WorldWideScience

Sample records for carbon nanotube-loaded electrode

  1. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading

    International Nuclear Information System (INIS)

    Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H.; Baumann, Theodore F.

    2009-01-01

    Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm -3 ) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SWNT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m 2 g -1 were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading.

  2. Effect of multiwalled carbon nanotube loading on the properties of Nafion(R) membranes

    CSIR Research Space (South Africa)

    Cele, NP

    2015-10-01

    Full Text Available The dispersion of carbon nanotubes is one of the problems in the application of polymer nanocomposites. In this study, the effect of chemical functionalization of the carbon nanotube surface on the dispersion of the tubes within a polymer...

  3. Acoustical characterisation of carbon nanotube-loaded polydimethylsiloxane used for optical ultrasound generation

    OpenAIRE

    Alles, E. J.; Heo, J.; Noimark, S.; Colchester, R.; Parkin, I.; Baac, H. W.; Desjardins, A.

    2017-01-01

    An optical ultrasound generator was used to perform broadband (2-35 MHz) acoustical characterisation measurements of a nanocomposite comprising carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), a composite that is commonly used as optical ultrasound generator. Samples consisting of either pure PDMS or CNT-loaded PDMS were characterised to determine the influence of CNTs on the speed of sound and power-law acoustic attenuation parameters. A small weight fraction (

  4. Rapid microwave-assisted regeneration of magnetic carbon nanotubes loaded with p-nitrophenol

    International Nuclear Information System (INIS)

    Cui, Chunyue; Zheng, Qingzhu; Han, Yanhe; Xin, Yanjun

    2015-01-01

    Highlights: • Magnetic CNTs material was successfully synthesized. • Magnetic CNTs have high fast adsorption rate and adsorption capacity. • Magnetic CNTs can be easily separated from the water by external magnetic field. • Magnetic CNTs can be recycled by MW irradiation regeneration. - Abstract: A novel magnetic carbon nanotubes (CNTs) adsorbent with good sorption, magnetic separability, and microwave (MW) regeneration properties was prepared successfully using thermal decomposition. The magnetic CNTs were characterized using transmission electron microscopy, energy dispersive X-ray, nitrogen adsorption (Brunauer–Emmett–Teller surface area), and X-ray diffraction and their magnetic properties were measured using a vibrating sample magnetometer. Magnetic nanoparticles (≈10 nm diameter) were dispersed uniformly on the CNTs with a magnetic CNTs surface area of 146.7 m 2 g −1 and a saturation magnetization of 21.11 emu g −1 . When the magnetic CNTs were used in the sorption of p-nitrophenol, the equilibrium time was 20 min and the sorption isotherms fit the Freundlich isotherm well. The spent magnetic CNTs could be separated magnetically and be regenerated by MW irradiation. After six adsorption and MW regeneration cycles (at 850 W for 180 s), the adsorption capacity of the magnetic CNTs was higher than that of the virgin magnetic CNTs with a low carbon loss

  5. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  6. Design of Protein-Coated Carbon Nanotubes Loaded with Hydrophobic Drugs through Sacrificial Templating of Mesoporous Silica Shells.

    Science.gov (United States)

    Fiegel, Vincent; Harlepp, Sebastien; Begin-Colin, Sylvie; Begin, Dominique; Mertz, Damien

    2018-03-26

    One key challenge in the fields of nanomedicine and tissue engineering is the design of theranostic nanoplatforms able to monitor their therapeutic effect by imaging. Among current developed nano-objects, carbon nanotubes (CNTs) were found suitable to combine imaging, photothermal therapy, and to be loaded with hydrophobic drugs. However, a main problem is their resulting low hydrophilicity. To face this problem, an innovative method is developed here, which consists in loading the surface of carbon nanotubes (CNTs) with drugs followed by a protein coating around them. The originality of this method relies on first covering CNTs with a sacrificial template mesoporous silica (MS) shell grafted with isobutyramide (IBAM) binders on which a protein nanofilm is strongly adhered through IBAM-mediated physical cross-linking. This concept is first demonstrated without drugs, and is further improved with the suitable loading of hydrophobic drugs, curcumin (CUR) and camptothecin (CPT), which are retained between the CNTs and human serum albumin (HSA) layer. Such novel nanocomposites with favorable photothermal properties are very promising for theranostic systems, drug delivery, and phototherapy applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  8. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  9. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  10. Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber.

    Science.gov (United States)

    Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad

    2014-12-29

    A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. In vitro evaluation of biocompatibility of uncoated thermally reduced graphene and carbon nanotube-loaded PVDF membranes with adult neural stem cell-derived neurons and glia

    Directory of Open Access Journals (Sweden)

    Çagla Defterali

    2016-12-01

    Full Text Available Graphene, graphene-based nanomaterials (GBNs and carbon nanotubes (CNTs are being investigated as potential substrates for the growth of neural cells. However, in most in vitro studies the cells were seeded on these materials coated with various proteins implying that the observed effects on the cells could not solely be attributed to the GBN and CNT properties. Here we studied the biocompatibility of uncoated thermally reduced graphene (TRG and poly-vinylidene fluoride (PVDF membranes loaded with multi walled CNTs (MWCNTs using neural stem cells (NSCs isolated from the adult mouse olfactory bulb (termed aOBSCs. When aOBSCs were induced to differentiate on coverslips treated with TRG or control materials (polyethyleneimine-PEI and polyornithine plus fibronectin-PLO/F in a serum-free medium, neurons, astrocytes, and oligodendrocytes were generated in all conditions, indicating that TRG permits the multi-lineage differentiation of aOBSCs. However, the total number of cells was reduced on both PEI and TRG. In a serum-containing medium, aOBSC-derived neurons and oligodendrocytes grown on TRG were more numerous than in controls; the neurons developed synaptic boutons and oligodendrocytes were more branched. In contrast, neurons growing on PVDF membranes had reduced neurite branching and on MWCNTs-loaded membranes, oligodendrocytes were lower in numbers than in controls. Overall, these findings indicate that uncoated TRG may be biocompatible with the generation, differentiation, and maturation of aOBSC-derived neurons and glial cells, implying a potential use for TRG to study functional neuronal networks.

  12. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  13. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  14. Capacitor with a composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  15. APPLICATIONS OF A SINGLE CARBON ELECTRODE

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... ABSTRACT: A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. ... applications: welding, spot welding, hole piercing, etc. The metal tube holding the carbon electrodes is banded with ...

  16. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  17. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    OpenAIRE

    Tieshi He; Xue Ren; Junping Nie; Jun Ying; Kedi Cai

    2015-01-01

    Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC) of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′)-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distrib...

  18. Optimising carbon electrode materials for adsorptive stripping voltammetry

    OpenAIRE

    Chaisiwamongkhol, K; Batchelor-McAuley, C; Sokolov, S; Holter, J; Young, N; Compton, R

    2017-01-01

    Different types of carbon electrode materials for adsorptive stripping voltammetry are studied through the use of cyclic voltammetry. Capsaicin is utilised as a model compound for adsorptive stripping voltammetry using unmodified and modified basal plane pyrolytic graphite (BPPG) electrodes modified with multi-walled carbon nanotubes, carbon black or graphene nanoplatelets, screen printed carbon electrodes (SPE), carbon nanotube modified screen printed electrodes, and carbon paste electrodes....

  19. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tieshi He

    2015-01-01

    Full Text Available Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distribution, and life cycle. The imbalanced supercapacitor with an AC weight ratio of 80 : 120 of positive to negative electrode has an average potential distribution in each electrode, and it revealed the best electrochemical performance: specific capacitor was 39.6 F·g−1, while the charge-discharge efficiency was 97.2% after 2000 life cycle tests.

  20. Method for making thin carbon foam electrodes

    Science.gov (United States)

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  1. Carbon paste electrodes in electroanalytical chemistry

    Directory of Open Access Journals (Sweden)

    KAREL VYTŘAS

    2009-09-01

    Full Text Available An overview is given dealing with the applications of carbon paste electrodes in equilibrium potentiometry as well as in electrochemical stripping analysis using both voltammetric and potentiometric modes. Various modifications of carbon pastes and carbon paste-based biosensors are also mentioned. The main emphasis in this article is directed at summarizing recent results of the authors’ research group during the past few years.

  2. Elastomeric binders for Li-SOCl2 cell carbon electrodes

    Science.gov (United States)

    Carter, B. J.; Jeffries, B.; Yen, S. P. S.

    1987-01-01

    Nonoptimized elastomer bonded carbon electrodes made with 100-percent compressed Gulf Acetylene Black have demonstrated performance comparable to that of optimized Teflon bonded carbon electrodes, made from the same carbon, when tested at 1-10 mA/sq cm, at 24 and -26 C. The enhanced performance of elastomer bonded carbon electrodes appears to be due to the more uniform utilization of the carbon electrode to store insoluble discharge products, as compared to Teflon bonded carbon electrodes. With even minimal optimization of elastomer bonded carbon electrodes, significant improvement in Li-SOCl2 cell performance can be expected.

  3. Carbon nanocages as supercapacitor electrode materials.

    Science.gov (United States)

    Xie, Ke; Qin, Xingtai; Wang, Xizhang; Wang, Yangnian; Tao, Haisheng; Wu, Qiang; Yang, Lijun; Hu, Zheng

    2012-01-17

    Supercapacitor electrode materials: Carbon nanocages are conveniently produced by an in situ MgO template method and demonstrate high specific capacitance over a wide range of charging-discharging rates with high stability, superior to the most carbonaceous supercapacitor electrode materials to date. The large specific surface area, good mesoporosity, and regular structure are responsible for the excellent performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Organic electrochemistry and carbon electrodes

    International Nuclear Information System (INIS)

    Weinberg, N.

    1983-01-01

    Carbons are often used in organic electrosynthesis and are critical as anodes or cathodes to certain reactions. Too often the surface properties of carbons have been left uncharacterized in relation to the reaction; however, these physical and chemical properties of carbons are important to the nature of the products, and the selectivity. Examples presented include the Kolbe reaction, the oxidation of aromatics in presence of carboxylate salts, electrofluorination of organics, acetamidation of aromatics, the hydrodimerization of formaldehyde and the oxidation of carbon fibers. These reactions apparently involve special surface characteristics: structure, surface area, stabilized surface sites, and the presence or absence of significant ''oxide'' functionality

  5. Carbon film electrodes for super capacitor applications

    Science.gov (United States)

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  6. 1-ethanone modified carbon paste electrode

    African Journals Online (AJOL)

    a

    7.00) in cyclic voltammetry, the oxidation of L-cysteic acid at the surface of 4FEPEMCPE is occurred at a potential about 220 mV less positive than that an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, K/ h, were also determined using.

  7. ELECTROCHEMICAL PROPERTIES OF NANOPOROUS CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    P.Nigu

    2002-01-01

    Full Text Available Electrical double layer and electrochemical characteristics at the nanoporous carbon | (C2H54NBF4 + acetonitrile interface have been studied by the cyclic voltammetry and impedance spectroscopy methods. The value of zero charge potential (0.23 V vs. SCE in H2O, the region of ideal polarizability and other characteristics have been established. Analysis of complex plane plots shows that the nanoporous carbon | x M (C2H54NBF4 + acetonitrile interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of hindered reaction of the charge transfer process. The values of the characteristic frequency depend on the electrolyte concentration and on the electrode potential, i.e. on the nature of ions adsorbed at the surface of nanoporous carbon electrode.

  8. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan

    2017-01-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  9. DNA-FET using carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Sasaki, T K; Ikegami, A; Aoki, N; Ochiai, Y

    2006-01-01

    We demonstrate DNA field effect transistor (DNA-FET) using multiwalled carbon nanotube (MWNT) as nano-structural source and drain electrodes. The MWNT electrodes have been fabricated by focused ion-beam bombardment (FIBB). A very short channel, approximately 50 nm, was easily formed between the severed MWNT. The current-voltage (I-V) characteristics of DNA molecules between the MWNT electrodes showed hopping transport property. We have also measured the gate-voltage dependence in the I-V characteristics and found that poly DNA molecules exhibits p-type conduction. The transport of DNA-FET can be explained by two hopping lengths which depend on the range of the source-drain bias voltages

  10. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  11. Carbon paste electrode incorporating multi-walled carbon nanotube ...

    Indian Academy of Sciences (India)

    The preparation and electrochemical performance of the carbon nanotube paste electrode modified with ferrocene (FCMCNPE) was investigated for electrocatalytic behaviour toward oxidation of -acetyl--cysteine (NAC) in the presence of tryptophan (Trp) using cyclic voltammetry (CV) and differential pulse voltammetry ...

  12. All-Carbon Electrodes for Flexible Solar Cells

    OpenAIRE

    Zexia Zhang; Ruitao Lv; Yi Jia; Xin Gan; Hongwei Zhu; Feiyu Kang

    2018-01-01

    Transparent electrodes based on carbon nanomaterials have recently emerged as new alternatives to indium tin oxide (ITO) or noble metal in organic photovoltaics (OPVs) due to their attractive advantages, such as long-term stability, environmental friendliness, high conductivity, and low cost. However, it is still a challenge to apply all-carbon electrodes in OPVs. Here, we report our efforts to develop all-carbon electrodes in organic solar cells fabricated with different carbon-based materia...

  13. Carbon Nanofiber Electrode Array for Neurochemical Monitoring

    Science.gov (United States)

    Koehne, Jessica E.

    2017-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  14. Polyaniline-deposited porous carbon electrode for supercapacitor

    International Nuclear Information System (INIS)

    Chen, W.-C.; Wen, T.-C.; Teng, H.

    2003-01-01

    Electrodes for supercapacitors were fabricated by depositing polyaniline (PANI) on high surface area carbons. The chemical composition of the PANI-deposited carbon electrode was determined by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of electrodes. An equivalent circuit was proposed to successfully fit the EIS data, and the significant contribution of pseudocapacitance from PANI was thus identified. A comparative analysis on the electrochemical properties of bare-carbon electrodes was also conducted under similar conditions. The performance of the capacitors equipped with the resulting electrodes in 1 M H 2 SO 4 was evaluated by constant current charge-discharge cycling within a potential range from 0 to 0.6 V. The PANI-deposited electrode exhibits high specific capacitance of 180 F/g, in comparison with a value of 92 F/g for the bare-carbon electrode

  15. High power and high energy electrodes using carbon nanotubes

    Science.gov (United States)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  16. Method for intercalating alkali metal ions into carbon electrodes

    Science.gov (United States)

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  17. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  18. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    NARCIS (Netherlands)

    Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J.

    2012-01-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon

  19. Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active center of H2 evolution from water

    International Nuclear Information System (INIS)

    Kang Shizhao; Chen Lili; Li Xiangqing; Mu Jin

    2012-01-01

    A composite photocatalyst containing Eosin Y as a sensitizer, multiwalled carbon nanotubes as a supporter material or electron transfer channel, and CuO/NiO as an active center of H 2 evolution from water was fabricated and characterized with X-ray photoelectron spectroscopy and transmission electron microscope. Meanwhile, photocatalytic hydrogen evolution from water over this catalyst was explored using triethanolamine as a sacrificial reagent under visible irradiation. A rate of H 2 evolution of approximately 1.0 mmol g -1 h -1 was achieved under optimal conditions. Furthermore, for practical purposes, the photocatalytic hydrogen evolution was studied as a function of content of CuO/NiO, mass ratio of CuO to NiO, pH of solution, concentration of triethanolamine and dosage of Eosin Y, respectively. The results show that mixed metal oxides are a kind of promising active centers of H 2 evolution from water in the photocatalytic system studied.

  20. Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active center of H2 evolution from water

    Science.gov (United States)

    Kang, Shi-Zhao; Chen, Lili; Li, Xiangqing; Mu, Jin

    2012-06-01

    A composite photocatalyst containing Eosin Y as a sensitizer, multiwalled carbon nanotubes as a supporter material or electron transfer channel, and CuO/NiO as an active center of H2 evolution from water was fabricated and characterized with X-ray photoelectron spectroscopy and transmission electron microscope. Meanwhile, photocatalytic hydrogen evolution from water over this catalyst was explored using triethanolamine as a sacrificial reagent under visible irradiation. A rate of H2 evolution of approximately 1.0 mmol g-1 h-1 was achieved under optimal conditions. Furthermore, for practical purposes, the photocatalytic hydrogen evolution was studied as a function of content of CuO/NiO, mass ratio of CuO to NiO, pH of solution, concentration of triethanolamine and dosage of Eosin Y, respectively. The results show that mixed metal oxides are a kind of promising active centers of H2 evolution from water in the photocatalytic system studied.

  1. Critical survey on electrode aging in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K.

    1979-12-01

    To evaluate potential electrodes for molten carbonate fuel cells, we reviewed the literature pertaining to these cells and interviewed investigators working in fuel cell technology. In this critical survey, the effect of three electrode aging processes - corrosion or oxidation, sintering, and poisoning - on these potential fuel-cell electrodes is presented. It is concluded that anodes of stabilized nickel and cathodes of lithium-doped NiO are the most promising electrode materials for molten carbonate fuel cells, but that further research and development of these electrodes are needed. In particular, the effect of contaminants such as H/sub 2/S and HCl on the nickel anode must be investigated, and methods to improve the physical strength and to increase the conductivity of NiO cathodes must be explored. Recommendations are given on areas of applied electrode research that should accelerate the commercialization of the molten carbonate fuel cell. 153 references.

  2. Carbon in bifunctional air electrodes in alkaline solution

    International Nuclear Information System (INIS)

    Tryk, D.; Aldred, W.; Yeager, E.

    1983-01-01

    Bifunctional O 2 electrodes can be used both to reduce and to generate O 2 in rechargeable metal-air batteries and fuel cells. The factors controlling the O 2 reduction and generation reactions in gas-diffusional bifunctional O 2 electrodes are discussed. The resistance of such electrodes, as established from voltammetry curves, has been found to increase markedly during anodic polarization and to be dependent upon the electrode fabrication technique. Carbon blacks with more graphitic structure than Shawinigan black have been found to be more resistant to electro-oxidation. The further extension of cycle life of bifunctional electrodes using carbon is critically dependent on finding more oxidation-resistant carbons that at the same time have other surface properties meeting the requirements for catalyzed gas-diffusion electrodes

  3. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  4. Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active center of H{sub 2} evolution from water

    Energy Technology Data Exchange (ETDEWEB)

    Kang Shizhao [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Chen Lili [Key Laboratory for Ultrafine Materials of the Ministry of Education, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li Xiangqing [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Mu Jin, E-mail: mujin@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2012-06-01

    A composite photocatalyst containing Eosin Y as a sensitizer, multiwalled carbon nanotubes as a supporter material or electron transfer channel, and CuO/NiO as an active center of H{sub 2} evolution from water was fabricated and characterized with X-ray photoelectron spectroscopy and transmission electron microscope. Meanwhile, photocatalytic hydrogen evolution from water over this catalyst was explored using triethanolamine as a sacrificial reagent under visible irradiation. A rate of H{sub 2} evolution of approximately 1.0 mmol g{sup -1} h{sup -1} was achieved under optimal conditions. Furthermore, for practical purposes, the photocatalytic hydrogen evolution was studied as a function of content of CuO/NiO, mass ratio of CuO to NiO, pH of solution, concentration of triethanolamine and dosage of Eosin Y, respectively. The results show that mixed metal oxides are a kind of promising active centers of H{sub 2} evolution from water in the photocatalytic system studied.

  5. Antibacterial validation of electrogenerated hypochlorite using carbon-based electrodes.

    Science.gov (United States)

    Locker, J; Fitzgerald, P; Sharp, D

    2014-12-01

    This proof-of-concept study explores the novel use of carbon-based electrodes for the electrochemical generation of hypochlorite and compares the antimicrobial efficacy against commercial hypochlorite solution. Antimicrobial concentrations of hypochlorite were generated using pad-printed carbon and carbon fibre electrodes, yielding up to 0·027% hypochlorite in 60 min and 0·1% hypochlorite in 15 min, respectively, in a nondivided assembly. The minimum inhibitory concentration (MIC) of the electrogenerated hypochlorite produced using carbon fibre electrodes was established for four medically important bacteria (Pseudomonas aeruginosa and Staphylococcus aureus approx. 0·025%, Escherichia coli and Enterococcus faecalis approx. 0·012%) and found to be in agreement with those determined using commercial hypochlorite solution. Therefore, carbon-based electrodes, particularly carbon fibre, have proven effective for the generation of antimicrobial concentrations of hypochlorite. The similarity of the MIC values to commercial hypochlorite solutions suggests that the antimicrobial efficacy is derived from the quantified hypochlorite generated and not due to marked cogeneration of reactive oxygen species, as identified for other assemblies. As such, the application of carbon electrodes may be suitable for the local production of hypochlorite for healthcare antisepsis. Carbon fibre electrodes can rapidly generate antimicrobial concentrations of hypochlorite; as such, these cheap and commercially available electrodes are proposed for the local production of hypochlorite for healthcare antisepsis. Importantly, the antimicrobial properties of the electrochemically generated hypochlorite mirror those of commercial hypochlorite, suggesting this is not enhanced by the cogeneration of reactive oxygen species. This illustrates the potential use of disposable carbon electrodes for localized small-volume production of hypochlorite for surface and skin cleansing, and opens a broader

  6. Mutagens in urine of carbon electrode workers

    Energy Technology Data Exchange (ETDEWEB)

    Pasquini, R; Monarca, S; Sforzolini, G S; Conti, R; Fagioli, F

    1982-01-01

    Following previous work carried out in an Italian factory producing carbon electrodes and evaluating the occupational mutagenic-carcinogenic hazards, the authors studied the presence of mutagen metabolites in the urine of workers in the same factory who were exposed to petroleum coke and pitch and in the urine of a control group of unexposed workers. The urine samples were concentrated by absorption on XAD-2 columns and were tested using the Salmonella/microsome assay (strain TA98, TA100, TA1535, TA1538) with and without the addition of beta-glucuronidase and metabolizing system. The collection of urine samples was carried out twice, with an interval of 2 months; 'before working time', 'after working time', and also during Sunday. The results showed that urine samples collected 'before' occupational exposure (upon waking) or on Sunday revealed no mutagenic activity in either worker groups and that the urine samples collected after or during occupational exposure revealed high mutagenic activity in the exposed workers, with a statistically significant difference between the mean of the revertants/plate values for exposed and unexposed workers. On the basis of the previous and the present research, the authors suggest that application of the Salmonella/microsome test to work environments could offer useful and suitable tool for evaluating the health hazards due to mutagenic/carcinogenic substances from occupational exposure.

  7. Attractive forces in microporous carbon electrodes for capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Porada, S.; Levi, M.; Bazant, M.Z.

    2014-01-01

    The recently developed modified Donnan (mD) model provides a simple and useful description of the electrical double layer in microporous carbon electrodes, suitable for incorporation in porous electrode theory. By postulating an attractive excess chemical potential for each ion in the micropores

  8. Wireless desalination using inductively powered porous carbon electrodes

    NARCIS (Netherlands)

    Kuipers, J.; Porada, S.

    2013-01-01

    Water desalination by capacitive deionization (CDI) uses electrochemical cell pairs formed of porous carbon electrodes, which are brought in contact with the water that must be desalinated. Upon applying a cell voltage or current between the electrodes, ions are electrosorbed and water is produced

  9. Composite supercapacitor electrodes made of activated carbon ...

    Indian Academy of Sciences (India)

    carbon/PEDOT:PSS and activated carbon/doped PEDOT. T S SONIA, P A MINI, ... polymeric anodes for organic photovoltaics, light-emitting diodes (Pingree et al ... looked upon are carbon nanotubes (CNTs), graphene and activated carbon.

  10. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  11. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lota, Grzegorz; Frackowiak, Elzbieta [Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Tyczkowski, Jacek; Kapica, Ryszard [Technical University of Lodz, Faculty of Process and Environmental Engineering, Division of Molecular Engineering, Wolczanska 213, 90-924 Lodz (Poland); Lota, Katarzyna [Institute of Non-Ferrous Metals Branch in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan (Poland)

    2010-11-15

    The carbon material was modified by RF plasma with various reactive gases: O{sub 2}, Ar and CO{sub 2}. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application. (author)

  12. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  13. Carbon nanofibers grown on activated carbon fiber fabrics as electrode of supercapacitors

    International Nuclear Information System (INIS)

    Ko, T-H; Hung, K-H; Tzeng, S-S; Shen, J-W; Hung, C-H

    2007-01-01

    Carbon nanofibers (CNFs) were grown directly on activated carbon fiber fabric (ACFF), which was then used as the electrode of supercapacitors. Cyclic voltammetry and ac impedance were used to characterize the electrochemical properties of ACFF and CNF/ACFF electrodes in both aqueous and organic electrolytes. ACFF electrodes show higher specific capacitance than CNF/ACFF electrodes due to larger specific surface area. However, the spaces formed between the CNFs in the CNF/ACFF electrodes are more easily accessed than the slit-type pores of ACFF, and much higher electrical-double layer capacitance was obtained for CNF/ACFF electrodes

  14. Low Impedance Carbon Adhesive Electrodes with Long Shelf Life.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Reyes, Bersaín A; Burnham, Ken; Pennace, John; Chon, Ki H

    2015-10-01

    A novel electrocardiogram (ECG) electrode film is developed by mixing carbon black powder and a quaternary salt with a visco-elastic polymeric adhesive. Unlike traditional wet gel-based electrodes, carbon/salt/adhesive (CSA) electrodes should theoretically have an infinite shelf life as they do not dehydrate even after a prolonged period of storage. The CSA electrodes are electrically activated for use through the process of electrophoresis. Specifically, the activation procedure involves sending a high voltage and current through the electrode, which results in significant reduction of impedance so that high fidelity ECG signals can be obtained. Using the activation procedure, the ideal concentration of carbon black powder in the mixture with the adhesive was examined. It was determined that the optimum concentration of carbon black which minimized post-activation impedance was 10%. Once the optimal carbon black powder concentration was determined, extensive signal analysis was performed to compare the performance of the CSA electrodes to the standard silver-silver chloride (Ag/AgCl) electrodes. As a part of data analysis, electrode-skin contact impedance of the CSA was measured and compared to the standard Ag/AgCl electrodes; we found consistently lower impedance for CSA electrodes. For quantitative data analysis, we simultaneously collected ECG data with CSA and Ag/AgCl electrodes from 17 healthy subjects. Heart rate variability (HRV) indices and ECG morphological waveforms were calculated to compare CSA and Ag/AgCl electrodes. Non-significant differences for most of the HRV indices between CSA and Ag/AgCl electrodes were found. Of the morphological waveform metrics consisting of R-wave peak amplitude, ST-segment elevation and QT interval, only the first index was found to be significantly different between the two media. The response of CSA electrodes to motion artifacts was also tested, and we found in general no difference in the quality of the ECG signal

  15. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage on the electrosorption capacities for Na 2 SO 4 , Na 3 PO 4 , and Na 2 CO 3 have been investigated and are reported here. Results for NaCl and NaNO 3 have been reported previously. Possible applications for CDI are as a replacement for ion exchange processes which remove heavy metals and radioisotopes from process and waste water in various industries, as well as to remove inorganic ions from feedwater for fossil and nuclear power plants

  16. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    Science.gov (United States)

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  17. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  18. Redox electrodes comprised of polymer-modified carbon nanomaterials

    Science.gov (United States)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  19. Coaxial fiber supercapacitor using all-carbon material electrodes.

    Science.gov (United States)

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  20. Copper nanoparticle modified carbon electrode for determination of dopamine

    International Nuclear Information System (INIS)

    Oztekin, Yasemin; Tok, Mutahire; Bilici, Esra; Mikoliunaite, Lina; Yazicigil, Zafer; Ramanaviciene, Almira; Ramanavicius, Arunas

    2012-01-01

    This paper reports the synthesis and characterization of copper nanoparticles (CuNPs) and application of copper nanoparticle-modified glassy carbon electrode for the electrochemical determination of dopamine. Electrochemical measurements were performed using differently modified glassy carbon (GC) electrodes. Bare, oxidized before modification and copper nanoparticle-modified glassy carbon electrodes (bare-GC, ox-GC and CuNP/GC electrodes, respectively) were characterized by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox probes. Atomic force microscopy was used for the visualization of electrode surfaces. The CuNP/GC electrode was found to be suitable for the selective determination of dopamine even in the presence of ascorbic acid, uric acid, and p-acetamidophenol. The observed linear range of CuNP/GC for dopamine was from 0.1 nM to 1.0 μM while the detection limit was estimated to be 50 pM. It was demonstrated that here reported glassy carbon electrode modified by copper nanoparticles is suitable for the determination of dopamine in real samples such as human blood serum.

  1. Processing of carbon composite paper as electrode for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, R.B.; Maheshwari, Priyanka H.; Dhami, T.L. [Carbon Technology Unit, National Physical Laboratory, New Delhi 110012 (India); Sharma, R.K.; Sharma, C.P. [Soft Polymeric Group, Division of Engineering Materials, National Physical Laboratory, New Delhi 110012 (India)

    2006-10-27

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material. (author)

  2. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode

    International Nuclear Information System (INIS)

    Zhang, Ya; Zheng, Jian Bin

    2007-01-01

    Ionic liquid, 1-heptyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), has been used to fabricate two new electrodes, carbon ionic liquid electrode (CILE) and ionic liquid modified carbon paste electrode (IL/CPE), using graphite powder mixed with HMIMPF 6 or the mixture of HMIMPF 6 /paraffin liquid as the binder, respectively. The electrochemical behaviors of hydroquinone at the CILE, the IL/CPE and the CPE were investigated in phosphate buffer solution. At all these electrodes, hydroquinone showed a pair of redox peaks. The order of the current response and the standard rate constant of hydroquinone at these electrodes were as follows: CILE > IL/CPE > CPE, while the peak-to-peak potential separation was in an opposite sequence: CILE < IL/CPE < CPE. The results show the superiority of CILE to IL/CPE and CPE, and IL/CPE to CPE in terms of promoting electron transfer, improving reversibility and enhancing sensitivity. The CILE was chosen as working electrode to determine hydroquinone by differential pulse voltammetry, which can be used for sensitive, simple and rapid determination of hydroquinone in medicated skin cosmetic cream

  3. Improved technology for manufacture of carbon electrodes

    Indian Academy of Sciences (India)

    distribution, surface area, porosity, particle size distribution and type of pores. The .... the point from where the electrode sample has been drawn. ... In addition, qualitative information on the shape and the type of pores can be determined.

