WorldWideScience

Sample records for carbon nanotubes based

  1. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  2. Gears Based on Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  3. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  4. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  5. Carbon Nanotube Paper-Based Electroanalytical Devices

    OpenAIRE

    Youngmi Koo; Vesselin N. Shanov; Yeoheung Yun

    2016-01-01

    Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The de...

  6. Photonics based on carbon nanotubes

    OpenAIRE

    Gu, Qingyuan; Gicquel-Guézo, Maud; Loualiche, Slimane; Pouliquen, Julie Le; Batte, Thomas; Folliot, Hervé; Dehaese, Olivier; Grillot, Frederic; Battie, Yann; Loiseau, Annick; Liang, Baolai; Huffaker, Diana

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the effi...

  7. A carbon nanotube-based sensing element

    Institute of Scientific and Technical Information of China (English)

    YANG Xing; ZHOU Zhao-ying; WU Ying; ZHANG Jin; ZHANG Ying-ying

    2007-01-01

    A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes,carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on microelectrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.

  8. Modelling carbon nanotubes-based mediatorless biosensor.

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Petrauskas, Karolis; Razumiene, Julija

    2012-01-01

    This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments): a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate. PMID:23012537

  9. Modelling Carbon Nanotubes-Based Mediatorless Biosensor

    Directory of Open Access Journals (Sweden)

    Julija Razumiene

    2012-07-01

    Full Text Available This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments: a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate.

  10. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  11. Fermentation based carbon nanotube multifunctional bionic composites

    OpenAIRE

    Luca Valentini; Silvia Bittolo Bon; Stefano Signetti; Manoj Tripathi; Erica Iacob; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extr...

  12. Fermentation based carbon nanotube bionic functional composites

    OpenAIRE

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique mechanical and physical properties that are not produced by abiotic processes. Based on grape must and bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at r...

  13. Functional Materials based on Carbon Nanotubes

    OpenAIRE

    Jung, Adrian Thomas

    2007-01-01

    Carbon nanotubes, no matter if they are single-walled or multi-walled, are an integral component in the vastly growing field of nanotechnology. Since their discovery by TEM and the invention of numerous large-scale production techniques, nanotubes are close to making their way into industrial products. Although many properties and modification processes are still under intensive research, the first real-market applications for carbon nanotubes have already been presented. However, if function...

  14. Analytical modeling of glucose biosensors based on carbon nanotubes

    OpenAIRE

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-01

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization...

  15. Fast Electromechanical Switches Based on Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  16. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance and...

  17. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  18. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  19. A cell nanoinjector based on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xing; Kis, Andras; Zettl, Alex; Bertozzi, Carolyn R.

    2007-01-30

    Technologies for introducing molecules into living cells are vital for probing the physical properties and biochemical interactions that govern the cell's behavior. Here we report the development of a nanoscale cell injection system-termed the nanoinjector-that uses carbon nanotubes to deliver cargo into cells. A single multi-walled carbon nanotube attached to an atomic force microscope tip was functionalized with cargo via a disulfide-based linker. Penetration of cell membranes with this 'nanoneedle', followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. The capability of the nanoinjector was demonstrated by injection of protein-coated quantum dots into live human cells. Single-particle tracking was employed to characterize the diffusion dynamics of injected quantum dots in the cytosol. This new technique causes no discernible membrane or cell damage, and can deliver a discrete number of molecules to the cell's interior without the requirement of a carrier solvent.

  20. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  1. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  2. Carbon nanotube based NEMS actuators and sensors

    Science.gov (United States)

    Forney, Michael; Poler, Jordan

    2011-03-01

    Single-walled carbon nanotubes (SWNTs) have been widely studied due to superior mechanical and electrical properties. We have grown vertically aligned SWNTs (VA-SWNTs) onto microcantilever (MC) arrays, which provides an architecture for novel actuators and sensors. Raman spectroscopy confirms that the CVD-grown nanotubes are SWNTs and SEM confirms aligned growth. As an actuator, this hybrid MC/VA-SWNT system can be electrostatically modulated. SWNTs are excellent electron acceptors, so we can charge up the VA-SWNT array by applying a voltage. The electrostatic repulsion among the charged SWNTs provides a surface stress that induces MC deflection. Simulation results show that a few electrons per SWNT are needed for measureable deflections, and experimental actuators are being characterized by SEM, Raman, and an AFM optical lever system. The applied voltage is sinusoidally modulated, and deflection is measured with a lock-in amplifier. These actuators could be used for nano-manipulation, release of drugs from a capsule, or nano-valves. As a sensor, this MC/VA-SWNT system offers an improved sensitivity for chemical and bio-sensing compared to surface functionalized MC-based sensors. Those sensors only have a 2D sensing surface, but a MC/VA-SWNT system has significantly more sensing surface because the VA-SWNTs extend microns off the MC surface.

  3. Carbon-Nanotube-Based Chemical Gas Sensor

    Science.gov (United States)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  4. Shot noise in carbon nanotube based Fabry-Perot interferometers

    OpenAIRE

    Herrmann, L.G.; Delattre, T.; Morfin, P.; Berroir, J. -M.; Plaçais, B.; Glattli, D.C.; Kontos, T.

    2007-01-01

    We report on shot noise measurements in carbon nanotube based Fabry-Perot electronic interferometers. As a consequence of quantum interferences, the noise power spectral density oscillates as a function of the voltage applied to the gate electrode. The quantum shot noise theory accounts for the data quantitatively. It allows to confirm the existence of two nearly degenerate orbitals. At resonance, the transmission of the nanotube approaches unity, and the nanotube becomes noiseless, as observ...

  5. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel thermal interface material (TIM) that is based on an array of vertical carbon nanotubes (CNTs) for high heat flux applications. For...

  6. Carbon-nanotube-based photonic devices

    Science.gov (United States)

    Yamashita, Shinji

    2007-11-01

    We recently proposed and demonstrated a saturable absorber (SA) incorporating carbon nanotube (CNT). CNT-based SA offers several key advantages such as: ultra-fast recovery time, polarization insensitivity, high optical damage threshold, mechanical and environmental robustness, chemical stability, and the ability to operate at wide range of wavelength bands. Using the CNT-based SA, we have realized femtosecond fiber pulsed lasers at various wavelengths, as well as the very short-cavity fiber laser having high repetition rate. Besides the saturable absorption, CNT has been shown to have high third-order nonlinearity, which is also attractive for realization of compact and integrated functional photonic devices, such as all-optical switches and wavelength converters. In this paper, we first present photonic properties of CNTs, and review our studies on CNT-based mode-locked fiber lasers. We also refer to fabrication methods of CNT-based photonic devices. We show our recent research progresses on novel photonic devices using evanescent coupling between optical field and CNT.

  7. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  8. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  9. Electromechanical sensors based on carbon nanotube networks

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Petráš, D.; Machovský, M.; Sáha, P.

    Palmerston North: Massey University, 2010 - (Mukhopadhyay, S.; Fuchs, A.; Sen Gupta, G.; Lay-Ekuakille, A.), s. 542-547 ISBN 978-0-473-16942-8. [International Conference on Sensing Technology /4./. Lecce (IT), 03.06.2010-05.06.2010] R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: BK - Fluid Dynamics

  10. Equivalent electric circuit of a carbon nanotube based molecular conductor

    CERN Document Server

    Yam, ChiYung; Wang, Fan; Li, Xiaobo; Chen, GuanHua; Zheng, Xiao; Matsuda, Yuki; Tahir-Kheli, Jamil; Goddard, William A

    2008-01-01

    We apply our first-principles method to simulate the transient electrical response through carbon nanotube based conductors under time-dependent bias voltages, and report the dynamic conductance for a specific system. We find that the electrical response of the carbon nanotube device can be mapped onto an equivalent classical electric circuit. This is confirmed by studying the electric response of a simple model system and its equivalent circuit.

  11. Multiwalled Carbon Nanotubes for Amperometric Array-Based Biosensors

    OpenAIRE

    Taurino, Irene; De Micheli, Giovanni; Carrara, Sandro

    2012-01-01

    For diagnostic and therapeutic purposes an accurate determination of multiple metabolites is often required. Amperometric devices are attractive tools to quantify biological compounds due to the direct conversion of a biochemical event to a current. This review addresses recent developments in the use of multiwalled carbon nanotubes to enhance detection ca- pability of amperometric array-based biosensors. More specifically, the principal techniques for multiwalled carbon nanotube incorporatio...

  12. Carbon Nanotubes Based Glucose Needle-type Biosensor

    OpenAIRE

    Hong Li; Yongquan Li; Minghao Sim; Wenjun Guan; Jinyan Jia

    2008-01-01

    A novel needle-type biosensor based on carbon nanotubes is reported. The biosensor was prepared by packing a mixture of multi-wall carbon nanotubes (MWCNTs), graphite powder and glucose oxidase (Gox) freeze-dried powder into a glass capillary of 0.5 mm inner diameter. The resulting amperometric biosensor was characterized electrochemically using amperometry in the presence of hydrogen peroxide and in the presence of glucose. The glucose biosensor sensitivity was influenced by the glucose oxid...

  13. Pristine carbon nanotubes based resistive temperature sensor

    Science.gov (United States)

    Alam, Md Bayazeed; Saini, Sudhir Kumar; Sharma, Daya Shankar; Agarwal, Pankaj B.

    2016-04-01

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ˜ 0.29%/°C in the 25°C to 60°C temperature range.

  14. Carbon nanotube based functional superhydrophobic coatings

    Science.gov (United States)

    Sethi, Sunny

    The main objective of this dissertation is synthesis of carbon nanotube (CNT) based superhydrophobic materials. The materials were designed such that electrical and mechanical properties of CNTs could be combined with superhydrophobicity to create materials with unique properties, such as self-cleaning adhesives, miniature flotation devices, ice-repellant coatings, and coatings for heat transfer furnaces. The coatings were divided into two broad categories based on CNT structure: Vertically aligned CNT arrays (VA coatings) and mesh-like (non-aligned) carbon nanotube arrays (NA coatings). VA coatings were used to create self-cleaning adhesives and flexible field emission devices. Coatings with self cleaning property along with high adhesiveness were inspired from structure found on gecko foot. Gecko foot is covered with thousands of microscopic hairs called setae; these setae are further divided into hundreds of nanometer sized hairs called spatulas. When gecko presses its foot against any surface, these hairs bend and conform to the topology of the surface resulting into very large area of contact. Such large area of intimate contact allows geckos to adhere to surfaces using van der Waals (vdW) interactions alone. VA-CNTs adhere to a variety of surfaces using a similar mechanism. CNTs of suitable diameter could withstand four times higher adhesion force than gecko foot. We found that upon soiling these CNT based adhesives (gecko tape) could be cleaned using a water droplet (lotus effect) or by applying vibrations. These materials could be used for applications requiring reversible adhesion. VA coatings were also used for developing field emission devices. A single CNT can emit electrons at very low threshold voltages. Achieving efficient electron emission on large scale has a lot of challenges such as screening effect, pull-off and lower current efficiency. We have explored the use of polymer-CNT composite structures to overcome these challenges in this work. NA

  15. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Elzbieta Dlugon; Wojciech Simka; Aneta Fraczek-Szczypta; Wiktor Niemiec; Jaroslaw Markowski; Marzena Szymanska; Marta Blazewicz

    2015-09-01

    This paper reports results of the modification of titanium surface with multiwalled carbon nanotubes (CNTs). The Ti samples were covered with CNTs via electrophoretic deposition (EPD) process. Prior to EPD process, CNTs were functionalized by chemical treatment. Mechanical, electrochemical and biological properties of CNT-covered Ti samples were studied and compared to those obtained for unmodified titanium surface. Atomic force microscopy was used to investigate the surface topography. To determine micromechanical characteristics of CNT-covered metallic samples indentation tests were conducted. Throughout electrochemical studies were performed in order to characterize the impact of the coating on the corrosion of titanium substrate. In vitro experiments were conducted using the human osteoblast NHOst cell line. CNT layers shielded titanium from corrosion gave the surface-enhanced biointegrative properties. Cells proliferated better on the modified surface in comparison to unmodified titanium. The deposited layer enhanced cell adhesion and spreading as compared to titanium sample.

  16. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  17. Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes.

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  18. Nanoelectrode ensemble based on multiwalled carbon nanotubes for electrochemical analysis

    OpenAIRE

    Музика, Катерина Миколаївна; Білаш, Олена Михайлівна

    2012-01-01

    The technique of nanoelectrode ensembles development based on multiwall carbon nanotubes has been demonstrated. The obtained NEE has higher Faraday/capacitive current ratio compared to conventional electrodes of the same area, indicating a lower limit of redox-active compounds detection

  19. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    OpenAIRE

    Zhu, Z.; Song, W.; Burugapalli, K; Moussy, F; Li, Y-L; Zhong, X-H

    2010-01-01

    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 IOP Publishing Ltd. A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon...

  20. Carbon Nanotubes Based Glucose Needle-type Biosensor

    Directory of Open Access Journals (Sweden)

    Hong Li

    2008-03-01

    Full Text Available A novel needle-type biosensor based on carbon nanotubes is reported. Thebiosensor was prepared by packing a mixture of multi-wall carbon nanotubes (MWCNTs,graphite powder and glucose oxidase (Gox freeze-dried powder into a glass capillary of 0.5mm inner diameter. The resulting amperometric biosensor was characterizedelectrochemically using amperometry in the presence of hydrogen peroxide and in thepresence of glucose. The glucose biosensor sensitivity was influenced by the glucoseoxidase concentration within the MWCNTs mixture. The optimized glucose needle-typebiosensor displayed better sensitivity and stability, and a detected range of up to 20 mM.Based on its favorable stability, the needle biosensor was first time used in real-timemonitoring system as a kind of online glucose detector. The decay of current response isless than 10% after 24-hour continuous observation.

  1. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    Science.gov (United States)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  2. Carbon Nanotube Based Spike Neuromorphic Devices and Circuits

    OpenAIRE

    Shen, Alex

    2014-01-01

    Fabrication and operation of carbon nanotube (CNT) based electronic devices called "synapstors," with the goal of emulating the functions of biological synapses, are reported. These synapstors have a structure akin to field-effect transistors, utilizing a random network of single-wall semiconducting CNTs as its conducting channel. Analog spike signal processing with low power consumption was demonstrated. These synaptic devices are capable of carrying out logic, learning, and memory functions...

  3. High Speed Capacitor-Inverter Based Carbon Nanotube Full Adder

    OpenAIRE

    Rashtian M; Khatir A; Keshavarzian P; Navi K; Hashemipour O

    2010-01-01

    Abstract Carbon Nanotube filed-effect transistor (CNFET) is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority) function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay...

  4. Strain Sensors Based on Carbon Nanotube - Polymer Coatings

    OpenAIRE

    Grabowski, Krzysztof; Zbyrad, Paulina; Wilmański, Alan; Uhl, Tadeusz

    2014-01-01

    In this work there have been investigated the potential usage of the CNT's as strain sensors for the structural health monitoring based on the spray coatings. Experimental work was performed on the metal and glass-reinforced composites. Multiwalled Carbon Nanotubes (MWCNTs) were mixed with different matrix materials (acrylic and epoxy) and then applied to the test material with the use of two techniques (screen printing and spray coating). Futhermore, sensors were investigated using SEM. Resp...

  5. DNA Based Carbon Nanotube Porphyrin Nanohybrids Molecular Recognization and Regeneration

    OpenAIRE

    Riccitelli, Molly M; Zhang, Hanyu; Choi, Jong Hyun

    2013-01-01

    In the search to improve solar cells, scientists are exploring new materials that will provide better current transfer. One material that has emerged as a strong contender is the single walled carbon nanotube (SWNT). Current DNA-SWNT based films combined with chromophores have poor operational lifetimes compared to commercial solar cells. Once exposed to light the chromophore begins to degrade, eventually rendering the solar cell unusable. To solve this problem, we used a method involving mul...

  6. Recent advances in molecular electronics based on carbon nanotubes.

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F

    2010-01-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field. PMID:21137718

  7. A Taste Sensor Based on a Carbon Nanotube

    Science.gov (United States)

    Takagi, Keisuke; Hirata, Takamichi; Akiya, Masahiro

    A taste sensor consisting of a back-gate type field effect transistor(FET) chip based on carbon nanotube compound materials[poly(ethylene glycol)(PEG)-grafted single-walled carbon nanotubes(PEG-SWNTs)] was developed. The results of impedance measurements for five tastes (sourness, saltiness, bitterness, sweetness, and umami), are shown much difference for specific tastes which are difficult to identify by using Langmuir-Blodgett(LB)film. Moreover, the sensor is able to distinguish most of the experimental taste materials with a short response time. Characteristics of the sensor involve in taste material concentration , initial impedance and frequency characteristics. A clear difference is observed over five basic taste materials.

  8. Simulations of nanosensors based on single walled carbon nanotubes

    International Nuclear Information System (INIS)

    The potential of single-walled carbon nanotubes as mass sensors is examined. The change in mass leads to proportional changes in the nanotube vibrational frequencies, which are monitored during atomistic simulations. We observed a frequency shift as a result of replacement of carbon C12 with its isotope C13. For a zigzag (12,0) nanotube of about 10 nm length, we found zeptogram sensitivity.

  9. Carbon Nanotube-based Super Nanotube: Tailorable Thermal Conductivity at Three-dimensional

    CERN Document Server

    Zhan, Haifei; Gu, Yuantong

    2015-01-01

    The advancements of nanomaterials or nanostructures have enabled the possibility of fabricating multifunctional materials that hold great promises in engineering applications. The carbon nanotube (CNT)-based nanostructure is one representative building block for such multifunctional materials. Based on a series of in silico studies, we report the tailorability of the thermal conductivity of a three-dimensional CNT-based nanostructure, i.e., the single wall CNT (SWNT)-based super nanotube (ST). It is shown that the thermal conductivity of STs varies with different connecting carbon rings, and the ST with longer constituent SWNTs and larger diameter yield to a smaller thermal conductivity. Further results reveal that the inverse of the ST thermal conductivity exhibits a good linear relationship with the inverse of its length. Particularly, it is found that the thermal conductivity exhibits an approximately proportional relationship with the inverse of the temperature, but appears insensitive to the axial strain...

  10. Applications of Carbon Nanotubes

    Science.gov (United States)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  11. A carbon nanotube based ammonia sensor on cotton textile

    Science.gov (United States)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  12. High Speed Capacitor-Inverter Based Carbon Nanotube Full Adder

    Directory of Open Access Journals (Sweden)

    Rashtian M

    2010-01-01

    Full Text Available Abstract Carbon Nanotube filed-effect transistor (CNFET is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  13. Highly effective metal vapor absorbents based on carbon nanotubes

    Science.gov (United States)

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  14. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  15. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  16. Gas Sensors Based on Coated and Doped Carbon Nanotubes

    Science.gov (United States)

    Li, Jing; Meyyappan, Meyya

    2008-01-01

    Efforts are underway to develop inexpensive, low-power electronic sensors, based on single-walled carbon nanotubes (SWCNTs), for measuring part-per-million and part-per-billion of selected gases (small molecules) at room temperature. Chemically unmodified SWCNTs are mostly unresponsive to typical gases that one might wish to detect. However, the electrical resistances of SWCNTs can be made to vary with concentrations of gases of interest by coating or doping the SWCNTs with suitable materials. Accordingly, the basic idea of the present development efforts is to incorporate thus-treated SWCNTs into electronic devices that measure their electrical resistances.

  17. Bimorph micro heat engines based on carbon nanotube freestanding films

    Science.gov (United States)

    Ikuno, Takashi; Fukano, Tatsuo; Higuchi, Kazuo; Takeda, Yasuhiko

    2015-11-01

    We have found that lightweight bimorph strips consisting of multiwalled carbon nanotube freestanding films (MWNT-FSFs) and Ni thin films exhibit a continuous bending-stretching motion on a hot plate even below the temperature of 100 °C in an environment at room temperature. In fact, the Ni/MWNT-FSFs exhibited this motion at a temperature difference of as small as 5 °C. The requirements of this motion have been qualitatively elucidated by a simulation based on a relaxation time approximation.

  18. Novel gas sensors based on carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Sayago, I; Aleixandre, M; Horrillo, M C; Fernandez, M J; Gutierrez, J [Laboratorio de Sensores IFA-CSIC, Serrano 144, 28006 Madrid (Spain); Terrado, E; Lafuente, E; Maser, W K; Benito, A M; Martinez, M T; Munoz, E [Instituto de CarboquImica CSIC, Miguel Luesma Castan 4, 50018 Zaragoza (Spain); Urriolabeitia, E P; Navarro, R [Departamento de Quimica Inorganica, ICMA (Universidad de Zaragoza-CSIC), 50009 Zaragoza (Spain)], E-mail: sayago@ifa.cetef.csic.es, E-mail: edgar@icb.csic.es

    2008-08-15

    Novel resistive gas sensors based on single-walled carbon nanotube (SWNT) networks as the active sensing element nave been investigated for gas detection. SWNTs networks were fabricated by airbrushing on alumina substrates. As-produced- and Pd-decorated SWNT materials were used as sensitive layers for the detection of NO{sub 2} and H{sub 2}, respectively. The studied sensors provided good response to NO{sub 2} and H{sub 2} as well as excellent selectivities to interfering gases.

  19. CMOS considerations in nanoelectromechanical carbon nanotube-based switches

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, M Y A; Lundgren, P; Ghavanini, F; Enoksson, P; Bengtsson, S [Micro- and Nanosystems Group, BioNano Systems Laboratory, Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Gothenburg (Sweden)

    2008-07-16

    In this paper, we focus on critical issues directly related to the viability of carbon nanotube-based nanoelectromechanical switches, to perform their intended functionality as logic and memory elements, through assessment of typical performance parameters with reference to complementary metal-oxide-semiconductor devices. A detailed analysis of performance metrics regarding threshold voltage control, static and dynamic power dissipation, speed, and integration density is presented. Apart from packaging and reliability issues, these switches seem to be competitive in low power, particularly low-standby power, logic and memory applications.

  20. CMOS considerations in nanoelectromechanical carbon nanotube-based switches

    Science.gov (United States)

    Yousif, M. Y. A.; Lundgren, P.; Ghavanini, F.; Enoksson, P.; Bengtsson, S.

    2008-07-01

    In this paper, we focus on critical issues directly related to the viability of carbon nanotube-based nanoelectromechanical switches, to perform their intended functionality as logic and memory elements, through assessment of typical performance parameters with reference to complementary metal-oxide-semiconductor devices. A detailed analysis of performance metrics regarding threshold voltage control, static and dynamic power dissipation, speed, and integration density is presented. Apart from packaging and reliability issues, these switches seem to be competitive in low power, particularly low-standby power, logic and memory applications.

  1. Carbon nanotube-based separation columns for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, K. B.; Delacourt, B.; Kutter, Jörg P.

    2015-01-01

    the fabrication and operation protocols for devices with microfabricated carbon nanotube stationary phases for reversephase chromatography. In this protocol, the lithographically defined stationary phase is fabricated in the channel before bonding of a lid, thereby circumventing the difficult...

  2. Carbon nanotube macroelectronics

    Science.gov (United States)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  3. Febrication of Carbon-Nanotube-Forest Based Bolometer

    OpenAIRE

    Wood, Brian; Dyer, J. S.; Thurgood, V. A.; Shen, T. -C.

    2014-01-01

    Due to the nearly-vertical alignment and the band structure of graphite, carbon nanotube forests could have near-unity emissivity which make them ideal candidates as the absorbers for radiometric devices. However, forest height, carbon nanotube density, and the presence of surface defects will affect the total reflectance and transmittance. With optimized growth conditions, a total reflectance of 0.003 and a transmittance of 0.001 has been achieved in the 2 µm - 16 µm spectral region. Fabrica...

  4. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene

    Directory of Open Access Journals (Sweden)

    William I. Milne

    2012-05-01

    Full Text Available There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area.

  5. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene.

    Science.gov (United States)

    Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J; Xie, Huaqing; Moussy, Francis; Milne, William I

    2012-01-01

    There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628

  6. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  7. Supercapacitors based on carbon nanotube fuzzy fabric structural composites

    Science.gov (United States)

    Alresheedi, Bakheet Awad

    Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with

  8. The composites based on plasticized starch and carbon nanotubes.

    Science.gov (United States)

    Cheng, Jing; Zheng, Pengwu; Zhao, Feng; Ma, Xiaofei

    2013-08-01

    In this study, the nanocomposite films based on plasticized starch and modified-carbon nanotubes were prepared using a simple casting method. Carbon nanotubes (CNTs) were oxidized to prepare CNT oxide (OCNT) by Hummer's method, and OCNTs were reduced by glucose to obtain reduced CNT (RCNT). The thermogravimetric (TG) curves revealed that OCNTs and RCNTs contained about 15 and 8wt% oxygen-containing groups, respectively. The UV-vis spectra proved that CNTs with the aid of the dispersant TNWDIS, OCNTs and RCNTs possessed the good stability in water. As the fillers, CNTs, OCNTs and RCNTs were introduced into plasticized-starch (PS) matrix to obtain the composites. They had the obvious reinforcing effect on PS matrix. The composites containing 4wt% RCNT had the maximum tensile strength of 19.5MPa, in contrast to 3.89MPa of PS. Among of them, PS/CNT composites showed the best moisture resistance. And the PS-based CNT, OCNT and RCNT composites exhibited approximate electrical conductivities. PMID:23587994

  9. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  10. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    NARCIS (Netherlands)

    Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite

  11. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    OpenAIRE

    Pop, A.(National Institute for Physics and Nuclear Engineering, Bucharest, Romania); Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite electrode (Cu/CNT-epoxy) exhibited the highest sensitivity to glucose determination.

  12. Paper-based ultracapacitors with carbon nanotubes-graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: lijian@gwu.edu, E-mail: keidar@gwu.edu; Cheng, Xiaoqian; Brand, Cameron; Shashurin, Alexey; Keidar, Michael, E-mail: lijian@gwu.edu, E-mail: keidar@gwu.edu [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052 (United States); Sun, Jianwei; Reeves, Mark [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2014-04-28

    In this paper, a paper-based ultracapacitors were fabricated by the rod-rolling method with the ink of carbon nanomaterials, which were synthesized by arc discharge under various magnetic conditions. Composites of carbon nanostructures, including high-purity single-walled carbon nanotubes (SWCNTs) and graphene flakes were synthesized simultaneously in a magnetically enhanced arc. These two nanostructures have promising electrical properties and synergistic effects in the application of ultracapacitors. Scanning electron microscope, transmission electron microscope, and Raman spectroscopy were employed to characterize the properties of carbon nanostructures and their thin films. The sheet resistance of the SWCNT and composite thin films was also evaluated by four-point probe from room temperature to the cryogenic temperature as low as 90 K. In addition, measurements of cyclic voltammetery and galvanostatic charging/discharging showed the ultracapacitor based on composites possessed a superior specific capacitance of up to 100 F/g, which is around three times higher than the ultracapacitor entirely fabricated with SWCNT.

  13. Paper-based ultracapacitors with carbon nanotubes-graphene composites

    Science.gov (United States)

    Li, Jian; Cheng, Xiaoqian; Sun, Jianwei; Brand, Cameron; Shashurin, Alexey; Reeves, Mark; Keidar, Michael

    2014-04-01

    In this paper, a paper-based ultracapacitors were fabricated by the rod-rolling method with the ink of carbon nanomaterials, which were synthesized by arc discharge under various magnetic conditions. Composites of carbon nanostructures, including high-purity single-walled carbon nanotubes (SWCNTs) and graphene flakes were synthesized simultaneously in a magnetically enhanced arc. These two nanostructures have promising electrical properties and synergistic effects in the application of ultracapacitors. Scanning electron microscope, transmission electron microscope, and Raman spectroscopy were employed to characterize the properties of carbon nanostructures and their thin films. The sheet resistance of the SWCNT and composite thin films was also evaluated by four-point probe from room temperature to the cryogenic temperature as low as 90 K. In addition, measurements of cyclic voltammetery and galvanostatic charging/discharging showed the ultracapacitor based on composites possessed a superior specific capacitance of up to 100 F/g, which is around three times higher than the ultracapacitor entirely fabricated with SWCNT.

  14. Single-walled carbon nanotube based molecular switch tunnel junctions.

    Science.gov (United States)

    Diehl, Michael R; Steuerman, David W; Tseng, Hsian-Rong; Vignon, Scott A; Star, Alexander; Celestre, Paul C; Stoddart, J Fraser; Heath, James R

    2003-12-15

    This article describes two-terminal molecular switch tunnel junctions (MSTJs) which incorporate a semiconducting, single-walled carbon nanotube (SWNT) as the bottom electrode. The nanotube interacts noncovalently with a monolayer of bistable, nondegenerate [2]catenane tetracations, self-organized by their supporting amphiphilic dimyristoylphosphatidyl anions which shield the mechanically switchable tetracations from a two-micrometer wide metallic top electrode. The resulting 0.002 micron 2 area tunnel junction addresses a nanometer wide row of approximately 2000 molecules. Active and remnant current-voltage measurements demonstrated that these devices can be reconfigurably switched and repeatedly cycled between high and low current states under ambient conditions. Control compounds, including a degenerate [2]catenane, were explored in support of the mechanical origin of the switching signature. These SWNT-based MSTJs operate like previously reported silicon-based MSTJs, but differently from similar devices incorporating bottom metal electrodes. The relevance of these results with respect to the choice of electrode materials for molecular electronics devices is discussed. PMID:14714382

  15. Carbon Nanotube Film-Based Speaker Developed in Tsinghua University

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A research group from Tsinghua University led by Prof.Fan Shoushan,Member of the Chinese Academy of Sciences,and Jiang Kaili,associate professor of Physics,found that carbon nanotube thin film could act as a speaker once fed by audio frequency electric currents.These carbon nanotube loudspeakers are only tens of a nanometer thick,transparent,flexible and stretchable,which can be further tailored into any shape and size.These results have been published in the journal Nano Letter.

  16. Carbon nanobuds based on carbon nanotube caps: A first-principles study

    OpenAIRE

    Choi, Ji Il; Kim, Hyo Seok; Kim, Han Seul; Lee, Ga In; Kang, Jeung Ku; Kim, Yong-Hoon

    2015-01-01

    Based on density functional theory calculations, we here show that the formation of a fullerene C$_{60}$ carbon "nanobud" (CNB) on carbon nanotube (CNT) caps is energetically more favorable than that on CNT sidewalls. The dominant CNB formation mode for CNT caps is found to be the [2+2] cycloaddition reaction as in the conventional CNT sidewall case. However, it is identified to be exothermic in contrast to the endothermic reaction on CNT sidewalls. Computed reaction pathways further demonstr...

  17. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    OpenAIRE

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF ...

  18. Mechanical properties of Cu-based composites reinforced by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Cu-based composites reinforced by 0 % ~25 % (volume fraction) carbon nanotubes were prepared. The fracture behaviors and the rolling properties of the composites and the effects of the volume fraction of the carbon nanotubes were studied. The experimental results show that the fracture toughness of the composites is related to the pulling-out and bridging of the carbon nanotubes in the fracture process. With the volume fraction of the carbon nanotubes increasing, the Vicker' s hardness and the compactness of the composites increase first and then decrease. The peaks of the hardness and the compactness occur at 12 % ~15 % of volume fraction of carbon nanotubes. Some proper ratio of rolling reduction benefits to the comprehensive mechanical properties of the composites.

  19. Fabrication And Properties Of Silver Based Multiwall Carbon Nanotube Composite Prepared By Spark Plasma Sintering Method

    Directory of Open Access Journals (Sweden)

    Lis M.

    2015-06-01

    Full Text Available The paper presents results of investigations of the obtained nanocomposite materials based on silver with addition of multiwall carbon nanotubes. The powder of carbon nanotubes content from 0.1 to 3 wt. % was produced by application of powder metallurgy methods, through mixing and high-energetic milling, and also chemical methods. Modification of carbon nanotubes included electroless deposition of silver particles on the carbon nanotube active surfaces and chemical reduction with strong reducing agent – sodium borohydride (NaBH4. The obtained powder mixtures were consolidated by SPS – Spark Plasma Sintering method. The formed composites were subjected to tests of relative density, electrical conductivity and electro-erosion properties. Detailed examinations of the structure with application of X-ray microanalysis, with consideration of carbon nanotubes distribution, were also carried out. The effect of manufacturing methods on properties of the obtained composites was observed.

  20. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    Science.gov (United States)

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-01-01

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants. PMID:27455218

  1. A micromachined carbon nanotube film cantilever-based energy cell.

    Science.gov (United States)

    Gong, Zhongcheng; He, Yuan; Tseng, Yi-Hsuan; O'Neal, Chad; Que, Long

    2012-08-24

    This paper reports a new type of energy cell based on micromachined carbon nanotube film (CNF)-lead zirconate titanate cantilevers that is fabricated on silicon substrates. Measurements found that this type of micro-energy cell generates both AC voltages due to the self-reciprocation of the microcantilevers and DC voltages due to the thermoelectric effect upon exposure to light and thermal radiation, resulting from the unique optical and thermal properties of the CNF. Typically the measured power density of the micro-energy cell can be from 4 to 300 μW cm(-2) when it is exposed to sunlight under different operational conditions. It is anticipated that hundreds of integrated micro-energy cells can generate power in the range of milliwatts, paving the way for the construction of self-powered micro- or nanosystems. PMID:22842491

  2. Novel pressure and displacement sensors based on carbon nanotubes

    International Nuclear Information System (INIS)

    We report newly designed pressure and displacement capacitive sensors based on a flexible paper–CNT structure. The carbon nanotube (CNT) powder was deposited on a thin paper substrate and was pressed at an elevated temperature. The sheet resistance of the paper–CNT films was in the range of 2–4 kΩ/cm2. The paper–CNT films were used to fabricate pressure and displacement sensors. The sensitivities of the pressure and the displacement sensors were found to be 17.3 pF·m2/kN and 0.93 10−3 pF/μm, respectively. The experimental results were compared with the simulated data and they found good agreement with each other. (paper)

  3. Recent advances in Carbon Nanotube based Enzymatic Fuel Cells

    Directory of Open Access Journals (Sweden)

    Serge eCosnier

    2014-10-01

    Full Text Available This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols or hydrogen at the anode and reduction of oxidants (O2, H2O2 at the cathode in complex media. The combination of carbon nanotubes, enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons, involved in the bio-electrocatalytic processes, can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications.

