single-walled carbon nanotubes showed that their tensile modulus was dependent on the tube structure and the diameter if the diameter was below 1,6 nm. The tensile modulus was determined for an infinite single-walled carbon nanotube embedded in an amorphous polypropylene matrix and for a finite and capped single-walled carbon nanotube embedded in a polypropylene matrix. For the infinite nanotube-polypropylene system the modulus was found to correspond to the one given by the Voigt approximation. For the finite nanotube-polypropylene system the reinforcing effect of the nanotube was not very pronounced. A pull out simulation showed that the length of the nanotube in the simulation was much smaller than the critical length and hence no load transfer between the nanotube and the matrix existed.

  2. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle

    Science.gov (United States)

    Gajbhiye, Sachin O.; Singh, S. P.

    2016-05-01

    Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff-Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6-12 potential function. The equivalent nonlinear material model of carbon-carbon bond is used to model it based on its force-deflection relation. Newmark's algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

  3. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  4. Thermal Conductance for Single Wall Carbon Nanotubes

    OpenAIRE

    Zheng, Qing-Rong; Su, Gang; Jian WANG; Guo, Hong

    2002-01-01

    We report a theoretical analysis of the phonon thermal conductance, \\kappa (T), for single wall carbon nanotubes (SWCN). In a range of low temperatues up to 100K, \\kappa (T) of perfect SWCN is found to increase with temperature, approximately, in a parabolic fashion. This is qualitatively consistent with recent experimental measurements where the tube-tube interactions are negligibly weak. When the carbon-carbon bond length is slightly varied, \\kappa (T) is found to be qualitatively unaltered...

  5. Ion-irradiation-induced defects in bundles of carbon nanotubes

    CERN Document Server

    Salonen, E; Nordlund, K

    2002-01-01

    We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions.

  6. Carbon nanotubes for in vivo cancer nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The latest progress of using carbon nanotubes(CNTs) for in vivo cancer nanotechnology is reviewed.CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications.In vivo behaviors and toxicology studies of CNTs are summarized,suggesting no significant toxicity of well functionalized CNTs to the treated mice.Owing to their unique chemical and physical properties,CNTs,especially single-walled carbon nanotubes(SWNTs),have been widely used for various modalities of in vivo cancer treatment and imaging.Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.

  7. Gigahertz frequency flexible carbon nanotube transistors

    Science.gov (United States)

    Chimot, N.; Derycke, V.; Goffman, M. F.; Bourgoin, J. P.; Happy, H.; Dambrine, G.

    2007-10-01

    We investigate the high frequency performances of flexible field-effect transistors based on carbon nanotubes. A large density of mostly aligned carbon nanotubes deposited on a flexible substrate by dielectrophoresis serves as the channel. The transistors display a constant transconductance up to at least 6GHz and a current gain cutoff frequency (fT) as high as 1GHz at VDS=-700mV. Bending tests show that the devices can withstand a high degree of flexion characterized by a constant transconductance for radius of curvature as small as 3.3mm.

  8. Magnetoresistance of Multiwalled Carbon Nanotube Yarns

    Institute of Scientific and Technical Information of China (English)

    SHENG Lei-Mei; GAO Wei; CAO Shi-Xun; ZHANG Jin-Cang

    2008-01-01

    We measure zero-field resistivity and magnetoresistance of multiwalled carbon nanotube yarns (CNTYs). The CNTYs are drawn from superaligned multiwalled carbon nanotube arrays synthesized by the low-pressure chemical vapour deposition method. The zero-field resistivity shows a logarithmic decrease from 2 K to 300 K. In the presence of a magnetic field applied perpendicular to the yarn axis, a pronounced negative magnetoresistance is observed. A magnetoresistance ratio of 22% is obtained. These behaviours can be explained by the weak localization effect.

  9. A carbon nanotube-based sensing element

    Institute of Scientific and Technical Information of China (English)

    YANG Xing; ZHOU Zhao-ying; WU Ying; ZHANG Jin; ZHANG Ying-ying

    2007-01-01

    A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes,carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on microelectrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.

  10. Piezoresistive effect in carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The piezoresistive effect of the pristine carbon nanotube (CNT) films has been studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition. The piezoresistive effect in the pristine CNT films was studied by a three-point bending test. The gauge factor for the pristine CNT films under 500 microstrains was found to be at least 65 at room temperature, and increased with temperature, exceeding that of polycrystalline silicon (30) at 35℃. The origin of the piezoresistivity in CNT films may be ascribed to a pressure-induced change in the band gap and the defects.

  11. Radial breathing mode of carbon nanotubes subjected to axial pressure

    OpenAIRE

    Lei, Xiao-Wen; Ni, Qing-Qing; Shi, Jin-Xing; Natsuki, Toshiaki

    2011-01-01

    In this paper, a theoretical analysis of the radial breathing mode (RBM) of carbon nanotubes (CNTs) subjected to axial pressure is presented based on an elastic continuum model. Single-walled carbon nanotubes (SWCNTs) are described as an individual elastic shell and double-walled carbon nanotubes (DWCNTs) are considered to be two shells coupled through the van der Waals force. The effects of axial pressure, wave numbers and nanotube diameter on the RBM frequency are investigated in detail. Th...

  12. Heat conduction analysis of randomly dispersed singlewalled carbon nanotubes

    OpenAIRE

    Felder, Eric D.

    2007-01-01

    This thesis studies the effective thermal conductivity of randomly oriented, percolated carbon nanotubes. To that end, a multiscale analysis approach was adopted. At the nanoscale, molecular dynamics simulation was performed to determine the thermal conductivity coefficient of a single carbon nanotube. Then, thermal conductivity of two carbon nanotubes positioned at different angles were studied after determining the equilibrium positions of the two nanotubes at various relative positions. F...

  13. Respiratory toxicity of multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Carbon nanotubes focus the attention of many scientists because of their huge potential of industrial applications, but there is a paucity of information on the toxicological properties of this material. The aim of this experimental study was to characterize the biological reactivity of purified multi-wall carbon nanotubes in the rat lung and in vitro. Multi-wall carbon nanotubes (CNT) or ground CNT were administered intratracheally (0.5, 2 or 5 mg) to Sprague-Dawley rats and we estimated lung persistence, inflammation and fibrosis biochemically and histologically. CNT and ground CNT were still present in the lung after 60 days (80% and 40% of the lowest dose) and both induced inflammatory and fibrotic reactions. At 2 months, pulmonary lesions induced by CNT were characterized by the formation of collagen-rich granulomas protruding in the bronchial lumen, in association with alveolitis in the surrounding tissues. These lesions were caused by the accumulation of large CNT agglomerates in the airways. Ground CNT were better dispersed in the lung parenchyma and also induced inflammatory and fibrotic responses. Both CNT and ground CNT stimulated the production of TNF-α in the lung of treated animals. In vitro, ground CNT induced the overproduction of TNF-α by macrophages. These results suggest that carbon nanotubes are potentially toxic to humans and that strict industrial hygiene measures should to be taken to limit exposure during their manipulation

  14. Carbon nanotubes as tips for atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    国立秋; 徐宗伟; 赵铁强; 赵清亮; 张飞虎; 董申

    2004-01-01

    Ordinary AFM probes' characters prevent the AFM' s application in various scopes. Carbon nanotubes represent ideal AFM probe materials for their higher aspect ratio, larger Young' s modulus, unique chemical structure, and well-defined electronic property. Carbon nanotube AFM probes are obtained by using a new method of attaching carbon nanotubes to the end of ordinary AFM probes, and are then used for doing AFM experiments. These experiments indicated that carbon nanotube probes have higher elastic deformation, higher resolution and higher durability. And it was also found that carbon nanotube probes can accurately reflect the morphology of deep narrow gaps, while ordinary probes can not reflect.

  15. Computational Nanomechanics of Carbon Nanotubes and Composites

    Science.gov (United States)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  16. Preparation and Characterization of Polycarbonate Modified Multiple-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    YU Jin-Gang; HUANG Ke-Long; LIU Su-Qin; TANG Jin-Chun

    2008-01-01

    To prepare polymer/carbon nanotube composites, polycarbonate was chosen to modify multiple-walled carbon nanotubes. Poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)], poly(butylene-co-ε-caprolactone carbonate),and poly[(propylene oxide)-co-(carbon dioxide)-co-(maleic anhydride)] were the polycarbonates which were used to modify multiple-walled carbon nanotubes, but only soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes could be obtained. Thermogravimetric analysis clearly indicated that more polycarbonates were attached to soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes. The formation of surface functional groups and changes of nanotube structures and morphology were monitored by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy, respectively. Because of their solubility and bioactive moieties,poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes may find their potential use in drug delivery.

  17. Channeling of protons in various types of radially compressed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Karabarbounis, A. [Department of Physics, Section of Nuclear and Particle Physics, University of Athens, Panepistimioupolis, Ilissia, 15771 Athens (Greece); Sarros, S., E-mail: stsarros@phys.uoa.gr [Department of Physics, Section of Nuclear and Particle Physics, University of Athens, Panepistimioupolis, Ilissia, 15771 Athens (Greece); Trikalinos, Ch. [Department of Philosophy and History of Science, University of Athens, Panepistimioupolis, Ilissia, 15771 Athens (Greece)

    2015-07-15

    Channeling of 10 MeV protons in various types of radially compressed chiral carbon nanotubes is considered. Monte Carlo simulation program is used for the calculation of the trajectories, energy losses and angular distributions of protons in nanotubes of various lengths, where the potential in Doyle–Turner approximation is used to describe the interaction between a proton and a nanotube. Carbon nanotubes, which are considered, are radially compressed at the centre or at both ends. The results show that in some cases a decreased angular distribution of the beam is observed, compared with propagation through a straight nanotube. Furthermore, the energy distribution of channeled protons in nanotubes present a series of small peaks besides a main one, the number of which depends on the nanotube length and the angle of incidence, which in some cases are significantly high.

  18. Channeling of protons in various types of radially compressed carbon nanotubes

    International Nuclear Information System (INIS)

    Channeling of 10 MeV protons in various types of radially compressed chiral carbon nanotubes is considered. Monte Carlo simulation program is used for the calculation of the trajectories, energy losses and angular distributions of protons in nanotubes of various lengths, where the potential in Doyle–Turner approximation is used to describe the interaction between a proton and a nanotube. Carbon nanotubes, which are considered, are radially compressed at the centre or at both ends. The results show that in some cases a decreased angular distribution of the beam is observed, compared with propagation through a straight nanotube. Furthermore, the energy distribution of channeled protons in nanotubes present a series of small peaks besides a main one, the number of which depends on the nanotube length and the angle of incidence, which in some cases are significantly high

  19. Charge-induced actuation in carbon nanotubes and resistance changes in carbon nanotube networks

    Science.gov (United States)

    Sippel-Oakley, Jennifer Ann

    In 1999 it was demonstrated that macroscopic films comprised of single wall carbon nanotubes exhibited dimensional changes with charge injection onto the films. A fundamental mechanism was proposed for this effect related to the dimensional changes observed in graphite intercalation complexes upon charge transfer doping with the intercalant species. The major fraction of this thesis concerns experiments at the single nanotube level designed to test the validity of this mechanism. The metals compatible with our fabrication processes inevitably p-dope the nanotubes resulting in smaller dimensional changes. Additionally, there are contact barriers that prevent the injection of electrons onto the nanotubes. Although the proposed mechanism may still be responsible for the results seen in the nanotube films, the effect is too small to be consistently measured in individual nanotubes. The conductivity of a carbon nanotube can be varied by exposure to various chemicals having utility in chemical sensing applications. We use thin films of carbon nanotubes to exploit this effect. The films are made sensitive to hydrogen by association with palladium metal. Such sensors operate at room temperature with very low power dissipation of ˜0.25 mV.

  20. Optical trapping of cold neutral atoms using a two-color evanescent light field around a carbon nanotube

    International Nuclear Information System (INIS)

    We suggest a new schema of trapping cold atoms using a two-color evanescent light field around a carbon nanotube. The two light fields circularly polarized sending through a carbon nanotube generates an evanescent wave around this nanotube. By evanescent effect, the wave decays away from the nanotube producing a set of trapping minima of the total potential in the transverse plane as a ring around the nanotube. This schema allows capture of atoms to a cylindrical shell around the nanotube. We consider some possible boundary conditions leading to the non-trivial bound state solution. Our result will be compared to some recent trapping models and our previous trapping models.

  1. Quantum Monte Carlo calculations for carbon nanotubes

    Science.gov (United States)

    Luu, Thomas; Lähde, Timo A.

    2016-04-01

    We show how lattice quantum Monte Carlo can be applied to the electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path-integral formalism and use methods developed within the lattice QCD community for our numerical work. Our lattice Hamiltonian is closely related to the hexagonal Hubbard model augmented by a long-range electron-electron interaction. We apply our method to the single-quasiparticle spectrum of the (3,3) armchair nanotube configuration, and consider the effects of strong electron-electron correlations. Our approach is equally applicable to other nanotubes, as well as to other carbon nanostructures. We benchmark our Monte Carlo calculations against the two- and four-site Hubbard models, where a direct numerical solution is feasible.