  4. Applications of a single carbon electrode | Skelskey | SINET ...

    African Journals Online (AJOL)

    Abstract. A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. Key words/phrases: Arc, carbon, dry cell, plasma, welding. SINET: Ethiopian Journal of Science Vol.26(2) 2003: 173-176 ...

  5. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  6. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    Science.gov (United States)

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  7. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  8. Method for making carbon super capacitor electrode materials

    Science.gov (United States)

    Firsich, David W.; Ingersoll, David; Delnick, Frank M.

    1998-01-01

    A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

  9. Flexible supercapacitor yarns with coaxial carbon nanotube network electrodes

    International Nuclear Information System (INIS)

    Smithyman, Jesse; Liang, Richard

    2014-01-01

    Graphical abstract: - Highlights: • Fabricated flexible yarn supercapacitor with coaxial electrodes. • Use of multifunctional carbon nanotube network electrodes eliminates inactive components and enables high energy/power density. • Robust structure maintains >95% of energy/power while under deformation. - Abstract: Flexible supercapacitors with a yarn-like geometry were fabricated with coaxially arranged electrodes. Carbon nanotube (CNT) network electrodes enabled the integration of the electronic conductor and active material of each electrode into a single component. CNT yarns were employed as the inner electrode to provide the supporting structure of the device. These part integration strategies eliminated the need for inactive material, which resulted in device volumetric energy and power densities among the highest reported for flexible carbon-based EDLCs. In addition, the coaxial yarn cell design provided a robust structure able to undergo flexural deformation with minimal impact on the energy storage performance. Greater than 95% of the energy density and 99% of the power density were retained when wound around an 11 cm diameter cylinder. The electrochemical properties were characterized at stages throughout the fabrication process to provide insights and potential directions for further development of these novel cell designs

  10. Carbon electrode for desalination purpose in capacitive deionization

    International Nuclear Information System (INIS)

    Endarko,; Fadilah, Nurul; Anggoro, Diky

    2016-01-01

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m 2 /g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  11. Carbon electrode for desalination purpose in capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky [Physics Department, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS, Sukolilo Surabaya 60111, Jawa Timur (Indonesia)

    2016-03-11

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  12. Self-supported carbon electrodes obtained by tape casting

    Directory of Open Access Journals (Sweden)

    Rubio-Marcos, F.

    2006-06-01

    Full Text Available This paper describes the preparation and electrochemical response of self-supported carbon electrodes prepared by tape casting. The dc electrical conductivity, σ, of the electrodes was determined by four-wire resistance measurements and a relation between the graphite/organic additives ratio and the electrical conductivity was established. The application of these self-supported carbon electrodes as working electrodes in analytical techniques was also evaluated using norepinephrine as electroactive substance in cyclic voltammetry and chronoamperometry. The results were compared with the traditional electrodes, carbon paste electrodes (CPEs, showing that the new self-supported carbon electrodes had both lower background noise and higher analytical response.

    Este artículo describe la preparación y respuesta electroquímica de electrodos de carbono autosoportados preparados mediante colado en cinta. La conductividad eléctrica en corriente continua de este nuevo tipo de electrodos de carbono se ha determinado usando el método de cuatro puntas y se ha establecido una relación ente la relación grafito/aditivos orgánicos y la conductividad eléctrica. La aplicación de estos electrodos autosoportados como electrodos de trabajo en diversas técnicas electroanalíticas también se ha evaluado, empleando norepinefrina como analito en voltametría cíclica y en cronoamperometría. Los resultados se compararon con los obtenidos empleando los electrodos de pasta de carbono tradicionales como electrodos de trabajo, viéndose que la señal de los nuevos electrodos autosoportados poseía menor ruido de fondo y mayor respuesta analítica.

  13. All-Carbon Electrode Consisting of Carbon Nanotubes on Graphite Foil for Flexible Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Je-Hwang Ryu

    2014-03-01

    Full Text Available We demonstrate the fabrication of an all-carbon electrode by plasma-enhanced chemical vapor deposition for use in flexible electrochemical applications. The electrode is composed of vertically aligned carbon nanotubes that are grown directly on a flexible graphite foil. Being all-carbon, the simple fabrication process and the excellent electrochemical characteristics present an approach through which high-performance, highly-stable and cost-effective electrochemical applications can be achieved.

  14. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.

    Science.gov (United States)

    Esplandiu, M J; Pacios, M; Cyganek, L; Bartroli, J; del Valle, M

    2009-09-02

    In this paper, the electrochemical behavior of different myoglobin-modified carbon electrodes is evaluated. In particular, the performance of voltammetric biosensors made of forest-like carbon nanotubes, carbon nanotube composites and graphite composites is compared by monitoring mainly the electrocatalytic reduction of H(2)O(2) by myoglobin and their corresponding electroanalytical characteristics. Graphite composites showed the worst electroanalytical performance, exhibiting a small linear range, a limit of detection (LOD) of 9 x 10(-5) M and low sensitivity. However, it was found that the electrochemical response was enhanced with the use of carbon nanotube-based electrodes with LOD up to 5 x 10(-8) M, higher sensitivities and wider linear range response. On the one hand, in the case of the CNT epoxy composite, the improvement in the response can be mainly attributed to its more porous surface which allows the immobilization of higher amounts of the electroactive protein. On the other hand, in the case of the forest-like CNT electrodes, the enhancement is due to an increase in the electron transfer kinetics. These findings encourage the use of myoglobin-modified carbon nanotube electrodes as potential (bio)sensors of H(2)O(2) or O(2) in biology, microbiology and environmental fields.

  15. Water desalination using capacitive deionization with microporous carbon electrodes.

    Science.gov (United States)

    Porada, S; Weinstein, L; Dash, R; van der Wal, A; Bryjak, M; Gogotsi, Y; Biesheuvel, P M

    2012-03-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2-1.4 V. The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorption. The charge efficiency, being the ratio of equilibrium salt adsorption over charge, does not depend much on the type of material, indicating that materials that have been identified for high charge storage capacity can also be highly suitable for CDI. This work shows the potential of materials with well-defined sub-nanometer pore sizes for energy-efficient water desalination. © 2012 American Chemical Society

  16. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Zou, Xianping; Kang, Zongxuan; Shu, Dong; Liao, Yuqing; Gong, Yibin; He, Chun; Hao, Junnan; Zhong, Yayun

    2015-01-01

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO 4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  17. Conductive Carbon Coatings for Electrode Materials

    International Nuclear Information System (INIS)

    Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

    2007-01-01

    A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO 4 and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO 4 suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10 -9 S cm -1 ). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures ( 4 , however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density

  18. Carbon nanotube fiber mats for microbial fuel cell electrodes.

    Science.gov (United States)

    Delord, Brigitte; Neri, Wilfrid; Bertaux, Karen; Derre, Alain; Ly, Isabelle; Mano, Nicolas; Poulin, Philippe

    2017-11-01

    Novel carbon nanotube based electrodes of microbial fuel cells (MFC) have been developed. MFC is a promising technology for the wastewater treatment and the production of electrical energy from redox reactions of natural substrates. Performances of such bio-electrochemical systems depend critically on the structure and properties of the electrodes. The presently developed materials are made by weaving fibers solely comprised of carbon nanotubes. They exhibit a large scale porosity controlled by the weaving process. This porosity allows an easy colonization by electroactive bacteria. In addition, the fibers display a nanostructuration that promotes excellent growth and adhesion of the bacteria at the surface of the electrodes. This unique combination of large scale porosity and nanostructuration allows the present electrodes to perform better than carbon reference. When used as anode in a bioelectrochemical reactor in presence of Geobacter sulfurreducens bacteria, the present electrodes show a maximal current density of about 7.5mA/cm 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electrochemical properties of double wall carbon nanotube electrodes

    OpenAIRE

    Pumera, Martin

    2007-01-01

    AbstractElectrochemical properties of double wall carbon nanotubes (DWNT) were assessed and compared to their single wall (SWNT) counterparts. The double and single wall carbon nanotube materials were characterized by Raman spectroscopy, scanning and transmission electron microscopy and electrochemistry. The electrochemical behavior of DWNT film electrodes was characterized by using cyclic voltammetry of ferricyanide and NADH. It is shown that while both DWNT and SWNT were significantly funct...

  20. CAPACITANCE OF SUPERCAPACITORS WITH ELECTRODES BASED ON CARBON NANOCOMPOSITE MATERIAL

    OpenAIRE

    S.L Revo; B.I Rachiy; S Hamamda; T.G Avramenko; K.O Ivanenko

    2012-01-01

    This work presents the results of our research of the structure and practically important characteristics of a nanocomposite material on the basis of nanoporous carbon and thermally exfoliated graphite. This work shows that the use of the abovementioned composition in electrodes for supercapacitors allows to attain the level of their specific electrical capacitance at (155...160) F/g.

  1. Carbon nanotube yarns as strong flexible conductive capacitive electrodes

    NARCIS (Netherlands)

    Liu, F.; Wagterveld, R.M.; Gebben, B.; Otto, M.J.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    Carbon nanotube (CNT) yarn, consisting of 23 µm diameter CNT filaments, can be used as capacitive electrodes that are long, flexible, conductive and strong, for applications in energy and electrochemical water treatment. We measure the charge storage capacity as function of salt concentration, and

  2. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy ...

  3. Electrodes of carbonized MWCNT-cellulose paper for supercapacitor

    Science.gov (United States)

    Sun, Xiaogang; Cai, Manyuan; Chen, Long; Qiu, Zhiwen; Liu, Zhenghong

    2017-07-01

    A flexible composite paper of multi-walled carbon nanotube (MWCNT) and cellulose fiber (CF) were fabricated by traditional paper-making method. Then, the MWCNT/CF papers were carbonized at high temperature in vacuum to remove organic component. The carbonized MWCNT/CF (MWCNT/CCF) papers are consisted of MWCNT and carbon fiber. The papers were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and four-point probe resistance meter. The electrochemical performances of the supercapacitors were tested by cyclic voltammetry and galvanostatic charge/discharge >with 1 moL/L LiPF6 as electrolyte. The MWCNT/CCF electrode yielded a specific capacitance of 156F/g at a current density of 50 mA/g by galvanostatic charge/discharge measurement, which is 1.29 times higher than MWCNT/CF electrode of 68F/g. The MWCNT/CCF electrodes also displayed an excellent specific capacitance retention of 84% after 2000 continuous charge/discharge cycles at a current density of 400 mA/g. The increase of specific capacitance can be attributed to enhanced electrical conductivity of MWCNT/CCF papers and improved contact interface between electrolyte and electrodes.

  4. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.

    Science.gov (United States)

    Engel, A Both; Cherifi, A; Tingry, S; Cornu, D; Peigney, A; Laurent, Ch

    2013-06-21

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  5. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes

    Science.gov (United States)

    Azoubel, Suzanna; Shemesh, Shay; Magdassi, Shlomo

    2012-08-01

    Carbon nanotube (CNTs) inks may provide an effective route for producing flexible electronic devices by digital printing. In this paper we report on the formulation of highly concentrated aqueous CNT inks and demonstrate the fabrication of flexible electroluminescent (EL) devices by inkjet printing combined with wet coating. We also report, for the first time, on the formation of flexible EL devices in which all the electrodes are formed by inkjet printing of low-cost multi-walled carbon nanotubes (MWCNTs). Several flexible EL devices were fabricated by using different materials for the production of back and counter electrodes: ITO/MWCNT and MWCNT/MWCNT. Transparent electrodes were obtained either by coating a thin layer of the CNTs or by inkjet printing a grid which is composed of empty cells surrounded by MWCNTs. It was found that the conductivity and transparency of the electrodes are mainly controlled by the MWCNT film thickness, and that the dominant factor in the luminance intensity is the transparency of the electrode.

  6. High temperature SU-8 pyrolysis for fabrication of carbon electrodes

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2017-01-01

    In this work, we present the investigation of the pyrolysis parameters at high temperature (1100 °C) for the fabrication of two-dimensional pyrolytic carbon electrodes. The electrodes were fabricated by pyrolysis of lithographically patterned negative epoxy based photoresist SU-8. A central...... composite experimental design was used to identify the influence of dwell time at the highest pyrolysis temperature and heating rate on electrical, electrochemical and structural properties of the pyrolytic carbon: Van der Pauw sheet resistance measurements, cyclic voltammetry, electrochemical impedance...... spectroscopy and Raman spectroscopy were used to characterize the pyrolytic carbon. The results show that the temperature increase from 900 °C to 1100 °C improves the electrical and electrochemical properties. At 1100 °C, longer dwell time leads to lower resistivity, while the variation of the pyrolysis...

  7. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors

    Science.gov (United States)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-05-01

    In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.

  8. Electrochemical impedance measurement of a carbon nanotube probe electrode

    International Nuclear Information System (INIS)

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Shimoyama, Isao; Matsumoto, Kiyoshi

    2012-01-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1–10 nm in CNT diameter, 80–300 nm in insulator diameter, 0.5–4 μm in exposed CNT length and 1–10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. (paper)

  9. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  10. Electrodeposition of polyfluorene on a carbon nanotube electrode

    International Nuclear Information System (INIS)

    Valentini, L; Mengoni, F; Mattiello, L; Kenny, J M

    2007-01-01

    Electrophoretically deposited single-walled carbon nanotube (SWCNT) films on a transparent conducting surface are used as electrodes for the electrodeposition of a π-conjugated polymer formed by the oxidative coupling of fluorene units. This method provides a uniform coverage of the conducting surface with respect to SWCNTs chemically assembled on a gold substrate. Electron microscopy reveals the formation of a polymer-SWCNT nanostructure which imparts distinct electrical properties from those of the polymer electrodeposited on the neat electrode. By combining the attractive properties of SWCNTs and polyfluorene, these nanocomposites open up new opportunities to achieve electrical contacts in nano- to micro-devices

  11. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  12. Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Katanyoota, Porawee [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thayanlak, E-mail: thanyalak.c@hotmail.co [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand); Wongchaisuwat, Atchana [Department of Chemistry, Kasetsart University, Bangkok 10900 (Thailand); Wongkasemjit, Sujitra, E-mail: dsujitra@chula.ac.t [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand)

    2010-02-25

    In this study, polybenzoxazine, a new high performance thermosetting resin, was used to prepare carbon aerogels used as an electrode for supercapacitors. Two types of polybenzoxazines, derived from two different amines, aniline and triethylenetetramine, and denoted as BA-a and BA-teta, respectively, were chosen as the reactants for the organic precursor preparation. The surface area of carbon aerogels from both BA-a and BA-teta was 391 and 368 m{sup 2}/g, respectively. The pore size of each carbon aerogel was in the range of 2-5 nm, which is a suitable pore size for use as electrodes in electrochemical applications. The electrochemical properties of the obtained carbon aerogels showed good performance for supercapacitor applications with a specific capacitance of 55.78 and 20.53 F/g for BA-teta and BA-a, respectively. At low voltage scanning, 1 and 5 mV/s, the cyclic voltammogram of the carbon aerogel derived from BA-teta gave a better rectangular shape than that of the other carbon aerogel. The impedance spectra of both carbon aerogels confirmed the results of the capacitance and the cyclic voltammogram analyses.

  13. Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors

    International Nuclear Information System (INIS)

    Katanyoota, Porawee; Chaisuwan, Thayanlak; Wongchaisuwat, Atchana; Wongkasemjit, Sujitra

    2010-01-01

    In this study, polybenzoxazine, a new high performance thermosetting resin, was used to prepare carbon aerogels used as an electrode for supercapacitors. Two types of polybenzoxazines, derived from two different amines, aniline and triethylenetetramine, and denoted as BA-a and BA-teta, respectively, were chosen as the reactants for the organic precursor preparation. The surface area of carbon aerogels from both BA-a and BA-teta was 391 and 368 m 2 /g, respectively. The pore size of each carbon aerogel was in the range of 2-5 nm, which is a suitable pore size for use as electrodes in electrochemical applications. The electrochemical properties of the obtained carbon aerogels showed good performance for supercapacitor applications with a specific capacitance of 55.78 and 20.53 F/g for BA-teta and BA-a, respectively. At low voltage scanning, 1 and 5 mV/s, the cyclic voltammogram of the carbon aerogel derived from BA-teta gave a better rectangular shape than that of the other carbon aerogel. The impedance spectra of both carbon aerogels confirmed the results of the capacitance and the cyclic voltammogram analyses.

  14. Carbon/ λ-MnO 2 composites for supercapacitor electrodes

    Science.gov (United States)

    Malak-Polaczyk, A.; Matei-Ghimbeu, C.; Vix-Guterl, C.; Frackowiak, E.

    2010-04-01

    In the present work a composite of carbon with λ-MnO 2 have been synthesized by a simple two-step route. In the first step, to obtain LiMn 2O 4/carbon material, mesoporous activated carbon was impregnated with the solution of precursor metal salts and heated subsequently. As-prepared materials were acid treated which resulted in the formation of λ-MnO 2/carbon. Physical properties, structure and specific surface area of electrode materials were studied by TEM, X-ray diffraction and nitrogen sorption measurements. Voltammetry cycling, galvanostatic charge/discharge and impedance spectroscopy measurements performed in two- and three-electrode cells have been applied in order to measure electrochemical parameters. TEM images confirmed well dispersed λ-MnO 2 particles on the surface of carbon material. The carbon in the composite plays an important role as the surface area enhancing component and a support of pseudocapacitive material. Furthermore, the through-connected porosity serves as a continuous pathway for electrolyte transport. A synergetic effect of the porous carbon framework and of the redox properties of the λ-MnO 2 is at the origin of improvement of specific capacitance values which has been observed for composites after delithiation.

  15. Hybrid capacitor with activated carbon electrode, Ni(OH){sub 2} electrode and polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Iwakura, Chiaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Sugoh, Nozomu; Iwasaki, Hideharu [Kurashiki Research Laboratory, Kuraray Co., Ltd., 2045-1 Sakazu, Kurashiki, Okayama 710-8691 (Japan)

    2006-06-19

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH){sub 2} positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities. (author)

  16. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  17. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  18. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    International Nuclear Information System (INIS)

    Goh, J.K.; Tan, W.T.

    2008-01-01

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M -1 . The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  19. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup [Dept. of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul (Korea, Republic of)

    2015-04-15

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu{sup 2+} ion-binding capability and its binding constant 8.7 μM.

  20. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    International Nuclear Information System (INIS)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup

    2015-01-01

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu"2"+ ion-binding capability and its binding constant 8.7 μM.

  1. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.

    Science.gov (United States)

    Lu, Min; Compton, Richard G

    2014-09-21

    Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.

  2. Supercapacitor Electrode Based on Activated Carbon Wool Felt

    Directory of Open Access Journals (Sweden)

    Ana Claudia Pina

    2018-04-01

    Full Text Available An electrical double-layer capacitor (EDLC is based on the physical adsorption/desorption of electrolyte ions onto the surface of electrodes. Due to its high surface area and other properties, such as electrochemical stability and high electrical conductivity, carbon materials are the most widely used materials for EDLC electrodes. In this work, we study an activated carbon felt obtained from sheep wool felt (ACF’f as a supercapacitor electrode. The ACF’f was characterized by elemental analysis, scanning electron microscopy (SEM, textural analysis, and X-ray photoelectron spectroscopy (XPS. The electrochemical behaviour of the ACF’f was tested in a two-electrode Swagelok®-type, using acidic and basic aqueous electrolytes. At low current densities, the maximum specific capacitance determined from the charge-discharge curves were 163 F·g−1 and 152 F·g−1, in acidic and basic electrolytes, respectively. The capacitance retention at higher current densities was better in acidic electrolyte while, for both electrolytes, the voltammogram of the sample presents a typical capacitive behaviour, being in accordance with the electrochemical results.

  3. Voltammetric quantitation of nitazoxanide by glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2013-12-01

    Full Text Available The present study reports voltammetric reduction of nitazoxanide in Britton–Robinson (B–R buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for quantitative determination of nitazoxanide in pharmaceutical formulation has been proposed. A squrewave peak current was linear over the nitazoxanide concentration in the range of 20–140 µg/mL. The limit of detection (LOD and limit of quantification (LOQ was calculated to be 5.23 μg/mL and 17.45 μg/mL, respectively. Keywords: Nitazoxanide, Squarewave voltammetry, Glassy carbon electrode, Pharmaceutical formulation

  4. Carbon paste electrode in a solid-contact minicavity

    International Nuclear Information System (INIS)

    Ferreira, Antonio Ap. Pupim; Ribeiro, Sidney Jose Lima; Fugivara, Cecilio Sadao; Caiut, Jose Mauricio Almeida; Sargentelli, Vagner; Benedetti, Assis Vicente

    2011-01-01

    This work describes the preparation of carbon paste electrode (EPC) in a solid-contact minicavity and its evaluation when containing carbon paste without and with SiO 2 (Eu 3+ 2%) and SiO 2 (Eu 3+ 2%)-lysine sub-micrometrics particles. For this study cyclic voltammetry and electrochemical impedance measurements were performed at pH 7.4 in 0.1 mol L -1 PBS containing Fe(CN) 6 -3 / -4 redox species. The impedance results were interpreted based on a charge-transfer reaction involving Fe(CN) 6 -3 / -4 species and/or oxygen at higher frequencies and, diffusion of the electroactive species and carbon paste characteristics at lower frequencies. EPC-minicavity is suitable for electroanalysis using modified carbon paste. (author)

  5. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization

    NARCIS (Netherlands)

    Doornbusch, G.J.; Dykstra, J.E.; Biesheuvel, P.M.; Suss, M.E.

    2016-01-01

    The use of carbon flow electrodes has significantly impacted electrochemical energy storage and capacitive deionization (CDI), but device performance is limited as these electrodes cannot surpass ∼20 wt% carbon while maintaining flowability. We here introduce flowable fluidized bed electrodes

  6. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naderi, Leila [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of); Institute for advanced technology, Shahid Rajaee Teacher Training University, Lavizan, Tehran, 16788 (Iran, Islamic Republic of)

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001–2.0 μM and 2.0–10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. - Highlights: • The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the modified electrode with different carbon nanomaterials by Linear sweep voltammetry. • Two linear dynamic ranges and a low detection limit were obtained. • The modified electrode was applied for the detection of Fu in pharmaceutical and clinical preparations.

  7. Carbon nanopipette electrodes for dopamine detection in Drosophila.

    Science.gov (United States)

    Rees, Hillary R; Anderson, Sean E; Privman, Eve; Bau, Haim H; Venton, B Jill

    2015-04-07

    Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single-cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ∼250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon-fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a limit of detection of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 h when the applied triangle waveform was scanned between -0.4 and +1.3 V vs Ag/AgCl/Cl(-) at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are 1 order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain.

  8. Electroadsorption desalination with carbon nanotube/PAN-based carbon fiber felt composites as electrodes.

    Science.gov (United States)

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption.

  9. MOLECULAR DESCRIPTION OF ELECTROLYTE SOLUTION IN A CARBON AEROGEL ELECTRODE

    Directory of Open Access Journals (Sweden)

    A.Kovalenko

    2003-01-01

    Full Text Available We develop a molecular theory of aqueous electrolyte solution sorbed in a nanoporous carbon aerogel electrode, based on the replica reference interaction site model (replica RISM for realistic molecular quenched-annealed systems. We also briefly review applications of carbon aerogels for supercapacitor and electrochemical separation devices, as well as theoretical and computer modelling of disordered porous materials. The replica RISM integral equation theory yields the microscopic properties of the electrochemical double layer formed at the surface of carbon aerogel nanopores, with due account of chemical specificities of both sorbed electrolyte and carbon aerogel material. The theory allows for spatial disorder of aerogel pores in the range from micro- to macroscopic size scale. We considered ambient aqueous solution of 1 M sodium chloride sorbed in two model nanoporous carbon aerogels with carbon nanoparticles either arranged into branched chains or randomly distributed. The long-range correlations of the carbon aerogel nanostructure substantially affect the properties of the electrochemical double layer formed by the solution sorbed in nanopores.

  10. Nano ZnO-activated carbon composite electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, M. [Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India); Krishna Bhat, D., E-mail: denthajekb@gmail.co [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025 (India); Manish Aggarwal, A.; Prahladh Iyer, S.; Sravani, G. [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025 (India)

    2010-05-01

    A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na{sub 2}SO{sub 4} as electrolyte. The ZnO-AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm{sup 2}. It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na{sub 2}SO{sub 4} electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.

  11. Nano ZnO-activated carbon composite electrodes for supercapacitors

    Science.gov (United States)

    Selvakumar, M.; Krishna Bhat, D.; Manish Aggarwal, A.; Prahladh Iyer, S.; Sravani, G.

    2010-05-01

    A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na 2SO 4 as electrolyte. The ZnO-AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm 2. It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na 2SO 4 electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.

  12. Activation of glassy carbon electrodes by photocatalytic pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dumanli, Onur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey); Onar, A. Nur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey)], E-mail: nonar@omu.edu.tr

    2009-11-01

    This paper describes a simple and rapid photocatalytic pretreatment procedure that removes contaminants from glassy carbon (GC) surfaces. The effectiveness of TiO{sub 2} mediated photocatalytic pretreatment procedure was compared to commonly used alumina polishing procedure. Cyclic voltammetric and chronocoulometric measurements were carried out to assess the changes in electrode reactivity by using four redox systems. Electrochemical measurements obtained on photocatalytically treated GC electrodes showed a more active surface relative to polished GC. In cyclic voltammograms of epinephrine, Fe(CN){sub 6}{sup 3-/4-} and ferrocene redox systems, higher oxidation and reduction currents were observed. The heterogeneous electron transfer rate constants (k{sup o}) were calculated for Fe(CN){sub 6}{sup 3-/4-} and ferrocene which were greater for photocatalytic pretreatment. Chronocoulometry was performed in order to find the amount of adsorbed methylene blue onto the electrode and was calculated as 0.34 pmol cm{sup -2} for photocatalytically pretreated GC. The proposed photocatalytic GC electrode cleansing and activating pretreatment procedure was more effective than classical alumina polishing.

  13. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    International Nuclear Information System (INIS)

    Ruiz Montoya, Mercedes; Pintado, Sara; Rodriguez Mellado, Jose Miguel

    2010-01-01

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H 2 SO 4 ) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH a ), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK a the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  14. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, Mercedes, E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, Sara; Rodriguez Mellado, Jose Miguel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' , E-14014 Cordoba (Spain)

    2010-03-30

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H{sub 2}SO{sub 4}) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH < pK{sub a}), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK{sub a} the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  15. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes.

    Science.gov (United States)

    Benavidez, Tomás E; Garcia, Carlos D

    2013-07-01

    The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational selection of the conditions to fabricate optically transparent carbon electrodes (OTCE) with specific electrooptical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry. Such data were complemented with topography and roughness (obtained by atomic force microscopy), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Single-wall carbon nanotube chemical attachment at platinum electrodes

    International Nuclear Information System (INIS)

    Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Scibioh, M. Aulice; Cabrera, Carlos R.

    2010-01-01

    Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.

  17. Hot electron-induced electrochemiluminescence at polyetherimide-carbon black-based electrodes

    International Nuclear Information System (INIS)

    Salminen, Kalle; Grönroos, Päivi; Johansson, Leena-Sisko; Campbell, Joseph; Kulmala, Sakari

    2017-01-01

    Highlights: • Generation of hydrated electrons at carbon paste electrodes. • Hydrated electrons are able to produce intense chemiluminescence. • Relationship between carbon black content in electrode and HECL studied. • Performance of composite electrodes is similar to aluminum electrodes. • The present electrodes are good alternative for disposable assay cartridges. - Abstract: Various luminophores produce strong electrogenerated chemiluminescence during cathodic pulse polarization of the present insulating film-covered carbon paste electrodes in fully aqueous solutions. First electrodes made of a commercial conductive carbon paste were successfully utilized as working electrodes and their surface was characterized by ESCA. Then custom in-laboratory made improved composite electrodes were manufactured from the same insulating polymer and conducting carbon black particles. The relationship between the amount of carbon present on the composite electrode, in the bulk and on the surface, and the intensity of electrogenerated chemiluminescence was studied further. The overall performance of these composite electrodes makes them viable low-cost replacements for metal/insulator type electrodes such as oxide-coated silicon electrodes.

  18. Study on Carbon Nano composite Counter electrode for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Chen, Y.; Zhang, H.; Lin, J.

    2012-01-01

    Carbon nano composite electrodes were prepared by adding carbon nano tubes (CNTs) into carbon black as counter electrodes of dye-sensitized solar cells (DSSCs). The morphology and structure of carbon nano composite electrodes were studied by scanning electron microscopy. The influence of CNTs on the electrochemical performance of carbon nano composite electrodes is investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Carbon nano composite electrodes with CNTs exhibit a highly interconnected network structure with high electrical conductivity and good catalytic activity. The influence of different CNTs content in carbon nano composite electrodes on the open-circuit voltage, short-circuit current, and filling factor of DSSCs is also investigated. DSSCs with 10% CNTs content exhibit the best photovoltaic performance in our experiments.

