WorldWideScience

Sample records for carbon nanotubes grown

  1. Laser patterning of vertically grown carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won Seok [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2012-12-15

    The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large area patterning. The CNTs grown by plasma enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

  2. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    Science.gov (United States)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is

  3. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  4. Purification of carbon nanotubes grown by thermal CVD

    Science.gov (United States)

    Porro, S.; Musso, S.; Vinante, M.; Vanzetti, L.; Anderle, M.; Trotta, F.; Tagliaferro, A.

    2007-03-01

    We show the results of a set of purifications on carbon nanotubes (CNT) by acid and basic treatments. CNTs were obtained by thermal decomposition of camphor at 850 °C in a CVD growth system, by means of a growth process catalyzed by iron clusters originating from the addition of ferrocene in the precursors mixture. The purification procedures involved HNO 3, H 2SO 4, HSO 3Cl and NaOH for different process temperatures. As-grown CNTs showed a consistent presence of metal catalyst (about 6 wt%), evidenced by TGA. The purification treatments led to a certain amount of opening of the CNT tips, with a consequent loss of metal catalyst encapsulated in tips. This is also confirmed by BET analysis, which showed an increase of the surface area density of CNT after the purification. FT-IR and XPS revealed the presence of carboxylic groups on the CNT surface chemically modified by the harsh environment of the purification process. Among the various treatments that have been tested, the 1:3 solution of nitric and sulphuric acid was the most effective in modifying the CNT surface and inducing the formation of functional groups.

  5. Bond strength of individual carbon nanotubes grown directly on carbon fibers

    Science.gov (United States)

    Kim, Kyoung Ju; Lee, Geunsung; Kim, Sung-Dae; Kim, Seong-Il; Youk, Ji Ho; Lee, Jinyong; Kim, Young-Woon; Yu, Woong-Ryeol

    2016-10-01

    The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (˜200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

  6. Ultrafast carrier dynamics in purified and as-grown single-walled carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    Long Yong-Bing; Song Li; Zhang Chun-Yu; Wang Li; Fu Pan-Ming; Zhang Zhi-Guo; Xie Si-Shen; Wang Guo-Ping

    2005-01-01

    Ultrafast time-resolved optical transmissions in purified and as-grown single-walled carbon nanotube films are measured at a temperature of 200K. The signal of the purified sample shows a crossover from photobleaching to photoabsorption. The former and the latter are interpreted as the state filling and the red shift of the π-plasmon,respectively. The signal of the as-grown sample can be perfectly fitted by a single-exponential with a time constant of 232fs. The disappearance of the negative component in the as-grown sample is attributed to the charge transfer between the semiconducting nanotubes and the impurities.

  7. Reinforcement of CVD grown multi-walled carbon nanotubes by high temperature annealing

    Directory of Open Access Journals (Sweden)

    K. V. Elumeeva

    2013-11-01

    Full Text Available We report on the increase of the Young's modulus (E of chemical vapor deposition (CVD grown multi-walled carbon nanotubes (MWNTs upon high temperature heat treatment. The post heat-treatment at 2200–2800ºC in a controlled atmosphere results in a considerable improvement of the microstructure, chemical stability and electro-physical properties of the nanotubes. The Young's modulus of MWNTs of different diameters was measured by the deflection of a single tube suspended across the hole of silicon nitride membrane and loaded by an atomic force microscope tip. Contrary to previous reports, a strong increase of E was feasible due to the improved growth conditions of pristine carbon nanotubes and to the improved heat treatment conditions. However, the elastic modulus of CVD grown MWNTs still shows strong diameter dependence resulting from the remaining structural inhomogeneities in large diameter nanotubes.

  8. Electrocatalytic activity of Pt grown by ALD on carbon nanotubes for Si-based DMFC applications

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Dalslet, Bjarke Thomas; Yang, R.B.;

    2012-01-01

    We present an anode design for silicon-based direct methanol fuel cell (DMFC) applications. Platinum was deposited conformally by atomic layer deposition (ALD) onto vertically aligned, nitrogendoped multi-walled carbon nanotubes (MWCNTs) grown on porous silicon. The deposition was carried out...

  9. Electric Characteristics of the Carbon Nanotube Network Transistor with Directly Grown ZnO Nanoparticles.

    Science.gov (United States)

    Kim, Un Jeong; Bae, Gi Yoon; Suh, Dong Ik; Park, Wanjun

    2016-03-01

    We report on the electrical characteristics of field effect transistors fabricated with random networks of single-walled carbon nanotubes with surfaces modified by ZnO nanoparticles. ZnO nanoparticles are directly grown on single-walled carbon nanotubes by atomic layer deposition using diethylzinc (DEZ) and water. Electrical observations show that ZnO nanoparticles act as charge transfer sources that provide electrons to the nanotube channel. The valley position in ambipolar transport of nanotube transistors is negatively shifted for 3V due to the electronic n-typed property of ZnO nanoparticles. However, the Raman resonance remains invariant despite the charge transfer effect produced by ZnO nanoparticles. PMID:27455727

  10. Electric Characteristics of the Carbon Nanotube Network Transistor with Directly Grown ZnO Nanoparticles.

    Science.gov (United States)

    Kim, Un Jeong; Bae, Gi Yoon; Suh, Dong Ik; Park, Wanjun

    2016-03-01

    We report on the electrical characteristics of field effect transistors fabricated with random networks of single-walled carbon nanotubes with surfaces modified by ZnO nanoparticles. ZnO nanoparticles are directly grown on single-walled carbon nanotubes by atomic layer deposition using diethylzinc (DEZ) and water. Electrical observations show that ZnO nanoparticles act as charge transfer sources that provide electrons to the nanotube channel. The valley position in ambipolar transport of nanotube transistors is negatively shifted for 3V due to the electronic n-typed property of ZnO nanoparticles. However, the Raman resonance remains invariant despite the charge transfer effect produced by ZnO nanoparticles.

  11. Purification of Single-walled Carbon Nanotubes Grown by a Chemical Vapour Deposition (CVD) Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A procedure for purification of single-walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition (CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as-prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.

  12. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers

    Institute of Scientific and Technical Information of China (English)

    Li-hua TENG; Tian-di TANG

    2008-01-01

    In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.

  13. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhixian [ORNL; Eres, Gyula [ORNL; Jin, Rongying [ORNL; Subedi, Alaska P [ORNL; Mandrus, David [ORNL; Kim, Eugene [ORNL

    2009-01-01

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  14. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zhixian [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Eres, Gyula; Jin Rongying; Subedi, Alaska; Mandrus, David [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, Eugene H [Department of Physics, University of Windsor, Windsor, ON, N9B 3P4 (Canada)], E-mail: zxzhou@wayne.edu

    2009-02-25

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  15. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    International Nuclear Information System (INIS)

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  16. Highly Ordered Carbon Nanotube Arrays with Open Ends Grown in Anodic Alumina Nanoholes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Highly ordered multiwalled carbon nanotube arrays were fabricated by pyrolysis of acetylene within anodic alumina templates.Nanotubes are very uniform in diameter and open at both ends. High resolution transmission electron microscopy and electron diffraction analysis show that the carbon nanotubes are well graphitized. These standing and open carbon nanotubes are possible to offer a potential elegant technique for electron emitting devices,chemical functionalization and nanotube composites.

  17. Thermal conductivity of low temperature grown vertical carbon nanotube bundles measured using the three-ω method

    NARCIS (Netherlands)

    Vollebregt, S.; Banerjee, S.; Beenakker, K.; Ishihara, R.

    2013-01-01

    The thermal conductivity of as-grown vertical multi-walled carbon nanotubes (CNT) bundles fabricated at low temperature (500 °C) was measured using a vertical 3ω-method. For this, CNT were selectively grown inside an oxide opening and sandwiched between two metal electrodes. The validity of the meth

  18. Field Emission Properties of Multi-walled Carbon Nanotubes Grown on Silicon Nanoporous Pillar Array

    Science.gov (United States)

    Jiang, Wei-fen; Li, Long-yu; Xiao, Shun-hua; Yang, Xiao-hui; Jia, Min; Li, Xin-jian

    2007-12-01

    Multi-walled carbon nanotubes (CNTs) were grown on a silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Surface morphologies and microstructure of the resultant were studied by a field emission scanning electron microscope, Raman spectrum, transmission electron microscope, and high-resolution transmission electron microscopy. The composition of samples was determined by energy dispersive X-ray spectroscopy (EDS). The results showed that a great deal of CNTs, with diameter in the range of 20-70 nm, incorporated with Si-NPA and a large scale nest array of CNTs/Si-NPA (NACNT/Si-NPA) was formed. EDS analysis showed that the composition of carbon nanotubes was carbon. Field emission measurements showed that a current density of 5 mA/cm2 was obtained at an electric field of 4.26 V/μm, with a turn-on field of 1.3 V/μm. The enhancement factor calculated according to the Fowler-Nordheim theory was ~11,000. This excellent field emission performance is attributed to the unique structure and morphology of NACNT/Si-NPA, especially the formation of a nest-shaped carbon nanotube array. A schematic drawing that illustrates the experimental configuration is given. These results indicate that NACNT/Si-NPA might be an ideal candidate cathode for potential applications in flat panel displays.

  19. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    Science.gov (United States)

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-01

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. PMID:22619167

  20. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  1. Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase.

    Science.gov (United States)

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2016-10-01

    Horseradish peroxidase (HRP) was immobilized through sodium dodecyl sulfate (SDS) on the surface of a seamless three-dimensional hybrid of carbon nanotubes grown at the graphene surface (HRP-SDS/CNTs/G) and its electrochemical properties were investigated. Compared with graphene alone electrode modified with HRP via SDS (HRP-SDS/G electrode), the surface coverage of electroactive HRP at the CNTs/G electrode surface was approximately 2-fold greater because of CNTs grown at the graphene surface. Based on the increase in the surface coverage of electroactive HRP, the sensitivity to H2O2 at the HRP-SDS/CNTs/G electrode was higher than that at the HRP-SDS/G electrode. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HRP was also analyzed. PMID:27224430

  2. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Institute of Scientific and Technical Information of China (English)

    Itir Bakis Dogru; Mete Batuhan Durukan; Onur Turel; Husnu Emrah Unalan

    2016-01-01

    In this work, vertically aligned carbon nanotubes (VACNTs) grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD) method. Solution based ultrasonic spray pyrolysis (USP) method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the su-percapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated elec-trodes, which is further improved through the bending cycles.

  3. Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) were used as the electric double layer capacitor (EDLC) material and were synthesized by using thermal chemical vapor deposition (TCVD). To enhance the EDLC capacity, the ruthenium dioxide (RuO2) nanorods were grown on CNTs by using metal organic chemical vapor deposition (MOCVD). The synthesized CNTs were the principal part and template, and the RuO2 nanorods were grown outwardly from CNTs. The increase of effective specific area between electrode and electrolyte played an important role in enhancing the capacitance. Different concentrations of KOH were used as electrolyte to measure the capacitance to find the variation of capacitance. Moreover, the RuO2/CNT composites demonstrated a stable cycle life. The results showed that the RuO2/CNT composites were a promising supercapacitor device material.

  4. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device re-sponse of ~480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ~20 s and ~10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

  5. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    JIANG WeiFen; XIAO ShunHua; ZHANG HuanYun; DONG YongFen; LI XinJian

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device response of ~480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ~20 s and ~10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

  6. Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects

    Science.gov (United States)

    Han, Jin Kyu; Jeon, Do Hyun; Cho, Sam Yeon; Kang, Sin Wook; Yang, Sun A.; Bu, Sang Don; Myung, Sung; Lim, Jongsun; Choi, Moonkang; Lee, Minbaek; Lee, Min Ku

    2016-07-01

    We report the first attempt to prepare a flexoelectric nanogenerator consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes (mwCNT). Direct-grown piezoelectrics on mwCNTs are formed by a stirring and heating method using a Pb(Zr0.52Ti0.48)O3 (PZT)-mwCNT precursor solution. We studied the unit cell mismatch and strain distribution of epitaxial PZT nanoparticles, and found that lattice strain is relaxed along the growth direction. A PZT-mwCNT nanogenerator was found to produce a peak output voltage of 8.6 V and an output current of 47 nA when a force of 20 N is applied. Direct-grown piezoelectric nanogenerators generate a higher voltage and current than simple mixtures of PZT and CNTs resulting from the stronger connection between PZT crystals and mwCNTs and an enhanced flexoelectric effect caused by the strain gradient. These experiments represent a significant step toward the application of nanogenerators using piezoelectric nanocomposite materials.

  7. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet

    KAUST Repository

    Chetibi, Loubna

    2013-09-27

    Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others. © 2013 Springer Science+Business Media New York.

  8. Selective synthesis of double helices of carbon nanotube bundles grown on treated metallic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Sodi, Felipe; Iniguez-Rabago, Agustin; Rosas-Melendez, Samuel; Ballesteros-Villarreal, Monica [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prolongacion Paseo de la Reforma 880, Lomas de Santa Fe (Mexico); Vilatela, Juan J. [IMDEA Materials Institute, E.T.S. de Ingenieros de Caminos, Madrid (Spain); Reyes-Gutierrez, Lucio G.; Jimenez-Rodriguez, Jose A. [Ingenieria Industrial, Grupo JUMEX, Ecatepec de Morelos, Estado de Mexico (Mexico); Palacios, Eduardo [Lab. de Microscopia Electronica de Ultra Alta Resolucion, Instituto Mexicano del Petroleo, San Bartolo Atepehuacan (Mexico); Terrones, Mauricio [Department of Physics, Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA (United States); Research Center for Exotic Nanocarbons (JST), Shinshu University, Nagano (Japan)

    2012-12-15

    Double-helix microstructures consisting of two parallel strands of hundreds of multi-walled carbon nanotubes (MWCNTs) have been synthesized by chemical vapour deposition of ferrocene/toluene vapours on metal substrates. Growth of coiled carbon nanostructures with site selectivity is achieved by varying the duration of thermochemical pretreatment to deposit a layer of SiO{sub x} on the metallic substrate. Production of multibranched structures of MWCNTs converging in SiO{sub x} microstructure is also reported. In the abstract figure, panel (a) shows a coloured micrograph of a typical double-helix coiled microstructure of MWCNTs grown on SiO{sub x} covered steel substrate. Green and blue show each of the two individual strands of MWCNTs. Panel (b) is an amplification of a SiO{sub x} microparticle (white) on the tip of the double-stranded coil (green and blue). The microparticle guides the collective growth of hundreds of MWCNTs to form the coiled structure. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto graphene

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2014-03-01

    Highlights: • Graphene was grown on Cu foil by mobile thermal chemical vapor deposition system. • CNT was synthesized on graphene for RuO{sub 2} nanostructure growth by thermal chemical vapor deposition system. • The CNT growth location was fixed through the use of photolithography technique, thereby increasing the specific area. • RuO{sub 2} nanostructures were coated onto CNT bundle arrays through metal organic chemical vapor deposition, in order to utilize its pseudo capacitive property. - Abstract: In this study, graphene was used as a conductive substrate for vertically aligned carbon nanotube (CNT) bundle arrays growth, to be used as an electrode for electrochemical double layer capacitor (EDLC), as graphene and CNT exhibit good conductivity and excellent chemical stability. Both of them are composed of carbon, therefore making a superior adhesion between them. The configuration of bundle arrays provided a relatively higher specific surface area in contact with electrolyte, thereby resulting in demonstratively higher capacitance. Moreover, as the RuO{sub 2} nanostructures have good pseudocapacitance characteristics, they were coated onto vertically aligned CNT bundle arrays in order to effectively enhance the EDLC performances. The characteristics of CNT/graphene, CNT bundle/graphene, and RuO{sub 2}/CNT bundle/graphene electrodes were examined with the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Furthermore, their electrochemical properties were investigated by an electrochemical analyzer. The specific capacitances of CNT/graphene, CNT bundle/graphene, and RuO{sub 2}/CNT bundle/graphene were 4.64, 6.65, and 128.40 F/g at the scan rate of 0.01 V/s, respectively.

  10. Thermal stability of catalytically grown multi-walled carbon nanotubes observed in transmission electron microscopy

    DEFF Research Database (Denmark)

    Wang, Cheng-Yu; Liu, Chuan-Pu; Boothroyd, Chris

    2009-01-01

    The thermal stability of multi-walled carbon nanotubes (MWCNTs) was assessed in situ by transmission electron microscopy. Upon heating, Ni catalysts in MWC-NTs containing bamboo structures shrank from the tail due to evaporation, leading to additional bamboo formation and tube elongation at 800...

  11. Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Carbon nanotubes (CNTs) have unique chemical and physical properties. Herein, we report an XPS analysis of a forest of multiwalled CNTs using monochromatic Al Kα radiation. Survey scans show only one element: carbon. The carbon 1s peak is centered 284.5 eV. The C 1s envelope also shows the expected π → π* shake-up peak at ca. 291 eV. The valence band and carbon KVV Auger signals are presented. When patterned, the CNT forests can be used as a template for subsequent deposition of metal oxides to make thin layer chromatography plates.1-3

  12. Microwave Properties of Carbon Nanotubes Grown by Pyrolysis of Ethanol on Nickel Catalyst

    Directory of Open Access Journals (Sweden)

    V.V. Rodionov

    2014-07-01

    Full Text Available The efficiency of carbon nanotubes produced by CVD-method on a nickel catalyst at a protection from microwave radiation is shown. These data are confirmed by scanning electron microscopy, energy dispersive X-ray analysis and spectral analysis of the microwave radiation in the frequency range 26-40 GHz. The observed value of the transmission coefficient S21, up to – 42.7 dB, is in agreement with considered possible absorption mechanisms of electromagnetic wave energy in carbon nanoscale systems “CNT-nickel nanoparticles”. The application of carbon powder materials in shielding of electromagnetic radiation has been theoretically justified.

  13. Effect of acetylene flow rate on morphology and structure of carbon nanotube thick films grown by thermal chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    CAO Zhangyi; SUN Zhuo; GUO Pingsheng; CHEN Yiwei

    2007-01-01

    Carbon nanotube (CNT) films were grown on nickel foil substrates by thermal chemical vapor deposition (CVD) with acetylene and hydrogen as the precursors. The morphology and structure of CNTs depending on the acetylene flow rate were characterized by a scanning electron microscope (SEM),a transmission electron microscope (TEM) and a Raman spectrometer,respectively.The effect of acetylene flow rate on the morphology and structure of CNT films was investigated.By increasing the acetylene flow rate from 10 to 90 sccm (standard cubic centimeter perminute),the yield and the diameter of CNTs increase.Also, the defects and amorphous phase in CNT films increase with increasing acetylene flow rate.

  14. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  15. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles

    Institute of Scientific and Technical Information of China (English)

    Shu-Huei Hsieh; Jao-Jia Horng

    2007-01-01

    Carbon nanotubes (CNTs) were grown on the surface of microsized Al2O3 particles in CH4 atmosphere at 700 ℃ under the catalysis of Fe-Ni nanoparticles.The CNTs on Al2O3 were used for adsorbing Pb2+,Cu2+,and Cd2+ from the solution and the results were compared with active carbon powders,commercial carbon nanotubes,and Al2O3 particles.The as-grown CNTs/Al2O3 have demonstrated extraordinary absorption capacity with further treatment or oxidation,as well as hydrophilic ability that other CNTs lacked.The adsorption capacity of CNTs on Al2O3 is superior to other adsorbents and the preference order of adsorption on composite Al2O3 is Pb2+>Cu2+>Cd2+.It seemed that the adsorption of those Pb2+,Cu2+,and Cd2+ did not change the surface properties of composite particles.The adsorption behaviors of Pb2+,Cu2+,and Cd2+ by CNTs on Al2O3 match well with the Langmuir isothermal adsorption model and the second order kinetic model.The calculated saturation amount adsorbed by 1 g of CNTs on Al2O3 are 67.11,26.59,and 8.89 mg/g for Pb2+,Cu2+,and Cd2+ in single adsorption test,respectively.

  16. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate

    International Nuclear Information System (INIS)

    This paper presents a novel microelectrode arrays using high-temperature grown vertically aligned carbon nanotubes (CNTs) integrated on a flexible and biocompatible parylene substrate. A simple microfabrication process is proposed to unite the high quality vertical CNTs grown at high temperature with the heat sensitive parylene substrate in a highly controllable manner. Briefly, the CNTs electrode is encapsulated by two layers of parylene and the device is released using xenon difluoride (XeF2). The process is compatible with wafer-scale post complementary metal oxide semiconductor integration. Lower impedance and larger interfacial capacitance have been demonstrated using CNTs compared to a Pt electrode. The flexible CNT electrodes have been utilized for extracellular neuronal recording and stimulation in rats. The signal-to-noise ratio of the device is about 12.5. The threshold voltage for initiating action potential is about 0.5 V. (paper)

  17. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    OpenAIRE

    Singh, B. P.; Veena Choudhary; Parveen Saini; Mathur, R.B.

    2012-01-01

    In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale comp...

  18. Insights into chirality distributions of single-walled carbon nanotubes grown on different CoxMg1-xO solid solutions

    DEFF Research Database (Denmark)

    He, Maoshuai; Jiang, Hua; Kauppi, Inkeri;

    2014-01-01

    Low-temperature chemical vapor deposition (CVD) growth of single-walled carbon nanotubes (SWNTs) was achieved on two different types of Co xMg1-xO catalysts prepared by different techniques: atomic layer deposition (ALD) and impregnation. The chirality distribution of SWNTs grown on the ALD...

  19. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material

    International Nuclear Information System (INIS)

    We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT–G). Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT–G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT–G structure and p–n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT–G hybrids with the present technique could provide an efficient, novel route to device fabrication. (paper)

  20. Enhanced field emission from a nest array of multi-walled carbon nanotubes grown on a silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinjian; Jiang Weifen [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2007-02-14

    A large scale nest array of multi-walled carbon nanotubes (NACNT) was grown on a silicon nanoporous pillar array (Si-NPA) by thermal chemical vapour deposition. Field emission measurements showed that a current density of 6.8 mA cm{sup -2} was obtained at an electric field of 3.1 V {mu}m{sup -1}, with a turn-on field of 0.56 V {mu}m{sup -1}. The enhancement factor calculated according to the Fowler-Nordheim theory was {approx}25 000. This excellent field emission performance was attributed to the unique structure and morphology of NACNT/Si-NPA, especially the formation of NACNT, and the presence of numerous iron particles encapsulated in the CNTs. These results indicated that NACNT/Si-NPA might be an ideal candidate cathode for potential applications in flat panel displays.

  1. Enhanced field emission from a nest array of multi-walled carbon nanotubes grown on a silicon nanoporous pillar array

    Science.gov (United States)

    Li, Xin Jian; Jiang, Wei Fen

    2007-02-01

    A large scale nest array of multi-walled carbon nanotubes (NACNT) was grown on a silicon nanoporous pillar array (Si-NPA) by thermal chemical vapour deposition. Field emission measurements showed that a current density of 6.8 mA cm-2 was obtained at an electric field of 3.1 V µm-1, with a turn-on field of 0.56 V µm-1. The enhancement factor calculated according to the Fowler-Nordheim theory was ~25 000. This excellent field emission performance was attributed to the unique structure and morphology of NACNT/Si-NPA, especially the formation of NACNT, and the presence of numerous iron particles encapsulated in the CNTs. These results indicated that NACNT/Si-NPA might be an ideal candidate cathode for potential applications in flat panel displays.

  2. Electrochemical detection of uric acid using ruthenium-dioxide-coated carbon nanotube directly grown onto Si wafer

    Science.gov (United States)

    Shih, Yi-Ting; Lee, Kuei-Yi; Lin, Chung-Kuang

    2015-12-01

    Carbon nanotubes (CNTs) directly grown onto a Si substrate by thermal chemical vapor deposition were used in uric acid (UA) detection. The process is simple and formation is easy without the need for additional chemical treatments. However, CNTs lack selectivity and sensitivity to UA. To enhance the electrochemical analysis, ruthenium oxide was used as a catalytic mediator in the modification of electrodes. The electrochemical results show that RuO2 nanostructures coated onto CNTs can strengthen the UA signal. The peak currents of RuO2 nanostructures coated onto CNTs linearly increase with increasing UA concentration, meaning that they can work as electrodes for UA detection. The lowest detection limit and highest sensitivity were 55 nM and 4.36 µA/µM, respectively. Moreover, the characteristics of RuO2 nanostructures coated onto CNTs were examined by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy.

  3. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  4. On the Growth and Microstructure of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2010-01-01

    Full Text Available Abstract Carbon nanotubes (CNTs were deposited on various substrates namely untreated silicon and quartz, Fe-deposited silicon and quartz, HF-treated silicon, silicon nitride-deposited silicon, copper foil, and stainless steel mesh using thermal chemical vapor deposition technique. The optimum parameters for the growth and the microstructure of the synthesized CNTs on these substrates are described. The results show that the growth of CNTs is strongly influenced by the substrate used. Vertically aligned multi-walled CNTs were found on quartz, Fe-deposited silicon and quartz, untreated silicon, and on silicon nitride-deposited silicon substrates. On the other hand, spaghetti-type growth was observed on stainless steel mesh, and no CNT growth was observed on HF-treated silicon and copper. Silicon nitride-deposited silicon substrate proved to be a promising substrate for long vertically aligned CNTs of length 110–130 μm. We present a possible growth mechanism for vertically aligned and spaghetti-type growth of CNTs based on these results.

  5. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Science.gov (United States)

    Singh, B. P.; Choudhary, Veena; Saini, Parveen; Mathur, R. B.

    2012-06-01

    In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from -29.4 dB for CF/epoxy-composite to -51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  6. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  7. Enzyme biosensor based on plasma-polymerized film-covered carbon nanotube layer grown directly on a flat substrate.

    Science.gov (United States)

    Muguruma, Hitoshi; Hoshino, Tatsuya; Matsui, Yasunori

    2011-07-01

    We report a novel approach to fabrication of an amperometric biosensor with an enzyme, a plasma-polymerized film (PPF), and carbon nanotubes (CNTs). The CNTs were grown directly on an island-patterned Co/Ti/Cr layer on a glass substrate by microwave plasma enhanced chemical vapor deposition. The as-grown CNTs were subsequently treated by nitrogen plasma, which changed the surface from hydrophobic to hydrophilic in order to obtain an electrochemical contact between the CNTs and enzymes. A glucose oxidase (GOx) enzyme was then adsorbed onto the CNT surface and directly treated with acetonitrile plasma to overcoat the GOx layer with a PPF. This fabrication process provides a robust design of CNT-based enzyme biosensor, because of all processes are dry except the procedure for enzyme immobilization. The main novelty of the present methodology lies in the PPF and/or plasma processes. The optimized glucose biosensor revealed a high sensitivity of 38 μA mM(-1) cm(-2), a broad linear dynamic range of 0.25-19 mM (correlation coefficient of 0.994), selectivity toward an interferent (ascorbic acid), and a fast response time of 7 s. The background current was much smaller in magnitude than the current due to 10 mM glucose response. The low limit of detection was 34 μM (S/N = 3). All results strongly suggest that a plasma-polymerized process can provide a new platform for CNT-based biosensor design. PMID:21678995

  8. Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes

    Science.gov (United States)

    De Luca, A.; Cole, M. T.; Hopper, R. H.; Boual, S.; Warner, J. H.; Robertson, A. R.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Milne, W. I.