  2. Electrical properties of carbon nanotubes in flowing vapor

    Institute of Scientific and Technical Information of China (English)

    XIAO Peng; WANG Xin-qiang; ZHANG Yun-huai

    2006-01-01

    Electric potentials were generated from carbon nanotubes immersed in flowing vapors.The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders.These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water,ethanol and KCl.The potentials generated from these samples were measured by a voltmeter.Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes,and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors.The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors.This property of MWCNTs can advantage their application to nanoscale sensors,detectors and power cells.

  3. Nanodrawing of Aligned Single Carbon Nanotubes with a Nanopen.

    Science.gov (United States)

    Yeshua, Talia; Lehmann, Christian; Hübner, Uwe; Azoubel, Suzanna; Magdassi, Shlomo; Campbell, Eleanor E B; Reich, Stephanie; Lewis, Aaron

    2016-03-01

    Single-walled carbon nanotubes (SWCNTs) are considered pivotal components for molecular electronics. Techniques for SWCNT lithography today lack simplicity, flexibility, and speed of direct, oriented deposition at specific target locations. In this paper SWCNTs are directly drawn and placed with chemical identification and demonstrated orientation using fountain pen nanolithography (FPN) under ambient conditions. Placement across specific electrical contacts with such alignment is demonstrated and characterized. The fundamental basis of the drawing process with alignment has potential applications for other related systems such as inorganic nanotubes, polymers, and biological molecules. PMID:26789406

  4. Deconvoluting hepatic processing of carbon nanotubes.

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L J; Ulmert, Hans David S; Brea, Elliott J; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A; McDevitt, Michael R

    2016-01-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans. PMID:27468684

  5. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  6. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  7. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  8. Reactions over catalysts confined in carbon nanotubes.

    Science.gov (United States)

    Pan, Xiulian; Bao, Xinhe

    2008-12-21

    We review a new concept for modifying the redox properties of transition metals via confinement within the channels of carbon nanotubes (CNTs), and thus tuning their catalytic performance. Attention is also devoted to novel techniques for homogeneous dispersion of metal nanoparticles inside CNTs since these are essential for optimization of the catalytic activity. PMID:19048128

  9. Scalable dielectrophoresis of single walled carbon nanotubes

    Science.gov (United States)

    Fitzhugh, William A.

    Single Walled Carbon Nanotubes (SWNTs) have attracted much attention as a candidate material for future nano-scale 'beyond silicon' devices. However industrial scale operations have been impeded by difficulties in separating the metallic and semiconducting species. This paper addresses the use of highly inhomogeneous alternating electric fields, dielectrophoresis, to isolate SWNT species in scaled systems. Both numerical and experimental methods will be discussed.

  10. A new mechanism for carbon nanotube evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Key discoveries on the growth mechanism of carbon nanotubes(CNTs) have recently been achieved by CAS researcher ZHU Zhenping and his research group at the State Key Laboratory of Coal Conversion,the Institute of Coal Chemistry of CAS, funded by the National Natural Science Foundation of China and the CAS Bairen Program.

  11. Electrochemical Metal Deposition on Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Dunsch, L.; Janda, Pavel; Mukhopadhyay, K.; Shinohara, H.

    2001-01-01

    Roč. 11, č. 6 (2001), s. 427-435. ISSN 1344-9931 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon nanotubes * electrodeposition * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 0.800, year: 2001

  12. A New Resistance Formulation for Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2008-01-01

    Full Text Available A new resistance formulation for carbon nanotubes is suggested using fractal approach. The new formulation is also valid for other nonmetal conductors including nerve fibers, conductive polymers, and molecular wires. Our theoretical prediction agrees well with experimental observation.

  13. Chiral Anomaly in Toroidal Carbon Nanotubes

    OpenAIRE

    Sasaki, K.

    2001-01-01

    It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in toroidal carbon nanotubes on a planar geometry with varying magnetic field. We show that the chiral anomaly is closely connected with the persistent current in a one-dimensional metallic ring.

  14. Heat Transport in Liquid Polyester Resin with Carbon Nanotubes

    Science.gov (United States)

    Vales-Pinzón, C.; Quiñones-Weiss, G.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.

    2015-11-01

    Carbon nanotubes represent one of the most important materials in nanoscience and nanotechnology, due to their outstanding structural, mechanical, electrical, and thermal properties. It has been shown that when incorporated in a polymeric matrix, carbon nanotubes can improve its physical properties. In this work, thermal-diffusivity measurements of composite materials, prepared by mixing carbon nanotubes in liquid polyester resin, were performed by means of the thermal-wave resonant cavity. The results show an increase of the thermal diffusivity when the volume fraction of carbon nanotubes grows. It is also shown that this increase depends strongly on the diameter of the nanotubes.

  15. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  16. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes

    Science.gov (United States)

    Hu, Zhaoying; Comeras, Jose Miguel M. Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S.; Hannon, James B.; Liehr, Michael; Han, Shu-Jen

    2016-06-01

    Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.

  17. Optical Kerr effect exhibited by carbon nanotubes and carbon/metal nanohybrid materials

    Science.gov (United States)

    Torres-Torres, C.; Mercado-Zúñiga, C.; Martínez-González, C. L.; Martínez-Gutiérrez, H.; Rebollo, N. R.; Trejo-Valdez, M.; Vargas-García, J. R.; Torres-Martínez, R.

    2015-09-01

    Structural modification of carbon nanotubes in combination with metallic nanoparticles is reported. An enhancement in the nonlinear optical refraction of multi-wall carbon nanotubes by the incorporation of platinum nanoparticles was observed. Comparative results were analyzed taking into account the participation of single-wall carbon nanotubes that originate a decrease in the nonlinear optical response of the multi-wall carbon nanotubes integrating a thin film. A Nd:YAG laser system featuring 532 nm wavelength with 4 ns pulse duration in a two-wave mixing experiment was employed for exploring the studied optical nonlinearities of the samples. The contribution of optical processes to mechanical characteristics dependent on high optical irradiance in carbon nanotubes was described. A variation in the mass density associated to the optically irradiated tubes allowed us to calculate the change in Young's modulus in a thin film configuration. The estimation of an opto-mechanical phenomenon was based on the evaluation of the nonlinearity of index responsible for the optical Kerr effect. According to Raman and optical evaluations, the inclusion of metallic nanoparticles in carbon structures results in a modification of surface that also gives origin to noticeable optical Kerr nonlinearities. Potential applications for developing laser-induced controlled opto-mechanical nanohybrid systems can be contemplated.

  18. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    Science.gov (United States)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  19. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors

    Science.gov (United States)

    Le Louarn, A.; Kapche, F.; Bethoux, J.-M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J.-P.

    2007-06-01

    High frequency capabilities of carbon nanotube field-effect transistors (CNTFETs) are investigated. Structures with a large number of single-walled carbon nanotubes were fabricated using dielecrophoresis to increase the density of nanotubes in the device channel. The authors obtained an intrinsic current gain cutoff frequency of 30GHz establishing state-of-the-art high frequency (hf) potentialities of CNTFETs. The device also showed a maximum stable gain above 10dB at 20GHz. Finally, the parameters of an equivalent circuit model of multitube CNTFET at 20GHz are determined, which open the route to the modeling of nanotubes-based hf electronics.

  20. Preparation of double-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; WEI Jinquan; CI Lijie; WU Dehai

    2004-01-01

    Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200℃; the catalyst vapor temperature is 80℃; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.

  1. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    CERN Document Server

    Magadur, G; Alain-Rizzo, V; Voisin, C; Roussignol, Ph; Deleporte, E; Delaire, J A

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching of the TPPS emission while the photoluminescence intensity of the nanotubes is enhanced when the excitation laser is in resonance with the porphyrin absorption band. This reveals an efficient excitation transfer from the TPPS to the carbon nanotube.

  2. Nonlinear Optical Properties of Carbon Nanotube Hybrids in Polymer Dispersions

    OpenAIRE

    Wang, Jun; Liao, Kang-Shyang; Früchtl, Daniel; Tian, Ying; Gilchrist, Aisling, , T; Alley, Nigel; Andreoli, Enrico; Aitchison, Brad; Nasibulin, Albert; Byrne, Hugh; Kauppinen, Esko I.; Zhang, Long; Blau, Werner; Curran, Seamus

    2012-01-01

    A series of double-walled carbon nanotubes (DWNTs) and multi-walled nanotubes (MWNTs) functionalized with selected organic chromophores, fluorescein 5(6)-isothiocyanate (FITC), rhodamine B isothiocyanate (RITC) and fullerene (C60) were synthesized by covalently linking these electron-donor groups to the metallic nanotubes. These versatile carbon nanotube composites show remarkable nonlinear optical (NLO) performance, due to a merged effect of the complementary NLO characteristics of the moiet...

  3. Mechanical properties of carbon nanotube/polymer composites

    OpenAIRE

    B. Arash; Wang, Q.(The University of Kansas, Lawrence, USA); Varadan, V. K.

    2014-01-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the compos...

  4. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities

    OpenAIRE

    Watahiki, R.; Shimada, T; Zhao, P; Chiashi, S.; Iwamoto, S.; Arakawa, Y; Maruyama, S.; Kato, Y. K.

    2012-01-01

    Photonic crystal nanocavities are used to enhance photoluminescence from single-walled carbon nanotubes. Micelle-encapsulated nanotubes are deposited on nanocavities within Si photonic crystal slabs and confocal microscopy is used to characterize the devices. Photoluminescence spectra and images reveal nanotube emission coupled to nanocavity modes. The cavity modes can be tuned throughout the emission wavelengths of carbon nanotubes, demonstrating the ability to enhance photoluminescence from...

  5. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities

    OpenAIRE

    Watahiki, R.; Shimada, T; Zhao, P; Chiashi, S.; Iwamoto, S.; Arakawa, Y; Maruyama, S.; Kato, Y. K.

    2012-01-01

    Photonic crystal nanocavities are used to enhance photoluminescence from single-walled carbon nanotubes. Micelle-encapsulated nanotubes are deposited on nanocavities within Si photonic crystal slabs and confocal microscopy is used to characterize the devices.Photoluminescencespectra and images reveal nanotube emission coupled to nanocavity modes. The cavity modes can be tuned throughout the emission wavelengths of carbon nanotubes, demonstrating the ability to enhance photoluminescence from a...

  6. Nicotine adsorption on single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Eduardo C. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil); Fagan, Solange B.; Zanella, Ivana [Area de Ciencias Tecnologicas, Centro Universitario Franciscano - UNIFRA, 97010-032 Santa Maria, RS (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil)

    2010-12-15

    This work reports a theoretical study of nicotine molecules interacting with single wall carbon nanotubes (SWCNTs) through ab initio calculations within the framework of density functional theory (DFT). Different adsorption sites for nicotine on the surface of pristine and defective (8,0) SWCNTs were analyzed and the total energy curves, as a function of molecular position relative to the SWCNT surface, were evaluated. The nicotine adsorption process is found to be energetically favorable and the molecule-nanotube interaction is intermediated by the tri-coordinated nitrogen atom from the nicotine. It is also predicted the possibility of a chemical bonding between nicotine and SWCNT through the di-coordinated nitrogen.

  7. Advanced materials based on carbon nanotube arrays, yarns and papers

    Science.gov (United States)

    Bradford, Phlip David

    Carbon nanotubes have hundreds of potential applications but require innovative processing techniques to manipulate the microscopic carbon dust into useful devices and products. This thesis describes efforts to process carbon nanotubes (CNTs) using novel methods with the goals of: (1) improving the properties of energy absorbing and composite carbon nanotube materials and (2) increasing understanding of fundamental structure-property relationships within these materials. Millimeter long CNTs, in the form of arrays, yarns and papers, were used to produce energy absorbing foams and high volume fraction CNT composites. Vertically aligned CNT arrays were grown on silicon substrates using chemical vapor deposition (CVD) of ethylene gas over iron nano-particles. The low density, millimeter thick arrays were tested under compression as energy absorbing foams. With additional CVD processing steps, it was possible to tune the compressive properties of the arrays. After the longest treatment, the compressive strength of the arrays was increased by a factor of 35 with a density increase of only six fold, while also imparting recovery from compression to the array. Microscopy revealed that the post-synthesis CVD treatment increased the number of CNT walls through an epitaxial type radial growth on the surface of the as-grown tubes. The increase in tube radius and mutual support between nanotubes explained the increases in compressive strength while an increase in nanotube roughness was proposed as the morphological change responsible for recovery in the array. Carbon nanotube yarns were used as the raw material for macroscopic textile preforms with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. In prior tensile tests, composites produced from the 3-D braids exhibited unusual mechanical behavior effects. The proposed physical hypotheses explained those effects by molecular level interactions and

  8. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    S R C Vivekchand; A Govindaraj

    2003-10-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

  9. Analytical modeling of glucose biosensors based on carbon nanotubes

    OpenAIRE

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-01

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization...

  10. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane. The elect...... and semiconducting. Raman spectra taken from samples assembled at different frequencies directly contradicted theoretical predictions as well as previously published experimental results.......The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane...... nanotubes dispersed in a number of different liquids. As a result of these test experiments a cantilever probe was designed specifically for the dielectrophoretic assembly of carbon nanotubes and a prototype was fabricated in the MIC (now Danchip) cleanroom. The prototype is not yet fully operational...