  19. Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase

    International Nuclear Information System (INIS)

    Wen, H.; Nallathambi, V.; Chakraborty, D.; Barton, S.C.

    2011-01-01

    Carboxylated carbon nanotubes were coated onto carbon microfiber electrodes to create a micron-scale bioelectrode. This material has a high surface area and can serve as a support for immobilization of enzymes such as glucose oxidase. A typical carbon nanotube loading of 13 μg cm -1 yields a coating thickness of 17 μm and a 2000-fold increase in surface capacitance. The modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, glucose oxidase, and a crosslinker to create a glucose bioelectrode. The current density on oxidation of glucose is 16.6 mA cm-2 at 0.5 V (vs. Ag/AgCl) in oxygen-free glucose solution. We consider this approach to be useful for designing and characterizing surface treatments for carbon mats and papers by mimicking their local microenvironment. (author)

  20. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

    Directory of Open Access Journals (Sweden)

    Andrew J Stapleton, Rakesh A Afre, Amanda V Ellis, Joe G Shapter, Gunther G Andersson, Jamie S Quinton and David A Lewis

    2013-01-01

    Full Text Available Electrodes fabricated using commercially available silver nanowires (AgNWs and single walled carbon nanotubes (SWCNTs produced sheet resistances in the range 4–24 Ω squ−1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

  1. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Su, Y.; Zhitomirsky, I.

    2015-01-01

    Highlights: • Polypyrrole (PPy) coated multiwalled carbon nanotubes (MWCNT) were prepared. • New method is based on the use of new electrochemically active dopants for PPy. • The dopans provided dispersion of MWCNT and promoted PPy coating formation. • Symmetric PPy–MWCNT supercapacitors showed high capacitance and low resistance. • Asymmetric PPy–MWCNT/VN–MWCNT devices and modules allowed larger voltage window. - Abstract: Conductive polypyrrole (PPy) polymer – multiwalled carbon nanotubes (MWCNT) composites were synthesized using sulfanilic acid azochromotrop (SPADNS) and sulfonazo III sodium salt (CHR-BS) as anionic dopants for chemical polymerization of PPy. The composites were tested for application in electrodes of electrochemical supercapacitors (ES). Sedimentation tests, electrophoretic deposition experiments and Fourier transform infrared spectroscopy (FTIR) investigations showed that strong adsorption of anionic CHR-BS on MWCNT provided MWCNT dispersion. The analysis of scanning and transmission electron microscopy data demonstrated that the use of CHR-BS allowed the formation of PPy coatings on MWCNT. As a result, the composites, prepared using CHR-BS, showed higher capacitance, compared to the composites, prepared using SPADNS. The electrodes, containing MWCNT, coated with PPy showed a capacitance of 179 F g −1 for active mass loading of 10 mg cm −2 , good capacitance retention at scan rates in the range of 2–100 mV s −1 and excellent cyclic stability. Asymmetric ES devices, containing positive PPy–MWCNT electrodes and negative vanadium nitride (VN)–MWCNT electrodes showed significant improvement in energy storage performance, compared to the symmetric ES due to the larger voltage window. The low impedance and high capacitance of the individual cells paved the way to the development of modules with higher voltage, which showed good electrochemical performance

  2. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  3. Electrochemical characterisation of novel screen-printed carbon paste electrodes for voltammetric measurements

    Directory of Open Access Journals (Sweden)

    Sýs Milan

    2017-01-01

    Full Text Available This work is focused on the homemade screen-printed carbon paste electrode containing basically graphite powder (or glassy carbon powder, poly(vinylbchloride (PVC and paraffin oil. It compares the electrochemical properties of conventional carbon-based electrodes and prepared screen-printed carbon paste electrodes towards [Fe(CN6]3-/[Fe(CN6]4- and quinone/hydroquinone redox couples. Significant attention is paid to the development of the corresponding carbon inks, printing and the surface characterisation of the resulting electrodes by the scanning electron microscopy. An optimization consisted of the selection of the organic solvent, the optimal content of the used polymer with the chosen paste binder, appropriate isolation of electric contact, etc. Very similar properties of the prepared screen-printed electrodes, containing only corresponding carbon powder and 3 % PVC, with their conventional carbon paste electrode and glassy carbon-based electrodes, were observed during their characterisation. Screen-printed electrodes, with the pasting liquid usually provided satisfactory analytical data. Moreover, they can be used in the flow injection analysis and could undoubtedly replace the carbon paste grooved electrodes. It can be assumed that certain progress in the development of electrode materials was achieved by this research.

  4. Field emission properties of the graphenated carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudson.zanin@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Ceragioli, H.J.; Peterlevitz, A.C.; Baranauskas, Vitor [Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Marciano, F.R.; Lobo, A.O. [Laboratory of Biomedical Nanotechnology/Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, SP (Brazil)

    2015-01-01

    Graphical abstract: - Highlights: • Facile method to prepare graphenated carbon nanotubes (g-CNTs). • The electric field emission behaviour of g-CNTs was studied. • g-CNTs show better emission current stability than non-graphenated CNTs. - Abstract: Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  5. Nickel foam/polyaniline-based carbon/palladium composite electrodes for hydrogen storage

    International Nuclear Information System (INIS)

    Skowronski, Jan M.; Urbaniak, Jan

    2008-01-01

    The sandwich-like nickel/palladium/carbon electrodes exhibiting ability to absorb hydrogen in alkaline solution are presented. Electrodes were prepared by successive deposition of palladium and polyaniline layers on nickel foam substrate followed by heat treatment to give Ni/Pd/C electrode. It was shown that thermal conversion of polymer into carbon layer and subsequent thermal activation of carbon component bring about the modification of the mechanism of reversible hydrogen sorption. It was proven that carbon layer, interacting with Pd catalyst, plays a considerable role in the process of hydrogen storage. In the other series of experiments, Pd particles were dispersed electrochemically on carbon coating leading to Ni/C/Pd system. The adding of the next carbon layer resulted in Ni/C/Pd/C electrodes. Electrochemical properties of the electrodes depend on both the sequence of Pd and C layers and the preparation/activation of carbon coating. Electrochemical behavior of sandwich-like electrodes in the reaction of hydrogen sorption/desorption was characterized in 6 M KOH using the cyclic voltammetry method and the results obtained were compared to those for Ni/Pd electrode. The anodic desorption of hydrogen from electrodes free and containing carbon layer was considered after the potentiodynamic as well as potentiostatic sorption of hydrogen. The influence of the sorption potential and the time of rest of electrodes at a cut-off circuit on the kinetics of hydrogen recovery were examined. The results obtained for Ni/Pd/C electrodes indicate that the displacement of hydrogen between C and Pd phase takes place during the rest at a cut-off circuit. Electrodes containing carbon layer require longer time for hydrogen electrosorption. On the other hand, the presence of carbon layer in electrodes is advantageous because a considerable longer retention of hydrogen is possible, as compared to Pd/Ni electrode. Hydrogen stored in sandwich-like electrodes can instantly be

  6. Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes.

    Science.gov (United States)

    Kamga Wagheu, Josephine; Forano, Claude; Besse-Hoggan, Pascale; Tonle, Ignas K; Ngameni, Emmanuel; Mousty, Christine

    2013-01-15

    A natural Cameroonian smectite-type clay (SaNa) was exchanged with cationic surfactants, namely cetyltrimethylammonium (CTA) and didodecyldimethyl ammonium (DDA) modifying its physico-chemical properties. The resulting organoclays that have higher adsorption capacity for mesotrione than the pristine SaNa clay, have been used as modifiers of glassy carbon electrode for the electrochemical detection of this herbicide by square wave voltammetry. The stripping performances of SaNa, SaCTA and SaDDA modified electrodes were therefore evaluated and the experimental parameters were optimized. SaDDA gives the best results in deoxygenated acetate buffer solution (pH 6.0) after 2 min accumulation under open circuit conditions. Under optimal conditions, the reduction current is proportional to mesotrione concentration in the range from 0.25 to 2.5 μM with a detection limit of 0.26 μM. The fabricated electrode was also applied for the commercial formulation CALLISTO, used in European maize market. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Low-cost carbon-based counter electrodes for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Barberio, M; Imbrogno, A; Bonanno, A; Xu, F; Grosso, D R

    2015-01-01

    In this work, we present the realization of four carbon-based counter electrodes for dye-sensitized solar cells. The photovoltaic behaviours of counter electrodes realized with graphene, multiwalled carbon nanotubes, and nanocomposites of multiwalled carbon nanotubes and metal nanoparticles are compared with those of classical electrodes (amorphous carbon and platinum). Our results show an increase of about 50% in PCE for graphene and Ag/carbon nanotube electrodes with respect to amorphous carbon and of 25% in comparison to platinum. An improvement in cell stability is also observed; in fact, the PCE of all carbon-based cells assumes a constant value during a period of one month while that with the Pt electrode decreases by 50% in one week. (paper)

  8. Surface functional groups in capacitive deionization with porous carbon electrodes

    Science.gov (United States)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  9. Electrochemical modification of carbon electrode with benzylphosphonic groups

    International Nuclear Information System (INIS)

    Benjamin, Ossonon Diby; Weissmann, Martin; Bélanger, Daniel

    2014-01-01

    Electrochemical modification of carbon electrodes by aryl groups bearing a phosphonate terminal functionality was carried out by both electrochemical reduction of diazonium ions (diazobenzylphosphonic acid) and electrochemical oxidation of an amine (aminobenzylphosphonic acid). The grafting by electrochemical reduction of aryl diazonium ions was found to be more efficient. The surface concentration of phosphonate groups, estimated by electrochemical reduction of electrostatically bound Pb(II) ions, was found to be about 25% higher for the layer formed by electrochemical reduction of diazonium ions than for the layer formed by oxidation of the amine. The acid–base properties of the grafted films were slightly influenced by the grafting procedure and the difference in the apparent pK a was most likely related to the presence of the substrate –NH-aryl linkage for the film generated by amine oxidation. X-ray photoelectron spectroscopy was used to get some insight on the chemical species present at the carbon electrode surface. For both procedures, the films consist in mixture of at least two different covalently grafted species

  10. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  11. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.

    Science.gov (United States)

    Pérez, Briza; Del Valle, Manel; Alegret, Salvador; Merkoçi, Arben

    2007-12-15

    Carbon materials (CMs), such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and carbon microparticles (CMPs) are used as doping materials for electrochemical sensors. The efficiency of these materials (either before or after acidic treatments) while being used as electrocatalysts in electrochemical sensors is discussed for beta-nicotinamide adenine dinucleotide (NADH) detection using cyclic voltammetry (CV). The sensitivity of the electrodes (glassy carbon (GC) and gold (Au)) modified with both treated and untreated materials have been deeply studied. The response efficiencies of the GC and Au electrodes modified with CNF and CMP, using dimethylformamide (DMF) as dispersing agent are significantly different due to the peculiar physical and chemical characteristics of each doping material. Several differences between the electrocatalytic activities of CMs modified electrodes upon NADH oxidation have been observed. The CNF film promotes better the electron transfer of NADH minimizing the oxidation potential at +0.352 V. Moreover higher currents for the NADH oxidation peak have been observed for these electrodes. The shown differences in the electrochemical reactivities of CNF and CMP modified electrodes should be with interest for future applications in biosensors.

  12. Particulate inverse opal carbon electrodes for lithium-ion batteries.

    Science.gov (United States)

    Kang, Da-Young; Kim, Sang-Ok; Chae, Yu Jin; Lee, Joong Kee; Moon, Jun Hyuk

    2013-01-29

    Inverse opal carbon materials were used as anodes for lithium ion batteries. We applied particulate inverse opal structures and their dispersion in the formation of anode electrodes via solution casting. We prepared aminophenyl-grafted inverse opal carbons (a-IOC), inverse opal carbons with mesopores (mIOC), and bare inverse opal carbons (IOC) and investigated the electrochemical behavior of these samples as anode materials. Surface modification by aminophenyl groups was confirmed by XPS measurements. TEM images showed mesopores, and the specific area of mIOC was compared with that of IOC using BET analysis. A half-cell test was performed to compare a-IOC with IOC and mIOC with IOC. In the case of the a-IOC structure, the cell test revealed no improvement in the reversible specific capacity or the cycle performance. The mIOC cell showed a reversible specific capacity of 432 mAh/g, and the capacity was maintained at 88%-approximately 380 mAh/g-over 20 cycles.

  13. Chemical attachment of functionalized multiwalled carbon nanotubes on glassy carbon electrode for electrocatalytic application

    International Nuclear Information System (INIS)

    Rajalakshmi, K.; Abraham John, S.

    2015-01-01

    Highlights: • FMWCNTs were covalently attached on GC surface with the aid of alkyldiamine. • The attached FMWCNTs were stable for a wide potential window due to the robust C−N bond. • The composite electrode was prepared by electropolymerizing thiadiazole on FMWCNTs. • The detection limit of 0.27 μM (S/N = 3) of GMP was achieved using composite modified electrode. - Abstract: The covalent attachment of acid functionalized multiwalled carbon nanotubes (FMWCNTs) on glassy carbon (GC) electrode using 1,8-octanediamine (OD) as a linker via carbodiimide chemistry was described. The attachment of FMWCNTs on GC electrode were confirmed by attenuated total reflectance Fourier transform infra-red (ATR-FT-IR) spectroscopy, Raman, scanning electron microscopy (SEM) and electrochemical impedance studies. Raman spectrum of FMWCNTs modified surface shows the characteristic G and D bands at 1563 cm −1 and 1340 cm −1 , respectively. This confirmed the successful attachment of FMWCNTs on the OD modified GC surface. Further, the attachment of FMWCNTs on OD modified surface via amide linkage was confirmed from the observed characteristic peak at 1681 cm −1 in the ATR-FT-IR spectrum. The SEM images showed that the covalently attached FMWCNTs retained their morphology similar to powder and the average diameter of them was found to be 58 nm. Unlike modification of FMWCNTs on gold substrates with the aid of conventional thiol linkers (Au−S bond), modification of them by the present method was stable for a wide positive potential window due to the robust C−N bond. To demonstrate the electrochemical stability of the MWCNTs modified electrode at more positive potential, guanosine 5′-monophosphate (GMP) was selected as a representative probe because its oxidation occurs at more than 1 V. It was found that the FMWCNTs modified electrode not only showed a stable signal for GMP but also enhanced its oxidation current when compared to bare GC electrode. Further, the

  14. Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry.

    NARCIS (Netherlands)

    Hoeben, F.J.M.; Heller, I.; Albracht, S.P.J.; Dekker, C.; Lemay, S.G.; Heering, H.A.

    2008-01-01

    We report on the use of polymyxin (PM), a cyclic cationic lipodecapeptide, as an electrode modifier for studying protein film voltammetry (PFV) on Au and single-walled carbon nanotube (SWNT) electrodes. Pretreating the electrodes with PM allows for the subsequent immobilization of an active

  15. $MNO_2$ catalyzed carbon electrodes for dioxygen reduction in concentrated alkali

    OpenAIRE

    Manoharan, R; Shulka, AK

    1984-01-01

    A process to deposit $\\gamma-MnO_2$ catalytic oxide onto coconut-shell charcoal substrate is described. Current-potential curves for electroreduction of dioxygen with electrodes fabricated from this catalyzed substrate are obtained in 6M KOH under ambient conditions. The performance of these electrodes is competitive with platinized carbon electrodes.

  16. Enhanced electrochemical activity using vertically aligned carbon nanotube electrodes grown on carbon fiber

    Directory of Open Access Journals (Sweden)

    Evandro Augusto de Morais

    2011-09-01

    Full Text Available Vertically aligned carbon nanotubes were successfully grown on flexible carbon fibers by plasma enhanced chemical vapor deposition. The diameter of the CNT is controllable by adjusting the thickness of the catalyst Ni layer deposited on the fiber. Vertically aligned nanotubes were grown in a Plasma Enhanced Chemical Deposition system (PECVD at a temperature of 630 ºC, d.c. bias of -600 V and 160 and 68 sccm flow of ammonia and acetylene, respectively. Using cyclic voltammetry measurements, an increase of the surface area of our electrodes, up to 50 times higher, was observed in our samples with CNT. The combination of VACNTs with flexible carbon fibers can have a significant impact on applications ranging from sensors to electrodes for fuel cells.

  17. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.; Lee, Hang Woo; Bao, Zhenan

    2009-01-01

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  18. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  19. Comparison of unusual carbon-based working electrodes for electrochemiluminescence sensors.

    Science.gov (United States)

    Noman, Muhammad; Sanginario, Alessandro; Jagadale, Pravin; Demarchi, Danilo; Tagliaferro, Alberto

    2017-06-01

    In this work, unconventional carbon-based materials were investigated for use in electrochemiluminescence (ECL) working electrodes. Precursors such as bamboo, pistachio shells, kevlar ® fibers and camphor were differently treated and used as working electrodes in ECL experiments. After a proper process they were assembled as electrodes and tested in an electrochemical cell. Comparison among them and with a commercial glassy carbon electrode (GCE) shows a very good response for all of them thus demonstrating their potential use as disposable low-cost electrodes for early detection electrochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    Directory of Open Access Journals (Sweden)

    Huska Dalibor

    2011-01-01

    Full Text Available Abstract The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs. MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode.

  1. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  2. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    Science.gov (United States)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  3. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  4. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    Science.gov (United States)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  5. Ceramic carbon electrode-based anodes for use in the Cu-Cl thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Santhanam; Easton, E. Bradley [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-05-15

    We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. CCE-based electrodes vastly outperform a bare carbon electrode. Optimization of the organosilicate loading revealed maximum electrode performance was achieved with 36 wt% and was explained in terms of the optimal balance of active area and anion transport properties. (author)

  6. Electrochemical oxidation of butein at glassy carbon electrodes.

    Science.gov (United States)

    Tesio, Alvaro Yamil; Robledo, Sebastián Noel; Fernández, Héctor; Zon, María Alicia

    2013-06-01

    The electrochemical oxidation of flavonoid butein is studied at glassy carbon electrodes in phosphate and citrate buffer solutions of different pH values, and 1M perchloric acid aqueous solutions by cyclic and square wave voltammetries. The oxidation peak corresponds to the 2e(-), 2H(+) oxidation of the 3,4-dihydroxy group in B ring of butein, given the corresponding quinone species. The overall electrode process shows a quasi-reversible behavior and an adsorption/diffusion mixed control at high butein bulk concentrations. At low butein concentrations, the electrode process shows mainly an adsorption control. Butein surface concentration values were obtained from the charge associated with the adsorbed butein oxidation peaks, which are in agreement with those values expected for the formation of a monolayer of adsorbate in the concentration range from 1 to 5μM. Square wave voltammetry was used to perform a full thermodynamic and kinetics characterization of the butein surface redox couple. Therefore, from the combination of the "quasi-reversible maximum" and the "splitting of the net square wave voltammetric peak" methods, values of (0.386±0.003) V, (0.46±0.04), and 2.7×10(2)s(-1) were calculated for the formal potential, the anodic transfer coefficient, and the formal rate constant, respectively, of the butein overall surface redox process in pH4.00 citrate buffer solutions. These results will be then used to study the interaction of butein, and other flavonoids with the deoxyribonucleic acid, in order to better understand the potential therapeutic applications of these compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Activated carbon as a pseudo-reference electrode for electrochemical measurement inside concrete

    NARCIS (Netherlands)

    Abbas, Yawar; Olthuis, Wouter; van den Berg, Albert

    2015-01-01

    The application of Kynol based activated carbon (KAC) as a pseudo-reference electrode for potentiometric measurement inside concrete is presented. Due to its high surface area the activated carbons has a large electrical double layer capacitance (EDLC > 50 F g(-1)) and are used as electrode material

  8. Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors.

    Science.gov (United States)

    Wang, Ning; Wu, Chuxin; Li, Jiaxin; Dong, Guofa; Guan, Lunhui

    2011-11-01

    A ternary thin film electrode was created by coating manganese oxide onto a network composed of single-walled carbon nanotubes and single-walled carbon nanohorns. The electrode exhibited a porous structure, which is a promising architecture for supercapacitors applications. The maximum specific capacitances of 357 F/g for total electrode at 1 A/g were achieved in 0.1 M Na(2)SO(4) aqueous solution.

  9. Investigation of supercapacitors with carbon electrodes obtained from argon-acetylene arc plasma

    OpenAIRE

    Kavaliauskas, Žydrūnas

    2010-01-01

    The dissertation examines topics related to the formation of supercapacitors using plasma technology and their analysis. Plasma spray technology was used to form supercapacitors electrodes. Carbon was deposited on stainless steel surface using the atmospheric pressure argon-acetylene plasma. The deposition of nickel oxide on the surface of carbon electrodes was made using magnetron sputtering method. The influence of acetylene amount to the supercapacitors electrodes and the electrical charac...

  10. Carbon Nanotubes as Counter Electrodes for Gratzel Solar Cells

    Science.gov (United States)

    Shodive, Hasan; Aliev, Ali; Zhang, Mei; Lee, Sergey; Baughman, Ray; Zakhidov, Anvar

    2006-03-01

    The role of interfaces is very critical for solar cell devices which use nanostructured materials. Dye Sensitized Solar Cells (DSSC) are devices which parts are interfacial in character and physico --chemical processes occur at the interface of two distinct media. DSSC are of great interest due to combination of their high efficiency and relatively low cost. An effective counterelectrode with high electrochemical activity is an important component of DSSC to enhance its practical utility. Presently used Pt coated ITO counterelectrode can not be applied in flexible DSSC architectures, while there is a growing need for flexible anodes which are transparent and have desired interface characteristics. In this work in order to search for such materials for counter electrode in dye sensitized solar cells, newly developed strong and transparent and modified carbon nanotube sheets [1] are used in interfacial counter electrode. To increase the electrochemical activity of the anode the CNT sheets are coated with highly conductive SWCNT and compared with pure multiwall CNT sheets. We show that the transparent sheets of SWCNT/MWCNT perform as a flexible anode and as electrochemical catalyst and also can be used in tandems of dye sensitized solar cells as transparent charge recombination or interconnect layers. [1] M. Zhang, S.Fang, A.Zakhidov, S.B.Lee, A.Aliev et.al., Science, 309,(2005) 1215

  11. Thermal Stabilization of Enzymes Immobilized within Carbon Paste Electrodes.

    Science.gov (United States)

    Wang, J; Liu, J; Cepra, G

    1997-08-01

    In this note we report on the remarkable thermal stabilization of enzymes immobilized in carbon paste electrodes. Amperometric biosensors are shown for the first time to withstand a prolonged high-temperature (>50 °C) stress. Nearly full activity of glucose oxidase is retained over periods of up to 4 months of thermal stress at 60-80 °C. Dramatic improvements in the thermostability are observed for polyphenol oxidase, lactate oxidase, alcohol oxidase, horseradish peroxidase, and amino acid oxidase. Such resistance to heat-induced denaturation is attributed to the conformational rigidity of these biocatalysts within the highly hydrophobic (mineral oil or silicone grease) pasting liquid. While no chemical stabilizer is needed for attaining such protective action, it appears that low humidity (i.e., low water content) is essential for minimizing the protein mobility. Besides their implications for electrochemical biosensors, such observations should lead to a new generation of thermoresistant enzyme reactors based on nonpolar semisolid supports.

  12. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.

    Science.gov (United States)

    Shahrokhian, Saeed; Naderi, Leila; Ghalkhani, Masoumeh

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 μM and 2.0-10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Carbon felt and carbon fiber - A techno-economic assessment of felt electrodes for redox flow battery applications

    Science.gov (United States)

    Minke, Christine; Kunz, Ulrich; Turek, Thomas

    2017-02-01

    Carbon felt electrodes belong to the key components of redox flow batteries. The purpose of this techno-economic assessment is to uncover the production costs of PAN- and rayon-based carbon felt electrodes. Raw material costs, energy demand and the impact of processability of fiber and felt are considered. This innovative, interdisciplinary approach combines deep insights into technical, ecologic and economic aspects of carbon felt and carbon fiber production. Main results of the calculation model are mass balances, cumulative energy demands (CED) and the production costs of conventional and biogenic carbon felts supplemented by market assessments considering textile and carbon fibers.

  14. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes

    Science.gov (United States)

    de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.

    2018-07-01

    We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.

  15. Carbon nanomaterials as counter electrodes for dye solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aitola, K.

    2012-05-15

    The dye solar cell (DSC) is an interesting emerging technology for photovoltaic conversion of solar electromagnetic energy to electrical energy. The DSC is based mainly on cheap starting materials and it can be manufactured by roll-to-roll deposition techniques on flexible substrates, which is considered as one option for cost-effective large-scale solar cell production. The most expensive component of the DSC is the transparent conductive oxide glass substrate, and considerable cost reductions can be achieved by changing it to e.g. a plastic substrate. Plastic substrates are very flexible, lightweight and transparent. The state of the art DSC catalyst is thermally deposited or sputtered platinum, but platinum is a rare and expensive metal. Carbon, on the other hand, is widely available and some of its nanomaterials conduct electricity and are catalytic toward the DSC counter electrode (CE) reduction reaction. In this work, carbon nanomaterials and their composites were studied as the DSC CE active material. The materials were random network single-walled carbon nanotube (SWCNT) film on glass and plastic substrate, vertically aligned multiwalled carbon nanotube 'forest' film on steel and quartz substrate and carbon nanoparticle composite film on indium tin oxidepolyethylene terephthalate (ITO-PET) substrate. After comparison of the materials, the SWCNT network film on PET was chosen as the main CE type of this study, since it offers superior conductivity, transparency and flexibility over the other carbon-based CEs, it is also the thinnest and contains only one active material component. When a 30 % transparent SWCNT network film on PET was tested as a DSC CE, it was found out that such a film is not catalytic and conductive enough for a full 1 sun illumination DSC device, but the film could be suitable for a indoor illumination level application. The catalytic properties of a 10 % transparent SWCNT film were improved by depositing conductive PEDOT

  16. Electrochemical investigations of Pu(IV)/Pu(III) redox reaction using graphene modified glassy carbon electrodes and a comparison to the performance of SWCNTs modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, Jayashree; Sharma, Manoj K.; Kamat, J.V.

    2016-01-01

    Highlights: • First report of aqueous electrochemistry of Plutonium on graphene modified electrode. • Graphene is best electrocatalytic material for Pu(IV)/Pu(III) redox couple among the reported modifiers viz. reduced graphene oxide (rGO) and SWCNT’s. • The electrochemical reversibility of Pu(IV)/Pu(III) redox couple improves significantly on graphene modified electrode compared to previously reported rGO & SWCNTs modified electrodes • Donnan interaction between plutonium species and graphene surface offers a possibility for designing a highly sensitive sensor for plutonium • Graphene modified electrode shows higher sensitivity for the determination of plutonium compared to glassy carbon and single walled carbon nanotube modified electrode - Abstract: The work reported in this paper demonstrates for the first time that graphene modified glassy carbon electrode (Gr/GC) show remarkable electrocatalysis towards Pu(IV)/Pu(III) redox reaction and the results were compared with that of single-walled carbon nanotubes modified GC (SWCNTs/GC) and glassy carbon (GC) electrodes. Graphene catalyzes the exchange of current of the Pu(IV)/Pu(III) couple by reducing both the anodic and cathodic overpotentials. The Gr/GC electrode shows higher peak currents (i p ) and smaller peak potential separation (ΔE p ) values than the SWCNTs/GC and GC electrodes. The heterogeneous electron transfer rate constants (k s ), charge transfer coefficients (α) and the diffusion coefficients (D) involved in the electrocatalytic redox reaction were determined. Our observations show that graphene is best electrocatalytic material among both the SWCNTs and GC to study Pu(IV)/Pu(III) redox reaction.

  17. Using a cut-paste method to prepare a carbon nanotube fur electrode

    International Nuclear Information System (INIS)

    Zhang, H; Cao, G P; Yang, Y S

    2007-01-01

    We describe and realize an aligned carbon nanotube array based 'carbon nanotube fur (CNTF)' electrode. We removed an 800 μm long aligned carbon nanotube array from the silica substrate, and then pasted the array on a nickel foam current collector to obtain a CNTF electrode. CNTF's characteristics and electrochemical properties were studied systemically in this paper. The cut-paste method is simple, and does not damage the microstructure of the aligned carbon nanotube array. The CNTF electrode obtained a specific capacitance of 14.1 F g -1 and excellent rate capability

  18. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Shi Qiaofang; Diao Guowang

    2011-01-01

    Highlights: ► The deposition of palladium on a GC electrode was performed by cyclic voltammetry. ► SEM images showed palladium nanoparticles deposited on a glassy carbon (GC) electrode. ► The Pd/GC electrode can effectively catalyze m-nitrophenol in aqueous media. ► The reduction of m-nitrophenol on the Pd/GC electrode depended on potential and pH. ► XPS spectra of the Pd/GC electrodes demonstrated the presence of palladium. - Abstract: Palladium nanoparticles modified glassy carbon electrodes (Pd/GC) were prepared via the electrodeposition of palladium on a glassy carbon (GC) electrode using cyclic voltammetry in different sweeping potential ranges. The scanning electron microscope images of palladium particles on the GC electrodes indicate that palladium particles with diameters of 20–50 nm were homogeneously dispersed on the GC electrode at the optimal deposition conditions, which can effectively catalyze the reduction of m-nitrophenol in aqueous solutions, but their catalytic activities are strongly related to the deposition conditions of Pd. The X-ray photoelectron spectroscopy spectra of the Pd/GC electrode confirmed that 37.1% Pd was contained in the surface composition of the Pd/GC electrode. The cyclic voltammograms of the Pd/GC electrode in the solution of m-nitrophenol show that the reduction peak of m-nitrophenol shifts towards the more positive potentials, accompanied with an increase in the peak current compared to the bare GC electrode. The electrocatalytic activity of the Pd/GC electrode is affected by pH values of the solution. In addition, the electrolysis of m-nitrophenol under a constant potential indicates that the reduction current of m-nitrophenol on the Pd/GC electrode is approximately 20 times larger than that on the bare GC electrode.