    2015-05-01

    In this letter, we present a fully complementary-metal-oxide-semiconductor (CMOS) compatible microelectromechanical system thermopile infrared (IR) detector employing vertically aligned multi-walled carbon nanotubes (CNT) as an advanced nano-engineered radiation absorbing material. The detector was fabricated using a commercial silicon-on-insulator (SOI) process with tungsten metallization, comprising a silicon thermopile and a tungsten resistive micro-heater, both embedded within a dielectric membrane formed by a deep-reactive ion etch following CMOS processing. In-situ CNT growth on the device was achieved by direct thermal chemical vapour deposition using the integrated micro-heater as a micro-reactor. The growth of the CNT absorption layer was verified through scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The functional effects of the nanostructured ad-layer were assessed by comparing CNT-coated thermopiles to uncoated thermopiles. Fourier transform IR spectroscopy showed that the radiation absorbing properties of the CNT adlayer significantly enhanced the absorptivity, compared with the uncoated thermopile, across the IR spectrum (3 μm-15.5 μm). This led to a four-fold amplification of the detected infrared signal (4.26 μm) in a CO2 non-dispersive-IR gas sensor system. The presence of the CNT layer was shown not to degrade the robustness of the uncoated devices, whilst the 50% modulation depth of the detector was only marginally reduced by 1.5 Hz. Moreover, we find that the 50% normalized absorption angular profile is subsequently more collimated by 8°. Our results demonstrate the viability of a CNT-based SOI CMOS IR sensor for low cost air quality monitoring.

  9. Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, A.; Cole, M. T.; Milne, W. I. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Hopper, R. H.; Boual, S.; Ali, S. Z. [Cambridge CMOS Sensors Ltd., Deanland House, 160 Cowley Road, Cambridge CB4 0DL (United Kingdom); Warner, J. H.; Robertson, A. R. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Udrea, F. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cambridge CMOS Sensors Ltd., Deanland House, 160 Cowley Road, Cambridge CB4 0DL (United Kingdom); Gardner, J. W. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-05-11

    In this letter, we present a fully complementary-metal-oxide-semiconductor (CMOS) compatible microelectromechanical system thermopile infrared (IR) detector employing vertically aligned multi-walled carbon nanotubes (CNT) as an advanced nano-engineered radiation absorbing material. The detector was fabricated using a commercial silicon-on-insulator (SOI) process with tungsten metallization, comprising a silicon thermopile and a tungsten resistive micro-heater, both embedded within a dielectric membrane formed by a deep-reactive ion etch following CMOS processing. In-situ CNT growth on the device was achieved by direct thermal chemical vapour deposition using the integrated micro-heater as a micro-reactor. The growth of the CNT absorption layer was verified through scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The functional effects of the nanostructured ad-layer were assessed by comparing CNT-coated thermopiles to uncoated thermopiles. Fourier transform IR spectroscopy showed that the radiation absorbing properties of the CNT adlayer significantly enhanced the absorptivity, compared with the uncoated thermopile, across the IR spectrum (3 μm–15.5 μm). This led to a four-fold amplification of the detected infrared signal (4.26 μm) in a CO{sub 2} non-dispersive-IR gas sensor system. The presence of the CNT layer was shown not to degrade the robustness of the uncoated devices, whilst the 50% modulation depth of the detector was only marginally reduced by 1.5 Hz. Moreover, we find that the 50% normalized absorption angular profile is subsequently more collimated by 8°. Our results demonstrate the viability of a CNT-based SOI CMOS IR sensor for low cost air quality monitoring.

  10. Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chang, Hsin-Yueh; Chang, Hsuan-Chen [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shih, Yi-Ting; Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Ciou, Chen-Hong [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Yi-Ling [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-03-15

    Highlights: • We have successfully designed the honeycomb patterns on glass substrate by photolithography technique. • Honeycomb-VACNTs were synthesized successfully onto glass substrate by using thermal CVD and covered different Ti films on VACNTs by e-beam evaporation. • After coating the Ti films, the current density reached 7 mA/cm{sup 2} when the electric field was 2.5 V/μm. • The fluorescence of VACNTs with Ti 15 nm films exhibits the high brightness screen and emission uniformity. -- Abstract: Carbon nanotubes (CNTs) were grown successfully onto a glass substrate using thermal chemical vapor deposition (TCVD) with C{sub 2}H{sub 2} gas at 700 °C. The synthesized CNTs exhibited good crystallinity and a vertically aligned morphology. The vertically aligned CNTs (VACNTs) were patterned with a honeycomb configuration using photolithography and characterized using field emission (FE) applications. Owing to the electric field concentration, the FE current density of VACNTs with honeycomb configuration was higher than that of the un-patterned VACNTs. Ti was coated onto the VACNT surface utilizing the relatively lower work function property to enhance the FE current density. The FE current density reached up to 7.0 mA/cm{sup 2} at an applied electric field of 2.5 V/μm. A fluorescent screen was monitored to demonstrate uniform FE VACNTs with a honeycomb configuration. The designed field emitter provided an admirable example for FE applications.

  11. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  12. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  13. Plumbing carbon nanotubes

    Science.gov (United States)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  14. Graphene-carbon nanotube hybrid materials and use as electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  15. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  16. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Science.gov (United States)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-01

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm2 at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O2) plasma for 5 min and again field emission characteristics were measured. The O2 plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm2 at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O2 plasma treatment and the findings are being reported in this paper.

  17. Applications of Carbon Nanotubes

    Science.gov (United States)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  18. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  19. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    Energy Technology Data Exchange (ETDEWEB)

    Boncel, Slawomir, E-mail: slawomir.boncel@polsl.pl [Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice (Poland); Koziol, Krzysztof K.K., E-mail: kk292@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge (United Kingdom)

    2014-05-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I{sub D}/I{sub G} ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs.

  20. Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process

    International Nuclear Information System (INIS)

    Nitrogen-doped carbon nanotube (CNT) films have been synthesized by simple microwave plasma enhanced chemical vapor deposition technique. The morphology and structures were investigated by scanning electron microscopy and high resolution transmission electron microscopy. Morphology of the films was found to be greatly affected by the nature of the substrates. Vertically aligned CNTs were observed on mirror polished Si substrates. On the other hand, randomly oriented flower like morphology of CNTs was found on mechanically polished ones. All the CNTs were found to have bamboo structure with very sharp tips. These films showed very good field emission characteristics with threshold field in the range of 2.65-3.55 V/μm. CNT film with flower like morphology showed lower threshold field as compared to vertically aligned structures. Open graphite edges on the side surface of the bamboo-shaped CNT are suggested to enhance the field emission characteristics which may act as additional emission sites

  1. Carbon nanotube macroelectronics

    Science.gov (United States)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  2. Energy Dissipation and the High-Strain Rate Dynamic Response of Vertically Aligned Carbon Nanotube Ensembles Grown on Silicon Wafer Substrate

    Directory of Open Access Journals (Sweden)

    P. Raju Mantena

    2013-01-01

    Full Text Available The dynamic mechanical behavior and high-strain rate response characteristics of a functionally graded material (FGM system consisting of vertically aligned carbon nanotube ensembles grown on silicon wafer substrate (VACNT-Si are presented. Flexural rigidity (storage modulus and loss factor (damping were measured with a dynamic mechanical analyzer in an oscillatory three-point bending mode. It was found that the functionally graded VACNT-Si exhibited significantly higher damping without sacrificing flexural rigidity. A Split-Hopkinson pressure bar (SHPB was used for determining the system response under high-strain rate compressive loading. Combination of a soft and flexible VACNT forest layer over the hard silicon substrate presented novel challenges for SHPB testing. It was observed that VACNT-Si specimens showed a large increase in the specific energy absorption over a pure Si wafer.

  3. Conducting carbonized polyaniline nanotubes

    Science.gov (United States)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  4. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  5. FLUIDIZATION OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    Fei Wei; Cang Huang; Yao Wang

    2005-01-01

    Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.

  6. Carbon nanotubes: Fibrillar pharmacology

    Science.gov (United States)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  7. Carbon Nanotube Paper-Based Electroanalytical Devices

    OpenAIRE

    Youngmi Koo; Vesselin N. Shanov; Yeoheung Yun

    2016-01-01

    Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The de...

  8. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core-Shell Hybrid for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Yesi, Yesi; Shown, Indrajit; Ganguly, Abhijit; Ngo, Trung Truc; Chen, Li-Chyong; Chen, Kuei-Hsien

    2016-02-19

    A hierarchical carbon nanotube-polypyrrole (CNT-PPy) core-shell composite was fabricated by growing CNTs directly on carbon cloth (CC) as a skeleton followed by electropolymerization of PPy with controlled polymerization time. Direct fabrication of electroactive (CNT-PPy) materials on the flexible CC electrode could reduce the interfacial resistance between the electrode and electrolyte and improve the ion diffusion. The supercapacitor electrode based on optimized PPy/CNT-CC exhibits excellent electrochemical performance, with the highest gravimetric capacitance being roughly 1038 F g(-1) per active mass of PPy and up to 486.1 F g(-1) per active mass of the PPy/CNT composite. Notably, excellent flexibility and cycle stability up to 10 000 cycles with only 18 % capacitance loss was achieved. At the same time, the fabricated asymmetric supercapacitor (PPy/CNT-CC∥CNT-CC) shows the maximum power density of 10 962 W kg(-1) at an energy density of 3.9 Wh kg(-1) under the operating potential of 1.4 V. The overall high cycle stability and high performance of the fabricated PPy/CNT-CC flexible electrode is due to the novel binder-free direct growth process. PMID:26791424

  9. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  10. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  11. Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption

    Directory of Open Access Journals (Sweden)

    Petra Majzlíková

    2015-01-01

    Full Text Available Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 µm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‑modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures.

  12. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  13. Carbon nanotube junctions and devices

    NARCIS (Netherlands)

    Postma, H.W.Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconduct

  14. An excellent cycle performance of asymmetric supercapacitor based on bristles like α-MnO2 nanoparticles grown on multiwalled carbon nanotubes

    Science.gov (United States)

    Vinny, R. T.; Chaitra, K.; Venkatesh, Krishna; Nagaraju, N.; Kathyayini, N.

    2016-03-01

    Manganese oxide nanoparticles were grown on multiwalled carbon nanotubes (MWCNT) by a simple and cost effective reduction of KMnO4. Characterization of the material revealed the formation of α-MnO2 nanoparticles wound around MWCNT. This nanocomposite of α-MnO2/MWCNT was investigated for its hybrid supercapacitor performance in a three electrode system and exhibited a specific capacitance (Cs) of 255 F g-1 at a scan rate of 2 mV s-1. Further, an asymmetric supercapacitor (AS) device was designed using α-MnO2/MWCNT as positive electrode and activated carbon as negative electrode. The device showed Cs of 99.7 F g-1 at a scan rate of 1 mV s-1 in a wide potential window of 0-2 V in 1 M Na2SO4. The device also exhibited a high energy density of 26.3 Wh kg-1 with a maximum power density of 29.4 kW kg-1. Highlight of this work is that the device when subjected to 20,000 charge-discharge cycles at a high current density of 50 A g-1 retained 77% of its initial Cs. The AS device was efficiently used as power source to light four red LEDs arranged in parallel for about 12 min after charging the device for 30 s at a current density of 1 A g-1.

  15. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  16. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  17. Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil.

    Science.gov (United States)

    Cano, Amanda M; Kohl, Kristina; Deleon, Sabrina; Payton, Paxton; Irin, Fahmida; Saed, Mohammad; Shah, Smit Alkesh; Green, Micah J; Cañas-Carrell, Jaclyn E

    2016-06-01

    Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d. In Study 1, corn was exposed to various SWNT concentrations (0, 10, and 100 mg/kg) with different functionalities (non-functionalized, OH-functionalized, or surfactant stabilized). A microwave induced heating method was used to determine SWNTs accumulated mostly in roots (0-24 μg/g), with minimal accumulation in stems and leaves (2-10 μg/g) with a limit of detection at 0.1 μg/g. Uptake was not functional group dependent. In Study 2, corn was exposed to 10 mg/kg SWNTs (non-functionalized or COOH-functionalized) under optimally grown or water deficit conditions. Plant physiological stress was determined by the measurement of photosynthetic rate throughout Study 2. No significant differences were seen between control and SWNT treatments. Considering the amount of SWNTs accumulated in corn roots, further studies are needed to address the potential for SWNTs to enter root crop species (i.e., carrots), which could present a significant pathway for human dietary exposure. PMID:26966810

  18. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays.

    Science.gov (United States)

    Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter

    2016-01-01

    Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue. PMID:27200182

  19. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Sandra Johnen

    2016-01-01

    Full Text Available Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT, used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe or mixtures of iron-platinum (Fe-Pt and iron-titanium (Fe-Ti acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28 cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue.

  20. Carbon Nanotube Purification and Functionalization

    Science.gov (United States)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  1. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  2. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  3. Carbon nanotube IR detectors (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  4. Experimental and thermochemical evaluation of induction thermal plasma grown single-walled carbon nanotube synthesized by commercial carbon blacks with different sulfur contents

    Energy Technology Data Exchange (ETDEWEB)

    Hekmat-Ardakan, Alireza, E-mail: A.Hekmat@USherbrooke.ca; Alinejad, Yasaman, E-mail: Yasaman.Alinejad@USherbrooke.ca; Shahverdi, Ali, E-mail: Ali.Shahverdi@USherbrooke.ca; Soucy, Gervais, E-mail: Gervais.Soucy@USherbrooke.ca

    2013-08-10

    Highlights: • Synthesize of SWCNTs was carried out with different commercial carbon blacks. • Sulfur content in carbon black affected the quality of plasma grown SWCNTs product. • Increasing sulfur, up to 2 wt%, will improve the quality of SWCNT. • Thermodynamic model relates the quality of SWCNT to the formation of Y{sub 2}S{sub 3} and YS. • Reduction in quality is observed for the sample with 2.5 wt% sulfur. - Abstract: The structural quality of induction thermal plasma grown-SWCNTs synthesized through the injection of five different powder mixtures containing {sub 87.2} commercial carbon black/{sub 2.6}Ni/{sub 2.6}Co/{sub 7.6}Y{sub 2}O{sub 3} (wt%) with variable sulfur content of 0.02, 0.6, 1.1, 2 and 2.5 (wt%) in carbon black was investigated using Raman spectroscopy. The results showed an increase in G/D intensity ratio with sulfur content up to 2.0% implying higher structural quality of SWCNTs followed by reduction of intensity with 2.5%. The equilibrium composition of the mixtures as a function of temperature calculated using FactSage thermo-chemical software revealed a lower end temperature of total gas phase as a result of the sulfur addition and the heat related to the formation of Y{sub 2}S{sub 3} solid phase which eventually increases the structural quality of SWCNTs. However, the higher amount of dissolved sulfur in the liquid solution of metallic catalysts for the mixture with 2.5% sulfur can results in the poisoning effect.

  5. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  6. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  7. Teslaphoresis of Carbon Nanotubes.

    Science.gov (United States)

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  8. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  9. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    nanotubes are very interesting for integration in especially microfluidic devices, because they can readily be grown on planar substrates by means of chemical vapour deposition. In this way the cumbersome process of packing of the stationary phase in the finished microfluidic channels is avoided and the CNT...... surface can furthermore be used directly as a stationary phase in reverse-phase separations, thereby avoiding subsequent functionalization of the nanostructures. This significantly reduces the fabrication time and possibly also increases the reproducibility of the column performance. In this presentation......, microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis...

  10. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  11. Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes.

    Science.gov (United States)

    Hofmann, Matthias S; Noé, Jonathan; Kneer, Alexander; Crochet, Jared J; Högele, Alexander

    2016-05-11

    We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes. PMID:27105355

  12. Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes.

    Science.gov (United States)

    Hofmann, Matthias S; Noé, Jonathan; Kneer, Alexander; Crochet, Jared J; Högele, Alexander

    2016-05-11

    We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes.

  13. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  14. Method for synthesizing carbon nanotubes

    Science.gov (United States)

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  15. Increased Alignment in Carbon Nanotube Growth

    Science.gov (United States)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  16. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  17. Carbon nanotube biconvex microcavities

    Science.gov (United States)

    Butt, Haider; Yetisen, Ali K.; Ahmed, Rajib; Yun, Seok Hyun; Dai, Qing

    2015-03-01

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2-3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  18. Carbon nanotube optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  19. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  20. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  1. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  2. Carbon Nanotube Electron Emitter for X-ray Imaging

    Directory of Open Access Journals (Sweden)

    Jung Su Kang

    2012-11-01

    Full Text Available The carbon nanotube field emitter array was grown on silicon substrate through a resist-assisted patterning (RAP process. The shape of the carbon nanotube array is elliptical with 2.0 × 0.5 mm2 for an isotropic focal spot size at anode target. The field emission properties with triode electrodes show a gate turn-on field of 3 V/µm at an anode emission current of 0.1 mA. The author demonstrated the X-ray source with triode electrode structure utilizing the carbon nanotube emitter, and the transmitted X-ray image was of high resolution.

  3. Carbon Nanotube Electron Emitter for X-ray Imaging

    OpenAIRE

    Jung Su Kang; Je Hwang Ryu; Kyu Chang Park

    2012-01-01

    The carbon nanotube field emitter array was grown on silicon substrate through a resist-assisted patterning (RAP) process. The shape of the carbon nanotube array is elliptical with 2.0 × 0.5 mm2 for an isotropic focal spot size at anode target. The field emission properties with triode electrodes show a gate turn-on field of 3 V/µm at an anode emission current of 0.1 mA. The author demonstrated the X-ray source with triode electrode structure utilizing the carbon nanotube em...

  4. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  5. Carbon nanotubes for coherent spintronics

    Directory of Open Access Journals (Sweden)

    F. Kuemmeth

    2010-03-01

    Full Text Available Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications.

  6. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  7. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  8. Carbon nanotube computer.

    Science.gov (United States)

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  9. Carbon Nanotube Purification

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)

    2005-01-01

    A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.

  10. Growth of carbon nanotubes on carbon fibers without strength degradation

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Niels [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Magrez, Arnaud; Forro, Laszlo [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Couteau, Edina; Locquet, Jean-Pierre [Laboratory of Solid-State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Seo, Jin Won [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2012-12-15

    Carbon nanotubes (CNTs) are grown on PAN-based carbon fibers by means of catalytic chemical vapor deposition technique. By using catalytic thermal decomposition of hydrocarbon, CNTs can be grown in the temperature range of 650-750 C. However, carbon fibers suffer significant damages resulting in decrease of initial tensile strength. By applying the oxidative dehydrogenation reaction of C{sub 2}H{sub 2} with CO{sub 2}, we found an alternative way to grow CNTs on carbon fibers at low temperatures, such as 500 C. Scanning electron microscope results combined with single fiber tests indicate that this low temperature growth enables homogeneous grafting of CNTs onto carbon fibers without degradation of tensile strength. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  12. Kondo physics in carbon nanotubes

    OpenAIRE

    Nygard, Jesper; Cobden, David Henry; Lindelof, Poul Erik

    2000-01-01

    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo ph...

  13. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  14. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  15. Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by III–V molecular beam epitaxy

    DEFF Research Database (Denmark)

    Stobbe, Søren; Lindelof, P. E.; Nygård, J.

    2006-01-01

    on incorporation of singlewall nanotubes in III–V semiconductor heterostructures grown by molecular beam epitaxy (MBE). We demonstrate that singlewall carbon nanotubes can be overgrown using MBE; electrical contacts to the nanotubes are obtained by GaMnAs grown at 250 °C. The resulting devices can exhibit field...

  16. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  17. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  18. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  19. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  20. Hybrid carbon fiber/carbon nanotube composites for structural damping applications

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using catalytic chemical vapor deposition (CCVD). The woven graphite fabrics were thermally shielded with a thin film of SiO2 and CNTs were grown on top of this film. Raman spectroscopy and electron microscopy revealed the grown species to be multi-walled carbon nanotubes (MWCNTs). The damping performance of the hybrid CNT–carbon fiber-reinforced epoxy composite was examined using dynamic mechanical analysis (DMA). Mechanical testing confirmed that the degradations in the strength and stiffness as a result of the GSD process are far less than those encountered through using the CCVD technique and yet are negligible compared to the reference samples. The DMA results indicated that, despite the minimal degradation in the storage modulus, the loss tangent (damping) for the hybrid composites utilizing GSD-grown MWCNTs improved by 56% compared to the reference samples (based on raw carbon fibers with no surface treatment or surface grown carbon nanotubes) over the frequency range 1–60 Hz. These results indicated that the energy dissipation in the GSD-grown MWCNTs composite can be primarily attributed to the frictional sliding at the nanotube/epoxy interface and to a lesser extent to the stiff thermal shielding SiO2 film on the fiber/matrix interface. (paper)

  1. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  2. Single-Walled Carbon Nanotubes for Flexible Electronics and Sensors

    Institute of Scientific and Technical Information of China (English)

    Xiuyun SUN; Yugang SUN

    2008-01-01

    This article reviews the use of electronic quality single-walled carbon nanotubes grown via chemical vapor deposition (CVD) approaches at high temperatures as building blocks for fabricating flexible field-effect devices, such as thin-film transistors (TFTs) and chemical sensors. Dry transfer printing technique is developed for forming films of CVD nanotubes on low-temperature plastic substrates. Examples of TFTs with the use of nanotubes and thin dielectrics and hydrogen sensors with the use of nanotubes decorated with palladium nanoparticles are discussed in detail to demonstrate the promising potentiality of single-walled carbon nanotubes for building high performance flexible devices, which can find applications where traditional devices on rigid substrates are not suitable.

  3. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  4. Gears Based on Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  5. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two....... In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli...

  6. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  7. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  8. Ferroelectric–carbon nanotube memory devices

    International Nuclear Information System (INIS)

    One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNT–inorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Low–loss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Current–voltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectric–carbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. (paper)

  9. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  10. Carbon nanotube suspensions, dispersions, & composites

    Science.gov (United States)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  11. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ram Pavani

    2011-07-01

    Full Text Available Carbon nanotubes (CNTs are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Functionalized carbon nanotubes can also act as vaccine delivery systems.Carbon nanotubes (CNTs are considered to be one of the innovative resources in nanotechnology with possible use in wide range of biomedical applications viz. cancer treatment, bioengineering, cardiac autonomic regulation, platelet activation and tissue regeneration. The effect of CNTs on cells and tissues are extremely important for their use in various complex biological systems. With the increasing interest shown by the nanotechnology research community in this field, it is expected that plenty of applications of CNTs will be explored in future.

  12. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  13. Exciton diffusion in air-suspended single-walled carbon nanotubes

    OpenAIRE

    Moritsubo, S.; Murai, T.; Shimada, T; Murakami, Y.; Chiashi, S.; Maruyama, S.; Kato, Y. K.

    2010-01-01

    Direct measurements of the diffusion length of excitons in air-suspended single-walled carbon nanotubes are reported. Photoluminescence microscopy is used to identify individual nanotubes and to determine their lengths and chiral indices. Exciton diffusion length is obtained by comparing the dependence of photoluminescence intensity on the nanotube length to numerical solutions of diffusion equations. We find that the diffusion length in these clean, as-grown nanotubes is significantly longer...

  14. Exciton Diffusion in Air-Suspended Single-Walled Carbon Nanotubes

    OpenAIRE

    Moritsubo, S.; Murai, T.; Shimada, T; Murakami, Y.; Chiashi, S.; Maruyama, S.; Kato, Y. K.

    2010-01-01

    Direct measurements of the diffusion length of excitons in air-suspended single-walled carbon nanotubes are reported. Photoluminescence microscopy is used to identify individual nanotubes and to determine their lengths and chiral indices. Exciton diffusion length is obtained by comparing the dependence of photoluminescence intensity on the nanotube length to numerical solutions of diffusion equations. We find that the diffusion length in these clean, as-grown nanotubes is significantly longer...

  15. Electrical Insulation Of Carbon Nanotube Separation Columns For Microchip Electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Chen, Miaoxiang Max; Mølhave, Kristian;

    2011-01-01

    Carbon nanotubes (CNT) have been grown in microfluidic glass channels for chemical analysis based on electrokinetic separations. A limitation of CNTs for this type of application is their high conductivity, which prevent them from being used for electroosmotic pumping with electrical field streng...

  16. Integrating Carbon Nanotubes into Microfluidic Chip for Separating Biochemical Compounds

    DEFF Research Database (Denmark)

    Chen, Miaoxiang Max; Mogensen, Klaus Bo; Bøggild, Peter;

    2012-01-01

    We present a new type of device to separate biochemical compounds wherein carbon nanotubes (CNTs) are integrated as chromatographic stationary phase. The CNTs were directly grown on the bottom of microfluidic channels on Si/SiO2 substrates by chemical vapor deposition (CVD). Acetylene was used as...

  17. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E.; Engelhard, Mark H.; Wang, Chong M.; Zhang, Jiguang

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCO catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire

  18. Direct measurement of resistance of multiwalled carbon nanotubes using micro four-point probes

    DEFF Research Database (Denmark)

    Dohn, Søren; Mølhave, Kristian; Bøggild, Peter

    2005-01-01

    The electrical properties of multiwalled carbon nanotubes was investigated by micro four point probes, fabricated using conventional silicon microfabrication techniques. After positioning of chemical vapour deposition-grown multi-walled carbon nanotubes on a SiO2 substrate, the two- or four...

  19. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  20. From carbon nanotubes to carbon atomic chains

    Science.gov (United States)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  1. Bloch oscillations in carbon nanotubes.

    Science.gov (United States)

    Jódar, Esther; Pérez-Garrido, Antonio; Rojas, Fernando

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case.

  2. Roping and wrapping carbon nanotubes

    Science.gov (United States)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  3. Spectroscopy of Individual Single-Walled Carbon Nanotubes and their Synthesis via Chemical Vapor Deposition

    OpenAIRE

    Kiowski, Oliver

    2008-01-01

    A chemical vapor deposition (CVD) reactor was designed, built and used to grow vertically and horizontally aligned carbon nanotube arrays. The as-grown nanotubes were investigated on a single tube level using nearinfrared photoluminescence (PL) microscopy as well as Raman, atomic force and scanning electron microscopy (SEM). For photoluminescence excitation (PLE) spectroscopy of individual, semiconducting single-walled carbon nanotubes (SWNTs), a specialized PL set-up was constructed.

  4. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    Science.gov (United States)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  5. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is a method of depositing islands of catalyst with a predetermined density, wherein in said method comprises the steps of: obtaining a diffusion barrier covered nano patterned surface comprising a plurality of plateaus, having a density of plateaus dependent on the predetermined density...... patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  6. Different Technical Applications of Carbon Nanotubes

    OpenAIRE

    Abdalla, S; Al-Marzouki, F.; Ahmed A. Al-Ghamdi; Abdel-Daiem, A.

    2015-01-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc....

  7. Carbon Nanotubes and Related Structures

    Directory of Open Access Journals (Sweden)

    Kingsuk Mukhopadhyay

    2008-07-01

    Full Text Available Carbon nanotubes have attracted the fancy of many scientists world wide. The small dimensions,strength, and the remarkable physical properties of these structures make them a unique material with a whole range of promising applications. In this review, the structural aspects, the advantages and disadvantages of different for their procedures synthesis, the qualitative and quantitative estimation of carbon nanotubes by different analytical techniques, the present status on their applications as well as the current challenges faced in the application field, national, in particular DRDO, DMSRDE status, and interest in this field, have been discussed.Defence Science Journal, 2008, 58(4, pp.437-450, DOI:http://dx.doi.org/10.14429/dsj.58.1666

  8. Ballistic Fracturing of Carbon Nanotubes.

    Science.gov (United States)

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  9. Photoluminescence Study of Carbon Nanotubes

    OpenAIRE

    Han, H. X.; Li, G. H.; Ge, W. K.; Wang, Z. P.; Xu, Z. Y.; Xie, S. S.; Chang, B H; Sun, L. F.; Wang, B S; G. Xu; Su, Z.B.

    2000-01-01

    ultiwalled carbon nanotubes, prepared by both electric arc discharge and chemical vapor deposition methods, show a strong visible light emission in photoluminescence experiments. All the samples employed in the experiments exhibit nearly same super-linear intensity dependence of the emission bands on the excitation intensity, and negligible temperature dependence of the central position and the line shapes of the emission bands. Based upon theoretical analysis of the electronic band structure...