  11. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring

    OpenAIRE

    Sun, Tai-ping; Shieh, Hsiu-Li; Ching, Congo Tak-Shing; Yao, Yan-Dong; Huang, Su-Hua; Liu, Chia-Ming; Liu, Wei-Hao; Chen, Chung-Yuan

    2010-01-01

    This study aims to develop an amperometric glucose biosensor, based on carbon nanotubes material for reverse iontophoresis, fabricated by immobilizing a mixture of glucose oxidase (GOD) and multiwalled carbon nanotubes (MWCNT) epoxy-composite, on a planar screen-printed carbon electrode. MWCNT was employed to ensure proper incorporation into the epoxy mixture and faster electron transfer between the GOD and the transducer. Results showed this biosensor possesses a low detection potential (+50...

  12. Interfacial sliding in carbon nanotube/diamond matrix composites

    International Nuclear Information System (INIS)

    Carbon matrix-carbon nanotube (CNT) composites have a broad range of applications because of the exceptional mechanical properties of both matrix and fibers. Since interfacial sliding plays a key role in determining the strength and toughness of ceramic composites, here interface behavior during nanotube pull-out is studied using molecular dynamics models. The degree of interfacial coupling/adhesion between a diamond matrix and a carbon nanotube is captured through interstitial carbon atoms located in the interface, which can form bonds with both the matrix and CNT atoms. Bonding is accurately captured using the modified REBO potential of Pastewka et al. that introduces an environmental screening coefficient to better capture covalent bond breaking and reforming. Pull-out tests reveal that, after an initial transient, the pull-out force becomes constant, mimicking frictional sliding. The pull-out force is directly proportional to the number of interstitial atoms per unit area in the interface, showing that 'friction' is generated by the energy dissipated during breaking and reforming of bonds involving the interstitial atoms. The effective friction stresses are quite high (several GPa) for interstitial areal densities of 0.72-2.18 nm-2 and the energy dissipated during pull-out can thus be substantial. No differences were found in the pull-out of single wall nanotubes and double wall nanotubes having interwall sp3 bonding. These results demonstrate that 'friction-like' behavior can emerge from non-smooth interfaces and that chemical control of interfacial bonding in CNT can yield substantial sliding resistance and high potential toughening in nanoceramic composites.

  13. High Volume Fraction Carbon Nanotube Composites for Aerospace Applications

    Science.gov (United States)

    Siochi, E. J.; Kim, J.-W.; Sauti, G.; Cano, R. J.; Wincheski, R. A.; Ratcliffe, J. G.; Czabaj, M.

    2016-01-01

    Reported mechanical properties of carbon nanotubes (CNTs) at the nanoscale suggest their potential to enable significantly lighter structures of interest for space applications. However, their utility depends on the retention of these properties in bulk material formats that permit practical fabrication of large structures. This presentation summarizes recent progress made to produce carbon nanotube composites with specific tensile properties that begin to rival those of carbon fiber reinforced polymer composites. CNT content in these nanocomposites was greater than 70% by weight. Tested nanocomposite specimens were fabricated from kilometers or tens of square meters of CNT, depending on the starting material format. Processing methods to yield these results, and characterization and testing to evaluate the performance of these composites will be discussed. The final objective is the demonstration of a CNT composite overwrapped pressure vessel to be flight tested in the Fall of 2016.

  14. One-dimensional Hubbard-Luttinger model for carbon nanotubes

    Science.gov (United States)

    Ishkhanyan, H. A.; Krainov, V. P.

    2015-06-01

    A Hubbard-Luttinger model is developed for qualitative description of one-dimensional motion of interacting Pi-conductivity-electrons in carbon single-wall nanotubes at low temperatures. The low-lying excitations in one-dimensional electron gas are described in terms of interacting bosons. The Bogolyubov transformation allows one to describe the system as an ensemble of non-interacting quasi-bosons. Operators of Fermi excitations and Green functions of fermions are introduced. The electric current is derived as a function of potential difference on the contact between a nanotube and a normal metal. Deviations from Ohm law produced by electron-electron short-range repulsion as well as by the transverse quantization in single-wall nanotubes are discussed. The results are compared with experimental data.

  15. Characterization of silica-functionalized carbon nanotubes dispersed in water

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) have the potential to enhance the strength, toughness, and multifunctional ability of composite materials. However, suitable dispersion and interfacial bonding remain as key challenges. Composites that are formed by reactions with water, like Portland cement concrete and mortar, pose a special challenge for dispersing the inherently hydrophobic nanotubes. The hydration of Portland cement also offers a specific chemical framework for interfacial bonding. In this study, nanoscale silica functional groups are covalently bonded to CNTs to improve their dispersion in water while providing interfacial bond sites for the proposed matrix material. The bond signatures of treated nanotubes are characterized using Fourier transform infrared spectroscopy. In situ dispersion is characterized using cryogenic transmission electron microscopy and point of zero charge (PZC) measurements. At the nanoscale, interparticle spacing was greatly increased. A slight increase in the PZC after treatment indicates the importance of steric effects in the dispersion mechanism. Overall, results indicate successful functionalization and dramatically improved dispersion stability in water.

  16. Diffusion through Carbon Nanotube Semipermeable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bakajin, O

    2006-02-13

    The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization

  17. Mechanical properties of functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) used to reinforce polymer matrix composites are functionalized to form covalent bonds with the polymer in order to enhance the CNT/polymer interfaces. These bonds destroy the perfect atomic structures of a CNT and degrade its mechanical properties. We use atomistic simulations to study the effect of hydrogenization on the mechanical properties of single-wall carbon nanotubes. The elastic modulus of CNTs gradually decreases with the increasing functionalization (percentage of C-H bonds). However, both the strength and ductility drop sharply at a small percentage of functionalization, reflecting their sensitivity to C-H bonds. The cluster C-H bonds forming two rings leads to a significant reduction in the strength and ductility. The effect of carbonization has essentially the same effect as hydrogenization

  18. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  19. Ag-catalysed cutting of multi-walled carbon nanotubes

    Science.gov (United States)

    La Torre, A.; Rance, G. A.; Miners, S. A.; Herreros Lucas, C.; Smith, E. F.; Fay, M. W.; Zoberbier, T.; Giménez-López, M. C.; Kaiser, U.; Brown, P. D.; Khlobystov, A. N.

    2016-04-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon-carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes.

  20. The electronic properties of doped single walled carbon nanotubes and carbon nanotube sensors

    Directory of Open Access Journals (Sweden)

    E. Tetik

    2014-12-01

    Full Text Available We present ab initio calculations on the band structure and density of states of single wall semiconducting carbon nanotubes with high degrees (up to 25% of B, Si and N substitution. The doping process consists of two phases: different carbon nanotubes (CNTs for a constant doping rate and different doping rates for the zigzag (8, 0 carbon nanotube. We analyze the doping dependence of nanotubes on the doping rate and the nanotube type. Using these results, we select the zigzag (8, 0 carbon nanotube for toxic gas sensor calculation and obtain the total and partial densities of states for CNT (8, 0. We have demonstrated that the CNT (8, 0 can be used as toxic gas sensors for CO and NO molecules, and it can partially detect Cl2 toxic molecules but cannot detect H2S. To overcome these restrictions, we created the B and N doped CNT (8, 0 and obtained the total and partial density of states for these structures. We also showed that B and N doped CNT (8, 0 can be used as toxic gas sensors for such molecules as CO, NO, Cl2 and H2S.

  1. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  2. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics

    International Nuclear Information System (INIS)

    Based on molecular dynamics (MD) simulation, the Young's moduli of carbon nanotubes are studied. The inter-atomic short-range interaction and long-range interaction of carbon nanotubes are represented by a second generation reactive empirical bond order (REBO) potential and Lennard-Jones (LJ) potential, respectively. The obtained potential expression is used to calculate the total potential energies of carbon nanotubes. Three types of single-walled carbon nanotubes (SWCNTs), armchair, zigzag and chiral tubules, are calculated, respectively. The computational results show that the Young's moduli of SWCNTs are in the range of 929.8±11.5 GPa. From the simulation, the Young's moduli of SWCNTs are weakly affected by the tube chirality and tube radius. The numeric results are in good agreement with the existing experimental results

  3. Designing carbon nanotube membranes for efficient water desalination.

    Science.gov (United States)

    Corry, Ben

    2008-02-01

    The transport of water and ions through membranes formed from carbon nanotubes ranging in diameter from 6 to 11 A is studied using molecular dynamics simulations under hydrostatic pressure and equilibrium conditions. Membranes incorporating carbon nanotubes are found to be promising candidates for water desalination using reverse osmosis, and the size and uniformity of tubes that is required to achieve a desired salt rejection is determined. By calculating the potential of mean force for ion and water translocation, we show that ions face a large energy barrier and will not pass through the narrower tubes studied ((5,5) and (6,6) "armchair" type tubes) but can pass through the wider (7,7) and (8,8) nanotubes. Water, however, faces no such impediment due to the formation of stable hydrogen bonds and crosses all of the tubes studied at very large rates. By measuring this conduction rate under a hydrostatic pressure difference, we show that membranes incorporating carbon nanotubes can, in principle, achieve a high degree of desalination at flow rates far in excess of existing membranes. PMID:18163610

  4. Carbon Nanotubes for Space Photovoltaic Applications

    Science.gov (United States)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  5. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  6. Synthesis of Carbon Nanotubes Using Sol Gel Route

    Science.gov (United States)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  7. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  8. Interactions between carbon nanotubes and bioactives: a drug delivery perspective.

    Science.gov (United States)

    Mehra, Neelesh Kumar; Palakurthi, Srinath

    2016-04-01

    Applications of carbon nanotubes (CNTs) in the biomedical arena have gained increased attention over the past decade. Surface engineering of CNTs by covalent and noncovalent modifications enables site-specific drug delivery and targeting. CNTs are available as single-, double-, triple-, and multiwalled carbon nanotubes (SWCNTs, DWCNTs, TWCNTs, and MWCNTs, respectively) and have unique physicochemical properties, including a high surface area, high loading efficiency, good biocompatibility, low toxicity, ultra lightweight, rich surface chemistry, non-immunogenicity, and photoluminescence. In this review, we highlight current understanding of the different types of physical and chemical interaction that occur between therapeutics and CNTs, and the potential application of the latter in drug delivery and imaging. Such understanding will aid exploration of the utility of multifunctional CNTs as pharmaceutical nanocarriers, and potential safety and toxicity issues. PMID:26657088

  9. Thermal rectification of a single-wall carbon nanotube: a molecular dynamics study

    OpenAIRE

    Foulaadvand, M. Ebrahim; Saeedi, Azadeh; Yousefi, Farrokh; Khadesadr, Saeed

    2014-01-01

    We have investigated the thermal rectification phenomenon in a single-wall mass graded carbon nanotube by molecular dynamics simulation. Second generation Brenner potential has been used to model the inter atomic carbon interaction. Fixed boundary condition has been taken into account. We compare our findings to a previous study by Alaghemandi et al which has been done with a different potential and boundary condition. The dependence of the rectification factor $R$ on temperature, nanotube di...

  10. Selective Surface Charge Sign Reversal on Metallic Carbon Nanotubes for Facile Ultrahigh Purity Nanotube Sorting.

    Science.gov (United States)

    Wang, Jing; Nguyen, Tuan Dat; Cao, Qing; Wang, Yilei; Tan, Marcus Y C; Chan-Park, Mary B

    2016-03-22

    Semiconducting (semi-) single-walled carbon nanotubes (SWNTs) must be purified of their metallic (met-) counterparts for most applications including nanoelectronics, solar cells, chemical sensors, and artificial skins. Previous bulk sorting techniques are based on subtle contrasts between properties of different nanotube/dispersing agent complexes. We report here a method which directly exploits the nanotube band structure differences. For the heterogeneous redox reaction of SWNTs with oxygen/water couple, the aqueous pH can be tuned so that the redox kinetics is determined by the availability of nanotube electrons only at/near the Fermi level, as predicted quantitatively by the Marcus-Gerischer (MG) theory. Consequently, met-SWNTs oxidize much faster than semi-SWNTs and only met-SWNTs selectively reverse the sign of their measured surface zeta potential from negative to positive at the optimized acidic pH when suspended with nonionic surfactants. By passing the redox-reacted nanotubes through anionic hydrogel beads, we isolate semi-SWNTs to record high electrically verified purity above 99.94% ± 0.04%. This facile charge sign reversal (CSR)-based sorting technique is robust and can sort SWNTs with a broad diameter range. PMID:26901408

  11. Carbon nanotubes and graphene in analytical sciences

    International Nuclear Information System (INIS)

    Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6 years in (bio)analytical chemistry in general, and in biosensing in particular. (author)

  12. Developing Carbon Nanotube Standards at NASA

    Science.gov (United States)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  13. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    Science.gov (United States)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  14. Probing astroglia with carbon nanotubes: modulation of form and function

    OpenAIRE

    Gottipati, Manoj K.; VERKHRATSKY, ALEXEI; Parpura, Vladimir

    2014-01-01

    Carbon nanotubes (CNTs) have shown much promise in neurobiology and biomedicine. Their structural stability and ease of chemical modification make them compatible for biological applications. In this review, we discuss the effects that chemically functionalized CNTs, applied as colloidal solutes or used as strata, have on the morpho-functional properties of astrocytes, the most abundant cells present in the brain, with an insight into the potential use of CNTs in neural prostheses.