  4. Molecular dynamics simulation study on capacitive nano-accelerometers based on telescoping carbon nanotubes

    International Nuclear Information System (INIS)

    We investigated the characteristics of a capacitive nano-accelerometer based on a telescoping carbon nanotube by means of classical molecular dynamics simulations. The position of the telescoping nanotube was controlled by an externally applied force, and feedback sensing was based on the capacitance change. The capacitance variations, which were almost linearly proportional to the applied acceleration, were monitored within an error tolerance

  5. Advanced materials based on carbon nanotube arrays, yarns and papers

    Science.gov (United States)

    Bradford, Phlip David

    Carbon nanotubes have hundreds of potential applications but require innovative processing techniques to manipulate the microscopic carbon dust into useful devices and products. This thesis describes efforts to process carbon nanotubes (CNTs) using novel methods with the goals of: (1) improving the properties of energy absorbing and composite carbon nanotube materials and (2) increasing understanding of fundamental structure-property relationships within these materials. Millimeter long CNTs, in the form of arrays, yarns and papers, were used to produce energy absorbing foams and high volume fraction CNT composites. Vertically aligned CNT arrays were grown on silicon substrates using chemical vapor deposition (CVD) of ethylene gas over iron nano-particles. The low density, millimeter thick arrays were tested under compression as energy absorbing foams. With additional CVD processing steps, it was possible to tune the compressive properties of the arrays. After the longest treatment, the compressive strength of the arrays was increased by a factor of 35 with a density increase of only six fold, while also imparting recovery from compression to the array. Microscopy revealed that the post-synthesis CVD treatment increased the number of CNT walls through an epitaxial type radial growth on the surface of the as-grown tubes. The increase in tube radius and mutual support between nanotubes explained the increases in compressive strength while an increase in nanotube roughness was proposed as the morphological change responsible for recovery in the array. Carbon nanotube yarns were used as the raw material for macroscopic textile preforms with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. In prior tensile tests, composites produced from the 3-D braids exhibited unusual mechanical behavior effects. The proposed physical hypotheses explained those effects by molecular level interactions and

  6. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  7. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Highlights: • Polypyrrole (PPy) coated multiwalled carbon nanotubes (MWCNT) were prepared. • New method is based on the use of new electrochemically active dopants for PPy. • The dopans provided dispersion of MWCNT and promoted PPy coating formation. • Symmetric PPy–MWCNT supercapacitors showed high capacitance and low resistance. • Asymmetric PPy–MWCNT/VN–MWCNT devices and modules allowed larger voltage window. - Abstract: Conductive polypyrrole (PPy) polymer – multiwalled carbon nanotubes (MWCNT) composites were synthesized using sulfanilic acid azochromotrop (SPADNS) and sulfonazo III sodium salt (CHR-BS) as anionic dopants for chemical polymerization of PPy. The composites were tested for application in electrodes of electrochemical supercapacitors (ES). Sedimentation tests, electrophoretic deposition experiments and Fourier transform infrared spectroscopy (FTIR) investigations showed that strong adsorption of anionic CHR-BS on MWCNT provided MWCNT dispersion. The analysis of scanning and transmission electron microscopy data demonstrated that the use of CHR-BS allowed the formation of PPy coatings on MWCNT. As a result, the composites, prepared using CHR-BS, showed higher capacitance, compared to the composites, prepared using SPADNS. The electrodes, containing MWCNT, coated with PPy showed a capacitance of 179 F g−1 for active mass loading of 10 mg cm−2, good capacitance retention at scan rates in the range of 2–100 mV s−1 and excellent cyclic stability. Asymmetric ES devices, containing positive PPy–MWCNT electrodes and negative vanadium nitride (VN)–MWCNT electrodes showed significant improvement in energy storage performance, compared to the symmetric ES due to the larger voltage window. The low impedance and high capacitance of the individual cells paved the way to the development of modules with higher voltage, which showed good electrochemical performance

  8. Radiation detectors based on Multiwall Carbon Nanotubes deposited by a spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Melisi, D., E-mail: domenico.melisi@ba.infn.it [INFN – Sezione di Bari, Via Orabona 4, 70126 (Italy); Nitti, M.A. [Department of Physics, University of Bari “A. Moro”, Via Orabona 4, 70126 (Italy); Valentini, M. [INFN – Sezione di Bari, Via Orabona 4, 70126 (Italy); Valentini, A. [INFN – Sezione di Bari, Via Orabona 4, 70126 (Italy); Department of Physics, University of Bari “A. Moro”, Via Orabona 4, 70126 (Italy); Ditaranto, N.; Cioffi, N. [Department of Chemistry, University of Bari “A. Moro”, Via Orabona 4, 70126 (Italy); Di Franco, C. [CNR-IFN Bari, Via Amendola 173, 70126 (Italy)

    2013-09-30

    In this paper a study of Multi Wall Carbon Nanotube films deposited at low temperature by means of a spray technique on different substrates is presented. Nanodispersion of nanotube powder in a non-polar 1,2-dichloroethane solvent was used as starting solution. Electron Microscopy in Scanning and Transmission modes were used in order to verify the morphological properties of the deposited films. Visible light detectors were prepared spraying Multi Wall Carbon Nanotubes on silicon substrates with different layouts. In some detectors the nanotubes were covered by an Indium Tin Oxide (ITO) layer. Electrical measurements, both in dark and under light irradiation, were performed and Current-Voltage characteristics are reported. The Indium Tin Oxide coating effect on the photoconductivity yield is presented and discussed along with device ageing test, resulting in a very good photoconduction and stability over four months. - Highlights: • Carbon nanotubes were deposited at low temperature using a spray technique. • Visible photodetectors based on carbon nanotubes films were produced. • Contribution of carbon nanotubes to the quantum efficiency is shown. • Charge collection from the devices increases with an indium tin oxide contact. • Time stability of photodetectors based on carbon nanotubes is demonstrated.

  9. Recent progress in carbon nanotube-based flexible transparent conducting film

    Science.gov (United States)

    Geng, Hong-Zhang; Kim, Ki Kang; Lee, Young Hee

    2008-08-01

    Flexible transparent conducting films (TCFs) were fabricated on a PET substrate by various methods using carbon nanotubes dispersed in organic or water-based solution. Thin multi-walled carbon nanotubes, double-walled carbon nanotubes, and single-walled carbon nanotubes were used to compare the performance for TCFs. Optimal design rules for types of nanotubes, surfactants, the degree of dispersion, and film preparation methods were discussed. The TCFs were characterized by scanning electron microscopy, TGA, Raman, optical absorption spectra, and sheet resistance. The dispersion of CNTs in water and in bisolvent has been tried. A simple acid treatment on the TCF film increased the conductivity by about four times. Doping and functionalization techniques will be further introduced to improve the conductivity of the film.

  10. Simulation of devices based on carbon nanotubes and graphene

    Science.gov (United States)

    Abramov, I. I.; Labunov, V. A.; Kolomejtseva, N. V.; Romanova, I. A.

    2014-12-01

    The simulation results of different devices based on carbon nanotubes (CNT) and graphene are described in the paper. The combined numerical model of hybrid integrated structures including resonant tunneling diode and field-effect transistor (RTD-FET) is proposed. Simulation of RTD-FET based on CNT of different types (chirality) was realized with the use of the developed model. The technique of express simulation of nanoradio based on CNT of the type I (based on only single CNT) and of the type II (hybrid radio) is developed. Proposed models can be used for calculation of nanoradio characteristics such as: 1) resonant frequency of CNT; 2) oscillation amplitude of CNT; 3) CNT IV-characteristics depending on different factors. Results of device simulation based on single-wall and multi-wall CNT are given in the paper. IV-characteristics of nanoscale resonant tunneling structure based on graphene-on-SiC were calculated. As well as it was investigated the influence of different parameters on the electrical characteristic of graphene-based nanostructures.

  11. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  12. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr, Joe H.

    2016-07-05

    A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.

  13. Plumbing carbon nanotubes

    Science.gov (United States)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  14. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  15. A glucose biosensor based on partially unzipped carbon nanotubes.

    Science.gov (United States)

    Hu, Huifang; Feng, Miao; Zhan, Hongbing

    2015-08-15

    An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors. PMID:25966382

  16. A Review of Carbon Nanotubes-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2009-01-01

    Full Text Available Gas sensors have attracted intensive research interest due to the demand of sensitive, fast response, and stable sensors for industry, environmental monitoring, biomedicine, and so forth. The development of nanotechnology has created huge potential to build highly sensitive, low cost, portable sensors with low power consumption. The extremely high surface-to-volume ratio and hollow structure of nanomaterials is ideal for the adsorption of gas molecules. Particularly, the advent of carbon nanotubes (CNTs has fuelled the inventions of gas sensors that exploit CNTs' unique geometry, morphology, and material properties. Upon exposure to certain gases, the changes in CNTs' properties can be detected by various methods. Therefore, CNTs-based gas sensors and their mechanisms have been widely studied recently. In this paper, a broad but yet in-depth survey of current CNTs-based gas sensing technology is presented. Both experimental works and theoretical simulations are reviewed. The design, fabrication, and the sensing mechanisms of the CNTs-based gas sensors are discussed. The challenges and perspectives of the research are also addressed in this review.

  17. All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure

    International Nuclear Information System (INIS)

    All carbon coaxial supercapacitors based on hollow carbon nanotube (CNT) sleeve structure are assembled and tested. The key advantage of the structure is that the inner core electrode is variable from CNT sleeve sponges, to CNT fibers, reduced graphene oxide fibers, and graphene woven fabrics. By changing core electrodes from sleeve sponges to CNT fibers, the electrochemical performance has been significantly enhanced. The capacitance based on sleeve sponge + CNT fiber double the capacitances of double-sleeve sponge supercapacitors thanks to reduction of the series and internal resistances. Besides, the coaxial sleeve structure possesses many other features, including high rate capacitance, long cycle life, and good flexibility. (paper)

  18. Actuation mechanisms of carbon nanotube-based architectures

    OpenAIRE

    Geier, Sebastian; Mahrholz, Thorsten; Wierach, Peter; Sinapius, Michael

    2016-01-01

    State of the art smart materials such as piezo ceramics or electroactive polymers cannot feature both, mechanical stiffness and high active strain. Moreover, properties like low density, high mechanical stiffness and high strain at the same time driven by low energy play an increasingly important role for their future application. Carbon nanotubes (CNT), show this behavior. Their active behavior was observed 1999 the first time using paper-like mats made of CNT. Therefore the CNT-...

  19. Thermally Conductive Tape Based on Carbon Nanotube Arrays

    Science.gov (United States)

    Kashani, Ali

    2011-01-01

    To increase contact conductance between two mating surfaces, a conductive tape has been developed by growing dense arrays of carbon nanotubes (CNTs, graphite layers folded into cylinders) on both sides of a thermally conductive metallic foil. When the two mating surfaces are brought into contact with the conductive tape in between, the CNT arrays will adhere to the mating surface. The van der Waals force between the contacting tubes and the mating surface provides adhesion between the two mating surfaces. Even though the thermal contact conductance of a single tube-to-tube contact is small, the tremendous amount of CNTs on the surface leads to a very large overall contact conductance. Interface contact thermal resistance rises from the microroughness and the macroscopic non-planar quality of mating surfaces. When two surfaces come into contact with each other, the actual contact area may be much less than the total area of the surfaces. The real area of contact depends on the load, the surface roughness, and the elastic and inelastic properties of the surface. This issue is even more important at cryogenic temperatures, where materials become hard and brittle and vacuum is used, which prevents any gas conduction through the interstitial region. A typical approach to increase thermal contact conductance is to use thermally conducting epoxies or greases, which are not always compatible with vacuum conditions. In addition, the thermal conductivities of these compounds are often relatively low. The CNTs used in this approach can be metallic or semiconducting, depending on the folding angle and diameter. The electrical resistivity of multiwalled carbon nanotubes (MWCNTs) has been reported. MWCNTs can pass a current density and remain stable at high temperatures in air. The thermal conductivity of a MWCNT at room temperature is measured to be approximately 3,000 W/m-K, which is much larger than that of diamond. At room temperature, the thermal conductance of a 0.3 sq cm

  20. Electromagnetic properties of texture composite materials based on hexagonal ferrites/multiwalled carbon nanotubes

    Science.gov (United States)

    Dotsenko, O. A.; Frolov, K. O.; Wagner, D. V.

    2016-02-01

    In this article, the frequency dependence of the absorption coefficient and electromagnetic losses of the composite based on ferrite powder and / or multi-walled carbon nanotubes are presented. The dielectric and magnetic losses in the composite were measured in the range of 0.01 - 20 GHz. It has been found to increase the absorption of electromagnetic radiation and increased losses in the samples containing multi-walled carbon nanotubes.

  1. Optical and Electrical characterization of Carbon Nanotube based high-Q mechanical resonators

    OpenAIRE

    Palou Garcia, Xavier

    2014-01-01

    [ANGLÈS] Carbon Nanotubes have been one of the most intensively studied materials in the last two decades. Because of their combination of outstanding properties (mechanical, thermal, electrical, optical, etc.) the community expects to exploit their potential in a myriad of different applications. One of them is that of sensing ultra small forces using mechanical resonators as probes. In this work, a mechanical resonator based in a suspended Carbon Nanotube is optically characterized by means...

  2. Carbon nanotube-based sensing devices for human Arginase-1 detection

    OpenAIRE

    S. Baldo; S. Buccheri; Ballo, A.; Camarda, M; La Magna, A.; M.E. Castagna; Romano, A.; D. Iannazzo; Di Raimondo, F.; Neri, G; Scalese, S.

    2016-01-01

    A new carbon nanotube-based device for detection of Arginase 1 (ARG-1) was produced. Multi-walled carbon nanotubes (MWCNTs) were deposited between electrodes by dielectrophoresis (DEP) in an accurate and reproducible way. This deposition method has the advantages of low cost and room temperature conditions and therefore, can be used on different kinds of substrates (silicon, glass, plastics) allowing for large scale production of chemical or biological sensors. Scanning electrical microscope ...

  3. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    OpenAIRE

    A. Cusano; M. Giordano; Aversa, P.; M. Penza; Cutolo, A.; M. Consales

    2008-01-01

    In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors...

  4. Development of Prototype Laboratory Setup for Selective Detection of Ethylene Based on Multiwalled Carbon Nanotubes

    OpenAIRE

    2014-01-01

    We report here a prototype laboratory setup for detecting ethylene (C2H4) in ppm level employing a sensor made of multiwalled carbon nanotubes of 40 nm average tube diameter. The proposed reversible chemoresistive ethylene sensor is fabricated using Kapton as the substrate onto which carbon nanotubes are coated using thick film technology. IDT silver electrodes are printed using piezo head based ink-jet printing technology. The increases in electrical resistance of the sensor element are meas...

  5. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhigang; Burugapalli, Krishna; Moussy, Francis [Brunel Institute for Bioengineering, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Song, Wenhui [Wolfson Centre for Materials Processing, Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Li Yali; Zhong Xiaohua, E-mail: wenhui.song@brunel.ac.uk [School of Materials Science and Engineering, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300073 (China)

    2010-04-23

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 {mu}m in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 deg. C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 {mu}M. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  6. A Carbon Nanotube-based Sensor for CO2 Monitoring

    OpenAIRE

    Grimes, Craig A.; Ong, Keat G.

    2001-01-01

    A carbon dioxide (CO2) sensor is fabricated by depositing a thin layer of a multiwall carbon nanotube (MWNT) – silicon dioxide (SiO2) composite upon a planar inductorcapacitor resonant circuit. By tracking the resonant frequency of the sensor the complex permittivity of the coating material can be determined. It is shown that the permittivity of MWNTs changes linearly in response to CO2 concentration, enabling monitoring of ambient CO2 levels. The passive sensor is remotely monitored wit...

  7. Nonlinear behaviour of electrostatically actuated carbon nanotube-based devices

    International Nuclear Information System (INIS)

    In this paper nonlinear behaviour of electrostatically actuated carbon nanotubes (CNTs) is investigated. The model comprises a clamped-clamped CNT suspended over a graphite ground electrode plate from which a potential difference is imposed. The actuation is based on ac and dc applied voltages and it is assumed that the neutral axis of bending is stretched when the beam is deflected, and also, the interatomic interaction forces between CNT and ground plate are considered. The versatile Galerkin's method is employed to reduce the nonlinear integral-partial-differential equation of motion to a nonlinear ordinary differential equation in time, and then, the reduced equation is solved by direct numerical integration. In the dc voltage actuation case, the pull-in/pull-out phenomena, hysteresis characteristic, pull-in time duration and the response of the system are studied. The obtained results are compared with the molecular dynamics method. Eventually, a nano-switch immune to input noise is proposed, which relies on the hysteresis characteristic of the system. In combined ac and dc voltage actuations, the vibrational behaviour and nonlinear frequency response of nano-resonator are studied.

  8. Carbon nanotube thin film transistors based on aerosol methods

    International Nuclear Information System (INIS)

    We demonstrate a fabrication method for high-performance field-effect transistors (FETs) based on dry-processed random single-walled carbon nanotube networks (CNTNs) deposited at room temperature. This method is an advantageous alternative to solution-processed and direct CVD grown CNTN FETs, which allows using various substrate materials, including heat-intolerant plastic substrates, and enables an efficient, density-controlled, scalable deposition of as-produced single-walled CNTNs on the substrate directly from the aerosol (floating catalyst) synthesis reactor. Two types of thin film transistor (TFT) structures were fabricated to evaluate the FET performance of dry-processed CNTNs: bottom-gate transistors on Si/SiO2 substrates and top-gate transistors on polymer substrates. Devices exhibited on/off ratios up to 105 and field-effect mobilities up to 4 cm2 V-1 s-1. The suppression of hysteresis in the bottom-gate device transfer characteristics by means of thermal treatment in vacuum and passivation by an atomic layer deposited Al2O3 film was investigated. A 32 nm thick Al2O3 layer was found to be able to eliminate the hysteresis.

  9. Carbon Nanotube-Based Structural Health Monitoring Sensors

    Science.gov (United States)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  10. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.

    Science.gov (United States)

    Agarwal, Sanjay; Yamini Sarada, B; Kar, Kamal K

    2010-02-10

    Tungsten substrates were coated with an Ni or Ni-Co catalyst by the electroless dip coating technique. Various carbon nanotubes were synthesized by the catalytic chemical vapor deposition (CVD) method under different growth conditions. It was observed that Ni-and Ni-Co-coated tungsten substrates give very good growth of carbon nanotubes (CNT) in terms of yield, uniformity and alignment at a growth temperature of 600 degrees C. We fabricated a field-emission-based luminescent light bulb where a tungsten wire coated with carbon nanotubes served as a cathode. Results show lower threshold voltage, better emission stability and higher luminescence for CNT cathodes in comparison with uncoated tungsten cathodes. We found that aligned-coiled carbon nanotubes are superior to straight CNTs in terms of field emission characteristics and luminescence properties. PMID:20057034

  11. Carbon Nanotube-based Sensor and Method for Continually Sensing Changes in a Structure

    Science.gov (United States)

    Jordan, Jeffry D. (Inventor); Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Ingram, JoAnne L. (Inventor)

    2007-01-01

    A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between resistance of a carbon nanotube and carbon nanotube strain, changes experienced by the portion of the structure to which the sensor is coupled induce a change in electrical properties of the conductors.

  12. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  13. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  14. Carbon nanotubes decorating methods

    OpenAIRE

    A.D. Dobrzańska-Danikiewicz; D. Łukowiec; D. Cichock; W. Wolany

    2013-01-01

    Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studie...

  15. Functionalization of Carbon Nanotubes

    OpenAIRE

    Abraham, Jürgen

    2005-01-01

    Carbon nanotubes have an enormous potential due to their outstanding electronic, optical, and mechanical properties. However, any technological application is still hindered due to problems regarding the processibility of the pristine carbon nanotubes. In the past few years, it has been shown that the chemical modification of the carbon nanotubes is an inevitable step prior to their application. The first part of this work (chapter 3.1) was focused on the purification of pristine laser ablati...

  16. Carbon Nanotube-Conducting Polymer Composites Based Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Prakash; R.Somani; M.Umeno

    2007-01-01

    1 Results Combination of carbon nanotubes (CN) with polymers is important for application towards value added composites,solar cells,fuel cells etc.Especially interesting is the combination of CN with π-conjugated polymers because of the potential interaction between the highly delocalized π-electrons of the CN and the π-electrons correlated with the lattice of polymer skeleton.Efficient exciton dissociation due to electron transfer from the photoexcited polymer to CN is of interest for photovoltaic app...

  17. Modeling mechanical energy storage in springs based on carbon nanotubes

    International Nuclear Information System (INIS)

    A modeling study of the potential for storing energy in the elastic deformation of springs comprised of carbon nanotubes (CNTs) is presented. Analytic models were generated to estimate the ideal achievable energy density in CNTs subject to axial tension, compression, bending and torsion, taking into account limiting mechanisms such as the strength of individual CNTs, the onset of buckling, and the packing density limitations of CNT groupings. The stored energy density in CNT springs is predicted to be highest under tensile loading, with maximum values more than three orders of magnitude greater than the energy density of steel springs, and approximately eight times greater than the energy density of lithium-ion batteries. Densely packed bundles of precisely aligned, small diameter single-walled carbon nanotubes are identified as the best structure for high performance springs. The conceptual design and modeling of a portable electric power source that stores energy in a CNT spring are presented as tools for studying the potential performance of a system for generating electricity from the CNTs' stored mechanical energy.

  18. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  19. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  20. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    OpenAIRE

    Neus Jornet-Martínez; Pascual Serra-Mora; Yolanda Moliner-Martínez; Rosa Herráez-Hernández; Pilar Campíns-Falcó

    2015-01-01

    In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS ex...

  1. Production of Heat Resistant Composite based on Siloxane Elastomer and Multiwall Carbon Nanotubes

    Science.gov (United States)

    Bessonov, I. V.; Karelina, N. V.; Kopitsyna, M. N.; Morozov, A. S.; Reznik, S. V.; Skidchenko, V. Yu.

    2016-02-01

    Development of a new generation of composite with unique thermal properties is an important task in the fields of science and technology where material is operated at high temperatures and exposure to a short-wave radiation. Recent studies show that carbon nanomaterials (fullerenes and carbon nanotubes) could improve the thermal, radiation and thermal-oxidative stability of the polymer matrix. In this article the development of a new heat resistant composite based on elastomer and carbon nanotubes (CNT) was performed and physicochemical properties of final product were evaluated.

  2. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    Science.gov (United States)

    Cao, Zeyuan

    Finding new electrode materials for energy conversion and storage devices have been the focus of recent research in the fields of science and engineering. Suffering from poor electronic conductivity, chemical and mechanical stability, active electrode materials are usually coupled with different carbon nanostructured materials to form nanocomposite electrodes, showing promising electrochemical performance. Among the carbon nanostructured materials, carbon nanotube (CNT) macrofilms draw great attention owing to their extraordinary properties, such as a large specific surface area, exceptionally high conductivity, porous structure, flexibility, mechanical robustness, and adhesion. They could effectively enhance the electrochemical performance of the incorporated active materials in the nanocomposites. In this dissertation, CNT macrofilm-based nanocomposites are investigated for rechargeable lithium-ion batteries, supercapacitors, and electrocatalysts of fuel cells. The progressive research developed various nanocomposites from cathode materials to anode materials followed by a general nanocomposite solution due to the unique adhesive property of the fragmented CNT macrofilms. The in-situ synthesis strategy are explored to in-situ deposit unlithiated cathode materials V2O5 and lithiated cathode materials LiMn2O4 nanocrystals in the matrix of the CNT macrofilms as nanocomposites to be paired with metallic lithium in half cells. The presence of oxygen-containing functional groups on the surface of the CNT macrofilms after purification can enhance the association with the active materials to enable the facilitated transport of solvated ions to the electrolyte/electrode interfaces and increase the diffusion kinetics, consequently enhancing the battery performance in terms of high specific capacity, rate capability, and cycling stability. It is also significant to demonstrate a reliable, low-cost, and effective route to synthesize the family of metal oxides (MxOy (M=Fe, Co

  3. Study of Carbon Nanotube-Substrate Interaction

    OpenAIRE

    Soares, Jaqueline S.; Ado Jorio

    2012-01-01

    Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the ...

  4. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol

    OpenAIRE

    Gouveia-Caridade, Carla; Pauliukaite, Rasa; Brett, Christopher M. A.

    2008-01-01

    Functionalised multi-walled carbon nanotubes (MWCNTs) were cast on glassy carbon (GC) and carbon film electrodes (CFE), and were characterised electrochemically and applied in a glucose-oxidase-based biosensor. MWCNT-modified carbon film electrodes were then used to develop an alcohol oxidase (AlcOx) biosensor, in which AlcOx-BSA was cross-linked with glutaraldehyde and attached by drop-coating. The experimental conditions, applied potential and pH, for ethanol monitoring were optimised, and ...

  5. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    Science.gov (United States)

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics. PMID:26624921

  6. Nanocapsules based on carbon nanotubes-graft-polyglycerol hybrid materials

    International Nuclear Information System (INIS)

    In this work the effect of a conjugated macromolecule on the conformation of CNT was studied. Typically polyglycerol (PG) was covalently grafted onto the surface of multi-wall carbon nanotubes (MWCNTs) and MWCNT-graft-PG (MWCNT- g-PG) hybrid materials were obtained. Dynamic light scattering (DLS) experiments showed an average diameter around 100 nm for MWCNT- g-PG hybrid materials in water. The difference between this size and the expected size for MWCNT- g-PG hybrid materials (the length of pristine MWCNTs was several micrometers) was assigned to the effect of the grafted PG on the conformation of MWCNT in the solution state. Transmission electron microscopy (TEM) evaluations showed a change in the shape and conformation of MWCNT- g-PG hybrid materials during the time so that they were in a core-shell shape in a fresh sample but over time they changed to dendritic- and finally nanocapsule-like structures. According to ultraviolet-visible (UV-vis) experiments it was found that MWCNT- g-PG hybrid materials were able to encapsulate small guest molecules such as ferrocene, confirming nanocapsule-like structures for hybrid materials in the solution state. Based on these observations it was suggested that non-covalent interactions between highly hydrophilic PG and highly hydrophobic MWCNT led to changes in the conformation of MWCNT from a linear to nonlinear state. In order to investigate the role of hydroxyl end functional groups of PG as being responsible for non-covalent interactions such as hydrogen bonding, they were reacted with opened MWCNTs (MWCNT-COOH) to achieve MWCNT- g-PG- g-(MWCNT)n structures. TEM images showed an extended conformation for MWCNT- g-PG- g-(MWCNT)n hybrid materials which confirmed the key role of hydroxyl end functional groups of PG on the conformation of MWCNTs. To evaluate the ability of MWCNT- g-PG- g-(MWCNT)n hybrid materials to encapsulate and support guest molecules, palladium nanoparticles were loaded and transported by these hybrid

  7. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene

    Science.gov (United States)

    Huang, Jianzhang; Han, Qiang

    2016-04-01

    A controllable nanoscale rotating actuator system consisting of a double carbon nanotube and graphene driven by a temperature gradient is proposed, and its rotating dynamics performance and driving mechanism are investigated through molecular dynamics simulations. The outer tube exhibits stable pure rotation with certain orientation under temperature gradient and the steady rotational speed rises as the temperature gradient increases. It reveals that the driving torque is caused by the difference of atomic van der Waals potentials due to the temperature gradient and geometrical features of carbon nanotube. A theoretical model for driving torque is established based on lattice dynamics theory and its predicted results agree well with molecular dynamics simulations. Further discussion is taken according to the theoretical model. The work in this study would be a guide for design and application of controllable nanoscale rotating devices based on carbon nanotubes and graphene.

  8. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  9. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  10. Carbon nanotubes for coherent spintronics

    Directory of Open Access Journals (Sweden)

    F. Kuemmeth

    2010-03-01

    Full Text Available Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications.

  11. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    International Nuclear Information System (INIS)

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK−1, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available

  12. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  13. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    Science.gov (United States)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT–GDH electrode is 2 times more sensitive than that of the normal-length MWCNT–GDH electrode in the concentration range from 0.25–35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT–GDH electrode formed a better electron transfer network than the normal-length one.

  14. Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin

    Science.gov (United States)

    Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.

    2016-04-01

    3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.

  15. DIAGNOSTIC METHODS FOR SILICA-REINFORCED CARBON NANOTUBE-BASED NANOCOMPOSITES

    OpenAIRE

    ESEEV M.K.; GOSHEV A.A.; HORODEK P.; KAPUSTIN S.N.; KOBETS A.G.; OSOKIN C.S.

    2016-01-01

    This paper presents results of the experimental studies of the properties of silica-based nanocomposites with filler in the form of carbon nanotubes by dielectric relaxation and positron annihilation spectroscopy. Based on these results, techniques for diagnosis and control of the investigated materials were proposed.

  16. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valdirene Aparecida [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Folgueras, Luiza de Castro; Candido, Geraldo Mauricio; Paula, Adriano Luiz de; Rezende, Mirabel Cerqueira, E-mail: mirabelmcr@iae.cta.br [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Div. de Materiais; Costa, Michelle Leali [Universidade Estadual Paulista Julio de Mesquita Filho (DMT/UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia

    2013-07-01

    Nanostructured polymer composites have opened up new perspectives for multifunctional materials. In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical and electrical performance in composites with aerospace application. The combination of epoxy resin with multi walled carbon nanotubes results in a new functional material with enhanced electromagnetic properties. The objective of this work was the processing of radar absorbing materials based on formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach this objective the adequate concentration of CNTs in the resin matrix was determined. The processed structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated with low additive concentrations (author)

  17. Carbon nanotube-based sensor and method for detection of crack growth in a structure

    Science.gov (United States)

    Smits, Jan M. (Inventor); Kite, Marlen T. (Inventor); Moore, Thomas C. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony N. (Inventor); Williams, Phillip A. (Inventor)

    2007-01-01

    A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between the resistance of a carbon nanotube and its strain, changes experienced by the portion of the structure to which the sensor is coupled induce a corresponding change in the electrical properties of the conductors, thereby enabling detection of crack growth in the structure.

  18. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  19. Interaction of single walled carbon nanotubes with starch-based systems

    Science.gov (United States)

    Casey, A.; Farrell, G. F.; McNamara, M.; Byrne, H. J.; Chambers, G.

    2005-06-01

    The interaction of carbon nanotubes with soft organic molecules such as cyclodextrins and other saccharides has recently been shown to produce water-soluble composites. Such systems offer considerable advantages over polymer based composites due to their biocompatibility and non-covalent coupling which can potentially preserve the unique properties of the tubes. The mechanism of interaction of such systems has been proposed to be dominated by hydrophobic and hydrophilic interactions along the surface of the tube. In this study a number of composite systems have been formed with HiPco carbon nanotubes using starch.

  20. Process modeling of conductivity in nanocomposites based on reticulated polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties

  1. Development of a Taste Sensor Based on a Carbon Nanotube-Polymer Composite Material

    Science.gov (United States)

    Hirata, Takamichi; Takagi, Keisuke; Akiya, Masahiro

    2007-04-01

    A taste sensor consisting of a back-gate type field effect transistor (FET) chip based on carbon nanotube compound materials [poly(ethylene glycol) (PEG)-grafted single-walled carbon nanotubes (PEG-SWNTs)] was developed. The results of impedance measurements for five tastes (sourness, saltiness, bitterness, sweetness, and umami), are shown much difference for specific tastes which are difficult to identify by using Langmuir-Blodgett (LB) film. Moreover, the sensor is able to distinguish most of the experimental taste materials with a short response time (˜60 s).

  2. A Carbon Nanotube-based Sensor for CO2 Monitoring

    Directory of Open Access Journals (Sweden)

    Craig A. Grimes

    2001-11-01

    Full Text Available A carbon dioxide (CO2 sensor is fabricated by depositing a thin layer of a multiwall carbon nanotube (MWNT – silicon dioxide (SiO2 composite upon a planar inductorcapacitor resonant circuit. By tracking the resonant frequency of the sensor the complex permittivity of the coating material can be determined. It is shown that the permittivity of MWNTs changes linearly in response to CO2 concentration, enabling monitoring of ambient CO2 levels. The passive sensor is remotely monitored with a loop antenna, enabling measurements from within opaque, sealed containers. Experimental results show the response of the sensor is linear, reversible with no hysteresis between increasing and decreasing CO2 concentrations, and with a response time of approximately 45 s. An array of three such sensors, comprised of an uncoated, SiO2 coated, and a MWNT-SiO2 coated sensors is used to self-calibrate the measurement for operation in a variable humidity and temperature environment. Using the sensor array CO2 levels can be measured in a variable humidity and temperature environment to a ± 3% accuracy.

  3. Formation of an array of ordered nanocathodes based on carbon nanotubes by nanoimprint lithography and PECVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, D. G.; Shulyat’ev, A. S., E-mail: ashuliatyev@gmail.com; Egorkin, V. I.; Zaitsev, A. A. [National Research University of Electronic Technology “MIET” (Russian Federation); Skorik, S. N.; Galperin, V. A.; Pavlov, A. A.; Shamanaev, A. A. [National Research University of Electronic Technology “MIET”, Research and Production Association “Technological Center” (Russian Federation)

    2014-12-15

    Technology for the production of an array of ordered nanoemitters based on carbon nanotubes is developed. The technological parameters of the fabrication of carbon nanotubes are chosen. It is shown that the structures produced exhibit field electron emission with an emission current of 8 μA and a threshold voltage of 80 V.

  4. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    Science.gov (United States)

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. PMID:26915715

  5. Carbon nanotube based field emission X-ray sources

    Science.gov (United States)

    Cheng, Yuan

    This dissertation describes the development of field emission (FE) x-ray sources with a carbon-nanotube (CNT) cathode. Field emission x-rays have advantages over conventional x-rays by replacing the thermionic cathode with a cold cathode so that electrons are emitted at room temperature and emission is voltage controllable. CNTs are found to be excellent electron emitters with low threshold fields and high current density which makes them ideal for generate field emission x-rays. Macroscopic CNT cold cathodes are prepared and the parameters to tune their field emission properties are studied: structure and morphology of CNT cathodes, temperature as well as electronic work function of CNT. Macroscopic CNT cathodes with optimized performance are chosen to build a high-resolution x-ray imaging system. The system can readily generate x-ray radiation with continuous variation of temporal resolution up to nanoseconds and spatial resolution down to 10 micron. Its potential applications for dynamic x-ray imaging and micro-computed tomography are also demonstrated. The performance characteristics of this compact and versatile system are promising for non-destructive testing and for non-invasive small-animal imaging for biomedical research.

  6. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    Science.gov (United States)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  7. Toward carbon nanotube-based imaging agents for the clinic.

    Science.gov (United States)

    Hernández-Rivera, Mayra; Zaibaq, Nicholas G; Wilson, Lon J

    2016-09-01

    Among the many applications for carbon nanotubes (CNTs), their use in medicine has drawn special attention due to their potential for a variety of therapeutic and diagnostic applications. As progress toward clinical applications continues, monitoring CNTs in vivo will be essential to evaluate their biodistribution, potential toxicity, therapeutic activity, and any physiological changes that the material may induce in specific tissues. There are many different imaging modalities to visualize and track CNTs in vivo, yet only a few are full-body penetrating, a central characteristic that widens their clinical utility. In order to visualize CNTs, chemical modification is often required for the material to be used as a platform to carry imaging agents compatible with one or more of the clinical imaging techniques. Here, we focus on the most recent work involving the use of CNTs as imaging agents for the non-invasive, full-body penetrating clinical modalities of MRI, PET, SPECT, and X-ray CT. The synthesis and modification of the CNT materials are discussed, as well as relevant preclinical studies. PMID:27294540

  8. Conducting carbonized polyaniline nanotubes

    Science.gov (United States)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  9. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  10. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  11. FLUIDIZATION OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    Fei Wei; Cang Huang; Yao Wang

    2005-01-01

    Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.