  10. Photonics based on carbon nanotubes

    OpenAIRE

    Gu, Qingyuan; Gicquel-Guézo, Maud; Loualiche, Slimane; Pouliquen, Julie Le; Batte, Thomas; Folliot, Hervé; Dehaese, Olivier; Grillot, Frederic; Battie, Yann; Loiseau, Annick; Liang, Baolai; Huffaker, Diana

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the effi...

  11. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2015-12-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  12. Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same

    Science.gov (United States)

    Kaul, Anupama B. (Inventor); Wong, Eric W. (Inventor); Baron, Richard L. (Inventor); Epp, Larry (Inventor)

    2008-01-01

    Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.

  13. Carbon nanotube based NEMS actuators and sensors

    Science.gov (United States)

    Forney, Michael; Poler, Jordan

    2011-03-01

    Single-walled carbon nanotubes (SWNTs) have been widely studied due to superior mechanical and electrical properties. We have grown vertically aligned SWNTs (VA-SWNTs) onto microcantilever (MC) arrays, which provides an architecture for novel actuators and sensors. Raman spectroscopy confirms that the CVD-grown nanotubes are SWNTs and SEM confirms aligned growth. As an actuator, this hybrid MC/VA-SWNT system can be electrostatically modulated. SWNTs are excellent electron acceptors, so we can charge up the VA-SWNT array by applying a voltage. The electrostatic repulsion among the charged SWNTs provides a surface stress that induces MC deflection. Simulation results show that a few electrons per SWNT are needed for measureable deflections, and experimental actuators are being characterized by SEM, Raman, and an AFM optical lever system. The applied voltage is sinusoidally modulated, and deflection is measured with a lock-in amplifier. These actuators could be used for nano-manipulation, release of drugs from a capsule, or nano-valves. As a sensor, this MC/VA-SWNT system offers an improved sensitivity for chemical and bio-sensing compared to surface functionalized MC-based sensors. Those sensors only have a 2D sensing surface, but a MC/VA-SWNT system has significantly more sensing surface because the VA-SWNTs extend microns off the MC surface.

  14. LDRD final report on carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, P.A.; Rand, P.B.

    1997-04-01

    Carbon nanotubes and their composites were examined using computational and experimental techniques in order to modify the mechanical and electrical properties of resins. Single walled nanotubes were the focus of the first year effort; however, sufficient quantities of high purity single walled nanotubes could not be obtained for mechanical property investigations. The unusually high electrical conductivity of composites loaded with <1% of multiwalled nanotubes is useful, and is the focus of continuing, externally funded, research.

  15. Engineering carbon nanotubes and nanotube circuits using electrical breakdown.

    Science.gov (United States)

    Collins, P G; Arnold, M S; Avouris, P

    2001-04-27

    Carbon nanotubes display either metallic or semiconducting properties. Both large, multiwalled nanotubes (MWNTs), with many concentric carbon shells, and bundles or "ropes" of aligned single-walled nanotubes (SWNTs), are complex composite conductors that incorporate many weakly coupled nanotubes that each have a different electronic structure. Here we demonstrate a simple and reliable method for selectively removing single carbon shells from MWNTs and SWNT ropes to tailor the properties of these composite nanotubes. We can remove shells of MWNTs stepwise and individually characterize the different shells. By choosing among the shells, we can convert a MWNT into either a metallic or a semiconducting conductor, as well as directly address the issue of multiple-shell transport. With SWNT ropes, similar selectivity allows us to generate entire arrays of nanoscale field-effect transistors based solely on the fraction of semiconducting SWNTs.

  16. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  17. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also...... the potential of distinguishing between nanotubes of different electrical properties, which is very important for the optimisation of the properties of the carbon nanotube sensors. Various cantilever and planar structures were designed, fabricated and tested both with multi-walled and single-walled carbon...

  18. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  19. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  20. A Tunable Carbon Nanotube Oscillator

    Science.gov (United States)

    Sazonova, Vera

    2005-03-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. Carbon nanotubes (NT) are perhaps the ultimate material for realizing a NEMS device as they are the stiffest material known, have low density, ultrasmall cross sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus is able to sense its own motion. Here, we report the electrical actuation and detection of the guitar-string oscillation modes of doubly-clamped NT oscillators. We observed resonance frequencies in the 5MHz to 150MHz range with quality factors in the 50 to 100 range. We showed that the resonance frequencies can be widely tuned by a gate voltage. We also report on the temperature dependence of the quality factor and present a discussion of possible loss mechanisms.

  1. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  2. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  3. Functional Materials based on Carbon Nanotubes

    OpenAIRE

    Jung, Adrian Thomas

    2007-01-01

    Carbon nanotubes, no matter if they are single-walled or multi-walled, are an integral component in the vastly growing field of nanotechnology. Since their discovery by TEM and the invention of numerous large-scale production techniques, nanotubes are close to making their way into industrial products. Although many properties and modification processes are still under intensive research, the first real-market applications for carbon nanotubes have already been presented. However, if function...

  4. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  5. Polymer Self-assembly on Carbon Nanotubes

    Science.gov (United States)

    Giulianini, Michele; Motta, Nunzio

    This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV-Vis and Raman), we show how the polymer's higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT π-π stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

  6. Suspended carbon nanotubes coupled to superconducting circuits

    NARCIS (Netherlands)

    Schneider, B.H.

    2014-01-01

    Carbon nanotubes are unique candidates to study quantum mechanical properties of a nanomechanical resonator. However to access this quantum regime, present detectors are not yet sensitive enough. In this thesis we couple a carbon nanotube CNT mechanical resonator to a superconducting circuit which i

  7. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  8. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  9. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  10. Computational Aspects of Carbon and Boron Nanotubes

    Directory of Open Access Journals (Sweden)

    Paul Manuel

    2010-11-01

    Full Text Available Carbon hexagonal nanotubes, boron triangular nanotubes and boron a-nanotubes are a few popular nano structures. Computational researchers look at these structures as graphs where each atom is a node and an atomic bond is an edge. While researchers are discussing the differences among the three nanotubes, we identify the topological and structural similarities among them. We show that the three nanotubes have the same maximum independent set and their matching ratios are independent of the number of columns. In addition, we illustrate that they also have similar underlying broadcasting spanning tree and identical communication behavior.

  11. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  12. All-Carbon Electrode Consisting of Carbon Nanotubes on Graphite Foil for Flexible Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Je-Hwang Ryu

    2014-03-01

    Full Text Available We demonstrate the fabrication of an all-carbon electrode by plasma-enhanced chemical vapor deposition for use in flexible electrochemical applications. The electrode is composed of vertically aligned carbon nanotubes that are grown directly on a flexible graphite foil. Being all-carbon, the simple fabrication process and the excellent electrochemical characteristics present an approach through which high-performance, highly-stable and cost-effective electrochemical applications can be achieved.

  13. Growing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yoshinori Ando

    2004-10-01

    Full Text Available The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the subsequent discovery of ‘carbon nanotubes’ (CNTs, the elongated fullerene added a new dimension to the knowledge of technology2;. Today, ‘nanotechnology’ is a hot topic attracting scientists, industrialists, journalists, governments, and even the general public. Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc. at that length scale. CNTs are supposed to be a key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

  14. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  15. 碳纳米管/硅纳米孔柱阵列的场发射性能%Field Emission Properties of Multi-walled Carbon Nanotubes Grown on Silicon Nanoporous Pillar Array

    Institute of Scientific and Technical Information of China (English)

    姜卫粉; 李隆玉; 肖顺华; 杨晓辉; 贾敏; 李新建

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on a silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Surface morphologies and microstructure of the resultant were studied by a field emission scanning electron microscope, Raman spectrum, transmission electron microscope, and highresolution transmission electron microscopy. The composition of samples was determined by energy dispersive X-ray spectroscopy (EDS). The results showed that a great deal of CNTs, with diameter in the range of 20-70 nm, incorporated with Si-NPA and a large scale nest array of CNTs/Si-NPA (NACNT/Si-NPA)was formed. EDS analysis showed that the composition of carbon nanotubes was carbon. Field emission measurements showed that a current density of 5 mA/cm2 was obtained at an electric field of 4.26 V/μm, with a turn-on field of 1.3 V/μm. The enhancement factor calculated according to the Fowler-Nordheim theory was ~11,000. This excellent field emission performance is attributed to the unique structure and morphology of NACNT/Si-NPA, especially the formation of a nest-shaped carbon nanotube array. A schematic drawing that illustrates the experimental configuration is given. These results indicate that NACNT/Si-NPA might be an ideal candidate cathode for potential applications in flat panel displays.%通过热化学气相沉积的方法将碳纳米管生长到硅纳米孔柱阵列衬底上.采用场发射扫描电子显微镜、透射电子显微镜、高分辨透射电子显微镜、拉曼光谱和X射线能谱对所制备的样品形貌、组成进行了分析.分析结果发现,所制备产物为一种具有面积大、准周期性的碳纳米管/硅巢状阵列复合结构.能谱分析表明碳纳米管仅含有碳元素.对样品进行场发射性能测试表明该结构开启电压为1.3 V/μm,当外加电压为4.26 V/μm,发射电流为5 mA/cm2.由FN公式计算相应的场增强因子约为1.1×104.碳纳米管/硅纳米孔柱阵列好的场发射性能

  16. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  17. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  18. Purification of carbon nanotube by wet oxidation; Shisshiki sanka ni yoru carbon nanotube no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan)

    1997-07-10

    In order to efficiently recover carbon nanotubes, the purification method by wet oxidation with orthoperiodic acid and perchloric acid is investigated. The reactivity of the carbonaceous material toward the acids depends on the type of carbon. Carbon nanotubes are selectively recovered under the mild oxidation conditions. The degree of purification depends on the concentration of orthoperiodic acid. It is suggested that wet oxidation is an effective method for purification of carbon nanotubes. 17 refs., 6 figs.

  19. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m2/g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  20. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  1. Thermal Conductivity of Chirality-Sorted Carbon Nanotube Networks

    OpenAIRE

    Lian, Feifei; Llinas, Juan P.; Li, Zuanyi; Estrada, David; Pop, Eric

    2016-01-01

    The thermal properties of single-walled carbon nanotubes (SWNTs) are of significant interest, yet their dependence on SWNT chirality has been, until now, not explored experimentally. Here we used electrical heating and infrared thermal imaging to simultaneously study thermal and electrical transport in chirality-sorted SWNT networks. We examined solution processed 90% semiconducting, 90% metallic, purified unsorted (66% semiconducting), and as-grown HiPco SWNT films. The thermal conductivitie...

  2. Origin of structural defects in multiwall carbon nanotube

    OpenAIRE

    Hembram, K.P.S.S.; Rao, G. Mohan

    2012-01-01

    We investigate the walls of the defective multiwall carbon nanotube (MWCNT), and give possible mechanism for the formation of defective structure. A generalized model has been proposed for the MWCNT. which consists of (a) catalyst part, (b) embryo part and (c) full grown part. We claim that the weak embryo portion of the MWCNT, is structurally undeveloped. The stress due to pressure imbalance between inside and outside of the MWCNT during growth along with axial load at the embryo portion cau...

  3. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  4. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels;

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties...... of nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  5. Ordered phases of cesium in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-10-15

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  6. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  7. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  8. Microcapsule carbon nanotube devices for therapeutic applications

    Science.gov (United States)

    Kulamarva, Arun; Raja, Pavan M. V.; Bhathena, Jasmine; Chen, Hongmei; Talapatra, Saikat; Ajayan, Pulickel M.; Nalamasu, Omkaram; Prakash, Satya

    2009-01-01

    Carbon nanotubes are a new class of nanomaterials that have immense potential in the field of biomedicine. Their ability to carry large quantities of therapeutic molecules makes them prime candidates for providing targeted delivery of therapeutics for use in various diseases. However, their utility is limited due to the problems faced during their delivery to target sites. This article for the first time describes the design of a novel microcapsule carbon nanotube targeted delivery device. This device has potential in the targeted delivery of carbon nanotubes in suitable membranes along with their cargo, safely and effectively to the target loci.

  9. Defect-Free Carbon Nanotube Coils.

    Science.gov (United States)

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  10. Methods for preparation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rakov, Eduard G [D.I. Mendeleev Russian University of Chemical Technology, Moscow (Russian Federation)

    2000-01-31

    The most important methods of synthesis and purification of carbon nanotubes, a new form of material, are described. The prospects for increasing the scale of preparation processes and for more extensive application of nanotubes are evaluated. The bibliography includes 282 references.

  11. Charge Screening Effect in Metallic Carbon Nanotubes

    OpenAIRE

    Sasaki, K

    2001-01-01

    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.

  12. Carbon Nanotubes for Human Space Flight

    Science.gov (United States)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  13. The electrical conduction variation in stained carbon nanotubes

    Science.gov (United States)

    Sun, Shih-Jye; Wei Fan, Jun; Lin, Chung-Yi

    2012-01-01

    Carbon nanotubes become stained from coupling with foreign molecules, especially from adsorbing gas molecules. The charge exchange, which is due to the orbital hybridization, occurred in the stained carbon nanotube induces electrical dipoles that consequently vary the electrical conduction of the nanotube. We propose a microscopic model to evaluate the electrical current variation produced by the induced electrical dipoles in a stained zigzag carbon nanotube. It is found that stronger orbital hybridization strengths and larger orbital energy differences between the carbon nanotube and the gas molecules help increasing the induced electrical dipole moment. Compared with the stain-free carbon nanotube, the induced electrical dipoles suppress the current in the nanotube. In the carbon nanotubes with induced dipoles the current increases as a result of increasing orbital energy dispersion via stronger hybridization couplings. In particular, at a fixed hybridization coupling, the current increases with the bond length for the donor-carbon nanotube but reversely for the acceptor-carbon nanotube.

  14. Covalent enzyme immobilization onto carbon nanotubes using a membrane reactor

    Science.gov (United States)

    Voicu, Stefan Ioan; Nechifor, Aurelia Cristina; Gales, Ovidiu; Nechifor, Gheorghe

    2011-05-01

    Composite porous polysulfone-carbon nanotubes membranes were prepared by dispersing carbon nanotubes into a polysulfone solution followed by the membrane formation by phase inversion-immersion precipitation technique. The carbon nanotubes with amino groups on surface were functionalized with different enzymes (carbonic anhydrase, invertase, diastase) using cyanuric chloride as linker between enzyme and carbon nanotube. The composite membrane was used as a membrane reactor for a better dispersion of carbon nanotubes and access to reaction centers. The membrane also facilitates the transport of enzymes to active carbon nanotubes centers for functionalization (amino groups). The functionalized carbon nanotubes are isolated by dissolving the membranes after the end of reaction. Carbon nanotubes with covalent immobilized enzymes are used for biosensors fabrications. The obtained membranes were characterized by Scanning Electron Microscopy, Thermal analysis, FT-IR Spectroscopy, Nuclear Magnetic Resonance, and functionalized carbon nanotubes were characterized by FT-IR spectroscopy.

  15. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  16. Microfabricated electroactive carbon nanotube actuators

    Science.gov (United States)

    Ahluwalia, Arti; Baughman, Ray H.; De Rossi, Danilo; Mazzoldi, Alberto; Tesconi, Mario; Tognetti, Alessandro; Vozzi, Giovanni

    2001-07-01

    A variety of microfabrication techniques have been developed at the University of Pisa. They are based either on pressure or piston actuated microsyringes or modified ink-jet printers. This work present the results of a study aimed at fabricating carbon nanotube (NT) actuators using micro-syringes. In order to prevent the nanotubes from aggregating into clumps, they were enclosed in a partially cross-linked polyvinylalcohol - polyallylamine matrix. After sonication the solution remained homogenously dispersed for about 40 minutes, which was sufficient time for deposition. Small strips of NT, about 5 mm across and 15 mm long were deposited. Following deposition, the films were baked at 80 degree(s)C and their thickness, impedance and mechanical resistance measured. The results indicate that 50 minutes of baking time is sufficient to give a constant resistivity of 1.12 x 10-2 (Omega) m per layer similar to a typical semiconductor, and each layer has a thickness of about 6 micrometers .

  17. Composite electrode of carbon nanotubes and vitreous carbon for electron field emission

    OpenAIRE

    Matsubara, EY; Rosolen, JM; Silva, SRP

    2008-01-01

    In this work, the electron field emission behaviour of electrodes formed by carbon nanotubes (CNTs) grown onto monolithic vitreous carbon (VCarbon) substrates with microcavities is presented. Scanning electron microscopy was used to characterize the microstructure of the films. Tungsten probes, stainless steel sphere, and phosphor electrodes were employed in the electron field emission study. The CNT/VCarbon composite represents a route to inexpensive excellent large area electron emission ca...

  18. Purification of Carbon Nanotubes: Alternative Methods

    Science.gov (United States)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  19. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    Science.gov (United States)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  20. Deconvoluting hepatic processing of carbon nanotubes

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  1. Watching Nanotubes Grow: In situ Photography of Vertically-Aligned Carbon Nanotube Growth During CVD

    Science.gov (United States)

    Geohegan, David B.; Puretzky, Alex A.; Ivanov, Ilia N.; Jesse, Stephen; Eres, Gyula

    2004-03-01

    In situ photography of growing vertically-aligned carbon nanotube arrays has been performed using remote microscopy within a conventional CVD tube furnace reactor. Time-lapse photography permits growth kinetics measurements over long times and growth to long lengths, a technique which is complementary to recently developed in situ time resolved reflectometry (which provides similar information for the first ten microns of growth). Here we report kinetics measurements and newly-discovered phenomena during the growth longer nanotube arrays (up to 4 millimeters). Vertically-aligned arrays of multiwall carbon nanotubes were grown on silicon wafers coated with metal catalyst films using gas acetylene mixtures. For example, the measurements reveal that these nanotube arrays display a cooperative growth mode and that growth sometimes terminates and spontaneously restarts. Most importantly, the technique enables in situ adjustment of the standard processing parameters and the results of exploratory treatments intended to prolong or reinitiate growth of nanotubes to long lengths - an essential milestone for energy management and and multifunctional composite applications. This research was sponsored by DARPA and the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC.

  2. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  3. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  4. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  5. A Thermal Model for Carbon Nanotube Interconnects

    Directory of Open Access Journals (Sweden)

    Clay Mayberry

    2013-04-01

    Full Text Available In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.

  6. Carbon nanotube polymer composition and devices

    Science.gov (United States)

    Liu, Gao; Johnson, Stephen; Kerr, John B.; Minor, Andrew M.; Mao, Samuel S.

    2011-06-14

    A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.

  7. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  8. Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis

    OpenAIRE

    Silvestri, C.; Riccio, M.; Poelma, R. H.; B. Morana; Vollebregt, S.; Santagata, F.; Irace, A.; Zhang, G Q; Sarro, P.M.

    2016-01-01

    Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer mechanisms. Here, we report on the heat transfer performance of lithographically defined micropins made of carbon nanotube (CNT) nanofoam, directly grown on microhotplates (MHPs). The MHP is used as an in situ character...

  9. Physicochemical Characteristics and Droplet Impact Dynamics of Superhydrophobic Carbon Nanotube Arrays

    OpenAIRE

    Aria, Adrianus I.; Gharib, Morteza

    2014-01-01

    The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a su...

  10. Carbon Nanotubes Advanced Topics in the Synthesis, Structure, Properties and Applications

    CERN Document Server

    Jorio, Ado; Dresselhaus, Mildred S

    2008-01-01

    The carbon nanotubes field has evolved substantially since the publication of the bestseller "Carbon Nanotubes: Synthesis, Structure, Properties and Applications". The present volume builds on the generic aspects of the aforementioned book, which emphasizes the fundamentals, with the new volume emphasizing areas that have grown rapidly since the first volume, guiding future directions where research is needed and highlighting applications. The volume also includes an emphasis on areas like graphene, other carbon-like and other tube-like materials because these fields are likely to affect and influence developments in nanotubes in the next 5 years.

  11. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  12. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2016-10-25

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  13. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  14. ALUMINUM FOIL REINFORCED BY CARBON NANOTUBES

    OpenAIRE

    A. V. Alekseev; PREDTECHENSKIY M.R.

    2016-01-01

    In our research, the method of manufacturing an Al-carbon nanotube (CNT) composite by hot pressing and cold rolling was attempted. The addition of one percent of multi-walled carbon nanotubes synthesized by OCSiAl provides a significant increase in the ultimate tensile strength of aluminum. The tensile strength of the obtained composite material is at the tensile strength level of medium-strength aluminum alloys.

  15. Analysis of Carbon Nanotube Field-Effect-Transistors (FETs)

    Science.gov (United States)

    Yamada, Toshishige

    1999-01-01

    This five page presentation is grouped into 11 numbered viewgraphs, most of which contain one or more diagrams. Some of the diagrams are accompanied by captions, including: 2) Nanotube FET by Delft, IBM; 3) Nanotube FET/Standard MOSFET; 5) Saturation with carrier-carrier; 7) Electronic properties of carbon nanotube; 8) Theoretical nanotube FET characteristics; 11) Summary: Delft and IBM nanotube FET analysis.

  16. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  17. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    OpenAIRE

    Deepak, FL; Govindaraj, A.; Rao, CNR

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives ...

  18. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  19. Advanced materials based on carbon nanotube arrays, yarns and papers

    Science.gov (United States)

    Bradford, Phlip David

    Carbon nanotubes have hundreds of potential applications but require innovative processing techniques to manipulate the microscopic carbon dust into useful devices and products. This thesis describes efforts to process carbon nanotubes (CNTs) using novel methods with the goals of: (1) improving the properties of energy absorbing and composite carbon nanotube materials and (2) increasing understanding of fundamental structure-property relationships within these materials. Millimeter long CNTs, in the form of arrays, yarns and papers, were used to produce energy absorbing foams and high volume fraction CNT composites. Vertically aligned CNT arrays were grown on silicon substrates using chemical vapor deposition (CVD) of ethylene gas over iron nano-particles. The low density, millimeter thick arrays were tested under compression as energy absorbing foams. With additional CVD processing steps, it was possible to tune the compressive properties of the arrays. After the longest treatment, the compressive strength of the arrays was increased by a factor of 35 with a density increase of only six fold, while also imparting recovery from compression to the array. Microscopy revealed that the post-synthesis CVD treatment increased the number of CNT walls through an epitaxial type radial growth on the surface of the as-grown tubes. The increase in tube radius and mutual support between nanotubes explained the increases in compressive strength while an increase in nanotube roughness was proposed as the morphological change responsible for recovery in the array. Carbon nanotube yarns were used as the raw material for macroscopic textile preforms with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. In prior tensile tests, composites produced from the 3-D braids exhibited unusual mechanical behavior effects. The proposed physical hypotheses explained those effects by molecular level interactions and

  20. Fast readout of carbon nanotube mechanical resonators

    Science.gov (United States)

    Meerwaldt, Harold; Singh, Vibhor; Schneider, Ben; Schouten, Raymond; van der Zant, Herre; Steele, Gary

    2013-03-01

    We perform fast readout measurements of carbon nanotube mechanical resonators. Using an electronic mixing scheme, we can detect the amplitude of the mechanical motion with an intermediate frequency (IF) of 46 MHz and a timeconstant of 1 us, up to 5 orders of magnitude faster than before. Previous measurements suffered from a low bandwidth due to the combination of the high resistance of the carbon nanotube and a large stray capacitance. We have increased the bandwidth significantly by using a high-impedance, close-proximity HEMT amplifier. The increased bandwidth should allow us to observe the nanotube's thermal motion and its transient response, approaching the regime of real-time detection of the carbon nanotube's mechanical motion.

  1. Manipulation and cutting of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanomanipulation plays an important role in nanofabrication, it is also a technology necessary in exploring the secrets of nanoworld, and it thus beco mesa start point to research future nanomachine. In this study, manipulation and cutting of carbon nanotubes have been conducted in order to examine whether we can move a nanocomponent from one site to another by using the tip of atomic fo rce microscope (AFM). The technique may also be valuable for providing the const ructive materials of nanofabrication. While exploring the method for manipulatin g and cutting of nanotubes, some new phenomena have been observed during the process. Results show that carbon nanotubes present a feature of deformation combin ing bending and distortion when subjected to large mechanical forces exerted by the tip of AFM. In special cases, long carbon nanotubes can be cut into two part s, by which we can remove the part where crystal lattice is flawed, and therefor e a perfect nanocomponent can be obtained.

  2. Fabrication of nylon-6/carbon nanotube composites

    Science.gov (United States)

    Xu, C.; Jia, Z.; Wu, D.; Han, Q.; Meek, T.

    2006-05-01

    A new technique to fabricate nylon-6/carbon nanotube (PA6/CNT) composites is presented. The method involves a pretreatment of carbon nanotubes synthesized by catalytic pyrolysis of hydrocarbon and an improved in-situ process for mixing nanotubes with the nylon 6 matrix. A good bond between carbon nanotubes and the nylon-6 matrix is obtained. Mechanical property measurements indicate that the tensile strength of PA6/CNT composites is improved significantly while the toughness and elongation are somewhat compromised. Scanning electron microscopy (SEM) analysis of the fractured tensile specimens reveals cracking initiated at the wrapping of the CNTs PA6 layer/PA6 matrix interface rather than at the PA6/CNT interface.

  3. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  4. Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Jung

    2014-01-01

    Full Text Available The effect of catalytic thin film thickness on the diameter control of individual carbon nanotubes grown by plasma enhanced chemical vapor deposition was investigated. Individual carbon nanotubes were grown on catalytic nanodot arrays, which were fabricated by e-beam lithography and e-beam evaporation. During e-beam evaporation of the nanodot pattern, more catalytic metal was deposited at the edge of the nanodots than the desired catalyst thickness. Because of this phenomenon, carbon atoms diffused faster near the center of the dots than at the edge of the dots. The carbon atoms, which were gathered at the interface between the catalytic nanodot and the diffusion barrier, accumulated near the center of the dot and lifted the catalyst off. From the experiments, an individual carbon nanotube with the same diameter as that of the catalytic nanodot was obtained from a 5 nm thick catalytic nanodot; however, an individual carbon nanotube with a smaller diameter (~40% reduction was obtained from a 50 nm thick nanodot. We found that the thicker the catalytic layer, the greater the reduction in diameter of the carbon nanotubes. The diameter-controlled carbon nanotubes could have applications in bio- and nanomaterial scanning and as a contrast medium for magnetic resonance imaging.

  5. Modeling of carbon nanotubes and carbon nanotube-polymer composites

    Science.gov (United States)

    Pal, G.; Kumar, S.

    2016-01-01

    In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.

  6. Raman study on single-walled carbon nanotubes with different laser excitation energies

    Indian Academy of Sciences (India)

    S S Islam; Khurshed Ahmad Shah; H S Mavi; A K Shaukla; S Rath; Harsh

    2007-06-01

    The industrial use of carbon nanotubes is increasing day by day; therefore, it is very important to identify the nature of carbon nanotubes in a bundle. In this study, we have used the Raman spectroscopic analysis on vertically aligned single-walled carbon nanotubes (SWCNTs) grown by the chemical vapour deposition (CVD) technique. The grown sample is excited with two laser excitation wavelengths, 633 nm from He–Ne laser and 514.5 nm from Ar+ laser. Raman spectrum in the backscattering geometry provides the characteristic spectra of SWCNTs with its radial breathing mode (RBM), defect-induced disorder mode (D band), and highenergy modes (G and M bands). The Raman signal positions of the spectra in RBM, G and M bands confirm the grown sample to be of semiconducting type in nature.