  15. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    OpenAIRE

    Yongfeng Luo; Xi Li; Jianxiong Zhang; Chunrong Liao; Xianjun Li

    2014-01-01

    This review summarizes recent studies on carbon nanotube (CNT) fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including lo...

  16. Material and structural instabilities of single-wall carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    J. Wu; K. C. Hwang; J. Song; Y. Huang

    2008-01-01

    The nonlinear atomistic interactions usually involve softening behavior. Instability resulting directly from this softening are called the material instability, while those unrelated to this softening are called the structural instability. We use the finite-deformation shell theory based on the interatomic potential to show that the tension instability of single-wall carbon nanotubes is the material instability, while the compression and torsion instabilities are structural instability.

  17. Transparent, conductive and flexible single-walled carbon nanotube films

    OpenAIRE

    Kaskela, Antti

    2013-01-01

    Single-walled carbon nanotube (SWCNT) networks have a large application potential for future electronics as transparent conductive films. SWCNT networks (SWCNT-N) offer improved flexibility when compared to the current industry standard transparent conductive films (TCF), an example of which is indium tin oxide (ITO). SWCNTs can be synthesised from abundant raw materials, whereas indium supply is limited and has been a target of aggressive trade policies, thus increasing supply risks and price v...

  18. Strain Sensors Based on Carbon Nanotube - Polymer Coatings

    OpenAIRE

    Grabowski, Krzysztof; Zbyrad, Paulina; Wilmański, Alan; Uhl, Tadeusz

    2014-01-01

    In this work there have been investigated the potential usage of the CNT's as strain sensors for the structural health monitoring based on the spray coatings. Experimental work was performed on the metal and glass-reinforced composites. Multiwalled Carbon Nanotubes (MWCNTs) were mixed with different matrix materials (acrylic and epoxy) and then applied to the test material with the use of two techniques (screen printing and spray coating). Futhermore, sensors were investigated using SEM. Resp...

  19. Theoretical study of adsorption of lithium atom on carbon nanotube

    OpenAIRE

    Senami, Masato; Ikeda, Yuji; Fukushima, Akinori; Tachibana, Akitomo

    2011-01-01

    We investigate the adsorption of lithium atoms on the surface of the (12,0) single wall carbon nanotube (SWCNT) by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsive...

  20. Bending instability characteristics of double-walled carbon nanotubes

    OpenAIRE

    Wang, Q.; Hu, T.; Chen, G.; Jiang, Q.

    2005-01-01

    The bending instability characteristics of double-walled carbon nanotubes (DWNTs) of various configurations are studied using a hybrid approach in which the deformation-induced increase of the intratube interaction energy is modeled with the bending deformation energy using the elastic theory of beams. The intertube interaction energy is calculated using the van der Waals interatomic potential. This study shows that the bending instability may take place through the formation of a single kink...

  1. Advances in mechanisms and signaling pathways of carbon nanotube toxicity

    OpenAIRE

    Dong, Jie; Ma, Qiang

    2015-01-01

    Carbon nanotubes (CNT) have been developed into new materials with a variety of industrial and commercial applications. In contrast, the physicochemical properties of CNT at the nanoscale render them the potency to generate toxic effects. Indeed, the potential health impacts of CNT have drawn a great deal of attention in recent years, owing to their identified toxicological and pathological consequences including cytotoxicity, inflammation, fibrosis, genotoxicity, tumorigenesis, and immunotox...

  2. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  3. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  4. A new strategy to assemble CdSe/ZnS quantum dots with multi-walled carbon nanotubes for potential application in imaging and photosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gi Beom [Nano Bio-Sensor Research Team (BK21), Department of Chemistry, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Ramaraj, B. [Research and Development Department, Central Institute of Plastics Engineering and Technology (CIPET), 630, Phase IV, GIDC, Vatva, Ahmedabad 382 445 (India); Yoon, Kuk Ro, E-mail: kryoon@hannam.ac.kr [Nano Bio-Sensor Research Team (BK21), Department of Chemistry, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 305-811 (Korea, Republic of)

    2011-11-15

    With objective to enhance luminescence intensities of carbon nanotubes (CNTs), we hereby report the attachment of CdSe/ZnS quantum dots (QDs) on to the surface of shortened Multi Walled Carbon Nanotubes (sMWCNTs). The resultant QDs-sMWCNTs nanohybrid complex have been characterized by Fourier transform infrared (FT-IR) spectroscopy, optical microscopy (OM), ultraviolet (UV) light, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) diffraction spectroscopy and thermogravimetric analysis (TGA). Based on IR peaks characteristics of organic functional groups, optical brightness of sMWCNTs under polarized and UV light, the roughness of the sMWCNTs surface as observed in SEM images and black spots observed on the surface of sMWCNTs in TEM images, it is reasonable to conclude that CdSe/ZnS quantum dots (QDs) were attached on to the surface of sMWCNTs. Additionally, signals of Zn, S, Cd and Se along with carbon on the surface of sMWCNTs in EDX data and onset of thermal degradation of QDs-sMWCNTs nanohybrid complex at much lower temperature than that of sMWCNTs under TGA analysis further confirms the formation of QDs-sMWCNTs nanohybrid complex.

  5. Atomic and electronic structure of divacancies in carbon nanotubes

    Science.gov (United States)

    Berber, Savas; Oshiyama, Atsushi

    2008-04-01

    We present atomic and electronic structure of divacancies in carbon nanotubes, which is calculated using the density functional theory. Divacancies in carbon nanotubes self-heal by spontaneous reconstructions, which consist of concerted bond formations. Divacancy formation energies EDV , which strongly depend on the divacancy orientation with respect to the tube axis, are in the range of 2.8 4.3 eV for favorable orientations in the nanotubes of 4 9Å diameter, making divacancies more probable than monovacancies in carbon nanotubes. Defect related states lead to a higher density of states around the Fermi level. Semiconducting nanotubes develop midgap levels that may adversely affect the functionality of carbon nanotube based devices. Our spin polarized density functional calculations show that the exchange splitting of defect-related bands in nonsemiconducting defective nanotubes leads to net spin polarizations of ρ↑-ρ↓≤0.5μB per divacancy for some divacancy orientations.

  6. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    Science.gov (United States)

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted. PMID:25855947

  7. Automated circuit fabrication and direct characterization of carbon nanotube vibrations.

    Science.gov (United States)

    Zeevi, G; Shlafman, M; Tabachnik, T; Rogachevsky, Z; Rechnitz, S; Goldshtein, I; Shlafman, S; Gordon, N; Alchanati, G; Itzhak, M; Moshe, Y; Hajaj, E M; Nir, H; Milyutin, Y; Izraeli, T Y; Razin, A; Shtempluck, O; Kotchtakov, V; Yaish, Y E

    2016-01-01

    Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion. PMID:27396506

  8. Filled and empty states of carbon nanotubes in water: Dependence on nanotube diameter, wall thickness and dispersion interactions

    Indian Academy of Sciences (India)

    Malay Rana; Amalendu Chandra

    2007-09-01

    We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube as a solute to investigate the filling and emptying of the nanotube and also the modifications of the density and hydrogen bond distributions of water inside and also in the vicinity of the outer surfaces of the nanotube. Our primary goal is to look at the effects of varying nanotube diameter, wall thickness and also solute-solvent interactions on the solvent structure in the confined region also near the outer surfaces of the solute. The thickness of the walls is varied by considering single and multi-walled nanotubes and the interaction potential is varied by tuning the attractive strength of the 12-6 pair interaction potential between a carbon atom of the nanotubes and a water molecule. The calculations are done for many different values of the tuning parameter ranging from fully Lennard-Jones to pure repulsive pair interactions. It is found that both the solvation characteristics and hydrogen bond distributions can depend rather strongly on the strength of the attractive part of the solute-water interaction potential. The thickness of the nanotube wall, however, is found to have only minor effects on the density profiles, hydrogen bond network and the wetting characteristics. This indicates that the long range electrostatic interactions between water molecules inside and on the outer side of the nanotube do not make any significant contribution to the overall solvation structure of these hydrophobic solutes. The solvation characteristics are primarily determined by the balance between the loss of energy due to hydrogen bond network disruption, cavity repulsion potential and offset of the same by attractive component of the solute-water interactions. Our studies with different system sizes show that the essential features of wetting and dewetting characteristics of narrow nanotubes for different diameter and interaction potentials are also present in

  9. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  10. Thermal Spreading in Carbon Nanotube Coating.

    Science.gov (United States)

    Kim, Duckjong; Shin, Dong-Sig; Yu, Jeonghwan; Kim, Haesik; Kim, Jae-Hyun; Woo, Chang-Su

    2015-11-01

    Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, have attracted significant attention as good candidates for next-generation heat-spreading materials because of their high thermal conductivity, mechanical flexibility, etc. Regarding the thermal spreading performance of carbon-based nanofilms, remarkable test results have been reported mainly from the industrial side, but their validity and the physical mechanism underlying the heat transfer enhancement are still under debate. In this study, we assess the thermal spreading performance of a multi-walled CNT film on a copper foil using a non-contact characterization method in a simple and methodical manner, and discuss the possibility of carbon nanofilms as heat spreaders based on the experimental and numerical results. This study provides useful information on heat transfer enhancement by carbon nanofilms and could contribute to the development of high-performance carbon-based heat-spreading coatings. PMID:26726629

  11. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  12. A statistical mechanics model of carbon nanotube macro-films

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Carbon nanotube macro-films are two-dimensional films with micrometer thickness and centimeter by centimeter in-plane dimension.These carbon nanotube macroscopic assemblies have attracted significant attention from the material and mechanics communities recently because they can be easily handled and tailored to meet specific engineering needs.This paper reports the experimental methods on the preparation and characterization of single-walled carbon nanotube macro-films,and a statistical mechanics model on ...

  13. Ab initio simulation of helium inside carbon nanotubes

    International Nuclear Information System (INIS)

    In present work we consider the complex behaviour of quantum liquids like liquid He-4 inside carbon nanotubes. Interactions between helium atoms and carbon atoms of the short-length atomistic model and model with periodical boundary conditions of carbon nanotube were studied via ab initio quantum simulations. Effects of geometrical confinement of the tube on the He behaviour inside CNT (13,0) have been explored. Nanotubes with typical average diameter of 10 angstroms are under consideration.

  14. Characterization of Multienzyme-Antibody-Carbon Nanotube Bioconjugates for Immunosensors

    OpenAIRE

    Jensen, Gary C.; Yu, Xin; Gong, Joseph D.; Munge, Bernard; Bhirde, Ashwin; Kim, Sang N.; Papadimitrakopoulos, Fotios; Rusling, James F.

    2009-01-01

    Characterization studies of a multi-enzyme-antibody-carbon nanotube bioconjugate designed for the amplification of electrochemical immunosensing are described. Secondary antibodies for prostate specific antigen (PSA) were covalently linked to highly carboxylated multi-walled carbon nanotube (CNT) along with multiple horseradish peroxidase (HRP) enzyme labels. These bioconjugates provide ultra-sensitive amperometric detection of PSA on a single-wall carbon nanotube forest sandwich immunosensor...

  15. Carbon Nanotube Composites for Electronic Packaging Applications: A Review

    OpenAIRE

    Lavanya Aryasomayajula; Klaus-Juergen Wolter

    2013-01-01

    Composite engineering comprises of metal matrix composites. They have high strength-weight ratio, better stiffness, economical production, and ease of availability of raw materials. The discovery of carbon nanotubes has opened new possibilities to face challenges better. Carbon Nanotubes are known for their high mechanical strength, excellent thermal and electrical properties. Recent research has made progress in fabricating carbon nanotube metal matrix and polymer-based composites. The metho...

  16. Varied morphology carbon nanotubes and method for their manufacture

    Science.gov (United States)

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  17. Carbon Nanotubes Technology for Removal of Arsenic from Water

    OpenAIRE

    Ali Naghizadeh; Ahmad Reza Yari; Hamid Reza Tashauoei; Mokhtar Mahdavi; Elham Derakhshani; Rahman Rahimi; Pegah Bahmani; Hiva Daraei; Esmaeil Ghahremani

    2012-01-01

    Please cite this article as: Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P. Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 2012;1(1):6-11. Aims of the Study: This study was aimed to investigate the adsorption mechanism of the arsenic removal from water by using carbon nanotubes in continuous adsorption column. Materials & Methods: Independent variables including carbon nanotubes dosage, contact time and breakthrough poi...

  18. Growth of straight carbon nanotubes by simple thermal chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOTO; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700 ℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.

  19. A Carbon Nanotube Cable for a Space Elevator

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…

  20. Nanoscale fluid transportation through individual carbon nanotubes

    Science.gov (United States)

    He, Jin; Cao, Di; Pang, Pei; Luo, Tao; Lindsay, Stuart; Kristic, Predrag; Nuckolls, Colin

    2011-03-01

    There are great interest in both simulation and experiment of fluid flow on the nanoscale. Carbon nanotubes, with their extremely small inner diameter (usually below 2 nm) and atomic smooth inner surface, are ideal materials for studying nanoconfinement and ion and molecule nanoscale translocation. The excellent electrical properties of CNTs can also be integrated to achieve nanoelectrofluidic device. This presentation describes our recent progress in studying fluid transport through individual carbon nanotubes, including simultaneously ionic and electronic measurements during water, ion and molecule translocation. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01).