  19. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.

    Science.gov (United States)

    Wang, Sheng-Fu; Xu, Qiao

    2007-05-01

    In this paper, some electrochemical parameters of ethamsylate at a multi-walled carbon nanotube modified glassy carbon electrode, such as the charge number, exchange current density, standard heterogeneous rate constant and diffusion coefficient, were measured by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits good promotion of the electrochemical reaction of ethamsylate and increases the standard heterogeneous rate constant of ethamsylate greatly. The differential pulse voltammetry responses of ethamsylate were linearly dependent on its concentrations in a range from 2.0 x 10(-6) to 6.0 x 10(-5) mol L(-1), with a detection limit of 4.0 x 10(-7) mol L(-1).

  20. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  1. Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors

    Science.gov (United States)

    Zhou, Zhengping; Wu, Xiang-Fa; Fong, Hao

    2012-01-01

    This letter reports the fabrication and electrochemical properties of electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes (CNTs) as hierarchical electrodes for supercapacitors. The specific capacitance of the fabricated electrodes was measured up to 185 F/g at the low discharge current density of 625 mA/g; a decrease of 38% was detected at the high discharge current density of 2.5 A/g. The morphology and microstructure of the electrodes were examined by electron microscopy, and the unique connectivity of the hybrid nanomaterials was responsible for the high specific capacitance and low intrinsic contact electric resistance of the hierarchical electrodes.

  2. Electrochemical pre anodization of glassy carbon electrode and application to determine chloramphenicol

    International Nuclear Information System (INIS)

    Truc, Nguyen Minh; Mortensen, John; Anh, Nguyen Ba Hoai

    2008-01-01

    This paper suggested a method to enhance the performance of carbon electrodes for the determination of chloramphenicol (CAP). The sensitivity and the reproducibility of the carbon electrodes could be enhanced easily by electrochemical pretreatment. Some kinds of carbon material were studied including glassy carbon, graphite carbon and pyrolytic carbon. Numerous kinds of supporting electrolyte have been tried. For glassy carbon electrode, the acidic solution, H 2 SO 4 5 mM, resulted in best performance at pretreated voltage of +2.1V (vs. Ag/ AgCl) in duration of 250 second. However, for graphite and pyrolytic carbon electrodes, the phosphate buffer solution pH 6.0 gave the best performance at +1.7V (vs. Ag/ AgCl) in duration of 20 seconds. The detection limit could be at very low concentration of CAP: 0.8 ng/ ml for glassy carbon electrode, 3.5 ng/ ml for graphite carbon electrode. The method was successful applied to aqua-agriculture water sample and milk sample with simple extraction as well as direct ointment sample analysis. (author)

  3. Binder-less activated carbon electrode from gelam wood for use in supercapacitors

    Directory of Open Access Journals (Sweden)

    IVANDINI A. TRIBIDASARI

    2013-04-01

    Full Text Available This work focused on the relation between the porous structure of activated carbon and its capacitive properties. Three types of activated carbon monoliths were used as the electrodes in a half cell electrochemical system. One monolith was produced from activated carbon and considered to be a binder-less electrode. Two others were produced from acid and high pressure steam oxidized activated carbon. The micrographs clearly indicate that three electrodes have different porous structures. Both porosity and surface area of carbons increased due to the formation of grains during oxidation. This fact specified that an acid oxidized carbon monolith will have relatively higher capacitance compared to non-oxidized and steam oxidized monoliths. Maximum capacitance values for acid, steam oxidized and non-oxidized electrodes were 27.68, 2.23 and 1.20 F g-1, respectively.

  4. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    Science.gov (United States)

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  6. Dye-sensitized solar cell with a pair of carbon-based electrodes

    International Nuclear Information System (INIS)

    Kyaw, Aung Ko Ko; Demir, Hilmi Volkan; Sun Xiaowei; Tantang, Hosea; Zhang Qichun; Wu Tao; Ke, Lin; Wei Jun

    2012-01-01

    We have fabricated a dye-sensitized solar cell (DSSC) with a pair of carbon-based electrodes using a transparent, conductive carbon nanotubes (CNTs) film modified with ultra-thin titanium-sub-oxide (TiO x ) as the working electrode and a bilayer of conductive CNTs and carbon black as the counter electrode. Without TiO x modification, the DSSC is almost nonfunctional whereas the power conversion efficiency (PCE) increases significantly when the working electrode is modified with TiO x . The performance of the cell could be further improved when the carbon black film was added on the counter electrode. The improved efficiency can be attributed to the inhibition of the mass recombination at the working electrode/electrolyte interface by TiO x and the acceleration of the electron transfer kinetics at the counter electrode by carbon black. The DSSC with a pair of carbon-based electrodes gives the PCE of 1.37%. (paper)

  7. Cyclic Voltammetric Investigation of Dopamine at Poly-(Gabapentin Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    M. T. Shreenivas

    2011-01-01

    Full Text Available The poly (gabapentin film was prepared on the surface of carbon paste electrode by electrochemical method using cyclic voltammetric technique. The poly (gabapentin film-modified carbon paste electrode was calibrated with standard potassium ferrocyanide solution in 1 M KCl as a supporting electrolyte. The prepared poly (gabapentin film-coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at physiological pH. The scan rate effect was found to be diffusion-controlled electrode process. The concentration effect of dopamine was studied, and the redox peak potentials of dopamine were dependant on pH.

  8. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    Science.gov (United States)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  9. In-situ Raman spectroscopy as a characterization tool for carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J -C; Joho, F B; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Lithium intercalation and de-intercalation into/from graphite electrodes in a nonaqueous electrolyte has been studied using in-situ Raman spectroscopy. Our experiments give information on the electrode-electrolyte interface with improved spatial resolution. The spectra taken from the electrode surface change with electrode potential. In this way, information on the nature of the chemical species present during charging and discharging half cycles is gained. For the first time, mapping techniques were applied to investigate if lithium intercalation proceeds homogeneously on the carbon electrode. (author) 3 figs., 1 tab., 4 refs.

  10. Compressed multiwall carbon nanotube composite electrodes provide enhanced electroanalytical performance for determination of serotonin

    International Nuclear Information System (INIS)

    Fagan-Murphy, Aidan; Patel, Bhavik Anil

    2014-01-01

    Serotonin (5-HT) is an important neurochemical that is present in high concentrations within the intestinal tract. Carbon fibre and boron-doped diamond based electrodes have been widely used to date for monitoring 5-HT, however these electrodes are prone to fouling and are difficult to fabricate in certain sizes and geometries. Carbon nanotubes have shown potential as a suitable material for electroanalytical monitoring of 5-HT but can be difficult to manipulate into a suitable form. The fabrication of composite electrodes is an approach that can shape conductive materials into practical electrode geometries suitable for biological environments. This work investigated how compression of multiwall carbon nanotubes (MWCNTs) epoxy composite electrodes can influence their electroanalytical performance. Highly compressed composite electrodes displayed significant improvements in their electrochemical properties along with decreased internal and charge transfer resistance, reproducible behaviour and improved batch to batch variability when compared to non-compressed composite electrodes. Compression of MWCNT epoxy composite electrodes resulted in an increased current response for potassium ferricyanide, ruthenium hexaammine and dopamine, by preferentially removing the epoxy during compression and increasing the electrochemical active surface of the final electrode. For the detection of serotonin, compressed electrodes have a lower limit of detection and improved sensitivity compared to non-compressed electrodes. Fouling studies were carried out in 10 μM serotonin where the MWCNT compressed electrodes were shown to be less prone to fouling than non-compressed electrodes. This work indicates that the compression of MWCNT carbon-epoxy can result in a highly conductive material that can be moulded to various geometries, thus providing scope for electroanalytical measurements and the production of a wide range of analytical devices for a variety of systems

  11. Study on conventional carbon characteristics as counter electrode for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Fajar, Muhammad Noer; Endarko

    2017-01-01

    Activated carbon (AC), black carbon (BC), and graphite were deposited onto ITO (Indium Tin Oxide) glass for counter electrode application in Dye-Sensitized Solar Cells. SEM-EDX was used to observe and analyse the morphology and composition of electrodes. The results showed that the particle distribution of the graphite electrode observed was approximately 34% with a size of 1 to 2 µm and BC electrode about 20% have a size of 0.5 to 1 µm, while AC electrode has a size of 0 – 0.5 µm observed around 20%. AC electrode has a more porous and uniform particle aggregates compared to BC and graphite electrodes. The efficiency of the counter electrode was measured using the solar simulator. The highest efficiency was at 0.011516% for the counter electrode that was fabricated by AC. Meanwhile, black carbon and graphite electrodes were achieved at 0.008744% and 0.010561%, respectively. The results proved that the porosity and the uniform aggregate of the particles were the most significant factors to improve the performance of DSSC. (paper)

  12. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Directory of Open Access Journals (Sweden)

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  13. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  14. Preparation and characterization of graphene/turbostratic carbon derived from chitosan film for supercapacitor electrodes

    Science.gov (United States)

    Hanappi, M. F. Y. M.; Deraman, M.; Suleman, M.; Othman, M. A. R.; Basri, N. H.; Nor, N. S. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.

    2018-04-01

    Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from the carbon grains (CGs) obtained by carbonization (under the flow of nitrogen, N2 gas and over a temperature range from 600 °C to 1000 °C) of biomass precursor chitosan film. The procedure to prepare the chitosan film is described elsewhere. The carbon grains are characterized using Raman spectroscopy (RS) and X-ray diffraction (XRD). We expect that the CGs would have the similar characteristics as graphene and would be a potential electrode material for EDLCs application.

  15. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung; Islam, Mohammad A.; Robinson, Richard D.

    2012-01-01

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating

  16. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  17. Electrochemical properties of arc-black and carbon nano-balloon as electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Sato, T; Suda, Y; Uruno, H; Takikawa, H; Tanoue, H; Ue, H; Aoyagi, N; Okawa, T; Shimizu, K

    2012-01-01

    In this study, we used two types of carbon nanomaterials, arc-black (AcB) which has an amorphous structure and carbon nano-balloon (CNB) which has a graphitic structure as electrochemical capacitor electrodes. We made a coin electrode from these carbon materials and fabricated an electric double-layer capacitor (EDLC) that sandwiches a separator between the coin electrodes. On the other hand, RuO 2 was loaded on these carbon materials, and we fabricated a pseudo-capacitor that has an ion insertion mechanism into RuO 2 . For comparison with these carbon materials, activated carbon (AC) was also used for a capacitor electrode. The electrochemical properties of all the capacitors were evaluated in 1M H 2 SO 4 aqueous solution. As a result of EDLC performance, AcB electrode had a higher specific capacitance than AC electrode at a high scan rate (≥ 100 mV/s). In the evaluation of pseudo-capacitor performance, RuO 2 -loaded CNB electrode showed a high specific capacitance of 734 F/g per RuO 2 weight.

  18. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  19. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash; Schieda, Mauricio; Shahi, Vinod Kumar; Nunes, Suzana Pereira

    2011-01-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  20. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  1. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    Science.gov (United States)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  2. Electrochemical reversibility of reticulated vitreous carbon electrodes heat treated at different carbonization temperatures

    Directory of Open Access Journals (Sweden)

    Emerson Sarmento Gonçalves

    2006-06-01

    Full Text Available Electrochemical response of ferri/ferrocyanide redox couple is discussed for a system that uses reticulated vitreous carbon (RVC three dimensional electrodes prepared at five different Heat Treatment Temperatures (HTT in the range of 700 °C to 1100 °C. Electrical resistivity, scanning electron microscopy and X ray Diffraction analyses were performed for all prepared samples. It was observed that the HTT increasing promotes an electrical conductivity increasing while the Bragg distance d002 decreases. The correlation between reversibility behavior of ferri/ferrocyanide redox couple and both surface morphology and chemical properties of the RVC electrodes demonstrated a strong dependence on the HTT used to prepare the RVC.

  3. Synthesis and characterization of copper-infiltrated carbonized wood monoliths for supercapacitor electrodes

    International Nuclear Information System (INIS)

    Teng, Shiang; Siegel, Gene; Prestgard, Megan C.; Wang, Wei; Tiwari, Ashutosh

    2015-01-01

    Highlights: • Copper nanoparticles were embedded in the highly porous carbonized wood electrodes. • Copper nanoparticle serves as the pseudocapacitive specie to increase the energy density. • The porous copper-wood electrodes exhibit excellent electrochemical performances with high capacitance, excellent rate capability and stability. - Abstract: Copper nanoparticle-loaded carbonized wood electrodes were synthesized and characterized for the use as supercapacitor electrodes. The electrodes were fabricated by soaking beech wood samples in Cu(NO 3 ) 2 solution followed by carbonization at 800 °C under a N 2 atmosphere. The copper nanoparticle content in the electrodes was controlled by varying the concentration of the Cu(NO 3 ) 2 solution from 0.5 to 2 M. Subsequent X-ray diffraction and scanning electron microscopy measurements confirm that cubic copper was formed and the copper nanoparticles were anchored uniformly both on the surface as well as deep within the pores of the wood electrode. Cyclic voltammetry measurements showed that all of the electrodes had a typical pseudo-capacitive behavior, as indicated by the presence of redox reaction peaks. Charge–discharge testing also confirmed the pseudo-capacitive nature of the electrodes. The reversible oxidation of Cu into Cu 2 O and CuO was verified by performing X-ray photoelectron spectroscopy at different stages of the charge–discharge cycle. The Cu-loaded wood electrodes exhibited excellent cyclability and retaining 95% of their specific capacitance even after 2000 cycles. A maximum specific capacitance of 888 F/g was observed while discharging the 7 wt% Cu electrode at 200 mA/g in a 2 M KOH electrolyte solution. These results demonstrated the potential of the copper nanoparticle-loaded wood electrodes as cheap and high performance supercapacitor electrodes

  4. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.

    Science.gov (United States)

    Lee, Ju-Young; Chaimongkalayon, Nantanee; Lim, Jinho; Ha, Heung Yong; Moon, Seung-Hyeon

    2016-01-01

    Affordable carbon composite electrodes were developed to treat low-concentrated groundwater using capacitive deionization (CDI). A carbon slurry prepared using activated carbon powder (ACP), poly(vinylidene fluoride), and N-methyl-2-pyrrolidone was employed as a casting solution to soak in a low-cost porous substrate. The surface morphology of the carbon composite electrodes was investigated using a video microscope and scanning electron microscopy. The capacitance and electrical conductivity of the carbon composite electrodes were then examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. According to the CV and EIS measurements, the capacitances and electrical conductivities of the carbon composite electrodes were in the range of 8.35-63.41 F g(-1) and 0.298-0.401 S cm(-1), respectively, depending on ACP contents. A CDI cell was assembled with the carbon composite electrodes instead of with electrodes and current collectors. The arsenate removal test included an investigation of the optimization of several important operating parameters, such as applied voltage and solution pH, and it achieved 98.8% removal efficiency using a 1 mg L(-1) arsenate solution at a voltage of 2 V and under a pH 9 condition.

  5. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose; Martin-Pernia, Alberto; Costa-Garcia, Agustin

    2008-01-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru 3+ did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode

  6. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Martin-Pernia, Alberto [Departamento de Ingenieria Electrica, Electronica de Computadores y Sistemas, Universidad de Oviedo, 33204 Gijon, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-04-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru{sup 3+} did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.

  7. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode

    International Nuclear Information System (INIS)

    Deng, Chunyan; Chen, Jinzhuo; Nie, Zhou; Yang, Minghui; Si, Shihui

    2012-01-01

    In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM −1 , and the detection limit of 1.4 × 10 −6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. - Highlights: ► Polythionine (PTH) was used as a mediator for electrocatalytic reduction of nitrite. ► Carbon nanotubes (CNTs) improve electron transfer between the electrode and nitrite. ► The PTH/CNT/glassy carbon electrode showed excellent nitrite detection performance.

  9. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  10. Electrochemical Investigation of Carbon as Additive to the Negative Electrode of Lead-Acid Battery

    Directory of Open Access Journals (Sweden)

    Fernandez Matthew M.

    2015-01-01

    Full Text Available The increasing demand of cycle life performance of Pb-acid batteries requires the improvement of the negative Pb electrode’s charge capacity. Electrochemical investigations were performed on Pb electrode and Pb+Carbon (Carbon black and Graphite electrodes to evaluate the ability of the additives to enhance the electrochemical faradaic reactions that occur during the cycle of Pb-acid battery negative electrode. The electrodes were characterized through Cyclic Voltammetry (CV, Potentiodynamic Polarization (PP, and Electrochemical Impedance Spectroscopy (EIS. CV revealed that the addition of carbon on the Pb electrode increased anodic and cathodicreactions by tenfold. The kinetics of PbSO4 passivation measured through PPrevealed that the addition of Carbon on the Pb electrode accelerated the oxide formation by tenfold magnitude. The Nyquist plot measured through EIS suggest that the electrochemical mechanism and reaction kinetics is under charge-transfer. From the equivalent circuit and physical model, Pb+CB1 electrode has the lowest EIS parameters while Pb+G has the highest which is attributed to faster faradaic reaction.The Nyquist plot of the passivated Pb+CB1 electrode showed double semicircular shape. The first layer represents to the bulk passive PbSO4 layer and the second layer represents the Carbon+PbSO4 layer. The enhancements upon addition of carbon on the Pb electrode were attributed to the additive’s electrical conductivity and total surface area. The electrochemical active sites for the PbSO4 to nucleate and spread increases upon addition of electrical conductive and high surface area carbon additives.

  11. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  12. Integration of UV-cured Ionogel Electrolyte with Carbon Paper Electrodes

    Directory of Open Access Journals (Sweden)

    Stephanie Flores Zopf

    2014-02-01

    Full Text Available A test bed with a coplanar architecture is employed to investigate the integration of an in situ cross-linked, polymer-supported ionogel with several commercially available, high surface area carbon paper electrodes. Specifically, a UV-cured poly(ethylene glycol diacrylate (PEGDA-supported ionogel electrolyte film is formed in situ against a variety of porous electrodes comprising: a carbon fiber paper, a carbon aerogel paper, and four carbon nanotube-based papers. Electrochemical impedance spectroscopy measurements reveal that the relative performance of a particular carbon paper with the neat ionic liquid is not necessarily indicative of its behavior when integrated with the solid ionogel electrolyte. The coplanar test bed can therefore serve as a useful tool to help guide the selection of suitable carbon-based electrode structures for supercapacitors that incorporate UV-cured ionogels created in situ for wearable energy storage applications.

  13. Carbonization of SU-8 Based Electrode for MEMS Supercapacitors

    OpenAIRE

    Liu, Yang

    2014-01-01

    Supercapacitors are more sustainable and environmentally friendly energy sources than traditional ones. To achieve the supercapacitors with both energy density and power density that mainly depend on the effective surface area of theelectrodes, SU-8 can be used for electrode material to fabricate 3D microstructures as the electrodes that increase the effective surface area significantly. The objective of this project is to fabricate the reliable electrodes of large surface area for supercapac...

  14. Calix[6]arene mono-diazonium salt synthesis and covalent immobilization onto glassy carbon electrodes

    International Nuclear Information System (INIS)

    Cannizzo, Caroline; Jasmin, Jean-Philippe; Vautrin-Ul, Christine; Chausse, Annie; Wagner, Mathieu; Doizi, Denis; Lamouroux, Christine

    2014-01-01

    This Letter describes the fast synthesis of a mono-aminated calix[6]arene. The immobilization of this macrocycle onto glassy carbon electrodes via diazonium salt chemistry and the electrochemical characterization of the grafted organic layer are also reported. (authors)

  15. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes

    KAUST Repository

    Xie, Xing; Ye, Meng; Hu, Liangbing; Liu, Nian; McDonough, James R.; Chen, Wei; Alshareef, Husam N.; Criddle, Craig S.; Cui, Yi

    2012-01-01

    The materials that are used to make electrodes and their internal structures significantly affect microbial fuel cell (MFC) performance. In this study, we describe a carbon nanotube (CNT)-sponge composite prepared by coating a sponge with CNTs

  16. Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants

    Science.gov (United States)

    Apetrei, Constantin; Apetrei, Irina Mirela; De Saja, Jose Antonio; Rodriguez-Mendez, Maria Luz

    2011-01-01

    This work describes the sensing properties of carbon paste electrodes (CPEs) prepared from three different types of carbonaceous materials: graphite, carbon microspheres and carbon nanotubes. The electrochemical responses towards antioxidants including vanillic acid, catechol, gallic acid, l-ascorbic acid and l-glutathione have been analyzed and compared. It has been demonstrated that the electrodes based on carbon microspheres show the best performances in terms of kinetics and stability, whereas G-CPEs presented the smallest detection limit for all the antioxidants analyzed. An array of electrodes has been constructed using the three types of electrodes. As demonstrated by means of Principal Component Analysis, the system is able to discriminate among antioxidants as a function of their chemical structure and reactivity. PMID:22319354

  17. Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery.

    Science.gov (United States)

    Awara, Kousuke; Kitai, Ryuhei; Isozaki, Makoto; Neishi, Hiroyuki; Kikuta, Kenichiro; Fushisato, Naoki; Kawamoto, Akira

    2014-12-15

    Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.

  18. Optimizing the fabrication of carbon nanotube electrode for effective capacitive deionization via electrophoretic deposition strategy

    Directory of Open Access Journals (Sweden)

    Simeng Zhang

    2018-04-01

    Full Text Available In order to obtain superior electrode performances in capacitive deionization (CDI, the electrophoretic deposition (EPD was introduced as a novel strategy for the fabrication of carbon nanotube (CNT electrode. Preparation parameters, including the concentration of slurry components, deposition time and electric field intensity, were mainly investigated and optimized in terms of electrochemical characteristic and desalination performance of the deposited CNT electrode. The SEM image shows that the CNT material was deposited homogeneously on the current collector and a non-crack surface of the electrode was obtained. An optimal preparation condition of the deposited CNT electrode was obtained and specified as the Al (NO33 M concentration of 1.3 × 10−2 mol/L, the deposition time of 30 min and the electric field intensity of 15 V/cm. The obtained electrode performs an increasing specific mass capacitance of 33.36 F/g and specific adsorption capacity of 23.93 mg/g, which are 1.62 and 1.85 times those of the coated electrode respectively. The good performance of the deposited CNT electrode indicates the promising application of the EPD methodology in subsequent research and fabrication of the CDI electrodes for CDI process. Keywords: Carbon nanotube, Water treatment, Desalination, Capacitive deionization, Electrode fabrication, Electrophoretic deposition

  19. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    International Nuclear Information System (INIS)

    Ranganathan, S.; Easton, E.B.

    2009-01-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  20. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Faculty of Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: ranga@uoit.ca, Brad.Easton@uoit.ca

    2009-07-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  1. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  2. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    DEFF Research Database (Denmark)

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin...... burning. The aim was to determine the accuracy and precision of tcPCO2 at reduced electrode temperature....

  3. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  4. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  5. Effects of ion implantation on the electrochemical characteristics of carbon electrodes

    International Nuclear Information System (INIS)

    Takahashi, Katsuo; Iwaki, Masaya

    1994-01-01

    Various carbon materials are important electrode materials for electrochemical field. By ion implantation, the surface layer reforming of carbon materials (mainly galssy carbon) was carried out, and the effect that it exerts to their electrode characteristics was investigated. As the results of the ion implantation of Li, N, O, K, Ti, Zn, Cd and others performed so far, it was found that mainly by the change of the surface layer to amorphous state, there were the effects of the lowering of base current and the lowering of electrode reaction rate, and it was known that the surface layers of carbon materials doped with various kinds of ions showed high chemical stability. The use of carbon materials as electrodes in electrochemistry is roughly divided into the electrodes for electrolytic industry and fuel cells for large current and those for the measurement in electrochemical reaction for small current. The structure of carbon materials and electrode characteristics, and the reforming effect by ion implantation are reported. (K.I.)

  6. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  7. Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes.

    Science.gov (United States)

    Jung, Kyung-Hye; Ferraris, John P

    2016-10-21

    Porous carbon nanofibers were prepared by electrospinning blend solutions of polybenzimidazole/poly-L-lactic acid (PBI/PLLA) and carbonization. During thermal treatment, PLLA was decomposed, resulting in the creation of pores in the carbon nanofibers. From SEM images, it is shown that carbon nanofibers had diameters in the range of 100-200 nm. The conversion of PBI to carbon was confirmed by Raman spectroscopy, and the surface area and pore volume of carbon nanofibers were determined using nitrogen adsorption/desorption analyses. To investigate electrochemical performances, coin-type cells were assembled using free-standing carbon nanofiber electrodes and ionic liquid electrolyte. cyclic voltammetry studies show that the PBI/PLLA-derived porous carbon nanofiber electrodes have higher capacitance due to lower electrochemical impedance compared to carbon nanofiber electrode from PBI only. These porous carbon nanofibers were activated using ammonia for further porosity improvement and annealed to remove the surface functional groups to better match the polarity of electrode and electrolyte. Ragone plots, correlating energy density with power density calculated from galvanostatic charge-discharge curves, reveal that activation/annealing further improves energy and power densities.

  8. Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes

    NARCIS (Netherlands)

    Porada, S.; Weinstein, L.; Dash, R.; Wal, van der A.F.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P.M.

    2012-01-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in

  9. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2012-12-01

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  10. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2013-01-07

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  11. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  12. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Ren, J.; Kang, T.F.; Xue, R.; Ge, C.N.; Cheng, S.Y.

    2011-01-01

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  13. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes.

    Science.gov (United States)

    Torres, A Carolina; Barsan, Madalina M; Brett, Christopher M A

    2014-04-15

    A simple, economic, highly sensitive and highly selective method for the detection of caffeine has been developed at bare and Nafion-modified glassy carbon electrodes (GCE). The electrochemical behaviour of caffeine was examined in electrolyte solutions of phosphate buffer saline, sodium perchlorate, and in choline chloride plus oxalic acid, using analytical determinations by fixed potential amperometry, phosphate buffer saline being the best. Modifications of the GCE surface with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, and multi-walled carbon nanotubes were tested in order to evaluate possible sensor performance enhancements, Nafion giving the most satisfactory results. The effect of interfering compounds usually found in samples containing caffeine was examined at GCE without and with Nafion coating, to exclude interferences, and the sensors were successfully applied to determine the caffeine content in commercial beverages and drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    OpenAIRE

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 ? 10?6 to 100 ? 10?6?mol?L?1 with determination coefficient and method detection limit (LoD = 3?s/slope) of 0....

  15. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  16. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T

    2014-01-01

    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  17. Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gao Fei [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li Jianling, E-mail: lijianling@ustb.edu.c [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang Yakun; Wang Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Kang Feiyu [Department of Material Science and Engineering, Tsinghua University, Beijing 100083 (China)

    2010-08-01

    The complex (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), [Ni(saldMp)], was oxidatively electropolymerized on activated carbon (AC) electrode in acetonitrile solution. The poly[Ni(saldMp)] presented an incomplete coated film on the surface of carbon particles of AC electrode by field emission scanning electron microscopy. The electrochemical behaviors of poly[Ni(saldMp)] modified activated carbon (PAC) electrode were evaluated in different potential ranges by cyclic voltammetry. Counterions and solvent swelling mainly occurred up to 0.6 V for PAC electrode by the comparison of D{sup 1/2}C values calculated from chronoamperometry experiments. Both the Ohmic resistance and Faraday resistance of PAC electrode gradually approached to those of AC electrode when its potential was ranging from 1.2 V to 0.0 V. Galvanostatic charge/discharge experiments indicated that both the specific capacitance and energy density were effectively improved by the reversible redox reaction of poly[Ni(saldMp)] film under the high current density up to 10 mA cm{sup -2} for AC electrode. The specific capacitance of PAC electrode decreased during the first 50 cycles but thereafter it remained constant for the next 200 cycles. This study showed the redox polymer may be an attractive material in supercapacitors.

  18. Paper-based potentiometric pH sensor using carbon electrode drawn by pencil

    Science.gov (United States)

    Kawahara, Ryotaro; Sahatiya, Parikshit; Badhulika, Sushmee; Uno, Shigeyasu

    2018-04-01

    A flexible and disposable paper-based pH sensor fabricated with a pencil-drawn working electrode and a Ag/AgCl paste reference electrode is demonstrated for the first time to show pH response by the potentiometric principle. The sensor substrate is made of chromatography paper with a wax-printed hydrophobic area, and various types of carbon pencils are tested as working electrodes. The pH sensitivities of the electrodes drawn by carbon pencils with different hardnesses range from 16.5 to 26.9 mV/pH. The proposed sensor is expected to be more robust against shape change in electrodes on a flexible substrate than other types of chemiresistive/amperometric pH sensors.

  19. Influence of various Activated Carbon based Electrode Materials in the Performance of Super Capacitor

    Science.gov (United States)

    Ajay, K. M.; Dinesh, M. N.