  7. Carbon Nanotube and Graphene Nanoelectromechanical Systems

    Science.gov (United States)

    Aleman, Benjamin Jose

    One-dimensional and two-dimensional forms of carbon are composed of sp 2-hybridized carbon atoms arranged in a regular hexagonal, honeycomb lattice. The two-dimensional form, called graphene, is a single atomic layer of hexagonally-bonded carbon atoms. The one-dimensional form, known as a carbon nanotube, can be conceptualized as a rectangular piece of graphene wrapped into a seamless, high-aspect-ratio cylinder or tube. This dissertation addresses the physics and applied physics of these one and two-dimensional carbon allotropes in nanoelectromechanical systems (NEMS). First, we give a theoretical background on the electrodynamics and mechanics of carbon nanotube NEMS. We then describe basic experimental techniques, such as electron and scanning probe microscopy, that we then use to probe static and dynamic mechanical and electronic behavior of the carbon nanotube NEMS. For example, we observe and control non-linear beam bending and single-electron quantum tunneling effects in carbon nanotube resonators. We then describe parametric amplification, self-oscillation behavior, and dynamic, non-linear effects in carbon nanotube mechanical resonators. We also report a novel approach to fabricate carbon nanotube atomic force microscopy (AFM) probes, and show that they can lead to exceptional lateral resolution enhancement in AFM when imaging both hard and soft (biological) materials. Finally, we describe novel fabrication techniques for large-area, suspended graphene membranes, and utilize these membranes as TEM-transparent, AFM-compatible, NEMS resonators. Laser-driven mechanical vibrations of the graphene resonators are detected by optical interferometry and several vibration harmonics are observed. A degeneracy splitting is observed in the vibrational modes of square-geometry resonators. We then attribute the observed degeneracy splitting to local mass inhomogeneities and membrane defects, and find good overall agreement with the developed theoretical model.

  8. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes.

    Science.gov (United States)

    Mouchet, Florence; Landois, Perine; Puech, Pascal; Pinelli, Eric; Flahaut, Emmanuel; Gauthier, Laury

    2010-08-01

    The potential impact of industrial multiwalled carbon nanotubes (MWNTs) was investigated under normalized laboratory conditions according to the International Standard micronucleus assay ISO 21427-1 for 12 days of half-static exposure to 0.1, 1, 10 and 50 mg/l of MWNTs in water. Three different end points were carried out for 12 days of exposure: mortality, growth inhibition and micronuclei induction in erythrocytes of the circulating blood of larvae. Raman spectroscopy analysis was used to study the presence of carbon nanotubes in the biological samples. Considering the high diversity of carbon nanotubes according to their different characteristics, MWNTs were analyzed in Xenopus larvae, comparatively to double-walled carbon nanotubes used in a previous study in similar conditions. Growth inhibition in larvae exposed to 50 mg/l of MWNTs was evidenced; however, no genetoxicity (micronucleus assay) was noticed, at any concentration. Carbon nanotube localization in the larvae leads to different possible hypothesis of mechanisms explaining toxicity in Xenopus.

  9. Carbon Nanotube-Based Synthetic Gecko Tapes

    Science.gov (United States)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  10. Synthesis of bamboo-like carbon nanotubes by ethanol catalytic combustion technique

    Institute of Scientific and Technical Information of China (English)

    CHENG Jin; ZOU Xiao-ping; LI Fei; ZHANG Hong-dan; REN Peng-fei

    2006-01-01

    Bamboo-like carbon nanotubes were synthesized by ethanol catalytic combustion (ECC) technique with combustion method. Copper plate was employed as substrate,ethanol as carbon source,and iron chloride as catalyst precursor. The as-grown black powder was characterized by means of scanning electron microscopy,transmission electron microscopy and Raman spectroscopy. The results show that the thinner bamboo-like carbon nanotubes have a relatively good structure that the compartment layers are more regular,while the thicker carbon nanotubes have a relatively irregular bamboo-like structure:the proposed method is simple to synthesize bamboo-like carbon nanotubes and has some advantages,such as flexible synthesis conditions,simple setup,and environment-friendly.

  11. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  12. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  13. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  14. Carbon Nanotube-Based Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Park, H G; Bakajin, O; Noy, A; Huser, T; Eaglesham, D

    2004-04-06

    A membrane of multiwalled carbon nanotubes embedded in a silicon nitride matrix was fabricated for use in studying fluid mechanics on the nanometer scale. Characterization by fluorescent tracer diffusion and scanning electron microscopy suggests that the membrane is void-free near the silicon substrate on which it rests, implying that the hollow core of the nanotube is the only conduction path for molecular transport. Assuming Knudsen diffusion through this nanotube membrane, a maximum helium transport rate (for a pressure drop of 1 atm) of 0.25 cc/sec is predicted. Helium flow measurements of a nanoporous silicon nitride membrane, fabricated by sacrificial removal of carbon, give a flow rate greater than 1x10{sup -6} cc/sec. For viscous, laminar flow conditions, water is estimated to flow across the nanotube membrane (under a 1 atm pressure drop) at up to 2.8x10{sup -5} cc/sec (1.7 {micro}L/min).

  15. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  16. Optical trapping of carbon nanotubes and graphene

    OpenAIRE

    Vasi, S.; M. A. Monaca; Donato, M. G.; Bonaccorso, F.; Privitera, G; Trushkevych, O.; G. Calogero; Fazio, B.; Irrera, A.; M.A. Iati'; Saija, R.; Denti, P.; F. Borghese; Jones, P H; Ferrari, A. C.

    2011-01-01

    We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fuctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double ...

  17. Efficiently Dispersing Carbon Nanotubes in Polyphenylene Sulfide

    OpenAIRE

    Sommer, Kevin M; Pipes, R. Byron

    2013-01-01

    Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolat...

  18. Thermal Transport in Carbon Nanotubes

    Science.gov (United States)

    Christman, Jeremy; Moore, Andrew; Khatun, Mahfuza

    2011-10-01

    Recent advances in nanostructure technology have made it possible to create small devices at the nanoscale. Carbon nanotubes (CNT's) are among the most exciting building blocks of nanotechnology. Their versatility and extremely desirable properties for electronic and other devices have driven intense research and development efforts in recent years. A review of electrical and thermal conduction of the structures will be presented. The theoretical investigation is mainly based on molecular dynamics. Green Kubo relation is used for the study of thermal conductivity. Results include kinetic energy, potential energy, heat flux autocorrelation function, and heat conduction of various CNT structures. Most of the computation and simulation has been conducted on the Beowulf cluster at Ball State University. Various software packages and tools such as Visual Molecular Dynamics (VMD), Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), and NanoHUB, the open online resource at Purdue University have been used for the research. The work has been supported by the Indiana Academy of Science Research Fund, 2010-2011.

  19. Does water dope carbon nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Robert A.; Payne, Michael C. [Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge (United Kingdom); Mostofi, Arash A. [Department of Materials and Department of Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  20. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  1. Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials

    Indian Academy of Sciences (India)

    Kalpana Awasthi; Rajesh Kumar; Himanshu Raghubanshi; Seema Awasthi; Ratnesh Pandey; Devinder Singh; T P Yadav; O N Srivastava

    2011-07-01

    In the present study, we report the synthesis of carbon nanotubes (CNTs) using a new natural precursor: castor oil. The CNTs were synthesized by spray pyrolysis of castor oil–ferrocene solution at 850°C under an Ar atmosphere. We also report the synthesis of carbon nitrogen (C–N) nanotubes using castor oil–ferrocene–ammonia precursor. The as-grown CNTs and C–N nanotubes were characterized through scanning and transmission electron microscopic techniques. Graphitic nanofibres (GNFs) were synthesized by thermal decomposition of acetylene (C2H2) gas using Ni catalyst at 600°C. As-grown GNFs reveal both planar and helical morphology. We have investigated the structural and electrical properties of multi-walled CNTs (MWNTs)–polymer (polyacrylamide (PAM)) composites. The MWNTs–PAM composites were prepared using as purified, with ball milling and functionalized MWNTs by solution cast technique and characterized through SEM. A comparative study has been made on the electrical property of these MWNTs–PAM composites with different MWNTs loadings. It is shown that the ball milling and functionalization of MWNTs improves the dispersion of MWNTs into the polymer matrix. Enhanced electrical conductivity was observed for the MWNTs–PAM composites. Graphene samples were prepared by thermal exfoliation of graphite oxide. XRD analysis confirms the formation of graphene.

  2. Aligned carbon nanotube sheet piezoresistive strain sensors

    Science.gov (United States)

    Li, Ang; Bogdanovich, Alexander E.; Bradford, Philip D.

    2015-09-01

    Carbon nanotubes (CNTs) have a unique set of properties that may be useful in the production of next generation structural health monitoring composites. This research introduces a novel CNT based material system for strain and damage sensing applications. An aligned sheet of interconnected CNTs was drawn from a chemical vapor deposition grown CNT array and then bonded to the surface of glass fiber/epoxy composite coupons. Various types of mechanical tests were conducted, accompanied by real-time electrical data acquisition, in order to evaluate the electro-mechanical behavior of the developed sensing material. Specimens were loaded in the longitudinal and transverse CNT sheet orientations to investigate the anisotropy of the piezoresistive effect. The CNT sheets exhibited good sensing stability, linearity, sensitivity and repeatability within a practical strain range; which are crucial sensor features for health monitoring. It was also demonstrated that the CNT orientation in the sheet had a dramatic effect on the sensitivity, thus validating the usefulness of this sensing material for directional strain/damage monitoring. Finally, pre-straining of the CNT sheet sensors was conducted to further enhance the linearity of electro-mechanical response and long-term stability of the sensors during cyclic loading.

  3. Different Technical Applications of Carbon Nanotubes.

    Science.gov (United States)

    Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A

    2015-12-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  4. Edge effects in finite elongated carbon nanotubes

    CERN Document Server

    Hod, O; Scuseria, G E; Hod, Oded; Peralta, Juan E.; Scuseria, Gustavo E.

    2006-01-01

    The importance of finite-size effects for the electronic structure of long zigzag and armchair carbon nanotubes is studied. We analyze the electronic structure of capped (6,6), (8,0), and (9,0) single walled carbon nanotubes as a function of their length up to 60 nm, using a divide and conquer density functional theory approach. For the metallic nanotubes studied, most of the physical features appearing in the density of states of an infinite carbon nanotube are recovered at a length of 40 nm. The (8,0) semi-conducting nanotube studied exhibits pronounced edge effects within the energy gap that scale as the inverse of the length of the nanotube. As a result, the energy gap reduces from the value of ~1 eV calculated for the periodic system to a value of ~0.25 eV calculated for a capped 62 nm long CNT. These edge effects are expected to become negligible only at tube lengths exceeding 6 micrometers. Our results indicate that careful tailoring of the nature of the system and its capping units should be applied w...

  5. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  6. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  7. Deposition of the platinum crystals on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new technique and the affecting factors for depositing platinum on the carbon nanotubes were investigated. The results show that the deposited platinum crystals in the atmosphere of hydrogen or nitrogen have a small size and a homogeneous distribution on the surface of the carbon nanotubes. The pretreatment would decrease the platinum particles on the carbon nanotubes significantly.

  8. Decoration of activated carbon nanotubes by assembling nano-silver

    Institute of Scientific and Technical Information of China (English)

    Chen-sha Li; Bin-song Wang; Ying-jie Qiao; Wei-zhe Lu; Ji Liang

    2009-01-01

    A facile solution processed strategy of synthesizing nano silver assembled on carbon nanotubes (CNTs) at room tempera-ture was put forward. Activated carbon nanotubes were used as precursors for preparing silver-decorated nanotubes. The nature of the decorated nanotubes was studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and en-ergy-dispersive X-ray spectroscopy (EDX). The inert surfaces of carbon nanotubes were activated by introducing catalytic nuclei via an oxidation-sensitization-activation approach. Activated carbon nanotubes catalyzed the metal deposition specifically onto their surfaces upon immersion in electroless plating baths. The method produced nanotubes decorated with silver. The extent of silver decoration was found to be dependent on fabrication conditions. Dense nano silver assembled on nanotube surfaces could be ob-tained by keeping a low reaction rate in the solution phase. The results here show that this method is an efficient and simple means of achieving carbon nanotubes being assembled by nano metal.

  9. Purification Procedures for Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Gorelik, Olga P.; Nikolaev, Pavel; Arepalli, Sivaram

    2001-01-01

    This report summarizes the comparison of a variety of procedures used to purify carbon nanotubes. Carbon nanotube material is produced by the arc process and laser oven process. Most of the procedures are tested using laser-grown, single-wall nanotube (SWNT) material. The material is characterized at each step of the purification procedures by using different techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Raman, X-ray diffractometry (XRD), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). The identified impurities are amorphous and graphitic carbon, catalyst particle aggregates, fullerenes, and hydrocarbons. Solvent extraction and low-temperature annealing are used to reduce the amount of volatile hydrocarbons and dissolve fullerenes. Metal catalysts and amorphous as well as graphitic carbon are oxidized by reflux in acids including HCl, HNO3 and HF and other oxidizers such as H2O2. High-temperature annealing in vacuum and in inert atmosphere helps to improve the quality of SWNTs by increasing crystallinity and reducing intercalation.

  10. Geometric and electronic structure of carbon nanotube networks: 'super'-carbon nanotubes

    Science.gov (United States)

    Coluci, V. R.; Galvão, D. S.; Jorio, A.

    2006-02-01

    Structures of the so-called super-carbon nanotubes are proposed. These structures are built from single walled carbon nanotubes connected by Y-like junctions forming a 'super'-sheet that is then rolled into a seamless cylinder. Such a procedure can be repeated several times, generating a fractal structure. This procedure is not limited to carbon nanotubes, and can be easily modified for application to other systems. Tight binding total energy and density of states calculations showed that the 'super'-sheets and tubes are stable and predicted to present metallic and semiconducting behaviour.

  11. CVD fabrication of carbon nanotubes on electrodeposited flower-like Fe nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zanganeh, Saeid, E-mail: SAZ@engr.uconn.ed [Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, U-2157 Storrs, CT 06269-2157 (United States); Department of Materials Science and Engineering, Center of Excellence for Production of Advanced Materials, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Torabi, Morteza [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, Center of Excellence for Production of Advanced Materials, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Kajbafvala, Amir [Department of Materials Science and Engineering, North Carolina State University, 911 Partner' s Way, Raleigh, NC 27695-7907 (United States); Zanganeh, Navid [Chemical Engineering Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Bayati, M.R.; Molaei, Roya; Zargar, H.R. [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Sadrnezhaad, S.K. [Department of Materials Science and Engineering, Center of Excellence for Production of Advanced Materials, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2010-10-08

    Research highlights: {yields} The latest results obtained about production of flower-like nanostructured Fe catalysts deposited electrochemically on platinum electrodes (as a suitable catalyst for synthesis of carbon nanotubes) are presented in this paper. {yields} CVD is used as a convenient way of deposition of CNTs on the flower-like Fe catalyst substrate. - Abstract: Galvanostatic method was used to electrodeposit Fe nanostructures on platinum electrodes as catalysts. Scanning electron microscopy (SEM) revealed flower-like Fe deposits with high surface area. Carbon nanotubes were grown on flower-like Fe nanostructures by chemical vapor deposition. The structure of the synthesized carbon nanotubes was investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction. According to X-ray diffraction patterns, Fe was the only detected constituent of the deposited coating. The carbon nanotubes had small wall-thickness and wide hollow core.

  12. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays.

    Science.gov (United States)

    Aria, Adrianus I; Gharib, Morteza

    2014-06-17

    The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a substantial change in surface charge and electrochemical properties. Here, the droplet impact dynamics are characterized in terms of critical Weber number, coefficient of restitution, spreading factor, and contact time. Based on these characteristics, it is found that superhydrophobic carbon nanotube arrays are among the best water-repellent surfaces ever reported. The results presented herein may pave a way for the utilization of superhydrophobic carbon nanotube arrays in numerous industrial and practical applications, including inkjet printing, direct injection engines, steam turbines, and microelectronic fabrication. PMID:24866696

  13. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  14. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  15. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  16. Modelling Carbon Nanotubes-Based Mediatorless Biosensor

    Directory of Open Access Journals (Sweden)

    Julija Razumiene

    2012-07-01

    Full Text Available This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments: a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate.

  17. Modelling carbon nanotubes-based mediatorless biosensor.

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Petrauskas, Karolis; Razumiene, Julija

    2012-01-01

    This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments): a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate. PMID:23012537

  18. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  19. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  20. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  1. Carbon Nanotubes Synthesis Through Gamma Radiation

    Science.gov (United States)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  2. Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells

    OpenAIRE

    Tom Grace; LePing Yu; Christopher Gibson; Daniel Tune; Huda Alturaif; Zeid Al Othman; Joseph Shapter

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in...

  3. Molecular Dynamics Modeling of Carbon Nanotubes and Their Composites

    Science.gov (United States)

    Jensen, Lars R.; Pyrz, Ryszard

    2004-06-01

    The tensile modulus of individual nanotubes and nanotube-polypropylene composites has been determined using molecular dynamics simulations. Simulations of individual single-walled carbon nanotubes showed that their tensile modulus was dependent on the tube structure and the diameter if the diameter was below 1,6 nm. The tensile modulus was determined for an infinite single-walled carbon nanotube embedded in an amorphous polypropylene matrix and for a finite and capped single-walled carbon nanotube embedded in a polypropylene matrix. For the infinite nanotube-polypropylene system the modulus was found to correspond to the one given by the Voigt approximation. For the finite nanotube-polypropylene system the reinforcing effect of the nanotube was not very pronounced. A pull out simulation showed that the length of the nanotube in the simulation was much smaller than the critical length and hence no load transfer between the nanotube and the matrix existed.

  4. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Science.gov (United States)

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  5. Nanotubes on Display: How Carbon Nanotubes Can Be Integrated into Electronic Displays

    KAUST Repository

    Opatkiewicz, Justin

    2010-06-22

    Random networks of single-walled carbon nanotubes show promise for use in the field of flexible electronics. Nanotube networks have been difficult to utilize because of the mixture of electronic types synthesized when grown. A variety of separation techniques have been developed, but few can readily be scaled up. Despite this issue, when metallic percolation pathways can be separated out or etched away, these networks serve as high-quality thinfilm transistors with impressive device characteristics. A new article in this issue illustrates this point and the promise of these materials. With more work, these devices can be implemented in transparent displays in the next generation of hand-held electronics. © 2010 American Chemical Society.

  6. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farbi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, Almaty (Kazakhstan); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States); Hannora, A. [Suez Canal University, Faculty of Petroleum and Mining Engineering (Egypt); Mansurov, Z. [Al-Farbi Kazakh National University, Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2012-01-16

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: Black-Right-Pointing-Pointer CNTs have been successfully grown directly on hydroxyapatite using MPECVD. Black-Right-Pointing-Pointer Diameter distribution of the CNTs lies in the range from 30 to 70 nm. Black-Right-Pointing-Pointer The HA surface is partially transformed to {beta}-TCP during the deposition. Black-Right-Pointing-Pointer Grown CNTs have good quality and I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30-70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 Degree-Sign C. Raman spectroscopy indicates that the CNTs are of high quality and the I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the {beta}-tricalcium phosphate via dehydroxylation.

  7. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  8. Micromechanics of carbon nanotube turfs

    Science.gov (United States)

    Torabi, Hamid

    Complex structures consisting of intertwined, nominally vertical carbon nanotubes (CNTs) are called turfs. Unique electrical, thermal, optical, and permeability properties of these turfs have attracted growing attention during the past decade, and have rendered them as appropriate candidates for applications such as contact thermal switches. These properties are controlled by the details of the turf microstructures. Due to the application of the turfs in different fields, they are subjected to different loading conditions. Deformation changes the microstructure of a CNT turf, which results in change of effective properties. Many researchers have recently studied the collective mechanical behavior of CNT turfs to compression loading, as this behavior determines their performance. However, their complex and intertwined structure must be investigated in more details to find the relation between their deformation and their underlying morphology. Under uniform compression experiments, CNT turfs exhibit irreversible collective buckling of a layer preceded by reorientation of CNT segments. Experimentally observed independence of the buckling stress and the buckling wavelength on the turf width suggests the existence of an intrinsic material length. To investigate the relationship the macroscopic material properties and the statistical parameters describing the nano-scale geometry of the turf (tortuosity, density and connectivity) we develop a nano-scale computational model, based on the representation of CNT segments as elastica finite elements with van der Waals interactions. The virtual turfs are generated by means of a constrained random walk algorithm and subsequent relaxation. The resulting computational model is robust and is capable of modeling the collective behavior of CNTs. We first establish the dependence of statistical parameters on the computational parameters used for turf generation, then establish relationships between post-buckling stress, initial

  9. Electrical transport measurements of individual bismuth nanowires and carbon nanotubes

    Science.gov (United States)

    Jang, Wan Young

    have also studied electric transport measurements of carbon nanotubes grown in AAO templates. These vertically grown carbon nanotubes (CNTs) are useful for field emission device. In addition, ultra-density vertical CNT transistor arrays have also been proposed based on these nanotube structures. To realize these interesting electronic applications, a detailed understanding of the electronic transport properties of the nanotubes is needed. In particular, nanotubes grown in the AAO templates are known to possess significant amount of structural disorder. It is thus important to elucidate the effect of disorder on the electronic properties of these nanotubes. Electrical transport measurements of individual carbon nanotubes are studied, The four-terminal resistance at room temperature scales linearly with the nanotube length indicating diffusive nature of transport. The conductance shows an exp[(-1/T)1/3] dependence on temperature T, suggesting that two-dimensional variable-range hopping is the dominant conduction mechanism. The maximum current density carried by these nanotubes is on the order of 106 A/cm 2.

  10. An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface

    OpenAIRE

    Falzon, Brian G.; Hawkins, Stephen C; Huynh, Chi P.; Radjef, Racim; Brown, Callum

    2013-01-01

    A novel approach for introducing aligned multi-walled carbon nanotubes (MWCNTs) in a carbon-fibre composite pre-impregnated (prepreg) laminate, to improve the through-thickness fracture toughness, is presented. Carbon nanotube (CNT) 'forests' were grown on a silicon substrate with a thermal oxide layer, using a chemical vapour deposition (CVD) process. The forests were then transferred to a pre-cured laminate interface, using a combination of pressure and heat, while maintaining through-thick...

  11. Nitrogen in highly crystalline carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ducati, C; Koziol, K; Stavrinadis, A; Friedrichs, S; Windle, A H; Midgley, P A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2006-02-22

    Multiwall carbon nanotubes (MWCNTs) with an unprecedented degree of internal order were synthesised by chemical vapour deposition (CVD) adding a nitrogen-containing compound to the hydrocarbon feedstock. Ferrocene was used as the metal catalyst precursor. The remarkable crystallinity of these nanotubes lies both in the isochirality and in the crystallographic register of their walls, as demonstrated by electron diffraction and high resolution electron microscopy experiments. High resolution transmission electron microscopy analysis shows that the walls of the nanotubes consist of truncated stacked cones, instead of perfect cylinders, with a range of apex angles that appears to be related to the nitrogen concentration in the synthesis process. The structure of armchair, zigzag and chiral nanotubes is modelled and discussed in terms of density of topological defects, providing an interesting comparison with our microscopy experiments. A growth mechanism based on the interplay of base- and tip-growth is proposed to account for our experimental observations.

  12. A tunable carbon nanotube electromechanical oscillator

    Science.gov (United States)

    Sazonova, Vera; Yaish, Yuval; Üstünel, Hande; Roundy, David; Arias, Tomás A.; McEuen, Paul L.

    2004-09-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection, radio-frequency signal processing, and as a model system for exploring quantum phenomena in macroscopic systems. Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made. Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.

  13. Magnetoresistance of Multiwalled Carbon Nanotube Yarns

    Institute of Scientific and Technical Information of China (English)

    SHENG Lei-Mei; GAO Wei; CAO Shi-Xun; ZHANG Jin-Cang

    2008-01-01

    We measure zero-field resistivity and magnetoresistance of multiwalled carbon nanotube yarns (CNTYs). The CNTYs are drawn from superaligned multiwalled carbon nanotube arrays synthesized by the low-pressure chemical vapour deposition method. The zero-field resistivity shows a logarithmic decrease from 2 K to 300 K. In the presence of a magnetic field applied perpendicular to the yarn axis, a pronounced negative magnetoresistance is observed. A magnetoresistance ratio of 22% is obtained. These behaviours can be explained by the weak localization effect.

  14. A carbon nanotube-based sensing element

    Institute of Scientific and Technical Information of China (English)

    YANG Xing; ZHOU Zhao-ying; WU Ying; ZHANG Jin; ZHANG Ying-ying

    2007-01-01

    A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes,carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on microelectrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.

  15. Carbon nanotubes for in vivo cancer nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The latest progress of using carbon nanotubes(CNTs) for in vivo cancer nanotechnology is reviewed.CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications.In vivo behaviors and toxicology studies of CNTs are summarized,suggesting no significant toxicity of well functionalized CNTs to the treated mice.Owing to their unique chemical and physical properties,CNTs,especially single-walled carbon nanotubes(SWNTs),have been widely used for various modalities of in vivo cancer treatment and imaging.Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.

  16. Laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  17. Piezoresistive effect in carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The piezoresistive effect of the pristine carbon nanotube (CNT) films has been studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition. The piezoresistive effect in the pristine CNT films was studied by a three-point bending test. The gauge factor for the pristine CNT films under 500 microstrains was found to be at least 65 at room temperature, and increased with temperature, exceeding that of polycrystalline silicon (30) at 35℃. The origin of the piezoresistivity in CNT films may be ascribed to a pressure-induced change in the band gap and the defects.

  18. Carbon nanotube quantum dots on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A., E-mail: andreas.baumgartner@unibas.ch; Abulizi, G.; Gramich, J.; Schönenberger, C. [Institute of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Watanabe, K.; Taniguchi, T. [National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-07-14

    We report the fabrication details and low-temperature characteristics of carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.

  19. Buckling-driven delamination of carbon nanotube forests

    Science.gov (United States)

    Pour Shahid Saeed Abadi, Parisa; Hutchens, Shelby B.; Greer, Julia R.; Cola, Baratunde A.; Graham, Samuel

    2013-06-01

    We report buckling-driven delamination of carbon nanotube (CNT) forests from their growth substrates when subjected to compression. Macroscale compression experiments reveal local delamination at the CNT forest-substrate interface. Results of microscale flat punch indentations indicate that enhanced CNT interlocking at the top surface of the forest accomplished by application of a metal coating causes delamination of the forest from the growth substrate, a phenomenon not observed in indentation of as-grown CNT forests. We postulate that the post-buckling tensile stresses that develop at the base of the CNT forests serve as the driving force for delamination.

  20. Carbon Nanotubes from Camphor: An Environment-Friendly Nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukul; Ando, Yoshinori [21st Century COE Program: Nanofactory, Department of Materials Science and Engineering Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502 (Japan)

    2007-03-15

    High-purity carbon nanotubes (CNTs) are produced by chemical vapour deposition of camphor, an environment-friendly hydrocarbon. In a small CVD reactor (1-m long and 26- mm wide), CVD of 3 g camphor at 650deg. C for 1 hour yields {approx}1.62 g MWNTs of diameter {approx}10 nm with an as-grown purity over 88%; that is, camphor-to-CNT production efficiency is 50%. This is the highest efficiency ever achieved from any material by any method. Moreover, camphor-based CNT synthesis technique stands fairly good against the 12-principle protocol of green chemistry.