  1. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  2. Advanced technology for functionalization of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Lingjie Meng; Chuanlong Fu; Qinghua Lu

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) has attracted considerable interest in the fields of physics, chemistry, material science and biology. The functionalized CNTs exhibit improved properties enabling facile fabrication of novel nanomaterials and nanodevices. Most of the functionalization approaches developed at present could be categorized into the covalent attachment of functional groups and the non-covalent adsorption of various functional molecules onto the surface of CNTs. This review highlights recent development and our work in functionalization of carbon nanotubes, leading to bio-compatible CNTs, fluorescent CNTs and transition metal func-tionalizcd CNTs. These novel methods possess advantages such as simplified technical procedures and reduced cost of novel nanoma-terials and nanodcvices fabrication.

  3. Printed Carbon Nanotube Electronics and Sensor Systems.

    Science.gov (United States)

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. PMID:26880046

  4. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    Science.gov (United States)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  5. Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites

    International Nuclear Information System (INIS)

    Systematic atomic simulations based on molecular mechanics were conducted to investigate the pull-out behavior of a capped carbon nanotube (CNT) in CNT-reinforced nanocomposites. Two common cases were studied: the pull-out of a complete CNT from a polymer matrix in a CNT/polymer nanocomposite and the pull-out of the broken outer walls of a CNT from the intact inner walls (i.e., the sword-in-sheath mode) in a CNT/alumina nanocomposite. By analyzing the obtained relationship between the energy increment (i.e., the difference in the potential energy between two consecutive pull-out steps) and the pull-out displacement, a set of simple empirical formulas based on the nanotube diameter was developed to predict the corresponding pull-out force. The predictions from these formulas are quite consistent with the experimental results. Moreover, the much higher pull-out force for a capped CNT than that of the corresponding open-ended CNT implies a significant contribution from the CNT cap to the interfacial properties of the CNT-reinforced nanocomposites. This finding provides a valuable insight for designing nanocomposites with desirable mechanical properties.

  6. Bio-inspired Hybrid Carbon Nanotube Muscles.

    Science.gov (United States)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D; Baughman, Ray H; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  7. Flexible carbon nanotubes electrode for neural recording.

    Science.gov (United States)

    Lin, Chia-Min; Lee, Yu-Tao; Yeh, Shih-Rung; Fang, Weileun

    2009-05-15

    This paper demonstrates a novel flexible carbon nanotubes (CNTs) electrode array for neural recording. In this device, the CNTs electrode arrays are partially embedded into the flexible Parylene-C film using a batch microfabrication process. Through this fabrication process, the CNTs can be exposed to increase the total sensing area of an electrode. Thus, the flexible CNTs electrode of low impedance is realized. In application, the flexible CNTs electrode has been employed to record the neural signal of a crayfish nerve cord for in vitro recording. The measurements demonstrate the superior performance of the presented flexible CNTs electrode with low impedance (11.07 kohms at 1 kHz) and high peak-to-peak amplitude action potential (about 410 microV). In addition, the signal-to-noise ratio (SNR) of the presented flexible CNTs electrode is about 257, whereas the SNR of the reference (a pair of Teflon-coated silver wires) is only 79. The simultaneous recording of the flexible CNTs electrode array is also demonstrated. Moreover, the flexible CNTs electrode has been employed to successfully record the spontaneous spikes from the crayfish nerve cord. The amplitude of the spontaneous peak-to-peak response is about 25 microV. PMID:19272765

  8. Electromagnetic characteristics of carbon nanotube film materials

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2015-08-01

    Full Text Available Carbon nanotube (CNT possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material. This paper aims to characterize the electromagnetic parameters of a high CNT loading film by using waveguide method. The effects of layer number of CNT laminate, CNT alignment and resin impregnation on the electromagnetic characteristics were analyzed. It is shown that CNT film exhibits anisotropic electromagnetic characteristic. Pristine CNT film shows higher real part of complex permittivity, conductivity and shielding effectiveness when the polarized direction of incident wave is perpendicular to the winding direction of CNT film. For the CNT film laminates, complex permittivity increases with increasing layer number, and correspondingly, shielding effectiveness decreases. The five-layer CNT film shows extraordinary shielding performance with shielding effectiveness ranging from 67 dB to 78 dB in X-band. Stretching process induces the alignment of CNTs. When aligned direction of CNTs is parallel to the electric field, CNT film shows negative permittivity and higher conductivity. Moreover, resin impregnation into CNT film leads to the decrease of conductivity and shielding effectiveness. This research will contribute to the structural design for the application of CNT film as electromagnetic shielding materials.

  9. Bio-inspired Hybrid Carbon Nanotube Muscles

    Science.gov (United States)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  10. Bio-inspired Hybrid Carbon Nanotube Muscles

    Science.gov (United States)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  11. NARloy-Z-Carbon Nanotube Composites

    Science.gov (United States)

    Bhat, Biliyar N.

    2012-01-01

    Motivation: (1) NARloy-Z (Cu-3%Ag-0.5%Zr) is the state of the art, high thermal conductivity structural alloy used for making liquid rocket engine main combustion chamber liner. It has a Thermal conductivity approx 80% of pure copper. (2) Improving the thermal conductivity of NARloy-Z will help to improve the heat transfer efficiency of combustion chamber. (3)Will also help to reduce the propulsion system mass and increase performance. It will also increases thrust to weight ratio. (4) Improving heat transfer helps to design and build better thermal management systems for nuclear propulsion and other applications. Can Carbon nanotubes (CNT) help to improve the thermal conductivity (TC)of NARloy-Z? (1)CNT's have TC of approx 20X that of copper (2) 5vol% CNT could potentially double the TC of NARloy-Z if properly aligned (3) Improvement will be less if CNT s are randomly distributed, provided there is a good thermal bond between CNT and matrix. Prior research has shown poor results (1) No TC improvement in the copper-CNT composite reported (2)Reported values are typically lower (3) Attributed to high contact thermal resistance between CNT and Cu matrix (4)Results suggest that a bonding material between CNT and copper matrix is required to lower the contact thermal resistance It is hypothesized that Zr in NARloy-Z could act as a bonding agent to lower the contact thermal resistance between CNT and matrix.

  12. Carbon nanotubes: do they toughen brittle matrices?

    Czech Academy of Sciences Publication Activity Database

    Chao, J.; Inam, F.; Reece, M.J.; Chlup, Zdeněk; Dlouhý, Ivo; Shaffer, M.S.P.; Boccaccini, A. R.

    2011-01-01

    Roč. 46, č. 14 (2011), s. 4770-4779. ISSN 0022-2461 R&D Projects: GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : fracture toughness * carbon nanotube * silica glass Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.015, year: 2011 http://www.springerlink.com/content/74106l0458326n91/

  13. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  14. Electromechanical sensors based on carbon nanotube networks

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Petráš, D.; Machovský, M.; Sáha, P.

    Palmerston North: Massey University, 2010 - (Mukhopadhyay, S.; Fuchs, A.; Sen Gupta, G.; Lay-Ekuakille, A.), s. 542-547 ISBN 978-0-473-16942-8. [International Conference on Sensing Technology /4./. Lecce (IT), 03.06.2010-05.06.2010] R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: BK - Fluid Dynamics

  15. Carbon nanotube-polymer nanocomposite infrared sensor.

    Science.gov (United States)

    Pradhan, Basudev; Setyowati, Kristina; Liu, Haiying; Waldeck, David H; Chen, Jian

    2008-04-01

    The infrared photoresponse in the electrical conductivity of single-walled carbon nanotubes (SWNTs) is dramatically enhanced by embedding SWNTs in an electrically and thermally insulating polymer matrix. The conductivity change in a 5 wt % SWNT-polycarbonate nanocomposite is significant (4.26%) and sharp upon infrared illumination in the air at room temperature. While the thermal effect predominates in the infrared photoresponse of a pure SWNT film, the photoeffect predominates in the infrared photoresponse of SWNT-polycarbonate nanocomposites. PMID:18333623

  16. Methane in carbon nanotube - molecular dynamics simulation

    OpenAIRE

    Bartuś, Katarzyna; Bródka, Aleksander

    2011-01-01

    Abstract The behaviour of methane molecules inside carbon nanotube at room temperature is studied using classical molecular dynamics simulations. A methane molecule is represented either by a shapeless super-atom or by rigid set of 5 interaction centres localised on atoms. Different loadings of methane molecules ranging from the dense gas density to the liquid density, and the influence of flexibility of the CNT on structural and dynamics properties of confined molecules are consid...

  17. Detection of gas atoms with carbon nanotubes

    OpenAIRE

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases....

  18. Osmotic water transport through carbon nanotube membranes

    OpenAIRE

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuatio...

  19. Photon drag effect in carbon nanotube yarns

    Science.gov (United States)

    Obraztsov, Alexander N.; Lyashenko, Dmitry A.; Fang, Shaoli; Baughman, Ray H.; Obraztsov, Petr A.; Garnov, Sergei V.; Svirko, Yuri P.

    2009-06-01

    We demonstrate that in graphitic nanocarbon materials, combination of ballistic conductivity and strong electron photon coupling opens a unique opportunity to observe transfer of momentum of the electromagnetic radiation to free carriers. The resulting drag of quasiballistically propagating electrons can be employed, in particular, to visualize the temporal profile, polarization, and propagation direction of the laser pulse. In this letter, we report the giant photon drag effect in yarns made of multiwall carbon nanotubes.

  20. Magnetic Carbon Nanotubes for Protein Separation

    OpenAIRE

    Xiaobin Fan; Fengbao Zhang; Guoliang Zhang; Xiuhui Diao; Hongyu Chen

    2012-01-01

    Magnetic separation is a promising strategy in protein separation. Owing to their unique one-dimensional structures and desired magnetic properties, stacked-cup carbon nanotubes (CSCNTs) with magnetic nanoparticles trapped in their tips can serve as train-like systems for protein separation. In this study, we functionalized the magnetic CSCNTs with high density of carboxyl groups by radical addition and then anchored 3-aminophenylboronic acid (APBA) through amidation reaction to achieve orien...

  1. Scaling Law in Carbon Nanotube Electromechanical Devices

    OpenAIRE

    Lefevre, R.; Goffman, M.F.; Derycke, V.; Miko, C.; Forro, L.; Bourgoin, J. P.; Hesto, P.

    2005-01-01

    We report a method for probing electromechanical properties of multiwalled carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law cons...

  2. Bio-inspired Hybrid Carbon Nanotube Muscles

    OpenAIRE

    Tae Hyeob Kim; Cheong Hoon Kwon; Changsun Lee; Jieun An; Tam Thi Thanh Phuong; Sun Hwa Park; Lima, Márcio D.; Baughman, Ray H.; Tong Mook Kang; Seon Jeong Kim

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with p...

  3. Fermentation based carbon nanotube multifunctional bionic composites

    OpenAIRE

    Luca Valentini; Silvia Bittolo Bon; Stefano Signetti; Manoj Tripathi; Erica Iacob; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extr...

  4. Fermentation based carbon nanotube bionic functional composites

    OpenAIRE

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique mechanical and physical properties that are not produced by abiotic processes. Based on grape must and bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at r...

  5. Composites with polymer-grafted carbon nanotubes

    OpenAIRE

    Paiva, M. C.; Novais, R. M.; Covas, J. A.

    2014-01-01

    Carbon nanotube (CNT)/polymer composites exhibit the processability advantages of plastics, while conveying electrical conductivity characteristics suitable for electric transport, or for sensing functionalities. The success of their application depends on the ability to homogeneously disperse the CNT in the polymer matrices to form a stable conductive network. The structural strength of the nanocomposite is also desirable, and may be a requirement. The chemical functionalization of the CNT i...

  6. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang(College of William and Mary); Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  7. Spontaneous exciton dissociation in carbon nanotubes

    OpenAIRE

    Kumamoto, Y.; Yoshida, M.; Ishii, A; Yokoyama, A.; Shimada, T; Kato, Y. K.

    2013-01-01

    Simultaneous photoluminescence and photocurrent measurements on individual single-walled carbon nanotubes reveal spontaneous dissociation of excitons into free electron-hole pairs. Correlation of luminescence intensity and photocurrent shows that a significant fraction of excitons are dissociating during their relaxation into the lowest exciton state. Furthermore, the combination of optical and electrical signals also allows for extraction of the absorption cross section and the oscillator st...

  8. Fabrication and Characterization of Suspended Carbon Nanotube Devices in Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Artyukhin, A; Stadermann, M; Stroeve, P; Bakajin, O; Noy, A

    2006-10-30

    Suspended carbon nanotube devices are a promising platform for future bio-electronic applications. Suspended carbon nanotube transistors have been previously fabricated in air; however all previous attempts to bring them into liquid failed. We analyze forces acting on the suspended nanotube devices during immersion into liquids and during device operation and show that surface tension forces acting on the suspended nanotubes during transfer into the liquid phase are responsible for the nanotube damage. We have developed a new strategy that circumvents these limitations by coating suspended nanotubes with a rigid inorganic shell in the gas phase. The coating reinforces the nanotubes and allows them to survive transfer through the interface. Subsequent removal of the coating in the solution phase restores pristine suspended nanotubes. We demonstrate that devices fabricated using this technique preserve their original electrical characteristics.