  12. Carbon nanotubes: Fibrillar pharmacology

    Science.gov (United States)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  13. Carbon nanobuds based on carbon nanotube caps: a first-principles study

    Science.gov (United States)

    Choi, Ji Il; Kim, Hyo Seok; Kim, Han Seul; Lee, Ga In; Kang, Jeung Ku; Kim, Yong-Hoon

    2016-01-01

    Based on density functional theory calculations, we here show that the formation of a fullerene C60 carbon ``nanobud'' (CNB) on carbon nanotube (CNT) caps is energetically more favorable than that on CNT sidewalls. The dominant CNB formation mode for CNT caps is found to be the [2 + 2] cycloaddition reaction as in the conventional CNT sidewall case. However, it is identified to be exothermic in contrast to the endothermic reaction on CNT sidewalls. Computed reaction pathways further demonstrate that the formation (dissociation) barrier for the CNT cap-based CNB is slightly lower (significantly higher) than that of the CNT sidewall-based CNB, indicating an easier CNB formation as well as a higher structural stability. Additionally, performing matrix Green's function calculations, we study the charge transport properties of the CNB/metal electrode interfaces, and show that the C60 bonding to the CNT cap or open end induces resonant transmissions near the Fermi level. It is also found that the good electronic linkage in the CNT cap-C60 cycloaddition bonds results in the absence of quantum interference patterns, which contrasts with the case of the CNB formed on an open-ended CNT that shows a Fano resonance profile.Based on density functional theory calculations, we here show that the formation of a fullerene C60 carbon ``nanobud'' (CNB) on carbon nanotube (CNT) caps is energetically more favorable than that on CNT sidewalls. The dominant CNB formation mode for CNT caps is found to be the [2 + 2] cycloaddition reaction as in the conventional CNT sidewall case. However, it is identified to be exothermic in contrast to the endothermic reaction on CNT sidewalls. Computed reaction pathways further demonstrate that the formation (dissociation) barrier for the CNT cap-based CNB is slightly lower (significantly higher) than that of the CNT sidewall-based CNB, indicating an easier CNB formation as well as a higher structural stability. Additionally, performing matrix Green

  14. Antimicrobial Biomaterials based on Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Aslan, Seyma

    Biomaterials that inactivate bacteria are needed to eliminate medical device infections. We investigate the antimicrobial nature of single-walled carbon nanotubes (SWNT) incorporated within biomedical polymers. In the first part, we focus on SWNT dispersed in the common biomedical polymer poly(lactic-co-glycolic acid) (PLGA) as a potential antimicrobial biomaterial. We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration. Up to 98 % of bacteria die within one hour of SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNT are found to be more toxic, possibly due to an increased density of open tube ends. In the second part, we investigate the antimicrobial activity of SWNT layer-by-layer (LbL) assembled with the polyelectrolytes poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA). The dispersibility of SWNT in aqueous solution is significantly improved via the biocompatible nonionic surfactant polyoxyethylene(20)sorbitan monolaurate (Tween 20) and the amphiphilic polymer phospholipid-poly(ethylene glycol) (PL-PEG). Absorbance spectroscopy and transmission electron microscopy (TEM) show SWNT with either Tween 20 or PL-PEG in aqueous solution to be well dispersed. Quartz crystal microgravimetry with dissipation (QCMD) measurements show both SWNT-Tween and SWNT-PL-PEG to LbL assemble with PLL and PGA into multilayer films, with the PL-PEG system yielding the greater final SWNT content. Bacterial inactivation rates are significantly higher (up to 90%) upon 24 hour incubation with SWNT containing films, compared to control films (ca. 20%). In the third part, we study the influence of bundling on the LbL assembly of SWNT with charged polymers, and on the antimicrobial properties of the assembled film. QCMD measurements show the bundled SWNT system to adsorb in an unusually strong fashion—to an extent three times greater than that

  15. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    A. Cusano

    2008-09-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  16. Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability

    KAUST Repository

    Xu, Xuezhu

    2014-08-23

    Lignin-based carbon fibers (CFs) decorated with carbon nanotubes (CNTs) were synthesized and their structure, thermal stability and wettability were systematically studied. The carbon fiber precursors were produced by electrospinning lignin/polyacrylonitrile solutions. CFs were obtained by pyrolyzing the precursors and CNTs were subsequently grown on the CFs to eventually achieve a CF–CNT hybrid structure. The processes of pyrolysis and CNT growth were conducted in a tube furnace using different conditions and the properties of the resultant products were studied and compared. The CF–CNT hybrid structure produced at 850 °C using a palladium catalyst showed the highest thermal stability, i.e., 98.3% residual weight at 950 °C. A mechanism for such superior thermal stability was postulated based on the results from X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and electron energy loss spectroscopy analyses. The dense CNT decoration was found to increase the hydrophobicity of the CFs.

  17. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  18. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  19. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    Science.gov (United States)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  20. Teslaphoresis of Carbon Nanotubes.

    Science.gov (United States)

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  1. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  2. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor

    International Nuclear Information System (INIS)

    Nitrogen-containing carbon nanotubes (CNTs) with open end and low specific surface area were prepared via the carbonization of polyaniline (PANI) nanotubes synthesized by a rapidly mixed reaction. On the basis of analyzing the morphologies and structures of the original and carbonized PANI nanotubes, the electrochemical properties of PANI-based CNTs obtained at different temperatures as electrode materials for supercapacitors using 30 wt.% aqueous solution of KOH as electrolyte were investigated by galvanostatic charge/discharge and cyclic voltammetry. It was found that the carbonized PANI nanotubes at 700 oC exhibit high specific capacitance of 163 F g-1 at a current density of 0.1 A g-1 and excellent rate capability in KOH solution. Using X-ray photoelectron spectroscopy measurement the nitrogen state and content in PANI-CNTs were analysed, which could play important roles for the enhancement of electrochemical performance. When the appropriate content of nitrogen is present, the presence of pyrrole or pyridone and quaternary nitrogen is beneficial for the improvement of electron mobility and the wettability of electrode.

  3. Characteristic features of the thermophysical properties of a system based on polyethylene oxide and carbon nanotubes

    International Nuclear Information System (INIS)

    The results of experimental and computational investigations of the thermophysical characteristics of polymer nanocomposites based on polyethylene oxide and carbon nanotubes are presented. It has been established that the thermal conductivity of a system depends substantially on the structure of the polymer matrix and content of nanotubes. It is shown that the thermal conductivity displays percolation behavior and is described within the framework of the percolation theory. The percolation threshold equals 0.6%. It has been revealed that before the percolation threshold the thermal conductivity correlates well with the degree of crystallinity of the polymer matrix. (authors)

  4. Carbon nanotubes decorating methods

    Directory of Open Access Journals (Sweden)

    A.D. Dobrzańska-Danikiewicz

    2013-06-01

    Full Text Available Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studies carried out with the HRTEM and SEM techniques have confirmed differences in morphology, homogeneity and density of depositing platinum nanoparticles on the surface of carbon nanotubes and its structure.Research limitations/implications: The studies conducted pertained to the process of decorating carbon nanotubes with platinum nanoparticles. Further works are planned aimed at extending the application scope of the newly developed methodology to include the methods of nanotubes decorating with the nanoparticles of other precious metals (mainly palladium and rhodium.Practical implications: CNTs-NPs (Carbon NanoTube-NanoParticles composites can be used as the active elements of sensors featuring high sensitivity, fast action, high selectivity and accuracy, in particular in medicine as cholesterol and glucoses sensors; in the automotive industry for the precision monitoring of working parameters in individual engine components; in environmental conservation to examine CO2, NOx, and CH4 concentrations and for checking leak-tightness and detecting hazardous substances in household and industrial gas installations.Originality/value: The comprehensive characterisation of the methods employed for fabricating nanocomposites consisting of carbon nanotubes deposited with Pt, Pd, Rh, Au, Ag nanoparticles with special consideration to the colloidal process.

  5. Synthesis and investigation of nanostructured polymer composites based on heterocyclic esters and carbon nanotubes

    OpenAIRE

    Bardash, Liubov

    2011-01-01

    The thesis relates to synthesis and investigation of nanostructured polymer composites based on oligomers of cyanate esters of bisphenol a (DCBA) or cyclic butylene terephthalate (CBT) and multiwalled carbon nanotubes (MWCNTS). Catalytic effect of mwcnts in process of DCBA polycyclotrimerization as well as in cbt polymerization has been observed. Significant increase in crystallization temperature of nanocomposites based on polybutylene terephthalate (cPBT) with adding of MWCNTS is observed. ...

  6. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    OpenAIRE

    Tomohiro Shiraki; Tomonari Shiraishi; Gergely Juhász; Naotoshi Nakashima

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E 11 2*) from the bi...

  7. An approach to a multi walled carbon nanotube based mass sensor

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Davis, Zachary James; Madsen, Dorte Nørgaard; Mølhave, Kristian; Bøggild, Peter; Rasmussen, Anne-Marie; Brorson, M.; Jacobsen, Claus J.H.; Boisen, Anja

    We propose an approach to a nanoscale mass sensor based on a gold electrode structure, on which a multi-walled carbon nanotube (MWCNT) bridge can be placed and soldered. The structure is comprised of three electrodes with a width of 2 or 4 mum. Two outer electrodes with a length of 10 or 15 mum...... the bridging nanotube. The free standing MWCNTs were fabricated by chemical vapour deposition of Fe(H) phthalocyanine. A nanomanipulator with an x - y - z translation stage was used for placing the MWCNTs across the source-drain electrodes. The nanotubes were soldered onto the substrate by electron...... beam induced deposition of an organometallic compound. (C) 2004 Elsevier B.V. All rights reserved....

  8. Fe-catalyzed carbon nanotubes for high-energy density carbon-based supercapacitors

    Science.gov (United States)

    Emmett, Robert; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanotubes (CNTs) are one of the most suitable supercapacitor electrode materials due to their high mechanical strength, electrical conductivity, and surface area. Albeit these unique properties of CNTs, energy density of carbon-based double layer capacitors is limited by the inability of CNTs to actively participate in redox processes. Here, we show that electrochemical characteristics of CNTs can be improved by activating the residual Fe catalyst to participate in Faradaic charge storage via Fe2+ ->Fe3+ redox process. By using traditional liquid injection chemical vapor deposited CNTs which contains 5.7 wt.% residual Fe catalyst (R. Andrews et al.,, Chem. Phys. Letters, 303, 467-474 (1999)), the capacitance of CNT electrodes can be increased from 20 F/g to 150 F/g, in the range of -0.2 to 1.2 V. The use of Fe containing CNTs to manufacture supercapacitor electrodes with increased energy density and charge capacity of with high charge/discharge rates with extremely long-term cycle stability will be discussed. Research supported by US NSF CMMI Grant1246800.

  9. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2014-01-01

    Full Text Available The chemical vapor deposition method is used to prepare CNT (carbon nanotube/PCF (PAN-based carbon fiber felt composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution’s pH, the better the desalting; the smaller the ions’ radius, the greater the amount of adsorption.

  10. Electroadsorption desalination with carbon nanotube/PAN-based carbon fiber felt composites as electrodes.

    Science.gov (United States)

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption. PMID:24963504

  11. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  12. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  13. Study on Carbon Nanotubes Prepared from Catalytic Decomposition of CH4 over Lanthanum Containing Ni-Base Catalysts

    Institute of Scientific and Technical Information of China (English)

    Wang Minwei; Li Fengyi

    2004-01-01

    A series of lanthanum containing Ni-base catalysts were prepared by citric acid complex method.Carbon nanotubes (CNT) were synthesized bY catalytic decomposing CH4 over these catalysts and characterized by XRD, TEM and TGA.It is found that the addition of lanthanum can not increase the yield of carbon nanotube, but can make the diameter of carbon nanotube thinner and even.The more the lanthanum addsr, the thinner the diameter of CNTs becomes.With the CNTs prepared on Ni-Mg catalyst, the CNTs prepared on Ni-La-Mg catalyst has better crystallinity and thermal stability.

  14. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2015-12-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  15. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF6 electrolyte

    International Nuclear Information System (INIS)

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF6 non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g−1. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g−1 at a scan rate of 1 mV s−1

  16. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A., E-mail: asyadi@utem.edu.my [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A. [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Kudin, T.I.T. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Yahya, M.Z.A. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  17. Stationary scanning x-ray source based on carbon nanotube field emitters

    Science.gov (United States)

    Yang, Guang; Zhang, Jian; Cheng, Yuan; Gao, Bo; Qiu, Qi; Lee, Yueh; Lu, Jianping; Zhou, Otto

    2006-03-01

    Carbon nanotube is an ideal field emitter thanks to its large aspect ratio and small diameter. Based on its field emission property, we have developed a stationary scanning x-ray source, which can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis.

  18. Analysis of Percolation Behavior of Electrical Conductivity of the Systems Based on Polyethers and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    E.A. Lysenkov

    2016-03-01

    Full Text Available The basic theoretical models of electrical conductivity of polymer nanocomposites and their accordance to experimental results are analysed for the systems based on polyethers and carbon nanotubes using the methods of mathematical simulation. It is set that models which are based on the effective medium approximation do not take into account existence of percolation threshold and can’t be using for exact definition of experimental data. It is discovered that the Fourier model demonstrats a good accordance with an experiment, however it is applicable only for the systems in which a large increase of conductivity under reaching the percolation threshold is observed, that systems with low own conductivity. It is set that the best accordance to experimental data was shown by the Kirkpatrick model and the generalized McLachlan model, which, except for the percolation threshold, structural descriptions of clusters which are formed from carbon nanotubes take into account.

  19. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; LIU De-Sheng; ZHANG Ying; WANG Pei-Ji; ZHANG Zhong

    2011-01-01

    @@ Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbonnanotube-based molecular junction.Obvious rectifying behavior is observed and it is strongly dependent on the doping site.The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer.Moreover, the rectifying performance can be further improved by adjusting the distance between the Cso nanotube caps.%Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C60 nanotube caps.

  20. Synthesis, Characterization and Utility of Carbon Nanotube Based Hybrid Sensors in Bioanalytical Applications

    OpenAIRE

    SUSHMEE BADHULIKA, FNU

    2011-01-01

    ABSTRACT OF THE DISSERTATIONSynthesis, characterization and utility of carbon nanotube based hybrid sensors in bioanalytical applicationsbySushmee BadhulikaDoctor of Philosophy, Department of Electrical EngineeringUniversity of California, Riverside, USAProf. Ashok Mulchandani, ChairpersonThe detection of gaseous analytes and biological molecules is of prime importance in the fields of environmental pollution control, food and water - safety and analysis, and medical diagnostics. This necess...

  1. Evaluation of Acetylcholinesterase Biosensor Based on Carbon Nanotube Paste in the Determination of Chlorphenvinphos

    OpenAIRE

    Oliveira, A. C.; Mascaro, L. H.

    2011-01-01

    An amperometric biosensor for chlorphenvinphos (organophosphorus pesticide) based on carbon nanotube paste and acetylcholinesterase enzyme (CNTs-AChE biosensor) is described herein. This CNTs-AChE biosensor was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The SEM result shows the presence of CNTs and small lumps, due to the enzyme AChE, which has a type of cauliflower formation. From EIS analysis is possible to observe increased R tc fo...

  2. A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles

    Science.gov (United States)

    Song, Youngsup; Lee, Jae-Ik; Pyo, Soonjae; Eun, Youngkee; Choi, Jungwook; Kim, Jongbaeg

    2016-05-01

    A novel carbon nanotube (CNT)-based flexible strain sensor with the highest gauge factor of 4739 is presented. CNT-to-CNT contacts are fabricated on a pair of silicon electrodes fixed on a PDMS specimen for both flexibility and electrical connection. The strain is detected by the resistance change between facing CNT bundles. The proposed approach could be applied for diverse applications with a high gauge factor.

  3. Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites

    OpenAIRE

    SHI, JIN; Cha, Tae-Gon; Claussen, Jonathan; Diggs, Alfred R.; Choi, Jong Hyun; Porterfield, D. Marshall

    2011-01-01

    Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In...

  4. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate

    OpenAIRE

    Pryzhkova, Marina V; Aria, Indrat; Cheng, Qingsu; Harris, Greg M.; Zan, Xingjie; Gharib, Morteza; Jabbarzadeh, Ehsan

    2014-01-01

    We investigated the biological response of human pluripotent stem cells (hPSCs) cultured on a carbon nanotube (CNT) array-based substrate with the long term goal to direct hPSC germ layer specification for a wide variety of tissue engineering applications. CNT arrays were fabricated using a chemical vapor deposition system allowing for control over surface roughness and mechanical stiffness. Our results demonstrated that hPSCs readily attach to hydrophilized and extracellular matrix coated CN...

  5. Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-Based Nanocomposite Films

    OpenAIRE

    Hong-Baek Cho; Minh Triet Tan Huynh; Tadachika Nakayama; Son Thanh Nguyen; Hisayuki Suematsu; Tsuneo Suzuki; Weihua Jiang; Satoshi Tanaka; Yoshinori Tokoi; Soo Wohn Lee; Tohoru Sekino; Koichi Niihara

    2013-01-01

    Linear assemblies of carbon nanotubes (LACNTs) were fabricated and controlled in polysiloxane-based nanocomposite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely ...

  6. Ink-jet printing of thin film transistors based on carbon nanotubes

    OpenAIRE

    Li, Jiantong

    2010-01-01

    The outstanding electrical and mechanical properties of single-walled carbon nanotubes (SWCNTs) may offer solutions to realizing high-mobility and high-bendability thin-film transistors (TFTs) for the emerging flexible electronics. This thesis aims to develop low-cost ink-jet printing techniques for high-performance TFTs based on pristine SWCNTs. The main challenge of this work is to suppress the effects of “metallic SWCNT contamination” and improve the device electrical performance. To this ...

  7. An efficient ternary serial adder based on carbon nanotube FETs

    OpenAIRE

    Mohammad Hossein Moaiyeri; Molood Nasiri; Nooshin Khastoo

    2016-01-01

    This paper presents an efficient ternary serial adder for nanotechnology employing negative, positive and standard ternary logics. Multiple-valued logic results in chips with more density, less complexity and high-bandwidth data transfer. The unique properties of CNTFETs such as the capability of adapting the desired threshold voltage by changing the diameters of the nanotubes and same carrier mobility for the n-type and p-type devices play an important role in designing this circuit. The pro...

  8. Carbon nanotube based composites for electricity storage in supercapacitors

    OpenAIRE

    Zhang, Shengwen

    2010-01-01

    In the context of fossil-fuel shortage and climate change, the production, conversion, storage and distribution of energy have become the focus of today's world. Supercapacitors, with their unique energy and power density specifications, cover the application gap between batteries and conventional capacitors and hence making valuable contributions in energy storage and distribution. Caron nanotubes (CNTs), with their unique aspect ratio and other distinctive physical, electrochemical and...

  9. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  10. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  11. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  12. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    International Nuclear Information System (INIS)

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems

  13. Preparation and characterization of nanomaterials based on bifacial carbon nanotubes and iron oxides: Application in catalysis

    Directory of Open Access Journals (Sweden)

    Zafour-Hadj-Ziane A.

    2013-09-01

    Full Text Available The application of magnetic particles technology for the development of new nanomaterials has received considerable attention in recent years. In this context, the objective of this study is firstly, to prepare new catalytic materials that gather the strong adsorption capacities of carbon nanotubes and magnetic properties of iron, it concerns nanocomposites based on a mixture of carbon nanotubes in a very small amounts and iron oxide. Secondly we want to appear their capacities in catalytic oxidation reactions of phenol. Synthesis under the optimal conditions was carried out at different pH. And the characterization of this new nanomaterial reveals a good specific surface area BET, the identification of carbon nanotubes within the matrix was performed by infrared spectroscopy and transmission electron microscopy. The use of this new material as a catalytic support in catalytic oxidation reactions of phenol indicates the high selectivity of this latter and a yield better than this obtained with iron oxide supported by activated carbon. The good catalyst regeneration of the new catalysis and the improvement in their properties are the interesting parameters for the new type nanomaterials.

  14. Carbon nanotube junctions and devices

    OpenAIRE

    Postma, H. W. Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconducting behaviour. Due to their small diameter, electronic motion is directed in the length direction of the nanotube, making them ideal systems to study e.g. one-dimensional transport phenomena. First...

  15. Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    Science.gov (United States)

    Ali-Akbari, H. R.; Shaat, M.; Abdelkefi, A.

    2016-08-01

    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler-Bernoulli beam with von Kármán type geometric nonlinearity. Eringen's nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue problem analysis. An atom of xenon (Xe) is first considered as a specific case where the results show that the natural frequencies and mode shapes of the CNT are strongly dependent on the location of the deposited Xe and the nonlocal parameter of the CNT. It is also indicated that the first vibrational mode is the most sensitive when the mass is deposited at the middle of a single-walled carbon nanotube. However, when deposited in other locations, it is demonstrated that the second or third vibrational modes may be more sensitive. To investigate the sensitivity of bridged single-walled CNTs as mass sensors, different noble gases are considered, namely Xe, argon (Ar), and helium (He). It is shown that the sensitivity of the single-walled CNT to the Ar and He gases is much lower than the Xe gas due to the significant decrease in their masses. The derived model and performed analysis are so needed for mass sensing applications and particularly when the detected mass is randomly deposited.

  16. Thermoelectrics: Carbon nanotubes get high

    Science.gov (United States)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  17. Carbon nanotube atomic force microscopy probes

    Science.gov (United States)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  18. Photodetectors based on single-walled carbon nanotubes and thiamonomethinecyanine J-aggregates on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, I. V., E-mail: i-v-fedorov@mail.ru; Emel’yanov, A. V.; Romashkin, A. V.; Bobrinetskiy, I. I. [National Research University of Electronic Technology (MIET) (Russian Federation)

    2015-09-15

    The present paper is devoted to observations of the photoresistive effect in multilayer structures with a sensitive layer of J-aggregates of thiamonomethinecyanine polymethine dye and a transparent electrode of a conductive carbon-nanotube network on a flexible polyethylenenaphtalate substrate. The effect of narrow-band emission with a wavelength of 465 nm on a change in the conductivity of the fabricated structures is studied. The prepared samples are studied by atomic-force microscopy, Raman spectroscopy, and spectrophotometry methods. It is shown that these structures are photosensitive to the indicated spectral region, and the dye layer is a film of dye J-aggregates. The change in the sample conductivity upon exposure to light one hundred times exceeds the dark conductivity. In general, the principal possibility of developing a photoresistive detector based on J-aggregates of cyanine dyes on flexible supports on account of the use of transparent and conductive carbon-nanotube layers is shown.

  19. Carbon nanotube-based sensing devices for human Arginase-1 detection

    Directory of Open Access Journals (Sweden)

    S. Baldo

    2016-03-01

    Full Text Available A new carbon nanotube-based device for detection of Arginase 1 (ARG-1 was produced. Multi-walled carbon nanotubes (MWCNTs were deposited between electrodes by dielectrophoresis (DEP in an accurate and reproducible way. This deposition method has the advantages of low cost and room temperature conditions and therefore, can be used on different kinds of substrates (silicon, glass, plastics allowing for large scale production of chemical or biological sensors. Scanning electrical microscope (SEM and electrical characterization have been performed on the biosensors before and after protein exposure. The devices were tested in the present work for the detection of ARG-1. They show high sensitivity and reproducibility, and can be easily and suitably modified to detect other proteins.

  20. Conception et Modélisation des Dispositifs de Biocaptage à Base de Nanotubes de Carbone

    OpenAIRE

    Roman, C.

    2006-01-01

    ISBN : 2-84813-086-5 At only fifteen years after their discovery by Sumio Iijima, carbon nanotubes can be considered as one of the support pylons of nanotechnology. The seamless geometry and one-dimensional nature confers to carbon nanotubes exceptional structural, mechanical, electronic and optical properties. Accordingly, nanotubes are expected to pervade key applications such as field emission displays, energy storage, structural composites, nanoelectronics, sensors and actuators, etc.T...

  1. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    International Nuclear Information System (INIS)

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (∼ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  2. Targeted Killing of Cancer Cells In vivo and In vitro with EGF-directed Carbon Nanotube-based Drug Delivery

    OpenAIRE

    Bhirde, Ashwin A; Patel, Vyomesh; Gavard, Julie; Zhang, Guofeng; Sousa, Alioscka A.; Masedunskas, Andrius; Leapman, Richard D.; Weigert, Roberto; Gutkind, J. Silvio; Rusling, James F.

    2009-01-01

    Carbon nanotube-based drug delivery holds great promise for cancer therapy. Herein we report the first targeted, in vivo killing of cancer cells using a drug-single wall carbon nanotube (SWNT) bioconjugate, and demonstrate efficacy superior to non-targeted bioconjugates. First line anti-cancer agent cisplatin and epidermal growth factor (EGF) were attached to SWNTs to specifically target squamous cancer, and the non-targeted control was SWNT-cisplatin without EGF. Initialin vitro imaging stud...

  3. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  4. Molecular Dynamics Simulation of a Multi-Walled Carbon Nanotube Based Gear

    Science.gov (United States)

    Han, Jie; Globus, Al; Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We used molecular dynamics to investigate the properties of a multi-walled carbon nanotube based gear. Previous work computationally suggested that molecular gears fashioned from (14,0) single-walled carbon nanotubes operate well at 50-100 gigahertz. The gears were formed from nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. The gear in this study was based on the smallest multi-walled nanotube supported by some experimental evidence. Each gear was a (52,0) nanotube surrounding a (37,10) nanotube with approximate 20.4 and 16,8 A radii respectively. These sizes were chosen to be consistent with inter-tube spacing observed by and were slightly larger than graphite inter-layer spacings. The benzyne teeth were attached via 2+4 cycloaddition to exterior of the (52,0) tube. 2+4 bonds were used rather than the 2+2 bonds observed by Hoke since 2+4 bonds are preferred by naphthalene and quantum calculations by Jaffe suggest that 2+4 bonds are preferred on carbon nanotubes of sufficient diameter. One gear was 'powered' by forcing the atoms near the end of the outside buckytube to rotate to simulate a motor. A second gear was allowed to rotate by keeping the atoms near the end of its outside buckytube on a cylinder. The ends of both gears were constrained to stay in an approximately constant position relative to each other, simulating a casing, to insure that the gear teeth meshed. The stiff meshing aromatic gear teeth transferred angular momentum from the powered gear to the driven gear. The simulation was performed in a vacuum and with a software thermostat. Preliminary results suggest that the powered gear had trouble turning the driven gear without slip. The larger radius and greater mass of these gears relative to the (14,0) gears previously studied requires a

  5. Novel self-sensing carbon nanotube-based composites for rehabilitation of structural steel members

    Science.gov (United States)

    Ahmed, Shafique; Doshi, Sagar; Schumacher, Thomas; Thostenson, Erik T.; McConnell, Jennifer

    2016-02-01

    Fatigue and fracture are among the most critical forms of damage in metal structures. Fatigue damage can initiate from microscopic defects (e.g., surface scratches, voids in welds, and internal defects) and initiate a crack. Under cyclic loading, these cracks can grow and reach a critical level to trigger fracture of the member which leads to compromised structural integrity and, in some cases, catastrophic failure of the entire structure. In our research, we are investigating a solution using carbon nanotube-based sensing composites, which have the potential to simultaneously rehabilitate and monitor fatigue-cracked structural members. These composites consist of a fiber-reinforced polymer (FRP) layer and a carbon nanotube-based sensing layer, which are integrated to form a novel structural self-sensing material. The sensing layer is composed of a non-woven aramid fabric that is coated with carbon nanotubes (CNT) to form an electrically conductive network that is extremely sensitive to detecting deformation as well as damage accumulation via changes in the resistance of the CNT network. In this paper, we introduce the sensing concept, describe the manufacturing of a model sensing prototype, and discuss a set of small-scale laboratory experiments to examine the load-carrying capacity and damage sensing response.

  6. Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Chen, Miaoxiang Max; Mølhave, Kristian;

    2011-01-01

    Patterning carbon nanotubes into an array of pillars makes it possible to increase the electrical field strength applied across a separation column by more than one order of magnitude.......Patterning carbon nanotubes into an array of pillars makes it possible to increase the electrical field strength applied across a separation column by more than one order of magnitude....

  7. Deposition and characterization of carbon nanotubes (CNTS) based films for sensing applications

    Science.gov (United States)

    Dissanayake, Amila C.

    The advent of carbon nanotubes (CNTs) has opened up lot of novel applications because of their unique electrical and mechanical properties. CNTs are well known material for its exceptional electrical, mechanical, optical, thermal and chemical properties. A single-wall nanotube (SWNT) can be either semiconducting, metallic or semi-metallic, based on its chirality and diameter. SWNTs can be used in transistor device as active channels due to high electron mobility (~10000 cm2/(V s), electrical interconnects, nano-scale circuits, field-emission displays, light-emitting devices and thermal heat sinks due to low resistivity, high current density (~109A cm-2 ) and high thermal conductivity (~3500 W m-1). Further, their high Young's modulus and fracture stress is suitable for various sensing applications such as strain/pressure and use in chemical/biological sensors. This work mainly involves the deposition of CNT-based films following two different methods via a conventional microwave chemical vapor deposition (MWCVD) and spinning CNT-composites, and explored the possibility of using CNT-based films in strain gauge applications. Deposited films are characterized and analyzed for their structure, microstructure, composition and electrical properties. Rutherford Backscattering Spectrometry (RBS), X-ray Reflectivity (XRR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and electrical impedance measurement techniques are used to characterize the films prepared by both the above mentioned methods. The synthesis/deposition process is improved based on the observed films properties. A carbon nanotube forest grown on the Si (100) substrate with Ni as a catalyst using CVD system shows an amorphous nature due to loss of catalytic activity of Ni nano-islands. XPS and RBS data show Ni nano-particles diffused into the Si substrate and surface layer of Ni particles turns out to nickel silicide. The

  8. Transport Through Carbon Nanotube Wires

    Science.gov (United States)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  9. Carbon Nanotube-Based Electrochemical Sensor for the Determination of Anthraquinone Hair Dyes in Wastewaters

    OpenAIRE

    Ricardo de Oliveira; Felipe Hudari; Jefferson Franco; Maria Valnice Boldrin Zanoni

    2015-01-01

    The present work describes the development of a voltammetric sensor for the selective determination of Acid Green 25 (AG25) hair dye, widely used in commercial temporary hair dyes. The method is based on a glassy carbon electrode modified with multiwalled carbon nanotubes activated in the presence of sulfuric acid, where the anthraquinone group present as a chromophore in the dye molecule is reduced at −0.44 V vs. Ag/AgCl in a reversible process involving two electrons in Britton-Robinson (B-...

  10. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    Science.gov (United States)

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  11. Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Savu

    2015-01-01

    Full Text Available We report the design and fabrication of microreactors and sensors based on metal nanoparticle-decorated carbon nanotubes. Titanium adhesion layers and gold films were sputtered onto Si/SiO2 substrates for obtaining the electrical contacts. The gold layers were electrochemically thickened until 1 μm and the electrodes were patterned using photolithography and wet chemical etching. Before the dielectrophoretic deposition of the nanotubes, a gap 1 μm wide and 5 μm deep was milled in the middle of the metallic line by focused ion beam, allowing the fabrication of sensors based on suspended nanotubes bridging the electrodes. Subsequently, the sputtering technique was used for decorating the nanotubes with metallic nanoparticles. In order to test the as-obtained sensors, microreactors (100 μL volume were machined from a single Kovar piece, being equipped with electrical connections and 1/4′′ Swagelok-compatible gas inlet and outlets for controlling the atmosphere in the testing chamber. The sensors, electrically connected to the contact pins by wire-bonding, were tested in the 10−5 to 10−2 W working power interval using oxygen as target gas. The small chamber volume allowed the measurement of fast characteristic times (response/recovery, with the sensors showing good sensitivity.

  12. Carbon nanotubes: synthesis and functionalization

    OpenAIRE

    Andrews, Robert

    2007-01-01

    This thesis focuses on two of the major challenges of carbon nanotube (CNT) research: understanding the growth mechanism of nanotubes by chemical vapour deposition (CVD) and the positioning of nanotubes on surfaces. The mechanism of growth of single–walled nanotubes (SWNTs) has been studied in two ways. Firstly, a novel iron nanoparticle catalyst for the production of single–walled nanotubes was developed. CVD conditions were established that produced high quality tubes. These optimised C...

  13. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  14. Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor

    Science.gov (United States)

    Olofsson, Niklas; Ek-Weis, Johan; Eriksson, Anders; Idda, Tonio; Campbell, Eleanor E. B.

    2009-09-01

    The electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy and scanning electron microscopy, and highly reproducible behaviour was achieved for actuation voltages below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units. The effective Young's modulus for the carbon nanotube arrays was determined by comparing the actuation results with the results of electrostatic simulations and was found to be exceptionally low, of the order of 1-10 MPa. The capacitance change and Q-factor were determined by measuring the frequency dependence of the radio-frequency transmission. Capacitance changes of over 20% and Q-factors in the range 100-10 were achieved for a frequency range of 0.2-1.5 GHz.

  15. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin

    Science.gov (United States)

    Li, Yong; Chen, Changxin; Pan, Xiaoyan; Ni, Yuwei; Zhang, Song; Huang, Jie; Chen, Da; Zhang, Yafei

    2009-05-01

    Defective multiwalled carbon nanotubes (MWCNTs) were introduced to the carbonyl iron (CI) based composites to improve its microwave absorption by a simple ultrasonic mixing process. The electromagnetic parameters were measured in the 2-18 GHz range. Microwave absorption of CI based composites with 2 mm in thickness was evidently enhanced by adding as little as 1.0 wt% defective MWCNTs with two well separated absorption peaks exceeding -20 dB, as compared with that of pure CI based and defective MWCNTs composites. The enhancement mechanism is thought due to the interaction and better electromagnetic match between defective MWCNTs and ferromagnetic CI particles.