  1. Computational Nanomechanics of Carbon Nanotubes and Composites

    Science.gov (United States)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  2. Carbon nanotubes as tips for atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    国立秋; 徐宗伟; 赵铁强; 赵清亮; 张飞虎; 董申

    2004-01-01

    Ordinary AFM probes' characters prevent the AFM' s application in various scopes. Carbon nanotubes represent ideal AFM probe materials for their higher aspect ratio, larger Young' s modulus, unique chemical structure, and well-defined electronic property. Carbon nanotube AFM probes are obtained by using a new method of attaching carbon nanotubes to the end of ordinary AFM probes, and are then used for doing AFM experiments. These experiments indicated that carbon nanotube probes have higher elastic deformation, higher resolution and higher durability. And it was also found that carbon nanotube probes can accurately reflect the morphology of deep narrow gaps, while ordinary probes can not reflect.

  3. A Carbon Nanotube Electron Source Based Ionization Vacuum Gauge

    Energy Technology Data Exchange (ETDEWEB)

    Changkun Dong; Ganapati Myneni

    2003-10-01

    The results of fabrication and performance of an ionization vacuum gauge using a carbon nanotube (CNT) electron source are presented. The electron source was constructed with multi-wall nanotubes (MWNT), which were grown using thermal chemical vapor deposition (CVD) process. The electron emission of the source was stable in vacuum pressure up to 10-7 Torr, which is better than the metal field emitters. The measurement linearity of the gauge was better than {+-}10% from 10-6 to 10-10 Torr. The gauge sensitivity of 4 Torr-1 was achieved under 50 {micro}A electron emission in nitrogen. The gauge is expected to find applications in vacuum measurements from 10-7 Torr to below 10-11 Torr.

  4. Measurement of the mechanical adhesion between a single-walled carbon nanotube and a silicon dioxide substrate

    Science.gov (United States)

    Whittaker, Jed; Minot, Ethan; McEuen, Paul; Davis, Robert

    2003-10-01

    Single-walled carbon nanotubes were grown over a lithographically defined set of trenches, 60 nm deep and 300 nm wide on a pitch of 500 nm. After finding a nanotube that crossed three or more trenches, we used an atomic force microscope (AFM) to measure the amount of force required to make the carbon nanotube slip along the silicon dioxide trench tops. This was done by pushing down on the tube with the AFM probe until slip was observed in the force-distance curve. This measurement allowed us to determine the adhesion force per unit length between a nanotube and a silicon dioxide substrate.

  5. Improved Method of Purifying Carbon Nanotubes

    Science.gov (United States)

    Delzeit, Lance D.

    2004-01-01

    An improved method of removing the residues of fabrication from carbon nanotubes has been invented. These residues comprise amorphous carbon and metal particles that are produced during the growth process. Prior methods of removing the residues include a variety of processes that involved the use of halogens, oxygen, or air in both thermal and plasma processes. Each of the prior methods entails one or more disadvantages, including non-selectivity (removal or damage of nanotubes in addition to removal of the residues), the need to dispose of toxic wastes, and/or processing times as long as 24 hours or more. In contrast, the process described here does not include the use of toxic chemicals, the generation of toxic wastes, causes little or no damage to the carbon nanotubes, and involves processing times of less than 1 hour. In the improved method, purification is accomplished by flowing water vapor through the reaction chamber at elevated temperatures and ambient pressures. The impurities are converted to gaseous waste products by the selective hydrogenation and hydroxylation by the water in a reaction chamber. This process could be performed either immediately after growth or in a post-growth purification process. The water used needs to be substantially free of oxygen and can be obtained by a repeated freeze-pump-thaw process. The presence of oxygen will non-selectively attach the carbon nanotubes in addition to the amorphous carbon.

  6. Effects of oxygen on multiwall carbon nanotubes growth by PECVD

    Institute of Scientific and Technical Information of China (English)

    Chun-mei ZHANG; Ya-bo FU; Qiang CHEN; Yue-fei ZHANG

    2008-01-01

    Multiwall carbon nanotubes (MWCNTs) were grown by dielectric barrier discharge (DBD)-type plasma enhanced chemical vapor deposition (PECVD) method in downstream. The temperature was 973 K and the com-positions of gases were methane, hydrogen and oxygen in the total pressure of 0.05 MPa. The effect of O2 concen-tration in the mixture on the configuration of carbon nanotubes (CNTs) was investigated in detail. Results from scanning electron microscope (SEM) and transmis-sion electron microscope (TEM) showed that CNTs grown in CH4/H2 (38.6%/61.4%, volume) mixture have many defects and contained disordered graphitic materials. With the addition of appropriate amount of O2 (~0.67%), high-purity CNTs could be obtained. However, no CNT, even no carbon matrix existed under the condition of an excessive oxygen concentration (> 1.0%, volume) in the mixture. In order to understand the role of O2 during CNTs growth, optical emission spectroscopy (OES) was in-situ employed and the results predicted that the improve-ment of CNTs quality in O2 addition was attributed to the effect of OH oxidation from the reaction of atomic oxygen with hydrogen in the plasma.

  7. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  8. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    Institute of Scientific and Technical Information of China (English)

    夏丹; 袁喆; 李家明

    2002-01-01

    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  9. Transparent and Electrically Conductive Carbon Nanotube-Polymer Nanocomposite Materials for Electrostatic Charge Dissipation

    Science.gov (United States)

    Dervishi, E.; Biris, A. S.; Biris, A. R.; Lupu, D.; Trigwell, S.; Miller, D. W.; Schmitt, T.; Buzatu, D. A.; Wilkes, J. G.

    2006-01-01

    In recent years, nanocomposite materials have been extensively studied because of their superior electrical, magnetic, and optical properties and large number of possible applications that range from nano-electronics, specialty coatings, electromagnetic shielding, and drug delivery. The aim of the present work is to study the electrical and optical properties of carbon nanotube(CNT)-polymer nanocomposite materials for electrostatic charge dissipation. Single and multi-wall carbon nanotubes were grown by catalytic chemical vapor deposition (CCVD) on metal/metal oxide catalytic systems using acetylene or other hydrocarbon feedstocks. After the purification process, in which amorphous carbon and non-carbon impurities were removed, the nanotubes were functionalized with carboxylic acid groups in order to achieve a good dispersion in water and various other solvents. The carbon nanostructures were analyzed, both before and after functionalization by several analytical techniques, including microscopy, Raman spectroscopy, and X-Ray photoelectron spectroscopy. Solvent dispersed nanotubes were mixed (1 to 7 wt %) into acrylic polymers by sonication and allowed to dry into 25 micron thick films. The electrical and optical properties of the films were analyzed as a function of the nanotubes' concentration. A reduction in electrical resistivity, up to six orders of magnitude, was measured as the nanotubes' concentration in the polymeric films increased, while optical transparency remained 85 % or higher relative to acrylic films without nanotubes.

  10. Deconvoluting hepatic processing of carbon nanotubes.

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L J; Ulmert, Hans David S; Brea, Elliott J; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A; McDevitt, Michael R

    2016-01-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans. PMID:27468684

  11. The Control of Electron Transport Related Defects in In Situ Fabricated Single Wall Carbon Nanotube Devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhixian [ORNL; Jin, Rongying [ORNL; Eres, Gyula [ORNL; Subedi, Alaska P [ORNL; Mandrus, David [ORNL

    2006-01-01

    Metallic single wall carbon nanotube devices were characterized using low temperature transport measurements to study how the growth conditions affect defect formation in carbon nanotubes. Suspended carbon nanotube devices were grown in situ by a molecular beam growth method on a pair of catalyst islands located on opposing Au electrodes fabricated by electron beam lithography. The authors present experimental evidence that defect formation in carbon nanotubes, in addition to the well known growth temperature dependence, is also affected by the nature and the composition of the carbon growth gases.

  12. Making junctions between carbon nanotubes using an ion beam

    CERN Document Server

    Krasheninnikov, A V; Keinonen, J; Banhart, F

    2003-01-01

    Making use of empirical potential molecular dynamics, we study ion bombardment of crossed single-walled carbon nanotubes as a tool to join the nanotubes. We demonstrate that ion irradiation should result in welding of crossed nanotubes, both suspended and deposited on substrates. We further predict optimum ion doses and energies for ion-mediated nanotube welding which may potentially be used for developing complicated networks of joined nanotubes.

  13. Collective mechanochemical growth of carbon nanotubes

    Science.gov (United States)

    Bedewy, Mostafa M. K. M. A.

    Hierarchically ordered carbon nanotubes (CNTs) are promising for integration in high-performance structural composites, electrical interconnects, thermal interfaces, and filtration membranes. These and other applications require CNTs that are monodisperse, well aligned, and densely packed. Moreover, because more than 1 billion CNTs per square centimeter grow simultaneously in a typical chemical vapor deposition (CVD) process, understanding the collective chemical and mechanical effects of growth is key to engineering the properties of CNT-based materials. This dissertation presents tailored synthesis processes, characterization techniques, and mathematical models that enable improved control of the morphology of as-grown CNT "forests.". First, a comprehensive characterization methodology, combining synchrotron X-ray scattering and attenuation with real-time height kinetics, enabled mapping the spatiotemporal evolution of CNT diameter distribution, alignment and density. By this method, the forest mass kinetics were measured and found to follow the S-shaped Gompertz curve of population growth. Dividing a forest into subpopulations revealed size-dependent activation-deactivation competition. Additionally, in situ transmission electron microscopy (TEM) showed that the kinetics of CNT nucleation are S-shaped. Based on these findings, a collective growth model is proposed, wherein randomly oriented CNTs first nucleate then self-organize and lift-off during a crowding stage, followed by a density decay stage until self-termination when the density drops below the self-supporting threshold. Next, further X-ray data analysis enabled modeling the mechanics of entangled CNTs and proved that mechanical coupling is not only responsible for the self-organization into the aligned morphology, but is also an important limiting mechanism as significant forces ensue from diameter-dependent CNT growth rates. A custom-built CVD system was used for mechanical manipulation of growing

  14. A new mechanism for carbon nanotube evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Key discoveries on the growth mechanism of carbon nanotubes(CNTs) have recently been achieved by CAS researcher ZHU Zhenping and his research group at the State Key Laboratory of Coal Conversion,the Institute of Coal Chemistry of CAS, funded by the National Natural Science Foundation of China and the CAS Bairen Program.

  15. Chiral Anomaly in Toroidal Carbon Nanotubes

    OpenAIRE

    Sasaki, K.

    2001-01-01

    It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in toroidal carbon nanotubes on a planar geometry with varying magnetic field. We show that the chiral anomaly is closely connected with the persistent current in a one-dimensional metallic ring.

  16. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  17. Single electron-ics with carbon nanotubes

    NARCIS (Netherlands)

    Götz, G.T.J.

    2010-01-01

    We experimentally investigate Quantum Dots, formed in Carbon Nanotubes. The first part of this thesis deals with charge sensing on such quantum dots. The charge sensor is a metallic Single-electron-transistor, sensitive to the charge of a single electron on the quantum dot. We use this technique for

  18. Spatially resolved spectroscopy on carbon nanotubes

    NARCIS (Netherlands)

    Janssen, J.W.

    2001-01-01

    Carbon nanotubes are small cylindrical molecules with a typical diameter of 1 nm and lengths of up to micrometers. These intriguing molecules exhibit, depending on the exact atomic structure, either semiconducting or metallic behavior. This makes them ideal candidates for possible future molecular e

  19. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  20. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  1. A New Resistance Formulation for Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2008-01-01

    Full Text Available A new resistance formulation for carbon nanotubes is suggested using fractal approach. The new formulation is also valid for other nonmetal conductors including nerve fibers, conductive polymers, and molecular wires. Our theoretical prediction agrees well with experimental observation.

  2. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders;

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  3. In-line manufacture of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  4. Heat Transport in Liquid Polyester Resin with Carbon Nanotubes

    Science.gov (United States)

    Vales-Pinzón, C.; Quiñones-Weiss, G.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.

    2015-11-01

    Carbon nanotubes represent one of the most important materials in nanoscience and nanotechnology, due to their outstanding structural, mechanical, electrical, and thermal properties. It has been shown that when incorporated in a polymeric matrix, carbon nanotubes can improve its physical properties. In this work, thermal-diffusivity measurements of composite materials, prepared by mixing carbon nanotubes in liquid polyester resin, were performed by means of the thermal-wave resonant cavity. The results show an increase of the thermal diffusivity when the volume fraction of carbon nanotubes grows. It is also shown that this increase depends strongly on the diameter of the nanotubes.

  5. Controlled carbon nanotube synthesis for quantification of polymer-nanotube composite micromechanics

    Science.gov (United States)

    Bult, Justin Bernard

    Conventional experimental approaches to the understanding of nanotube-polymer micro-mechanics have struggled to produce reproducible data due to the inherent difficulty in physically manipulating the nanotube in-situ. To avoid the problems scale represents in nanotube-polymer composites a novel approach of using Polarized Raman spectroscopy was developed. The Raman spectroscopic technique has the advantage of using non-invasive analysis to compute the composite micro mechanical properties of interfacial shear stress and critical length. Composites with nanotubes of defined length were needed in order to use the Raman technique. To satisfy this requirement a new thermal Chemical Vapor Deposition (CVD) tool capable of reproducibly growing aligned length uniformity with large mass yield was designed and built. The course of developing these furnace capabilities led to the investigation of nanotube growth mechanics. It is shown herein that a stable passivation barrier is required for nanotube growth. Using X-Ray Photoelectron Spectroscopy (XPS) depth profiling of metal substrate growth conclusively shows the presence of a stable catalyst layer on the outer surface of stable oxides of greater than 100 nm. By analyzing the diffusion profile represented in the XPS data it is shown that a critical thickness for the passivation oxide can be calculated as a function of time and temperature. For the growth parameters used in this study the critical thickness was found to be between 10 nm and 30 nm depending on the diffusivity value used for iron in chromia. This value agrees well with experimental observation. Uniformly grown carbon nanotubes with lengths of 4, 14, 17, 22, 43, 74, and 116 mum were incorporated into a polycarbonate matrix polymer via solvent-antisolvent processing. The nanotube composites of varied length were tested in tensile strain while Raman spectra were taken concurrently to deduce the load transfer to the nanotube due to composite strain. It is found

  6. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14C-labeled MWCNTs into 14CO2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14C-labeled multiwall carbon nanotubes can be degraded to 14CO2 and other byproducts by a bacteria community under natural conditions

  7. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  8. Preparation of double-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; WEI Jinquan; CI Lijie; WU Dehai

    2004-01-01

    Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200℃; the catalyst vapor temperature is 80℃; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.

  9. Exploring the Immunotoxicity of Carbon Nanotubes

    Science.gov (United States)

    Yu, Yanmei; Zhang, Qiu; Mu, Qingxin; Zhang, Bin; Yan, Bing

    2008-08-01

    Mass production of carbon nanotubes (CNTs) and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation.

  10. Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process

    Science.gov (United States)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.

  11. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    CERN Document Server

    Magadur, G; Alain-Rizzo, V; Voisin, C; Roussignol, Ph; Deleporte, E; Delaire, J A

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching of the TPPS emission while the photoluminescence intensity of the nanotubes is enhanced when the excitation laser is in resonance with the porphyrin absorption band. This reveals an efficient excitation transfer from the TPPS to the carbon nanotube.

  12. Carbon Nanotubes on Titanium Substrates for Stray Light Suppression

    Science.gov (United States)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2011-01-01

    A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nano tubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nano - tube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation. In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.

  13. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li+/Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient dLi decreases with an increase of Li ion concentration in carbon nanotube host

  14. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities

    OpenAIRE

    Watahiki, R.; Shimada, T; Zhao, P; Chiashi, S.; Iwamoto, S.; Arakawa, Y; Maruyama, S.; Kato, Y. K.

    2012-01-01

    Photonic crystal nanocavities are used to enhance photoluminescence from single-walled carbon nanotubes. Micelle-encapsulated nanotubes are deposited on nanocavities within Si photonic crystal slabs and confocal microscopy is used to characterize the devices. Photoluminescence spectra and images reveal nanotube emission coupled to nanocavity modes. The cavity modes can be tuned throughout the emission wavelengths of carbon nanotubes, demonstrating the ability to enhance photoluminescence from...

  15. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities

    OpenAIRE

    Watahiki, R.; Shimada, T; Zhao, P; Chiashi, S.; Iwamoto, S.; Arakawa, Y; Maruyama, S.; Kato, Y. K.

    2012-01-01

    Photonic crystal nanocavities are used to enhance photoluminescence from single-walled carbon nanotubes. Micelle-encapsulated nanotubes are deposited on nanocavities within Si photonic crystal slabs and confocal microscopy is used to characterize the devices.Photoluminescencespectra and images reveal nanotube emission coupled to nanocavity modes. The cavity modes can be tuned throughout the emission wavelengths of carbon nanotubes, demonstrating the ability to enhance photoluminescence from a...

  16. Nonlinear Optical Properties of Carbon Nanotube Hybrids in Polymer Dispersions

    OpenAIRE

    Wang, Jun; Liao, Kang-Shyang; Früchtl, Daniel; Tian, Ying; Gilchrist, Aisling, , T; Alley, Nigel; Andreoli, Enrico; Aitchison, Brad; Nasibulin, Albert; Byrne, Hugh; Kauppinen, Esko I.; Zhang, Long; Blau, Werner; Curran, Seamus

    2012-01-01

    A series of double-walled carbon nanotubes (DWNTs) and multi-walled nanotubes (MWNTs) functionalized with selected organic chromophores, fluorescein 5(6)-isothiocyanate (FITC), rhodamine B isothiocyanate (RITC) and fullerene (C60) were synthesized by covalently linking these electron-donor groups to the metallic nanotubes. These versatile carbon nanotube composites show remarkable nonlinear optical (NLO) performance, due to a merged effect of the complementary NLO characteristics of the moiet...

  17. Mechanical properties of carbon nanotube/polymer composites

    OpenAIRE

    B. Arash; Wang, Q.(The University of Kansas, Lawrence, USA); Varadan, V. K.

    2014-01-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the compos...

  18. Carbon nanotubes on a spider silk scaffold

    Science.gov (United States)

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-09-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

  19. Vertical semiconducting single-walled carbon nanotube Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sunghwan [Dankook University, Yongin (Korea, Republic of)

    2014-07-15

    This paper presents a vertical semiconducting single-walled carbon nanotube (s-SWCNT)-based Schottky device. For the first time, the author successfully demonstrated a vertical s-SWCNT Schottky diode on an anodized aluminum oxide (AAO) template. In the vertical pores of an AAO template s-SWCNTs were vertically grown and aligned. The vertical growth of s-SWCNTs inside the pores was achieved by successfully isolating the catalyst at the bottom of the pores by using redeposition enabled angled ion milling. The ends of the grown s-SWCNTs were coated with palladium and titanium to form Schottky and Ohmic contacts, respectively. The I-V characteristics of the vertical s-SWCNT paths engaging the Schottky and Ohmic contacts well demonstrated Schottky diode rectification.

  20. Analytical modeling of glucose biosensors based on carbon nanotubes

    OpenAIRE

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-01

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization...

  1. A new method of preparing single-walled carbon nanotubes

    OpenAIRE

    Vivekchang, SRC; Govindaraj, A.

    2003-01-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized single-walled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spect...

  2. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    S R C Vivekchand; A Govindaraj

    2003-10-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

  3. Functionalization of vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Eloise Van Hooijdonk

    2013-02-01

    Full Text Available This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs. The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  4. Diffusion through Carbon Nanotube Semipermeable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bakajin, O

    2006-02-13

    The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization

  5. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  6. On the Nanoindentation of the Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Petre P. Teodorescu

    2010-01-01

    Full Text Available A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would initiate in the outermost shell, when nanotubes are short. The nanoindentation technique is simulated for the axially compressed of individual nanotubes, in order to evaluate the load-unloaded-displacement, the curve critical buckling and the appropriate values for local Lamé constants.

  7. Nanosystems of Polymerized Fullerenes and Carbon Nanotubes

    Science.gov (United States)

    Scharff, Peter; Cui, Shen

    Nanosystems based on polymerized fullerenes and carbon-nanotubes begin to play an important role in the field of nanotechnology. Nanotubes can be used as molecular wires, and can even figure as building elements for molecular electronics. Furthermore nanotubes can be used as amplifiers in composite materials, as a result of their unique mechanical properties. Many other applications, as for example as electron emitters for flat screens, are currently under development. Fullerens are known to be strong electron acceptors, which enables them to support the electron-hole pair separation in polymer based photovoltaic cells. The use of fulleren chains instead of fullerenes could improve the anisotropic electronic conductivity in the contained polymer layer, and therefore enhance their performance.

  8. Mechanical properties of functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) used to reinforce polymer matrix composites are functionalized to form covalent bonds with the polymer in order to enhance the CNT/polymer interfaces. These bonds destroy the perfect atomic structures of a CNT and degrade its mechanical properties. We use atomistic simulations to study the effect of hydrogenization on the mechanical properties of single-wall carbon nanotubes. The elastic modulus of CNTs gradually decreases with the increasing functionalization (percentage of C-H bonds). However, both the strength and ductility drop sharply at a small percentage of functionalization, reflecting their sensitivity to C-H bonds. The cluster C-H bonds forming two rings leads to a significant reduction in the strength and ductility. The effect of carbonization has essentially the same effect as hydrogenization

  9. Purification of Carbon Nanotubes by Proton Irradiation

    Science.gov (United States)

    Kim, Euikwoun; Lee, Jeonggil; Lee, Younman; Jeon, Jaekyun; Kim, Jae-Yong; Kim, Jeongha; Shin, Kwanwoo; Youn, Sang-Pil; Kim, Kyeryung

    2007-10-01

    Carbon nanotubes (CNTs) exhibit variety of superior physical properties including well-defined nanodimensional structure, high electrical and thermal conductivity, and good mechanical stability against external irradiations. Further, a large specific surface area per unit weight suggests that carbon nanotubes could be excellent candidates for gas storage, purification, and separation. However, the practical application of CNTs is limited mainly due to the metallic impurities that were used as a catalyst during the fabrication process. Here, we irradiated CNTs by using high energy proton beams (35.7 MeV at the Bragg Peak). Interestingly, metallic impurities such as Fe, Ni, Co and chunk of amorphous carbon that were attached on the surface of CNTs were completely removed after the irradiation. The mechanism of such the purification process is not understood. The possible speculation will be demonstrated combined with the changes of physical properties including the appearance of the magnetism after the irradiation.

  10. Carbon Nanotubes for Space Photovoltaic Applications

    Science.gov (United States)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  11. Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction

    DEFF Research Database (Denmark)

    He, Maoshuai; Liu, Bilu; Chernov, Alexander I.;

    2012-01-01

    Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type...... by impregnation, showing similar catalytic performance as the atomic layer deposition-prepared catalyst, yielding single-walled carbon nanotubes with a similar narrow chirality distribution....

  12. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  13. Synthesis of Carbon Nanotubes Using Sol Gel Route

    Science.gov (United States)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  14. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  15. Detecting Lyme Disease Using Antibody-Functionalized Single-Walled Carbon Nanotube Transistors

    CERN Document Server

    Lerner, Mitchell B; Goldsmith, Brett R; Brisson, Dustin; Johnson, A T Charlie

    2013-01-01

    We examined the potential of antibody-functionalized single-walled carbon nanotube (SWNT) field-effect transistors (FETs) for use as a fast and accurate sensor for a Lyme disease antigen. Biosensors were fabricated on oxidized silicon wafers using chemical vapor deposition grown carbon nanotubes that were functionalized using diazonium salts. Attachment of Borrelia burgdorferi (Lyme) flagellar antibodies to the nanotubes was verified by Atomic Force Microscopy and electronic measurements. A reproducible shift in the turn-off voltage of the semiconducting SWNT FETs was seen upon incubation with Borrelia burgdorferi flagellar antigen, indicative of the nanotube FET being locally gated by the residues of flagellar protein bound to the antibody. This sensor effectively detected antigen in buffer at concentrations as low as 1 ng/ml, and the response varied strongly over a concentration range coinciding with levels of clinical interest. Generalizable binding chemistry gives this biosensing platform the potential to...

  16. Remote Joule heating by a carbon nanotube

    Science.gov (United States)

    Baloch, Kamal H.; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-05-01

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  17. Developing Carbon Nanotube Standards at NASA

    Science.gov (United States)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  18. GaN nanotubes grown by halide vapor phase epitaxy

    International Nuclear Information System (INIS)

    Full text: Wide-band gap GaN nanostructures such as quantum dots, nanorods, nanowires, nano columns and nanotubes have a strong potential within areas of biochemical sensing, nanofluidics, and optoelectronics. GaN nanotubes play a role of the building blocks for several applications such as solution-based transistors and highly sensitive nanotube molecular sensors. We have studied non-catalytic and Au-assisted growth of GaN nanotubes using halide vapor phase epitaxy (HVPE) technique. The growth was performed in the temperature range 480 degrees Celsius to 520 degrees Celsius using pure N2 as a carrier gas at atmospheric pressure. The nanotubes size, shape, density and the selectivity of growth have been studied depending on V/III ratio, growth temperature and substrate material. By increasing the GaCl partial pressure, the structure changed from dot-like to nanotubes. The nanotubes were about 1 μm long with a diameter of typically 200 nm. In addition, it was observed that the nanostructures were spontaneously nucleated at droplets of Ga or, when using Au-coated Al2O3, on droplets of Au/Ga alloy. By varying the growth temperature, the inner diameter of the nanotubes could be controlled. A growth model is suggested, where the nanotubes are nucleated at droplets of Ga or an Au/Ga alloy. Our experimental results suggest that the approach with pre-patterned Au-coated Al2O3 substrates has the potential for fabrication of well-organized nanotubes with a high density. Nanostructures were characterized using electron microscopy methods and by low temperature time-resolved photoluminescence (TRPL). Studies were performed on samples with different wall thickness in the range of 35-75 nm. Two recombination processes with different dynamics contribute to the emission spectra of the GaN nanotubes. The photoluminescence peak shifts rapidly to the higher energy from 3.47 eV to 3.75 eV within a very short time of 30 ps. The origin of the emission having a short lifetime is related

  19. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  20. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  1. Automated circuit fabrication and direct characterization of carbon nanotube vibrations.

    Science.gov (United States)

    Zeevi, G; Shlafman, M; Tabachnik, T; Rogachevsky, Z; Rechnitz, S; Goldshtein, I; Shlafman, S; Gordon, N; Alchanati, G; Itzhak, M; Moshe, Y; Hajaj, E M; Nir, H; Milyutin, Y; Izraeli, T Y; Razin, A; Shtempluck, O; Kotchtakov, V; Yaish, Y E

    2016-01-01

    Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion. PMID:27396506

  2. CARBON NANOTUBES: AN APPROACH TO NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. H. Alai et al.

    2012-01-01

    Full Text Available Carbon nanotubes are cylindrical carbon molecules have novel properties, making them potentially useful in many applications in nanotechnology, electronics, optics, and other fields of material science as well as potential uses in architectural fields. They have unique electronic, mechanical, optical and chemical properties that make them good candidates for a wide variety of applications, including drug transporters, new therapeutics, delivery systems and diagnostics. Their unique surface area, stiffness, strength and resilience have led to much excitement in the field of pharmacy. Nanotubes are categorized as single-walled nanotubes, multiple walled nanotubes. Various techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, chemical vapor deposition. They can pass through membranes, carrying therapeutic drugs, vaccines and nucleic acids deep into the cell to targets previously unreachable. Purification of the tubes can be divided into a couple of main techniques: oxidation, acid treatment, annealing, sonication, filtering and functionalization techniques. The main problem of insolubility in aqueous media has been solved by developing a synthetic protocol that allows highly water-soluble carbon NTs to be obtained. The modifications are done to improve efficiency of carbon nanotubes by formulating luminescent carbon nanotubes, ultrathin carbon nanoneedles, magnetically guided nanotubes. The application of carbon nanotube in tissue engineering, drug carrier release system, wound healing, in cancer treatment and as biosensor. Researchers have recently developed a new approach to Boron Neutron Capture Therapy in the treatment of cancer using substituted Carborane-Appended Water-Soluble single-wall carbon nanotubes.