  9. Upper bound to the thermal conductivity of carbon nanotube pellets

    Science.gov (United States)

    Chalopin, Yann; Volz, Sebastian; Mingo, Natalio

    2009-04-01

    Using atomistic Green's function calculations, we find that the phonon thermal conductivity of pellets composed of ˜μm long carbon nanotubes has an upper bound of a few W/m K. This is in striking contrast with the extremely high thermal conductivity of individual nanotubes (˜3000 W/m K). We show that, at room temperature, this upper bound does not depend on the nanotube diameter. Conversely, for low temperatures, an inverse proportionality with nanotube diameter is predicted. We present concrete results as a function of nanotube length and chirality, pellet density, and temperature. These results imply that carbon nanotube pellets belong to the category of thermal insulators, contrasting with the good conducting properties of parallel nanotube arrays, or individual nanotubes.

  10. Simulation of the Band Structure of Graphene and Carbon Nanotube

    International Nuclear Information System (INIS)

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model and LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  11. Preparation of single-walled carbon nanotube reinforced magnesia films

    OpenAIRE

    Du, C S; Pan, Ning

    2004-01-01

    Single-walled carbon nanotube (SWNT)/MgO composite films were fabricated by growing carbon nanotubes while simultaneously sintering a MgO film. The effect of iron and molybdenum concentrations in liquid catalysts and the effect of the density of carbon nanotubes in the composite films on the quality of the films were investigated. Microstructure analysis showed that SWNTs were uniformly grown in the MgO film. The presence of a controlled amount of carbon nanotubes in MgO films is believed to ...

  12. Conformational changes of fibrinogen in dispersed carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Park SJ

    2012-08-01

    Full Text Available Sung Jean Park,1 Dongwoo Khang21College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea; 2School of Nano and Advanced Materials Science Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South KoreaAbstract: The conformational changes of plasma protein structures in response to carbon nanotubes are critical for determining the nanotoxicity and blood coagulation effects of carbon nanotubes. In this study, we identified that the functional intensity of carboxyl groups on carbon nanotubes, which correspond to the water dispersity or hydrophilicity of carbon nanotubes, can induce conformational changes in the fibrinogen domains. Also, elevation of carbon nanotube density can alter the secondary structures (ie, helices and beta sheets of fibrinogen. Furthermore, fibrinogen that had been in contact with the nanoparticle material demonstrated a different pattern of heat denaturation compared with free fibrinogen as a result of a variation in hydrophilicity and concentration of carbon nanotubes. Considering the importance of interactions between carbon nanotubes and plasma proteins in the drug delivery system, this study elucidated the correlation between nanoscale physiochemical material properties of carbon nanotubes and associated structural changes in fibrinogen.Keywords: carbon nanotubes, fibrinogen, nanotoxicity, conformational change, denaturation

  13. Electrochemical properties of double wall carbon nanotube electrodes

    Directory of Open Access Journals (Sweden)

    Pumera Martin

    2007-01-01

    Full Text Available AbstractElectrochemical properties of double wall carbon nanotubes (DWNT were assessed and compared to their single wall (SWNT counterparts. The double and single wall carbon nanotube materials were characterized by Raman spectroscopy, scanning and transmission electron microscopy and electrochemistry. The electrochemical behavior of DWNT film electrodes was characterized by using cyclic voltammetry of ferricyanide and NADH. It is shown that while both DWNT and SWNT were significantly functionalized with oxygen containing groups, double wall carbon nanotube film electrodes show a fast electron transfer and substantial decrease of overpotential of NADH when compared to the same way treated single wall carbon nanotubes.

  14. Simulation of the Band Structure of Graphene and Carbon Nanotube

    Science.gov (United States)

    Mina, Aziz N.; Awadallah, Attia A.; Phillips, Adel H.; Ahmed, Riham R.

    2012-02-01

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model & LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  15. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  16. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  17. Surface plasmon observed for carbon nanotubes

    International Nuclear Information System (INIS)

    This paper presents parallel electron energy loss spectra (PEELS) results, obtained for individual carbon nanotubes, using nanoprobe techniques (1-2 nm diameter electron beam), energy resolution 0.5 eV and collection times of 4-25 sec. The aim was to use a nanoprobe to compare PEELS spectra from different parts of a tube, in order to search for variations in sp2/sp3 bonding ratios as well as to look for orientation dependent plasmon and core-loss phenomena. It also seemed interesting to compare results for nanotubes with those for other varieties of graphitized carbons. The most interesting result so far was the appearance of a 15 eV plasmon peak, which appeared only for tubes containing ≤ about 12 graphite-like layers. This peak did not shift significantly with tube size. A low-loss peaks at 6 eV of variable relative intensity was also observed this peak was relatively very weak for amorphous tubes; it appears to be characteristic of graphite-like layers, as found for nanotubes and, of course, graphite itself. This paper is restricted to discussion of the low-loss results. The experimental techniques are first described, including some details of the methods which may be used to disperse and support sooty carbons for high-resolution transmission electron microscopy. The results are then presented, followed by an interpretation of all the low-loss PEELS results, including those of the other authors. 14 refs., 2 figs

  18. Hydrogen storage in single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Claims have emerged recently, of high hydrogen storage capacities at room temperature and above, for carbons such as single-wall and multi-walled nanotubes. We have been unable to verify any claims of high capacities at room temperature and low pressure. For (10,10) single wall carbon nanotubes, we used a computer controlled Sievert's apparatus to measure an adsorption at RT of 0.07 wt% gravimetric density at 1 bar, typical of what is expected on the basis of BET surface area measurements for carbons. At high pressures of > 60 bar and temperatures of 80K gravimetric densities up to ∼ 8 wt% are obtained, but more typically ∼ 7 wt% after a few adsorption desorption cycles. These values and isotherm shapes can be attributed to rearrangement of the rope structure that is formed by condensed nanotubes. Certain fullerites can also exhibit adsorption/desorption cycle dependent capacity, ranging from 2.5 to 4 wt% at 80K and 120 bar. (author)

  19. Vibrations of carbon nanotube-reinforced composites

    Science.gov (United States)

    Formica, Giovanni; Lacarbonara, Walter; Alessi, Roberto

    2010-05-01

    This work deals with a study of the vibrational properties of carbon nanotube-reinforced composites by employing an equivalent continuum model based on the Eshelby-Mori-Tanaka approach. The theory allows the calculation of the effective constitutive law of the elastic isotropic medium (matrix) with dispersed elastic inhomogeneities (carbon nanotubes). The devised computational approach is shown to yield predictions in good agreement with the experimentally obtained elastic moduli of composites reinforced with uniformly aligned single-walled carbon nanotubes (CNTs). The primary contribution of the present work deals with the global elastic modal properties of nano-structured composite plates. The investigated composite plates are made of a purely isotropic elastic hosting matrix of three different types (epoxy, rubber, and concrete) with embedded single-walled CNTs. The computations are carried out via a finite element (FE) discretization of the composite plates. The effects of the CNT alignment and volume fraction are studied in depth to assess how the modal properties are influenced both globally and locally. As a major outcome, the lowest natural frequencies of CNT-reinforced rubber composites are shown to increase up to 500 percent.

  20. Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems

    International Nuclear Information System (INIS)

    Nanocomposites are a promising new class of structural materials for the mechanical components of microelectromechanical systems (MEMS). This paper presents a detailed theoretical investigation of the utility of carbon nanotube-reinforced composites for designing actuators with low stiffness and high natural frequencies of vibration. The actuators are modelled as beams of solid rectangular cross-section consisting of an isotropic matrix reinforced with transversely isotropic carbon nanotubes. Three different types of nanotube reinforcements are considered: single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and arrays of SWNTs. The effects of nanotube aspect ratio, dispersion, alignment and volume fraction on the elastic modulus and longitudinal wave velocity are analysed by recourse to the Eshelby-Mori-Tanaka theory. The calculated bounds on Young's modulus and wave velocity capture the trend of the experimental results reported in the literature. Polymer-matrix nanocomposites reinforced with aligned, dispersed SWNTs are identified as excellent candidates for microactuators and microresonators, with properties rivalling those of monolithic metallic and ceramic structures used in the current generation of MEMS. A qualitative comparison between the state-of-the-art in nanocomposite manufacturing technology and the predicted upper bound on Young's modulus and longitudinal wave velocity highlights the enormous improvements needed in materials processing and micromachining to harness the full potential of carbon nanotube-reinforced composites for microactuator applications. These results have immediate and significant implications for the use of nanotube composites in MEMS

  1. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    Institute of Scientific and Technical Information of China (English)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with monovacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.

  2. Preparation of carbon nanotubes by MPECVD

    International Nuclear Information System (INIS)

    Microwave plasma-enhanced chemical vapor deposition (MPECVD) method has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the large area growth, the lower growth temperature, uniform heat distribution and the good control of the different growth parameters. In this work we present our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapor deposition MPECVD. Well aligned, curly and coiled carbon nanotubes have been prepared. We have investigated the effect of the different growth condition parameters such as type of the catalyst, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results were showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. There is a linear relation between the growth rate and the methane to hydrogen ratio. We found that the growth rate has a great dependence on the amount of methane. For example the growth rate varied from the value 1,34 μm/min when the methane flow rate was 10 sccm to more than 14 μm/min when the methane flow rate was raised to 50 sccm. This growth rate is greater than that reported in the literature. The effect of the gas pressure on the CNTs was also studied. The Raman spectra (excitation wavelength 473 nm) of all samples show D-band peak at around 1300 cm-1 and G-band peak at around 1580 cm-1, which indicate that our CNTs are multi wall CNTs (MWCNTs). The D-band and the G-band correspond to sp2 and sp3 carbon stretching modes relatively, and their intensity ratio is a measure of the amount of disorder in the CNTs. The D-band is known to be attributed to the carbonaceous particles, defects in the curved graphitic sheet and tube ends. It has been suggested that lower Ig/Id ratios and narrower first and second order D and G bands are suggestive of well-aligned NNTs. The photoluminescence PL

  3. Selective adsorption of proteins on single-wall carbon nanotubes by using a protective surfactant.

    Science.gov (United States)

    Knyazev, Anton; Louise, Loïc; Veber, Michèle; Langevin, Dominique; Filoramo, Arianna; Prina-Mello, Adriele; Campidelli, Stéphane

    2011-12-16

    The dispersion of highly hydrophobic carbon materials such as carbon nanotubes in biological media is a challenging issue. Indeed, the nonspecific adsorption of proteins occurs readily when the nanotubes are introduced in biological media; therefore, a methodology to control adsorption is in high demand. To address this issue, we developed a bifunctional linker derived from pyrene that selectively enables or prevents the adsorption of proteins on single-wall carbon nanotubes (SWNTs). We demonstrated that it is possible to decrease or completely suppress the adsorption of proteins on the nanotube sidewall by using proper functionalization (either covalent or noncovalent). By subsequently activating the functional groups on the nanotube derivatives, protein adsorption can be recovered and, therefore, controlled. Our approach is simple, straightforward, and potentially suitable for other biomolecules that contain thio or amino groups available for coupling. PMID:22095560

  4. A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, H G; In, J; Kim, S; Fornasiero, F; Holt, J K; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-14

    We present fabrication and characterization of a membrane based on carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown orders of magnitude enhancement in gas and water permeability compared to estimates generated by conventional theories [1, 2]. Large area membranes that exhibit flux enhancement characteristics of carbon nanotubes may provide an economical solution to a variety of technologies including water desalination [3] and gas sequestration [4]. We report a novel method of making carbon nanotube-based, robust membranes with large areas. A vertically aligned dense carbon nanotube array is infiltrated with parylene. Parylene polymer creates a pinhole free transparent film by exhibiting high surface conformity and excellent crevice penetration. Using this moisture-, chemical- and solvent-resistant polymer creates carbon nanotube membranes that promise to exhibit high stability and biocompatibility. CNT membranes are formed by releasing a free-standing film that consists of parylene-infiltrated CNTs, followed by CNT uncapping on both sides of the composite material. Thus fabricated membranes show flexibility and ductility due to the parylene matrix material, as well as high permeability attributed to embedded carbon nanotubes. These membranes have a potential for applications that may require high flux, flexibility and durability.

  5. Carbon Nanotubes:from Nanoscale Building Blocks to Macrostructures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Carbon nanotubes (CNTs) have fascinating properties.In order to use these novel one-dimensional structures for applications such as in nano-electronic,nano-mechanical and electrochemical energy storage device and as structural elements in various composites,the structure of nanotubes needs to be tailored and various architectures and macroscale assembles have to be configured using nanotube building blocks.Nanotube macrostructures are macroscopically organized groups of CNTs,which are expecte...

  6. Synthesis and characterization of carbon nanotube reinforced copper thin films

    OpenAIRE

    Otto, Cornelia

    2006-01-01

    Two model composites of copper and carbon nanotubes were fabricated by very different deposition methods. Copper electrodeposition in a plating bath containing nanotubes created a 3D matrix of randomly oriented CNTs within a thick, 20 micron Cu film. In contrast, sandwiching a layer of well-separated nanotubes between two sub-micron sputtered Cu layers produced a 2D-composite with nanotubes lying parallel to the substrate surface. These composites, which were mechanically tested using var...