    2018-02-01

    Various activated carbon based electrode materials with different surface areas was prepared on stainless steel based refillable super capacitor model using spin coating. Bio Synthesized Activated Carbon (BSAC), Activated Carbon (AC) and Graphite powder are chosen as electrode materials in this paper. Electrode materials prepared using binder solution which is 6% by wt. polyvinylidene difluoride, 94% by wt. dimethyl fluoride. 3M concentrated KOH solution is used as aqueous electrolyte with PVDF thin film as separator. It is tested for electrochemical characterizations and material characterizations. It is observed that the Specific capacitance of Graphite, Biosynthesized active carbon and Commercially available activated carbon are 16.1F g-1, 53.4F g-1 and 107.6F g-1 respectively at 5mV s-1 scan rate.

  20. Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2017-01-01

    Full Text Available Nitrogen doped carbon materials as electrodes of supercapacitors have attracted abundant attention. Herein, we demonstrated a method to synthesize N-doped macroporous carbon materials (NMC with continuous channels and large size pores carbonized from polyaniline using multiporous silica beads as sacrificial templates to act as electrode materials in supercapacitors. By the nice carbonized process, i.e., pre-carbonization at 400 °C and then pyrolysis at 700/800/900/1000 °C, NMC replicas with high BET specific surface areas exhibit excellent stability and recyclability as well as superb capacitance behavior (~413 F ⋅ g−1 in alkaline electrolyte. This research may provide a method to synthesize macroporous materials with continuous channels and hierarchical pores to enhance the infiltration and mass transfer not only used as electrode, but also as catalyst somewhere micro- or mesopores do not work well.

  1. Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase

    International Nuclear Information System (INIS)

    Nogala, Wojciech; Celebanska, Anna; Szot, Katarzyna; Wittstock, Gunther; Opallo, Marcin

    2010-01-01

    Carbon ceramic electrodes were prepared by sol-gel processing of a hydrophobic precursor - methyltrimethoxysilane (MTMOS) - together with dispersed graphite microparticles according to a literature procedure. Bilirubin oxidase (BOx) was adsorbed on this electrode from buffer solution and this process was followed by atomic force microscopy (AFM). The electrodes exhibited efficient mediatorless electrocatalytic activity towards dioxygen reduction. The activity depends on the time of adsorption of the enzyme and the pH. The electrode remains active in neutral solution. The bioelectrocatalytic activity is further increased when a fraction of the carbon microparticles is replaced by sulfonated carbon nanoparticles (CNPs). This additive enhances the electrical communication between the enzyme and the electronic conductor. At pH 7 the carbon ceramic electrode modified with bilirubin oxidase retains ca. half of its highest activity. The role of the modified nanoparticles is confirmed by experiments in which a film embedded in a hydrophobic silicate matrix also exhibited efficient mediatorless biocatalytic dioxygen reduction. Scanning electrochemical microscopy (SECM) of the studied electrodes indicated a rather even distribution of the catalytic activity over the electrode surface.

  2. Inverse opal carbons for counter electrode of dye-sensitized solar cells.

    Science.gov (United States)

    Kang, Da-Young; Lee, Youngshin; Cho, Chang-Yeol; Moon, Jun Hyuk

    2012-05-01

    We investigated the fabrication of inverse opal carbon counter electrodes using a colloidal templating method for DSSCs. Specifically, bare inverse opal carbon, mesopore-incoporated inverse opal carbon, and graphitized inverse opal carbon were synthesized and stably dispersed in ethanol solution for spray coating on a FTO substrate. The thickness of the electrode was controlled by the number of coatings, and the average relative thickness was evaluated by measuring the transmittance spectrum. The effect of the counter electrode thickness on the photovoltaic performance of the DSSCs was investigated and analyzed by interfacial charge transfer resistance (R(CT)) under EIS measurement. The effect of the surface area and conductivity of the inverse opal was also investigated by considering the increase in surface area due to the mesopore in the inverse opal carbon and conductivity by graphitization of the carbon matrix. The results showed that the FF and thereby the efficiency of DSSCs were increased as the electrode thickness increased. Consequently, the larger FF and thereby the greater efficiency of the DSSCs were achieved for mIOC and gIOC compared to IOC, which was attributed to the lower R(CT). Finally, compared to a conventional Pt counter electrode, the inverse opal-based carbon showed a comparable efficiency upon application to DSSCs.

  3. Carbon Tolerant Fuel Electrodes for Reversible Sofc Operating on Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Papazisi Kalliopi Maria

    2017-01-01

    Full Text Available A challenging barrier for the broad, successful implementation of Reversible Solid Oxide Fuel Cell (RSOFC technology for Mars application utilizing CO2 from the Martian atmosphere as primary reactant, remains the long term stability by the effective control and minimization of degradation resulting from carbon built up. The perovskitic type oxide material La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF has been developed and studied for its performance and tolerance to carbon deposition, employed as bi-functional fuel electrode in a Reversible SOFC operating on the CO2 cycle (Solid Oxide Electrolysis Cell/SOEC: CO2 electrolysis, Solid Oxide Fuel Cell/SOFC: power generation through the electrochemical reaction of CO and oxygen. A commercial state-of-the-art NiO-YSZ (8% mol Y2O3 stabilized ZrO2 cermet was used as reference material. CO2 electrolysis and fuel cell operation in 70% CO/CO2 were studied in the temperature range of 900-1000°C. YSZ was used as electrolyte while LSM-YSZ/LSM (La0.2Sr0.8MnO3 as oxygen electrode. Results showed that LSCF had high and stable performance under RSOFC operation.

  4. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode.

    Science.gov (United States)

    Nguyen, Hoai Viet; Richtera, Lukas; Moulick, Amitava; Xhaxhiu, Kledi; Kudr, Jiri; Cernei, Natalia; Polanska, Hana; Heger, Zbynek; Masarik, Michal; Kopel, Pavel; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-04-25

    In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.

  5. Graphene-carbon nanotube hybrid materials and use as electrodes

    Science.gov (United States)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  6. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  7. Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application

    Directory of Open Access Journals (Sweden)

    Drygała A.

    2016-06-01

    Full Text Available The influence of the carbon nanotubes counter electrode deposited on the FTO glass substrates on the structure and optoelectrical properties of dye-sensitized solar cells counter electrode (CE was analysed. Carbon materials have been applied in DSSC s in order to produce low-cost solar cells with reasonable efficiency. Platinum is a preferred material for the counter electrode because of its high conductivity and catalytic activity. However, the costs of manufacturing of the platinum counter electrode limit its use to large-scale applications in solar cells. This paper presents the results of examining the structure and properties of the studied layers, defining optical properties of conductive layers and electrical properties of dye-sensitized solar cells manufactured with the use of carbon nanotubes.

  8. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    Science.gov (United States)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  9. The influence of conductive additives and inter-particle voids in carbon EDLC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfo, A.G.; Wilson, G.J.; Huynh, T.D.; Hollenkamp, A.F. [CSIRO - Energy Technology, Bayview Avenue, Clayton, Vic 3168 (Australia)

    2010-10-15

    Through the interpretation of porosity and intrusion data, and correlation to the electrochemical response, this study has confirmed that are not only carbon blacks (CBs) very effective in improving the electrical connectivity of a carbon electrode coating, but they also significantly modify the porosity of the electrode coating and thereby also influence ionic diffusion. CBs are more effective conductive fillers than graphites in EDLC electrodes. The highly branched structure of CBs allows multiple electrical contact points and results in a lower electrode electronic resistance. CBs can decrease inter-particle porosity (both volume and size) and introduce additional porosity that is characteristic of the type of carbon employed. It is observed that electrode coatings prepared from a carbon slurry have a highly macroporous structure and that electrolyte accessibility to individual activated carbon particles is unlikely to be the limiting factor to accessing capacitance. Electrochemical testing has confirmed the strong relationship between bulk electrode resistance and the accessibility of capacitance at different rates. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Minimizing fouling at hydrogenated conical-tip carbon electrodes during dopamine detection in vivo.

    Science.gov (United States)

    Chandra, Shaneel; Miller, Anthony D; Bendavid, Avi; Martin, Philip J; Wong, Danny K Y

    2014-03-04

    In this paper, physically small conical-tip carbon electrodes (∼2-5 μm diameter and ∼4 μm axial length) were hydrogenated to develop a probe capable of withstanding fouling during dopamine detection in vivo. Upon hydrogenation, the resultant hydrophobic sp(3) carbon surface deters adsorption of amphiphilic lipids, proteins, and peptides present in extracellular fluid and hence minimizes electrode fouling. These hydrogenated carbon electrodes showed a 35% decrease in sensitivity but little change in the limit of detection for dopamine over a 7-day incubation in a synthetic laboratory solution containing 1.0% (v/v) caproic acid (a lipid), 0.1% (w/v) bovine serum albumin and 0.01% (w/v) cytochrome C (both are proteins), and 0.002% (w/v) human fibrinopeptide B (a peptide). Subsequently, during dopamine detection in vivo, over 70% of the dopamine oxidation current remained after the first 30 min of a 60-min experiment, and at least 50% remained over the next half-period at the hydrogenated carbon electrodes. On the basis of these results, an initial average electrode surface fouling rate of 1.2% min(-1) was estimated, which gradually declined to 0.7% min(-1). These results support minimal fouling at hydrogenated carbon electrodes applied to dopamine detection in vivo.

  11. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  12. Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials

    International Nuclear Information System (INIS)

    Chen, Hao; Liu, Duo; Shen, Zhehong; Bao, Binfu; Zhao, Shuyan; Wu, Limin

    2015-01-01

    Highlights: • We successfully prepared bamboo-derived porous carbon with B and N co-doping. • This novel carbon exhibits significantly enhanced specific capacitance and energy density. • The highest specific capacitance exceeds those of most similar carbon materials. • Asymmetric supercapacitor based on this carbon shows satisfactory capacitive performance. - Abstract: This paper presents nitrogen and boron co-doped KOH-activated bamboo-derived carbon as a porous biomass carbon with utility as a supercapacitor electrode material. Owing to the high electrochemical activity promoted by the hierarchical porous structure and further endowed by boron and nitrogen co-doping, electrodes based on the as-obtained material exhibit significantly enhanced specific capacitance and energy density relative to those based on most similar materials. An asymmetric supercapacitor based on this novel carbon material demonstrated satisfactory energy density and electrochemical cycling stability.

  13. Methanol oxidation at carbon paste electrodes modified with (Pt–Ru)/carbon aerogels nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Carmen I., E-mail: iladiu@chem.ubbcluj.ro [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Cotet, Liviu C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Vasiliu, Florin [The National Institute of Materials Physics, Atomistilor str. 105 bis, PO Box MG. 7, Magurele, RO 077125, Bucharest (Romania); Marginean, Petre [National Institute for Research and Development of Isotopic and Molecular Technologies, RO 400293, Cluj-Napoca (Romania); Danciu, Virginia; Popescu, Ionel C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2016-04-01

    Mesoporous carbon aerogels (CAs) impregnated with (Pt–Ru) nanoparticles were prepared, incorporated into carbon paste electrodes (CPEs) and investigated as electrocatalysts for CH{sub 3}OH electro-oxidation. The sol–gel method, followed by supercritical drying with liquid CO{sub 2} and thermal pyrolysis in an inert atmosphere, was used to obtain high mesoporous CAs. (Pt–Ru)/CAs nanocomposites with various (Pt–Ru) loading were prepared by using Ru(AcAc){sub 3} and H{sub 2}PtCl{sub 6} as metal precursors and the impregnation method. The morpho-structural peculiarities of the so prepared (Pt–Ru)/CAs electrocatalysts were examined by using elemental analysis, N{sub 2} adsorption-desorption isotherms, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) and selected area electron diffraction (SAED). Cyclic voltammetry measurements, carried out at (Pt–Ru)/CA-CPEs incorporating nanocomposites with various Pt–Ru loading and different specific surface areas, showed that CA with the highest specific surface area (843 m{sup 2}/g) and impregnated with 6% (w/w) (Pt–Ru) nanoparticles exhibit the best CH{sub 3}OH electro-oxidation efficiency. The Michaelis–Menten formalism was used to describe the dependence of the oxidation peak current on the CH{sub 3}OH concentration, allowing the estimation of the modified electrodes sensitivities. Thus, for (Pt–Ru, 10%)/CA{sub 535}-CPE was observed the highest sensitivity (12.5 ± 0.8 mA/M) and, at the same time, the highest maximum current density ever reported (153.1 mA/cm{sup 2} for 2 M CH{sub 3}OH and an applied potential of 600 mV vs. SHE). - Highlights: • (Pt–Ru) nanoparticles were deposited on high mesoporous carbon aerogels (CAs). • (Pt–Ru)/CAs were characterized by TEM, EDX, SAED and N{sub 2} adsorption-desorption. • Carbon paste electrodes modified with (Pt–Ru)/CA were used for CH{sub 3}OH oxidation. • (Pt–Ru, 10

  14. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-qiao; Zou, Ying; Xia, Yong-yao [Chemistry Department and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2007-01-01

    We present a new concept of the hybrid electrochemical capacitor technology in which a poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) nitroxide polyradical/activated carbon composite (PTMA-AC) is used as the positive electrode material and activated carbon is used as the negative electrode material. On the positive electrode, both reversible reduction and oxidation of nitroxide polyradical and non-faradic ion sorption/de-sorption of activated carbon are involved during charge and discharge process. The capacity of the composite electrode is 30% larger than that of the pure activated carbon electrode. A hybrid capacitor fabricated by the PTMA-AC composite positive electrode and the activated carbon negative electrode shows a good cycling life, it can be charged/discharged for over 1000 cycles with slight capacity loss. The hybrid capacitor also has a good rate capability, it maintains 80% of the initial capacity even at the high discharge current of up to 20C. (author)

  15. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Seo, Han; Bang, In Cheol; Kim, Sung Youb [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Kang, Seoktae [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Korea, Republic of); Kwon, Soon-Yong, E-mail: sykwon@unist.ac.kr [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of)

    2016-08-05

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  16. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    International Nuclear Information System (INIS)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang; Seo, Han; Bang, In Cheol; Kim, Sung Youb; Kang, Seoktae; Kwon, Soon-Yong

    2016-01-01

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  17. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.

    Science.gov (United States)

    King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N

    2012-02-28

    We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

  18. Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach.

    Science.gov (United States)

    Ali, Gomaa A M; Divyashree, A; Supriya, S; Chong, Kwok Feng; Ethiraj, Anita S; Reddy, M V; Algarni, H; Hegde, Gurumurthy

    2017-10-17

    Carbon nanospheres derived from a natural source using a green approach were reported. Lablab purpureus seeds were pyrolyzed at different temperatures to produce carbon nanospheres for supercapacitor electrode materials. The synthesized carbon nanospheres were analyzed using SEM, TEM, FTIR, TGA, Raman spectroscopy, BET and XRD. They were later fabricated into electrodes for cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy testing. The specific capacitances were found to be 300, 265 and 175 F g -1 in 5 M KOH electrolyte for carbon nanospheres synthesized at 800, 700 and 500 °C, respectively. These are on a par with those of prior electrodes made of biologically derived carbon nanospheres but the cycle lives were remarkably higher than those of any previous efforts. The electrodes showed 94% capacitance retention even after 5200 charge/discharge cycles entailing excellent recycling durability. In addition, the practical symmetrical supercapacitor showed good electrochemical behaviour under a potential window up to 1.7 V. This brings us one step closer to fabricating a commercial green electrode which exhibits high performance for supercapacitors. This is also a waste to wealth approach based carbon material for cost effective supercapacitors with high performance for power storage devices.

  19. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    Science.gov (United States)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  20. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    NARCIS (Netherlands)

    Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite

  1. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    DEFF Research Database (Denmark)

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin...

  2. Carbon: The Ultimate Electrode Choice for Widely Distributed Polymer Solar Cells

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Madsen, Morten Vesterager

    2014-01-01

    -, indium tin oxide (ITO)-, and silver-free solar cells in a fully packaged form using only roll-to-roll processing is reported. Replacing silver with carbon as electrode material signifi cantly lowers the manufacturing cost and makes the organic photovoltaic (OPV) modules environmentally safe while...... retaining their fl exibility, active area effi ciency, and stability. The substitution of silver with carbon does not affect the roll-to-roll manufacturing of the modules and allows for the same fast printing and coating. The use of carbon as electrode material is one step closer to the wide release of low...

  3. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Hong, Jun Ki; Kjeang, Erik

    2012-01-01

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  4. Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes

    Science.gov (United States)

    Li, Siwei; Wang, Xiaohong; Xing, Hexin; Shen, Caiwei

    2013-11-01

    This paper presents three-dimensional (3D) micro supercapacitors with thick interdigital electrodes supported and separated by SU-8. Nanoporous carbon materials including graphene and activated carbon (AC) are used as active materials in self-supporting composites to build the electrodes. The SU-8 separators provide mechanical support for thick electrodes and allow a considerable amount of material to be loaded in a limited footprint area. The prototypes have been accomplished by a simple microelectromechanical systems (MEMS) fabrication process and sealed by polydimethylsiloxane (PDMS) caps with ionic liquid electrolytes injected into the electrode area. Electrochemical tests demonstrate that the graphene-based prototype with 100 µm thick electrodes shows good power performance and provides a considerable specific capacitance of about 60 mF cm-2. Two AC-based prototypes show larger capacitance of 160 mF cm-2 and 311 mF cm-2 with 100 µm and 200 µm thick electrodes respectively, because of higher volume density of the material. The results demonstrate that both thick 3D electrode structure and volume capacitance of the electrode material are key factors for high-performance micro supercapacitors, which can be potentially used in specific applications such as power suppliers and storage components for harvesters.

  5. Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode

    International Nuclear Information System (INIS)

    Deng Chunyan; Chen Jinhua; Chen Xiaoli; Wang Mengdong; Nie Zhou; Yao Shouzhuo

    2009-01-01

    A boron-doped carbon nanotube (BCNT)-modified glassy carbon (GC) electrode was constructed for the detection of L-cysteine (L-CySH). The electrochemical behavior of BCNTs in response to L-cysteine oxidation was investigated. The response current of L-CySH oxidation at the BCNT/GC electrode was obviously higher than that at the bare GC electrode or the CNT/GC electrode. This finding may be ascribed to the excellent electrochemical properties of the BCNT/GC electrode. Moreover, on the basis of this finding, a determination of L-CySH at the BCNT/GC electrode was carried out. The effects of pH, scan rate and interferents on the response of L-CySH oxidation were investigated. Under the optimum experimental conditions, the detection response for L-CySH on the BCNT/GC electrode was fast (within 7 s). It was found to be linear from 7.8 x 10 -7 to 2 x 10 -4 M (r = 0.998), with a high sensitivity of 25.3 ± 1.2 nA mM -1 and a low detection limit of 0.26 ± 0.01 μM. The BCNT/GC electrode exhibited high stability and good resistance against interference by other oxidizable amino acids (tryptophan and tyrosine)

  6. Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes.

    Science.gov (United States)

    Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V

    2015-05-06

    We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.

  7. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Sanjaya D.; Patel, Bijal; Seitz, Oliver; Ferraris, John P.; Balkus, Kenneth J. Jr. [Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, 800 West Campbell Rd, University of Texas at Dallas, Richardson, TX 75080 (United States); Nijem, Nour; Roodenko, Katy; Chabal, Yves J. [Laboratory for Surface and Nanostructure Modification, Department of Material Science and Engineering, 800 West Campbell Rd, University of Texas Dallas, Richardson, TX 75080 (United States)

    2011-10-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) layered nanostructures are known to have very stable crystal structures and high faradaic activity. The low electronic conductivity of V{sub 2}O{sub 5} greatly limits the application of vanadium oxide as electrode materials and requires combining with conducting materials using binders. It is well known that the organic binders can degrade the overall performance of electrode materials and need carefully controlled compositions. In this study, we develop a simple method for preparing freestanding carbon nanotube (CNT)-V{sub 2}O{sub 5} nanowire (VNW) composite paper electrodes without using binders. Coin cell type (CR2032) supercapacitors are assembled using the nanocomposite paper electrode as the anode and high surface area carbon fiber electrode (Spectracarb 2225) as the cathode. The supercapacitor with CNT-VNW composite paper electrode exhibits a power density of 5.26 kW Kg{sup -1} and an energy density of 46.3 Wh Kg{sup -1}. (Li)VNWs and CNT composite paper electrodes can be fabricated in similar manner and show improved overall performance with a power density of 8.32 kW Kg{sup -1} and an energy density of 65.9 Wh Kg{sup -1}. The power and energy density values suggest that such flexible hybrid nanocomposite paper electrodes may be useful for high performance electrochemical supercapacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhang, Li; Amirkhiz, Babak Shalchi; Tan, Xuehai; Xu, Zhanwei; Wang, Huanlei; Olsen, Brian C.; Holt, Chris M.B.; Mitlin, David [Chemical and Materials Engineering, University of Alberta, Edmonton, AB (Canada); National Institute for Nanotechnology (NINT), NRC, Edmonton, AB (Canada)

    2012-04-15

    Supercapacitor electrode materials are synthesized by carbonizing a common livestock biowaste in the form of chicken eggshell membranes. The carbonized eggshell membrane (CESM) is a three-dimensional macroporous carbon film composed of interwoven connected carbon fibers containing around 10 wt% oxygen and 8 wt% nitrogen. Despite a relatively low surface area of 221 m{sup 2} g{sup -1}, exceptional specific capacitances of 297 F g{sup -1} and 284 F g{sup -1} are achieved in basic and acidic electrolytes, respectively, in a 3-electrode system. Furthermore, the electrodes demonstrate excellent cycling stability: only 3% capacitance fading is observed after 10 000 cycles at a current density of 4 A g{sup -1}. These very attractive electrochemical properties are discussed in the context of the unique structure and chemistry of the material. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Carbon Deposition during CO2 Electrolysis in Ni-Based Solid-Oxide-Cell Electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Graves, Christopher R.; Blennow, P.

    2015-01-01

    . Electrochemical impedance spectroscopy in both H2/H2O and CO/CO2 revealed an increase in resistance of the fuel electrode after each CO2 electrolysis current-voltage curve, indicating possible carbon deposition. The difference in partial oxygen pressure between inlet and outlet was analyzed to verify carbon...... in detail. In an attempt to mitigate the degradation due to carbon deposition, the Ni-YSZ electrode was infiltrated with a gadolinium doped ceria (CGO) solution. Initial results indicate that the coking tolerance was not enhanced, but it is still unclear whether infiltrated cells degrade less. However......, infiltrated cells display a significant performance enhancement before coking, especially under electrolysis current. The investigation thus indicated carbon formation in the Ni containing fuel electrode before the thermodynamically calculated threshold for average measurements of the cell was reached...

  10. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  11. The chemistry of Li/SOCl2 cells - An ESR study of carbon electrodes

    Science.gov (United States)

    Kim, S. S.; Carter, B. J.; Tsay, F. D.

    1985-01-01

    Carbon electrodes from Li/SOCl2 cells were studied by electron spin resonance after various stages of discharge. Different behavior was observed in the temperature-dependent part of the ESR linewidth, defined as 'intrinsic linewidth', Delta H(int), when two different electrolytes were used. With one electrolyte, 1.5M LiAlCl4/SoCl2, the Delta H(int) value stayed constant or slightly decreased whereas with another electrolyte, 1.0M LiAlCl4/14 percent BrClin SOCl2, the value increased as discharge progressed. The carbon electrodes are modified differently during discharge with these two electrolytes, and it is speculated that this may be due to changes in the carbon matrix functional groups. This difference in the carbon electrodes may explain the claimed differences in safety performance of the cells.

  12. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.

    Science.gov (United States)

    Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol

    2013-07-23

    In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.

  13. The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes

    International Nuclear Information System (INIS)

    Skowronski, J.M.; Czerwinski, A.; Rozmanowski, T.; Rogulski, Z.; Krawczyk, P.

    2007-01-01

    In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support

  14. Electrocatalysis aqueous phenol with carbon nanotubes networks as anodes: Electrodes passivation and regeneration and prevention

    International Nuclear Information System (INIS)

    Gao, Guandao; Vecitis, Chad D.

    2013-01-01

    Highlights: ► The electrochemical filtration used carbon nanotube network is effective to remove aqueous pollutants. ► Electrodes passivation is one of the most urgent challenges to overcome to 3-D electrode technology. ► Generally running system at higher potential can avoid generating polymer. ► Washing electrodes with suitable solvents is an effective alternative for removing polymer if it is not the best. -- Abstract: Electrochemical filtration using three-dimensional carbon nanotube (CNT) networks has been reported to increase the electrooxidation rate of aqueous pollutants due to convective mass transfer enhancements resulting from the flow through the electrode. In regards to the long term application of this novel electrochemical technology, electrode passivation is one of the most important challenges to overcome. Here, electrochemical filtration of aqueous phenol in a sodium sulfate electrolyte is utilized to investigate the primary passivation mechanisms and electrode regeneration methodologies, in which chronoamperometry and effluent total organic carbon measurements are utilized to monitor the passivation process in real-time, and electrochemical impedance spectroscopy, linear sweep voltammetry, and scanning electron microscopy are utilized to examine the CNT networks before passivation, after passivation and after regeneration. Finnaly, the carbon nanotube electrode passivation mechanisms and regeneration methods are discussed. Generally it is better choice to run system at higher potential in order to avoid generating polymer firstly other than regenerate complicatedly it after its passivation. Polymer formation can be prevented by application of an anode potential ≥2.1 V, which can completely mineralize phenol to carbon dioxide etc. and prevent polymerization of phenol. If there is still a bit of polymer formed inevitably, washing electrodes with suitable solvents is an effective alternative

  15. Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode

    Science.gov (United States)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Boota, Muhammad; Gogotsi, Yury

    2018-04-10

    A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer to produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.

  16. Determination of ascorbic acid in pharmaceutical preparation and fruit juice using modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Simona Žabčíková

    2016-06-01

    Full Text Available Acrobic acid is key substance in the human metabolism and the rapid and accurate determination in food is of a great interest. Ascorbic acid is an electroactive compound, however poorly responded on the bare carbon paste electrodes. In this paper, brilliant cresyl blue and multi-walled carbon nanotubes were used for the modification of carbon paste electrode. Brilliant cresyl blue acts as a mediator improving the transition of electrons, whereas multiwalled carbon nanotubes increased the surface of the electrode. Both brilliant cresyl blue and multiwalled carbon nanotubes were added directly to the composite material. The electrochemical behavior of modified electode was determined in electrolyte at various pH, and the effect of the scan rate was also performed. It was shown that the electrochemical process on the surface of the modified carbon paste electrode was diffusion-controlled. The resulted modified carbon paste electrode showed a good electrocatalytic activity towards the oxidation of ascorbic acid at a reduced overpotential of +100 mV descreasing the risk of interferences. A linear response of the ascorbic acid oxidation current measured by the amperometry in the range of 0.1 - 350 µmol.L-1 was obtained applying the sensor for the standard solution. The limit of detection and limit of quantification was found to be 0.05 and 0.15 µmol.L-1, respectively. The novel method was applied for the determination of ascorbic acid in pharmaceutical vitamin preparation and fruit juice, and the results were in good agreement with the standard HPLC method. The presented modification of carbon paste electrode is suitable for the fast, sensitive and very accurate determination of ascorbic acid in fruit juices and pharmaceutical preparation.

  17. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors

    Science.gov (United States)

    Yi, Jianan; Qing, Yan; Wu, ChuTian; Zeng, Yinxiang; Wu, Yiqiang; Lu, Xihong; Tong, Yexiang

    2017-05-01

    Engineering porous heteroatom-doped carbon nanomaterials with remarkable capacitive performance is highly attractive. Herein, a simple and smart method has been developed to synthesize phosphorus (P) doped carbon with hierarchical porous structure derived from lignocellulose. Hierarchically porous P doped carbon is readily obtained by the pyrolysis of lignocellulose immersed in ZnCl2/NaH2PO4 aqueous solution, and exhibits excellent capacitive properties. The as-obtained P doped porous carbon delivers a significant capacitance of 133 F g-1 (146 mF cm-2) at a high current density of 10 A g-1 with outstanding rate performance. Furthermore, the P doped carbon electrode yields a long-term cycling durability with more than 97.9% capacitance retention after 10000 cycles as well. A symmetric supercapacitor with a maximum energy density of 4.7 Wh kg-1 is also demonstrated based on these P doped carbon electrodes.

  18. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.

    Science.gov (United States)

    Qu, Wen-Hui; Xu, Yuan-Yuan; Lu, An-Hui; Zhang, Xiang-Qian; Li, Wen-Cui

    2015-08-01

    In this report, corncob residue, the main by-product in the furfural industry, is used as a precursor to prepare porous carbon by a simple and direct thermal treatment: one-step activation without pre-carbonization. As a consequence, the corncob residue derived porous carbon achieves a high surface area of 1210 m(2) g(-1) after ash-removal. The carbon material has the advantages of low cost and low environmental impact, with a superior electrochemical performance compared to those polymer-based synthetic carbons as electrode material for a supercapacitor. The carbon electrode exhibits a high capacitance of 314 F g(-1) in 6M KOH electrolyte. The corresponding sample also shows a superb cycling stability. Almost no capacitance decay was observed after 100,000 cycles. The excellent electrochemical performance is due to the combination of a high specific surface area with a fraction of mesopores and highly stable structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  20. Impedance response of carbon nanotube-titania electrodes dried under modified gravity

    International Nuclear Information System (INIS)

    Ordenana-Martinez, A.S.; Rincon, M.E.; Vargas, M.; Ramos, E.