  16. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  17. Biocompatibility of Carbon Nanotubes in Mammalian Cells: An Imaging Based Approach

    Science.gov (United States)

    Chen, Howard; Lucas, Jessica; Ponek, Hannah; Evans, Christopher; Baer, Bradly; Choung, Sara; Chen, Michelle

    2012-02-01

    Carbon nanotubes have been widely researched for ultrasensitive biomolecule detection and drug delivery. However, its impact on cells is yet to be fully characterized, mainly due to the complex biological in vivo environment. We report here a mammalian cell-imaging paradigm to study the cellular response to single-walled carbon nanotubes (SWNTs) at the single-cell level. Chinese Hamster Ovarian cells were exposed to SWNTs resuspended in phosphate buffered saline (PBS) at various concentrations. Upon exposure, we optically imaged the cells (1) to visually quantify the SWNTs' crossing of the cell membrane in real-time; (2) to both qualitatively and quantitatively assess the morphological changes associated with cellular stress in the presence of SWNTs; and (3) to serially quantify cell survival with highly sensitive bioluminescence-based imaging. Consistent with literature reports, high concentration of SWNTs acutely compromised cell division and decreased cell survival. Low concentrations were well tolerated by the cells initially but had similar effects after prolonged exposure. We discuss the inter-relationships among the cell morphology, viability, and intracellular SWNT uptake parameters, as a function of nanotube concentration and exposure time.

  18. On the strength of the carbon nanotube-based space elevator cable: from nanomechanics to megamechanics

    International Nuclear Information System (INIS)

    In this paper various deterministic and statistical models, based on new quantized theories proposed by the author, are presented for estimating the strength of a real, and thus defective, space elevator cable. The cable, ∼100 000 km in length, is composed of carbon nanotubes, ∼100 nm long: thus, its design involves nanomechanics and megamechanics. The predicted strengths are extensively compared with the experimental and atomistic simulation results for carbon nanotubes available in the literature. All these approaches unequivocally suggest that the megacable strength will be reduced by a factor at least of ∼70% with respect to the theoretical nanotube strength, today (erroneously) assumed in the cable design. The reason is the unavoidable presence of defects in so huge a cable. Preliminary in-silicon tensile experiments confirm the same finding. The deduced strength reduction is sufficient to place in doubt the effective realization of the space elevator, that if built as designed today will certainly break (in the author's opinion). The mechanics of the cable is also revised and possible damage sources discussed

  19. The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction

    Science.gov (United States)

    Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad

    2016-01-01

    Background To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Objectives Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. Materials and Methods In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. Results It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Conclusions Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.

  20. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    OpenAIRE

    Chen Changxin; Zhang Song; Ni Yuwei; Cai Seng; Huang Jie; Li Yong; Li Jiang-Tao

    2010-01-01

    Abstract An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σ ac...

  1. Carbon Nanotube Based Molecular Electronics and Motors: A View from Classical and Quantum Dynamics Simulations

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    The tubular forms of fullerenes popularly known as carbon nanotubes are experimentally produced as single-, multiwall, and rope configurations. The nanotubes and nanoropes have shown to exhibit unusual mechanical and electronic properties. The single wall nanotubes exhibit both semiconducting and metallic behavior. In short undefected lengths they are the known strongest fibers which are unbreakable even when bent in half. Grown in ropes their tensile strength is approximately 100 times greater than steel at only one sixth the weight. Employing large scale classical and quantum molecular dynamics simulations we will explore the use of carbon nanotubes and carbon nanotube junctions in 2-, 3-, and 4-point molecular electronic device components, dynamic strength characterization for compressive, bending and torsional strains, and chemical functionalization for possible use in a nanoscale molecular motor. The above is an unclassified material produced for non-competitive basic research in the nanotechnology area.

  2. Carbon Nanotube Areas - Printed on Textile and Paper Substrates

    OpenAIRE

    Hubler, Arved C.; Lothar Kroll; Holg Elsner; Nora Wetzold; Thomas Fischer

    2011-01-01

    Mass printing processes are the key technology to produce mass products to the point of one-disposable. Carbon nanotube (CNT) based structures were prepared by flexographic printing using multi-walled carbon nanotube (MWCNT) dispersions in water. The carbon nanotubes were applied to a textile substrate made of polyester and polyamide microfilaments and to both-side coated paper to produce electrically conductive layers that can be used, for example, as heating elements. Carbon nanotube layers...

  3. Carbon nanotubes on polymer-based pressure micro-sensor for manometric catheters

    Science.gov (United States)

    Teng, M. F.; Hariz, A.; Hsu, H. Y.; Omari, T.

    2008-12-01

    In this paper we investigate the fabrication process of a novel polymer based pressure micro-sensor for use in manometric measurements in medical diagnostics. Review and analysis of polymer materials properties and polymer based sensors has been carried out and has been reported by us elsewhere [1]. The interest in developing a novel polymer based flexible pressure micro-sensor was motivated by the numerous problems inherent in the currently available manometric catheters used in the hospitals. The most critical issue regarding existing catheters was the running and maintenance costs [2]. Thus expensive operation costs lead to reuse of the catheters, which increase the risk for disease transmission. The novel flexible polymer based pressure micro-sensor was build using SU-8, which is a special kind of negative photoresist. Single-walled carbon nanotubes (SWCNTs) and aluminum are used as the sensing material and contacting electrodes respectively. The pressure sensor diaphragm was first patterned on top of an oxidized silicon wafer using SU-8, followed by aluminum deposition to define the electrodes. The carbon nanotube is then deposited using dielectrophoresis (DEP) process. Once the carbon nanotubes are aligned in between these electrodes, the remaining of the sensor structure is formed using SU-8. Patterning of SU-8 and release from the substrate make the device ready for further testing of sensing ability. This research not only investigates the use of polymeric materials to build pressure sensors, but also explores the feasibility of full utilization of polymeric materials to replace conventional silicon materials in micro-sensors fabrication for use in medical environments. The completed sensor is expected to form an integral part of a large versatile sensing system. For example, the biocompatible artificial skin, is predicted to be capable of sensing force, pressure, temperature, and humidity, and may be used in such applications as medical and robotic system.

  4. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm-1K-1 compared with the thermal conductivity 419 Wm-1K-1 of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  5. First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes

    International Nuclear Information System (INIS)

    We report the results of our first-principles study based on density functional theory on the interaction of the nucleic acid base molecules adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U), with a single-walled carbon nanotube (CNT). Specifically, the focus is on the physisorption of base molecules on the outer wall of a (5, 0) metallic CNT possessing one of the smallest diameters possible. Compared to the case for CNTs with large diameters, the physisorption energy is found to be reduced in the high-curvature case. The base molecules exhibit significantly different interaction strengths and the calculated binding energies follow the hierarchy G>A>T>C>U, which appears to be independent of the tube curvature. The stabilizing factor in the interaction between the base molecule and CNT is dominated by the molecular polarizability that allows a weakly attractive dispersion force to be induced between them. The present study provides an improved understanding of the role of the base sequence in deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) in their interactions with carbon nanotubes of varying diameters

  6. Carbon nanotube IR detectors (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  7. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  8. Experimental and Theoretical Characterization of Artificial Muscles Based on Charge Injection in Carbon Nanotubes

    Science.gov (United States)

    Baughman, Ray

    2002-03-01

    We theoretically predicted that carbon nanotubes have the potential of providing at least an order of magnitude higher work capacity per cycle and stress generation capability, as compared with any prior-art material for directly converting electrical energy to mechanical energy. Experimental and theoretical results expand understanding of the nanotube actuation mechanism, and demonstrate that improvements in nanotube sheet and macrofiber properties correspondingly increase actuator performance. The actuation mechanism is electrochemical double-layer charge injection, which we show is dominated by band structure effects for low degrees of charge transfer and by intra-tube electrostatic repulsion when charge transfer is large. Measurements indicate that charge transfer is limited to the outer nanotubes in a nanotube bundle, which limits present performance (as does creep, nanotube misalignment, and poor inter-bundle stress transfer). Nevertheless, measured actuation stresses are 100 times that of natural muscle, and the measured gravimetric work-per-cycle (fixed load condition) is already much higher than for the hard ferroelectrics. Efforts to eliminate these problems (via debundling, nanotube welding, and improvements in nanotube spinning methods) will be described, together with the initial demonstration and analysis of chemically powered carbon nanotube muscles.

  9. Stationary scanning x-ray source based on carbon nanotube field emitters

    International Nuclear Information System (INIS)

    We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup

  10. Designing high-speed, low-power full adder cells based on carbon nanotube technology

    OpenAIRE

    Mehdi Masoudi; Milad Mazaheri; Aliakbar Rezaei; Keivan Navi

    2014-01-01

    This article presents novel high speed and low powe r full adder cells based on carbon nanotube field e ffect transistor (CNFET). Four full adder cells are propo sed in this article. First one (named CN9P4G) and second one (CN9P8GBUFF) utilizes 13 and 17 CNFETs r espectively. Third design that we named CN10PFS uses only 10 transistors and is full swing. Finally, CN8P10G uses 18 transistors and divided i nto two modules, causing Su...

  11. Transparent Conductive Coating Based on Carbon Nanotubes Using Electric Field Deposition Method

    International Nuclear Information System (INIS)

    The transparent conductive coating based on carbon nanotubes (CNTs) had been fabricated using the electric field deposition method. The scanning electron microscope (SEM) results show a quite uniform CNTs on Corning glass substrates. Moreover the X-ray Diffraction (XRD) results shows the peak at around 25 deg. which proves the existence of CNT materials. The CNT thin films obtained with different deposition times have different transmittance coefficients at wavelength of 550 nm. I-V measurement results shows higher sheet resistance value which relates with bigger transmittance coefficients and vice versa.

  12. Damping Property of a Cement-Based Material Containing Carbon Nanotube

    OpenAIRE

    Wei-Wen Li; Wei-Ming Ji; Yi Liu; Feng Xing; Yu-Kai Liu

    2015-01-01

    This study aimed to explore the damping property of a cement-based material with carbon nanotube (CNT). In the study, the cement composites with different contents of CNT (0 wt%, 0.033 wt%, 0.066 wt%, and 0.1 wt%) were investigated. Logarithmic Decrement method and Dynamic Mechanical Analysis (DMA) method were utilized to study the damping property of CNT/cement composite. The influences of CNT on pore size distribution and microstructure of composite were analyzed by Mercury Intrusion Porosi...

  13. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    Science.gov (United States)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2012-05-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.

  14. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Lopez-Sandoval, R. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi 78216 (Mexico); Liu, J.; Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem, NC (United States)

    2007-09-22

    It is shown that carbon nanotubes can be used to enhance carrier mobility for efficient removal of the charges in thin film polymer-conjugated/fullerene photovoltaic devices. The fabricated photovoltaic devices consist of poly(3-octylthiophene) (P3OT) polymer blended with undoped multiwalled carbon nanotubes (MWNTs) and carbon nanotubes doped with nitrogen (CNx-MWNTs). Nanophase formation and dispersion problems associated with the use of carbon nanotubes in polymer devices were addressed through the generation of functional groups and electrostatic attaching of the polyelectrolyte poly(dimethyldiallylamine) chloride (PDDA) in both MWNTs and CNx-MWNT systems. The resultant nanophase was highly dispersed allowing for excellent bulk heterojunction formation. Our results indicate that CNx-MWNTs enhance the efficiency of P3OT solar cells in comparison with MWNTs. (author)

  15. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Czaniková, K.; Torras, N.; Esteve, J.; Krupa, I.; Kasák, P.; Pavlova, Ewa; Račko, D.; Chodák, I.; Omastová, M.

    2013-01-01

    Roč. 186, September (2013), s. 701-710. ISSN 0925-4005 Institutional support: RVO:61389013 Keywords : actuator * carbon nanotubes * ethylene vinyl acetate copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.840, year: 2013

  16. DC and radio-frequency transmission characteristics of double-walled carbon nanotubes-based ink

    OpenAIRE

    Pacchini, Sébastien; Flahaut, Emmanuel; Fabre, Norbert; Conédéra, Véronique; Mesnilgrente, Fabien; Coccetti, Fabio; Dragoman, Mircea; Plana, Robert

    2010-01-01

    In this paper, double-walled carbon nanotubes (DWNTs) network layers were patterned using inkjet transfer printing. The remarkable conductive characteristics of carbon nanotubes (CNTs) are considered as promising candidates for transmission line as well as microelectronic interconnects of an arbitrary pattern. In this work, the DWNTs were prepared by the catalytic chemical vapor deposition process, oxidized and dispersed in ethylene glycol solution. The DWNTs networks were deposited between e...

  17. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  18. Parametric Analysis of NO2 Gas Sensor Based on Carbon Nanotubes

    Science.gov (United States)

    Naje, Asama N.; Ibraheem, Russul R.; Ibrahim, Fuad T.

    2016-06-01

    Two types of carbon nanotubes [single walled nanotubes (SWCNTs) and multi walled carbon nanotubes (MWCNTs)] are deposited on porous silicon by the drop casting technique. Upon exposure to test gas mixing ratio 3% NO2, the sensitivity response results show that the SWCNTs' sensitivity reaches to 79.8%, where MWCNTs' is 59.6%. The study shows that sensitivity response of the films increases with an increase in the operating temperature up to 200° and 150° for MWCNTs and SWCNTs. The response and recovery time is about 19 s and 54 s at 200° for MWCNTs, respectively, and 20 s and 56 s at 150° for SWCNTs.

  19. Photoluminescence Study of Carbon Nanotubes

    OpenAIRE

    Han, H. X.; Li, G. H.; Ge, W. K.; Wang, Z. P.; Xu, Z. Y.; Xie, S. S.; Chang, B H; Sun, L. F.; Wang, B S; G. Xu; Su, Z.B.

    2000-01-01

    ultiwalled carbon nanotubes, prepared by both electric arc discharge and chemical vapor deposition methods, show a strong visible light emission in photoluminescence experiments. All the samples employed in the experiments exhibit nearly same super-linear intensity dependence of the emission bands on the excitation intensity, and negligible temperature dependence of the central position and the line shapes of the emission bands. Based upon theoretical analysis of the electronic band structure...

  20. Amperometric Glucose Biosensor Based on Self-Assembling Glucose Oxidase on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Lin, Yuehe

    2006-01-01

    A flow injection amperometric glucose biosensor based on electrostatic self-assembling glucose oxidase (GOx) on a carbon nanotube (CNT)-modified glassy carbon transducer is described. GOx is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and a GOx layer. The unique sandwich-like layer structure (PDDA/GOx/PDDA/CNT) formed by self-assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The direct electrochemistry behavior of GOx and electrocatalysis of H2O2 on the fabricated PDDA/GOx/PDDA/CNT electrode demonstrated that such a biosensor fabrication method preserves the activity of enzyme molecules and the mechanical and electrocatalytic properties of carbon nanotubes, enabling sensitive determination of glucose. Flow injection amperometric detection of glucose is carried out at -100 mV (vs Ag/AgCl) in 0.05 M phosphate buffer solution (pH 7.4) with wide linear response range of 15 uM- 6 mM and a detection limit of 7 uM. The PDDA/GOx/PDDA/CNT/GC biosensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and free of interference from other co-existing electroactive species. The present methods can be applied to assemble other enzyme molecules and biological molecules, such as antibody, antigen, and DNA, to the CNT surface for wide biosensor and bioassay applications.

  1. High frequency carbon nanotube devices

    Science.gov (United States)

    Goffman, M. F.; Chimot, N.; Mile, E.; Monteverde, M. C.; Bourgoin, J.-P.; Derycke, V.

    2008-08-01

    We investigate high frequency electrical and mechanical performances of carbon nanotube based devices. Using configurations with multiple single-wall nanotubes in parallel, we show that HF nanotube transistors with intrinsic cut-off frequencies as high as 30 GHz can be obtained on rigid substrates. Adapting our process to plastic substrates, we also obtained highly flexible HF transistors showing constant transconductances up to at least 6 GHz, as-measured cut-off frequencies as high as 1 GHz (5-8 GHz after de-embedding) and stable DC performances upon bending. We probed electromechanical properties of individual suspended carbon multiwall nanotubes by using a modified AFM. DC deflection measurements on different devices are in agreement with a continuum model prediction and consistent with a Young's modulus of 0.4 TPa. Preliminary HF measurements on a doubly clamped device showed a resonant frequency of 200MHz consistent with a Young's modulus of 0.43 TPa. This implies that built-in mechanical stress in the case of MWNTs is negligeable.

  2. Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Elnaz Akbari

    2014-03-01

    Full Text Available Carbon Nanotubes (CNTs are generally nano-scale tubes comprising a network of carbon atoms in a cylindrical setting that compared with silicon counterparts present outstanding characteristics such as high mechanical strength, high sensing capability and large surface-to-volume ratio. These characteristics, in addition to the fact that CNTs experience changes in their electrical conductance when exposed to different gases, make them appropriate candidates for use in sensing/measuring applications such as gas detection devices. In this research, a model for a Field Effect Transistor (FET-based structure has been developed as a platform for a gas detection sensor in which the CNT conductance change resulting from the chemical reaction between NH3 and CNT has been employed to model the sensing mechanism with proposed sensing parameters. The research implements the same FET-based structure as in the work of Peng et al. on nanotube-based NH3 gas detection. With respect to this conductance change, the I–V characteristic of the CNT is investigated. Finally, a comparative study shows satisfactory agreement between the proposed model and the experimental data from the mentioned research.

  3. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites

    Science.gov (United States)

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-01

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to

  4. Study on a novel dosimeter based on polyethylene–carbon nanotube composite

    Energy Technology Data Exchange (ETDEWEB)

    Malekie, S.; Ziaie, F., E-mail: fziaie@aeoi.org.ir

    2015-08-11

    In this research work, the electric current of polyethylene-carbon nanotube composite, in the electrical percolation threshold region, over the absorbed dose under the applied bias voltage was investigated via the finite element method. The investigated geometry was formed by a two-dimensional cross-sectional view of randomly orientated nanotubes as ellipses. The variable range hopping model developed by Mott and thermally activated hopping model was used to calculate the electrical conductivity of carbon nanotubes and polymer, respectively. Regarding the calorimetric approach, we considered the absorbed dose equal to heat capacity of polyethylene-carbon nanotube composite multiplied by temperature rise. Results showed that this kind of composite can be used for low dose rate applications for monitoring and radiation protection utilizations.

  5. Study of detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance model.

    Science.gov (United States)

    Jingyi, Zhu

    2015-01-01

    The detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance (MSR) model was studied in this paper. A numerically stimulating model based on MSR was established. And gas-ionizing experiment by adding electronic white noise to induce 1.65 MHz periodic component in the carbon nanotubes gas sensor was performed. It was found that the signal-to-noise ratio (SNR) spectrum displayed 2 maximal values, which accorded to the change of the broken-line potential function. The experimental results of gas-ionizing experiment demonstrated that periodic component of 1.65 MHz had multiple MSR phenomena, which was in accordance with the numerical stimulation results. In this way, the numerical stimulation method provides an innovative method for the detecting mechanism research of carbon nanotubes gas sensor. PMID:26198910

  6. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes

    International Nuclear Information System (INIS)

    A carbon nanotube (CNT) modified biosensor based on oxygen-independent, pyrrole quinoline quinone glucose dehydrogenase (PQQ-GDH) for monitoring glucose was studied. The disposable amperometric biosensors based on screen-printed carbon paste electrodes are low cost and suitable for mass production. Potassium ferricyanide was immobilized on the surface of the electrodes as an electron mediator, which decreased the work potential. The biosensor showed a linear amperometric response to glucose from 1 to 35 mM, with a sensitivity of 31.0 µA mM−1 cm−2. Experimentally, the compositions of PQQ-GDH, potassium ferricyanide, CNTs and other components were evaluated and optimized. Only 2 µl of sample are needed for one test, and the response time of the sensor is 20 s. The characteristics of the biosensor were studied through cyclic voltammetry, and experimental results showed that the CNTs could facilitate the electron transfer between the enzyme and electrode surface significantly. Compared with the biosensor without carbon nanotube modification, the CNTs improved the sensitivity of the biosensor up to five times

  7. Carbon nanotube reinforced aluminum based nanocomposite fabricated by thermal spray forming

    Science.gov (United States)

    Laha, Tapas

    The present research concentrates on the fabrication of bulk aluminum matrix nanocomposite structures with carbon nanotube reinforcement. The objective of the work was to fabricate and characterize multi-walled carbon nanotube (MWCNT) reinforced hypereutectic Al-Si (23 wt% Si, 2 wt% Ni, 1 wt% Cu, rest Al) nanocomposite bulk structure with nanocrystalline matrix through thermal spray forming techniques viz. plasma spray forming (PSF) and high velocity oxy-fuel (HVOF) spray forming. This is the first research study, which has shown that thermal spray forming can be successfully used to synthesize carbon nanotube reinforced nanocomposites. Microstructural characterization based on quantitative microscopy, scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and X ray photoelectron spectroscopy (XPS) confirms (i) retention and macro/sub-macro level homogenous distribution of multiwalled carbon nanotubes in the Al-Si matrix and (ii) evolution of nanostructured grains in the matrix. Formation of ultrathin beta-SiC layer on MWCNT surface, due to chemical reaction of Si atoms diffusing from Al-Si alloy and C atoms from the outer walls of MWCNTs has been confirmed theoretically and experimentally. The presence of SiC layer at the interface improves the wettability and the interfacial adhesion between the MWCNT reinforcement and the Al-Si matrix. Sintering of the as-sprayed nanocomposites was carried out in an inert environment for further densification. As-sprayed PSF nanocomposite showed lower microhardness compared to HVOF, due to the higher porosity content and lower residual stress. The hardness of the nanocomposites increased with sintering time due to effective pore removal. Uniaxial tensile test on CNT-bulk nanocomposite was carried out, which is the first ever study of such nature. The tensile test results showed inconsistency in the data attributed to inhomogeneous

  8. Flexible infrared detectors based on p-n junctions of multi-walled carbon nanotubes

    Science.gov (United States)

    Huang, Zhenlong; Gao, Min; Yan, Zhuocheng; Pan, Taisong; Liao, Feiyi; Lin, Yuan

    2016-05-01

    Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm-2 even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors.Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm-2 even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08791k

  9. Nanocomposites structures based on the electrochemical assembling of zinc oxide nanorods and carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: → Hydrodynamic regime has been fundamental to address carbon nanotubes towards electrode surface being trapped by ZnO nanorods growing process. → Pressure method have made possible to obtain SWCNTs paper proper as working electrodes. → SWCNTs showed better electrical properties as both substrate and once is ZnO contacted when is compared with MWCNTs. - Abstract: We report two electrochemical routes to obtain composites structures at nanometric scale with zinc oxide nanorods (ZnO NRs) and carbon nanotubes (CNTs). The first route is based in the electroprecipitation of ZnO NRs with CNTs dispersed in the electrolyte on ITO electrodes while the second one is based on the electroprecipitation of ZnO NRs on CNTs paper electrodes. CNTs paper has been obtained by pressing CNTs, which then can acts as a pure working electrode. The results obtained are preliminary discussed taking into account the electroprecipitation phenomenon assisted by hydrodynamic regime and the electrical contact between ZnO NRs and CNTs and electron transfer kinetic.

  10. Electrical properties of multiphase composites based on carbon nanotubes and an optimized clay content

    Science.gov (United States)

    Egiziano, Luigi; Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi

    2016-05-01

    The experimental results concerning the characterization of a multiphase nanocomposite systems based on epoxy matrix, loaded with different amount of multi-walled carbon nanotubes (MWCNTs) and an optimized Hydrotalcite (HT) clay content (i.e. 0.6 wt%), duly identified by an our previous theoretical study based on Design of Experiment (DoE), are presented. Dynamic-mechanical analysis (DMA) reveal that even the introduction of higher HT loading (up to 1%wt) don't affect significantly the mechanical properties of the nanocomposites while morphological investigations show an effective synergy between clay and carbon nanotubes that leads to peculiar micro/nanostructures that favor the creation of the electrical conductive network inside the insulating resin. An electrical characterization is carried out in terms of DC electrical conductivity, percolation threshold (EPT) and frequency response in the range 10Hz-1MHz. In particular, the measurements of the DC conductivity allow to obtain the typical "percolation" curve also found for classical CNT-polymer mixtures and a value of about 2 S/m for the electrical conductivity is achieved at the highest considered CNTs concentration (i.e. 1 wt%). The results suggest that multiphase nanocomposites obtained incorporating dispersive nanofillers, in addition to the conductive one, may be a valid alternative to the polymer blends, to improve the properties of the polymeric materials thus able to meet high demands, particularly concerning their mechanical and thermal stability and electrical features required in the aircraft engineering.

  11. Radial breathing mode of carbon nanotubes subjected to axial pressure

    OpenAIRE

    Lei, Xiao-Wen; Ni, Qing-Qing; Shi, Jin-Xing; Natsuki, Toshiaki

    2011-01-01

    In this paper, a theoretical analysis of the radial breathing mode (RBM) of carbon nanotubes (CNTs) subjected to axial pressure is presented based on an elastic continuum model. Single-walled carbon nanotubes (SWCNTs) are described as an individual elastic shell and double-walled carbon nanotubes (DWCNTs) are considered to be two shells coupled through the van der Waals force. The effects of axial pressure, wave numbers and nanotube diameter on the RBM frequency are investigated in detail. Th...

  12. Monitoring of Glucose in Beer Brewing by a Carbon Nanotubes Based Nylon Nanofibrous Biosensor

    Directory of Open Access Journals (Sweden)

    Marco Mason

    2016-01-01

    Full Text Available This work presents the design, preparation, and characterization of a novel glucose electrochemical biosensor based on the immobilization of glucose oxidase (GOX into a nylon nanofibrous membrane (NFM prepared by electrospinning and functionalized with multiwalled carbon nanotubes (CNT. A disc of such GOX/CNT/NFM membrane (40 μm in thickness was used for coating the surface of a glassy carbon electrode. The resulting biosensor was characterized by cyclic voltammetry and chronoamperometry, with ferrocene methanol as mediator. The binding of GOX around the CNT/NFM greatly enhances the electron transfer, which results in a biosensor with a current five times higher than without CNT. The potential usefulness of the proposed biosensor was demonstrated with the analysis of glucose in commercial beverages and along the monitoring of the brewing process for making beer, from the mashing to the fermentation steps.

  13. Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode

    Institute of Scientific and Technical Information of China (English)

    Hui Ping Bai; Xu Xiao Lu; Guang Ming Yang; Yun Hui Yang

    2008-01-01

    A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) firm. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9 × 10(-7) to 2.9 × 10(-3) mol/L with a correlation coefficient of 0.991, and response time <5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.

  14. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue

    Institute of Scientific and Technical Information of China (English)

    Shu Ping Zhang; Lian Gang Shan; Zhen Ran Tian; Yi Zheng; Li Yi Shi; Deng Song Zhang

    2008-01-01

    The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes(MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase(ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected byusing i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrodewith 0.01U activity value and the detection limit of carbaryl is 10-12 g L-1 so the enzyme biosensor showed good properties forpesticides residue detection.2008 Shu Ping Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  15. Nanofibre-assisted alignment of carbon nanotubes in macroscopic polymer matrix via a scaffold-based method

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available A facile way for alignment of carbon nanotubes in macroscopic polymer matrix was developed by combining electrospinning and in-situ polymerization. The approach is based on the formation of nanofibre scaffolds with wellaligned arrays, which is filled with carbon nanotubes (CNTs. CNTs will be well aligned in macroscopic polymer matrix when the aligned nanofibre scaffold containing CNTs has been incorporated into the poly(methyl methacrylate (PMMA matrix by in-situ polymerization. We demonstrate that this scaffold approach is broadly applicable and allows for the fabrication of nanocomposites with accurately aligned nanofillers. The results presented in this report show that the approach is ideal by using polyacrylonitrile (PAN nanofibres as a scaffold of multiwalled carbon nanotubes (MWNTs, and PMMA as the macroscopic polymer matrix. The tensile strength (7.2 wt% MWNTs/PAN nanofibres loadings reaches 48.61 MPa, 87% higher than that pure PMMA, and the tensile modulus is increased by 175%.

  16. Development of Prototype Laboratory Setup for Selective Detection of Ethylene Based on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    J. Kathirvelan

    2014-01-01

    Full Text Available We report here a prototype laboratory setup for detecting ethylene (C2H4 in ppm level employing a sensor made of multiwalled carbon nanotubes of 40 nm average tube diameter. The proposed reversible chemoresistive ethylene sensor is fabricated using Kapton as the substrate onto which carbon nanotubes are coated using thick film technology. IDT silver electrodes are printed using piezo head based ink-jet printing technology. The increases in electrical resistance of the sensor element are measured on exposure to ethylene for different ethylene concentrations using a potentiostat and data acquisition system. The increase in resistance of the calibrated sensor element on exposure to ethylene (analyte is about 18.4% at room temperature for 50 ppm ethylene concentration. This change is reversible. Our sensor element exhibits a better performance than those reported earlier (1.8% and it has got the rise and fall time of 10 s and 60 s, respectively. It could be used for testing the ripening of fruits.

  17. Direct laser interference patterning of multi-walled carbon nanotube-based transparent conductive coatings

    International Nuclear Information System (INIS)

    Topographical structures were created on the surface of multi-walled carbon nanotube-based coatings deposited on borosilicate glass using the direct laser interference patterning (DLIP) technique. Films made by multi-walled carbon nanotubes (MWNTs) dispersed in antimony-doped tin oxide (ATO) matrix and networks of MWNTs with both low and high adherence to the substrates were irradiated with one single laser pulse. Due to the high absorption coefficient of ATO, the film was completely removed at the interference maxima positions leading to periodic arrays of high quality on macroscopic areas. Additionally, increase of the laser fluence has produced wider ablated regions. Irradiation of high adherent networks of MWNTs produced a periodic porous structure, what has been attributed to the presence of adherence promoters in the film. On the other hand, MWNT networks with low adhesion to the substrate were strongly removed at the interference maxima positions. In this case, however, the fabricated periodic structures presented several defects that result from the poor adherence of the film to the substrate

  18. Schottky Diodes Based on Polyaniline/Multi-Walled Carbon Nanotube Composites

    Science.gov (United States)

    Hajibadali, A.; Nejad, M. Baghaei; Farzi, G.

    2015-08-01

    Polyaniline/multi-walled carbon nanotube composites (PANI/MWCNT), with various concentration of multi-walled carbon nanotube, were synthesized. Several Schottky diodes were fabricated, where PANI or PANI/MWCNT composites, aluminum, and gold were used as semiconductor, Schottky contact, and ohmic contact, respectively. Then current-voltage characteristics of the fabricated diodes were measured at room temperature and within the bias range of -5 to +5 V. The measurements were repeated three times for each sample to verify repeatability of experiment. The obtained results show that by increasing the MWCNT concentration, the current intensity increases. Furthermore, I-V characteristics of pure polyaniline Schottky diode follows the thermionic emission mechanism while the I-V characteristics of Schottky diodes based on PANI/MWCNT composites show two distinct power law regions. At lower voltages, the mechanism follows Ohm's Law, whereas at higher voltages, the mechanism is compatible with space charge limited conduction emission mechanism. The parameters of Schottky diodes were determined, and it was observed that critical voltage decreased when the concentration of MWCNT in the composite increased.

  19. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites

    Directory of Open Access Journals (Sweden)

    Hongbo Dai

    2015-07-01

    Full Text Available This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM. This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity.

  20. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    OpenAIRE

    R. Shrestha; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G H; Choi, T. Y.

    2013-01-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady he...

  1. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  2. Scaling Behavior of Carbon Nanotube-based Biosensors Integrated on CMOS Signal-processing Circuits

    Science.gov (United States)

    Lee, Byung Yang; Sung, Moon Gyu; Lee, Dong Joon; Lee, Minbaek; Lee, Joohyung; Cho, Eunju; Hong, Seunghun; Seo, Sung Min; Cheon, Jun-Ho; Lee, Hyunjoong; Kim, Suhwan; Park, Young June; Chung, In-Young

    2010-03-01

    We built uniform arrays of carbon nanotube (CNT)-based biosensors via linker-free directed assembly strategy, where surface molecular patterns were utilized to direct the assembly of CNTs onto specific regions of the devices. The sensor arrays were utilized to detect ammonia and Hg^+ ions with high sensitivity and selectivity, and the scaling behavior of sensor sensitivity was studied by parallel detection of multiple sensors. We found that the scaling behavior of the sensor sensitivity can be explained by the combination of two effects: adsorption of analyte molecules onto CNT surface and the transconductance change of the CNT junctions. Furthermore, 64 CNT-based sensors were integrated with CMOS circuits into a single-die system-on-a-chip for the detection of glutamate, a neurotransmitter, by combining several technological breakthroughs such as efficient signal processing, uniform CNT networks, and biocompatible functionalization of CNT-based sensors.

  3. CFD Analysis for Optimum Thermal Design of Carbon Nanotube Based Micro-Channel Heatsink

    Directory of Open Access Journals (Sweden)

    M. Mahbub

    2011-10-01

    Full Text Available Carbon nanotube (CNT is considered as an ideal material for thermal management in electronic packaging because of its extraordinary high thermal conductivity. Fabricated onto a silicon substrate to form micro-channels, the CNT based cooling fins show high heat dissipation efficiency. A series of 2D and 3D CFD simulations have been carried out for CNT based micro-channel cooling architectures based on one and two dimensional fin array in this paper using COMSOL 4.0a software. Micro-channels are generally regarded as an effective method for the heat transfer in electronic products. The influence of various fluids, micro-fin structures, fluid velocity and heating powers on cooling effects have been simulated and compared in this study. Steady-state thermal stress analyses for the forced convection heat transfer are also performed to determine maximum allowable stress and deflections for the different types of cooling assembly.

  4. Non-enzymatic analysis of glucose on printed films based on multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    We report on the fabrication of an enzyme-free electrochemical sensor for glucose based on a printed film consisting of multi-walled carbon nanotubes (MWCNTs). The MWCNT-based film can be produced by means of a flexographic printing process on a polycarbonate (PC) substrate. The electrochemical response of the MWCNT-based film (referred to as MWCNT-PC) towards the oxidation of glucose at pH 7 was studied by means of cyclic voltammetry and electrochemical impedance spectroscopy. The MWCNT-PC film exhibits substantial electrocatalytic activity towards the oxidation of glucose at an anodic potential of 0.30 V (vs. Ag/AgCl). The findings reveal that the MWCNT-PC film enables non-enzymatic sensing of glucose with a detection limit as low as 2.16 μM and a sensitivity of 1045 μA.mM-1.cm-2. (author)

  5. Carbon nanotube based X-ray sources: Applications in pre-clinical and medical imaging

    International Nuclear Information System (INIS)

    Field emission offers an alternate method of electron production for Bremsstrahlung based X-ray tubes. Carbon nanotubes (CNTs) serve as very effective field emitters, allowing them to serve as electron sources for X-ray sources, with specific advantages over traditional thermionic tubes. CNT derived X-ray sources can create X-ray pulses of any duration and frequency, gate the X-ray pulse to any source and allow the placement of many sources in close proximity. We have constructed a number of micro-CT systems based on CNT X-ray sources for applications in small animal imaging, specifically focused on the imaging of the heart and lungs. This paper offers a review of the pre-clinical applications of the CNT based micro-CT that we have developed. We also discuss some of the current and potential clinical applications of the CNT X-ray sources.