  7. Electronic transport properties of metallic single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    曹觉先; 颜晓红; 肖杨; 丁建文

    2003-01-01

    We have calculated the differential conductance of metallic carbon nanotubes by the scatter matrix method. It is found that the differential conductance of metallic nanotube-based devices oscillates as a function of the bias voltage between the two leads and the gate voltage. Oscillation period T is directly proportional to the reciprocal of nanotube length. In addition, we found that electronic transport properties are sensitive to variation of the length of the nanotube.

  8. Inherent-opening-controlled pattern formation in carbon nanotube arrays

    OpenAIRE

    Huang, Xiao; Zhou, Jijie J.; Sansom, Elijah; Gharib, Morteza; Haur, Sow Chorng

    2007-01-01

    We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting–dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension...

  9. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    OpenAIRE

    Magadur, Gurvan; Lauret, Jean-Sébastien; Alain-Rizzo, Valérie; C. Voisin; Roussignol, Ph.; Deleporte, Emmanuelle; Delaire, Jacques,

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching ...

  10. Exciton decay dynamics in individual carbon nanotubes at room temperature

    OpenAIRE

    Gokus, Tobias; Hartschuh, Achim; Harutyunyan, Hayk; Allegrini, Maria; Hennrich, Frank; Kappes, Manfred; Green, Alexander A.; Hersam, Mark C.; Araujo, Paulo T.; Jorio, Ado

    2008-01-01

    We studied the exciton decay dynamics of individual semiconducting single-walled carbon nanotubes at room temperature using time-resolved photoluminescence spectroscopy. The photoluminescence decay from nanotubes of the same (n,m) type follows a single exponential decay function, however, with lifetimes varying between about 1 and 40 ps from nanotube to nanotube. A correlation between broad photoluminescence spectra and short lifetimes was found and explained by defects promoting both nonradi...

  11. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Edson Cocchieri; Costa, Michelle Leali; Braga, Carlos Isidoro, E-mail: ebotelho@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia; Burkhart, Thomas [Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern, (Germany); Lauke, Bernd [Leibniz-Institut fuer Polymerforschung, Dresden (Germany)

    2013-11-01

    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)

  12. Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Qinghua Li

    2015-01-01

    Full Text Available As one-dimensional (1D nanofiber, carbon nanotubes (CNTs have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.

  13. Magnetically Active and Coated Gadolinium-Filled Carbon Nanotubes

    KAUST Repository

    Fidiani, Elok

    2013-08-15

    Gd-filled carbon nanotubes (which include the so-called gadonanotubes(1)) have been attracting much interest due to their potential use in medical diagnostic applications. In the present work, a vacuum filling method was performed to confine gadolinium(III) iodide in carbon nanotubes (CNTs). Filling yields in excess of 50% were obtained. Cleaning and dosing of the external walls was undertaken, as well as the study of the filled CNT magnetic properties. Overall, we found that the encapsulating procedure can lead to reduction of the lanthanide metal and induce disorder in the initial GdI3-type structure. Notwithstanding, the magnetic response of the material is not compromised, retaining a strong paramagnetic response and an effective magnetic moment of similar to 6 mu B. Our results may entice further investigation into whether an analogous Gd3+ to Gd2+ reduction takes place in other Gd-filled CNT systems.

  14. Modeling of carbon nanotubes, graphene and their composites

    CERN Document Server

    Silvestre, Nuno

    2014-01-01

    This book contains ten chapters, authored by world experts in the field of simulation at nano-scale and aims to demonstrate the potentialities of computational techniques to model the mechanical behavior of nano-materials, such as carbon nanotubes, graphene and their composites. A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes, graphene and their applications. In this process, computational modeling is a very attractive research tool due to the difficulties in manufacturing and testing of nano-materials. Both atomistic modeling methods, such as molecular mechanics and molecular dynamics, and continuum modeling methods are being intensively used. Continuum modeling offers significant advantages over atomistic modeling such as the reduced computational effort, the capability of modeling complex structures and bridging different analysis scales, thus enabling modeling from the nano- to the macro-scale. On the oth...

  15. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

    International Nuclear Information System (INIS)

    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)

  16. A theoretical study of the hydrogen-storage potential of (H2)4CH4 in metal organic framework materials and carbon nanotubes

    International Nuclear Information System (INIS)

    The hydrogen-methane compound (H2)4CH4 - or for short H4M - is one of the most promising hydrogen-storage materials. This van der Waals compound is extremely rich in molecular hydrogen: 33.3 mass%, not including the hydrogen bound in CH4; including it, we reach even 50.2 mass%. Unfortunately, H4M is not stable under ambient pressure and temperature, requiring either low temperature or high pressure. In this paper, we investigate the properties and structure of the molecular and crystalline forms of H4M, using ab initio methods based on van der Waals DFT (vdW-DF). We further investigate the possibility of creating the pressures required to stabilize H4M through external agents such as metal organic framework (MOF) materials and carbon nanotubes, with very encouraging results. In particular, we find that certain MOFs can create considerable pressure for H4M in their cavities, but not enough to stabilize it at room temperature, and moderate cooling is still necessary. On the other hand, we find that all the investigated carbon nanotubes can create the high pressures required for H4M to be stable at room temperature, with direct implications for new and exciting hydrogen-storage applications.

  17. Deformations and nanomechanical energy storage in twisted carbon nanotube ropes

    Science.gov (United States)

    Tomanek, David; Fthenakis, Zacharias G.; Seifert, Gotthard; Teich, David

    2013-03-01

    We determine the deformation energetics and energy density of twisted carbon nanotube ropes that effectively constitute a torsional spring. Due to the unprecedented stiffness and resilience of constituent carbon nanotubes, a twisted nanotube rope becomes an efficient energy carrier. Using ab initio and parameterized density functional calculations, we identify structural changes in these systems and determine their elastic limits. The deformation energy of twisted nanotube ropes contains contributions associated not only with twisting, but also with stretching, bending and compression of individual nanotubes. We quantify these energy contributions and show that their relative role changes with the number of nanotubes in the rope. The calculated reversible nanomechanical energy storage capacity of carbon nanotube ropes surpasses that of advanced Li-ion batteries by up to a factor of ten. Supported by the National Science Foundation Cooperative Agreement #EEC-0832785, titled ``NSEC: Center for High-rate Nanomanufacturing''.

  18. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  19. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review

    Science.gov (United States)

    Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau

    2016-08-01

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

  20. Mechanical property of carbon nanotubes with intramolecular junctions: Molecular dynamics simulations

    International Nuclear Information System (INIS)

    Intramolecular junctions (IMJs) of carbon nanotubes hold a promise of potential applications in nano-electromechanical systems. However, their structure-property relation is still unclear. Using the revised second-generation Tersoff-Brenner potential, molecular dynamics simulations were performed to study the mechanical properties of single-walled to four-walled carbon nanotubes with IMJs under uniaxial tension. The dependence of deformation and failure behaviors of IMJs on the geometric parameters was examined. It was found that the rupture strength of a junction is close to that of its thinner carbon nanotube segment, and the rupture strain and Young's modulus show a significant dependence on its geometry. The simulations also revealed that the damage and rupture of multi-walled carbon nanotube junctions take place first in the innermost layer and then propagate consecutively to the outer layers. This study is helpful for optimal design and safety evaluation of IMJ-based nanoelectronics

  1. Terahertz response of carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    The terahertz (THz) research field is expected to serve as a new platform for studying low-energy excitation in solids and higher-order structures in large molecules, and for realizing applications in medicine, agriculture, security, and high-capacity communications. The THz frequency region, however, is located between the electronic and photonic bands, hampering the development of basic components like detectors and sources. This article presents an overview of basic background information about THz waves and THz detector applications and describes the THz response of carbon-based low-dimensional systems, such as single carbon nanotubes (CNT), CNT-array films, and graphene. (author)

  2. Carbon Nanotubes Used in Electroanalysis

    Science.gov (United States)

    Hu, C. G.; Feng, B.

    The fabrication of the carboxyl-modified CNT electrode was described. The electroanalytical investigation of sulfadiazine has been conducted in alkaline aqueous solution at the CNT electrode by voltammetry. Highly reproducible and well-defined cyclic voltammograms were obtained for sulfadiazine with a very good signal to background (S/B) ratio. However, no fouling of the electrode was observed at the CNT electrode within the experimental period of several hours, which illustrated that the CNT electrode was much better than traditional electrodes. Meanwhile, the detection of trace sulfadiazine in milk was also conducted by cyclic voltammetry with satisfactory ratio of recovery, indicating that the nanotube electrode can be used in routine monitoring of sulfadiazine residues in food.

  3. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Jarillo-Herrero, P.D.

    2005-01-01

    Electronic transport through nanostructures can be very different from trans- port in macroscopic conductors, especially at low temperatures. Carbon na- notubes are tiny cylinders made of carbon atoms. Their remarkable electronic and mechanical properties, together with their small size (a few nm in

  4. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  5. Aligned Carbon Nanotubes as Porous Materials for Selective Gas Adsorption

    OpenAIRE

    Rahimi, Mahshid

    2016-01-01

    Carbon dioxide and sulfur dioxide are environmentally noxious components of flue and exhaust gases. Hence, new solutions for carbon dioxide and sulfur dioxide sequestration and storage are highly important. We used grand-canonical Monte Carlo simulations to understand the adsorption of carbon dioxide and sulfur dioxide in bundles of regular parallel arrays of carbon nanotubes of different tube diameters and different intertube distances. Such carbon nanotube arrays have recently become availa...

  6. Optical and Electrical characterization of Carbon Nanotube based high-Q mechanical resonators

    OpenAIRE

    Palou Garcia, Xavier

    2014-01-01

    [ANGLÈS] Carbon Nanotubes have been one of the most intensively studied materials in the last two decades. Because of their combination of outstanding properties (mechanical, thermal, electrical, optical, etc.) the community expects to exploit their potential in a myriad of different applications. One of them is that of sensing ultra small forces using mechanical resonators as probes. In this work, a mechanical resonator based in a suspended Carbon Nanotube is optically characterized by means...

  7. Can hydrogen be stored inside carbon nanotubes under pressure in gigapascal range?

    OpenAIRE

    X.H. Zhang; Gong, X. G.; Liu, Z. F.

    2006-01-01

    By using a newly fitted multi-parameter potential to describe the van der Waals interaction between carbon and molecular hydrogen, we study the hydrogen storage inside carbon nanotubes (CNT's) under pressure in gigapascal range. Comparing with the results of graphite, we find that the shape change of the nanotubes (the curvature effect) provides a different storage mechanism for hydrogen. The negative free energy change for hydrogen storage inside CNT's makes it possible to use CNT's as the n...

  8. Bio-defunctionalization of Functionalized Single-Walled Carbon Nanotubes in Mice

    OpenAIRE

    Yang, Sheng-Tao; Wang, Haifang; Meziani, Mohammed J.; Liu, Yuanfang; Wang, Xin; Sun, Ya-Ping

    2009-01-01

    Chemically modified carbon nanotubes with hydrophilic functionalities such as polyethylene glycols (PEGs) are widely pursued for potential biological and biomedical applications. In this study, PEGylated single-walled carbon nanotubes (PEG-SWNT) were intravenously administrated into mice to study their bio-defunctionalization in vivo by using complementary Raman and photoluminescence measurements. There was meaningful defunctionalization of PEG-SWNT in liver over time, but not in spleen under...

  9. Structural and electronic characteristics of perhydrogenated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, Jukka T.; Linnolahti, Mikko; Karttunen, Antti J. [Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80100 Joensuu (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80100 Joensuu (Finland)], E-mail: Tapani.Pakkanen@joensuu.fi

    2007-11-09

    The structural and electronic characteristics of fully hydrogenated armchair and zigzag carbon nanotubes have been determined by quantum chemical methods. With use of line group symmetries, the structures of nanotubes up to 10 nm in diameter could be optimized by periodic B3LYP calculations. 'In-out' isomerism is shown to significantly stabilize perhydrogenated carbon nanotubes, the energetically most favorable structures being those with 1/3-1/2 of the carbon atoms endo-hydrogenated. In favored nanotubes the ratio of endo- to exo-hydrogens is 1:1, the stabilities increasing as a function of the diameter of the nanotube. The calculated band gaps indicate that the perhydrogenated carbon nanotubes are insulators.

  10. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.

    Science.gov (United States)

    Fabbro, Alessandra; Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2012-08-15

    In the past decade, nanotechnology applications to the nervous system have often involved the study and the use of novel nanomaterials to improve the diagnosis and therapy of neurological diseases. In the field of nanomedicine, carbon nanotubes are evaluated as promising materials for diverse therapeutic and diagnostic applications. Besides, carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube-neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for nongenetic manipulations of neuronal performance and network signaling. PMID:22896805

  11. Hydrotalcites: a highly efficient ecomaterial for effluent treatment originated from carbon nanotubes chemical processing

    Science.gov (United States)

    Alves, O. L.; Stéfani, D.; Parizotto, N. V.; Souza Filho, A. G.