    2011-01-01

    The synthesis and impregnation of porous titania films by commercial multiwalled carbon nanotubes and nanotube rich carbon soot are reported. The samples were dried under terrestrial gravity g and in a centrifuge accelerated at 13 g. X-Ray Diffraction data and Scanning Electron Microscopy images indicated differences in the crystal structure and tendency to agglomeration in both carbon types, providing different microstructures of functionally graded electrodes. Drying the samples in a centrifuge helps to the distribution of carbon nanoparticles and to the decrement of the impedance at the contact interfaces. The presence of titania weakens the differences observed in both drying protocols, but not the differences due to the carbon source. Superior capacitance and network conductivity were observed in electrodes based on commercial carbon nanotubes.

  1. Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth

    Directory of Open Access Journals (Sweden)

    XU Jian

    2018-01-01

    Full Text Available The carbon fiber cloth was treated by surface treatment, and then it was used as the electrode substrate. The electrode material based on carbon fibers was synthesized by a galvanostatic electrodeposition method. The interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode were characterized by four-probe method and electrochemical workstation, respectively. The results show that the surface roughness and chemical activity of the carbon fibers can be significantly improved through surface treatment. The carbon fibers possess the best chemical activity on the surface at the hot-air oxidation temperature of 400℃. Joint hot-air and liquid-phase oxidations show that the chemical activity of the carbon fibers on the surface is further improved, the grooves and pits on the surface of the carbon fibers are more obvious, after this treatment, the interface resistivity of the CF/β-PbO2 electrode reaches the minimum value of 6.19×10-5Ω·m, meanwhile, the conductivity and the electrochemical property of the CF/β-PbO2 electrode reaches the best, and with the best corrosion resistance, the corrosion rate is only 1.44×10-3g·cm-2·h-1.Thus, the interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode depend on the the interface structure of the CF/β-PbO2 electrode obtained under different surface treatments.

  2. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad

    2014-10-21

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.

  3. The effect of gamma radiation on reference electrodes and platinum and carbon steel bare metal electrodes in a simulated waste solution

    International Nuclear Information System (INIS)

    Danielson, M.J.

    1993-09-01

    Electrochemical potential measurements of materials in waste tanks are important in determining if the materials have a propensity for stress corrosion cracking and pitting. Potential measurement requires a reference electrode, but the effect of radiation on the potential generated by the reference electrode has been an unknown quantity. To determine the significance of the radiation effect, Pacific Northwest Laboratory conducted studies of five types of electrodes under gamma radiation at room temperature. The subjects were two types of silver/silver chloride reference electrodes (Fisher and Lazaran), a mercury/calomel reference electrode, a platinum ''flag,'' and a piece of A-537 carbon steel; the electrodes were exposed to a simulated caustic tank environment. The Fisher silver/silver chloride and mercury/calomel reference electrodes showed essentially no radiation effects up to a flux of 2.1E6 R/h and fluence of 9.4E8 R, indicating they would be useful reference electrodes for in-tank studies. The Lazaran reg-sign silver/silver chloride electrode showed serious potential deviations at fluences of 2.E8 R, but it would be the electrode of choice in many situations because it is simple to maintain. Radiation affected the open circuit potential of both the platinum and carbon steel electrodes. This effect indicates that corrosion studies without radiation may not duplicate the corrosion processes expected in a waste tank. Mixed-potential theory was used to explain the radiation effects

  4. Performance evaluation of carbon black based electrodes for underwater ECG monitoring.

    Science.gov (United States)

    Reyes, Bersain A; Posada-Quintero, Hugo F; Bales, Justin R; Chon, Ki H

    2014-01-01

    Underwater electrocardiogram (ECG) monitoring currently uses Ag/AgCl electrodes and requires sealing of the electrodes to avoid water intrusion, but this procedure is time consuming and often results in severe irritations or even tearing of the skin. To alleviate these problems, our research team developed hydrophobic electrodes comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS) that provide all morphological waveforms without distortion of an ECG signal for dry and water-immersed conditions. Performance comparison of CB/PDMS electrodes to adhesive Ag/AgCl hydrogel electrodes was carried out in three different scenarios which included recordings from a dry surface, water immersion, and post-water immersion conditions. CB/PDMS electrodes were able to acquire ECG signals highly correlated with those from adhesive Ag/AgCl electrodes during all conditions. Statistical reduction in ECG amplitude (pelectrodes when compared to Ag/AgCl electrodes sealed with their waterproof adhesive tape. Besides this reduction readability of the recordings was not obscured and all morphological waveforms of the ECG signal were discernible. The advantages of our CB/PDMS electrodes are that they are reusable, can be fabricated economically, and most importantly, high-fidelity underwater ECG signals can be acquired without relying on the heavy use of waterproof sealing.

  5. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  6. Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nazaruk, E.; Bilewicz, R. [University of Warsaw, Faculty of Chemistry, Warsaw (Poland); Sadowska, K.; Biernat, J.F. [Gdansk University of Technology, Chemical Faculty, Gdansk (Poland); Rogalski, J. [Maria Curie Sklodowska University, Department of Biochemistry, Lublin (Poland); Ginalska, G. [Medical University of Lublin, Department of Biochemistry, Lublin (Poland)

    2010-10-15

    Nanostructured bioelectrodes were designed and assembled into a biofuel cell with no separating membrane. The glassy carbon electrodes were modified with mediator-functionalized carbon nanotubes. Ferrocene (Fc) and 2,2{sup '}-azino-bis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) bound chemically to the carbon nanotubes were found useful as mediators of the enzyme catalyzed electrode processes. Glucose oxidase from Aspergillus niger AM-11 and laccase from Cerrena unicolor C-139 were incorporated in a liquid-crystalline matrix-monoolein cubic phase. The carbon nanotubes-nanostructured electrode surface was covered with the cubic phase film containing the enzyme and acted as the catalytic surface for the oxidation of glucose and reduction of oxygen. Thanks to the mediating role of derivatized nanotubes the catalysis was almost ten times more efficient than on the GCE electrodes: catalytic current of glucose oxidation was 1 mA cm{sup -2} and oxygen reduction current exceeded 0.6 mA cm{sup -2}. The open circuit voltage of the biofuel cell was 0.43 V. Application of carbon nanotubes increased the maximum power output of the constructed biofuel cell to 100 {mu}W cm{sup -2} without stirring of the solution which was ca. 100 times more efficient than using the same bioelectrodes without nanotubes on the electrode surface. (orig.)

  7. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    Energy Technology Data Exchange (ETDEWEB)

    Trouillon, Raphael, E-mail: raphael.trouillon06@imperial.ac.u [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom); O' Hare, Danny [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom)

    2010-09-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp{sup 3} structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  8. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    International Nuclear Information System (INIS)

    Trouillon, Raphael; O'Hare, Danny

    2010-01-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp 3 structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  9. Activated carbon/manganese dioxide hybrid electrodes for high performance thin film supercapacitors

    Science.gov (United States)

    Jang, Yunseok; Jo, Jeongdai; Jang, Hyunjung; Kim, Inyoung; Kang, Dongwoo; Kim, Kwang-Young

    2014-06-01

    We combine the activated carbon (AC) and the manganese dioxide (MnO2) in a AC/MnO2 hybrid electrode to overcome the low capacitance of activated carbon and MnO2 by exploiting the large surface area of AC and the fast reversible redox reaction of MnO2. An aqueous permanganate (MnO4 -) is converted to MnO2 on the surface of the AC electrode by dipping the AC electrode into an aqueous permanganate solution. The AC/MnO2 hybrid electrode is found to display superior specific capacitance of 290 F/g. This shows that supercapacitors classified as electric double layer capacitors and pseudocapacitors can be combined together.

  10. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-07-28

    Carbon nanocoil (CNC) based electrodes are shown to be promising candidates for electrochemical energy storage applications, provided the CNCs are properly functionalized. In the present study, nanocrystalline metal oxide (RuO 2, MnO2, and SnO2) dispersed CNCs were investigated as electrodes for supercapacitor applications using different electrochemical methods. In the two electrode configuration, the samples exhibited high specific capacitance with values reaching up to 311, 212, and 134 F/g for RuO2/CNCs, MnO2/CNCs, and SnO2/CNCs, respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be superior to those reported for metal oxide dispersed multiwalled carbon nanotubes in two electrode configuration. In addition, the fabricated supercapacitors retained excellent cycle life with ∼88% of the initial specific capacitance retained after 2000 cycles. © 2011 American Chemical Society.

  11. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyonkwang; Kim, Hyunkook; Hwang, Sookhyun; Jeon, Minhyon [Department of Nano Systems Engineering, Center of Nano Manufacturing, Inje University, Obang, Gimhae, Gyungnam 621-749 (Korea, Republic of); Choi, Wonbong [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2011-01-15

    We demonstrated a counter electrode in dye-sensitized solar cells (DSSCs) using the graphene-based multi-walled carbon nanotubes (GMWNTs) structure. Graphene layers were prepared by drop casting on a SiO{sub 2}/Si substrate and multi-walled carbon nanotubes (MWNTs) were synthesized on graphene layers using iron catalyst by chemical vapor deposition. The structural properties of GMWNTs were investigated by transmission electron microscope and field-emission scanning electron microscopy. The GMWNTs sheets were lifted off from the Si substrate by buffered oxide etching and were transplanted on fluorine-doped tin oxide glass by Van der Waals force as a counter electrode. From the electrochemical impedance spectroscopy and energy conversion efficiencies, electrochemical properties of GMWNTs were comparable with those of MWNTs counter electrode. The results suggested that GMWNTs were one of the candidates for a counter electrode for dye-sensitized solar cells. (author)

  12. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  13. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    Science.gov (United States)

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  14. Ultrasensitive electrospun nickel-doped carbon nanofibers electrode for sensing paracetamol and glucose

    International Nuclear Information System (INIS)

    Li, Lili; Zhou, Tingting; Sun, Guoying; Li, Zhaohui; Yang, Wenxiu; Jia, Jianbo; Yang, Guocheng

    2015-01-01

    The long, uniform and smooth Ni(NO 3 ) 2 -loaded polyvinyl alcohol nanofibers were prepared via electrospinning on a nonconductive quartz plate. The nanofibers were stabilized at 300 °C for 3 h in nitrogen atmosphere, and then the continuous heating to 800 °C at the rate of 2 °C min −1 keeping 3 h was used to prepare nickel-doped carbon nanofibers (Ni:CNFs). The composites were characterized with Raman spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The Ni:CNFs were used as the working electrode to sense paracetamol (PCT) and glucose (GLU), respectively. When sensing PCT, the Ni:CNFs electrode showed an electrochemical behavior like on macroelectrode; but for GLU, it displayed an electrochemical behavior like on microelectrode. For both of the species, higher sensitivities on the Ni:CNFs electrodes were obtained than those on bulk glassy carbon and nickel electrodes

  15. Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-01-01

    The electrochemical reduction of tinidazole (TNZ) is studied on gold-nanoparticle/carbon-nanotubes (AuNP/CNT) modified glassy carbon electrodes using the linear sweep voltammetry. An electrochemical procedure was used for the deposition of gold nanoparticles onto the carbon nanotube film pre-cast on a glassy carbon electrode surface. The resulting nanoparticles were characterized by scanning electron microscopy and cyclic voltammetry. The effect of the electrodeposition conditions, e.g., salt concentration and deposition time on the response of the electrode was studied. Also, the effect of experimental parameters, e.g., potential and time of accumulation, pH of the buffered solutions and the potential sweep rate on the response is examined. Under the optimal conditions, the modified electrode showed a wide linear response toward the concentration of TNZ in the range of 0.1–50 μM with a detection limit of 10 nM. The prepared electrode was successfully applied for the determination of TNZ in pharmaceutical and clinical samples.

  16. Fabrication and electrochemical characterization of multi-walled carbon nanotube electrodes for applications to nano-electrochemical sensing

    International Nuclear Information System (INIS)

    Hwang, Sookhyun; Choi, Hyonkwang; Jeon, Minhyon; Vedala, Harindra; Kim, Taehyung; Choi, Wonbong

    2010-01-01

    In this study, we fabricated and electrochemically characterized two types of individual carbon nanotube electrodes: an as-produced multi-walled carbon nanotube (MWNT) electrode and a modified MWNT electrode. As-produced MWNTs were electrically contacted with Au/Ti layers by using nanolithography and RF magnetron sputtering. Open-ended modified MWNT electrodes were fabricated by using a reactive ion etching treatment under an oxygen atmosphere. We also performed cyclic voltammetry measurements to detect aqueous dopamine solutions with different concentrations. We found that an individual MWNT electrode, which had a small effective area, showed good electrochemical performance. The electrocatalytic behavior of the modified electrode, which had 'broken' open ends were better than that of the as-produced electrode with respect to sensitivity. The modified electrode was capable of detecting dopamine at the picomolar level. Therefore, an individual modified MWNT electrode has potential for applications to active components in nanobiosensors.

  17. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine

    International Nuclear Information System (INIS)

    Zare, Hamid R.; Nasirizadeh, Navid

    2007-01-01

    A new hydrazine sensor has been fabricated by immobilizing hematoxylin at the surface of a glassy carbon electrode (GCE) modified with multi-wall carbon nanotube (MWCNT). The adsorbed thin films of hematoxylin on the MWCNT modified GCE show one pair of peaks with surface confined characteristics. The hematoxylin MWCNT (HMWCNT) modified GCE shows highly catalytic activity toward hydrazine electro-oxidation. The results show that the peak potential of hydrazine at HMWCNT modified GCE surface shifted by about 167 and 255 mV toward negative values compared with that at an MWCNT and activated modified GCE surface, respectively. In addition, at HMWCNT modified electrode surface remarkably improvement the sensitivity of determination of hydrazine. The kinetic parameters, such as the electron transfer coefficient, α, and the standard heterogeneous rate constant, k 0 , for oxidation of hydrazine at the HMWCNT modified GCE were determined and also is shown that the heterogeneous rate constant, k', is strongly potential dependent. The overall number of electron involved in the catalytic oxidation of hydrazine and the number of electrons involved in the rate-determining steps are 2 and 1, respectively. The amperometric detection of hydrazine is carried out at 220 mV in 0.1 M phosphate buffer solution (pH 7) with linear response range 2.0-122.8 μM hydrazine, detection limit of 0.68 μM and sensitivity of 0.0208 μA μM -1 . Finally the amperometric response for hydrazine determination is reproducible, fast and extremely stable, with no loss in sensitivity over a continual 400 s operation

  18. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.

    2016-01-01

    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...... infiltrated with Sr0.99Fe0.75Mo0.25O3-δ (SFM), the electronic conductivity wasenhanced. However, polarization resistance of the cells increased,suggesting that the infiltrated material is less electro-catalyticallyactive and was partly blocking the CGO surface reaction sites. Theactivity could be regained...... by infiltrating nano-sized CGO orNiCGO on top of SFM, while still sustaining the high electronicconductivity. Ohmic resistance of the electrodes was thuspractically eliminated and performance comparable to, or betterthan, state-of-the-art fuel electrodes was achieved. The Nicontaining cells were damaged by carbon...

  19. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    International Nuclear Information System (INIS)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. (cross-disciplinary physics and related areas of science and technology)

  20. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    Science.gov (United States)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  1. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Coppedè, Nicola; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Valitova, Irina; Cicoira, Fabio; Mahvash, Farzaneh; Santato, Clara; Martel, Richard

    2014-01-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs. (paper)

  2. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Electrochemical reduction of trinitrotoluene on core-shell tin-carbon electrodes

    International Nuclear Information System (INIS)

    Grigoriants, Irena; Markovsky, Boris; Persky, Rachel; Perelshtein, Ilana; Gedanken, Aharon; Aurbach, Doron; Filanovsky, Boris; Bourenko, Tatiana; Felner, Israel

    2008-01-01

    In this work, we studied the electrochemical process of 2,4,6-trinitrotoluene (TNT) reduction on a new type of electrodes based on a core-shell tin-carbon Sn(C) structure. The Sn(C) composite was prepared from the precursor tetramethyl-tin Sn(CH 3 ) 4 , and the product contained a core of submicron-sized tin particles uniformly enveloped with carbon shells. Cyclic voltammograms of Sn(C) electrodes in aqueous sodium chloride solutions containing TNT show three well-pronounced reduction waves in the potential range of -0.50 to -0.80 V (vs. an Ag/AgCl/Cl - reference electrode) that correspond to the multistep process of TNT reduction. Electrodes containing Sn(C) particles annealed at 800 deg. C under argon develop higher voltammetric currents of TNT reduction (comparing to the as-prepared tin-carbon material) due to stabilization of the carbon shell. It is suggested that the reduction of TNT on core-shell tin-carbon electrodes is an electrochemically irreversible process. A partial oxidation of the TNT reduction products occurred at around -0.20 V. The electrochemical response of TNT reduction shows that it is not controlled by the diffusion of the active species to/from the electrodes but rather by interfacial charge transfer and possible adsorption phenomena. The tin-carbon electrodes demonstrate significantly stable behavior for TNT reduction in NaCl solutions and provide sufficient reproducibility with no surface fouling through prolonged voltammetric cycling. It is presumed that tin nanoparticles, which constitute the core, are electrochemically inactive towards TNT reduction, but Sn or SnO 2 formed on the electrodes during TNT reduction may participate in this reaction as catalysts or carbon-modifying agents. The nitro-groups of TNT can be reduced irreversibly (via two possible paths) by three six-electron transfers, to 2,4,6-triaminotoluene, as follows from mass-spectrometric studies. The tin-carbon electrodes described herein may serve as amperometric sensors

  4. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  5. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    Science.gov (United States)

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  6. Carbon Nanotube Electrodes for Hot-Wire Electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Gründler, P.; Frank, Otakar; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 10, č. 3 (2009), s. 559-563 ISSN 1439-4235 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * electrodes * nanotubes * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 3.453, year: 2009

  7. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes

    International Nuclear Information System (INIS)

    Baudler, André; Riedl, Sebastian; Schröder, Uwe

    2014-01-01

    The performance of primary and secondary electroactive biofilms grown on layered corrugated carbon (LCC) electrodes was studied over a period of several months. With an average projected current density of 6.7 mA cm −2 , the studied secondary electroactive biofilms outperformed the primary biofilms (3.0 mA cm −2 ) over the entire experimental period. At the same time, both, primary and secondary biofilms, exhibited a constant Coulomb efficiency of about 89%. The study further illustrates that three-dimensional electrodes such as LCC allow a sustained long-term performance without significant decrease in electrode performance.

  8. Thin, Flexible Supercapacitors Made from Carbon Nanofiber Electrodes Decorated at Room Temperature with Manganese Oxide Nanosheets

    OpenAIRE

    Nataraj, S. K.; Song, Q.; Al-Muhtaseb, S. A.; Dutton, S. E.; Zhang, Q.; Sivaniah, E.

    2013-01-01

    We report the fabrication and electrochemical performance of a flexible thin film supercapacitor with a novel nanostructured composite electrode. The electrode was prepared by in situ coprecipitation of two-dimensional (2D) MnO2 nanosheets at room temperature in the presence of carbon nanofibers (CNFs). The highest specific capacitance of 142 F/g was achieved for CNFs-MnO2 electrodes in sandwiched assembly with PVA-H4SiW12O40nH2O polyelectrolyte separator. Peer Reviewed

  9. Thin, Flexible Supercapacitors Made from Carbon Nanofiber Electrodes Decorated at Room Temperature with Manganese Oxide Nanosheets

    Directory of Open Access Journals (Sweden)

    S. K. Nataraj

    2013-01-01

    Full Text Available We report the fabrication and electrochemical performance of a flexible thin film supercapacitor with a novel nanostructured composite electrode. The electrode was prepared by in situ coprecipitation of two-dimensional (2D MnO2 nanosheets at room temperature in the presence of carbon nanofibers (CNFs. The highest specific capacitance of 142 F/g was achieved for CNFs-MnO2 electrodes in sandwiched assembly with PVA-H4SiW12O40·nH2O polyelectrolyte separator.

  10. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Baudler, André; Riedl, Sebastian; Schröder, Uwe, E-mail: uwe.schroeder@tu-bs.de [Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Braunschweig (Germany)

    2014-07-30

    The performance of primary and secondary electroactive biofilms grown on layered corrugated carbon (LCC) electrodes was studied over a period of several months. With an average projected current density of 6.7 mA cm{sup −2}, the studied secondary electroactive biofilms outperformed the primary biofilms (3.0 mA cm{sup −2}) over the entire experimental period. At the same time, both, primary and secondary biofilms, exhibited a constant Coulomb efficiency of about 89%. The study further illustrates that three-dimensional electrodes such as LCC allow a sustained long-term performance without significant decrease in electrode performance.

  11. Electrocatalytic performance of Pu(IV)/Pu(III) redox reaction at graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, J.S.; Kamat, J.V.; Aggarwal, S.K.

    2014-01-01

    In this paper we explore the analytical perspectives of graphene modified electrode utilising commercially available graphene, which is well characterised, completely free from surfactants and has not been purposely oxidised or treated. We compare and critically contrast the electro-analytical performance of graphene modified glassy carbon electrodes (Gr/GC) with that of unmodified GC electrode towards Pu(IV)/Pu(III) redox reaction, monitoring of which has considerable importance in a plethora of areas where electrochemistry is conveniently and beneficially utilised for determination of nuclear fuels

  12. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode

    International Nuclear Information System (INIS)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-01-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb) = dI p,a (Meb) / d[Meb] = 19.65 μA μM −1 ), a low detection limit (LOD (Meb) = 19 nM) and a wide linear dynamic range (0.06–3 μM) was resulted for the voltammetric quantification of Meb. - Highlights: • Electrochemical oxidation mechanism of Meb was investigated. • A carbon nanostructure modified electrode was developed for the determination of Meb. • The modified electrode surface was characterized by SEM and impedance studies. • This study provides an effective chemically modified electrode with satisfactory repeatability and reproducibility

  13. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  14. Activated carbon fiber obtained from textile PAN fiber to electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres; Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: Supercapacitors are devices for electrical energy storage with application in distribution power generation, electric vehicles, electronic equipment, among others. Current challenges in the development of supercapacitors focuses on making an increasing on system density of energy. An increase of energy accumulated in the supercapacitor electrode can be achieved by developing materials with high specific electrical capacitance and low electrical resistance. Furthermore, it is expected that the electrode material present a simple procedure for obtaining, low cost and environmentally friendly. Carbon fibers are interesting materials for use as a supercapacitor electrode. Among them are carbon fibers from polyacrylonitrile (PAN). In this work were studied activated carbon fibers obtained from textile polyacrylonitrile (ACF-PAN) with deposition of Fe particles aiming to use as active material of supercapacitor electrodes. ACFPAN and ACF-PAN-Fe were characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The behavior of the activated carbon fibers as a supercapacitor electrode was evaluated by galvanostatic charge and discharge curves, cyclic voltammetry and a electrochemical impedance using a symmetrical two-electrode Swagelok®-type cell and sulfuric acid as electrolyte. ACF-PAN had a high specific surface area, which makes it an interesting material for electrodes of supercapacitors. The electrical capacitance for the ACF-PAN is 96 F/g and ACF-PAN-Fe is 106 F/g both at a current density of 0.30 A/g. This increase in electrical capacitance can be related to the presence of iron oxides which are deposited on the activated carbon fiber. (author)

  15. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2012-05-01

    Full Text Available Multiwalled carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA by square-wave voltammetry (SWV. The oxidation of ascorbic acid at the modified glassy carbon electrode showed a peak potential at 315 mV, about 80 mV lower than that observed at the bare (unmodified electrode. The peak current was about threefold higher than the response at the bare electrode. Replicate measurements of peak currents showed good precision (3% rsd. Peak currents increased with increasing ascorbic acid concentration (dynamic range = 0.0047–5.0 mmol/L and displayed good linearity (R2 = 0.994. The limit of detection was 1.4 μmol/L AA, while the limit of quantitation was 4.7 μmol/L AA. The modified electrode was applied to the determination of the amount of ascorbic acid in four brands of commercial orange-juice products. The measured content agreed well (96–104% with the product label claim for all brands tested. Recovery tests on spiked samples of orange juice showed good recovery (99–104%. The reliability of the SWV method was validated by conducting parallel experiments based on high-performance liquid chromatography (HPLC with absorbance detection. The observed mean AA contents of the commercial orange juice samples obtained by the two methods were compared statistically and were found to have no significant difference (P = 0.05.

  17. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

    KAUST Repository

    Alshareef, Husam N.

    2016-12-23

    In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m−1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g−1 at 2 and 20 A g−1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg−1 at a power density of 0.64 kW Kg−1, with high cycling life stability (∼8% loss after 10,000 continuous charge–discharge cycles at 20 A g−1). Interestingly, as the power density increases from 4.4 kW kg−1 to 36.8 kW kg−1, the energy density drops slowly from 8.4 Wh kg−1 to 3.4 Wh kg−1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

  18. Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications

    Science.gov (United States)

    Taer, Erman; Taslim, Rika

    2018-02-01

    The synthesis of activated carbon monolith electrode made from a biomass material using the hydrolytic pressure or the pelletization technique of pre-carbonized materials is one of standard reported methods. Several steps such as pre-carbonization, milling, chemical activation, hydraulic press, carbonization, physical activation, polishing and washing need to be accomplished in the production of electrodes by this method. This is relatively a long process that need to be simplified. In this paper we present the standard method and proceed with the introduction to several alternative methods in the synthesis of activated carbon monolith electrodes. The alternative methods were emphasized on the selection of suitable biomass materials. All of carbon electrodes prepared by different methods will be analyzed for physical and electrochemical properties. The density, degree of crystallinity, surface morphology are examples for physical study and specific capacitance was an electrochemical properties that has been analysed. This alternative method has offered a specific capacitance in the range of 10 to 171 F/g.

  19. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

    KAUST Repository

    Alshareef, Husam N.; Whitehair, Daniel; Xia, Chuan

    2016-01-01

    In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m−1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g−1 at 2 and 20 A g−1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg−1 at a power density of 0.64 kW Kg−1, with high cycling life stability (∼8% loss after 10,000 continuous charge–discharge cycles at 20 A g−1). Interestingly, as the power density increases from 4.4 kW kg−1 to 36.8 kW kg−1, the energy density drops slowly from 8.4 Wh kg−1 to 3.4 Wh kg−1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

  20. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  1. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    Science.gov (United States)

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  2. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®.

    Science.gov (United States)

    Cinti, Stefano; Mazzaracchio, Vincenzo; Cacciotti, Ilaria; Moscone, Danila; Arduini, Fabiana

    2017-10-03

    Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M ® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  3. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-10-01

    Full Text Available Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  4. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    Science.gov (United States)

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  5. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver

    International Nuclear Information System (INIS)

    Gao, J.; Zhang, H.P.; Fu, L.J.; Zhang, T.; Wu, Y.P.; Takamura, T.; Wu, H.Q.; Holze, R.

    2007-01-01

    A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions

  6. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  7. Comparison of dye solar cell counter electrodes based on different carbon nanostructures

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Halonen, Niina; Kaskela, Antti; Toivola, Minna; Nasibulin, Albert G.; Kordas, Krisztian; Toth, Geza; Kauppinen, Esko I.; Lund, Peter D.

    2011-01-01

    Three characteristically different carbon nanomaterials were compared and analyzed as platinum-free counter electrodes for dye solar cells: 1) single-walled carbon nanotube (SWCNT) random network films on glass, 2) aligned multi-walled carbon nanotube (MWCNT) forest films on Inconel steel and quartz, and 3) pressed carbon nanoparticle composite films on indium tin oxide-polyethylene terephtalate plastic. Results from electrochemical impedance spectroscopy and electron microscopy were discussed in terms of the catalytic activity, conductivity, thickness, transparency and flexibility of the electrode films. The SWCNT films showed reasonable catalytic performance at similar series resistance compared to platinized fluorine doped tin oxide-coated glass. The MWCNTs had similar catalytic activity, but the electrochemical performance of the films was limited by their high porosity. Carbon nanoparticle films had the lowest charge transfer resistance resulting from a combination of high catalytic activity and dense packing of the material.

  8. Comparison of dye solar cell counter electrodes based on different carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Aitola, Kerttu, E-mail: kerttu.aitola@aalto.fi [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland); Halme, Janne [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland); Halonen, Niina [Microelectronics and Materials Physics Laboratories, Department of Electrical and Information Engineering, University of Oulu, P.O. Box 4500, FI-90014 University of Oulu (Finland); Kaskela, Antti; Toivola, Minna; Nasibulin, Albert G. [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland); Kordas, Krisztian; Toth, Geza [Microelectronics and Materials Physics Laboratories, Department of Electrical and Information Engineering, University of Oulu, P.O. Box 4500, FI-90014 University of Oulu (Finland); Kauppinen, Esko I. [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland); VTT Biotechnology, P.O. Box 1000, 02044 VTT (Finland); Lund, Peter D. [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland)

    2011-09-01

    Three characteristically different carbon nanomaterials were compared and analyzed as platinum-free counter electrodes for dye solar cells: 1) single-walled carbon nanotube (SWCNT) random network films on glass, 2) aligned multi-walled carbon nanotube (MWCNT) forest films on Inconel steel and quartz, and 3) pressed carbon nanoparticle composite films on indium tin oxide-polyethylene terephtalate plastic. Results from electrochemical impedance spectroscopy and electron microscopy were discussed in terms of the catalytic activity, conductivity, thickness, transparency and flexibility of the electrode films. The SWCNT films showed reasonable catalytic performance at similar series resistance compared to platinized fluorine doped tin oxide-coated glass. The MWCNTs had similar catalytic activity, but the electrochemical performance of the films was limited by their high porosity. Carbon nanoparticle films had the lowest charge transfer resistance resulting from a combination of high catalytic activity and dense packing of the material.