  3. Thermal Spreading in Carbon Nanotube Coating.

    Science.gov (United States)

    Kim, Duckjong; Shin, Dong-Sig; Yu, Jeonghwan; Kim, Haesik; Kim, Jae-Hyun; Woo, Chang-Su

    2015-11-01

    Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, have attracted significant attention as good candidates for next-generation heat-spreading materials because of their high thermal conductivity, mechanical flexibility, etc. Regarding the thermal spreading performance of carbon-based nanofilms, remarkable test results have been reported mainly from the industrial side, but their validity and the physical mechanism underlying the heat transfer enhancement are still under debate. In this study, we assess the thermal spreading performance of a multi-walled CNT film on a copper foil using a non-contact characterization method in a simple and methodical manner, and discuss the possibility of carbon nanofilms as heat spreaders based on the experimental and numerical results. This study provides useful information on heat transfer enhancement by carbon nanofilms and could contribute to the development of high-performance carbon-based heat-spreading coatings. PMID:26726629

  4. Hexagonal silicon nanotube confined inside a carbon nanotube: A first-principles study

    Science.gov (United States)

    Zhu, Weijuan; Yan, Xiaohong; Xiao, Yang

    2008-02-01

    We studied the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. The results show that the encapsulating process of SiNT is exothermic in ( 9,9) carbon nanotube while endothermic in ( 8,8) and ( 7,7) carbon nanotubes. When the SiNT is inserted into ( 9,9) carbon nanotube, the insertion energy is about 0.09 eV. Energy band of SiNT@( 9,9) nanotube is not distorted greatly compared with the superposition of bands of isolated SiNT and ( 9,9) carbon nanotube. Especially, a parabolic band occurs near the Fermi level of energy band in SiNT@( 7,7) nanotube. Such a band could be a nearly free electronic state originating from carbon nanotube. Moreover, we discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes.

  5. Controlled synthesis of high quality carbon nanotubes and their applications in transparent conductive films

    Science.gov (United States)

    Dervishi, Enkeleda

    carbon formation, and higher crystallinity compared with the ones grown by the external furnace cCVD method. Lastly, this research presents the development and characterization of carbon nanotube polymer composites and conductive transparent nanotube thin film coatings. Electrostatic charge dissipation presents a major problem for applications ranging from electronics to space exploration. Nanotube polymer composites with new and improved bulk and surface properties were found to have the highest charge dissipation rates with decay times of seconds. Moreover, a comparative study of conductive transparent thin coatings on glass substrates using different types of CNTs is also discussed. The optoelectronic performance of the carbon nanotube films was found to strongly depend on many effects; including the ratio of metallic-to-semiconducting tubes, dispersion, length, diameter, wall number, and defects.

  6. Synthesis and Characterization of Silver Nanoparticle-Multiwalled Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Dunieskys G. Larrude

    2014-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs grown by spray pyrolysis have been decorated with silver nanoparticles prepared via the silver mirror reaction. Good dispersion of silver nanostructures was obtained on the surface of MWCNTs, resulting in an efficient and simple wet chemistry method for increasing the reactivity of the carbon nanotubes surfaces. High-resolution transmission electron microscopy showed the orientations of the crystallography planes of the anchored silver nanoparticles and revealed their size distribution. Raman spectroscopy results confirm that the composite material preserves the integrity of the MWCNTs. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were also employed for sample characterization.

  7. Adaptive Neuro-Fuzzy Modeling of Mechanical Behavior for Vertically Aligned Carbon Nanotube Turfs

    Institute of Scientific and Technical Information of China (English)

    Mohammad A1-Khedher; Charles Pezeshki; Jeanne McHale; GFritz Knorr

    2011-01-01

    Several characterization methods have been developed to investigate the mechanical and structural properties of vertically aligned carbon nanotubes (VACNTs). Establishing analytical models at nanoscale to interpret these properties is complicated due to the nonuniformity and irregularity in quality of as-grown samples.In this paper, we propose a new methodology to investigate the correlation between indentation resistance of multi-wall carbon nanotube (MWCNT) turfs, Raman spectra and the geometrical properties of the turf structure using adaptive neuro-fuzzy phenomenological modeling. This methodology yields a novel approach for modeling at the nanoscale by evaluating the effect of structural morphologies on nanomaterial properties using Raman spectroscopy.

  8. Carbon Nanotube Composites for Electronic Packaging Applications: A Review

    OpenAIRE

    Lavanya Aryasomayajula; Klaus-Juergen Wolter

    2013-01-01

    Composite engineering comprises of metal matrix composites. They have high strength-weight ratio, better stiffness, economical production, and ease of availability of raw materials. The discovery of carbon nanotubes has opened new possibilities to face challenges better. Carbon Nanotubes are known for their high mechanical strength, excellent thermal and electrical properties. Recent research has made progress in fabricating carbon nanotube metal matrix and polymer-based composites. The metho...

  9. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  10. A statistical mechanics model of carbon nanotube macro-films

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Carbon nanotube macro-films are two-dimensional films with micrometer thickness and centimeter by centimeter in-plane dimension.These carbon nanotube macroscopic assemblies have attracted significant attention from the material and mechanics communities recently because they can be easily handled and tailored to meet specific engineering needs.This paper reports the experimental methods on the preparation and characterization of single-walled carbon nanotube macro-films,and a statistical mechanics model on ...

  11. Varied morphology carbon nanotubes and method for their manufacture

    Science.gov (United States)

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  12. Nanoscale fluid transportation through individual carbon nanotubes

    Science.gov (United States)

    He, Jin; Cao, Di; Pang, Pei; Luo, Tao; Lindsay, Stuart; Kristic, Predrag; Nuckolls, Colin

    2011-03-01

    There are great interest in both simulation and experiment of fluid flow on the nanoscale. Carbon nanotubes, with their extremely small inner diameter (usually below 2 nm) and atomic smooth inner surface, are ideal materials for studying nanoconfinement and ion and molecule nanoscale translocation. The excellent electrical properties of CNTs can also be integrated to achieve nanoelectrofluidic device. This presentation describes our recent progress in studying fluid transport through individual carbon nanotubes, including simultaneously ionic and electronic measurements during water, ion and molecule translocation. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01).

  13. Carbon Nanotube Flexible and Stretchable Electronics.

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-12-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  14. Advanced technology for functionalization of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Lingjie Meng; Chuanlong Fu; Qinghua Lu

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) has attracted considerable interest in the fields of physics, chemistry, material science and biology. The functionalized CNTs exhibit improved properties enabling facile fabrication of novel nanomaterials and nanodevices. Most of the functionalization approaches developed at present could be categorized into the covalent attachment of functional groups and the non-covalent adsorption of various functional molecules onto the surface of CNTs. This review highlights recent development and our work in functionalization of carbon nanotubes, leading to bio-compatible CNTs, fluorescent CNTs and transition metal func-tionalizcd CNTs. These novel methods possess advantages such as simplified technical procedures and reduced cost of novel nanoma-terials and nanodcvices fabrication.

  15. Carbon Nanotube Flexible and Stretchable Electronics

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  16. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  17. Printed Carbon Nanotube Electronics and Sensor Systems.

    Science.gov (United States)

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications.

  18. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...

  19. A Carbon Nanotube Cable for a Space Elevator

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…

  20. Electrostatic sensing and electrochemistry with single carbon nanotubes

    NARCIS (Netherlands)

    Heller, I.

    2009-01-01

    This thesis describes the experimental study of devices based on single carbon nanotubes in the context of (bio)sensing in aqueous solutions. Carbon nanotubes are cylindrical molecules of sp2- carbon, about one nanometer in diameter and typically several micrometers long, which have semiconducting o

  1. Magnetism for understanding catalyst analysis of purified carbon nanotubes

    Science.gov (United States)

    Bellouard, Christine; Mercier, Guillaume; Cahen, Sébastien; Ghanbaja, Jaafar; Medjahdi, Ghouti; Gleize, Jérôme; Lamura, Gianrico; Hérold, Claire; Vigolo, Brigitte

    2016-08-01

    The precise quantification of catalyst residues in purified carbon nanotubes is often a major issue in view of any fundamental and/or applicative studies. More importantly, since the best CNTs are successfully grown with magnetic catalysts, their quantification becomes strictly necessary to better understand intrinsic properties of CNT. For these reasons, we have deeply analyzed the catalyst content remained in nickel-yttrium arc-discharge single walled carbon nanotubes purified by both a chlorine-gas phase and a standard acid-based treatment. The study focuses on Ni analysis which has been investigated by transmission electron microscopy, X-ray diffraction, thermogravimetry analysis, and magnetic measurements. In the case of the acid-based treatment, all quantifications result in a decrease of the nanocrystallized Ni by a factor of two. In the case of the halogen gas treatment, analysis and quantification of Ni content is less straightforward: a huge difference appears between X-ray diffraction and thermogravimetry results. Thanks to magnetic measurements, this disagreement is explained by the presence of Ni2+ ions, belonging to NiCl2 formed during the Cl-based purification process. In particular, NiCl2 compound appears under different magnetic/crystalline phases: paramagnetic or diamagnetic, or well intercalated in between carbon sheets with an ordered magnetic phase at low temperature.

  2. Spontaneous exciton dissociation in carbon nanotubes

    OpenAIRE

    Kumamoto, Y.; Yoshida, M.; Ishii, A; Yokoyama, A.; Shimada, T; Kato, Y. K.

    2013-01-01

    Simultaneous photoluminescence and photocurrent measurements on individual single-walled carbon nanotubes reveal spontaneous dissociation of excitons into free electron-hole pairs. Correlation of luminescence intensity and photocurrent shows that a significant fraction of excitons are dissociating during their relaxation into the lowest exciton state. Furthermore, the combination of optical and electrical signals also allows for extraction of the absorption cross section and the oscillator st...

  3. On the Nanoindentation of the Carbon Nanotubes

    OpenAIRE

    Petre P.Teodorescu; Veturia Chiroiu; Ligia Munteanu; Valeria Moşneguţu

    2010-01-01

    A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT) is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would ...

  4. Magnetic Carbon Nanotubes for Protein Separation

    OpenAIRE

    Xiaobin Fan; Fengbao Zhang; Guoliang Zhang; Xiuhui Diao; Hongyu Chen

    2012-01-01

    Magnetic separation is a promising strategy in protein separation. Owing to their unique one-dimensional structures and desired magnetic properties, stacked-cup carbon nanotubes (CSCNTs) with magnetic nanoparticles trapped in their tips can serve as train-like systems for protein separation. In this study, we functionalized the magnetic CSCNTs with high density of carboxyl groups by radical addition and then anchored 3-aminophenylboronic acid (APBA) through amidation reaction to achieve orien...

  5. Bio-inspired Hybrid Carbon Nanotube Muscles

    OpenAIRE

    Tae Hyeob Kim; Cheong Hoon Kwon; Changsun Lee; Jieun An; Tam Thi Thanh Phuong; Sun Hwa Park; Lima, Márcio D.; Baughman, Ray H.; Tong Mook Kang; Seon Jeong Kim

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with p...

  6. Fermentation based carbon nanotube multifunctional bionic composites

    OpenAIRE

    Luca Valentini; Silvia Bittolo Bon; Stefano Signetti; Manoj Tripathi; Erica Iacob; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extr...

  7. Fermentation based carbon nanotube bionic functional composites

    OpenAIRE

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique mechanical and physical properties that are not produced by abiotic processes. Based on grape must and bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at r...

  8. Composites with polymer-grafted carbon nanotubes

    OpenAIRE

    Paiva, M. C.; Novais, R. M.; Covas, J. A.

    2014-01-01

    Carbon nanotube (CNT)/polymer composites exhibit the processability advantages of plastics, while conveying electrical conductivity characteristics suitable for electric transport, or for sensing functionalities. The success of their application depends on the ability to homogeneously disperse the CNT in the polymer matrices to form a stable conductive network. The structural strength of the nanocomposite is also desirable, and may be a requirement. The chemical functionalization of the CNT i...

  9. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang(College of William and Mary); Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  10. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  11. Carbon nanotube-polymer nanocomposite infrared sensor.

    Science.gov (United States)

    Pradhan, Basudev; Setyowati, Kristina; Liu, Haiying; Waldeck, David H; Chen, Jian

    2008-04-01

    The infrared photoresponse in the electrical conductivity of single-walled carbon nanotubes (SWNTs) is dramatically enhanced by embedding SWNTs in an electrically and thermally insulating polymer matrix. The conductivity change in a 5 wt % SWNT-polycarbonate nanocomposite is significant (4.26%) and sharp upon infrared illumination in the air at room temperature. While the thermal effect predominates in the infrared photoresponse of a pure SWNT film, the photoeffect predominates in the infrared photoresponse of SWNT-polycarbonate nanocomposites. PMID:18333623

  12. Carbon nanotubes from synthesis to in vivo biomedical applications.

    Science.gov (United States)

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future.

  13. Improved Thermal Conductivity in Carbon Nanotubes-Reinforced Syntactic Foam Achieved by a New Dispersing Technique

    Science.gov (United States)

    Bhat, P.; Zegeye, E.; Ghamsari, A. K.; Woldesenbet, E.

    2015-12-01

    Syntactic foams are composite materials in which the matrix phase is reinforced with hollow micro-particles. Traditionally, syntactic foams are used for many high strength applications and as insulating materials. However, for applications demanding better heat dissipation, such as thermal management of electronic packaging, conductive fillers need to be added to syntactic foam. Carbon nanotubes (CNTs), although extremely conductive, have issues of agglomeration in the matrix. In this research, CNT-reinforced syntactic foam was developed based on our approach through which CNTs were dispersed throughout the matrix by growing them on the surface of glass microballoons. The thermal conductivity of nanotube-grown syntactic foam was tested with a Flashline® thermal analyzer. For comparison purposes, plain and nanotube-mixed syntactic foams were also fabricated and tested. Nanotube-grown microballoons improved the thermal conductivity of syntactic foam by 86% and 92% (at 50°C) compared to plain and nanotube-mixed syntactic foams, respectively. The improved thermal conductivity as well as the microstructural analysis proved the effectiveness of this approach for dispersing the carbon nanotubes in syntactic foams.

  14. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  15. Fast Electromechanical Switches Based on Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  16. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  17. Preparation of carbon nanotubes by MPECVD

    International Nuclear Information System (INIS)

    Microwave plasma-enhanced chemical vapor deposition (MPECVD) method has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the large area growth, the lower growth temperature, uniform heat distribution and the good control of the different growth parameters. In this work we present our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapor deposition MPECVD. Well aligned, curly and coiled carbon nanotubes have been prepared. We have investigated the effect of the different growth condition parameters such as type of the catalyst, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results were showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. There is a linear relation between the growth rate and the methane to hydrogen ratio. We found that the growth rate has a great dependence on the amount of methane. For example the growth rate varied from the value 1,34 μm/min when the methane flow rate was 10 sccm to more than 14 μm/min when the methane flow rate was raised to 50 sccm. This growth rate is greater than that reported in the literature. The effect of the gas pressure on the CNTs was also studied. The Raman spectra (excitation wavelength 473 nm) of all samples show D-band peak at around 1300 cm-1 and G-band peak at around 1580 cm-1, which indicate that our CNTs are multi wall CNTs (MWCNTs). The D-band and the G-band correspond to sp2 and sp3 carbon stretching modes relatively, and their intensity ratio is a measure of the amount of disorder in the CNTs. The D-band is known to be attributed to the carbonaceous particles, defects in the curved graphitic sheet and tube ends. It has been suggested that lower Ig/Id ratios and narrower first and second order D and G bands are suggestive of well-aligned NNTs. The photoluminescence PL

  18. Enrichment and Fundamental Optical Processes of Armchair Carbon Nanotubes

    Science.gov (United States)

    Haroz, Erik H.

    The armchair variety of single-wall carbon nanotubes (SWCNTs) is the only nanotube species that behaves as a metal with no electronic band gap and massless carriers, making them ideally suited to probe fundamental questions of many-body physics of one-dimensional conductors as well as to serve in applications such as highcurrent power transmission cables. However, current methods of nanotube synthesis produce bulk material comprising of a mixture of nanotube lengths, diameters, wrapping angles, and electronic types due to the inability to control the growth process at the nanometer level. As a result, measurements of as-grown SWCNTs produce a superposition of electrical and optical responses from multiple SWCNT species. This thesis demonstrates production of aqueous suspensions composed almost entirely of armchair SWCNTs using a post-synthesis separation method employing density gradient ultracentrifugation (DGU) to separate different SWCNT types based on their mass density and surfactant-specific interactions. Resonant Raman spectroscopy determines the relative abundances of each nanotube species, before and after DGU, by measuring the integrated intensity of the radial breathing mode, the diameter-dependent radial vibration of the SWCNT perpendicular to its main axis, and quantifies the degree of enrichment of bulk nanotube samples to exclusively armchair tubes. Raman spectroscopy of armchair-enriched samples of the G-band mode, which is composed of longitudinal (G-) and circumferential (G+) vibrations oscillating parallel and perpendicular to the tube axis, shows that the G- peak, long-held to be an indicator for the presence of metallic SWCNTs, appears only when electronic resonance with narrow-gap semiconducting SWCNTs occurs and shows only the G+ component in spectra containing only armchair species. Finally, by combining optical absorption measurements with nanotube composition as determined earlier via Raman scattering, peak fitting of absorption spectra

  19. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    OpenAIRE

    Magadur, Gurvan; Lauret, Jean-Sébastien; Alain-Rizzo, Valérie; C. Voisin; Roussignol, Ph.; Deleporte, Emmanuelle; Delaire, Jacques,

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching ...

  20. Exciton decay dynamics in individual carbon nanotubes at room temperature

    OpenAIRE

    Gokus, Tobias; Hartschuh, Achim; Harutyunyan, Hayk; Allegrini, Maria; Hennrich, Frank; Kappes, Manfred; Green, Alexander A.; Hersam, Mark C.; Araujo, Paulo T.; Jorio, Ado

    2008-01-01

    We studied the exciton decay dynamics of individual semiconducting single-walled carbon nanotubes at room temperature using time-resolved photoluminescence spectroscopy. The photoluminescence decay from nanotubes of the same (n,m) type follows a single exponential decay function, however, with lifetimes varying between about 1 and 40 ps from nanotube to nanotube. A correlation between broad photoluminescence spectra and short lifetimes was found and explained by defects promoting both nonradi...

  1. Modelling the elastic behaviour of carbon nanotube-reinforced composites

    OpenAIRE

    Otero-Gruer, Fermín; Oller Martínez, Sergio Horacio; Martínez García, Javier; Salomón, Ramón Omar

    2011-01-01

    Carbon nanotubes (CNTs), since their discovery by Lij ima in 1991 [1], are considered a new generation of reinforcement [2]. Their "nano" size structure makes them potentially free of defects, which provides them with excellent physical properties [3,4]. There are two main nanotube types: single wall nanotubes (SWNT), which are made of a single wall tube; and multiwall nanotubes (MWNT), which consist in several concentric walls, one inside the other. In a composite, one the most importa...

  2. Numerical modelling of behaviour of carbon nanotube-reinforced composites

    OpenAIRE

    Otero-Gruer, Fermín; Oller Martínez, Sergio Horacio; Martínez García, Javier; Salomón, Ramón Omar

    2011-01-01

    Since their discovery by Lijima in 1991[1], carbon nanotubes (CNTs), are considered a new generation of reinforcement [2]. Their "nano" size structure makes them potentially free of defects, which provides them with excellent physical properties [3,4]. There are two main nanotube types: single wall nanotubes (SWNT) and multi wall nanotubes (MWNT). These last ones consist in several concentric walls, one inside the other. In a composite, one the most important factors that condition thei...

  3. Synthesis and characterization of carbon nanotube reinforced copper thin films

    OpenAIRE

    Otto, Cornelia

    2006-01-01

    Two model composites of copper and carbon nanotubes were fabricated by very different deposition methods. Copper electrodeposition in a plating bath containing nanotubes created a 3D matrix of randomly oriented CNTs within a thick, 20 micron Cu film. In contrast, sandwiching a layer of well-separated nanotubes between two sub-micron sputtered Cu layers produced a 2D-composite with nanotubes lying parallel to the substrate surface. These composites, which were mechanically tested using var...

  4. Carbon Nanotubes:from Nanoscale Building Blocks to Macrostructures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Carbon nanotubes (CNTs) have fascinating properties.In order to use these novel one-dimensional structures for applications such as in nano-electronic,nano-mechanical and electrochemical energy storage device and as structural elements in various composites,the structure of nanotubes needs to be tailored and various architectures and macroscale assembles have to be configured using nanotube building blocks.Nanotube macrostructures are macroscopically organized groups of CNTs,which are expecte...

  5. Electronic transport properties of metallic single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    曹觉先; 颜晓红; 肖杨; 丁建文

    2003-01-01

    We have calculated the differential conductance of metallic carbon nanotubes by the scatter matrix method. It is found that the differential conductance of metallic nanotube-based devices oscillates as a function of the bias voltage between the two leads and the gate voltage. Oscillation period T is directly proportional to the reciprocal of nanotube length. In addition, we found that electronic transport properties are sensitive to variation of the length of the nanotube.

  6. Inherent-opening-controlled pattern formation in carbon nanotube arrays

    OpenAIRE

    Huang, Xiao; Zhou, Jijie J.; Sansom, Elijah; Gharib, Morteza; Haur, Sow Chorng

    2007-01-01

    We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting–dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension...

  7. Studies of DNA-carbon nanotube interactions

    Science.gov (United States)

    Hughes, Mary Elizabeth

    2008-10-01

    Recently a new biomaterial consisting of a DNA-wrapped single-walled carbon nanotube, and known as a DNA/SWNT, has been discovered. The possible applications of this hybrid are varied and range from genomic sequencing to nanoscale electronics to molecular delivery. The realization of these potential applications requires more knowledge about the microscopic properties of this material. In this thesis, I present studies of: the orientation of nucleobases on the nanotube sidewall; the sequence and length dependence of the DNA-nanotube interaction; and solution conditions to manipulate the DNA/SWNT hybrid. The measurement of the UV optical absorbance of DNA/SWNT and the nucleotide absorbance from DNA/SWNT provide the first experimental confirmation that DNA binds to nanotubes through pi-stacking. Because the hypochromic absorbance typical of pi-stacked structures are expected to occur primarily for DNA dipole transitions that lie along the axis of the optically anisotropic SWNTs, the absorbance changes following binding of DNA to the nanotubes reveals the preferred orientation assumed by each of the four bound nucleotides with respect to the nanotube's long axis. The first observations of pronounced sequence- and length-dependent variations in the binding between ssDNA and SWNTs in aqueous solution are presented. These observations rely on the discovery that there exists a range of DNA lengths able to hybridize with SWNTs that can nevertheless be dissociated at temperatures below the boiling point of water. Quantitative results comparing the isochronal dissociation temperatures and binding energies of DNA/SWNT composed of differing DNA sequences and lengths are given. These results indicate variability and complexity in the binding mechanism responsible for the stability of the hybrid system that transcends simple models based on the sum of independent base-nanotube interactions. Binding energies between a DNA base and nanotube (0.05 to 0.09 eV per base) are similar

  8. Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites

    Directory of Open Access Journals (Sweden)

    M. Al-Haik

    2010-01-01

    Full Text Available Pitch-based carbon fibers are commonly used to produce polymeric carbon fiber structural composites. Several investigations have reported different methods for dispersing and subsequently aligning carbon nanotubes (CNTs as a filler to reinforce polymer matrix. The significant difficulty in dispersing CNTs suggested the controlled-growth of CNTs on surfaces where they are needed. Here we compare between two techniques for depositing the catalyst iron used toward growing CNTs on pitch-based carbon fiber surfaces. Electrochemical deposition of iron using pulse voltametry is compared to DC magnetron iron sputtering. Carbon nanostructures growth was performed using a thermal CVD system. Characterization for comparison between both techniques was compared via SEM, TEM, and Raman spectroscopy analysis. It is shown that while both techniques were successful to grow CNTs on the carbon fiber surfaces, iron sputtering technique was capable of producing more uniform distribution of iron catalyst and thus multiwall carbon nanotubes (MWCNTs compared to MWCNTs grown using the electrochemical deposition of iron.

  9. Terahertz response of carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    The terahertz (THz) research field is expected to serve as a new platform for studying low-energy excitation in solids and higher-order structures in large molecules, and for realizing applications in medicine, agriculture, security, and high-capacity communications. The THz frequency region, however, is located between the electronic and photonic bands, hampering the development of basic components like detectors and sources. This article presents an overview of basic background information about THz waves and THz detector applications and describes the THz response of carbon-based low-dimensional systems, such as single carbon nanotubes (CNT), CNT-array films, and graphene. (author)

  10. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Jarillo-Herrero, P.D.

    2005-01-01

    Electronic transport through nanostructures can be very different from trans- port in macroscopic conductors, especially at low temperatures. Carbon na- notubes are tiny cylinders made of carbon atoms. Their remarkable electronic and mechanical properties, together with their small size (a few nm in

  11. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  12. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    Science.gov (United States)

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  13. Influence of topological defects on the structure of G and D spectral bands of a single-layer carbon nanotube

    Science.gov (United States)

    Ten, G. N.; Glukhova, O. E.; Slepchenkov, M. M.; Bobrinetskii, I. I.; Ibragimov, R. A.; Fedorov, G. E.; Baranov, V. I.

    2016-05-01

    A topological defect in a carbon nanotube grown by chemical vapor deposition from methane onto a silicon substrate with thermal oxide has been investigated and visualized (with a resolution of about 1.5 μm) by confocal Raman spectroscopy. Vibrational Raman spectra of molecular fragments of a single-wall carbon nanotube (SWCNT) without a defect and with Stone-Wales defects (two pentagonal and two heptagonal cells) are calculated. The influence of defects on the shape of G-band components (G+ and G-), which makes it possible to determine the nanotube conductivity type, is considered.

  14. Carbon nanotube-based functional materials for optical limiting.

    Science.gov (United States)

    Chen, Yu; Lin, Ying; Liu, Ying; Doyle, James; He, Nan; Zhuang, Xiaodong; Bai, Jinrui; Blau, Werner J

    2007-01-01

    Optical limiting is an important application of nonlinear optics, useful for the protection of human eyes, optical elements, and optical sensors from intense laser pulses. An optical limiter is such a device that strongly attenuates high intensity light and potentially damaging light such as focused laser beams, whilst allowing for the high transmission of ambient light. Optical limiting properties of carbon nanotube suspensions, solubilized carbon nanotubes, small molecules doped carbon nanotubes and polymer/carbon nanotube composites have been reviewed. The optical limiting responses of carbon nanotube suspensions are shown to be dominated by nonlinear scattering as a result of thermally induced solvent-bubble formation and sublimation of the nanotubes, while the solubilized carbon nanotubes optically limit through nonlinear absorption mechanism and exhibit significant solution-concentration-dependent optical limiting responses. In the former case the optical limiting results are independent of nanotube concentrations at the same linear transmittance as that of the solubilized systems. Many efforts have been invested into the research of polymer/carbon nanotube composites in an attempt to allow for the fabrication of films required for the use of nanotubes in a real optical limiting application. The higher carbon nanotube content samples block the incident light more effectively at higher incident energy densities or intensities. The optical limiting mechanism of these composite materials is quite complicated. Besides nonlinear scattering contribution to the optical limiting, there may also be other contributions e.g., nonlinear absorption, nonlinear refraction, electronic absorption and others to the optical limiting. Further improvements in the optical limiting efficiency of the composites and in the dispersion and alignment properties of carbon nanotubes in the polymer matrix could be realized by variation of both nanostructured guest and polymer host, and by

  15. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja;

    2013-01-01

    We present here a proof of concept for a novel fabrication method of vertically aligned carbon nanotube forests, utilizing black silicon nanograss (a forest of silicon nanometer-sized spikes created with reactive ion etching) coated with titanium tungsten diffusion barrier as a template. The method...... allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  16. Controlling growth of aligned carbon nanotubes from porous silicon templates

    Institute of Scientific and Technical Information of China (English)

    徐东升; 郭国霖; 桂琳琳; 唐有祺; 施祖进; 金朝霞; 顾振南

    2000-01-01

    Fabricating well-aligned carbon nanotubes, especially, on a silicon substrate is very important for their applications. In this paper, an aligned carbon nanotube array has been prepared by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) templates. High-magnification transmission electron microscopy images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of carbon nanotubes and the diameters of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.