  6. Preparation of isolated carbon nanotubes

    International Nuclear Information System (INIS)

    Full text: Carbon nanotubes are of great interest for a large range of applications from physical chemistry, solid state physics to molecular quantum optics. We propose the preparation of molecular beams of isolated carbon nanotubes for future matter wave experiments, as well as for applications in the material sciences and spectroscopy. Carbon nanotubes may be particularly interesting for quantum experiments because of their low ionization threshold, high mechanical stability and high polarizability. This is expected to facilitate the cooling, coherent manipulation and efficient detection of such molecular beams. For this purpose we are investigating different methods of solvation, isolation and shortening of carbon nanotubes from commercial bundles. Length and diameter distributions are recorded by SPM whereas the unbundling of the tubes is determined by absorption spectroscopy. Established methods from physical chemistry, such as laser desorption are currently being modified and studied as potential tools for generating beams of nanotubes in the mass range of around 50.000-100.000 amu. (author)

  7. Chemical detection with nano/bio hybrid devices based on carbon nanotubes and graphene

    Science.gov (United States)

    Lerner, Mitchell Bryant

    Carbon nanotube field-effect transistors (NT-FETs) and graphene field effect transistors (GFETs) provide a unique transduction platform for chemical and biomolecular detection. The work presented in this thesis describes the fabrication, characterization, and investigation of operational mechanisms of carbon-based biosensors. In the first set of experiments, we used carbon nanotubes as fast, all-electronic readout elements in novel vapor sensors, suitable for applications in environmental monitoring and medicine. Molecules bound to the hybrid alter the electrical properties of the NT-FET via several mechanisms, allowing direct detection as a change in the transistor conduction properties. Vapor sensors suitable for more complex system architectures characteristic of mammalian olfaction were demonstrated using NT-FETs functionalized with mouse olfactory receptor (mOR) proteins or single stranded DNA (ssDNA). Substitution of graphene as the channel material enabled production of hundreds of electronically similar devices with high yield. Etching large scale chemical vapor deposition (CVD)-grown graphene into small channels is itself a challenging problem, and we have developed novel fabrication methods to this end without sacrificing the inherent electrical quality that makes graphene such an attractive material. Large arrays of such devices have potential utility for understanding the physics of ligand-receptor interactions and contributing to the development of a new generation of devices for electronic olfaction. Tailored and specific detection was accomplished by chemically functionalizing the NT-FET or GFET with biomolecules, such as proteins or small molecules, to create a hybrid nanostructures. Targets for detection were widely varied, indicating the utility of these techniques, such as 1) live Salmonella cells in nutrient broth, 2) a biomarker protein indicative of prostate cancer, 3) antigen protein from the bacterium that causes Lyme disease, and 4) glucose

  8. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  9. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    Science.gov (United States)

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  10. A glass-sealed field emission x-ray tube based on carbon nanotube emitter for medical imaging

    Science.gov (United States)

    Yeo, Seung Jun; Jeong, Jaeik; Ahn, Jeung Sun; Park, Hunkuk; Kwak, Junghwan; Noh, Eunkyong; Paik, Sanghyun; Kim, Seung Hoon; Ryu, Jehwang

    2016-04-01

    We report the design and fabrication of a carbon nanotube based a glass-sealed field emission x-ray tube without vacuum pump. The x-ray tube consists of four electrodes with anode, focuser, gate, and cathode electrode. The shape of cathode is rectangular for isotropic focal spot size at anode target. The obtained x-ray images show clearly micrometer scale.

  11. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    Science.gov (United States)

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  12. Floating electrode transistor based on purified semiconducting carbon nanotubes for high source–drain voltage operation

    International Nuclear Information System (INIS)

    We report floating-electrode-based thin-film transistors (F-TFTs) based on a purified semiconducting single-walled carbon nanotube (swCNT) network for a high source–drain voltage operation. At a high source–drain voltage, a conventional swCNT-TFT exhibited poor transistor performance with a small on–off ratio, which was attributed to the reduced Schottky barrier modulation at a large bias. In the F-TFT device, an swCNT network channel was separated into a number of channels connected by floating electrodes. The F-TFTs exhibited a much higher on–off ratio than a conventional swCNT-TFT with a single channel. This work should provide an important guideline in designing swCNT-TFTs for high voltage applications such as displays. (paper)

  13. Electrocatalytic activity of Pt grown by ALD on carbon nanotubes for Si-based DMFC applications

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Dalslet, Bjarke Thomas; Yang, R.B.;

    2012-01-01

    We present an anode design for silicon-based direct methanol fuel cell (DMFC) applications. Platinum was deposited conformally by atomic layer deposition (ALD) onto vertically aligned, nitrogendoped multi-walled carbon nanotubes (MWCNTs) grown on porous silicon. The deposition was carried out in a...... top-flow ALD reactor at 250°C, using MeCpPtMe3 and O2 as precursors. The anode was tested for the methanol oxidation reaction (MOR) in a three-electrode electrochemical set-up and it showed improved catalytic activity compared to a reference sample of Pt deposited on flat Si. It is demonstrated that...... ALD could be a MEMS compatible deposition technique for Si-based fuel cell applications. © The Electrochemical Society....

  14. Heteronuclear carbon nanotubes: applications to study carbon nanotube growth

    International Nuclear Information System (INIS)

    Full text: Synthesis of heteronuclear carbon nanotubes and their application for a variety of studies is presented. SWCNTs peapods encapsulating highly 13C enriched fullerenes and double wall carbon nanotubes (DWCNTs) based on the peapods were prepared. Raman studies indicate that the inner tubes are highly 13C enriched with no carbon exchange between the two walls during the synthesis. The material enables the straightforward identification of the inner and outer tube vibrational spectra. An inhomogeneous broadening, assigned to the random distribution of 12C and 13C nuclei is observed and is explained by ab initio vibrational analysis. The growth of inner tubes from organic solvents was proven by the use of 13C labeled organic materials such as toluene. The simultaneous encapsulation of fullerenes with the solvents was found crucial as these prevent the solvents from evaporating during the high temperature synthesis of the inner tubes. Nuclear magnetic resonance on the peapods and DWCNTs with highly 13C enriched fullerenes or inner walls proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases. The NMR experiment on the DWCNTs yield direct information on the electronic properties of small diameter SWCNTs. The significantly different chemical shift of the inner tubes is related to a curvature effect. Relaxation data on the inner tubes shows a deviation from a Fermi-liquid behavior. (author)

  15. Material and device investigations on a carbon nanotube-based torsional nanoelectromechanical system

    Science.gov (United States)

    Hall, Adam Roger

    The experiments in this thesis present a foundational study of a nanoelectromechanical system that demonstrates high potential for use in a wide range of applications. This system incorporates an individual carbon nanotube as a torsional spring for a lithographically defined, nanometer-scale metal mass suspended above a substrate. Fabrication and operation of such a device is discussed. Investigations are then performed to elucidate a variety of material and device characteristics. First, the shear (twisting) modulus of an individual singlewall carbon nanotube is measured. This is done through a combination of direct electrostatic actuation and computer modeling. Next, the theoretical dependence of singlewall carbon nanotube transport properties on torsional strain is confirmed experimentally. Finally, the device is used as a self-sensing resonant oscillator. The characteristics of such a device and the implications of all results are discussed, as are future directions.

  16. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    Science.gov (United States)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  17. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    Science.gov (United States)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-05-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  18. Carbon Nanotube-Based Electrochemical Sensor for the Determination of Anthraquinone Hair Dyes in Wastewaters

    Directory of Open Access Journals (Sweden)

    Ricardo de Oliveira

    2015-03-01

    Full Text Available The present work describes the development of a voltammetric sensor for the selective determination of Acid Green 25 (AG25 hair dye, widely used in commercial temporary hair dyes. The method is based on a glassy carbon electrode modified with multiwalled carbon nanotubes activated in the presence of sulfuric acid, where the anthraquinone group present as a chromophore in the dye molecule is reduced at −0.44 V vs. Ag/AgCl in a reversible process involving two electrons in Britton-Robinson (B-R buffer solution at pH 4.0. Analytical curves were obtained using square wave voltammetry in the range from 1.0 × 10−7 to 7.0 × 10−6 mol·L−1, achieving a detection limit of 2.7 × 10−9 mol·L−1. The voltammograms recorded for the Acid Black 1 (AB1 dye showed that the azo groups of the dye were reduced on the carbon nanotube-modified electrode (CNTME, presenting a pair of redox peaks at −0.27 V and −0.24 V in the reverse scan. Under these experimental conditions, both dyes could be detected in the water sample, since the AG25 dye is reduced at −0.47 V. The presence of other hair dyes bearing other chromophore groups, such as Acid Black 1, Acid Red 33 and basic blue 99, did not interfere with the method, which showed an average recovery of 96.7 ± 3.5% (n = 5 for AG25 dye determination in the presence of all of these dyes. The method was successfully applied to tap water and wastewater samples collected from a water treatment plant.

  19. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles

    Science.gov (United States)

    Kumar, Nanjundan Ashok; Bund, Andreas; Cho, Byung Gwon; Lim, Kwon Taek; Jeong, Yeon Tae

    2009-06-01

    A well-reproducible and completely green route towards highly water dispersible multi-walled carbon nanotubes (MWNT) is achieved by a non-invasive, polymer wrapping technique, where the polymer is adsorbed on the MWNT's surface. Simply mixing an amino-acid-based polymer derivative, namely poly methacryloyl β-alanine (PMBA) with purified MWNTs in distilled water resulted in the formation of PMBA-MWNT nanocomposite hybrids. Gold nanoparticles (AuNPs) were further anchored on the polymer-wrapped MWNTs, which were previously sonicated in distilled water, via the hydrogen bonding interaction between the carboxylic acid functional groups present in the polymer-modified MWNTs and the citrate-capped AuNPs. The surface morphologies and chemistries of the hybrids decorated with nanoparticles were characterized by transmission electron microscopy (TEM) and UV-visible absorption spectroscopy. Additionally, the composites were also prepared by the in situ free radical polymerization of the monomer, methacryloyl β-alanine (MBA), with MWNTs. Thus functionalized MWNTs were studied by thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM) and TEM. Both methods were effective in the nanotube functionalization and ensured good dispersion and high stability in water over three months. Due to the presence of the high densities of carboxylic acid functionalities on the surface of CNTs, various colloidal nanocrystals can be attached to MWNTs.

  20. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles

    International Nuclear Information System (INIS)

    A well-reproducible and completely green route towards highly water dispersible multi-walled carbon nanotubes (MWNT) is achieved by a non-invasive, polymer wrapping technique, where the polymer is adsorbed on the MWNT's surface. Simply mixing an amino-acid-based polymer derivative, namely poly methacryloyl β-alanine (PMBA) with purified MWNTs in distilled water resulted in the formation of PMBA-MWNT nanocomposite hybrids. Gold nanoparticles (AuNPs) were further anchored on the polymer-wrapped MWNTs, which were previously sonicated in distilled water, via the hydrogen bonding interaction between the carboxylic acid functional groups present in the polymer-modified MWNTs and the citrate-capped AuNPs. The surface morphologies and chemistries of the hybrids decorated with nanoparticles were characterized by transmission electron microscopy (TEM) and UV-visible absorption spectroscopy. Additionally, the composites were also prepared by the in situ free radical polymerization of the monomer, methacryloyl β-alanine (MBA), with MWNTs. Thus functionalized MWNTs were studied by thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM) and TEM. Both methods were effective in the nanotube functionalization and ensured good dispersion and high stability in water over three months. Due to the presence of the high densities of carboxylic acid functionalities on the surface of CNTs, various colloidal nanocrystals can be attached to MWNTs.

  1. Continuous production of flexible carbon nanotube-based transparent conductive films

    Science.gov (United States)

    Fraser, I. Stuart; Motta, Marcelo S.; Schmidt, Ron K.; Windle, Alan H.

    2010-08-01

    This work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square-1 for a film with 80% transparency, which is promising at this early stage of process development.

  2. Continuous production of flexible carbon nanotube-based transparent conductive films

    International Nuclear Information System (INIS)

    This work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square-1 for a film with 80% transparency, which is promising at this early stage of process development.

  3. Continuous production of flexible carbon nanotube-based transparent conductive films

    Directory of Open Access Journals (Sweden)

    I Stuart Fraser, Marcelo S Motta, Ron K Schmidt and Alan H Windle

    2010-01-01

    Full Text Available This work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square-1 for a film with 80% transparency, which is promising at this early stage of process development.

  4. Development of inorganic and organic hybrid nanocoating based on carbon nanotubes for corrosion resistance.

    Science.gov (United States)

    Kang, T H; Bagkar, Nitin C; Jung, Y S; Chun, H H; Shin, S C; Cho, H; Kim, J K; Kim, T G

    2014-10-01

    In this study, we report the synthesis and characterization of novel hybrid nanocoating based on carbon nanotubes (CNTs) on anodized aluminum surfaces (AAO). The hybrid nanocoating was deposited by number of methods which include spray coating, spin coating and dip coating. The bonding of nanocoating with metal surface is an important parameter for successful modification of the metal surfaces. The improved adhesion of nanocoating on metal surfaces could be attributed to chemical bonding of sol-gel nanocoating with anodized surfaces. The nanocoated anodized aluminum surfaces showed superior adhesion and excellent anticorrosive properties. The nanocoated panels showed enhanced galvanic protection comparable to 80% of titanium metal as determined by galvanic corrosion measurements. It also showed higher thermal conductivities than stainless steel and bare anodized surfaces. PMID:25942874

  5. Amperometric Low-Potential Detection of Malic Acid Using Single-Wall Carbon Nanotubes Based Electrodes

    Directory of Open Access Journals (Sweden)

    Camelia Bala

    2008-03-01

    Full Text Available The electrocatalytical property of single-wall carbon nanotube (SWNTmodified electrode toward NADH detection was explored by cyclic voltammetry andamperometry techniques. The experimental results show that SWNT decrease theovervoltage required for oxidation of NADH (to 300 mV vs. Ag/AgCl and this propertymake them suitable for dehydrogenases based biosensors. The behavior of the SWNTmodified biosensor for L-malic acid was studied as an example for dehydrogenasesbiosensor. The amperometric measurements indicate that malate dehydrogenase (MDHcan be strongly adsorbed on the surface of the SWNT-modified electrode to form anapproximate monolayer film. Enzyme immobilization in Nafion membrane can increasethe biosensor stability. A linear calibration curve was obtained for L-malic acidconcentrations between 0.2 and 1mM.

  6. Highly conductive, transparent flexible films based on open rings of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Open rings of multi-walled carbon nanotubes were stacked to form porous networks on a poly(ethylene terephthalate) substrate to form a flexible conducting film (MWCNT-PET) with good electrical conductivity and transparency by a combination of ultrasonic atomization and spin-coating technique. To enhance the electric flexibility, we spin-coated a cast film of poly(vinyl alcohol) onto the MWCNT-PET substrate, which then underwent a thermo-compression process. Field-emission scanning electron microscopy of the cross-sectional morphology illustrates that the film has a robust network with a thickness of ∼ 175 nm, and it remarkably exhibits a sheet resistance of approximately 370 Ω/sq with ∼ 77% transmittance at 550 nm even after 500 bending cycles. This electrical conductivity is much superior to that of other MWCNT-based transparent flexible films.

  7. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth, E-mail: ananth.dodabalapur@engr.utexas.edu [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Geier, Michael L.; Prabhumirashi, Pradyumna L. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Department of Medicine, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-02-10

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm{sup 2} V{sup −1} s{sup −1} at low operating voltages (<5 V) in air. We further show that the SWCNT-ZTO hybrid ambipolar FETs can be integrated into functional inverter circuits that display high peak gain (>10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures.

  8. Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor.

    Science.gov (United States)

    Fu, Wangyang; Xu, Zhi; Bai, Xuedong; Gu, Changzhi; Wang, Enge

    2009-03-01

    We demonstrate the intrinsic memory function of ferroelectric field-effect transistors (FeFETs) based on an integration of individual single-walled carbon nanotubes (SWCNTs) and epitaxial ferroelectric films. In contrast to the previously reported "charge-storage" CNT-FET memories, whose operations are haunted by a lack of control over the "charge traps", the present CNT-FeFETs exhibit a well-defined memory hysteresis loop induced by the reversible remnant polarization of the ferroelectric films. Large memory windows approximately 4 V, data retention time up to 1 week, and ultralow power consumption (energy per bit) of femto-joule, are highlighted in this report. Further simulations and experimental results show that the memory device is valid under operation voltage less than 1 V due to an electric-field enhancement effect induced by the ultrathin SWCNTs. PMID:19206218

  9. Building a backlight unit with lateral gate structure based on carbon nanotube field emitters

    International Nuclear Information System (INIS)

    This paper describes the fabrication of a backlight unit for liquid crystal display based on printed carbon nanotube field emitters with lateral gate and additional mesh structures. The device architecture has been optimized through field emission characterization and supporting numerical simulation. The emission current depends strongly on the cathode-gate gap, mesh position, and mesh bias. Direct observation of luminous images on a phosphor screen reveals that the electron beams undergo a noticeable shrinkage along the lateral direction with increasing anode bias, which is in good agreement with the simulation results. We suggest and demonstrate a modified structure equipped with double emitter edges leading to ∼20% improved phosphor efficiency (34.4 lm W-1) and luminance (9600 cd m-2), compared to those from a single edge structure.

  10. Carbon-Nanotube-Based Normally-on-Driving Under-Gate field Emission Display Panel

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xue-fei; YIN Han-chun; WANG Bao-ping

    2006-01-01

    A carbon-nanotube-based normally-on-driving under-gate field emission display (FED) panel and its operation principle are presented.In this panel,field emission electrons are extracted directly from the cathode by the high anode voltage.The image is realized by modulating the voltage of under-gate,whose value is less than the cathode voltage,to stop the cathode producing field emission electrons.The electric field inside the emission region is calculated by the finite element method.The emission property of the cathode is also studied by numerical calculation method.The results indicate that a uniform and large emission area can be obtained in this new under-gate FED panel.This study provides powerful theoretic support for the feasibility of this new kind of under-gate FED panel.

  11. Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-Based Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Hong-Baek Cho

    2013-01-01

    Full Text Available Linear assemblies of carbon nanotubes (LACNTs were fabricated and controlled in polysiloxane-based nanocomposite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely packed LACNTs that fixed the composite film surfaces were fabricated with various structures and thicknesses that depended on the DC and switching DC conditions. Polymer nanocomposites with different LACNT densities exhibited enhanced thermal and electrical conductivities and high optical transmittances. They are considered promising structural materials for electronic sectors in automotive and aerospace applications.

  12. Morphology and Cure Behavior of Multi-walled Carbon Nanotubes-based Thermally Conductive Adhesive

    Institute of Scientific and Technical Information of China (English)

    WANG Junxia; YAN Shilin; HE Yunban; YAN Fei; XIE Beiping

    2014-01-01

    We evaluated the cure behavior of multi-walled carbon nanotubes (MWCNTs) based thermally conductive adhesive by comprehensively thermal analysis, which presented extremely complicated variability of conversion ratioαas a function of temperature with synergistic action of positive effect and negative volume-blocking effect of MWCNTs and cross-linked network of cured polymer molecules. Due to the decomposition of MWCNTs and degradation of polymer, the mass drop is dramatically obvious over the temperature range of 330-370℃. Binary resins filled with acid-treated MWCNTs present similar reaction interval as neat epoxy and matrix resins, which is distinct from the material filled with raw MWCNTs. The alteration of the crystalline temperature and cure temperature of resins is attributed to heterogeneous nucleation of MWCNTs in matrix resins. The-COOH group of acid-treated MWCNTs reacts with epoxy groups and thus generates cross-linking, accelerates the reaction rate and reduces the cure temperature.

  13. Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes

    International Nuclear Information System (INIS)

    Polyaniline-carboxylic multiwalled carbon nanotubes composite film (PANi-MWCNT) has been polymerized on the surface of interdigitated platinum electrode (fabricated by MEMS technology) which was compatibly connected to Autolab interface via universal serial bus (USB). An amperometric biosensor based on covalent immobilization of cholesterol oxidase (ChOx) on PANi–MWCNT film with potassium ferricyanide (FeCN) as the redox mediator was developed. The mediator helps to shuttle the electrons between the immobilized ChOx and the PANi-MWCNT electrode, therefore operating at a low potential of −0.3 V compared to the saturated calomel electrode (SCE). This potential precludes the interfering compounds from oxidization. The bio-electrode exhibits good linearity from 0.02 to 1.2 mM cholesterol concentration with a correlation coefficient of 0.9985

  14. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    Science.gov (United States)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-04-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli (E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10-7 to 10-12 M with a detection limit of 1×10-12 M.

  15. Dye-Sensitized Solar Cell Based on Polyaniline/Multiwalled Carbon Nanotubes Counter Electrode

    Directory of Open Access Journals (Sweden)

    Shaker Ebrahim

    2013-01-01

    Full Text Available This work presented the successful fabrication of dye-sensitized solar cell using polyaniline base (EB, multiwalled carbon nanotubes (MWCNTs, organic dye (rhodamine B or riboflavin, zinc oxide (ZnO, and indium tin oxide (ITO. The electrical properties of the resultant devices were investigated by measuring the current density voltage (-, capacitance voltage (-, and impedance measurements under both dark and illuminated conditions. The photovoltaic cell characteristics, that is, open circuit voltage (, short circuit current density (, and energy conversion efficiency (, were evaluated under illumination and were found to be 0.48 mA/cm2, 400 mV, and 0.224%, respectively, for ITO/EB-MWCNTs/ZnO-rhodamine B/ITO heterostructure. Using impedance spectra, it was found that the series resistances of this type of solar cell are 62 and 60 Ω under darkness and illumination, respectively.

  16. Temperature-Responsive Tensile Actuator Based on Multi-walled Carbon Nanotube Yarn

    Institute of Scientific and Technical Information of China (English)

    Hyunsoo Kim; Jae Ah Lee; Hyeon Jun Sim; Ma rcio D Lima; Ray H Baughman; Seon Jeong Kim

    2016-01-01

    Many temperature indicators or sensors show color changes for materials used in food and medical fields. However, they are not helpful for a color-blind person or children who lack judgment. In this paper, we introduce simply fabricated and more useful low-temperature indicator (*30 ?C) for devices that actuates using paraffin-infiltrated multi-walled carbon nanotube (MWCNT) coiled yarn. The density difference of MWCNT yarn provides large strain (*330%) when heat causes the melted polymer to move. Furthermore, the MWCNT yarn decreases the melting point of paraffin. These properties allow control of the actuating temperature. In addition, mechanical strength was enhanced by MWCNT than previously reported temperature-responsive actuators based on shape memory polymers. This simply fabricated temperature indicator can be applied in latching devices for medical and biological fields.

  17. One step shift towards flexible supercapacitors based on carbon nanotubes - A review

    International Nuclear Information System (INIS)

    Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors

  18. One step shift towards flexible supercapacitors based on carbon nanotubes - A review

    Energy Technology Data Exchange (ETDEWEB)

    Yar, A., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Dennis, J. O., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Mumtaz, A., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Irshad, M. I., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia); Ahmad, F., E-mail: ahmad-1234farooq@yahoo.com [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24

    Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.

  19. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc [Vietnam Academy of Science and Technology, Ho Chi Minh CIty (Viet Nam); Huong, Nguyen Thi [Hanoi University of Science, Hanoi (Viet Nam); Vietnam National University, Hanoi (Viet Nam)

    2014-08-15

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm{sup -1}K{sup -1} compared with the thermal conductivity 419 Wm{sup -1}K{sup -1} of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  20. Torsional Electromechanics of Carbon Nanotubes

    Science.gov (United States)

    Joselevich, Ernesto; Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.

    2007-03-01

    Carbon nanotubes are known to be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multi-walled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different subbands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Our experiments indicate that carbon nanotubes could be used as self-sensing torsional springs for nanoelectromechanical systems (NEMS). [1] E. Joselevich, Twisting nanotubes: From torsion to chirality, ChemPhysChem 2006, 7, 1405. [2] T. Cohen-Karni, L. Segev, O. Srur-Lavi, S. R. Cohen, E. Joselevich, Torsional electromechanical quantum oscillations in carbon nanotubes, Nature Nanotechnology, 2006, 1, 36.

  1. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nanometre-sized quasi-unidimensional tubular structures (carbon nanotubes), as well as broad prospects for the use of nanomaterials based on them initiated numerous studies in the search for, and design of, nanotubular structures based in other compounds. Some properties and the main methods for the synthesis of non-carbon nanotubes are considered. Studies on the simulation of the electronic structures of these unique objects are analysed. Results of experimental and theoretical studies along these lines are discussed. The bibliography includes 328 references.

  2. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nano-sized quasi-unidimensional tubular structures (carbon nanotubes) and the broad prospects for the use of nanomaterials based on them have initiated numerous studies on the search and design of nanotubular structures of other substances. Some properties and the main methods of synthesis of non-carbon nanotubes based in particular, on boron compounds molybdenum, tungsten, niobium chalcogenides and vanadium oxides are considered. The works on the simulation of the electronic structures of these unique objects are analysed. The results of experimental and theoretical studies along these lines are discussed

  3. Dual mechanisms of DNA sequencing based on tunnelling between nitrogen-doped carbon nanotube electrodes

    Science.gov (United States)

    Kim, Han; Kim, Yong-Hoon

    2013-03-01

    The DNA sequencing approach based on the combination of nanopores and electron tunnelling has seen considerable advances in recent years, and particularly carbon nanomaterials have emerged as promising candidates to replace metal electrodes. Carrying out extensive first-principles calculations, we here show that two distinct DNA sequencing mechanisms can be achieved with different configurations of a single-type nitrogen-doped capped carbon nanotube (CNT) that has significantly enhanced transmission and chemical sensitivity over its pristine counterpart. With a small CNT-CNT gap size that induces face-on nucleobase configurations, we obtain a typical conductance ordering where the largest signal is induced from guanine due to its highest occupied molecular orbital energetic position higher than those of other bases. On the other hand, for a large CNT-CNT gap size that accommodates edge-on nucleobase configurations, we extract a completely different conductance ordering in which thymine results in the largest signal. We find that the latter novel nucleobase sensing mechanism originates from the nature of chemical connectivity between nitrogen-doped CNT caps and nucleobase functional groups that include the thymine methyl group. This work thus demonstrates the feasibility of a tunnelling-based dual-mode approach toward whole genome sequencing applications, detection of DNA base modifications, and single-molecule sensing in general.

  4. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  5. Carbon nanotube optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  6. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  7. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  8. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  9. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection

    International Nuclear Information System (INIS)

    Highlights: ► We propose an impedimetric microbial biosensor for trichloroethylene detection. ► A new transducer modified with carbon nanotubes and Pseudomonas putida is evaluated. ► Functionalization steps are controlled by impedance spectroscopy and AFM. ► The biosensor offers good sensitivity, selectivity, linear range and stability. ► The biosensor is successfully applied to spiked natural water samples. - Abstract: Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently linked to anti-Pseudomonas antibodies. The different steps of microelectrodes functionalization were characterized by electrochemical impedance and atomic force spectroscopies, and analytical performances of the developed microbial biosensor were determined. The impedimetric biosensor response was linear with TCE concentration up to 150 μg L−1 and a low limit of detection (20 μg L−1) was achieved. No significant loss of signal was observed after 4 weeks of storage at 4 °C in phosphate buffer saline pH 7 (three to four measurements a week). After 5 weeks, 90% of the initial value still remained. cis-1,2-Dichloroethylene and vinylchloride, the main TCE degradation products, did not significantly interfere with TCE. The microbial sensor was finally applied to the determination of TCE in natural water samples spiked at the 30, 50 and 75 μg L−1 levels. Recoveries were very good, ranging from 100 to 103%.

  10. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  11. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    OpenAIRE

    Ram Pavani; Kodithyala Vinay

    2011-01-01

    Carbon nanotubes (CNTs) are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Funct...

  12. Multiscale simulation of carbon nanotube transistors

    OpenAIRE

    Maneux, Cristell; Roche, Stephan

    2013-01-01

    In recent years, the understanding and accurate simulation of carbon nanotube-based transistors has become very challenging. Conventional simulation tools of microelectronics are necessary to predict the performance and use of nanotube transistors and circuits, but the models need to be refined to properly describe the full complexity of such novel type of devices at the nanoscale. Indeed, many issues such as contact resistance, low dimensional electrostatics and screening effects, demand for...

  13. Ag-catalysed cutting of multi-walled carbon nanotubes

    Science.gov (United States)

    La Torre, A.; Rance, G. A.; Miners, S. A.; Herreros Lucas, C.; Smith, E. F.; Fay, M. W.; Zoberbier, T.; Giménez-López, M. C.; Kaiser, U.; Brown, P. D.; Khlobystov, A. N.

    2016-04-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon-carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes.

  14. Illuminating the future of silicon photonics: optical coupling of carbon nanotubes to microrings

    International Nuclear Information System (INIS)

    Advances in carbon nanotube material quality and processing techniques have led to an increased interest in nanotube photonics. In particular, emission in the telecommunication wavelengths makes nanotubes compatible with silicon photonics. Noury et al (2014 Nanotechnology 25 215201) have reported on carbon nanotube photoluminescence coupled to silicon microring resonators, underscoring the advantage of combining carbon nanotube emitters with silicon photonics. Their results open up the possibility of using nanotubes in other waveguide-based devices, taking advantage of well-established technologies. (viewpoint)

  15. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    International Nuclear Information System (INIS)

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed

  16. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  17. Connecting carbon nanotubes using Sn.

    Science.gov (United States)

    Mittal, Jagjiwan; Lin, Kwang Lung

    2013-08-01

    Process of Sn coating on mutiwalled carbon nanotubes (MWCNT) and formation of interconnections among nanotubes are studied using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX). Surface oxidation of nanotubes during heating with HNO3 prior to the SnCl2 treatment and the bonding between functional groups and Sn are found to be responsible for the coating and its stability. Open nanotubes are filled as well as coated during tin chloride treatment. Coating and filling are converted into the coatings on the inner as well as outer walls of the nanotubes during reduction with H2/N2. EDX studies show the formation of intermetallic compounds e.g., Cu6Sn5 and Cu3Sn at the joints between nanotubes. Formation of intermetallic compounds is supposed to be responsible for providing the required strength for bending and twisting of nanotubes joining of nanotubes. Paper presents a detailed mechanism of coating and filling processes, and interconnections among nanotubes. PMID:23882800

  18. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes

    International Nuclear Information System (INIS)

    A novel and sensitive electrochemical DNA biosensor based on nanoparticles ZrO2 and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is described. The MWNTs/nano ZrO2/chitosan-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides were immobilized to the GCE. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using electroactive daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics increased DNA attachment quantity and complementary DNA detection sensitivity. The response signal increases linearly with the increase of the logarithm of the target DNA concentration in the range of 1.49 x 10-10 to 9.32 x 10-8 mol L-1 with the detection limit of 7.5 x 10-11 mol L-1 (S/N = 3). The linear regression equation is I = 32.62 + 3.037 log C DNA (mol L-1) with a correlation coefficient value of 0.9842. This is the first application of carbon nanotubes combined with nano ZrO2 to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization

  19. Fabrication of magnesium based composites reinforced with carbon nanotubes having superior mechanical properties

    International Nuclear Information System (INIS)

    Research highlights: → Using the IPA based solution, the oxide-free pure Mg/CNTs composite powders could be prepared. → The mechanical strength of the pure Mg composite reinforced with CNTs was not improved though the elongation was enhanced due to the elimination of MgO and less residual strain in the composite. → The mechanical strength of the AZ61Mg alloy composite reinforced with CNTs was improved with maintaining adequate ductility due to the interfacial strengthening of Al2MgC2 ternary carbide. → The CNT addition was not influenced on the microstructure and grain orientations of the AZ61 Mg alloy matrix. - Abstract: Magnesium (Mg) composite reinforced with carbon nanotubes (CNTs) having superior mechanical properties was fabricated using both pure Mg and AZ61 Mg alloy matrix in this study. The composites were produced via powder metallurgy route containing wet process using isopropyl alcohol (IPA) based zwitterionic surfactant solution with unbundled CNTs. The produced composites were evaluated with tensile test and Vickers hardness test and analyzed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and electron back scattered diffraction (EBSD). As a result, only with AZ61 Mg alloy matrix, tensile strength of the composite was improved. In situ formed Al2MgC2 compounds at the interface between Mg matrix and CNTs effectively reinforced the interfacial bonding and enabled tensile loading transfer from the Mg matrix to nanotubes. Furthermore, it was clarified that the microstructures and grain orientations of the composite matrix were not significantly influenced by CNT addition.

  20. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria

    DEFF Research Database (Denmark)

    Yoo, S. M.; Baek, Y. K.; Shin, S.;

    2016-01-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize....... This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors....

  1. Synthesis and Physicochemical Behaviour of Polyurethane-Multiwalled Carbon Nanotubes Nanocomposites Based on Renewable Castor Oil Polyols

    OpenAIRE

    2014-01-01

    Polyurethanes (PUs) are high performance materials, with vast industrial and engineering applications. In this research, effects of Multiwalled Carbon Nanotubes (MWCNTs) on physicochemical properties of Castor Oil based Polyurethanes (COPUs) were studied. MWCNTs were added in different weight percentages (0% to 1% wt) in a castor oil based polyurethane (COPUs-MWCNTs) nanocomposites. The composition, structure, and morphology of polyurethanes were characterized by Fourier transform infrared sp...

  2. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    International Nuclear Information System (INIS)

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  3. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  4. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  5. Carbon Nanotube Composites for Electronic Packaging Applications: A Review

    OpenAIRE

    Lavanya Aryasomayajula; Klaus-Juergen Wolter

    2013-01-01

    Composite engineering comprises of metal matrix composites. They have high strength-weight ratio, better stiffness, economical production, and ease of availability of raw materials. The discovery of carbon nanotubes has opened new possibilities to face challenges better. Carbon Nanotubes are known for their high mechanical strength, excellent thermal and electrical properties. Recent research has made progress in fabricating carbon nanotube metal matrix and polymer-based composites. The metho...

  6. Synthesis of Carbon Nanotubes Using Sol Gel Route

    Science.gov (United States)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  7. A six degree of freedom nanomanipulator design based on carbon nanotube bundles

    International Nuclear Information System (INIS)

    Scanning probe imaging and manipulation of matter is of crucial importance for nanoscale science and technology. However, its resolution and ability to manipulate matter at the atomic scale is limited by rather poor control over the fine structure of the probe. In the present paper, a strategy is proposed to construct a molecular nanomanipulator from ultrathin single-walled carbon nanotubes. Covalent modification of a nanotube cap at predetermined atomic sites makes the nanotube act as a support for a functional 'tooltip' molecule. Then, a small bundle of nanotubes (three or four) with aligned ends can act as an extremely high aspect ratio parallel nanomanipulator for a suspended molecule, where protraction or retraction of individual nanotubes results in controlled tilting of the tooltip in two dimensions. Together with the usual scanning probe microscopy three degrees of freedom and augmented with rotation of the system as a whole, the design offers six degrees of freedom for imaging and manipulation of matter with the precision and freedom so much needed for advanced nanotechnology. A similar design might be possible to implement with other high aspect ratio nanostructures, such as oxide nanowires.