  9. Carbon Powder Based Films on Traditional Solid Electrodes as an Alternative to Disposable Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Barek, J.; Fojta, Miroslav

    2006-01-01

    Roč. 18, č. 11 (2006), s. 1126-1130 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/03/0182; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : voltammetry * solid electrodes * ink film * disposable sensor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  10. Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries

    Science.gov (United States)

    Teixidor, Genis Turon; Zaouk, Rabih B.; Park, Benjamin Y.; Madou, Marc J.

    This paper presents fabrication and testing results of three-dimensional carbon anodes for lithium-ion batteries, which are fabricated through the pyrolysis of lithographically patterned epoxy resins. This technique, known as Carbon-MEMS, provides great flexibility and an unprecedented dimensional control in shaping carbon microstructures. Variations in the pattern density and in the pyrolysis conditions result in anodes with different specific and gravimetric capacities, with a three to six times increase in specific capacity with respect to the current thin-film battery technology. Newly designed cross-shaped Carbon-MEMS arrays have a much higher mechanical robustness (as given by their moment of inertia) than the traditionally used cylindrical posts, but the gravimetric analysis suggests that new designs with thinner features are required for better carbon utilization. Pyrolysis at higher temperatures and slower ramping up schedules reduces the irreversible capacity of the carbon electrodes. We also analyze the addition of Meso-Carbon Micro-Beads (MCMB) particles on the reversible and irreversible capacities of new three-dimensional, hybrid electrodes. This combination results in a slight increase in reversible capacity and a big increase in the irreversible capacity of the carbon electrodes, mostly due to the non-complete attachment of the MCMB particles.

  11. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    Science.gov (United States)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  12. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries

    International Nuclear Information System (INIS)

    Song, Q.S.; Aravindaraj, G.K.; Sultana, H.; Chan, S.L.I.

    2007-01-01

    Carbon nanotubes (CNTs) were employed as a functional additive to improve the electrochemical performance of pasted nickel-foam electrodes for rechargeable nickel-based batteries. The nickel electrodes were prepared with spherical β-Ni(OH) 2 powder as the active material and various amounts of CNTs as additives. Galvanostatic charge/discharge cycling tests showed that in comparison with the electrode without CNTs, the pasted nickel electrode with added CNTs exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage, high-rate capability and cycling stability. Meanwhile, the CNT addition also lowered the packing density of Ni(OH) 2 particles in the three-dimensional porous nickel-foam substrate, which could lead to the decrease in the active material loading and discharge capacity of the electrode. Hence, the amount of CNTs added to Ni(OH) 2 should be optimized to obtain a high-performance nickel electrode, and an optimum amount of CNT addition was found to be 3 wt.%. The superior electrochemical performance of the nickel electrode with CNTs could be attributed to lower electrochemical impedance and less γ-NiOOH formed during charge/discharge cycling, as indicated by electrochemical impedance spectroscopy and X-ray diffraction analyses. Thus, it was an effective method to improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of CNTs to spherical Ni(OH) 2 as the active material

  13. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    Science.gov (United States)

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  14. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors

    Science.gov (United States)

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-01

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m2/g and a pore volume 0.366 cm3/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs. PMID:28074847

  15. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors.

    Science.gov (United States)

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-11

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m 2 /g and a pore volume 0.366 cm 3 /g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs.

  16. Anodic stripping voltammetric determination of silver ion at a carbon paste electrode modified with carbon nanotubes

    International Nuclear Information System (INIS)

    Tashkhourian, J.; Javadi, S.; Ana, F.N.

    2011-01-01

    A carbon paste electrode (CPE) was modified with multi-wall carbon nanotubes and successfully applied to the determination of silver ion by differential pulse anodic stripping voltammetry. Compared to a conventional CPE, a remarkably improved peak current response and sensitivity is observed. The analytical procedure consisted of an open circuit accumulation step for 2 min in -0.4 V, this followed by an anodic potential scan between +0.2 and + 0.6 V to obtain the voltammetric peak. The oxidation peak current is proportional to the concentration of silver ion in the range from 1.0 x 10 -8 to 1.0 x 10 -5 mol L -1 , with a detection limit of 1.8 x 10 -9 mol L -1 after an accumulation time of 120 s. The relative standard deviation for 7 successive determinations of Ag(I) at 0.1 μM concentration is 1.99%. The procedure was validated by determining Ag(I) in natural waters. (author)

  17. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Koh Sing Ngai

    2015-01-01

    Full Text Available A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE was performed by cyclic voltammetry. Variable pressure scanning electron microscopy (VPSEM and energy dispersive X-ray (EDX spectrometer were used to examine the surface morphology and elemental profile of the modified electrode, respectively. Cyclic voltammetry showed significant enhancement in peak current for the determination of paracetamol at the SWCNT/Ni-modified electrode. A linear calibration curve was obtained for the paracetamol concentration between 0.05 and 0.50 mM. The SWCNT/Ni/GCE displayed a sensitivity of 64 mA M−1 and a detection limit of 1.17 × 10−7 M in paracetamol detection. The proposed electrode can be applied for the determination of paracetamol in real pharmaceutical samples with satisfactory performance. Results indicate that electrodes modified with SWCNT and nickel nanoparticles exhibit better electrocatalytic activity towards paracetamol.

  18. On the adsorption and kinetics of phase transients of adenosine at the different carbon electrodes modified with a mercury layer

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Simonaho, S.P.; Silvennoinen, R.; Vetterl, Vladimír

    2003-01-01

    Roč. 48, č. 6 (2003), s. 651-668 ISSN 0013-4686 R&D Projects: GA AV ČR IAA4004002; GA AV ČR IBS5004107 Institutional research plan: CEZ:AV0Z5004920 Keywords : glassy carbon electrode * pyrolytic graphite electrode * mercury film electrode Subject RIV: BO - Biophysics Impact factor: 1.996, year: 2003

  19. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Du Chunsheng; Pan Ning

    2006-01-01

    Carbon nanotube thin films have been successfully fabricated by the electrophoretic deposition technique. The supercapacitors built from such thin film electrodes have a very small equivalent series resistance, and a high specific power density over 20 kW kg -1 was thus obtained. More importantly, the supercapacitors showed superior frequency response. Our study also demonstrated that these carbon nanotube thin films can serve as coating layers over ordinary current collectors to drastically enhance the electrode performance, indicating a huge potential in supercapacitor and battery manufacturing

  20. Carbon Nanotube Web with Carboxylated Polythiophene "Assist" for High-Performance Battery Electrodes.

    Science.gov (United States)

    Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa

    2018-04-24

    A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

  1. TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, G.R.; Wang, F.; Song, J.; Xiong, F.Y.; Gao, X.P.

    2012-01-01

    Highlights: ► The TiN nanoparticles are highly dispersed on conductive carbon black matrix (CCB). ► The well dispersion of TiN nanoparticles can improve electrochemical performance. ► The TiN/CCB shows a high photovoltaic performance with high conversion efficiency. - Abstract: TiN-conductive carbon black (CCB)/Ti electrodes are prepared by the nitridation of TiO 2 –CCB mixtures filmed on metallic Ti substrate in ammonia atmosphere. It is demonstrated from X-ray diffraction (XRD) and scanning electron microscopy (SEM) that TiN nanoparticles are highly dispersed on the CCB matrix in the composites. TiN–CCB/Ti electrodes show outstanding electrochemical performances as compared to individual TiN/Ti and CCB/Ti electrodes. In particular, the dye-sensitized solar cell (DSSC) using TiN–CCB (1:1, mass ratio)/Ti electrode presents an energy conversion efficiency of 7.92%, which is higher than that (6.59%) of the device using Pt/FTO (fluorine doped tin oxide) electrode measured under the same test conditions. Based on the analysis of cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the enhancements for the electrochemical and photochemical performance of TiN–CCB/Ti electrodes are attributed to the fact that the dispersed TiN nanoparticles in the CCB matrix provide an improved electrocatalytic activity and a facilitated diffusion for triiodine ions. This work shows a facile approach to develop metal nitrides–carbon composites as counter electrodes for DSSCs. High energy conversion efficiency and low lost will make the composites have significant potential for replacing the conventional Pt/FTO electrodes in DSSCs.

  2. Voltammetry of Os(VI)-modified polysaccharides at carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1763-1766 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemical modification of polysaccharides * Os(VI)L-polysaccharide adducts * pyrolytic graphite electrodes Subject RIV: BO - Biophysics Impact factor: 2.630, year: 2009

  3. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.

    Science.gov (United States)

    Richey, Francis W; Dyatkin, Boris; Gogotsi, Yury; Elabd, Yossef A

    2013-08-28

    Electrochemical double layer capacitors (EDLCs), or supercapacitors, rely on electrosorption of ions by porous carbon electrodes and offer a higher power and a longer cyclic lifetime compared to batteries. Ionic liquid (IL) electrolytes can broaden the operating voltage window and increase the energy density of EDLCs. Herein, we present direct measurements of the ion dynamics of 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide in an operating EDLC with electrodes composed of porous nanosized carbide-derived carbons (CDCs) and nonporous onion-like carbons (OLCs) with the use of in situ infrared spectroelectrochemistry. For CDC electrodes, IL ions (both cations and anions) were directly observed entering and exiting CDC nanopores during charging and discharging of the EDLC. Conversely, for OLC electrodes, IL ions were observed in close proximity to the OLC surface without any change in the bulk electrolyte concentration during charging and discharging of the EDLC. This provides experimental evidence that charge is stored on the surface of OLCs in OLC EDLCs without long-range ion transport through the bulk electrode. In addition, for CDC EDLCs with mixed electrolytes of IL and propylene carbonate (PC), the IL ions were observed entering and exiting CDC nanopores, while PC entrance into the nanopores was IL concentration dependent. This work provides direct experimental confirmation of EDLC charging mechanisms that previously were restricted to computational simulations and theories. The experimental measurements presented here also provide deep insights into the molecular level transport of IL ions in EDLC electrodes that will impact the design of the electrode materials' structure for electrical energy storage.

  4. Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples

    International Nuclear Information System (INIS)

    Safavi, Afsaneh; Maleki, Norouz; Momeni, Safieh; Tajabadi, Fariba

    2008-01-01

    The electrocatalytic oxidation of sulfite was investigated at carbon ionic liquid electrode (CILE). This electrode is a very good alternative to previously described electrodes because the electrocatalytic effect is achieved without any electrode modification. Comparative experiments were carried out using carbon paste electrode (CPE) and glassy carbon electrode (GCE). At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for sulfite with a peak potential of 0.55 V vs. Ag/AgCl. Sulfite oxidation at CILE does not result in deactivation of the electrode surface. The kinetic parameters for this irreversible heterogeneous electron transfer process were determined. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 6-1000 μM. The detection limit of the method was 4 μM. The method was applied to the determination of sulfite in mineral water, grape juice and non-alcoholic beer samples

  5. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  6. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  7. Performance of dye-sensitized solar cells with various carbon nanotube counter electrodes

    International Nuclear Information System (INIS)

    Zhang, D.; Li, X.; Chen, S.; Sun, Z.; Huang, S.; Yin, X.J.

    2011-01-01

    Double-wall carbon nanotubes (DWCNTs), single-wall carbon nanotubes (SWCNTs), and multi-wall carbon nanotubes (MWCNTs) were investigated as an alternative for platinum in counter-electrodes for dye-sensitized solar cells. The counter-electrodes were prepared on fluorine-doped tin oxide glass substrates by the screen printing technique from pastes of carbon nanotubes and organic binder. The solar cells were assembled from carbon nanotubes counter-electrodes and screen printed anodes made from titanium dioxide. The cells produced with DWCNTs, SWCNTs or MWCNTs have overall conversion efficiencies of 8.0%, 7.6% and 7.1%, respectively. Electrochemical impedance spectroscopy measurements revealed that DWCNTs displayed the highest catalytic activity for the reduction of tri-iodide ions. The large surface area and superior chemical stability of the DWCNTs facilitated the electron-transfer kinetics at the interface between counter-electrode and electrolyte and yielded the lowest transfer resistance, thereby improving the photovoltaic activity. A short-term stability test at moderate conditions confirmed the robustness of solar cells based on the use of DWCNTs, SWCNTs or MWCNTs. (author)

  8. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode

    Science.gov (United States)

    Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit

    2017-09-01

    By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  9. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-01-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm 3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  10. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  11. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Science.gov (United States)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  12. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  13. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    Science.gov (United States)

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.

  14. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  15. Development of carbon paste electrodes modified by molecularly imprinted polymer as potentiometry sensor of uric acid

    Science.gov (United States)

    Khasanah, Miratul; Darmokoesoemo, Handoko; Widayanti, Nesti; Kadmi, Yassine; Elmsellem, Hicham; Kusuma, Heri Septya

    The development of carbon paste electrodes modified by molecularly imprinted polymer (MIP) for the potentiometric analysis of uric acid was carried out in this study. The aim of the study was to determine the optimum composition of the electrode constituent material, the optimum pH of the uric acid solution, and the performance of the electrode, which was measured by its response time, measurement range, Nernst factor, detection limits, selectivity coefficient, precision, accuracy, and life time. MIP was made from methyl methacrylate as the monomer, ethylene glycol dimethacrylate as the cross-linker, and uric acid as the template. Electrodes that give optimum performance were produced from carbon, MIP, and paraffin with a ratio of 40:25:35 (% w/w). The obtained results show that the measurement of uric acid solution gives optimum results at pH 5, Nernst factor of 30.19 mV/decade, and a measurement range of 10-6-10-3 M. The minimum detection limit of this method was 3.03.10-6 M, and the precision and accuracy toward uric acid with concentration of 10-6-10-3 M ranged between 1.36-2.03% and 63.9-166%. The selectivity coefficient value was less than 1, which indicated that the electrode was selective against uric acid and not interfered with by urea. This electrode has a response time of less than 2 min; its life time is 8 weeks with 104 usage times.

  16. Study on the Highly Sensitive AChE Electrode Based on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Shuping Zhang

    2014-01-01

    Full Text Available Using chitosan (CS as carrier, the method named layer-by-layer (LBL self-assembly modification to modify the glassy carbon electrode (GCE with multiwalled carbon nanotubes (MWNTs and acetylcholine esterase (AChE was proposed to prepare the acetylcholine esterase electrode with high sensitivity and stability. The modified electrode was used to detect pesticide of aldicarb, and the enzyme inhibition rate of the electrode showed good linearity with pesticide concentrations in the range of 10−10 g·L−1 to 10−3 g·L−1. The detection limit was 10−11 g·L−1. The modified electrode was also used to detect the actual sample, and the recovery rate range was from 97.72% to 107.15%, which could meet the rapid testing need of the aldicarb residue. After being stored in the phosphate buffer solution (PBS in 4°C for 30 days, the modified electrode showed good stability with the response current that was 80% of the original current.

  17. Comparative study of different alcohol sensors based on Screen-Printed Carbon Electrodes.

    Science.gov (United States)

    Costa Rama, Estefanía; Biscay, Julien; González García, María Begoña; Julio Reviejo, A; Pingarrón Carrazón, José Manuel; Costa García, Agustín

    2012-05-30

    Different very simple single-use alcohol enzyme sensors were developed using alcohol oxidase (AOX) from three different yeast, Hansenula sp., Pichia pastoris and Candida boidinii, and employing three different commercial mediator-based Screen-Printed Carbon Electrodes as transducers. The mediators tested, Prussian Blue, Ferrocyanide and Co-phthalocyanine were included into the ink of the working electrode. The procedure to obtain these sensors consists of the immobilization of the enzyme on the electrode surface by adsorption. For the immobilization, an AOX solution is deposited on the working electrode and left until dried (1h) at room temperature. The best results were obtained with the biosensor using Screen-Printed Co-phthalocyanine/Carbon Electrode and AOX from Hansenula sp. The reduced cobalt-phthalocyanine form is amperometrically detected at +0.4V (vs. Ag pseudo reference electrode). This sensor shows good sensitivity (1211 nA mM(-1)), high precision (2.1% RSD value for the slope value of the calibration plot) and wide linear response (0.05-1.00 mM) for ethanol determination. The sensor provides also accurate results for ethanol quantification in alcoholic drinks. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. ELECTROCATALYTIC ACTIVITY FOR O2 REDUCTION OF UNSUBSTITUTED AND PERCHLORINATED IRON PHTHALOCYANINES ADSORBED ON AMINO-TERMINATED MULTIWALLED CARBON NANOTUBES DEPOSITED ON GLASSY CARBON ELECTRODES

    OpenAIRE

    CAÑETE, PAULINA; SILVA, J. FRANCISCO; ZAGAL, JOSÉ H

    2014-01-01

    Amino-functionalized multiwalled carbon nanotubes (MWCNT-NH2) were modified with Fe phthalocyanine (FePc) and perchlorinated Fe phthalocyanine (16(Cl)FePc) and deposited on glassy carbon electrodes (GCE). The electrocatalytic activity of these hybrid electrodes was examined for the reduction of molecular oxygen in alkaline media (0.2 M NaOH) using stationary and rotating disk electrodes. Electrodes containing 16(Cl)FePc are more active than those containing FePc. Electrodes containing CNTs ar...

  19. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul

    2015-01-01

    Highlights: • The effects of electrode compression on VRFB are examined. • The electronic conductivity is improved when the compression is increased. • The kinetic losses are similar regardless of the electrode compression level. • The vanadium distribution is more uniform within highly compressed electrode. - Abstract: The porous carbon felt electrode is one of the major components of all-vanadium redox flow batteries (VRFBs). These electrodes are necessarily compressed during stack assembly to prevent liquid electrolyte leakage and diminish the interfacial contact resistance among VRFB stack components. The porous structure and properties of carbon felt electrodes have a considerable influence on the electrochemical reactions, transport features, and cell performance. Thus, a numerical study was performed herein to investigate the effects of electrode compression on the charge and discharge behavior of VRFBs. A three-dimensional, transient VRFB model developed in a previous study was employed to simulate VRFBs under two degrees of electrode compression (10% vs. 20%). The effects of electrode compression were precisely evaluated by analysis of the solid/electrolyte potential profiles, transfer current density, and vanadium concentration distributions, as well as the overall charge and discharge performance. The model predictions highlight the beneficial impact of electrode compression; the electronic conductivity of the carbon felt electrode is the main parameter improved by electrode compression, leading to reduction in ohmic loss through the electrodes. In contrast, the kinetics of the redox reactions and transport of vanadium species are not significantly altered by the degree of electrode compression (10% to 20%). This study enhances the understanding of electrode compression effects and demonstrates that the present VRFB model is a valuable tool for determining the optimal design and compression of carbon felt electrodes in VRFBs.

  20. Electrode fabrication for Lithium-ion batteries by intercalating of carbon nano tubes inside nano metric pores of silver foam

    International Nuclear Information System (INIS)

    Khoshnevisan, B.

    2011-01-01

    Here there is an on effort to improve working electrode (Ag + carbon nano tubes) preparation for Li-Ion batteries applications. Nano scaled silver foam with high specific area has been employed as a frame for loading carbon nano tubes by electrophoretic deposition method. In this ground, the prepared electrodes show a very good stability and also charge-discharge cycles reversibility.

  1. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.

    Science.gov (United States)

    Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng

    2018-04-03

    The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.

  2. Electrochemical Investigation of Catechol at Poly(niacinamide Modified Carbon Paste Electrode: A Voltammetric Study

    Directory of Open Access Journals (Sweden)

    A. B. Teradale

    2016-01-01

    Full Text Available A polymeric thin film modified electrode, that is, poly(niacinamide modified carbon paste electrode (MCPE, was developed for the electrochemical determination of catechol (CC by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE, the poly(niacinamide MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M and limit of quantification (10S/M were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.

  3. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Zhao, G.; An, L.; Zeng, L.

    2016-01-01

    Highlights: • Propose a carbon nanoparticle-decorated graphite felt electrode for VRFBs. • The energy efficiency is up to 84.8% at 100 mA cm"−"2. • The new electrode allows the peak power density to reach 508 mW cm"−"2. - Abstract: Increasing the performance of vanadium redox flow batteries (VRFBs), especially the energy efficiency and power density, is critically important to reduce the system cost to a level for widespread commercialization. Unlike conventional VRFBs with flow-through structure, in this work we create a VRFB featuring a flow-field structure with a carbon nanoparticle-decorated graphite felt electrode for the battery. This novel structure, exhibiting a significantly reduced ohmic loss through reducing electrode thickness, an increased surface area and improved electrocatalytic activity by coating carbon nanoparticles, allows the energy efficiency up to 84.8% at a current density of as high as 100 mA cm"−"2 and the peak power density to reach a value of 508 mW cm"−"2. In addition, it is demonstrated that the battery with this proposed structure exhibits a substantially improved rate capability and capacity retention as opposed to conventional flow-through structured battery with thick graphite felt electrodes.

  4. Nitrogen-doped carbon based on peptides of hair as electrode materials for surpercapacitors

    International Nuclear Information System (INIS)

    Guo, Zihan; Zhou, Qingwen; Wu, Zhaojun; Zhang, Zhiguo; Zhang, Wen; Zhang, Yao; Li, Lijun; Cao, Zhenzhu; Wang, Hong; Gao, Yanfang

    2013-01-01

    Highlights: • Hair was directly carbonized by environmental and energy-saving methods. • Hair was utilized to prepare nitrogen-doped carbon materials for supercapacitor. • A new approache for preparing nitrogen-rich active carbon from biomass waste of hair-like precursor. • Hair-based carbon having a non-crystalline layered structure and excellent capacitive performance. -- Abstract: Hair, a high-nitrogen energetic material, is utilized as a precursor for nitrogen-doped porous carbon. The preparation procedures for obtaining carbon from hair are very simple, namely, reductant or deionized water activation process followed by hair carbonization under argon atmosphere at 800 °C for 2 h. The samples are characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption, and X-ray photoelectron microscopy. The carbon samples are tested as electrode materials in supercapacitors in a three-electrode system. The carbon (soaked in deionized water at 80 °C) presents relatively low specific surface areas (441.34 m 2 g −1 ) and shows higher capacitance (154.5 F g −1 ) compared with nitrogen-free commercial activated carbons (134.5 F g −1 ) at 5 A g −1 . The capacitance remains at 130.5 F g −1 even when the current load is increased to 15 A g −1 . The capacitance loss is only 5% in 6 M KOH after 10,000 charge and discharge cycles at 5 A g −1 . It is the unique microstructure after activation processing and electroactive nitrogen functionalities that enable the carbon obtained through a simple, ecological, and economical process to be utilized as a potential electrode material for electrical double-layer capacitors

  5. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ma, Jan [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Chunzhong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2012-08-08

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Compositional characterization of carbon electrode material: A study using simultaneous TG-DTA-FTIR

    International Nuclear Information System (INIS)

    Raje, Naina; Aacherekar, Darshana A.; Reddy, A.V.R.

    2009-01-01

    Present work describes the application of thermal methods, especially the evolved gas analysis (EGA) for the compositional characterization of carbon electrode material with respect to its organic, amorphous and graphitic carbon content. Trace levels of organic carbon present in the amorphous carbon samples were determined qualitatively by using FTIR absorption spectroscopy. Amorphous and graphitic carbon content in synthetic mixture samples were determined quantitatively using simultaneous TG-DTA-FTIR measurements. FTIR system was calibrated using the measured absorption signal of the evolved carbon dioxide due to the decomposition of cadmium carbonate. Inter-comparison studies using TG-FTIR measurements show that simultaneous FTIR spectroscopy is an effective complementary quantitative measurement technique for thermogravimetric analysis involving the complex decomposition reaction processes.

  7. Zinc Electrodeposition from Chloride Solutions onto Glassy Carbon Electrode

    OpenAIRE

    Mendoza-Huízar, Luis Humberto; Rios-Reyes, Clara Hilda; Gómez-Villegas, María Guadalupe

    2009-01-01

    An electrochemical study of zinc deposition was carried out in baths containing 0.5 M ZnCl2 and 0.4 M H3BO3. From the voltammetric study it was found that, in our experimental conditions, zinc electrodeposition is quasi-reversible and occurs under charge transfer control. The average coefficient diffusion calculated was D = 7.14 × 10-6 cm²s-1 while the standard constant at electrode charge was 8.78 × 10-3 cms-1. The nucleation and growth parameters determined from the potentiostatic study sho...

  8. Performance capabilities of EDM of high carbon high chromium steel with copper and brass electrodes

    Science.gov (United States)

    Surekha, B.; Swain, Sudiptha; Suleman, Abu Jafar; Choudhury, Suvan Dev

    2017-07-01

    The paper address the statistical modeling of input-output relationships of electric discharge machining. In the present work, peak current (I) pulse on time (T) and gap voltage of electric discharge machining (EDM) process are chosen as control parameters to analyze the performance of the process. The output characteristics, namely radial overcut, electrode wear rate (EWR) and metal removal rate (MRR) are treated as the responses. A full factorial design (FFD) of experiments has been used to conduct the experiments and linear regression models are developed for different process characteristics. While conducting the experiments, high carbon and high chromium steel is considered as work piece material and brass and copper are used as electrode material. It is important to note that the experimental conditions are kept similar while machining with the help of different electrode materials. The data obtained from the experiments has been used to develop the regression models for three process parameters for two electrode materials.

  9. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    Science.gov (United States)

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  10. Theoretical Simulation on the Assembly of Carbon Nanotubes Between Electrodes by AC Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2008-01-01

    Full Text Available Abstract The assembly of single-walled carbon nanotubes (SWCNTs using the AC dielectrophoresis technique is studied theoretically. It is found that the comb electrode bears better position control of SWCNTs compared to the parallel electrode. In the assembly, when some SWCNTs bridge the electrode first, they can greatly alter the local electrical field so as to “screen off” later coming SWCNTs, which contributes to the formation of dispersed SWCNT array. The screening distance scales with the gap width of electrodes and the length of SWCNTs, which provides a way to estimate the assembled density of SWCNTs. The influence of thermal noise on SWCNTs alignment is also analyzed in the simulation. It is shown that the status of the array distribution for SWCNTs is decided by the competition between the thermal noise and the AC electric-field strength. This influence of the thermal noise can be suppressed by using higher AC voltage to assemble the SWCNTs.

  11. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  12. MnO2/multiwall carbon nanotube/Ni-foam hybrid electrode for electrochemical capacitor

    Science.gov (United States)

    Chen, L. H.; Li, L.; Qian, W. J.; Dong, C. K.

    2018-01-01

    The ternary composites of manganese dioxide/multiwall carbon nanotube/Ni-foam (MnO2/MWNT/Ni-foam) for supercapacitors were fabricated via a hydrothermal method after direct growth of MWNTs on the Ni-foam. The structural properties of the electrodes were characterized by SEM and TEM. The electrode exhibited excellent electrochemical properties from the investigation based on the three-electrode setup. Low contact resistance Rs of about 0.291 Ω between MnO2/MWNT and Ni-foam was reached benefited from the direct growth structure. High capacitance of 355.1 F/g at the current density of 2 A/g was achieved, with good capacitive response at high current density. The MnO2/MWNT/Ni-foam electrode exhibits good stability performance after 2000 cycles at a current of 40 mA.

  13. Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes

    International Nuclear Information System (INIS)

    Nguyen, Le Huy; Nguyen, Ngoc Thinh; Nguyen, Hai Binh; Tran, Dai Lam; Nguyen, Tuan Dung

    2012-01-01

    Polyaniline-carboxylic multiwalled carbon nanotubes composite film (PANi-MWCNT) has been polymerized on the surface of interdigitated platinum electrode (fabricated by MEMS technology) which was compatibly connected to Autolab interface via universal serial bus (USB). An amperometric biosensor based on covalent immobilization of cholesterol oxidase (ChOx) on PANi–MWCNT film with potassium ferricyanide (FeCN) as the redox mediator was developed. The mediator helps to shuttle the electrons between the immobilized ChOx and the PANi-MWCNT electrode, therefore operating at a low potential of −0.3 V compared to the saturated calomel electrode (SCE). This potential precludes the interfering compounds from oxidization. The bio-electrode exhibits good linearity from 0.02 to 1.2 mM cholesterol concentration with a correlation coefficient of 0.9985

  14. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    Science.gov (United States)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  15. Carbon nanotubes functionalized by salts containing stereogenic heteroatoms as electrodes in their battery cells

    OpenAIRE

    Zdanowska Sandra; Pyzalska Magdalena; Drabowicz Józef; Kulawik Damian; Pavlyuk Volodymyr; Girek Tomasz; Ciesielski Wojciech

    2016-01-01

    This paper concentrates on electrochemical properties of groups of multi-walled carbon nanotubes (MWCNT) functionalized with substituents containing a stereogenic heteroatom bonded covalently to the surface of the carbon nanotube. This system was tested in Swagelok-type cells. The cells comprised a system (functionalized CNT with salts containing S and P atoms) with a working electrode, microfiber separators soaked with electrolyte solution, and a lithium foil counter/reference (commercial Li...