  17. Preparation of array of long carbon nanotubes and fibers therefrom

    Science.gov (United States)

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  18. Fabrication, structure, and electron emission of single carbon nanotubes

    Science.gov (United States)

    Zhao, Gongpu

    Carbon nanotubes possess many excellent field emission properties. An obstacle to these applications is that there is no simple and reproducible method to prepare a single carbon nanotube field emitter. In this dissertation, individual carbon nanotube field emitters have been fabricated in a two-step process involving (a) producing micron-size carbon fibers which contain single carbon nanotubes at their cores and (b) exposing the nanotubes by fracturing the fiber with mechanical forces and mounting the fiber to a copper ribbon with a groove. This fabrication method has the potential to be the production method for single carbon nanotube field emission point electron sources. The cold field emission properties of single carbon nanotubes have been studied. These carbon nanotubes exhibit large field enhancement factors of 1.1x107 m-1 and low turn-on fields of 1.1 V/mum. An empirical model has been developed to calculate the field enhancement factor of an open end nanotube attached on a carbon fiber. The lifetime measurements show that a single carbon nanotube can continuously emit electrons over 100 hours without significant current drops. The emission stability measurements show that the maximum current drift is 3.6%. It is also shown experimentally that a carbon nanotube has a high reduced brightness 2.9x 108 ASr-1m-2 V-1, which is two orders of magnitude higher than those of the thermionic electron sources. The thermal field emission properties of a single carbon nanotube have been systemically studied. It is found that there is a gap between the intermediate region and the field emission region which is not covered by either the Fowler-Nordheim theory or the Murphy-Good theory. We have developed an analytical equation that describes the thermal field emission behavior of a single carbon nanotube within the gap. The experimental results agree well with the theoretical predictions. We also studied the effect of Cs doping on the field emission properties and

  19. Carbon nanotube growth by PECVD: a review

    Energy Technology Data Exchange (ETDEWEB)

    Meyyappan, M; Delzeit, Lance; Cassell, Alan; Hash, David [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2003-05-01

    Carbon nanotubes (CNTs), due to their unique electronic and extraordinary mechanical properties, have been receiving much attention for a wide variety of applications. Recently, plasma enhanced chemical vapour deposition (PECVD) has emerged as a key growth technique to produce vertically-aligned nanotubes. This paper reviews various plasma sources currently used in CNT growth, catalyst preparation and growth results. Since the technology is in its early stages, there is a general lack of understanding of growth mechanisms, the role of the plasma itself, and the identity of key species responsible for growth. This review is aimed at the low temperature plasma research community that has successfully addressed such issues, through plasma and surface diagnostics and modelling, in semiconductor processing and diamond thin film growth.

  20. A carbon nanotube immunosensor for Salmonella

    Directory of Open Access Journals (Sweden)

    Mitchell B. Lerner

    2011-12-01

    Full Text Available Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (<1000 cfu/ml. In contrast, the carrier mobility is affected comparably by Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml.

  1. Batch fabrication of carbon nanotube bearings

    International Nuclear Information System (INIS)

    Relative displacements between the atomically smooth, nested shells in multiwalled carbon nanotubes (MWNTs) can be used as a robust nanoscale motion enabling mechanism. Here, we report on a novel method suited for structuring large arrays of MWNTs into such nanobearings in a parallel fashion. By creating MWNT nanostructures with nearly identical electrical circuit resistance and heat transport conditions, uniform Joule heating across the array is used to simultaneously engineer the shell geometry via electric breakdown. The biasing approach used optimizes process metrics such as yield and cycle-time. We also present the parallel and piecewise shell engineering at different segments of a single nanotube to construct multiple, but independent, high density bearings. We anticipate this method for constructing electromechanical building blocks to be a fundamental unit process for manufacturing future nanoelectromechanical systems (NEMS) with sophisticated architectures and to drive several nanoscale transduction applications such as GHz-oscillators, shuttles, memories, syringes and actuators

  2. Carbon nanotube as a gramicidin analogue

    Science.gov (United States)

    Hilder, Tamsyn A.; Chung, Shin-Ho

    2011-01-01

    We have designed a carbon nanotube that is selectively permeable to monovalent cations, binds divalent cations and rejects anions. The nanotubes, with an effective radius of 4.53 Å and length of 36 Å, are terminated with hydrogen atoms and are exohydrogenated in two regions near the entrance and exit. Using molecular and stochastic dynamics simulations we examine the free energy, current-voltage-concentration profiles and ion binding sites. The characteristics of this channel are comparable to the antibiotic gramicidin-A, but the potassium current is six times larger. At 40 mM calcium concentration the current is reduced from 26 pA to 4 pA due to a calcium ion binding at the channel entrance.

  3. Raman Spectroscopic Studies of Carbon Nanotube Composite Fibres

    OpenAIRE

    Deng, Libo

    2011-01-01

    The project has been concerned with structure/property relationships in a series of different carbon nanotube (CNT) composite fibres. Raman spectroscopy has been proved to be a powerful technique to characterise the CNT-containing fibres. Electrospinning has been used to prepare poly(vinyl alcohol) (PVA) nanofibres containing single-wall carbon nanotubes (SWNTs). The effect of the processing conditions including the polymer concentration, electric voltage, tip-to-collector distance, nanotube ...

  4. Carbon Nanotubes Synthesis via Arc Discharge with a Yttria Catalyst

    OpenAIRE

    M. I. Mohammad; Ahmed A. Moosa; J.H. Potgieter; Mustafa K. Ismael

    2013-01-01

    A facile method is proposed to use a computer controlled Arc discharge gap between graphite electrodes together with an yttria-nickel catalyst to synthesize carbon nanotubes under an Ar-H2 gases mixture atmosphere by applying different DC currents and pressure. This produces carbon nanotubes with decreased diameters and increased length. XRD evidence indicated a shift toward higher crystallinity nanotubes. Yields of the CNTs after purification were also enhanced.

  5. Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding

    OpenAIRE

    Ferreira, Tânia; Paiva, M. C.; Pontes, A. J.

    2013-01-01

    The focus of this study was to investigate the dispersion state of pure and functionalized carbon nanotubes in polyamide 6, on composites prepared by twin-screw extrusion and then processed by microinjection moulding. Nanocomposites were prepared with different carbonvnanotube compositions, with and without functionalization. The nanotubes were functionalized by the 1,3-dipolar cycloaddition reaction. The dispersion of the carbon nanotube agglomerates was quantified using optical microscop...

  6. An active, flexible carbon nanotube microelectrode array for recording electrocorticograms

    Science.gov (United States)

    Chen, Yung-Chan; Hsu, Hui-Lin; Lee, Yu-Tao; Su, Huan-Chieh; Yen, Shiang-Jie; Chen, Chang-Hsiao; Hsu, Wei-Lun; Yew, Tri-Rung; Yeh, Shih-Rung; Yao, Da-Jeng; Chang, Yen-Chung; Chen, Hsin

    2011-06-01

    A variety of microelectrode arrays (MEAs) has been developed for monitoring intra-cortical neural activity at a high spatio-temporal resolution, opening a promising future for brain research and neural prostheses. However, most MEAs are based on metal electrodes on rigid substrates, and the intra-cortical implantation normally causes neural damage and immune responses that impede long-term recordings. This communication presents a flexible, carbon-nanotube MEA (CMEA) with integrated circuitry. The flexibility allows the electrodes to fit on the irregular surface of the brain to record electrocorticograms in a less invasive way. Carbon nanotubes (CNTs) further improve both the electrode impedance and the charge-transfer capacity by more than six times. Moreover, the CNTs are grown on the polyimide substrate directly to improve the adhesion to the substrate. With the integrated recording circuitry, the flexible CMEA is proved capable of recording the neural activity of crayfish in vitro, as well as the electrocorticogram of a rat cortex in vivo, with an improved signal-to-noise ratio. Therefore, the proposed CMEA can be employed as a less-invasive, biocompatible and reliable neuro-electronic interface for long-term usage.

  7. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M. [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904-4746 (United States)

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3ω technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  8. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  9. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  10. Three-dimensional carbon nanotube based photovoltaics

    Science.gov (United States)

    Flicker, Jack

    2011-12-01

    Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values

  11. Very short functionalized carbon nanotubes for membrane applications

    NARCIS (Netherlands)

    Fonseca, A.; Reijerkerk, S.R.; Potreck, J.; Nijmeijer, D.C.; Mekhalif, Z.; Delhalle, J.

    2010-01-01

    The cutting and functionalization of carbon nanotubes is described, applying a single-step ball-mill based process. Very short carbon nanotubes bearing primary amine functions were produced, characterized and incorporated in polymeric membranes. The gas separation performance of the composite membra

  12. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  13. A New Application of Carbon Nanotubes Constructing Biosensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon nanotubes used for constructing biosensor was described for the first time. Single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups were used to immobilize glucose oxidase forming a glucose biosensor. The biosensor response can be determined by amperometric method at a low applied potential (0.40 V).

  14. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny;

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...

  15. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  16. Cross-linking of multiwalled carbon nanotubes with polymeric amines

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Stuart, M. C. A.; Landaluce, T. F.; Fausti, D.; Rudolf, P.; Picchioni, F.

    2008-01-01

    Functionalization of carbon nanotubes is considered as an essential step to enable their manipulation and application in potential end-use products. In this paper we introduce a new approach to functionalize multiwalled carbon nanotubes (MWNTs) by applying an amidation-type grafting reaction with am

  17. Apparatus for the laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin

    2010-02-16

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  18. Properties of Single-Wall Carbon Nanotubes with Finite Lengths

    Institute of Scientific and Technical Information of China (English)

    HU Di-Li; PAN Bi-Cai

    2001-01-01

    Carbon nanotubes with finite lengths should be natural components of future "nano devices". Based on orthogonal tight-binding molecular dynamics simulations, we report on our study of formation energies, optimal geometrical structures and active sites of carbon nanotubes with finite lengths. This should be useful to understand the properties of such natural components.

  19. Nitrogen doped carbon nanotubes : synthesis, characterization and catalysis

    NARCIS (Netherlands)

    van Dommele, S.

    2008-01-01

    Nitrogen containing Carbon Nanotubes (NCNT) have altered physical- and chemical properties with respect to polarity, conductivity and reactivity as compared to conventional carbon nanotubes (CNT) and have potential for use in electronic applications or catalysis. In this thesis the incorporation of

  20. Massive radius-dependent flow slippage in carbon nanotubes

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  1. Massive radius-dependent flow slippage in carbon nanotubes.

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-07

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  2. Massive radius-dependent flow slippage in carbon nanotubes.

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter. PMID:27604947

  3. Electron paramagnetic resonance investigation of metalloendofullerene derived carbon nanotube peapods

    Science.gov (United States)

    Jakes, P.; Gembus, A.; Dinse, K.-P.; Hata, K.

    2008-02-01

    Single Wall Carbon Nanotubes (SWCNT) prepared by the "super growth" method and arc-grown material were used as templates for peapod preparation with La@C82. A qualitative change of the electron paramagnetic resonance (EPR) properties of La@C82 is observed after incorporation into SWNT. The loss of lanthanum hyperfine interaction in combination with the observed increase of EPR susceptibility by two orders of magnitude after peapod preparation when comparing with signals from "empty" tubes is indicative for the generation of itinerant spins by charge and spin transfer from La@C82 to the tubes. This interpretation is supported by the observation of fast spin dephasing, detected with pulsed EPR techniques.

  4. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

    Science.gov (United States)

    Moreira, João Vitor Silva; Corat, Evaldo José; May, Paul William; Cardoso, Lays Dias Ribeiro; Lelis, Pedro Almeida; Zanin, Hudson

    2016-08-01

    We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge-discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

  5. Microwave absorbing properties and magnetic properties of different carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The microwave absorbing properties and magnetic properties of as-grown Fe-filled carbon nanotubes (CNTs), annealed Fe-filled CNTs, and multi-walled CNTs were studied. Vibrating sample magnetometer results showed that the annealed Fe-filled CNTs have the weakest coercivity and strongest saturation magnetization among the three types CNTs, due to the presence of more ferromagnetic α-Fe nanowires. After annealing, the values increased to 291.0 Oe and 28.0 emu/g and the samples showed excellent microwave absorbing properties. The reflection loss was over 5 dB between 11.6 GHz and 18 GHz with a maximum value of 10.8 dB for annealed Fe-filled CNTs (1.1 wt%)/epoxy composite.

  6. Electrical measurement on individual multi-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. OKUMOTO; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The characterization of electrical property of multi-walled carbon nanotubes (MWCNTs) on a nanometer scale is essential for their potential application in nano-electronic devices. The MWCNTs were synthesized on Fe2O3/SiO2/Si substrate and Pt plate substrate by simple thermal chemical vapor deposition (STCVD) technique and the electrical measurements of individual MWCNT grown on silicon substrate and Pt plate substrate were performed by home-made 'nano-manipulator',respectively. According to current-voltage curves obtained in the experiments the current density that the MWCNTs can carry is calculated to be about 107 A/cm2,which is much larger than that of normal metals.

  7. Exploration of vertical scaling limit in carbon nanotube transistors

    Science.gov (United States)

    Qiu, Chenguang; Zhang, Zhiyong; Yang, Yingjun; Xiao, Mengmeng; Ding, Li; Peng, Lian-Mao

    2016-05-01

    Top-gated carbon nanotube field-effect transistors (CNT FETs) were fabricated by using ultra-thin (4.5 nm or thinner) atomic-layer-deposition grown HfO2 as gate insulator, and shown to exhibit high gate efficiency, i.e., all examined (totally 76) devices present very low room temperature subthreshold swing with an averaged value of 64 mV/Dec, without observable carrier mobility degradation. The gate leakage of the CNT FET under fixed gate voltage is dependent not only on the thickness of HfO2 insulator, but also on the diameter of the CNT. The vertical scaling limit of CNT FETs is determined by gate leakage standard in ultra large scale integrated circuits. HfO2 film with effective oxide thickness of 1.2 nm can provide both excellent gate electrostatic controllability and small gate leakage for sub-5 nm FETs based on CNT with small diameter.

  8. A self-assembled synthesis of carbon nanotubes for interconnects.

    Science.gov (United States)

    Chen, Zexiang; Cao, Guichuan; Lin, Zulun; Koehler, Irmgard; Bachmann, Peter K

    2006-02-28

    We report a novel approach to grow highly oriented, freestanding and structured carbon nanotubes (CNTs) between two substrates, using microwave plasma chemical vapour deposition. Sandwiched, multi-layered catalyst structures are employed to generate such structures. The as-grown CNTs adhere well to both the substrate and the top contact, and provide a low-resistance electric contact between the two. High-resolution scanning electron microscope (SEM) images show that the CNTs grow perpendicular to these surfaces. This presents a simple way to grow CNTs in different, predetermined directions in a single growth step. The overall resistance of a CNT bundle and two CNT-terminal contacts is measured to be about 14.7 k Ω. The corresponding conductance is close to the quantum limit conductance G(0). This illustrates that our new approach is promising for the direct assembly of CNT-based interconnects in integrated circuits (ICs) or other micro-electronic devices.

  9. Microwave absorbing properties and magnetic properties of different carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    GUI XuChun; WANG KunLin; WEI JinQuan; L(U) RuiTao; SHU QinKe; JIA Yi; WANG Chen; ZHU HongWei; WU DeHai

    2009-01-01

    The microwave absorbing properties and magnetic properties of as-grown Fe-filled carbon nanotubes (CNTs), annealed Fe-filled CNTs, and multi-walled CNTs were studied. Vibrating sample magnetometer results showed that the annealed Fe-filled CNTs have the weakest coercivity and strongest saturation magnetization among the three types CNTs, due to the presence of more ferromagnetic α-Fe nanowires.After annealing, the values increased to 291.00e and 28.0 emu/g and the samples showed excellent microwave absorbing properties. The reflection loss was over 5 dB between 11.6 GHz and 18 GHz with a maximum value of 10.8 dB for annealed Fe-filled CNTs (1.1 wt%)/epoxy composite.

  10. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

    Science.gov (United States)

    Moreira, João Vitor Silva; Corat, Evaldo José; May, Paul William; Cardoso, Lays Dias Ribeiro; Lelis, Pedro Almeida; Zanin, Hudson

    2016-11-01

    We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge-discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

  11. Fabrication of a rotary carbon nanotube bearing test apparatus

    Science.gov (United States)

    Cook, E. H.; Weinberg, M. S.; Spakovszky, Z. S.; Carter, D. J. D.

    2015-12-01

    Carbon Nanotubes (CNTs) are attractive elements for bearings in Micro-Electro-Mechanical Systems (MEMS), because their structure comprises nested shells with no bonding and sub-nanometre spacing between them, enabling relative motion with low friction and wear. A reliable bearing technology is critical to bringing rotating MEMS machines from laboratory demonstrations to common use. We report here the design and fabrication of a test rotor, a testing apparatus and testing attempts, and integration of CNTs with MEMS. The device improves on existing CNT bearing demonstrators by establishing a vertical bearing orientation (enabling superior rotor balance and speed, and drive mechanism placement flexibility) and a manufacturable process (employing CNTs grown in place by chemical vapour deposition (CVD)). The main outstanding challenge to demonstrating rotation is available CVD CNT quality.

  12. An improved fabrication method for carbon nanotube probe

    Institute of Scientific and Technical Information of China (English)

    XU Zong-wei; GUO Li-qiu; DONG Shen; ZHAO Qing-liang

    2008-01-01

    An improved arc discharge method is developed to fabricate the carbon nanotube probe.In this method,the silicon probe and the carbon nanotube were manipulated under an optical microscope.When the silicon probe and the carbon nanotube were very close,30-60 V dc or ac was applied between them,and the carbon nanotube was divided and attached to the end of the silicon probe.Comparing with the arc discharge method,the new method need not coat the silicon probe with metal in advance,which Can greatly reduce the fabrication difficulty and cost.The fabricated carbon nanotube probe exhibits the good property of hish aspect ratio and can reflect the true topography more accurately than the silicon probe.

  13. ELECTROCHEMICAL INVESTIGATION ON CARBON NANOTUBE FILM WITH DIFFERENT PRETREATMENTS

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; Y. Ma; W. Zhu

    2003-01-01

    Wide potential windows were found at carbon nanotube film electrodes in neutral solutions after being treated with nitric acid and mixed acid. Electrochemical reversibility was investigated at carbon nanotube films with different pretreatments for ferri/ferrocyanide and quinone /hydroquinone. Carbon nanotube film electrodes presented quasi-reversible electrochemical behavior for both electrolytes. In the range of scan rate, carbon nanotube film electrodes treated with acids showed heterogeneous electron-transfer properties, which was mainly controlled by its electron state density on the surface of the film. On the whole, the carbon nanotube electrode with nitric acid treatment presented the best electrochemical behaviors, so we chose it as an analytical electrode to determine the trace compound in dilute solution. The results demonstrated that this new electrode material exhibits superior performance characteristics for the detection of azide anion.

  14. Surface chemistry of metal catalyst under carbon nanotube growth conditions

    Science.gov (United States)

    Back, Tyson Cody

    The catalyst nanoparticle is critical to the yield, type, and diameter in the growth and nucleation of carbon nanotubes. The objective of this study is focused on determining what changes take place with the catalyst chemistry under growth conditions typically seen in chemical vapor deposition, CVD, experiments. It is well known that catalyst poisoning can occur and in turn effects the catalytic activity of the nanoparticle. A complete description of this mechanism is as of yet undetermined. In order to elucidate this process iron films were deposited onto Si substrates that contained a support layer of Al2O3 or SiO2. These samples were investigated with various surface chemistry techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and electron energy loss spectroscopy (EELS). In addition, structural characteristics were investigated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface techniques were used in-situ in order to observe chemistries that might not be observable outside a CVD reactor. Two sets of experiments were performed on the silica and alumina supports. The first consisted of carbon nanotube growth at near atmospheric pressure, while the second was performed under vacuum. The oxide support was shown to have an affect on the type of nanotubes grown under identical conditions. The silica support films produced more MWNT, while the alumina support films produced more SWNT. This difference was due to the amount of ripening that takes place on the oxide supports. Also in-situ XPS revealed differences in the chemistry of iron catalyst during growth and these differences were attributed to substrate interactions between alumina and iron. Finally, in-situ XPS analysis showed no evidence of carbides or oxides acting as a catalyst during the nucleation process.

  15. Carbon Nanotube Superconducting Quantum Interference Device.

    Science.gov (United States)

    Bouchiat, Vincent; Cleuziou, Jean-Pierre; Ondarcuhu, Thierry; Monthioux, Marc; Wernsdorfer, Wolfgang

    2007-03-01

    We report on the study of a superconducting quantum interference device (SQUID) with Josephson junctions made of portions of metallic single-walled carbon nanotube [1]. Quantum confinement in each nanotube junction induces a discrete quantum dot (QD) energy level structure, which can be controlled with a lateral electrostatic gate. In addition, a backgate electrode can vary the transparency of the QD barriers, thus permitting to change the hybridization of the QD states with the superconducting contacts [2]. The gates are also used to directly tune the quantum phase interference of the Cooper pairs circulating in the SQUID ring. Optimal modulation of a 6nA supercurrent current with magnetic flux is achieved when both QD junctions are in the ``on'' or ``off'' state. Futhermore, the SQUID design establishes that these CNT Josephson junctions can be used as gate-controlled π-junctions. This allow to verify that the sign of the current-phase relation across a proximity coupled Qdot can be reversed with a gate voltage. Noise studies shows that the noise figure of the nanotube SQUID together with the size of the junction should allow the detection of a single molecule magnet. [1] J-P. Cleuziou et al. Nature Nanotec., 1, 53, (2006). [2] J-P. Cleuziou et al. cond-mat/0610622.

  16. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  17. Direct pressure sensor using carbon nanotubes nanocomposite

    OpenAIRE

    Dinh, Nghia Trong

    2016-01-01

    Im Gegensatz zu herkömmlichen Dehnungsmessstreifen können Carbon nanotube (CNT)-basierte Komposite zusätzlich eine ausgeprägte Druck-abhängigkeit des Widerstandes aufweisen. Deshalb können Drucksensoren aus CNT-Nanokomposite ohne den Einsatz von Verformungskörpern wie z. B. Biegebalken aufgebaut werden. Die möglichen Anwendungsgebiete für diese direkt messenden Sensoren wurden in der vorliegenden Arbeit bei drei industriellen Anwendungen wie z. B. bei Robotergreifarmen gezeigt. Die Zielstellu...

  18. Carbon Nanotube Integration with a CMOS Process

    Directory of Open Access Journals (Sweden)

    Maximiliano S. Perez

    2010-04-01

    Full Text Available This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture.

  19. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Carbon Nanotube Integration with a CMOS Process

    Science.gov (United States)

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  1. Carbon nanotubes: controlled growth and application

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2013-01-01

    Full Text Available Notable progress has been made on the synthesis, properties and uses of carbon nanotubes (CNTs in the past two decades. However, the controlled growth of single-wall CNTs (SWCNTs with predefined and uniform structures remains a big challenge, and making full use of CNTs in applications still requires great effort. In this article, our strategies and recent progress on the controlled synthesis of SWCNTs by chemical vapor deposition are reviewed, and the applications of CNTs in lithium-ion batteries, transparent conductive films, and as connectors of metal atomic chains are discussed. Finally, future prospects for CNTs are considered.

  2. Drain Voltage Scaling in Carbon Nanotube Transistors

    OpenAIRE

    Radosavljevic, M.; Heinze, S.; Tersoff, J.; Avouris, Ph.

    2003-01-01

    While decreasing the oxide thickness in carbon nanotube field-effect transistors (CNFETs) improves the turn-on behavior, we demonstrate that this also requires scaling the range of the drain voltage. This scaling is needed to avoid an exponential increase in Off-current with drain voltage, due to modulation of the Schottky barriers at both the source and drain contact. We illustrate this with results for bottom-gated ambipolar CNFETs with oxides of 2 and 5 nm, and give an explicit scaling rul...

  3. Metallic Carbon Nanotubes and Ag Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  4. Coating Carbon Nanotubes with Europium Oxide

    Institute of Scientific and Technical Information of China (English)

    Hui Qun CAO; Guang Yan HONG; Jing Hui YAN; Ji Lin ZHANG; Gui Xia LIU

    2003-01-01

    Carbon nanotubes (CNTS) coating with europium oxide by a simple method is reported in this letter for the first time. The CNTS were refluxed in a solution of nitric acid containing europium nitrate, and the pH value was subsequently ajusted with ammonia solution. At last, the mixture was filtered and annealed. The TEM micrograph showed that the CNTS were covered with a uniform thin layer with thickness of about 15 nm. The XRD results revealed that the CNTS were coated with europium oxide.

  5. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  6. Multiwalled carbon nanotube: Luttinger versus Fermi liquid

    OpenAIRE

    Tarkiainen, R.; Ahlskog, M; Penttilä, J; Roschier, L.; Hakonen, Pertti J.; Paalanen, M.; Sonin, E.

    2001-01-01

    We have measured IV curves of multiwalled carbon nanotubes using end contacts. At low voltages, the tunneling conductance obeys non-Ohmic power law, which is predicted both by the Luttinger liquid and the environment-quantum-fluctuation theories. However, at higher voltages we observe a crossover to Ohm’s law with a Coulomb-blockade offset, which agrees with the environment-quantum-fluctuation theory, but cannot be explained by the Luttinger-liquid theory. From the high-voltage tunneling cond...

  7. CARBON NANOTUBES VIA METHANE DECOMPOSITION ON AN ALUMINA SUPPORTED COBALT AEROGEL CATALYST

    Institute of Scientific and Technical Information of China (English)

    Lingyu Piao; Jiuling Chen; Yongdan Li

    2003-01-01

    An alumina-supported cobalt aerogel catalyst prepared from a sol-gel and a supercritical drying method was used in the catalytic decomposition of methane. The physical-chemical properties of the catalyst were characterized and its activity for methane decomposition was investigated. The effects of calcination and reaction temperatures on the activity of the catalyst and the morphology of the carbon nanotubes produced were discussed. A CoAl2O4 spinel structure formed in the calcined catalyst. The quantity of the nanotubes produced in the reaction increases with the amount of cobalt in the reduced catalyst. A higher reaction temperature leads to a higher reaction rate, though faster deactivation of the catalyst occurs with the change. The carbon nanotubes grown on the catalyst have smooth walls and uniform diameter distribution.

  8. Carbon nanotube oscillator surface profiling device and method of use

    Science.gov (United States)

    Popescu, Adrian; Woods, Lilia M.; Bondarev, Igor V.

    2011-11-15

    The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.

  9. Modification of Carbon Nanotube Powder Microelectrode and Nitrite Reduction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The properties of the carbon nanotube powder microelectrodes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.

  10. Modification of Carbon Nanotube Powder Microelectrode and Nitrite Reduction

    Institute of Scientific and Technical Information of China (English)

    PeiFangLIU; JunFuHU

    2002-01-01

    The properties of the carbon nanotube powder microelectroes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.