    2011-07-01

    It has been reported that a mixture of carboxylated carbonaceous fragments (CCFs), so called oxidation debris, are generated during carbon nanotubes chemical processing using oxidant agents such as HNO3. The elimination of these fragments from carbon nanotubes surface has been point out to be a crucial step for an effective functionalization of the nanotubes as well as for improving the material. However, this process can introduce a potential environmental problem related water contamination because these CCFs can be viewed as a mixture of carbonaceous polyaromatic systems similar to humic substances and dissolved organic matter (DOM). The negative aspects of humic substances and DOM to water quality and wastewater treatment are well known. Since carbon nanotubes industry expands at high rates it is expected that effluent containing oxidation debris will increase since HNO3 chemical processing is the most applied method for purification and functionalization of carbon nanotubes. In this work, we have demonstrated that Hydrotalcites (HT) are highly efficient to remove oxidation debris from effluent solution originated from HNO3-treated multiwalled carbon nanotubes. The strategy presented here is a contribution towards green chemistry practices and life cycle studies in carbon nanotubes field.

  12. Controlling growth of aligned carbon nanotubes from porous silicon templates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fabricating well-aligned carbon nanotubes, especially, on a silicon substrate is very important for their applications. In this paper, an aligned carbon nanotube array has been prepared by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) templates. High-magnification transmission electron microscopy images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of carbon nanotubes and the diameters of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.

  13. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja;

    2013-01-01

    We present here a proof of concept for a novel fabrication method of vertically aligned carbon nanotube forests, utilizing black silicon nanograss (a forest of silicon nanometer-sized spikes created with reactive ion etching) coated with titanium tungsten diffusion barrier as a template. The method...... allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  14. Electrotransport Properties of Irradiated with Ultraviolet Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    T.A. Len

    2016-03-01

    Full Text Available The electrical resistance of irradiated with ultraviolet carbon nanotubes were investigated. It is established that ultraviolet irradiation results in insignificant fuctionalization of carbon nanotubes surface, that doesn’t substantially affect on the nanotubes resistivity. It is shown that carbon nanotubes fuctionalization with strong oxidizers leads to a significant increase of resistivity by breaking electrinic system and localization of electrons by functional groups, and also to increase of contact resistance between the individual tubes by reducing the contact area between them

  15. Preparation of array of long carbon nanotubes and fibers therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  16. Thermodynamics of Water Entry in Hydrophobic Channels of Carbon Nanotubes

    OpenAIRE

    Kumar, Hemant; Mukherjee, Biswaroop; Dasgupta, Shiang-Tai Lin Chandan; Sood, A. K.; Maiti, Prabal K.

    2011-01-01

    Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermody- namic understanding of this phenomenon, we use the recently developed Two Phase Thermodynamics (2PT) method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rota...

  17. Metallic single-walled carbon nanotubes for conductive nanocomposites.

    Science.gov (United States)

    Wang, Wei; Fernando, K A Shiral; Lin, Yi; Meziani, Mohammed J; Veca, L Monica; Cao, Li; Zhang, Puyu; Kimani, Martin M; Sun, Ya-Ping

    2008-01-30

    This article reports an unambiguous demonstration that bulk-separated metallic single-walled carbon nanotubes offer superior performance (consistently and substantially better than the as-produced nanotube sample) in conductive composites with poly(3-hexylthiophene) and also in transparent conductive coatings based on PEDOT:PSS. The results serve as a validation on the widely held view that the carbon nanotubes are competitive in various technologies currently dominated by conductive inorganic materials (such as indium tin oxide). PMID:18173271

  18. Raman Spectroscopic Studies of Carbon Nanotube Composite Fibres

    OpenAIRE

    Deng, Libo

    2011-01-01

    The project has been concerned with structure/property relationships in a series of different carbon nanotube (CNT) composite fibres. Raman spectroscopy has been proved to be a powerful technique to characterise the CNT-containing fibres. Electrospinning has been used to prepare poly(vinyl alcohol) (PVA) nanofibres containing single-wall carbon nanotubes (SWNTs). The effect of the processing conditions including the polymer concentration, electric voltage, tip-to-collector distance, nanotube ...

  19. Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding

    OpenAIRE

    Ferreira, Tânia; Paiva, M. C.; Pontes, A. J.

    2013-01-01

    The focus of this study was to investigate the dispersion state of pure and functionalized carbon nanotubes in polyamide 6, on composites prepared by twin-screw extrusion and then processed by microinjection moulding. Nanocomposites were prepared with different carbonvnanotube compositions, with and without functionalization. The nanotubes were functionalized by the 1,3-dipolar cycloaddition reaction. The dispersion of the carbon nanotube agglomerates was quantified using optical microscop...

  20. Laser patterning of vertically grown carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won Seok [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2012-12-15

    The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large area patterning. The CNTs grown by plasma enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

  1. Batch fabrication of carbon nanotube bearings

    International Nuclear Information System (INIS)

    Relative displacements between the atomically smooth, nested shells in multiwalled carbon nanotubes (MWNTs) can be used as a robust nanoscale motion enabling mechanism. Here, we report on a novel method suited for structuring large arrays of MWNTs into such nanobearings in a parallel fashion. By creating MWNT nanostructures with nearly identical electrical circuit resistance and heat transport conditions, uniform Joule heating across the array is used to simultaneously engineer the shell geometry via electric breakdown. The biasing approach used optimizes process metrics such as yield and cycle-time. We also present the parallel and piecewise shell engineering at different segments of a single nanotube to construct multiple, but independent, high density bearings. We anticipate this method for constructing electromechanical building blocks to be a fundamental unit process for manufacturing future nanoelectromechanical systems (NEMS) with sophisticated architectures and to drive several nanoscale transduction applications such as GHz-oscillators, shuttles, memories, syringes and actuators

  2. Carbon nanotube as a gramicidin analogue

    Science.gov (United States)

    Hilder, Tamsyn A.; Chung, Shin-Ho

    2011-01-01

    We have designed a carbon nanotube that is selectively permeable to monovalent cations, binds divalent cations and rejects anions. The nanotubes, with an effective radius of 4.53 Å and length of 36 Å, are terminated with hydrogen atoms and are exohydrogenated in two regions near the entrance and exit. Using molecular and stochastic dynamics simulations we examine the free energy, current-voltage-concentration profiles and ion binding sites. The characteristics of this channel are comparable to the antibiotic gramicidin-A, but the potassium current is six times larger. At 40 mM calcium concentration the current is reduced from 26 pA to 4 pA due to a calcium ion binding at the channel entrance.

  3. Carbon nanotube DNA sensor and sensing mechanism.

    Science.gov (United States)

    Tang, Xiaowu; Bansaruntip, Sarunya; Nakayama, Nozomi; Yenilmez, Erhan; Chang, Ying-Lan; Wang, Qian

    2006-08-01

    We report the fabrication of single-walled carbon nanotube (SWNT) DNA sensors and the sensing mechanism. The simple and generic protocol for label-free detection of DNA hybridization is demonstrated with random sequence 15mer and 30mer oligonucleotides. DNA hybridization on gold electrodes, instead of on SWNT sidewalls, is mainly responsible for the acute electrical conductance change due to the modulation of energy level alignment between SWNT and gold contact. This work provides concrete experimental evidence on the effect of SWNT-DNA binding on DNA functionality, which will help to pave the way for future designing of SWNT biocomplexes for applications in biotechnology in general and also DNA-assisted nanotube manipulation techniques. PMID:16895348

  4. A carbon nanotube immunosensor for Salmonella

    Directory of Open Access Journals (Sweden)

    Mitchell B. Lerner

    2011-12-01

    Full Text Available Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (<1000 cfu/ml. In contrast, the carrier mobility is affected comparably by Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml.

  5. The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix

    OpenAIRE

    Martone, A.; Faiella, G.; Antonucci, V.; Giordano, M; Zarrelli, M

    2011-01-01

    Abstract The potentiality of carbon nanotubes as reinforcement material is not only due to their exceptional high modulus, but also to their high aspect ratio. Indeed, the nanotubes contribution to the mechanical reinforcement in a polymer is strongly dependent on their distribution within the hosting matrix. In fact, the clustering of carbon nanotubes does limit the theoretical enhancement of the composite mechanical properties by a reduction of their effective aspect ratio. ...

  6. Are we ready for spray-on carbon nanotubes?

    CERN Document Server

    Maynard, Andrew D

    2016-01-01

    Earlier this year, British sculptor, Anish Kapoor was given exclusive rights to use a new spray-on carbon nanotube-based paint. The material, produced by UK-based Surrey NanoSystems and marketed as Vantablack S-VIS, can be applied to a range of surfaces, and absorbs well over 99% of the light that falls onto it. It is claimed to be the world's blackest paint, and there is growing interest in its use in works of art and high-end consumer products. It's easy to see the appeal of Vantablack S-VIS. Apart from technical applications where stray reflections need to be suppressed, this is a material that potentially enables manufacturers and artists to give their products a unique aesthetic edge. Yet, having worked on carbon nanotube safety for some years, I was intrigued to see the material in a spray-paint designed to coat objects that people may possibly come into contact with. It was, after all, only a few years ago that journalists were asking if carbon nanotubes were the next asbestos. And while this is unlike...

  7. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  8. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  9. B and N ion implantation into carbon nanotubes: Insight from atomistic simulations

    International Nuclear Information System (INIS)

    By employing atomistic computer simulations with empirical potential and density functional force models, we study B/N ion implantation onto carbon nanotubes. We simulate irradiation of single-walled nanotubes with B and N ions and show that up to 40% of the impinging ions can occupy directly the sp2 positions in the nanotube atomic network. We further estimate the optimum ion energies for direct substitution. Ab initio simulations are used to get more insight into the structure of the typical atomic configurations which appear under the impacts of the ions. As annealing should further increase the number of sp2 impurities due to dopant atom migration and annihilation with vacancies, we also study migration of impurity atoms over the tube surface. Our results indicate that irradiation-mediated doping of nanotubes is a promising way to control the nanotube electronic and even mechanical properties due to impurity-stimulated crosslinking of nanotubes

  10. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    covered nano patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  11. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  12. DNA translocating through a carbon nanotube can increase ionic current

    International Nuclear Information System (INIS)

    Translocation of DNA through a narrow, single-walled carbon nanotube can be accompanied by large increases in ion current, recently observed in contrast to the ion current blockade. We use molecular dynamics simulations to show that large electro-osmotic flow can be turned into a large net current via ion-selective filtering by a DNA molecule inside the carbon nanotube. (paper)

  13. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  14. Softening of the Radial Breathing Mode in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H. (ed.); Sasaki, K.; Kalbáč, Martin; Hofmann, M.; Saito, R.; Dresselhaus, M. S.; Kong, J.

    2009-01-01

    Roč. 102, č. 12 (2009), 126804-1-126804-4. ISSN 0031-9007 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic carbon nanotubes * radial breathing mode * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.328, year: 2009

  15. Very short functionalized carbon nanotubes for membrane applications

    NARCIS (Netherlands)

    Fonseca, A.; Reijerkerk, S.R.; Potreck, J.; Nijmeijer, D.C.; Mekhalif, Z.; Delhalle, J.

    2010-01-01

    The cutting and functionalization of carbon nanotubes is described, applying a single-step ball-mill based process. Very short carbon nanotubes bearing primary amine functions were produced, characterized and incorporated in polymeric membranes. The gas separation performance of the composite membra

  16. Bouncing Water Droplet on a Superhydrophobic Carbon Nanotube Array

    OpenAIRE

    Aria, Adrianus I.; Gharib, Morteza

    2010-01-01

    Over the past few decades, superhydrophobic materials have attaracted a lot of interests, due to their numerous practical applications. Among various superhydrophobic materials, carbon nanotube arrays have gained enormous attentions simply because of their outstanding properties. The impact dynamic of water droplet on a superhydrophobic carbon nanotube array is shown in this fluid dynamics video.

  17. Super-Bridges Suspended Over Carbon Nanotube Cables

    OpenAIRE

    Carpinteri, Alberto; Pugno, Nicola M.

    2008-01-01

    In this paper the new concept of super-bridges, i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of 3.

  18. Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study

    Institute of Scientific and Technical Information of China (English)

    Ouyang Fang-Ping; Peng Sheng-Lin; Chen Ling-Na; Sun Shu-Yuan; Xu Hui

    2011-01-01

    By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.

  19. MgO-decorated carbon nanotubes for CO2 adsorption: first principles calculations

    International Nuclear Information System (INIS)

    The global greenhouse effect makes it urgent to deal with the increasing greenhouse gases. In this paper the performance of MgO-decorated carbon nanotubes for CO2 adsorption is investigated through first principles calculations. The results show that the MgO-decorated carbon nanotubes can adsorb CO2 well and are relatively insensitive to O2 and N2 at the same time. The binding energy arrives at 1.18 eV for the single-MgO-decorated carbon nanotube adsorbing one CO2 molecule, while the corresponding values for O2 and N2 are 0.55 eV and 0.06 eV, respectively. In addition, multi-molecule adsorption is also proved to be very satisfactory. These results indicate that MgO-decorated carbon nanotubes have great potential applications in industrial and environmental processes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Massive radius-dependent flow slippage in carbon nanotubes.

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter. PMID:27604947