  8. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O. [LLNL; (Sandia)

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  9. Temperature Dependence of Sensors Based on Silver-Decorated Nitrogen-Doped Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Eduardo Gracia-Espino

    2016-01-01

    Full Text Available Vapor sensors are easily fabricated onto alumina substrates using foils of silver-decorated nitrogen-doped multiwalled carbon nanotubes (CNX-MWNTs-Ag as active sensing material. The vapor sensors are tested using carbon disulfide, acetone, ethanol, and chloroform vapors. The CNX-MWNTs are produced by chemical vapor deposition process and then decorated with 14 nm Ag nanoparticles (Ag-NPs. The samples are characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Our results demonstrate that Ag-decorated CNX-MWNTs exhibit a better response and sensitivity when compared with pristine CNX-MWNTs based sensors, making them promising candidates for air-pollutants environmental monitoring. The temperature effect on the sensor performance is also studied; we found that the detection mechanism could be tuned from physisorption, at room temperature, to chemisorption at higher working temperature. Finally, first-principles density functional calculations are carried out to understand the interactions between the systems involved in the sensors, finding good agreement between experimental results and the theoretical approach.

  10. Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes.

    Science.gov (United States)

    Ertan, Bengü; Eren, Tanju; Ermiş, İsmail; Saral, Hasan; Atar, Necip; Yola, Mehmet Lütfi

    2016-05-15

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized multi-walled carbon nanotubes (MWCNs) sheets was prepared for the determination of simazine (SIM). The developed surfaces were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. SIM imprinted GCE was prepared via electropolymerization process of 100mM pyrrole as monomer in the presence of 0.1M acetate buffer (pH 4.0) containing 25mM SIM. The linearity range and the detection limit of the developed method were calculated as 1.0×10(-10)-5.0×10(-9)M and 2.0×10(-11)M, respectively. In addition, the voltammetric sensor was applied to wastewater samples. The stability and reproducibility of the voltammetric sensor were also reported. PMID:26928060

  11. Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Marcela Elisabeta Barbinta-Patrascu

    2014-12-01

    Full Text Available In the last decade, building biohybrid materials has gained considerable interest in the field of nanotechnology. This paper describes an original design for bionanoarchitectures with interesting properties and potential bioapplications. Multilamellar lipid vesicles (obtained by hydration of a dipalmitoyl phosphatidylcholine thin film with and without cholesterol were labelled with a natural photopigment (chlorophyll a, which functioned as a sensor to detect modifications in the artificial lipid bilayers. These biomimetic membranes were used to build non-covalent structures with single-walled carbon nanotubes. Different biophysical methods were employed to characterize these biohybrids such as: UV–vis absorption and emission spectroscopy, zeta potential measurements, AFM and chemiluminescence techniques. The designed, carbon-based biohybrids exhibited good physical stability, good antioxidant and antimicrobial properties, and could be used as biocoating materials. As compared to the cholesterol-free samples, the cholesterol-containing hybrid structures demonstrated better stability (i.e., their zeta potential reached the value of −36.4 mV, more pronounced oxygen radical scavenging ability (affording an antioxidant activity of 73.25% and enhanced biocidal ability, offering inhibition zones of 12.4, 11.3 and 10.2 mm in diameter, against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis, respectively.

  12. A comparison of LLDPE-based nanocomposites containing multi-walled carbon nanotubes and graphene

    Science.gov (United States)

    Vasileiou, Alexandros; Docoslis, Aristides; Kontopoulou, Marianna

    2015-05-01

    Composites of linear-low density polyethylene (LLDPE) with multi-walled carbon nanotubes (MWCNT) and thermally reduced graphene (TRGO) were produced by melt compounding. The composites were compatibilized by grafting aromatic pyridine groups onto the LLDPE backbone. The aromatic moieties established non-covalent π-π interactions with the carbon nanostructures, thus allowing for efficient dispersion, without compromizing their electrical properties. By using identical matrices, it was possible to investigate the effects of filler geometry on the electrical, mechanical and rheological properties of the composites. The 1-D nature and smaller surface area of the MWCNT facilitated their dispersion within the polymer matrix, whereas the graphene agglomerates appeared to breakup through an erosion mechanism. The resulting mixture of aggregates and individual graphene platelets favored lower electrical and rheological percolation thresholds. However the maximum electrical conductivity achieved in the TRGO/LLDPE was lower by about an order of magnitude compared to the MWCNT/LLDPE composites, probably due to residual oxygen in the graphene's structure. TRGO based composites presented higher moduli at the same filler loadings, while elongations at break were comparable. All composites exhibited time-dependent rheological properties, indicative of their tendency to aggregate. A more pronounced increase in viscoelastic properties was noted in the composites containing TRGO, presumably due to the higher surface area of the graphene platelets, and the presence of larger aggregates.

  13. A novel impedimetric aptasensor, based on functionalized carbon nanotubes and prussian blue as labels.

    Science.gov (United States)

    Azadbakht, Azadeh; Roushani, Mahmoud; Abbasi, Amir Reza; Derikvand, Zohreh

    2016-11-01

    A simple and feasible electrochemical sensing protocol was developed for the detection of bisphenol A (BPA) by employing the gold nanoparticles (AuNPs), prussian blue (PB) and functionalized carbon nanotubes (AuNPs/PB/CNTs-COOH). An aminated complementary DNA as a capture probe and specific aptamer against BPA as a detection probe was immobilized on the surface of a modified glassy carbon (GC) electrode via the formation of covalent amide bond and hybridization, respectively. The proposed nanoaptasensor combined the advantages of the in situ formation of PB as a label, the deposition of neatly arranged AuNPs, and the covalent attachment of the capture probe to the surface of the modified electrode. Upon addition of target BPA, the analyte reacted with the aptamer and caused the steric/conformational restrictions on the sensing interface. The formation of BPA-aptamer complex at the electrode surface retarded the interfacial electron transfer reaction of the PB as a probe. Sensitive quantitative detection of BPA was carried out based on the variation of electron transfer resistance which relevant to the formation of BPA- aptamer complex at the modified electrode surface. Under the optimized conditions, the proposed aptasensor exhibited a high sensitivity, wide linearity to BPA and low detection limit. This aptasensor also displayed a satisfying electrochemical performance with good stability, selectivity and reproducibility. PMID:27515992

  14. Carbon nanoribbons and nanotubes based on δ-graphyne: A first-principles study

    Science.gov (United States)

    Zhou, Hongcai; Lu, Shuangwen; Li, Feng; Qu, Yuanyuan

    2016-04-01

    As a stable allotropy of two-dimensional (2D) carbon materials, δ-graphyne has been predicted to be superior to graphene in many aspects. Using first-principles calculations, we investigated the electronic properties of carbon nanoribbons (CNRs) and nanotubes (CNTs) formed by δ-graphyne. It is found that the electronic band structures of CNRs depend on the edge structure and the ribbon width. The CNRs with zigzag edges (Z-CNRs) have spin-polarized edge states with ferromagnetic (FM) ordering along each edge and anti-ferromagnetic (AFM) ordering between two edges. The CNRs with armchair edges (A-CNRs), however, are semiconductors with the band gap oscillating with the ribbon width. For the CNTs built by rolling up δ-graphyne with different chirality, the electronic properties are closely related to the chirality of the CNTs. Armchair (n, n) CNTs are metallic while zigzag (n, 0) CNTs are semiconducting or metallic. These interesting properties are quite crucial for applications in δ-graphyne-based nanoscale devices.

  15. Atomic and electronic structure of divacancies in carbon nanotubes

    Science.gov (United States)

    Berber, Savas; Oshiyama, Atsushi

    2008-04-01

    We present atomic and electronic structure of divacancies in carbon nanotubes, which is calculated using the density functional theory. Divacancies in carbon nanotubes self-heal by spontaneous reconstructions, which consist of concerted bond formations. Divacancy formation energies EDV , which strongly depend on the divacancy orientation with respect to the tube axis, are in the range of 2.8 4.3 eV for favorable orientations in the nanotubes of 4 9Å diameter, making divacancies more probable than monovacancies in carbon nanotubes. Defect related states lead to a higher density of states around the Fermi level. Semiconducting nanotubes develop midgap levels that may adversely affect the functionality of carbon nanotube based devices. Our spin polarized density functional calculations show that the exchange splitting of defect-related bands in nonsemiconducting defective nanotubes leads to net spin polarizations of ρ↑-ρ↓≤0.5μB per divacancy for some divacancy orientations.

  16. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    Science.gov (United States)

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted. PMID:25855947

  17. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  18. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Conclusions: Monte Carlo simulations demonstrate

  19. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  20. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the...

  1. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    Science.gov (United States)

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed. PMID:26041516

  2. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design.

    Science.gov (United States)

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E11(2*)) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering-based applications including photonic devices and (bio)imaging/sensing. PMID:27345862

  3. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    Science.gov (United States)

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-06-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering–based applications including photonic devices and (bio)imaging/sensing.

  4. Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hong; Lee, Jay H. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Braatz, Richard D. [Massachusetts Institute of Technology (MIT), Cambridge (United States)

    2016-01-15

    This paper proposes a maximum likelihood estimation (MLE) method for estimating time varying local concentration of the target molecule proximate to the sensor from the time profile of monomolecular adsorption and desorption on the surface of the sensor at nanoscale. Recently, several carbon nanotube sensors have been developed that can selectively detect target molecules at a trace concentration level. These sensors use light intensity changes mediated by adsorption or desorption phenomena on their surfaces. The molecular events occurring at trace concentration levels are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by the chemical master equation (CME), composed of a set of ordinary differential equations describing the time evolution of probabilities for the possible adsorption states. Given the significant stochastic nature of the underlying phenomena, rigorous stochastic estimation based on the CME should lead to an improved accuracy over than deterministic estimation formulated based on the continuum model. Motivated by this expectation, we formulate the MLE based on an analytical solution of the relevant CME, both for the constant and the time-varying local concentrations, with the objective of estimating the analyte concentration field in real time from the adsorption readings of the sensor array. The performances of the MLE and the deterministic least squares are compared using data generated by kinetic Monte Carlo (KMC) simulations of the stochastic process. Some future challenges are described for estimating and controlling the concentration field in a distributed domain using the sensor technology.

  5. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.

    Science.gov (United States)

    Melzer, K; Bhatt, V Deep; Jaworska, E; Mittermeier, R; Maksymiuk, K; Michalska, A; Lugli, P

    2016-10-15

    In the fields of clinical diagnostics and point-of-care diagnosis as well as food and environmental monitoring there is a high demand for reliable high-throughput, rapid and highly sensitive assays for a simultaneous detection of several analytes in complex and low-volume samples. Sensor platforms based on solution-processable electrolyte-gated carbon nanotube field-effect transistors (CNT-FETs) are a simple and cost-effective alternative for conventional assays. In this work we demonstrate a selective as well as direct detection of the products of an enzyme-substrate interaction, here the for metabolic processes important urea-urease system, with sensors based on spray-coated CNT-FETs. The selective and direct detection is achieved by immobilizing the enzyme urease via certain surface functionalization techniques on the sensor surface and further modifying the active interfaces with polymeric ion-selective membranes as well as pH-sensitive layers. Thereby, we can avoid the generally applied approach for a field-effect based detection of enzyme reactions via detecting changes in the pH value due to an on-going enzymatic reaction and directly detect selectively the products of the enzymatic conversion. Thus, we can realize a buffering-capacity independent monitoring of changes in the substrate concentration. PMID:27140308

  6. Kondo physics in carbon nanotubes

    OpenAIRE

    Nygard, Jesper; Cobden, David Henry; Lindelof, Poul Erik

    2000-01-01

    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo ph...

  7. Electronic transport properties of metallic single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    曹觉先; 颜晓红; 肖杨; 丁建文

    2003-01-01

    We have calculated the differential conductance of metallic carbon nanotubes by the scatter matrix method. It is found that the differential conductance of metallic nanotube-based devices oscillates as a function of the bias voltage between the two leads and the gate voltage. Oscillation period T is directly proportional to the reciprocal of nanotube length. In addition, we found that electronic transport properties are sensitive to variation of the length of the nanotube.

  8. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  9. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  10. Wireless Flexible Strain Sensor Based on Carbon Nanotube Piezoresistive Networks for Embedded Measurement of Strain in Concrete

    OpenAIRE

    MICHELIS, Fulvio; Bodelot, Laurence; COJOCARU, Costel-Sorin; Sorin, Jean-Luc; Bonnassieux, Yvan; Lebental, Bérengère

    2014-01-01

    This work proposes a new type of low-cost strain sensor, based on piezoresistive carbon nanotube (CNT) network deposited on a flexible substrate. Experimental results show that the strain can be reliably measured thanks to the highly linear piezoresistive behaviour of the CNT network and thanks to temperature compensation capabilities. Moreover, the experimental results show the capability of measuring multiple loading cycles. The performance and the range of sensitivity of the device, sugges...

  11. Wireless flexible strain sensor based on Carbon Nanotube piezoresistive networks for embedded measurement of strain in concrete

    OpenAIRE

    MICHELIS, Fulvio; Lebental, Bérengère; COJOCARU, Costel-Sorin; Sorin, Jean Luc; Bonnassieux, Yvan

    2014-01-01

    In the field of Structural Health Monitoring, there is growing interest in continuous volume measurements of material properties using embedded sensors organized in wireless sensor networks (1,2,3). In this work we propose a novel, highly reproducible piezoresistive sensor based on Carbon Nanotube (CNT) networks deposited on polymer to be used for embedded strain monitoring and crack detection in concrete. We highlight the originality of the fabrication process and describe the modalities for...

  12. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    OpenAIRE

    Yanlong Tai; Gilles Lubineau

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking condit...

  13. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force

    Science.gov (United States)

    Jiang, L. Y.; Huang, Y.; Jiang, H.; Ravichandran, G.; Gao, H.; Hwang, K. C.; Liu, B.

    2006-11-01

    We have established the cohesive law for interfaces between a carbon nanotube (CNT) and polymer that are not well bonded and are characterized by the van der Waals force. The tensile cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer surface roughness on the cohesive law is also studied.

  14. Polymer-Graphite Nanocomposites: Comparison to Clay- and Carbon Nanotube-Based Hybrids

    Science.gov (United States)

    Wakabayashi, Katsuyuki; Kasimatis, Kosmas; Torkelson, John M.

    2007-03-01

    Although polymer-layered silicate and polymer-carbon nanotube nanocomposites have been widely studied in the last decade, hybrids containing nanoscale entities of graphite have been studied far less. Its structural analogy to layered silicates and chemical analogy to carbon nanotubes make graphite an attractive nanofiller in both scientific study and technological application. A common challenge of efficient dispersion of the nanofiller in the polymer matrix associated with conventional fabrication methods is overcome by processing using the solid-state shear pulverization technique. The level of dispersion and presence of graphite nanosheets are confirmed by X-ray diffraction and electron microscopy, while enhanced mechanical, thermal, and electrical properties of the resulting materials are characterized using tensile testing, dynamic mechanical testing, differential scanning calorimetry, thermogravimetric analysis and impedance spectroscopy.

  15. The determination of acetaminophen using a carbon nanotube:graphite-based electrode

    International Nuclear Information System (INIS)

    The oxidation of acetaminophen was studied at a glassy carbon electrode modified with multi-walled carbon nanotubes and a graphite paste. Cyclic voltamety, differential pulse voltammetry and square wave voltammetry at various pH values, scan rates, and the effect of the ratio of nanotubes to graphite were investigated in order to optimize the parameters for the determination of acetaminophen. Square wave voltammetry is the most appropriate technique in giving a characteristic peak at 0. 52 V at pH 5. The porous nanostructure of the electrode improves the surface area which results in an increase in the peak current. The voltammetric response is linear in the range between 75 and 2000 ng. mL-1, with standard deviations between 0. 25 and 7. 8%, and a limit of detection of 25 ng. mL-1. The method has been successfully applied to the analysis of acetaminophen in tablets and biological fluids. (author)

  16. A Flexible Multifunctional Sensor Based on Carbon Nanotube/Polyurethane Composite

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Benlikaya, R.; Svoboda, P.; Petráš, D.

    2013-01-01

    Roč. 13, č. 10 (2013), s. 4045-4048. ISSN 1530-437X Grant ostatní: GA MŠk(CZ) ED2.1.00/03.0111; UTB Zlín(CZ) iga/ft/2012/022 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : carbon nanotubes * chemical vapor sensing * deformation sensing * polymer composite Subject RIV: BK - Fluid Dynamics Impact factor: 1.852, year: 2013

  17. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

    OpenAIRE

    Cao, C. L.; Hu, C. G.; Fang, L.; Wang, S. X.; Y. S. TIAN; Pan, C. Y.

    2011-01-01

    The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nanotube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%–98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively...

  18. Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline.

    OpenAIRE

    Morrin, Aoife; Luo, Xiliang; Killard, Antony J.; Smyth, Malcolm R.

    2006-01-01

    A biosensor with improved performance was developed through the immobilization of horseradish peroxidase (HRP) onto electropolymerized polyaniline (PANI) films doped with carbon nanotubes (CNTs). The effects of electropolymerization cycle and CNT concentration on the response of the biosensor toward H2O2 were investigated. It was found that the integration of CNTs into the biosensor system could increase the amount and stability of immobilized enzyme, and greatly enhance the biosensor respons...

  19. A Novel Cholesterol Oxidase Biosensor Based on Pt-nanoparticle /Carbon Nanotube Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiao Cui SHI; Tu Zhi PENG

    2005-01-01

    A Pt-nanoparticle/carbon nanotube modified graphite electrode immobilized with cholesterol oxidase/sol-gel layer was developed for monitoring cholesterol. Using this electrode,cholesterol concentration (4.0×10-6 to 1.0×10 mol/L) could be determined accurately in the presence of ascorbic or uric acid, and the response time was rapid (< 20 s). This biosensor has high sensitivity and selectivity.

  20. Reviewing the Environmental and Human Health Knowledge Base of Carbon Nanotubes

    OpenAIRE

    Helland, Aasgeir; Wick, Peter; Koehler, Andreas; Schmid, Kaspar; Som, Claudia

    2007-01-01

    Carbon nanotubes (CNTs) are considered one of the most promising materials in nanotechnology, with attractive properties for many technologic applications. The different synthesis, purification, and postprocessing methods produce CNTs with different physical characteristics, which can be applied in different fields ranging from composite materials, medical applications, and electronics to energy storage. The widespread projected use of CNTs makes it important to understand their potential har...

  1. Manufacturing and characterization of printed strain gauges based on carbon nanotubes

    OpenAIRE

    Arreba Garcia-Abad, Andrea

    2010-01-01

    Carbon nanotubes (CNTs), established in nanoscale range, are one of the most studied materials since their discovery, in Japan by S. Iijima in 1991. Due to their excellent electrical, mechanical and thermal properties, it is predicted that CNTs can be used in a wide field of technological applications. The aim of this thesis is to produce a CNT strain gauge due to this material offers higher sensitivity than metallic strain gauges, between other advantages. When manufacturing a CNT strain gau...

  2. Full characterization of a carbon nanotube based parallel double quantum dot

    OpenAIRE

    Abulizi, Gulibusitan; Baumgartner, Andreas; Schönenberger, Christian

    2016-01-01

    We have measured the differential conductance of a parallel carbon nanotube (CNT) double quantum dot (DQD) with strong inter-dot capacitance and inter-dot tunnel coupling. Nominally, the device consists of a single CNT with two contacts. However, we identify two sets of Coulomb blockade (CB) diamonds that do not block transport individually, which suggests that two quantum dots (QDs) are contacted in parallel. We find strong and periodic anti-crossings in the gate and bias dependence, which a...

  3. Hybridization of Homopolynucleotides with Different Base Ordering on the Carbon Nanotube Surface

    Czech Academy of Sciences Publication Activity Database

    Karachevtsev, M. V.; Gladchenko, G. O.; Andrushchenko, Valery; Leontiev, V. S.; Karachevtsev, V. A.

    2015-01-01

    Roč. 119, č. 21 (2015), s. 11991-12001. ISSN 1932-7447 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : DNA hybridization * nucleic acids * carbon nanotubes * SWCNT * UV absorption spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.772, year: 2014

  4. SEM characterization of carbon nanotubes based active layers of chemical sensors

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Mika, Filip; Prášek, J.; Majzlíková, P.

    Piscataway : IEEE, 2014, s. 361-364. ISBN 978-1-4799-4455-2. [International Spring Seminar on Electronics Technology /37./. Dresden (DE), 07.05.2014-11.05.2014] R&D Projects: GA MŠk(CZ) LO1212; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : SEM * carbon nanotubes * active layers of chemical sensor s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Wide-Range Tunable Dynamic Property of Carbon Nanotube-Based Fibers

    OpenAIRE

    Zhao, Jingna; ZHANG, XIAOHUA; Pan, Zhijuan; Li, Qingwen

    2015-01-01

    Carbon nanotube (CNT) fiber is formed by assembling millions of individual tubes. The assembly feature provides the fiber with rich interface structures and thus various ways of energy dissipation, as reflected by the non-zero loss tangent (>0.028--0.045) at low vibration frequencies. A fiber containing entangled CNTs possesses higher loss tangents than a fiber spun from aligned CNTs. Liquid densification and polymer infiltration, the two common ways to increase the interfacial friction and t...

  6. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  7. Focusing performance and thermal property of carbon-nanotube emitter-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ho; Kim, Wan Sun; Ryu, Je Hwang; Kim, Kyung Sook; Park, Hun Kuk [Kyung Hee University, Seoul (Korea, Republic of)

    2014-12-15

    Carbon-nanotube (CNT) emitter-based X-ray sources have been extensively investigated as new imaging devices. The electron-beam trajectory in the CNT emitter-based X-ray sources were simulated to determine the optimized conditions for high focusing performance and limited thermal damage to the anode. The beam trajectory from the cathode to the anode was simulated, and the focal spot size (FSS) of the beam was determined by varying the structure of the electrode in the X-ray system. The temperature change of the anode caused by the electron-beam was calculated. The effects of electrode voltage and of the distance between the electrode and the anode on the FSS were significant while the effect of electrode thickness was small in all structures. When the electron-beam was emitted with an FSS of 170 μm and a power of 130 W, the thermal damage to the anode was reduced by using a 2-ms pulsed-voltage operation for a duration of 8 ms.

  8. Substrate pre-treatment of flexible material for printed electronics with carbon nanotube based ink

    International Nuclear Information System (INIS)

    In this work, an innovative solution was developed in order to make paper-based material, used traditionally in the packaging and labelling industries, compatible with the printing of functional conductive inks. In order to avoid the deterioration of the ink functionalities due to different paper properties, a UV-curing inkjettable primer layer was developed. This pre-treatment enables homogeneous surface properties such as smoothness, absorption capacity and surface energy to be obtained, for almost all the examined substrates. To confirm the positive impact of such pre-treatment, conductivity has been measured when using a new conductive ink, combining the processability of the PEDOT-PSS conductive polymer with the high electrical properties of carbon nanotubes (CNTs). Significant improvement has been measured for all paper materials and similar conductivity (close to reference PET film) has been obtained whatever the substrate involved. This pre-treatment now makes it possible to consider paper-based material as a potential substrate for printed electronics. In this case, the substrate adaptation technique offers an innovative solution to produce low-cost and flexible electronics.

  9. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode.

    Science.gov (United States)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N=3) with a relative standard deviation (RSD) of 5.4% (n=7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. PMID:23177766

  10. The present status and key problems of carbon nanotube based polymer composites

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available The state-of-art and key problems of carbon nanotube (CNT based polymer composites (CNT/polymer composites including CNT/polymer structural composites and CNT/polymer functional composites are reviewed. Based on the results reported up to now, CNTs can be an effective reinforcement for polymer matrices, and the tensile strength and elastic modulus of CNT/polymer composites can reach as high as 3600 MPa and 80 GPa, respectively. CNT/polymer composites are also promising functional composite materials with improved electrical and thermal conductivity, etc. Due to their multi-functional properties, CNT/polymer composites are expected to be used as low weight structural materials, optical devices, thermal interface materials, electric components, electromagnetic absorption materials, etc. However, the full potential of CNT/polymer composites still remains to be realized. A few key problems, such as how to prepare structure-controllable CNTs with high purity and consistently dependable high performance, how to break up entangled or bundled CNTs and then uniformly disperse and align them within a polymer matrix, how to improve the load transfer from matrix to CNT reinforcement, etc, still exist and need to be solved in order to realize the wide applications of these advanced composites.

  11. Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Technology

    Directory of Open Access Journals (Sweden)

    Mehdi Masoudi

    2014-08-01

    Full Text Available This article presents novel high speed and low powe r full adder cells based on carbon nanotube field e ffect transistor (CNFET. Four full adder cells are propo sed in this article. First one (named CN9P4G and second one (CN9P8GBUFF utilizes 13 and 17 CNFETs r espectively. Third design that we named CN10PFS uses only 10 transistors and is full swing. Finally, CN8P10G uses 18 transistors and divided i nto two modules, causing Sum and Cout signals are produ ced in a parallel manner. All inputs have been used straight, without inverting. These designs also use d the special feature of CNFET that is controlling the threshold voltage by adjusting the diameters of CNF ETs to achieve the best performance and right volta ge levels. All simulation performed using Synopsys HSP ICE software and the proposed designs are compared to other classical and modern CMOS and CNFET-based full adder cells in terms of delay, power consumption and power delay product.

  12. Multiplexing radiography based on carbon nanotube field emission X-ray technology

    Science.gov (United States)

    Zhang, J.; Yang, G.; Lee, Y.; Chang, S.; Lu, J. P.; Zhou, O.

    2007-03-01

    State-of-the-art tomographic imaging technique is based upon of simple serial imaging scheme. The tomographic scanners collect the projection images sequentially in the time domain, by a step-and-shoot process using a single-pixel x-ray source. The inefficient serial data collection scheme severely limits the data collection speed, which is critical for imaging of objects in rapid motion such as for diagnosis of cardiovascular diseases, CT fluoroscopy, and airport luggage inspection. Further improvement of the speed demands an increasingly high x-ray peak workload and gantry rotation speed, both of which have approached the engineering limits. Multiplexing technique, which has been widely adopted in communication devices and in certain analytical instruments, holds the promise to significantly increase the data throughput. It however, has not been applied to x-ray radiography, mainly due to limitations of the current x-ray source technology. Here we report a method for frequency multiplexing radiography (FMR) based on the frequency multiplexing principle and the carbon nanotube field emission x-ray technology. We show the feasibility of multiplexing radiography that enables simultaneous collection of multiple projection images. It has the potential to significantly increase the imaging speed for tomographic imaging without compromising the imaging quality.

  13. Study of ink paper sensor based on aluminum/carbon nanotubes agglomerated nanocomposites.

    Science.gov (United States)

    dos Reis, Marcos A L; Saraiva, Augusto F; Vieira, Manuel F G; Del Nero, Jordan

    2012-09-01

    Agglomerated nanocomposites based on Aluminum/Carbon Nanotubes (AI/CNT) were produced by an arc discharge technique under argon/acetone atmosphere and ultrasonically dispersed in distilled water to form an ink-like composite. This ink was spread onto commercial paper to produce a conductive thick film. Experimental results show that the electrical resistance of Al/CNT nanocomposite on paper changes when a mechanical stress and/or heat is applied. The multi-sensory properties obtained are the following: (i) piezoresistive effect, electrical resistance shows linear dependence with pressure intensity at room temperature; (ii) polynomial relationship between electrical resistance and temperature; and (iii) high accuracy thermal sensor compared to a K type thermocouple at 25 degrees C. The nanocomposite and paper morphology was analyzed by Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM/EDS) and a favorable surface for physisorption was observed. Transmission Electron Microscopy (TEM) was utilized for Al/CNT agglomerated indicating that the ink paper based on nanocomposite shows good performance as a thermo-piezoresistive sensor. PMID:23035420

  14. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  15. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  16. Performance of a combined capacitor based on ultrafine nickel oxide/carbon nanotubes composite electrodes

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Wang; Yanqiu Cao; Yiqiang Lu; Qiqian Sha; Ji Liang

    2004-01-01

    A new sol-gel process for the preparation of ultrafine nickel hydroxide electrode materials was developed. The composite electrodes consisting of carbon nanotubes and Ni(OH)2 were developed by mixing the hydroxide and carbon nanotubes together in different mass ratios. In order to enhance energy density, a combined type pseudocapacitor/electric double layer capacitor was considered and its electrochemical properties were characterized by cyclic voltammetry and dc charge/discharge test. The combined capacitor shows excellent capacitor behavior with an operating voltage up to 1.6 V in KOH aqueous electrolyte. Stable charge/discharge behaviors were observed with much higher specific capacitance values of 24 F/g compared with that of EDLC (12F/g) by introducing 60% Ni(OH)2 in the anode material. By using the modified anode of a Ni(OH)2/carbon nanotubes composite electrode, the specific capacitance of the cell was less sensitive to discharge current density compared with that of the capacitor employing pure nickel hydroxide as anode. The combined capacitor in this study exhibits high energy density and stable power characteristics.

  17. Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture.

    Science.gov (United States)

    Boero, Cristina; Carrara, Sandro; Del Vecchio, Giovanna; Calzà, Laura; De Micheli, Giovanni

    2011-03-01

    Monitoring of metabolic compounds in cell cultures can provide real-time information of cell line status. This is particularly important in those lines not fully known, as the case of embryonic and mesenchymal cells. On the other hand, such approach can pave the way to fully automated systems for growing cell cultures, when integrated in Petri dishes. To date, the main efforts emphasize the monitoring of few process variables, like pH, pO(2), electronic impedance, and temperature in bioreactors. Among different presented strategies to develop biosensors, carbon nanotubes exhibit great properties, particularly suitable for high-sensitive detection. In this work, nanostructured electrodes by using multiwalled carbon nanotubes are presented for the detection of lactate and glucose. Some results from simulations are illustrated in order to foresee the behavior of carbon nanotubes depending on their orientation, when they are randomly dispersed onto the electrode surface. A comparison between nonnanostructured and nanostructured electrodes is considered, showing that direct electron-transfer between the protein and the electrode is not possible without nanostructuration. Such developed biosensors are characterized in terms of sensitivity and detection limit, and are compared to previously published results. Lactate production is monitored in a cell culture by using the developed biosensor, and glucose detection is also performed to validate lactate behavior. PMID:21518668

  18. Carbon nanotubes for in vivo cancer nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The latest progress of using carbon nanotubes(CNTs) for in vivo cancer nanotechnology is reviewed.CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications.In vivo behaviors and toxicology studies of CNTs are summarized,suggesting no significant toxicity of well functionalized CNTs to the treated mice.Owing to their unique chemical and physical properties,CNTs,especially single-walled carbon nanotubes(SWNTs),have been widely used for various modalities of in vivo cancer treatment and imaging.Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.

  19. Gigahertz frequency flexible carbon nanotube transistors

    Science.gov (United States)

    Chimot, N.; Derycke, V.; Goffman, M. F.; Bourgoin, J. P.; Happy, H.; Dambrine, G.

    2007-10-01

    We investigate the high frequency performances of flexible field-effect transistors based on carbon nanotubes. A large density of mostly aligned carbon nanotubes deposited on a flexible substrate by dielectrophoresis serves as the channel. The transistors display a constant transconductance up to at least 6GHz and a current gain cutoff frequency (fT) as high as 1GHz at VDS=-700mV. Bending tests show that the devices can withstand a high degree of flexion characterized by a constant transconductance for radius of curvature as small as 3.3mm.

  20. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite.

    Science.gov (United States)

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Zhang, Song; Ni, Yuwei; Cai, Seng; Huang, Jie

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2-12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  1. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    Directory of Open Access Journals (Sweden)

    Chen Changxin

    2010-01-01

    Full Text Available Abstract An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σ ac of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz, showing a good agreement with the measured results.

  2. Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'

    International Nuclear Information System (INIS)

    Most recently, Lee and Chang (2009 J. Phys.: Condens. Matter 21 115302) combined nonlocal theory and Euler-Bernoulli beam theory in the study of the vibration of the fluid-conveying double-walled carbon nanotube. In this recent published work, the importance of using nonlocal stress tensors consistently has been overlooked, and some ensuring relations were still presented based on the local stress components. Therefore, the governing equations and applied forces obtained in this manner are either inconsistent or incomplete. In this comment, the consistent governing equations for modelling free transverse vibration of the fluid-conveying double-walled carbon nanotube using the nonlocal Euler-Bernoulli beam model are derived. (comment)

  3. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    Science.gov (United States)

    Shrestha, R.; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G. H.; Choi, T. Y.

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m-1 K-1 at room temperature.

  4. All-Printed Thin-Film Transistor Based on Purified Single-Walled Carbon Nanotubes with Linear Response

    Directory of Open Access Journals (Sweden)

    Guiru Gu

    2011-01-01

    Full Text Available We report an all-printed thin-film transistor (TFT on a polyimide substrate with linear transconductance response. The TFT is based on our purified single-walled carbon nanotube (SWCNT solution that is primarily consists of semiconducting carbon nanotubes (CNTs with low metal impurities. The all-printed TFT exhibits a high ON/OFF ratio of around 103 and bias-independent transconductance over a certain gate bias range. Such bias-independent transconductance property is different from that of conventional metal-oxide-semiconductor field-effect transistors (MOSFETs due to the special band structure and the one-dimensional (1D quantum confined density of state (DOS of CNTs. The bias-independent transconductance promises modulation linearity for analog electronics.

  5. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures

    OpenAIRE

    Zhao, Chao; Qu, Konggang; Xu, Can; Ren, Jinsong; Qu, Xiaogang

    2011-01-01

    As a promising strategy for artificially control of gene expression, reversible assembly of nanomaterials and DNA nanomachine, DNA triplex formation has received much attention. Carbon nanotubes as gene and drug delivery vector or as ‘building blocks’ in nano/microelectronic devices have been successfully explored. Therefore, studies on triplex DNA-based carbon nanotube hybrid materials are important for development of smart nanomaterials and for gene therapy. In this report, a small molecule...

  6. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  7. Computational Nanomechanics of Carbon Nanotubes and Composites

    Science.gov (United States)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  8. A novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Khalil Abnous

    2013-09-01

    Full Text Available   Objective(s: This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at 807 .   Materials and Methods: First a DNA aptamer recognizing cocaine was non-covalently immobilized on the surface of single walled carbon nanotubes and consequently dissolution of SWNTs was occurred. Vis-NIR absorption (A807nm of dispersed, soluble aptamer-SWNTs hybrid, before and after incubation with cocaine was measured using a CECIL9000 spectrophotometer. Results: This carbon nanotube setup enabled the reliable monitoring of the interaction of cocaine with its cognate aptamer by aggregation of SWNTs in the presence of cocaine. Disscusion: This assay system provides a mean for the label-free, concentration-dependent, and selective detection of cocaine with an observed detection limit of 49.5 nM.