  11. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    Science.gov (United States)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  12. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    Directory of Open Access Journals (Sweden)

    Giuseppe Cirillo

    2014-01-01

    Full Text Available The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior. The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review.

  13. Synthesis of Aligned Carbon Nanotubes by Thermal Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Gang; ZHOU Ming; MA Weiwei; CAI Lan

    2009-01-01

    Single crystal silicon was found to be very beneficial to the growth of aligned carbon nanotubes by chemical vapor deposition with C2H2 as carbon source. A thin film of Ni served as catalyst was deposited on the Si substrate by the K575X Peltier Cooled High Resolution Sputter Coater before growth. The growth properties of carbon nanotubes were studied as a function of the Ni catalyst layer thickness. The diameter, growth rate and areal density of the carbon nanotubes were controlled by the initial thickness of the catalyst layer. Steric hindrance between nanotubes forces them to grow in well-aligned manner at an initial stage of growth. Transmission electron microscope analysis revealed that nanotubes grew by a tip growth mechanism.

  14. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.

    Science.gov (United States)

    Khodakovskaya, Mariya V; Kim, Bong-Soo; Kim, Jong Nam; Alimohammadi, Mohammad; Dervishi, Enkeleda; Mustafa, Thikra; Cernigla, Carl E

    2013-01-14

    Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.

  15. CO2 Removal from Biogas Using Carbon Nanotubes Mixed Matrix Membranes

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2010-07-01

    Full Text Available A new type of mixed matrix membrane consisting of polyethersulfone (PES and carbon nanotubes (CNTs is prepared for biogas purification application. PES mixed matrix membrane with and without modification of carbon nanotubes were prepared by a dry/wet phase inversion technique using a pneumatically membrane casting machine system. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using acid treatment to allow PES chains to be grafted on carbon nanotubes surface. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Meanwhile, the nanogaps in the interface of polymer and carbon nanotubes were appeared in the PES mixed matrix membrane with unmodified of carbon nanotubes. The modified carbon nanotubes mixed matrix membrane increases the mechanical properties and the permeability of all gases. For PES-modified carbon nanotubes mixed matrix membrane the maximum selectivity achieved for CO2/CH4 is 23.54

  16. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    Science.gov (United States)

    Martinez, D. S. T.; Alves, O. L.; Barbieri, E.

    2013-04-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  17. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers

    Science.gov (United States)

    Naito, Kimiyoshi

    2014-09-01

    The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

  18. Modeling of HiPco Process for Carbon Nanotube Production

    Science.gov (United States)

    Gokcen, T.; Dateo, C. E.; Meyyappan, M.; Colbert, D. T.; Smith, D. T.; Smith, K.; Smalley, R. E.; Arnold, James O. (Technical Monitor)

    2000-01-01

    High-pressure carbon monoxide (HiPco) reactor, developed at Rice University, is used to produce single-walled carbon nanotubes (SWNT) from gas-phase reactions of iron carbonyl and nickel carbonyl in carbon monoxide at high pressures (10 - 100 atm). Computational modeling is used to better understand the HiPco process. In the present model, decomposition of the precursor, metal cluster formation and growth, and carbon nanotube growth are addressed. Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. Diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by Boudouard reaction (2CO ---> C(s) + CO2) with metal catalysts. The growth kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance.

  19. Carbon nanotubes field effect transistors biosensors

    Directory of Open Access Journals (Sweden)

    M.P. Marco

    2012-03-01

    Full Text Available Carbon nanotube transistor arrays (CNTFETs wereused as biosensors to detect DNA hybridization andto recognize two anabolic steroids, stanozolol (Stzand methylboldenone (MB. Single strand DNA andantibodies specific for STz and MB were immobilizedon the carbon nanotubes (CNTs in situ in the deviceusing two different approaches: direct noncovalentbonding of antibodies to the devices and covalentlytrough a polymer previously attached to theCNTFETs. A new approach to ensure specificadsorption of the biomolecules to the nanotubeswas developed. The polymer poly(methylmethacrylate0.8-co-poly (ethyleneglycolmethacrylate0.8-co-N-succinimidyl methacrylate0.1was synthesized and bonded noncovalently to thenanotube. Aminated single-strand DNA or antibodiesspecific for Stz and MB were then attached covalentlyto the polymer. Statistically significant changes wereobserved in key transistor parameters for both DNAhybridization and steroids recognition. Regardingthe detection mechanism, in addition to chargetransfer, Schottky barrier, SB, modification, andscattering potential reported by other authors, anelectron/hole trapping mechanism leading tohysteresis modification has been determined. Thepresence of polymer seems to hinder the modulationof the electrode-CNT contact.

  20. Carbon Nanotube Thin-Film Antennas.

    Science.gov (United States)

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  1. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  2. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  3. A cell nanoinjector based on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xing; Kis, Andras; Zettl, Alex; Bertozzi, Carolyn R.

    2007-01-30

    Technologies for introducing molecules into living cells are vital for probing the physical properties and biochemical interactions that govern the cell's behavior. Here we report the development of a nanoscale cell injection system-termed the nanoinjector-that uses carbon nanotubes to deliver cargo into cells. A single multi-walled carbon nanotube attached to an atomic force microscope tip was functionalized with cargo via a disulfide-based linker. Penetration of cell membranes with this 'nanoneedle', followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. The capability of the nanoinjector was demonstrated by injection of protein-coated quantum dots into live human cells. Single-particle tracking was employed to characterize the diffusion dynamics of injected quantum dots in the cytosol. This new technique causes no discernible membrane or cell damage, and can deliver a discrete number of molecules to the cell's interior without the requirement of a carrier solvent.

  4. Localized CVD growth of oriented and individual carbon nanotubes from nanoscaled dots prepared by lithographic sequences

    OpenAIRE

    Vigolo, Bridgite; Cojocaru, Costel Sorin; Faerber, Jaques; Arabski, J.; Gangloff, Laurent; Legagneux, Pierre; Lezec, Henry; Le Normand, Francois

    2008-01-01

    International audience Using a combination of top-down lithographic techniques, isolated, individual and oriented multi-wall carbon nanotubes (MWNTs) were grown on nickel or iron nanoscaled dots. In the first step of the process, micron-sized catalytic metallic dots (either iron or nickel) were prepared using UV lithography. MWNTs were then synthesized from these catalysts using a direct current plasma-assistance and hot-filament-enhanced chemical vapor deposition (CVD) reactor. Samples we...

  5. Effects of nanostructure and coating on the mechanics of carbon nanotube arrays

    OpenAIRE

    Poelma, René H.; Fan, Xuejun; Hu, Z.-Y.; Tendeloo, van, G.; Zeijl, van, C.J.J.; Zhang, Guo Qi

    2016-01-01

    Abstract: Nanoscale materials are one of the few engineering materials that can be grown from the bottom up in a controlled manner. Here, the effects of nanostructure and nanoscale conformal coating on the mechanical behavior of vertically aligned carbon nanotube (CNT) arrays through experiments and simulation are systematically investigated. A modeling approach is developed and used to quantify the compressive strength and modulus of the CNT array under large deformation. The model accounts ...

  6. An Organocobalt–Carbon Nanotube Chemiresistive Carbon Monoxide Detector

    OpenAIRE

    Liu, Sophie F.; Lin, Sibo; Swager, Timothy M.

    2016-01-01

    A chemiresistive detector for carbon monoxide was created from single-walled carbon nanotubes (SWCNTs) by noncovalent modification with diiodo(η5: η1-1-[2-(N,N-dimethylamino)ethyl]-2,3,4,5-tetramethylcyclopentadienyl)-cobalt(III) ([Cp^CoI2]), an organocobalt complex with an intramolecular amino ligand coordinated to the metal center that is displaced upon CO binding. The unbound amino group can subsequently be transduced chemiresistively by the SWCNT network. The resulting device was shown to...

  7. Crystallization and mechanical properties of functionalized single-walled carbon nanotubes/polyvinylidene fluoride composites

    DEFF Research Database (Denmark)

    Ma, Jing; Iftekharul Haque, Rubaiyet; Larsen, Mikael

    2012-01-01

    Single-walled carbon nanotubes were purified and functionalized by nitric acid and octadecylamine. Raman and Fourier transform infrared spectroscopy were used to characterize the functionalization of the single-walled carbon nanotubes. Polyvinylidene flouride nanocomposites containing 1 wt......% purified or functionalized single-walled carbon nanotubes were prepared by solution blending and injection molding. The dispersion of different carbon nanotubes in dimethylformamide and in polyvinylidene flouride has been investigated. Mechanical properties show that adding single-walled carbon nanotubes...

  8. Advanced Physical Chemistry of Carbon Nanotubes

    Science.gov (United States)

    Li, Jun; Pandey, Gaind P.

    2015-04-01

    The past decade has seen a surge of exciting research and applications of carbon nanotubes (CNTs) stimulated by deeper understanding of their fundamental properties and increasing production capability. The intrinsic properties of various CNTs were found to strongly depend on their internal microstructures. This review summarizes the fundamental structure-property relations of seamless tube-like single- and multiwalled CNTs and conically stacked carbon nanofibers, as well as the organized architectures of these CNTs (including randomly stacked thin films, parallel aligned thin films, and vertically aligned arrays). It highlights the recent development of CNTs as key components in selected applications, including nanoelectronics, filtration membranes, transparent conductive electrodes, fuel cells, electrical energy storage devices, and solar cells. Particular emphasis is placed on the link between the basic physical chemical properties of CNTs and the organized CNT architectures with their functions and performance in each application.

  9. Multiwalled Carbon nanotube - Strength to polymer composite

    Science.gov (United States)

    Pravin, Jagdale; Khan, Aamer. A.; Massimo, Rovere; Carlo, Rosso; Alberto, Tagliaferro

    2016-02-01

    Carbon nanotubes (CNTs), a rather fascinating material, are among the pillars of nanotechnology. CNTs exhibit unique electrical, mechanical, adsorption, and thermal properties with high aspect ratio, exceptional stiffness, excellent strength, and low density, which can be exploited in the manufacturing of revolutionary smart nano composite materials. The demand for lighter and stronger polymer composite material in various applications is increasing every day. Among all the possibilities to research and exploit the exceptional properties of CNTs in polymer composites we focused on the reinforcement of epoxy resin with different types of multiwalled carbon nano tubes (MWCNTs). We studied mechanical properties such as stress, strain, ultimate tensile strength, yield point, modulus and fracture toughness, and Young's modulus by plotting and calculating by means of the off-set method. The mechanical strength of epoxy composite is increased intensely with 1 and 3 wt.% of filler.

  10. Illuminating the future of silicon photonics: optical coupling of carbon nanotubes to microrings

    International Nuclear Information System (INIS)

    Advances in carbon nanotube material quality and processing techniques have led to an increased interest in nanotube photonics. In particular, emission in the telecommunication wavelengths makes nanotubes compatible with silicon photonics. Noury et al (2014 Nanotechnology 25 215201) have reported on carbon nanotube photoluminescence coupled to silicon microring resonators, underscoring the advantage of combining carbon nanotube emitters with silicon photonics. Their results open up the possibility of using nanotubes in other waveguide-based devices, taking advantage of well-established technologies. (viewpoint)

  11. Carbon Nanotubes as Active Components for Gas Sensors

    Directory of Open Access Journals (Sweden)

    Wei-De Zhang

    2009-01-01

    Full Text Available The unique structure of carbon nanotubes endows them with fantastic physical and chemical characteristics. Carbon nanotubes have been widely studied due to their potential applications in many fields including conductive and high-strength composites, energy storage and energy conversion devices, sensors, field emission displays and radiation sources, hydrogen storage media, and nanometer-sized semiconductor devices, probes, and quantum wires. Some of these applications have been realized in products, while others show great potentials. The development of carbon nanotubes-based sensors has attracted intensive interest in the last several years because of their excellent sensing properties such as high selectivity and prompt response. Carbon nanotube-based gas sensors are summarized in this paper. Sensors based on single-walled, multiwalled, and well-aligned carbon nanotubes arrays are introduced. Modification of carbon nanotubes with functional groups, metals, oxides, polymers, or doping carbon nanotubes with other elements to enhance the response and selectivity of the sensors is also discussed.

  12. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna

    OpenAIRE

    Böhmler, Miriam; Hartmann, Nicolai; Georgi, Carsten; Hennrich, Frank; Green, Alexander A.; Hersam, Mark C.; Hartschuh, Achim

    2010-01-01

    We observe the angular radiation pattern of single carbon nanotubes' photoluminescence in the back focal plane of a microscope objective and show that the emitting nanotube can be described by a single in-plane point dipole. The near-field interaction between a nanotube and an optical antenna modifies the radiation pattern that is now dominated by the antenna characteristics. We quantify the antenna induced excitation and radiation enhancement and show that the radiative rate enhancement is c...

  13. Preparation of very long and open aligned carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    潘正伟; 常保和; 孙连峰; 钱露茜; 刘祖琴; 唐东升; 王刚; 解思深

    2000-01-01

    Very long and open aligned carbon nanotubes that reach about 2 mm long, an order of magnitude longer than previously reached, have been prepared by chemical vapor deposition over silica dioxide substrates on the surface, where iron/silica nano-composite particles are evenly positioned. The nanotubes are naturally opened at the bottom ends. The growth mechanism of the very long and open-ended nanotubes is also discussed.

  14. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  15. Carbon nanotube prepared from carbon monoxide by CVD method and its application as electrode materials

    Institute of Scientific and Technical Information of China (English)

    AN Yuliang; YUAN Xia; CHENG Shinan; GEN Xin

    2006-01-01

    Carbon nanotubes with larger inner diameter were synthesized by the chemical vapor deposition of carbon monoxide (CO) on iron catalyst using H2S as promoting agent.It is found that the structure and morphology of carbon nanotubes can be tailored, to some degree, by varying the experimental conditions such as precursor components and process parameters.The results show that the presence of H2S may play key role for growing Y-branched carbon nanotubes.The products were characterized by SEM, TEM, and Raman spectroscopy, respectively.Furthermore, the obtained carbon nanotubes were explored as electrode materials for supercapacitor.

  16. Injection Molding of Polystyrene Matrix Composites Filled with Vapor Grown Carbon Fiber

    Science.gov (United States)

    Enomoto, Kazuki; Yasuhara, Toshiyuki; Ohtake, Naoto; Kato, Kazunori

    Vapor grown carbon fiber (VGCF) is a kind of carbon nanotube (CNT), which has outstanding properties such as high mechanical strength and high electrical conductivity. In this study, injection molding properties of polystyrene (PS) filled with VGCF and evaluation of mechanical and electrical properties are discussed in comparison with composites in which conventional carbon fillers were filled. As a result, volume resistivity of VGCF/PS composites dropped significantly between VGCF concentration of 3 and 4vol.%. Resistivity of the composites filled with VGCF was 1.2×102Ω·cm when VGCF concentration was 11.6vol.%. The resistivity was significantly lower than that of composites which were filled with conventional carbon fillers. The elastic modulus slightly increases with increasing VGCF concentration, whereas the tensile strength slightly decreases in the VGCF concentration in the range from 0 to 12vol.%.

  17. The synergistic effect in the Fe-Co bimetallic catalyst system for the growth of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, D.; Esconjauregui, S., E-mail: cse28@cam.ac.uk; Cartwright, R.; D' Arsié, L.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, S.; Cepek, C. [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy); Oakes, D.; Clark, J. [Johnson Matthey Technology Centre, Sonning Common RG4 9NH (United Kingdom); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2015-01-28

    We report the growth of multi-walled carbon nanotube forests employing an active-active bimetallic Fe-Co catalyst. Using this catalyst system, we observe a synergistic effect by which—in comparison to pure Fe or Co—the height of the forests increases significantly. The homogeneity in the as-grown nanotubes is also improved. By both energy dispersive spectroscopy and in-situ x-ray photoelectron spectroscopy, we show that the catalyst particles consist of Fe and Co, and this dramatically increases the growth rate of the tubes. Bimetallic catalysts are thus potentially useful for synthesising nanotube forests more efficiently.

  18. Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.

    2011-01-01

    Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.

  19. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    Science.gov (United States)

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity. PMID:17326671

  20. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying; Cao Jue-Xian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations.It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases.The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase.The band structure calculations show that band gap of (10,0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa),band gap of (10,0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover,the calculated charge density shows that a large pressure can induce an sp2-to-sp3 bonding transition,which is confirmed by recent experiments on deformed carbon nanotubes.

  1. Intensive irradiation of carbon nanotubes by Si ion beam

    Institute of Scientific and Technical Information of China (English)

    NI Zhichun; LI Qintao; YAN Long; GONG Jinlong; ZHU Dezhang; ZHU Zhiyuan

    2007-01-01

    Multi-walled carbon nanotubes were irradiated with 40 keV Si ion beam to a dose of 1×1017 cm-2. The multiple-way carbon nanowire junctions and the Si doping in carbon nanowires were realized. Moreover, the formation processes of carbon nanowire junctions and the corresponding mechanism were studied.

  2. Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes

    Science.gov (United States)

    This study explores the mechanical properties of an E-glass fabric composite reinforced with anchored multi-walled carbon nanotubes (CNTs). The CNTs were grown on the E-glass fabric using a floating catalyst chemical vapor deposition procedure. The E-glass fabric with attached CNTs was then incorpor...

  3. Synthesis of anisotropic gold shell on carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Minati, L., E-mail: luminati@fbk.eu [CNR-IFN, CSMFO Lab. (Italy); Torrengo, S. [FBK (Italy); Ischia, G. [University of Trento, Department of Industrial Engineering (Italy); Speranza, G. [FBK (Italy)

    2013-11-15

    This paper reports a simple procedure to synthesize gold-coated carbon nanotubes. The method involves the reduction of gold precursor on oxidized carbon nanotubes. UV–Visible absorption spectroscopy and electron microscopy were used to study the gold precursor reduction on the carbon nanotubes. Scanning and transmission electron microscopy analysis showed the formation of an irregular gold layer around the CNT surface. The resulting nanoparticles show an anisotropic shape with dimensions between 100 and 200 nm. This hybrid material displays an intense absorption in the near infrared range with an absorption maximum at 840 nm.

  4. Carbon nanotube-polymer composites manufacture, properties, and applications

    CERN Document Server

    Grady, Brian P

    2011-01-01

    The accessible compendium of polymers in carbon nanotubes (CNTs) Carbon nanotubes (CNTs)-extremely thin tubes only a few nanometers in diameter but able to attain lengths thousands of times greater-are prime candidates for use in the development of polymer composite materials. Bringing together thousands of disparate research works, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications covers CNT-polymers from synthesis to potential applications, presenting the basic science and engineering of this dynamic and complex area in an accessible, readable way. Desi

  5. Closely packed sodium and potassium nanowires in ultrathin carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Ju [Sangmyung University, Chonan (Korea, Republic of)

    2004-07-15

    We have investigated the structural phases of sodium and potassium encapsulated in ultrathin carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, structures are found in various phases from an atomic strand to multi-shell packs composed of coaxial cylindrical shells and in both helical and layered structures. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of a circular rolling of a triangular network can explain multi-shell phases of sodium and potassium in carbon nanotubes.

  6. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Poulikakos, Dimos;

    2007-01-01

    The authors investigate the thermally driven mass transport of gold nanoparticles confined inside carbon nanotubes using molecular dynamics simulations. The observed thermophoretic motion of the gold nanoparticles correlates with the phonon dispersion exhibited by a standard carbon nanotube and......, in particular, with the breathing mode of the tube. Additionally, the results show an increased static friction for gold nanoparticles confines inside a zig-zag carbon nanotube when increasing the size length of the nanoparticles. However, an unexpected, opposite trend is observed for the same nanoparticles...

  7. Correlation and dimensional effects of trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2010-01-01

    We study the binding energies of singlet trions, i.e., charged excitons, in carbon nanotubes. The problem is modeled, through the effective-mass model, as a three-particle complex on the surface of a cylinder, which we investigate using both one- and two-dimensional expansions of the wave function...... are used to compute physical binding energies for a wide selection of carbon nanotubes. In addition, the dependence on dielectric screening is examined. Our findings indicate that trions are detectable at room temperature in carbon nanotubes with radius below 8 Å....

  8. Structural and surface features of multiwall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, K.P.S.S., E-mail: hembram@isu.iisc.ernet.in [Department of Instrumentation, Indian Institute of Science, Bangalore, 560012 (India); Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 (India); Rao, G. Mohan [Department of Instrumentation, Indian Institute of Science, Bangalore, 560012 (India)

    2011-04-15

    We present the direct evidence of defective and disorder places on the surface of multiwall carbon nanotube (MWCNT), visualizing the presence of amorphous carbon at those sites. These defective surfaces being higher in energy are the key features of functionalization with different materials. The interaction of the {pi} orbital electrons of different carbon atoms of adjacent layers is more at the bent portion, than that of regular portion of the CNT. Hence the tubular structure of the bent portion of nanotubes is spaced more than that of regular portion of the nanotubes, minimizing the stress.

  9. Structural and surface features of multiwall carbon nanotube

    Science.gov (United States)

    Hembram, K. P. S. S.; Rao, G. Mohan

    2011-04-01

    We present the direct evidence of defective and disorder places on the surface of multiwall carbon nanotube (MWCNT), visualizing the presence of amorphous carbon at those sites. These defective surfaces being higher in energy are the key features of functionalization with different materials. The interaction of the π orbital electrons of different carbon atoms of adjacent layers is more at the bent portion, than that of regular portion of the CNT. Hence the tubular structure of the bent portion of nanotubes is spaced more than that of regular portion of the nanotubes, minimizing the stress.

  10. Highly effective metal vapor absorbents based on carbon nanotubes

    Science.gov (United States)

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  11. Synthesis, characterizations, and applications of carbon nanotubes and silicon nanowires

    Science.gov (United States)

    Xiong, Guangyong

    Carbon nanotubes (CNTs) have received great attention because of their unique structure and promising applications in microelectronic devices such as field electron emitters. Silicon nanowires (SiNWs) are also very popular because Si is a well established electronic material. This thesis will present my effort on synthesis, characterizations, and applications of CNTs and SiNWs by thermal chemical vapor deposition (CVD) method. For CNTs growth, block copolymer micelles were used as a template to create large area arrays of metal nanoclusters as catalysts for patterned arrays, and Fe/Al/Fe sandwich film on single crystal magnesium oxide (MgO) substrate was used as the catalyst for growth of long length aligned CNTs by CVD. The factors that affect the structure and length of CNTs have been investigated. CNTs were also grown on etched Si substrate by PECVD method. Continuous dropwise condensation was achieved on a biomimetic two-tier texture with short CNTs deposited on micromachined pillars. Superhydrophobic condensation model was studied. For SiNWs growth, hydrogen gold tetrachloride was uniformly mixed into the salt and decomposed into gold nanoparticles at the growth temperature and acted as the catalyst particles to start the growth of Si nanowires. The as-grown Si nanowires are about 70--90 nm in diameter and up to 200 micrometers long. The salt was completely removed by water rinse after growth. Field emission of aligned CNTs grown on Si substrates and SiNWs on Si substrates and carbon clothes has been studied. A post growth annealing procedure has been found to drastically improve the field emission performance of these CNTs and SiNWs.

  12. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  13. Synthesis of carbon nanotubes with and without catalyst particles

    Directory of Open Access Journals (Sweden)

    Cuniberti Gianaurelio

    2011-01-01

    Full Text Available Abstract The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition metals such as Fe, Ni, and Co. More recently, noble metals (e.g. Au and poor metals (e.g. In, Pb have been shown to also yield carbon nanotubes. In addition, various ceramics and semiconductors can serve as catalytic particles suitable for tube formation and in some cases hybrid metal/metal oxide systems are possible. All-carbon systems for carbon nanotube growth without any catalytic particles have also been demonstrated. These different growth systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon nanotube synthesis.

  14. Some Observations on Carbon Nanotubes Susceptibility to Cell Phagocytosis

    Directory of Open Access Journals (Sweden)

    Aneta Fraczek-Szczypta

    2011-01-01

    Full Text Available The aim of this study was to assess the influence of different types of carbon nanotubes (CNTs on cell phagocytosis. Three kinds of carbon nanotubes: single-walled carbon nanohorns (SWCNHs, multiwalled carbon nanotubes (MWCNTs, and ultra-long single-walled carbon nanotubes (ULSWCNTs before and after additional chemical functionalization were seeded with macrophage cell culture. Prior to biological testing, the CNTs were subjected to dispersion process with the use of phosphate buffered solution (PBS and PBS containing surfactant (Tween 20 or dimethyl sulfoxide (DMSO. The results indicate that the cells interaction with an individual nanotube is entirely different as compared to CNTs in the form of aggregate. The presence of the surfactant favors the CNTs dispersion in culture media and facilitates phagocytosis process, while it has disadvantageous influence on cells morphology. The cells phagocytosis is a more effective for MWCNTs and SWCNHs after their chemical functionalization. Moreover, these nanotubes were well dispersed in culture media without using DMSO or surfactant. The functionalized carbon nanotubes were easily dispersed in pure PBS and seeded with cells.

  15. Multiporous carbon allotropes transformed from symmetry-matched carbon nanotubes

    Science.gov (United States)

    Cai, Yingxiang; Wang, Hao; Xu, Shengliang; Hu, Yujie; Liu, Ning; Xu, Xuechun

    2016-06-01

    Carbon nanotubes (CNTs) with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0) CNT with point group C3v and the (6,0) CNT with point group C6v form an all sp3 hybridized hexagonal 3060-Carbon crystal, but the (4,0) CNT with point group D4h and the (8,0) CNT with point group D8h polymerize into a sp2+sp3 hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon) imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.

  16. Multiporous carbon allotropes transformed from symmetry-matched carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yingxiang Cai

    2016-06-01

    Full Text Available Carbon nanotubes (CNTs with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0 CNT with point group C3v and the (6,0 CNT with point group C6v form an all sp3 hybridized hexagonal 3060-Carbon crystal, but the (4,0 CNT with point group D4h and the (8,0 CNT with point group D8h polymerize into a sp2+sp3 hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.

  17. The study of explosive emission from carbon nanotubes

    International Nuclear Information System (INIS)

    The carbon nanotubes (CNT) found applications for high density current electron emitters. The main interest for forming of high current electron beams using CNT is high concentration of electrical field on the nanotubes and high value of yield by electrons for field emission. The experimental results for time processes of forming cathode plasma and extraction of electron beam are presented in the report

  18. Submicrosecond-timescale readout of carbon nanotube mechanical motion

    NARCIS (Netherlands)

    Meerwaldt, H.B.; Johnston, S.R.; Van der Zant, H.S.J.; Steele, G.A.

    2013-01-01

    We report fast readout of the motion of a carbon nanotube mechanical resonator. A close-proximity high electron mobility transistor amplifier is used to increase the bandwidth of the measurement of nanotube displacements from the kHz to the MHz regime. Using an electrical detection scheme with the n

  19. Synthesis of Carbon Nanotubes by MWPCVD at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    王升高; 汪建华; 王传新; 马志彬; 满卫东

    2002-01-01

    Growth of carbon nanotubes (CNTs) at low temperature is very important to the applications of nanotubes. In this paper, under the catalytic effect of cobalt nanoparticles supported by SiO2, CNTs were synthesized by microwave plasma chemical vapor deposition (MWPCVD)below 500℃. It demonstrates that MWPCVD can be a very efficient process for the synthesis of CNTs at low temperature.

  20. Scattering of terahertz radiation from oriented carbon nanotube films

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Jepsen, Peter Uhd; Schroeder, Nicholas;

    2009-01-01

    Session title: IThC-THz Interactions with Condensed Matter. We report on the use of terahertz time-domain spectroscopy to measure scattering from multi-walled carbon nanotubes aligned normal to the film plane. Measurements indicate scattering from the nanotubes is significantly stronger than...