  9. Carbon nanotube-based mode-locked wavelength-switchable fiber laser via net gain cross section alteration

    Science.gov (United States)

    Latif, A. A.; Mohamad, H.; Abu Bakar, M. H.; Muhammad, F. D.; Mahdi, M. A.

    2016-02-01

    We have proposed and demonstrated a carbon nanotube-based mode-locked erbium-doped fiber laser with switchable wavelength in the C-band wavelength region by varying the net gain cross section of erbium. The carbon nanotube is coated on a tapered fiber to form the saturable absorber for the purpose of mode-locking by exploiting the concept of evanescent field interaction on the tapered fiber with the carbon nanotube in a ring cavity configuration. The propagation loss is adjusted by inducing macrobend losses of the optical fiber in the cavity through a fiber spooling technique. Since the spooling radius can be gradually adjusted to achieve continuous tuning of attenuation, this passive tuning approach can be an alternative to optical tunable attenuator, with freedom of external device integration into the laser cavity. Based on this alteration, the net gain cross section of the laser system can be tailored to three different lasing wavelength ranges; 1533, 1560 nm and both (1533 and 1560 nm) with the minimum pulse duration of 734 fs. The proposed design is simple and stable with high beam quality and good reliability for multiple applications.

  10. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  11. A potassium sensor based on non-covalent functionalization of multi-walled carbon nanotubes.

    Science.gov (United States)

    Parra, Enrique J; Rius, F Xavier; Blondeau, Pascal

    2013-05-01

    Non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) by a pyrene based benzo-18-crown-6 ether 1 leads to nanostructure assemblies that play both the role of an ion-to-electron transducer and a selective recognition element in solid-contact ion-selective-electrodes (SC-ISEs). The high loading capacity (36 wt%) as well as the suitable dispersion character of the MWCNT hybrid in the ion-selective membrane (ISM) confirmed the benefit of this approach over the covalent one. The sensor has been applied successfully to the detection of potassium. Nernstian response (56.9 ± 0.9 mV per decade) was obtained (10(-5) and 10(-2) M K(+)) and the selectivity pattern was not altered by the immobilization of the ionophore on the MWCNTs. Leakage of the ionophore from the polymeric matrix is therefore avoided while the sensor construction was simplified and the analytical performances were maintained. PMID:23515323

  12. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering.

    Science.gov (United States)

    Lebental, B; Chainais, P; Chenevier, P; Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz. PMID:21891837

  13. Fully Automated Field-Deployable Bioaerosol Monitoring System Using Carbon Nanotube-Based Biosensors.

    Science.gov (United States)

    Kim, Junhyup; Jin, Joon-Hyung; Kim, Hyun Soo; Song, Wonbin; Shin, Su-Kyoung; Yi, Hana; Jang, Dae-Ho; Shin, Sehyun; Lee, Byung Yang

    2016-05-17

    Much progress has been made in the field of automated monitoring systems of airborne pathogens. However, they still lack the robustness and stability necessary for field deployment. Here, we demonstrate a bioaerosol automonitoring instrument (BAMI) specifically designed for the in situ capturing and continuous monitoring of airborne fungal particles. This was possible by developing highly sensitive and selective fungi sensors based on two-channel carbon nanotube field-effect transistors (CNT-FETs), followed by integration with a bioaerosol sampler, a Peltier cooler for receptor lifetime enhancement, and a pumping assembly for fluidic control. These four main components collectively cooperated with each other to enable the real-time monitoring of fungi. The two-channel CNT-FETs can detect two different fungal species simultaneously. The Peltier cooler effectively lowers the working temperature of the sensor device, resulting in extended sensor lifetime and receptor stability. The system performance was verified in both laboratory conditions and real residential areas. The system response was in accordance with reported fungal species distribution in the environment. Our system is versatile enough that it can be easily modified for the monitoring of other airborne pathogens. We expect that our system will expedite the development of hand-held and portable systems for airborne bioaerosol monitoring. PMID:27070239

  14. Proteomics-based safety evaluation of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    This study evaluated the biological responses to multi-walled carbon nanotubes (MWCNTs). Human monoblastic leukemia cells (U937) were exposed to As-grown MWCNTs and MWCNTs that were thermally treated at 1800 deg. C (HTT1800) and 2800 deg. C (HTT2800). Cell proliferation was highly inhibited by As-grown but not HTT2800. However, both As-grown and HTT1800, which include some impurities, were cytotoxic. Proteomics analysis of MWCNT-exposed cells revealed 37 protein spots on 2-dimensional electrophoresis gels that significantly changed (p < 0.05) after exposure to HTT1800 with a little iron and 20 spots that changed after exposure to HTT2800. Peptide mass fingerprinting identified 45 proteins that included heat shock protein β-1, neutral α-glucosidase AB, and DNA mismatch repair protein Msh2. These altered proteins play roles in metabolism, biosynthesis, response to stress, and cell differentiation. Although HTT2800 did not inhibit cell proliferation or cause cytotoxicity in vitro, some proteins related to the response to stress were changed. Moreover, DJ-1 protein, which is a biomarker of Parkinson's disease and is related to cancer, was identified after exposure to both MWCNTs. These results show that the cytotoxicity of MWCNTs depends on their impurities, such as iron, while MWCNTs themselves cause some biological responses directly and/or indirectly in vitro. Our proteomics-based approach for detecting biological responses to nanomaterials is a promising new method for detailed safety evaluations.

  15. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering

    Science.gov (United States)

    Lebental, B.; Chainais, P.; Chenevier, P.; Chevalier, N.; Delevoye, E.; Fabbri, J.-M.; Nicoletti, S.; Renaux, P.; Ghis, A.

    2011-09-01

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  16. Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors

    International Nuclear Information System (INIS)

    In the present study, polyaniline (PANI)/partially exfoliated multi-walled carbon nanotubes (Px-MWCNT) nanocomposites were investigated for supercapacitor application. Nanocomposites with varying weight/weight ratio of PANI and Px-MWCNT were prepared by in-situ polymerization of aniline over Px-MWCNT. Transmission and scanning electron microscopic analysis showed that the MWCNT was partial unzipped along the length of tubes. The morphology of PANI/Px-MWCNT nanocomposites exhibited wrapping of PANI over Px-MWCNT. Symmetric supercapacitors containing PANI/Px-MWCNT nanocomposites as the electrode material were fabricated. The electrochemical characterization of the nanocomposites was carried by two electrode method (unit cell configuration). Cyclic voltammetric analysis showed a synergistic increase in specific capacitance of the nanocomposites. Charge-discharge cycle study indicated that nanocomposites have greater charge-discharge rate capability than pure PANI. The observed result is attributed to the shorter diffusion length of ions in the nanocomposites as compared to that of pure PANI. The electrochemical impedance spectra of supercapacitors were resolved into real and losscapacitances. The loss capacitance indicated that the time constant of the nanocomposites decreases with increase in the Px-MWCNT content. The supercapacitors showed enhanced stability during continuous charge-discharge cycling as the PX-MWCNT content in the nanocomposites increased. PANI-50 and PANI-25 nanocomposites based supercapacitors exhibited 91% and 93% capacitive retention after 2000 charge-discharge cycle while pure PANI showed only 67% capacitance retention for the same number of cycles

  17. Tensile actuators of carbon nanotube coiled yarn based on polydiacetylene–pluronic copolymers as temperature indicators

    Science.gov (United States)

    Lee, Hee Uk; Kim, Hyunsoo; Chun, Kyoung-Yong; Kwon, Cheong Hoon; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong

    2016-07-01

    Most polydiacetylenes (PDAs) have been studied as chromatic sensors or temperature indicators because of their phase transition that is accompanied by a color change from blue to red. Here, we focus on the structural change based on the polydiacetylene phase transition for a temperature-responsive tensile actuator at low temperature using a copolymer composed of PDA and pluronic in a multi-walled carbon nanotube (MWCNT) coiled yarn. In this paper, we do not focus on the general color change phenomenon of PDA. We demonstrate that the volume change of PDA in the MWCNT coiled yarn provides ∼180% tensile strain at low temperature (∼53 °C). Insertion of the pluronic copolymer into the coiled yarn composed of PDA and MWCNT caused the tensile actuation temperature to decrease by ∼6 °C (with tensile actuation of ∼230%) compared to an actuator without pluronic copolymer. Furthermore, we could verify that the large tensile actuation was also predominantly affected by the melting of the nonpolymerized diacetylene (DA) monomer and the pluronic copolymer. MWCNT coiled yarn actuators with PDA-pluronic copolymer can be easily prepared, have a large tensile actuation, and are actuated at low temperature. It could be used as temperature indicators in the food, drugs, and medical fields.

  18. Sustaining GHz oscillation of carbon nanotube based oscillators via a MHz frequency excitation

    Science.gov (United States)

    Motevalli, Benyamin; Taherifar, Neda; Zhe Liu, Jefferson

    2016-05-01

    There have been intensive studies to investigate the properties of gigahertz nano-oscillators based on multi-walled carbon nanotubes (MWCNTs). Many of these studies, however, revealed that the unique telescopic translational oscillations in such devices would damp quickly due to various energy dissipation mechanisms. This challenge remains the primary obstacle against its practical applications. Herein, we propose a design concept in which a GHz oscillation could be re-excited by a MHz mechanical motion. This design involves a triple-walled CNT, in which sliding of the longer inner tube at a MHz frequency can re-excite and sustain a GHz oscillation of the shorter middle tube. Our molecular dynamics (MD) simulations prove this design concept at ∼10 nm scale. A mathematical model is developed to explore the feasibility at a larger size scale. As an example, in an oscillatory system with the CNT’s length above 100 nm, the high oscillatory frequency range of 1.8–3.3 GHz could be excited by moving the inner tube at a much lower frequency of 53.4 MHz. This design concept together with the mechanical model could energize the development of GHz nano-oscillators in miniaturized electro-mechanical devices.

  19. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate

    Science.gov (United States)

    Pryzhkova, Marina V.; Aria, Indrat; Cheng, Qingsu; Harris, Greg M.; Zan, Xingjie; Gharib, Morteza; Jabbarzadeh, Ehsan

    2016-01-01

    We investigated the biological response of human pluripotent stem cells (hPSCs) cultured on a carbon nanotube (CNT) array-based substrate with the long term goal to direct hPSC germ layer specification for a wide variety of tissue engineering applications. CNT arrays were fabricated using a chemical vapor deposition system allowing for control over surface roughness and mechanical stiffness. Our results demonstrated that hPSCs readily attach to hydrophilized and extracellular matrix coated CNT arrays. hPSCs cultured as colonies in conditions supporting self-renewal demonstrated the morphology and marker expression of undifferentiated hPSCs. Conditions inducing spontaneous differentiation lead to hPSC commitment to all three embryonic germ layers as assessed by immunostaining and RT-PCR analysis. Strikingly, the physical characteristics of CNT arrays favored mesodermal specification of hPSCs. This is contradictory to the behavior of hPSCs on traditional tissue culture plastic which promotes the development of ectoderm. Altogether, these results demonstrate the potential of CNT arrays to be used in the generation of new platforms that allow for precise control of hPSC differentiation by tuning the characteristics of their physical microenvironment. PMID:24690530

  20. Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane.

    Science.gov (United States)

    Darabi, Mohammad Ali; Khosrozadeh, Ali; Wang, Quan; Xing, Malcolm

    2015-12-01

    Presented in this work is a novel and facile approach to fabricate an elastic, attachable, and cost-efficient carbon nanotube (CNT)-based strain gauge which can be efficiently used as bodily motion sensors. An innovative and unique method is introduced to align CNTs without external excitations or any complicated procedure. In this design, CNTs are aligned and distributed uniformly on the entire chewing gum by multiple stretching and folding technique. The current sensor is demonstrated to be a linear strain sensor for at least strains up to 200% and can detect strains as high as 530% with a high sensitivity ranging from 12 to 25 and high durability. The gum sensor has been used as bodily motion sensors, and outstanding results are achieved; the sensitivity is quite high, capable of tracing slow breathing. Since the gum sensor can be patterned into various forms, it has wide applications in miniaturized sensors and biochips. Interestingly, we revealed that our gum sensor has the ability to monitor humidity changes with high sensitivity and fast resistance response capable of monitoring human breathing. PMID:26524110

  1. Damping Property of a Cement-Based Material Containing Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Wei-Wen Li

    2015-01-01

    Full Text Available This study aimed to explore the damping property of a cement-based material with carbon nanotube (CNT. In the study, the cement composites with different contents of CNT (0 wt%, 0.033 wt%, 0.066 wt%, and 0.1 wt% were investigated. Logarithmic Decrement method and Dynamic Mechanical Analysis (DMA method were utilized to study the damping property of CNT/cement composite. The influences of CNT on pore size distribution and microstructure of composite were analyzed by Mercury Intrusion Porosimetry (MIP and Scanning Electron Microscopy (SEM, respectively. The experimental results showed that CNT/cement composite presented higher flexural strength index than that of a pure cement paste. Additional CNT could improve the vibration-reduction capacity of cement paste. Furthermore, the experiments proved that CNT could bridge adjacent hydration products and support load transfer within cement matrix, which contributed to the energy dissipation during the loading process.

  2. Morphological Features and Melting Behavior of Nanocomposites Based on Isotactic Polypropylene and Multiwalled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Orta,C.; Medellin-Rodriguez, F.; Davila-Rodriguez, M.; Aguirre-Figueroa, Y.; Yoon, K.; Hsiao, B.

    2007-01-01

    Nanocomposites based on low molar mass isotactic polypropylene (iPP) and a low concentrations (1-2 wt %) of multiwalled carbon nanotubes (MWCNTs) were studied using thermal analysis, optical and electronic microscopy, and X-ray diffraction/scattering techniques. It was first determined that MWCNT decrease induction time and act as nucleating agents of the iPP crystals during nonisothermal crystallization. One of the consequences of the nucleation effect was that the original spherulitic morphology of iPP was transformed into a fibrillar-like. The corresponding long period of the original well-defined lamellar structure slightly increased suggesting the formation of thicker crystals in samples containing MWCNT. The nature of the {alpha}-iPP crystalline structure was not affected by MWCNT. After nonisothermal crystallization, two melting endotherms were present during thermal scanning of the iPP/MWCNT nanocomposites their proportion changing with the heating rate. After resolving the total DSC signal in its components using MDSC, the overall evolution of such behavior could be explained in terms of the melting/recrystallization mechanism.

  3. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector

    International Nuclear Information System (INIS)

    Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ∼0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ∼4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1). (paper)

  4. Predicting adsorption of aromatic compounds by carbon nanotubes based on quantitative structure property relationship principles

    Science.gov (United States)

    Rahimi-Nasrabadi, Mehdi; Akhoondi, Reza; Pourmortazavi, Seied Mahdi; Ahmadi, Farhad

    2015-11-01

    Quantitative structure property relationship (QSPR) models were developed to predict the adsorption of aromatic compounds by carbon nanotubes (CNTs). Five descriptors chosen by combining self-organizing map and stepwise multiple linear regression (MLR) techniques were used to connect the structure of the studied chemicals with their adsorption descriptor (K∞) using linear and nonlinear modeling techniques. Correlation coefficient (R2) of 0.99 and root-mean square error (RMSE) of 0.29 for multilayered perceptron neural network (MLP-NN) model are signs of the superiority of the developed nonlinear model over MLR model with R2 of 0.93 and RMSE of 0.36. The results of cross-validation test showed the reliability of MLP-NN to predict the K∞ values for the aromatic contaminants. Molar volume and hydrogen bond accepting ability were found to be the factors much influencing the adsorption of the compounds. The developed QSPR, as a neural network based model, could be used to predict the adsorption of organic compounds by CNTs.

  5. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering

    International Nuclear Information System (INIS)

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  6. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lebental, B [Universite Paris-Est, IFSTTAR, 58 boulevard Lefebvre, 75732 Paris Cedex 15 (France); Chainais, P [INRIA Lille-Nord Europe (SEQUEL), 40 avenue Halley, 59650 Villeneuve d' Ascq (France); Chenevier, P [SPEC, IRAMIS, CEA/Saclay, Gif-sur-Yvette (France); Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A, E-mail: berengere.lebental@ifsttar.fr [CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  7. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate.

    Science.gov (United States)

    Pryzhkova, Marina V; Aria, Indrat; Cheng, Qingsu; Harris, Greg M; Zan, Xingjie; Gharib, Morteza; Jabbarzadeh, Ehsan

    2014-06-01

    We investigated the biological response of human pluripotent stem cells (hPSCs) cultured on a carbon nanotube (CNT) array-based substrate with the long term goal to direct hPSC germ layer specification for a wide variety of tissue engineering applications. CNT arrays were fabricated using a chemical vapor deposition system allowing for control over surface roughness and mechanical stiffness. Our results demonstrated that hPSCs readily attach to hydrophilized and extracellular matrix coated CNT arrays. hPSCs cultured as colonies in conditions supporting self-renewal demonstrated the morphology and marker expression of undifferentiated hPSCs. Conditions inducing spontaneous differentiation lead to hPSC commitment to all three embryonic germ layers as assessed by immunostaining and RT-PCR analysis. Strikingly, the physical characteristics of CNT arrays favored mesodermal specification of hPSCs. This is contradictory to the behavior of hPSCs on traditional tissue culture plastic which promotes the development of ectoderm. Altogether, these results demonstrate the potential of CNT arrays to be used in the generation of new platforms that allow for precise control of hPSC differentiation by tuning the characteristics of their physical microenvironment. PMID:24690530

  8. Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry

    International Nuclear Information System (INIS)

    We investigate sensitivity and limit of detection (LOD) of trace copper (Cu) metal using pristine carbon nanotube (CNT) and acidified CNT (ACNT) electrodes. Squarewave based anodic stripping voltammetry (SWASV) is used to determine the stripped Cu concentration. Prior to performing the SWASV measurements, its optimal conditions are determined and with that, effects of potential scan rate and Cu2+ concentration on stripping current are evaluated. The measurements indicate that (1) ACNT electrode shows better results than CNT electrode and (2) stripping is controlled by surface reaction. In the given Cu2+ concentration range of 25-150 ppb, peak stripping current has linearity with Cu2+ concentration. Quantitatively, sensitivity and LOD of Cu in ACNT electrode are 9.36 μA μM-1 and 3 ppb, while their values are 3.99 μA μM-1 and 3 ppb with CNT electrode. We evaluate the effect of three different water solutions (deionized water, tap water and river water) on stripping current and the confirm types of water don't affect the sensitivity of Cu. It turns out by optical inspection and cyclic voltammetry that superiority of ACNT electrode to CNT electrode is attributed to exfoliation of CNT bundles and improved interfacial adhesion occurring during oxidation of CNTs

  9. Voltammetric monitoring photodegradation of EDTA based on carbon nanotubes-modified electrode

    International Nuclear Information System (INIS)

    This work described a fast and sensitive voltammetric method developed for monitoring the photodegradation of ethylenediaminetetraacetic acid (EDTA). Due to the unique properties of carbon nanotubes (CNTs) such as negative charges, large surface area and excellent electron transfer ability, metal ion namely Fe3+ showed a pair of well-defined redox response peaks on the CNTs-modified electrode. When EDTA was present in the solution, the voltammetric response of Fe3+ was suppressed due to the chelating interaction between Fe3+ and EDTA. In acetate buffer solution, the concentration of EDTA was found to be inversely proportional to the decreased cathodic peak current in the range of 1.0 x 10-6 to 1.0 x 10-4 mol/L with a detection limit (3S/N) of 6.5 x 10-7 mol/L. While EDTA was degraded by UV irradiation, the voltammetric response on the CNTs-modified electrode was enhanced due to the reduced amount of EDTA species chelating with Fe3+. Accordingly, the concentration variation of EDTA during the photodegradation was analyzed. The effects of H2O2 and pH on the photodegradation of EDTA were investigated. Thus, the proposed CNTs-based voltammetry provided a useful analytical tool for studying the degradation of EDTA.

  10. Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates

    Energy Technology Data Exchange (ETDEWEB)

    Cuentas-Gallegos, Ana Karina; Martinez-Rosales, Rosa; Rincon, Marina E. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/n, Col. Centro, C.P. 62580 Temixco, Mor (Mexico); Baibarac, Mihaela; Gomez-Romero, Pedro [Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra (Spain)

    2007-08-15

    We have characterized symmetric solid-state supercapacitors in swagelok cells using film electrodes made of novel hybrid materials based on multiwalled carbon nanotubes (CNT) and phosphomolybdate polyanion (Cs-PMo12) with PVA as binder. These hybrid materials were carried out by Cs-PMo12 adhesion onto previously functionalized CNT, in order to disperse both components at a molecular level and use Cs-PMo12 as energy density enhancer in supercapacitor cells. Our results show high capacitance values (up to 285 F/g at I = 200 mA/g) due to the contribution of Cs-PMo12, which was revealed on the higher energy density values compared to pure CNT electrodes. Additionally, good stability was observed during 500 charge-discharge cycles for most hybrid electrodes. These preliminary results show a new approach to enhance energy density of double layer supercapacitor cells through the introduction of Cs-PMo12, whereas from a material science point of view these materials are innovative, and open the way to search for diverse applications aside from supercapacitors (sensors, catalysts, photovoltaic cells, etc.). (author)

  11. Performance of a 60 F carbon nanotubes-based supercapacitor for hybrid power sources

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Wang; Dianbo Ruan; Zheng You; Yiqiang Lu; Qiqian Sha

    2005-01-01

    A supercapacitor based on charge storage at the interface between a high surface area carbon nanotube electrode and a LiClO4/PC electrolyte was assembled. The performance of the capacitor depends on not only the material used in the cell but also the construction of the cell. From a constant charge-discharge test, the capacitance of 60 F was obtained. The performance of the power power supercapacitor were demonstrated with a cell of the maximum operating voltage of 2.5 V. A hybrid power source consisting of a lithium ionic battery and the 60 F supercapacitor was demonstrated to power successfully a simulated power load encountered in GSM portable communication equipment. The addition of the supercapacitor to the power train of a cellular phone results in significantly more energy from the battery being used by the load. The experiments indicate that more than 33.8% energy is utilized by load and less stored energy is dissipated within the battery for each charge-discharge cycle.

  12. Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Yan, Hong; Sun, Xiaoming; Zhang, Han; Luo, Liang; Lei, Xiaodong; Wan, Pengbo; Chen, Xiaodong

    2015-11-18

    Transparent and conductive film based electronics have attracted substantial research interest in various wearable and integrated display devices in recent years. The breakdown of transparent electronics prompts the development of transparent electronics integrated with healability. A healable transparent chemical gas sensor device is assembled from layer-by-layer-assembled transparent healable polyelectrolyte multilayer films by developing effective methods to cast transparent carbon nanotube (CNT) networks on healable substrates. The healable CNT network-containing film with transparency and superior network structures on self-healing substrate is obtained by the lateral movement of the underlying self-healing layer to bring the separated areas of the CNT layer back into contact. The as-prepared healable transparent film is assembled into healable transparent chemical gas sensor device for flexible, healable gas sensing at room temperature, due to the 1D confined network structure, relatively high carrier mobility, and large surface-to-volume ratio. The healable transparent chemical gas sensor demonstrates excellent sensing performance, robust healability, reliable flexibility, and good transparency, providing promising opportunities for developing flexible, healable transparent optoelectronic devices with the reduced raw material consumption, decreased maintenance costs, improved lifetime, and robust functional reliability. PMID:26395971

  13. Amperometric Biosensor Based on Carbon Nanotube Functionalized by Redox Plasma-Polymerized Film

    Science.gov (United States)

    Hoshino, Tatsuya; Muguruma, Hitoshi

    2011-08-01

    A novel fabrication approach for the amperometric biosensor based on multilayer films containing carbon nanotubes (CNT), a plasma-polymerized film (PPF), and enzyme glucose oxidase (GOD) is reported. The configuration of the electrochemical electrode is sequentially composed of sputtered gold, lower acetonitrile PPF, CNT, redox PPF, GOD, and upper acetonitrile PPF (denoted as PPF/GOD/Redox-PPF/CNT/PPF/Au). The lower acetonitrile PPF deposited on Au acts as a permselective membrane, and as a scaffold for CNT layer formation. The upper acetonirile PPF directly deposited on GOD acts as a matrix for enzyme immobilization. The redox PPF polymerized by a monomer of dimethlyaminomethlyferrocene (DAF) is directly deposited onto CNTs. The surface of the functionalized CNT has redox sites of ferrocene groups that shuttle electrons from CNTs to the sensing surface of the Au electrode. The synergy between the redox PPF and CNT provides benefits in terms of lowering the operational potential and enhancing the sensitivity (current). The optimized glucose biosensor revealed a sensitivity of 2.0 µA mM-1 cm-2 at +0.4 V vs Ag/AgCl, a linear dynamic range of 4.9-27 mM, and a response time of 5 s.

  14. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  15. Molecular Quantum Spintronics: Supramolecular Spin Valves Based on Single-Molecule Magnets and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Wolfgang Wernsdorfer

    2011-10-01

    Full Text Available We built new hybrid devices consisting of chemical vapor deposition (CVD grown carbon nanotube (CNT transistors, decorated with TbPc2 (Pc = phthalocyanine rare-earth based single-molecule magnets (SMMs. The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (TB ~ 1 K of isolated TbPc2 SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs.

  16. Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films.

    Science.gov (United States)

    Yu, Jiali; Lu, Weibang; Pei, Shaopeng; Gong, Ke; Wang, Liyun; Meng, Linghui; Huang, Yudong; Smith, Joseph P; Booksh, Karl S; Li, Qingwen; Byun, Joon-Hyung; Oh, Youngseok; Yan, Yushan; Chou, Tsu-Wei

    2016-05-24

    The emergence of stretchable electronic devices has attracted intensive attention. However, most of the existing stretchable electronic devices can generally be stretched only in one specific direction and show limited specific capacitance and energy density. Here, we report a stretchable isotropic buckled carbon nanotube (CNT) film, which is used as electrodes for supercapacitors with low sheet resistance, high omnidirectional stretchability, and electro-mechanical stability under repeated stretching. After acid treatment of the CNT film followed by electrochemical deposition of polyaniline (PANI), the resulting isotropic buckled acid treated CNT@PANI electrode exhibits high specific capacitance of 1147.12 mF cm(-2) at 10 mV s(-1). The supercapacitor possesses high energy density from 31.56 to 50.98 μWh cm(-2) and corresponding power density changing from 2.294 to 28.404 mW cm(-2) at the scan rate from 10 to 200 mV s(-1). Also, the supercapacitor can sustain an omnidirectional strain of 200%, which is twice the maximum strain of biaxially stretchable supercapacitors based on CNT assemblies reported in the literature. Moreover, the capacitive performance is even enhanced to 1160.43-1230.61 mF cm(-2) during uniaxial, biaxial, and omnidirectional elongations. PMID:27096412

  17. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  18. Epoxide composite materials with carbon nanotubes

    International Nuclear Information System (INIS)

    Methods of formation and physical properties of epoxide composite materials reinforced with carbon nanotubes are considered. An analogy is made between the relaxation properties of carbon nanotubes and macromolecules. The concentration dependences of the electrical conductivity of the epoxy polymers filled with single-walled and multi-walled carbon nanotubes are discussed. Modern views on the mechanism of reinforcement of polymers with nanotubes are outlined. The bibliography includes 143 references.

  19. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  20. Metallic single-walled carbon nanotubes for conductive nanocomposites.

    Science.gov (United States)

    Wang, Wei; Fernando, K A Shiral; Lin, Yi; Meziani, Mohammed J; Veca, L Monica; Cao, Li; Zhang, Puyu; Kimani, Martin M; Sun, Ya-Ping

    2008-01-30

    This article reports an unambiguous demonstration that bulk-separated metallic single-walled carbon nanotubes offer superior performance (consistently and substantially better than the as-produced nanotube sample) in conductive composites with poly(3-hexylthiophene) and also in transparent conductive coatings based on PEDOT:PSS. The results serve as a validation on the widely held view that the carbon nanotubes are competitive in various technologies currently dominated by conductive inorganic materials (such as indium tin oxide). PMID:18173271

  1. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  2. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  3. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    International Nuclear Information System (INIS)

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques

  4. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Neus Jornet-Martínez

    2015-08-01

    Full Text Available In the present work, the performance of carbon nanotubes (c-CNTs functionalized polydimethylsiloxane (PDMS based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME coupled to Capillary LC (CapLC has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs and carboxylic-multi walled carbon nanotubes (c-MWNTs have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS extractive phase has also been evaluated. The extraction capability of the capillary columns has been tested for different organic pollutants, nitrogen heterocyclic compounds and polycyclic aromatic compounds (PAHs. The results indicated that the use of the c-CNTs-PDMS capillary columns improve pyriproxyfen and mainly PAH extraction. Triazines were better extracted by unmodified TRB-35 and modified c-CNTs-PDMSTRB-5. The results showed that the extraction capability of the c-CNT capillary columns depends not only on the polarity of the analytes (as it occurs with PDMS columns but also on the interactions that the analytes can establish with the immobilized c-CNTs on the PDMS columns. The extraction efficiency has been evaluated on the basis of the preconcentration rate that can be achieved, and, in this sense, the best c-CNTs-PDMS capillary column for each group of compounds can be proposed.

  5. Synthesis and characterization of CdS nanoparticle based multiwall carbon nanotube-maleic anhydride-1-octene nanocomposites

    Science.gov (United States)

    Malikov, E. Y.; Altay, M. C.; Muradov, M. B.; Akperov, O. H.; Eyvazova, G. M.; Puskás, R.; Madarász, D.; Kukovecz, Á.; Kónya, Z.

    2015-05-01

    CdS nanoparticles were synthesized by sonication from cadmium chloride and thiourea using a multiwall carbon nanotube (MWCNT)-maleic anhydride (MA)-1-octene system as the matrix. The matrix was obtained by the "grafting from" approach from oxidized carbon nanotubes and maleic anhydride-1-octene. Multiwall carbon nanotubes used for reinforcing the matrix were synthesized by Catalytic Chemical Vapor Deposition using Fe-Co/Al2O3 as the catalyst. The obtained nanostructures were characterized by FTIR, XRD, Raman spectroscopy, TEM, SEM and UV-vis spectroscopy. The average CdS particle diameter was 7.9 nm as confirmed independently by TEM and XRD. UV-vis spectroscopy revealed that the obtained nanostructure is an appropriate base material for making optical devices. The novelty of this work is the use of the MWCNT-MA-1-octene matrix obtained via the "grafting from" approach for the synthesis of uniformly dispersed CdS nanocrystals by ultrasonic cavitation to obtain a polymer nanocomposite.

  6. Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Rossi Michel J

    2011-01-01

    Full Text Available Abstract Background carbon nanotubes (CNT can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1 or coated (50/50 wt% with acid-based (NT2 or polystyrene-based (NT3 polymer, and exposed murine macrophages (RAW 264.7 cell line or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy, and bronchoalveolar lavage fluid content analysis. Results extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m2/g respectively, along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months. Conclusions these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.

  7. Kinetic response study in chemiresistive gas sensor based on carbon nanotube surface functionalized with substituted phthalocyanines

    Science.gov (United States)

    Sharma, Anshul Kumar; Kumar, Pankaj; Saini, Rajan; Bedi, R. K.; Mahajan, Aman

    2016-05-01

    A kind of hybrid material is prepared by functionalizing multi-wall carbon nanotubes (MWCNTs-COOH) with substituted copper phthalocyanine and the formation of CuPcOC8/MWCNTs-COOH hybrid is confirmed by scanning electron microscopy and transmission electron microscopy. The results indicated that on the surface of nanotubes substituted CuPcOC8 derivatives has been successfully anchored through π-π stacking interaction. The gas sensing application of the fabricated hybrid material is tested upon exposure to different hazardous species, specifically NO2, NO, Cl2 and NH3 at operating temperature of 150˚C. It has been demonstrated that for Cl2 minimum detection limit of CuPcOC8/MWCNTs-COOH hybrid is 100 ppb. The response of hybrid sensor is found to be increased with increase in the concentration of Cl2.

  8. Very short functionalized carbon nanotubes for membrane applications

    NARCIS (Netherlands)

    Fonseca, A.; Reijerkerk, S.R.; Potreck, J.; Nijmeijer, D.C.; Mekhalif, Z.; Delhalle, J.

    2010-01-01

    The cutting and functionalization of carbon nanotubes is described, applying a single-step ball-mill based process. Very short carbon nanotubes bearing primary amine functions were produced, characterized and incorporated in polymeric membranes. The gas separation performance of the composite membra

  9. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    Science.gov (United States)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  10. Modeling the electromechanical and strain response of carbon nanotube-based nanocomposites

    Science.gov (United States)

    Lee, Bo Mi; Loh, Kenneth J.; Burton, Andrew R.; Loyola, Bryan R.

    2014-04-01

    Over the last few decades, carbon nanotube (CNT)-based thin films or nanocomposites have been widely investigated as a multifunctional material. The proposed applications extend beyond sensing, ultra-strong coatings, biomedical grafts, and energy harvesting, among others. In particular, thin films characterized by a percolated and random distribution of CNTs within a flexible polymeric matrix have been shown to change its electrical properties in response to applied strains. While a plethora of experimental work has been conducted, modeling their electromechanical response remains challenging. Furthermore, their design and optimization require the derivation of accurate electromechanical models that could predict thin film response to applied strains. Thus, the objective of this study is to implement a percolation-based piezoresistive model that could explain the underlying mechanisms for strain sensing. First, a percolation-based model with randomly distributed, straight CNTs was developed in MATLAB. Second, the number of CNTs within a unit area was varied to explore its influence on percolation probability. Then, to understand how the film's electrical properties respond to strain, two different models were implemented. Both models calculated the geometrical response of the film and CNTs due to applied uniaxial strains. The first model considered the fact that the electrical resistance of individual CNTs changed depending solely on its length between junctions. The other model further explored the idea of incorporating strain sensitivity of individual CNTs. The electromechanical responses and the strain sensitivities of the two models were compared by calculating how their bulk resistance varied due to applied tensile and compressive strains. The numerical model results were then qualitatively compared to experimental results reported in the literature.

  11. Flavin-based quasi-epitaxial organization on single walled carbon nanotubes: Separation, characterization and device integration

    Science.gov (United States)

    Abanulo, Darlington C.

    Canonically defined as one atomically thin sheet of graphite (i.e. graphene), rolled up in a tube at a specific vector designated by a pair of indices ( n,m), single walled carbon nanotubes (SWNTs) have generated much enthusiasm in the scientific community for their promise to revolutionize materials and their functionalities. Due to their exceptional electrical, optical, mechanical, chemical, thermal and electronic properties, SWNTs have already began and continue to be exploited in a number of new multi-faceted technologies in a broad range of applications. This thesis presents a working model for taking nanotubes from dispersions to devices. Utilizing comprehensive characterization and molecular simulations, we highlight the unique abilities of outfitting SWNTs with a seamless flavin sheath. The precise organization of flavin moieties on the nanotube lattice in forming a perfect helical coating around the nanotube led to the discovery of the first ever-reported quasi-epitaxial based separation scheme. We also present in this thesis the molecular origin for such selection, as well as other consequential ramifications such as enantioselection, superhelical formation and supramolecular assembly. Last but not least, the viability of FMN/SWNT integration in devices such as thin film transistors and other potential sensory applications is also discussed from a design standpoint.

  12. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based,coal-based activated carbon, and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Fei Lian; Chun Chang; Yang Du; Lingyan Zhu; Baoshan Xing; Chang Liu

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE),1,3-dichlorobenzene (DCB),1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared.The adsorbents included three polymer-based activated carbons,one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT).The polymerbased activated carbons were prepared using KOH activation from waste polymers:polyvinyl chloride (PVC),polyethyleneterephthalate (PET) and tire rubber (TR).Compared with F400 and MWNT,activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs,attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures.Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect.In contrast,due to the molecular sieving effect,their adsorption on HCH was lower.MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  13. Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate)

    International Nuclear Information System (INIS)

    A glassy carbon electrode was modified with a nanocomposite prepared from poly(p-aminobenzene sulfonic acid), multi-walled carbon nanotubes and chitosan to obtain a differential pulse voltammetric sensor for serotonin that is remarkably stable and displays enhanced current response. Its peak current (at 0.38 V vs. Ag/AgCl) varied linearly with the concentration of serotonin in the 0.1–100 μM range, and the detection limit is 80 nM (at an S/N of 3). The sensor was successfully applied to the determination of serotonin in (spiked) human blood serum. (author)

  14. A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nanonewton level force metrology

    International Nuclear Information System (INIS)

    This paper presents the design and fabrication of a multi-axis microelectromechanical system (MEMS) force sensor with integrated carbon nanotube (CNT)-based piezoresistive sensors. Through the use of proper CNT selection and sensor fabrication techniques, the performance of the CNT-based MEMS force sensor was increased by approximately two orders of magnitude as compared to current CNT-based sensor systems. The range and resolution of the force sensor were determined as 84 μN and 5.6 nN, respectively. The accuracy of the force sensor was measured to be better than 1% over the device’s full range. (paper)

  15. Dynamic response of a carbon nanotube-based rotary nano device with different carbon-hydrogen bonding layout

    Science.gov (United States)

    Yin, Hang; Cai, Kun; Wan, Jing; Gao, Zhaoliang; Chen, Zhen

    2016-03-01

    In a nano rotational transmission system (RTS) which consists of a single walled carbon nanotube (SWCNT) as the motor and a coaxially arranged double walled carbon nanotube (DWCNT) as a bearing, the interaction between the motor and the rotor in bearing, which has great effects on the response of the RTS, is determined by their adjacent edges. Using molecular dynamics (MD) simulation, the interaction is analyzed when the adjacent edges have different carbon-hydrogen (Csbnd H) bonding layouts. In the computational models, the rotor in bearing and the motor with a specific input rotational speed are made from the same armchair SWCNT. Simulation results demonstrate that a perfect rotational transmission could happen when the motor and rotor have the same Csbnd H bonding layout on their adjacent ends. If only half or less of the carbon atoms on the adjacent ends are bonded with hydrogen atoms, the strong attraction between the lower speed (100 GHz) motor and rotor leads to a synchronous rotational transmission. If only the motor or the rotor has Csbnd H bonds on their adjacent ends, no rotational transmission happens due to weak interaction between the bonded hydrogen atoms on one end with the sp1 bonded carbon atoms on the other end.

  16. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  17. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149. ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  18. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ram Pavani

    2011-07-01

    Full Text Available Carbon nanotubes (CNTs are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Functionalized carbon nanotubes can also act as vaccine delivery systems.Carbon nanotubes (CNTs are considered to be one of the innovative resources in nanotechnology with possible use in wide range of biomedical applications viz. cancer treatment, bioengineering, cardiac autonomic regulation, platelet activation and tissue regeneration. The effect of CNTs on cells and tissues are extremely important for their use in various complex biological systems. With the increasing interest shown by the nanotechnology research community in this field, it is expected that plenty of applications of CNTs will be explored in future.

  19. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    International Nuclear Information System (INIS)

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44–1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: ► K3Fe(CN)6 has been used for the first time as mediator for nitrate reductase. ► Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. ► Analytical parameters were better than standard nitrate analysis methods.

  20. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    Science.gov (United States)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  1. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    Energy Technology Data Exchange (ETDEWEB)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif, E-mail: e.erhan@gyte.edu.tr

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 {mu}g/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: Black-Right-Pointing-Pointer K{sub 3}Fe(CN){sub 6} has been used for the first time as mediator for nitrate reductase. Black-Right-Pointing-Pointer Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. Black-Right-Pointing-Pointer Analytical parameters were better than standard nitrate analysis methods.

  2. Effect of polarization of ultrafast laser irradiation on carbon nanotube film

    International Nuclear Information System (INIS)

    Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the carbon nanotubes without damage to the substrate. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of carbon nanotubes film by selective removal of carbon nanotubes. Furthermore, a femtosecond laser does not cause any phase change in the CNTs, as usually occurs in focused ion beam irradiation of carbon nanotubes. The patterned single-walled carbon nanotube films on transparent substrate can be used as an electrode layer for touch panels of flexible or flat panel displays instead of indium tin oxide film. - Highlights: • Fabrication of topological architectures on carbon nanotube-based coatings. • Patterning of single-walled carbon nanotubes film to femtosecond laser pulses. • Femtosecond laser-induced nanotubes alignment

  3. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

    Science.gov (United States)

    Lipomi, Darren J.; Vosgueritchian, Michael; Tee, Benjamin C.-K.; Hellstrom, Sondra L.; Lee, Jennifer A.; Fox, Courtney H.; Bao, Zhenan

    2011-12-01

    Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm-1 in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.

  4. Electromechanical sensors based on carbon nanotube networks and their polymer composites

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.

    1. Berlin: Springer, 2011 - (Mukhopadhyay, S.; Lay-Ekuakille, A.; Fuchs, A.), s. 233-251. (Lecture Notes in Electrical Engineering. 83). ISBN 978-3-642-17942-6 R&D Projects: GA AV ČR IAA200600803 Grant ostatní: Interní grantová agentura UTB(CZ) IGA/12/FT/10/D Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor * gas sensor Subject RIV: JB - Sensors, Measurment, Regulation

  5. A p-i-n junction diode based on locally doped carbon nanotube network

    OpenAIRE

    Xiaodong Liu; Changxin Chen; Liangming Wei; Nantao Hu; Chuanjuan Song; Chenghao Liao; Rong He; Xusheng Dong; Ying Wang; Qinran Liu; Yafei Zhang

    2016-01-01

    A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field...

  6. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films

    Science.gov (United States)

    Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja

    2016-06-01

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g‑1 or 552 μF cm‑2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

  7. Hysteresis contributions to the apparent gate pulse refreshing of carbon nanotube based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, Matthew H; Dorsey, Andrew M; Salaets, Natalie M, E-mail: MErvin@ARL.Army.mi [US Army Research Laboratory, AMSRD-ARL-SE-RL, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2009-08-26

    We have fabricated back-gated carbon nanotube (CNT) field effect transistors (FET) and used them to sense NH{sub 3} (ammonia) gas. After observing the long time required for the sensor to recover after being exposed to NH{sub 3}, we attempted to accelerate the sensor recovery by pulsing the gate electrode for a period of time at an appropriate bias. We have found that most, if not all, of the apparent sensor refreshing due to the gate pulse is actually a measurement artifact resulting from device hysteresis.

  8. Morphological properties of surface-treated carbon nanotubes in cement-based composites.

    Science.gov (United States)

    Wang, Baomin; Han, Yu; Zhang, Tingting

    2012-11-01

    The morphological properties of the multi-walled carbon nanotubes (MWCNTs) reinforced Portland cement composites were investigated. MWCNTs with addition of up to 0.15 wt% of cement were incorporated to Portland cement with a water to cement ratio of 0.35. The porosity and pore size distribution of the composites were measured by mercury intrusion porosimetry (MIP), and the results indicate that the cement doped with MWCNTs obtained lower porosity and concentrated pore size distribution. The microstructure was analyzed by field emission scanning electron microscopy (FE SEM) and energy dispersive spectroscopy (EDS). It is shown that MWCNTs act as bridges and networks across cracks and voids. PMID:23421224

  9. Multifunctional Material Structures Based on Laser-Etched Carbon Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Aline Emplit

    2014-09-01

    Full Text Available High-power electronics in the transportation and aerospace sectors need size and weight reduction. Multifunctional and multistructured materials are currently being developed to couple electromagnetic (EM and thermal properties, i.e., shielding against electromagnetic impulsions, and thermal management across the thermal interface material (TIM. In this work, we investigate laser-machined patterned carbon nanotube (CNT micro-brushes as an alternative to metallic structures for driving simultaneously EM and heat propagation. The thermal and electromagnetic response of the CNT array is expected to be sensitive to the micro-structured pattern etched in the CNT brush.

  10. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites

    International Nuclear Information System (INIS)

    Multi-walled carbon nanotubes (MWCNTs) were synthesized by catalytic decomposition of hydrocarbon gas using chemical vapor deposition method. Synthesis was done at different growth temperatures and catalyst ratios. These MWCNTs were dispersed in epoxy resin (E-51) and their effect on mechanical strength of epoxy nanocomposites was studied. Increase in the mechanical strength of epoxy was observed with the addition of CNTs. The surface characterization was done by using optical microscope and scanning electron microscope (SEM). Mechanical properties were determined by the general tensile strength testing method.

  11. Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models

    Science.gov (United States)

    Rahmanian, M.; Torkaman-Asadi, M. A.; Firouz-Abadi, R. D.; Kouchakzadeh, M. A.

    2016-03-01

    In the present study, free vibrations of single walled carbon nanotubes (SWCNT) on an elastic foundation is investigated by nonlocal theory of elasticity with both beam and shell models. The nonlocal boundary conditions are derived explicitly and effectiveness of nonlocal parameter appearing in nonlocal boundary conditions is studied. Also it is demonstrated that the beam model is comparatively incapable of capturing size effects while shell model captures size effects more precisely. Moreover, the effects of some parameters such as mechanical properties, foundation stiffness, length and radius ratios on the natural frequencies are studied and some conclusions are drawn.

  12. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes

    Science.gov (United States)

    Masuda, Kohei; Moriyama, Satoshi; Morita, Yoshifumi; Komatsu, Katsuyoshi; Takagi, Tasuku; Hashimoto, Takayuki; Miki, Norihisa; Tanabe, Takasumi; Maki, Hideyuki

    2016-05-01

    Superconducting nanowires have attracted considerable attention due to their unique quantum-mechanical properties, as well as their potential as next-generation quantum nanodevices, such as single-photon detectors, phase-slip (PS) qubits, and other hybrid structures. In this study, we present the results of one-dimensional (1D) superconductivity in nanowires fabricated by coating suspended carbon nanotubes with a superconducting thin niobium nitride (NbN) film. In the resistance-temperature characteristic curves, hallmarks of 1D superconductivity with PS events are observed with unconventional negative magnetoresistance. We also confirm that a crossover occurs between thermal and quantum PSs as the temperature is lowered.

  13. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co3O4. • Incorporating Co3O4 nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co3O4/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10−7–1.9 × 10−5 M with a detection limit of 7.4 × 10−7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89

  14. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  15. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  16. BisGMA-polyvinylpyrrolidone blend based nanocomposites reinforced with chitosan grafted f-multiwalled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A. Praharaj

    2015-01-01

    Full Text Available In this work, initially a non-destroyable surface grafting of acid functionalized multiwalled carbon nanotubes (f-MWCNTs with biopolymer chitosan (CS was carried out using glutaraldehyde as a cross-linking agent via the controlled covalent deposition method which was characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Then, BisGMA (bisphenol-A glycidyldimethacrylate-polyvinylpyrrolidone (PVP blend was prepared (50:50 wt% by a simple sonication method. The CS grafted f-MWCNTs (CS/f-MWCNTs were finally dispersed in BisGMA-PVP blend (BGP50 system in different compositions i.e. 0, 2, 5 and 7 wt% and pressed into molds for the fabrication of reinforced nanocomposites which were characterized by SEM. Nanocomposites reinforced with 2 wt% raw MWCNTs and acid f-MWCNTs were also fabricated and their properties were studied in detail. The results of comparative study report lower values of the investigated properties in nanocomposites with 2 wt% raw and f-MWCNTs than the one with 2 wt% CS/f-MWCNTs proving it to be a better reinforcing nanofiller. Further, the mechanical behavior of the nanocomposites with various CS/f-MWCNTs content showed a dramatic increase in Young’s Modulus, tensile strength, impact strength and hardness along with improved dynamic mechanical, thermal and electrical properties at 5 wt% content of CS/f-MWCNTs. The addition of CS/f-MWCNTs also resulted in reduced corrosion and swelling properties. Thus, the fabricated nanocomposites with optimum nanofiller content could serve as low cost and light weight structural, thermal and electrical materials compatible in various corrosive and solvent based environments.

  17. Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field

    International Nuclear Information System (INIS)

    Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form

  18. Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Abhinav; Hong, Seongkyeol; Singh, Renu [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Jang, Jaesung, E-mail: jjang@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2015-04-15

    Highlights: • A transparent CNT immunosensor is presented for detection of a prostate cancer biomarker osteopontin. • This immunosensor showed a highly linear and reproducible behavior from 1 pg mL{sup −1} to 1 μg mL{sup −1}. • The limit of detection of the immunosensor was 0.3 pg mL{sup −1}. • This immunosensor demonstrated high selectivity against bovine serum albumin and human serum. - Abstract: Osteopontin (OPN) is involved in almost all steps of cancer development, and it is being investigated as a potential biomarker for a diagnosis and prognosis of prostate cancer. Here, we report a label-free, highly sensitive and transparent immunosensor based on single-walled carbon nanotubes (SWCNTs) for detection of OPN. A high density of −COOH functionalized SWCNTs was deposited between two gold/indium tin oxide electrodes on a glass substrate by dielectrophoresis. Monoclonal antibodies specific to OPN were covalently immobilized on the SWCNTs. Relative resistance change of the immunosensors was measured as the concentration of OPN in phosphate buffer saline (PBS) and human serum was varied from 1 pg mL{sup −1} to 1 μg mL{sup −1} for different channel lengths of 2, 5, and 10 μm, showing a highly linear and reproducible behavior (R{sup 2} > 97%). These immunosensors were also specific to OPN against another test protein, bovine serum albumin, PBS and human serum, showing that a limit of detection for OPN was 0.3 pg mL{sup −1}. This highly sensitive and transparent immunosensor has a great potential as a simple point-of-care test kit for various protein biomarkers.

  19. Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites.

    Science.gov (United States)

    Shi, Jin; Cha, Tae-Gon; Claussen, Jonathan C; Diggs, Alfred R; Choi, Jong Hyun; Porterfield, D Marshall

    2011-12-01

    Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result is a nanocomposite with enhanced biosensor performance. The surface morphology, electroactive surface area, and electrocatalytic performance of different fabrication protocols were studied and compared. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this protocol is the exploitation of ssDNA-SWCNTs as molecular templates for Pt black electrodeposition. The glucose and ATP microbiosensors fabricated on this platform exhibited high sensitivity (817.3 nA/mM and 45.6 nA/mM, respectively), wide linear range (up to 7 mM and 510 μM), low limit of detection (1 μM and 2 μM) and desirable selectivity. This work is significant to biosensor development because this is the first demonstration of ssDNA-SWCNT/Pt black nanocomposite as a platform for constructing both single-enzyme and multi-enzyme biosensors for physiological applications. PMID:21858297

  20. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles.

    Science.gov (United States)

    Numnuam, Apon; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-06-01

    A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of -0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0-400 μmol L(-1), with a very low limit of detection of 1.0 μmol L(-1) (s/n = 3). The operational stability of the uricase/Chi-CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis-Menten constant of 0.21 mmol L(-1) indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P > 0.05). PMID:24718436

  1. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    Science.gov (United States)

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes. PMID:25522366

  2. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  3. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  4. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  5. Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes

    OpenAIRE

    Wenwei Tang; Lei Li; Lujun Wu; Jiemin Gong; Xinping Zeng

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good ...

  6. Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid)

    Science.gov (United States)

    Aslan, Seyma; Loebick, Codruta Zoican; Kang, Seoktae; Elimelech, Menachem; Pfefferle, Lisa D.; van Tassel, Paul R.

    2010-09-01

    Biomaterials that inactivate microbes are needed to eliminate medical device infections. We investigate here the antimicrobial nature of single-walled carbon nanotubes (SWNTs) incorporated within the biomedical polymer poly(lactic-co-glycolic acid) (PLGA). We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration (bacteria die within one hour on SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNTs are more toxic, possibly due to increased density of open tube ends. This study demonstrates the potential usefulness of SWNT-PLGA as an antimicrobial biomaterial.Biomaterials that inactivate microbes are needed to eliminate medical device infections. We investigate here the antimicrobial nature of single-walled carbon nanotubes (SWNTs) incorporated within the biomedical polymer poly(lactic-co-glycolic acid) (PLGA). We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration (bacteria die within one hour on SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNTs are more toxic, possibly due to increased density of open tube ends. This study demonstrates the potential usefulness of SWNT-PLGA as an antimicrobial biomaterial. Electronic supplementary information (ESI) available: Raman spectra before and after SWNT cutting via cyclodextrins, and sample images from viability and metabolic activity assays are included. See DOI: 10.1039/c0nr00329h

  7. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Taeksoo Ji

    2011-05-01

    Full Text Available The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a fabrication of biomaterials into nanostructures, (b alignment of the nanostructures and (c immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.

  8. A Remote Sensor for Detecting Methane Based on Palladium-Decorated Single Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Guomin Li

    2013-07-01

    Full Text Available The remote detection of the concentration of methane at room temperature is performed by a sensor that is configured by the combination of radio frequency identification (RFID, and functionalized carbon nanotubes (CNTs. The proposed sensor is schemed as a thin film RFID tag in a polyethylene substrate, on which a metal trace dipole, a metal trace T impedance matching networks, a 0.5 µm-CMOS RF/DC rectifier chipset and a sensor head of palladium-decorated single walled carbon nanotubes (Pd-SWCNTs are surface mounted in cascade. The performances of the sensor are examined and described by the defined parameters of the received signal strength index (RSSI and the comparative analog identifier (∆AID. Results validate the sensor’s ability to detect molecules of methane at room temperature, showing that the RSSI can increase 4 dB and the ∆AID can increase 3% in response to methane concentrations ranging from zero to 100 ppm.

  9. Thermal dissipation media for high power electronic devices using a carbon nanotube-based composite

    International Nuclear Information System (INIS)

    Challenges in the thermal dissipation of an electronic package arise from the continuous increase in power density of higher-power devices. Carbon nanotubes (CNTs) are known as the highest thermal conductivity material (2000 W mK−1). This excellent thermal property suggests an approach in applying the CNTs in thermal dispersion materials to solve the aforementioned problems. In this work, we present an effect of thermal dissipation of the CNTs in the high-brightness light emitting diode (HB-LED) and micro-processor. For the thermal dissipation of the HB-LED, a vertically aligned carbon nanotube (VA-CNT) film on a Cu substrate was applied. Meanwhile, for the thermal dissipation of a micro-processor, the composite of commercial thermal paste/CNTs was used instead of the VA-CNTs. The experimental and simulation results have confirmed the advantages of the VA-CNT film and thermal paste/CNT composite as excellent thermal dissipation media for HB-LEDs, μ-processors and other high power electronic devices

  10. Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole

    Science.gov (United States)

    Tam, Phuong Dinh; Hieu, Nguyen Van

    2011-09-01

    Carbon nanotube/polypyrrole/antibodies polymer films were synthesized successfully on microelectrodes by electrochemical deposition. Electropolymerization was performed at optimal range between -0.8 and +0.8 V at a scan rate of 50 mV s-1 in an electrochemical mini-cell containing monomer pyrroles, carbon nanotubes, and goat IgGs. The conducting polymer films were characterized by Fourier transform infrared spectrometry, Raman spectra, and Field emission scanning electron microscopy. And then, it was prepared for immunosensor application to determine anti-goat IgGs. The results show that a linear range between 0.05 and 0.7 μg ml-1 for anti-goat IgGs detection was observed for immunosensor, a detection limit as low as 0.05 μg ml-1 and a response time of 1 min. The effect parameters of electropolymerization process on immunosensor response are also studied. It found that the immunosensor well active in 1.5 mg ml-1 CNT concentration, 2.5 mM pyrrole, 10 μg ml-1 goat IgGs.

  11. Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole

    International Nuclear Information System (INIS)

    Carbon nanotube/polypyrrole/antibodies polymer films were synthesized successfully on microelectrodes by electrochemical deposition. Electropolymerization was performed at optimal range between -0.8 and +0.8 V at a scan rate of 50 mV s-1 in an electrochemical mini-cell containing monomer pyrroles, carbon nanotubes, and goat IgGs. The conducting polymer films were characterized by Fourier transform infrared spectrometry, Raman spectra, and Field emission scanning electron microscopy. And then, it was prepared for immunosensor application to determine anti-goat IgGs. The results show that a linear range between 0.05 and 0.7 μg ml-1 for anti-goat IgGs detection was observed for immunosensor, a detection limit as low as 0.05 μg ml-1 and a response time of 1 min. The effect parameters of electropolymerization process on immunosensor response are also studied. It found that the immunosensor well active in 1.5 mg ml-1 CNT concentration, 2.5 mM pyrrole, 10 μg ml-1 goat IgGs.

  12. Massive radius-dependent flow slippage in carbon nanotubes.

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter. PMID:27604947

  13. STRUCTURE AND PROPERTIES OF COMPOSITE MATERIAL BASED ON GYPSUM BINDER AND CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    CHUMAK Anastasia Gennadievna

    2013-04-01

    Full Text Available The aim of this work is to carry out a number of studies in the area of nanomodi­fication of gypsum binder matrix and to investigate the influence of multilayer carbon nanotubes on the structure, physical and mechanical properties of obtained compos­ites. The study of the gypsum binders structure formation mechanisms with the use of nanoadditives makes it possible to control the production processes of gypsum materi­als and articles with the given set of properties. The main tasks of the binder nanomodification are: even distribution of carbon nanostructures over the whole volume of material and provision of stability for the nanodimensional modifier during production process of the construction composite.

  14. Quantum transport in carbon nanotubes

    Science.gov (United States)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  15. Carbon Nanotube Based Nanotechnology for NASA Mission Needs and Societal Applications

    Science.gov (United States)

    Li, Jing; Meyyappan, M.

    2011-01-01

    Carbon nanotubes (CNT) exhibit extraordinary mechanical properties and unique electronic properties and therefore, have received much attention for more than a decade now for a variety of applications ranging from nanoelectronics, composites to meeting needs in energy, environmental and other sectors. In this talk, we focus on some near term potential of CNT applications for both NASA and other Agency/societal needs. The most promising and successful application to date is a nano chem sensor at TRL 6 that uses a 16-256 sensor array in the construction of an electronic nose. Pristine, doped, functionalized and metal-loaded SWCNTs are used as conducting materials to provide chemical variation across the individual elements of the sensor array. This miniaturized sensor has been incorporated in an iPhone for homeland security applications. Gases and vapors relevant to leak detection in crew vehicles, biomedical, mining, chemical threats, industrial spills and others have been demonstrated. SWCNTs also respond to radiation exposure via a change in conductivity and therefore, a similar strategy is being pursued to construct a radiation nose to identify radiation sources (gamma, protons, neutrons, X-ray, etc.) with their energy levels. Carbon nanofibers (CNFs) grown using plasma enhanced CVD typically are vertical, individual, freestanding structures and therefore, are ideal for construction of nanoelectrodes. A nanoelectrode array (NEA) can be the basis for an affinity-based biosensor to meet the needs in applications such as lab-on-a-chip, environmental monitoring, cancer diagnostics, biothreat monitoring, water and food safety and others. A couple of demonstrations including detection of e-coli and ricin will be discussed. The NEA is also useful for implantation in the brain for deep brain stimulation and neuroengineering applications. Miniaturization of payload such as science instrumentation and power sources is critical to reduce launch costs. High current density

  16. Roping and wrapping carbon nanotubes

    Science.gov (United States)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  17. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  18. Influence of surface chemistry on inkjet printed carbon nanotube films

    International Nuclear Information System (INIS)

    Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.

  19. A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber.

    Science.gov (United States)

    Chow, K K; Yamashita, S; Song, Y W

    2009-04-27

    We demonstrate widely tunable wavelength conversion based on cross-phase modulation induced nonlinear polarization rotation in a carbon nanotubes (CNTs) deposited D-shaped fiber. A 5-centimeter-long CNT-deposited D-shaped fiber is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero signal. Wavelength tunable converted signal over 40 nm is obtained with around 2.5-dB power penalty in the bit-error-rate measurements. PMID:19399145

  20. Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells

    OpenAIRE

    Aitola, Kerttu; Sveinbjörnsson, Kári; Correa-Baena, Juan-Pablo; Kaskela, Antti; Abate, Antonio; Tian, Ying; Johansson, Erik M. J.; Graetzel, Michael; Kauppinen, Esko I.; Hagfeldt, Anders; Boschloo, Gerrit

    2016-01-01

    We demonstrate a high efficiency perovskite solar cell with a hybrid hole-transporting material-counter electrode based on a thin single-walled carbon nanotube (SWCNT) film and a drop-cast 2,2,7,-7-tetrakis(N, N-di-p-methoxyphenylamine)-9,90-spirobifluorene (Spiro-OMeTAD) hole-transporting material (HTM). The average efficiency of the solar cells was 13.6%, with the record cell yielding 15.5% efficiency. The efficiency of the reference solar cells with spin-coated Spiro-OMeTAD hole-transporti...

  1. Thermal Spreading in Carbon Nanotube Coating.

    Science.gov (United States)

    Kim, Duckjong; Shin, Dong-Sig; Yu, Jeonghwan; Kim, Haesik; Kim, Jae-Hyun; Woo, Chang-Su

    2015-11-01

    Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, have attracted significant attention as good candidates for next-generation heat-spreading materials because of their high thermal conductivity, mechanical flexibility, etc. Regarding the thermal spreading performance of carbon-based nanofilms, remarkable test results have been reported mainly from the industrial side, but their validity and the physical mechanism underlying the heat transfer enhancement are still under debate. In this study, we assess the thermal spreading performance of a multi-walled CNT film on a copper foil using a non-contact characterization method in a simple and methodical manner, and discuss the possibility of carbon nanofilms as heat spreaders based on the experimental and numerical results. This study provides useful information on heat transfer enhancement by carbon nanofilms and could contribute to the development of high-performance carbon-based heat-spreading coatings. PMID:26726629

  2. Significant Performance Enhancement in Asymmetric Supercapacitors based on Metal Oxides, Carbon nanotubes and Neutral Aqueous Electrolyte

    OpenAIRE

    Arvinder Singh; Amreesh Chandra

    2015-01-01

    Amongst the materials being investigated for supercapacitor electrodes, carbon based materials are most investigated. However, pure carbon materials suffer from inherent physical processes which limit the maximum specific energy and power that can be achieved in an energy storage device. Therefore, use of carbon-based composites with suitable nano-materials is attaining prominence. The synergistic effect between the pseudocapacitive nanomaterials (high specific energy) and carbon (high specif...

  3. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    Science.gov (United States)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  4. On the Nanoindentation of the Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Petre P. Teodorescu

    2010-01-01

    Full Text Available A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would initiate in the outermost shell, when nanotubes are short. The nanoindentation technique is simulated for the axially compressed of individual nanotubes, in order to evaluate the load-unloaded-displacement, the curve critical buckling and the appropriate values for local Lamé constants.

  5. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  6. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Ashok Srivastava; Yao Xu; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  7. Characterization methods of carbon nanotubes: a review

    International Nuclear Information System (INIS)

    Carbon nanotubes due to their specific atomic structure have interesting chemical and physical properties according to those of graphite and diamond. This review covers the characterization methods of carbon nanotubes which are most employed today. The structure of carbon nanotubes is first briefly summarized followed by a description of the characterization methods such as STM, TEM, neutron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, infrared and Raman spectroscopy. The most interesting features are indexed for each technique

  8. Structure and properties of carbon nanotubes

    OpenAIRE

    MEYER, Jannik

    2006-01-01

    The properties of nanoscopic objects depend critically on the position of each atom, since finite-size and quantization effects play an important role. For carbon nanotubes, the electronic, mechanical, and vibrational properties vary significantly depending on their structure. For example, a carbon nanotube can be metallic or semiconducting with varying band-gaps depending on its lattice structure. Yet, most investigations on individual carbon nanotubes are carried out on objects with unknown...

  9. Functional Materials Based on Surface Modification of Carbon Nanotubes for Biomedical and Environmental Applications

    KAUST Repository

    Mashat, Afnan

    2015-05-01

    Since the discovery of carbon nanotubes (CNTs), they have gained much interest in many science and engineering fields. The modification of CNTs by introducing different functional groups to their surface is important for CNTs to be tailored to fit the need of specific applications. This dissertation presents several CNT-based systems that can provide biomedical and environmental advantages. In this research, polyethylenimine (PEI) and polyvinyl alcohol (PVA) were used to coat CNTs through hydrogen bonding. The release of doxorubicin (DOX, an anticancer drug) from this system was controlled by temperature. This system represents a promising method for incorporating stimuli triggered polymer-gated CNTs in controlled release applications. To create an acid responsive system CNTs were coated with 1,2-Distearoyl-snglycero- 3-Phosphoethanolamine-N-[Amino(Polyethylene glycol)2000]-(PE-PEG) and Poly(acrylic acid) modified dioleoy lphosphatidyl-ethanolamine (PE-PAA). An acidlabile linker was used to cross-link PAA, forming ALP@CNTs, thus making the system acid sensitive. The release of DOX from ALP@CNTs was found to be higher in an acidic environment. Moreover, near infrared (NIR) light was used to enhance the release of DOX from ALP@CNTs. A CNT-based membrane with controlled diffusion was prepared in the next study. CNTs were used as a component of a cellulose/gel membrane due to their optical property, which allows them to convert NIR light into heat. Poly(Nisopropylacrylamide) (PNIPAm) was used due to its thermo-sensitivity. The properties of both the CNTs and PNIPAm’s were used to control the diffusion of the cargo from the system, under the influence of NIR. CNTs were also used to fabricate an antibacterial agent, for which they were coated with polydopamine (PDA) and decorated with silver particles (Ag). Galactose (Gal) terminated with thiol groups conjugated with the above system was used to strengthen the bacterial targeting ability. The antibacterial activity of

  10. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  11. Morphology of polyamide 6 confined into carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Piegat Agnieszka

    2015-06-01

    Full Text Available The preparation of polymer nanocomposites filled with carbon nanotubes requires the nanotubes to be uniformly dispersed and compatible with the polymer matrix. In this work we report a preparation method of polyamide 6 (PA 6 based nanocomposite containing multi-walled carbon nanotubes (MWCNT without any additional surface modification and obtained by in situ polymerization, as a simple method for composites production. The process was assisted by ultrasounds prior to synthesis.With such a method, an interesting morphology of polyamide 6 confined into a multiwalled carbon nanotube as well as grafted on a carbon nanotube surface was observed. For comparative purpose, PA 6 nanocomposites were also prepared from commercially available master batch by melt compounding.

  12. Carbon Nanotubes as Active Components for Gas Sensors

    Directory of Open Access Journals (Sweden)

    Wei-De Zhang

    2009-01-01

    Full Text Available The unique structure of carbon nanotubes endows them with fantastic physical and chemical characteristics. Carbon nanotubes have been widely studied due to their potential applications in many fields including conductive and high-strength composites, energy storage and energy conversion devices, sensors, field emission displays and radiation sources, hydrogen storage media, and nanometer-sized semiconductor devices, probes, and quantum wires. Some of these applications have been realized in products, while others show great potentials. The development of carbon nanotubes-based sensors has attracted intensive interest in the last several years because of their excellent sensing properties such as high selectivity and prompt response. Carbon nanotube-based gas sensors are summarized in this paper. Sensors based on single-walled, multiwalled, and well-aligned carbon nanotubes arrays are introduced. Modification of carbon nanotubes with functional groups, metals, oxides, polymers, or doping carbon nanotubes with other elements to enhance the response and selectivity of the sensors is also discussed.

  13. Modeling of carbon nanotubes and carbon nanotube-polymer composites

    Science.gov (United States)

    Pal, G.; Kumar, S.

    2016-01-01

    In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.

  14. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Amino acid ionic liquids(AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes(CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase(GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes(CNTs) modified glassy carbon(GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM(S/N = 3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  15. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG MengDong; DENG ChunYan; NIE Zhou; XU XiaHong; YAO ShouZhuo

    2009-01-01

    Amino acid ionic liquids (AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes (CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase (GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes (CNTs) modified glassy carbon (GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM (S/N=3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  16. Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications

    Science.gov (United States)

    Bhandavat, Romil

    Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 mum 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents

  17. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    Science.gov (United States)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  18. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles

    Science.gov (United States)

    Yilmazoglu, O.; Yadav, S.; Cicek, D.; Schneider, J. J.

    2016-09-01

    A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm‑1) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ∼11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30–50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In

  19. Carbon Nanotubes for Space Photovoltaic Applications

    Science.gov (United States)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  20. Fine structure and related properties of the assembleable carbon nanotubes based electrode for new family of biosensors with chooseable selectivity.

    Science.gov (United States)

    Razumiene, Julija; Gureviciene, Vidute; Voitechovic, Edita; Barkauskas, Jurgis; Bukauskas, Virginijus; Setkus, Arūnas

    2011-10-01

    Surfaces of constituent parts of biosensors based on single wall carbon nanotube layer were investigated and compare for properly functioning and faulty biosensors. Though the original technology is acceptable for changing of the selectivity, only glucose sensitive biosensors are investigated. Based on the results of the study, a correlation between the features of the nanoscale structures and parameters of amperiometric biosensors for assemblage of which an innovative approach is described. Original template of the electrodes has been prepared on a base of single wall carbon nanotube layer deposited on the supporting polycarbonate membrane. Original immobilisation of enzymes within special membrane allows functional modification of biosensors being accomplished by simple replacement of the enzymatic membrane. The original technology leads to a novel family of biosensors acceptable for detection of wide range of carbohydrates. The morphology and the local electric properties of the constituent parts of the biosensors are characterized by scanning probe microscopy. The sensitivity, selectivity and stability are described for typical types of the biosensors. PMID:22400293