  16. Effect of porosity and tortuosity of electrodes on carbon polymer soft actuators

    Science.gov (United States)

    S, Sunjai Nakshatharan; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2018-01-01

    This work presents an electro-mechanical model and simulation of ionic electroactive polymer soft actuators with a porous carbon electrode, polymer membrane, and ionic liquid electrolyte. An attempt is made to understand the effects of specific properties of the porous electrodes such as porosity and tortuosity on the charge dynamics and mechanical performance of the actuator. The model uses porous electrode theory to study the electrochemical response of the system. The mechanical response of the whole laminate is attributed to the evolution of local stresses caused by diffusion of ions (diffusion-induced stresses or chemical stresses). The model indicates that in actuators with porous electrode, the diffusion coefficient of ions, conductivity of the electrodes, and ionic conductivity in both electrodes and separator are altered significantly. In addition, the model leads to an obvious deduction that the ions that are highly active in terms of mobility will dominate the whole system in terms of resulting mechanical deformation direction and rate of deformation. Finally, to validate the model, simulations are conducted using the finite element method, and the outcomes are compared with the experimental data. Significant effort has been put forward to experimentally measure the key parameters essential for the validation of the model. The results show that the model developed is able to well predict the behavior of the actuator, providing a comprehensive understanding of charge dynamics in ionic polymer actuator with porous electrodes.

  17. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  18. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2009-01-01

    Full Text Available The surface of glassy carbon (GC electrode has been modified by oxidation of L-cysteine. The covalent modified GC electrode with L-Cysteine has been studied, according the supporting electrolyte used. Favourable interactions between the L-cysteine film and DA enhance the current response compared to that at the Nafion GC and bare GC electrodes, achieving better performances than those other electrodes. This behaviour was as result of the adsorption of the cysteine layer film, compact and uniform formation; depending on L-cysteine solution (phosphate buffer or chloridric acid supporting electrolyte used for modifying GC surface. In cyclic voltammetric measurements, modified electrodes can successfully separate the oxidation/reduction DA peaks in different buffer solutions, but an evident dependence in the response was obtained as function of pH and modified electrode. The modified electrode prepared with L-cysteine/HCl solution was used to obtain the calibration curve and it exhibited a stable and sensitive response to DA. The results are described and discussed in the light of the existing literature.

  19. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    International Nuclear Information System (INIS)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento; Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres

    2016-01-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO 3 Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  20. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento, E-mail: alinerodrigues_1@msn.com [Instituto Tecnologico Aeroespacial (ITA), Sao Jose dos Campos, SP (Brazil); Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Cuna, Andres [Faculdade de Quimica, Universidad de la Republica (Uruguay)

    2016-07-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO{sub 3}Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  1. Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Mir Reza [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Jouyban, Abolghasem [Faculty of Pharmacy and Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Asadpour-Zeynali, Karim [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of)]. E-mail: asadpour@tabrizu.ac.ir

    2007-06-20

    Electrocatalytic oxidation of hydrazine (HZ) was studied on an overoxidized polypyrrole (OPPy) modified glassy carbon electrode using cyclic voltammetry and chronoamperometry techniques. The OPPy-modified glassy carbon electrode has very high catalytic ability for electrooxidation of HZ, which appeared as a reduced overpotential in a wide operational pH range of 5-10. The overall numbers of electrons involved in the catalytic oxidation of HZ, the number of electrons involved in the rate-determining and diffusion coefficient of HZ were estimated using cyclic voltammetry and chronoamperometry. It has been shown that using the OPPy-modified electrode, HZ can be determined by cyclic voltammetry and amperometry with limit of detection 36 and 3.7 {mu}M, respectively. The results of the analysis suggest that the proposed method promises accurate results and could be employed for the routine determination of HZ.

  2. Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.

    Science.gov (United States)

    Zhang, Hongfang; Zheng, Jianbin

    2012-05-15

    A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-01-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster

  4. Norepinephrine-modified glassy carbon electrode for the simultaneous determination of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Zare, H.R.; Memarzadeh, F.; Ardakani, M. Mazloum; Namazian, M.; Golabi, S.M.

    2005-01-01

    The oxidation of norepinephrine (NE) on a preactivated glassy carbon electrode leads to the formation of a deposited layer of about 4.2 x 10 -10 mol cm -2 at the surface of the electrode. The electron transfer rate constant, k s , and charge transfer coefficient, α, for electron transfer between the electrode and immobilized NE film were calculated as 44 s -1 and 0.46, respectively. The NE-modified glassy carbon electrode exhibited good electrocatalytic properties towards ascorbic acid (AA) oxidation in phosphate buffer (pH 7.0) with an overpotential of about 475 mV lower than that of the bare electrode. The electrocatalytic response was evaluated by cyclic voltammetry, chronoamperometry, amperometry and rotating disk voltammetry. The overall number of electrons involved in the catalytic oxidation of AA and the number of electrons involved in the rate-determining step are 2 and 1, respectively. The rate constant for the catalytic oxidation of AA was evaluated by RDE voltammetry and an average value of k h was found to be 8.42 x 10 3 M -1 s -1 . Amperometric determination of AA in stirred solution exhibits a linear range of 2.0-1300.0 μM (correlation coefficient 0.9999) and a detection limit of 0.076 μM. The precision of amperometry was found to be 1.9% for replicate determination of a 49.0 μM solution of AA (n = 6). In differential pulse voltammetric measurements, the NE-modified glassy carbon electrode can separate the AA and uric acid (UA) signals. Ascorbic acid oxidizes at more negative potential than UA. Also, the simultaneous determination of UA and AA is achieved at the NE-modified electrode

  5. Metallophthalocyanine based carbon paste electrodes for the determination of 2’,3’-Dideoxyinosine

    CSIR Research Space (South Africa)

    Ozoemena, KI

    2009-07-01

    Full Text Available Novel electrochemical sensors based on carbon paste impregnated with metallopthalocyanine (MPc, M¼Co, Fe) complexes, have been constructed for the assay of anti-HIV drug 2’,3’-dideoxyinosine (didanosine, DDI). Both modified electrodes showed...

  6. Influence of electrolyte ion-solvent interactions on the performances of supercapacitors porous carbon electrodes

    Science.gov (United States)

    Decaux, C.; Matei Ghimbeu, C.; Dahbi, M.; Anouti, M.; Lemordant, D.; Béguin, F.; Vix-Guterl, C.; Raymundo-Piñero, E.

    2014-10-01

    The development of advanced and safe electrochemical supercapacitors or hybrid supercapacitors combining a battery electrode material such as graphite and a porous carbon electrode implies the use of new electrolytes containing a tetra-alkylammonium or lithium salt dissolved preferentially in a safe and environmentally friendly solvent such as alkylcarbonates. In those systems, the carbon porosity of the activated carbon electrode controls the electrochemical behavior of the whole device. In this work, it is demonstrated that electrolytes containing highly polarizing ions such as Li+ dissolved in polar solvents such as alkylcarbonates do not completely loss their solvation shell at the opposite of what is observed for poorly solvated cations like TEABF4. As a consequence, the optimal carbon pore size for obtaining the largest energy density, while keeping a high power density, is wider when strongly solvated cations, like Li+ are used than for conventional organic electrolytes using acetonitrile as solvent and TEA+ as salt cations. TEA+ cations are easily desolvated and hence are able to penetrate in small pores matching the dimensions of bare ions. The dissimilarity of behavior of alkylcarbonates and acetonitrile based electrolytes highlights the importance of ion-solvent interactions when searching the optimal porous texture for the electrode material.

  7. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  8. Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Selvakumar, M.; Bhat, D. Krishna

    2012-01-01

    Highlights: ► Nanostructure TiO 2 has been prepared by a microwave assisted synthesis method. ► Microwave irradiation was varied with time duration on the formation of nanoparticles. ► TiO 2 -activate carbon show very good specific capacitance for supercapacitor. ► Electrochemical properties were studied on electroanalytical techniques. - Abstract: Electrochemical properties of a supercapacitor based on nanocomposite electrodes of activated carbon with TiO 2 nano particles synthesized by a microwave method have been determined. The TiO 2 /activated carbon nanocomposite electrode with a composition of 1:3 showed a specific capacitance 92 Fg −1 . The specific capacitance of the electrode decreased with increase in titanium dioxide content. The p/p symmetrical supercapacitor fabricated with TiO 2 /activated carbon composite electrodes showed a specific capacitance of 122 Fg −1 . The electrochemical behavior of the neat TiO 2 nanoparticles has also been studied for comparison purpose. The galvanostatic charge–discharge test of the fabricated supercapacitor showed that the device has good coulombic efficiency and cycle life. The specific capacitance of the supercapacitor was stable up to 5000 cycles at current densities of 2, 4, 6 and 7 mA cm −2 .

  9. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhuangjun; Yan, Jun; Wei, Tong; Feng, Jing; Zhang, Milin [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin (China); Zhi, Linjie [National Center for Nanoscience and Technology of China, Beijing (China); Zhang, Qiang; Qian, Weizhong; Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing (China)

    2010-09-01

    Three-dimensional carbon nanotube/graphene sandwich structures with CNT pillars grown in between the graphene layers have been developed by chemical vapor deposition. The special structure endows the high-rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in excellent electrochemical performance of this hybrid material. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Study of the influence of carbon on the negative lead-acid battery electrodes

    Czech Academy of Sciences Publication Activity Database

    Bača, P.; Micka, Karel; Křivík, P.; Tonar, K.; Tošer, P.

    2011-01-01

    Roč. 196, č. 8 (2011), s. 3988-3992 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : lead battery electrodes * doping with carbon * accelerated testing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.951, year: 2011

  11. Chemically modified carbon paste electrode for fast screening of oxalic acid levels in soil solutions

    Czech Academy of Sciences Publication Activity Database

    Šestáková, Ivana; Jakl, M.; Jaklová Dytrtová, J.

    2008-01-01

    Roč. 102, - (2008), s. 140-140 E-ISSN 1213-7103. [International Conference on Electroanalysis /12./. 16.06.2008-19.06.2008, Prague] R&D Projects: GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxalic acid * carbon paste electrodes * soil solutions Subject RIV: CG - Electrochemistry

  12. Reversible storage of lithium in a rambutan-like tin-carbon electrode.

    Science.gov (United States)

    Deng, Da; Lee, Jim Yang

    2009-01-01

    Fruity electrodes: A simple bottom-up self-assembly method was used to fabricate rambutan-like tin-carbon (Sn@C) nanoarchitecture (see scheme, green Sn) to improve the reversible storage of lithium in tin. The mechanism of the growth of the pear-like hairs is explored.

  13. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xing; Tang, Yao; Song, Junhua; Yang, Wei; Wang, Mingshan; Zhu, Chengzhou; Zhao, Wengao; Zheng, Jianming; Lin, Yuehe

    2018-04-30

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high- performance supercapacitor. The AC/CNT/RGO film is prepared by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrode for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. The AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g-1 at the current density of 0.2 A g-1, offering a maximum energy density of 30.0 W h kg-1 in organic electrolyte at the cut-off voltage range of 0.001~3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.

  14. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ghorbani-Bidkorbeh, Fatemeh; Shahrokhian, Saeed; Mohammadi, Ali; Dinarvand, Rassoul

    2010-01-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  15. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    Science.gov (United States)

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  16. Biochips Containing Arrays of Carbon-Nanotube Electrodes

    Science.gov (United States)

    Li, Jun; Meyyappan, M.; Koehne, Jessica; Cassell, Alan; Chen, Hua

    2008-01-01

    Biochips containing arrays of nanoelectrodes based on multiwalled carbon nanotubes (MWCNTs) are being developed as means of ultrasensitive electrochemical detection of specific deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) biomarkers for purposes of medical diagnosis and bioenvironmental monitoring. In mass production, these biochips could be relatively inexpensive (hence, disposable). These biochips would be integrated with computer-controlled microfluidic and microelectronic devices in automated hand-held and bench-top instruments that could be used to perform rapid in vitro genetic analyses with simplified preparation of samples. Carbon nanotubes are attractive for use as nanoelectrodes for detection of biomolecules because of their nanoscale dimensions and their chemical properties.

  17. Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    John P. Lowry

    2005-11-01

    Full Text Available In this communication we review selected experiments involving the use ofcarbon paste electrodes (CPEs to monitor and measure brain tissue O2 levels in awakefreely-moving animals. Simultaneous measurements of rCBF were performed using the H2clearance technique. Voltammetric techniques used include both differential pulse (O2 andconstant potential amperometry (rCBF. Mild hypoxia and hyperoxia produced rapidchanges (decrease and increase respectively in the in vivo O2 signal. Neuronal activation(tail pinch and stimulated grooming produced similar increases in both O2 and rCBFindicating that CPE O2 currents provide an index of increases in rCBF when such increasesexceed O2 utilization. Saline injection produced a transient increase in the O2 signal whilechloral hydrate produced slower more long-lasting changes that accompanied the behavioralchanges associated with anaesthesia. Acetazolamide increased O2 levels through an increasein rCBF.

  18. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine

    International Nuclear Information System (INIS)

    Zhou Ming; Guo Liping; Hou Ying; Peng Xiaojuan

    2008-01-01

    A stable suspension of ordered mesoporous carbon (OMC) was obtained by dispersing OMC in a solution of Nafion. By coating the suspension onto glassy carbon (GC) electrode, cyclic voltammetry was used to evaluate the electrochemical behaviors of Nafion-OMC-modified GC (Nafion-OMC/GC) electrode in 0.1 mmol L -1 hexaammineruthenium(III) chloride (Ru(NH 3 ) 6 Cl 3 )/0.1 mol L -1 KCl solution, where Nafion-OMC/GC electrode shows a faster electron transfer rate as compared with OMC/GC, Nafion/GC and GC electrodes. Due to the unique properties of Nafion-OMC, an obvious decrease in the overvoltage of the epinephrine (EP) oxidation (ca. 100 mV at pH 4.1 and 115 mV at pH 7.0) as well as a dramatic increase in the peak current (12 times at pH 4.1 and 6 times at pH 7.0) was observed at Nafion-OMC/GC electrode compared to that seen at GC electrode. By combining the advantages of OMC with those of Nafion, the anodic peak of EP and that of ascorbic acid (AA) were separated successfully (by ca. 144-270 mV) in the pH range of 2.0-10.0, which may make Nafion-OMC/GC electrode potential for selective determination of EP in the presence of AA at a broad pH range. As an EP sensor, the EP amperometric response at Nafion-OMC/GC electrode in pH 7.0 PBS is extremely stable, with 99% of the initial activity remaining (compared to 32% at GC surface) after 120 min stirring of 0.20 mmol L -1 EP. And Nafion-OMC/GC electrode can be used to readily detect the physiological concentration of EP at pH 7.0. These make Nafion-OMC/GC electrode potential candidates for stable and efficient electrochemical sensor for the detection of EP. The solubilization of OMC by Nafion may provide a route to more precise manipulation, and functionalization for the construction of OMC-based sensors, as well as allowing OMC to be introduced to biologically relevant systems

  19. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ming [Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China); Guo Liping [Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China)], E-mail: guolp078@nenu.edu.cn; Hou Ying; Peng Xiaojuan [Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China)

    2008-05-01

    A stable suspension of ordered mesoporous carbon (OMC) was obtained by dispersing OMC in a solution of Nafion. By coating the suspension onto glassy carbon (GC) electrode, cyclic voltammetry was used to evaluate the electrochemical behaviors of Nafion-OMC-modified GC (Nafion-OMC/GC) electrode in 0.1 mmol L{sup -1} hexaammineruthenium(III) chloride (Ru(NH{sub 3}){sub 6}Cl{sub 3})/0.1 mol L{sup -1} KCl solution, where Nafion-OMC/GC electrode shows a faster electron transfer rate as compared with OMC/GC, Nafion/GC and GC electrodes. Due to the unique properties of Nafion-OMC, an obvious decrease in the overvoltage of the epinephrine (EP) oxidation (ca. 100 mV at pH 4.1 and 115 mV at pH 7.0) as well as a dramatic increase in the peak current (12 times at pH 4.1 and 6 times at pH 7.0) was observed at Nafion-OMC/GC electrode compared to that seen at GC electrode. By combining the advantages of OMC with those of Nafion, the anodic peak of EP and that of ascorbic acid (AA) were separated successfully (by ca. 144-270 mV) in the pH range of 2.0-10.0, which may make Nafion-OMC/GC electrode potential for selective determination of EP in the presence of AA at a broad pH range. As an EP sensor, the EP amperometric response at Nafion-OMC/GC electrode in pH 7.0 PBS is extremely stable, with 99% of the initial activity remaining (compared to 32% at GC surface) after 120 min stirring of 0.20 mmol L{sup -1} EP. And Nafion-OMC/GC electrode can be used to readily detect the physiological concentration of EP at pH 7.0. These make Nafion-OMC/GC electrode potential candidates for stable and efficient electrochemical sensor for the detection of EP. The solubilization of OMC by Nafion may provide a route to more precise manipulation, and functionalization for the construction of OMC-based sensors, as well as allowing OMC to be introduced to biologically relevant systems.

  20. A Reliable Homemade Electrode Based on Glassy Polymeric Carbon

    Science.gov (United States)

    Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.

    2004-01-01

    The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…

  1. Electrochemical reduction of dilute chromate solutions on carbon felt electrodes

    NARCIS (Netherlands)

    Frenzel, Ines; Frenzel, I.; Holdik, Hans; Barmashenko, Vladimir; Stamatialis, Dimitrios; Wessling, Matthias

    2006-01-01

    Carbon felt is a potential material for electrochemical reduction of chromates. Very dilute solutions may be efficiently treated due to its large specific surface area and high porosity. In this work, the up-scaling of this technology is investigated using a new type of separated cell and

  2. Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Wang Qingxiang; Wang Yuhua; Liu Shengyun; Wang Liheng; Gao Feng; Gao Fei; Sun Wei

    2012-01-01

    In this paper 1-ethyl-3-methylimidazolium tetrafluoroborate based carbon ionic liquid electrode (CILE) was fabricated and further modified with chitosan (CTS) and graphene (GR) composite film. The fabricated CTS-GR/CILE was further used for the investigation on the electrochemical behavior of bisphenol A (BPA) by cyclic voltammetry and differential pulse voltammetry. A well-defined anodic peak appeared at 0.436 V in 0.1 mol/L pH 8.0 Britton–Robinson buffer solution, which was attributed to the electrooxidation of BPA on the modified electrode. The electrochemical parameters of BPA on the modified electrode were calculated with the results of the charge transfer coefficient (α) as 0.662 and the apparent heterogeneous electron transfer rate constant (k s ) as 1.36 s −1 . Under the optimal conditions, a linear relationship between the oxidation peak current of BPA and its concentration can be obtained in the range from 0.1 μmol/L to 800.0 μmol/L with the limit of detection as 2.64 × 10 −8 mol/L (3σ). The CTS-GR/CILE was applied to the detection of BPA content in plastic products with satisfactory results. - Highlights: ► A graphene modified carbon ionic liquid electrode was fabricated and characterized. ► Electrochemical behaviors of bisphenol A were investigated. ► Bisphenol A was detected by the proposed electrode.

  3. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode

    International Nuclear Information System (INIS)

    Bukkitgar, Shikandar D.; Shetti, Nagaraj P.

    2016-01-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4 × 10 −5 –1 × 10 −7 M and detection limit and quantification limit were calculated to be 2.04 nM and 6.18 nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis. - Highlights: • Electrochemical oxidation of 5-fluorouracil has been investigated for first time at methylene blue modified carbon paste electrode • The electrode process was irreversible and diffusion controlled • Probable electrochemical mechanism was proposed which involved two proton and two electron transfer reaction • The LOD and LOQ values were calculated to be 2.04 nM and 6.18 nM, respectively, with good selectivity and sensitivity. • Proposed method was applied to 5-Fluorouracil determination in pharmaceutical and spiked human urine samples

  4. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011

  5. Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes

    Science.gov (United States)

    Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2017-10-01

    Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.

  6. Variation sweep rate cyclic voltammetry on the capacitance electrode activated carbon/PVDF with polymer electrolyte

    Science.gov (United States)

    Rohmawati, L.; Setyarsih, W.; Nurjannah, T.

    2018-03-01

    Sweep rate of the process voltammetry cyclic characterization is very influential towards the electrode capacitance value, especially on activated carbon electrodes/PVDF. A simple method of this research by use a mixing for electrode activated carbon/10 wt. % PVDF and the separator is made of a polymer electrolyte (PVA/H3PO4) by a sol gel method. The prototype supercapacitor is made in the form of a sandwich with a separator placed between two electrodes. Electrodes and separators are arranged in layers at a pressure of 1500 psi, then heated at 50°C for 10 minutes. Next done cyclic voltammetry in a potential range of -1 V to 1 V with a sweep rate of 5 mV/s, 10 mV/s, 20 mV/s, 25 mV/s and 50 mV/s. This results of curves voltammogram is reversible, the most wide curve on the sweep rate of 5 mV/s and most narrow curve on a sweep rate of 50 mV/s. Supercapacitor capacitance values obtained by 86 F/g, 43 F/g, 21 F/g, 16 F/g, and 8 F/g.

  7. Effect of mediator added to modified paste carbon electrodes with immobilized laccase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Marcelo Silva Ferreira

    2015-05-01

    Full Text Available Carbon paste electrodes based on the immobilization of laccase from Aspergillus oryzae were developed and voltammetric measurements were performed to evaluate the amperometric response. The 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid diammonium salt  (ABTS functions as substrate and mediator for the laccase enzyme. Electrodes were modified  in two different conditions: without mediator (EPC/laccase and with mediator (EPC/laccase/ABTS. The addition of ABTS as a mediator increased eight-fold the amperometric response. The electrode was sensitive to pH variation with best response at pH 4.0. Studies on different concentrations of laccase and ABTS at different pH rates revealed that the composition 187 U mL-1 in laccase and 200 µL of ABTS obtained the highest amperometric response. The carbon paste electrode modified with ABTS proved to be a good base for the immobilization of the laccase enzyme. Moreover, it is easy to manufacture and inexpensive to produce a modified electrode with potential application in biosensors.

  8. Electrochemistry of metoclopramide at multi-walled carbon nanotube modified electrode and its voltammetric detection.

    Science.gov (United States)

    Guo, Wei; Geng, Mingjiang; Zhou, Lingyun

    2012-01-01

    A simple, sensitive and inexpensive electrochemical method was developed for the determination of metoclopramide (MCP) with a multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE). MWNT was dispersed into polyacrylic acid (PAA); the aqueous suspension was then cast on GCE electrodes, forming MWNT-PAA films after evaporation of the solvent. The electrochemical behavior of MCP at the MWNT-modified electrode was investigated in detail. Compared with the bare GCE, the MWNT-modified electrode exhibits electrocatalytic activity to the oxidation of MCP because of the significant oxidation peak-current enhancement. Furthermore, various experimental parameters, such as the solution pH value, the amount of MWNT-PAA suspension and accumulation conditions were optimized for the determination of MCP. Based on the electrocatalytic effect of the MWNT-modified electrode, linear sweep voltammetry (LSV) was developed for the determination of MCP with the linear response in the range from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) and a detection limit of 5.0 × 10(-8) mol L(-1). The method has been successfully applied to the determination of MCP in commercial MCP tablets.

  9. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  10. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Yoon, Yeoheung; Lee, Hyoyoung; Lee, Keunsik

    2016-01-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp 2 -bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications. (topical review)

  11. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  12. Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors

    Science.gov (United States)

    Karakaya, Mehmet; Zhu, Jingyi; Raghavendra, Achyut J.; Podila, Ramakrishna; Parler, Samuel G.; Kaplan, James P.; Rao, Apparao M.

    2014-12-01

    Although carbon nanomaterials are being increasingly used in energy storage, there has been a lack of inexpensive, continuous, and scalable synthesis methods. Here, we present a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (˜700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. Our cost analysis shows that the R2R spray coating process can produce supercapacitors with 10 times the energy density of conventional activated carbon devices at ˜17% lower cost.

  13. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  14. Carbon nanotubes functionalized by salts containing stereogenic heteroatoms as electrodes in their battery cells

    Directory of Open Access Journals (Sweden)

    Zdanowska Sandra

    2016-12-01

    Full Text Available This paper concentrates on electrochemical properties of groups of multi-walled carbon nanotubes (MWCNT functionalized with substituents containing a stereogenic heteroatom bonded covalently to the surface of the carbon nanotube. This system was tested in Swagelok-type cells. The cells comprised a system (functionalized CNT with salts containing S and P atoms with a working electrode, microfiber separators soaked with electrolyte solution, and a lithium foil counter/reference (commercial LiCoO2 electrode. The electrolyte solution was 1 M LiPF6 in propylene carbonate. Using standard techniques (cyclic voltammetry/chronopotentiometry, galvanostatic cycling was performed on the cells at room temperature with a CH Instruments Model 600E potentiostat/galvanostat electrochemical measurements. Methods of functionalization CNT were compared in terms of the electrochemical properties of the studied systems. In all systems, the process of charge/discharge was observed.

  15. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    Directory of Open Access Journals (Sweden)

    Tsubasa Funabashi

    2013-09-01

    Full Text Available A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM, was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce. Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC were achieved by the vacuum ultraviolet/ozone (VUV/O3 treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  16. Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors

    OpenAIRE

    Domingo-García, M.; Fernández López, José Antonio; Almazán-Almazán, M.C.; López-Garzón, F.J.; Stoeckli, F.; Álvarez Centeno, Teresa

    2010-01-01

    A systematic study by complementary techniques shows that PET-waste from plastic vessels is a competitive precursor of carbon electrodes for supercapacitors. PET derived-activated carbons follow the general trends observed for highly porous carbons and display specific capacitances at low current density as high as 197 F g−1 in 2 M H2SO4 aqueous electrolyte and 98 F g−1 in the aprotic medium 1 M (C2H5)4NBF4/acetonitrile. Additionally, high performance has also been achieved at high current de...

  17. Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes.

    Science.gov (United States)

    Torres, A Carolina; Ghica, M Emilia; Brett, Christopher M A

    2013-04-01

    A new and simple-to-prepare hypoxanthine biosensor has been developed using xanthine oxidase (XOD) immobilised on carbon electrode surfaces. XOD was immobilised by glutaraldehyde cross-linking on carbon film (CF) electrodes and on carbon nanotube (CNT) modified CF (CNT/CF). A comparison of the performance of the two configurations was carried out by the current response using amperometry at fixed potential; the best characteristics being exhibited by XOD/CNT/CF modified electrodes. The effects of electrolyte pH and applied potential were evaluated, and a proposal is made for the enzyme mechanism of action involving competition between regeneration of flavin adenine dinucleotide and reduction of hydrogen peroxide. Under optimised conditions, the determination of hypoxanthine was carried out at -0.2 V vs. a saturated calomel electrode (SCE) with a detection limit of 0.75 μM on electrodes with CNT and at -0.3 V vs. SCE with a detection limit of 0.77 μM on electrodes without CNT. The applicability of the biosensor was verified by performing an interference study, reproducibility and stability were investigated, and hypoxanthine was successfully determined in sardine and shrimp samples.

  18. Immobilization of a mediator onto carbon cloth electrode and employment of the modified electrode to an electroenzymatic bioreactor.

    Science.gov (United States)

    Jeong, Eun-Seon; Sathishkumar, Muthuswamy; Jayabalan, Rasu; Jeong, Su-Hyeon; Park, Song-Yie; Mun, Sung-Phil; Yun, Sei-Eok

    2012-10-01

    5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) was selected as an electron transfer mediator and was covalently immobilized onto high porosity carbon cloth to employ as a working electrode in an electrochemical NAD(+)-regeneration process, which was coupled to an enzymatic reaction. The voltammetric behavior of DTNB attached to carbon cloth resembled that of DTNB in buffered aqueous solution, and the electrocatalytic anodic current grew continuously upon addition of NADH at different concentrations, indicating that DTNB is immobilized to carbon cloth effectively and the immobilized DTNB is active as a soluble one. The bioelectrocatalytic NAD+ regeneration was coupled to the conversion of L-glutamate into alpha-ketoglutarate by L-glutamate dehydrogenase within the same microreactor. The conversion at 3 mM monosodium glutamate was very rapid, up to 12 h, to result in 90%, and then slow up to 24 h, showing 94%, followed by slight decrease. Low conversion was shown when substrate concentration exceeding 4 mM was tested, suggesting that L-glutamate dehydrogenase is inhibited by alpha-ketoglutarate. However, our electrochemical NAD+ regeneration procedure looks advantageous over the enzymatic procedure using NADH oxidase, from the viewpoint of reaction time to completion.

  19. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Nadappuram, Binoy Paulose; Actis, Paolo; Takahashi, Yasufumi; Korchev, Yuri E; Matsue, Tomokazu; Robinson, Colin; Unwin, Patrick R

    2013-08-06

    Dual carbon electrodes (DCEs) are quickly, easily, and cheaply fabricated by depositing pyrolytic carbon into a quartz theta nanopipet. The size of DCEs can be controlled by adjusting the pulling parameters used to make the nanopipet. When operated in generation/collection (G/C) mode, the small separation between the electrodes leads to reasonable collection efficiencies of ca. 30%. A three-dimensional finite element method (FEM) simulation is developed to predict the current response of these electrodes as a means of estimating the probe geometry. Voltammetric measurements at individual electrodes combined with generation/collection measurements provide a reasonable guide to the electrode size. DCEs are employed in a scanning electrochemical microscopy (SECM) configuration, and their use for both approach curves and imaging is considered. G/C approach curve measurements are shown to be particularly sensitive to the nature of the substrate, with insulating surfaces leading to enhanced collection efficiencies, whereas conducting surfaces lead to a decrease of collection efficiency. As a proof-of-concept, DCEs are further used to locally generate an artificial electron acceptor and to follow the flux of this species and its reduced form during photosynthesis at isolated thylakoid membranes. In addition, 2-dimensional images of a single thylakoid membrane are reported and analyzed to demonstrate the high sensitivity of G/C measurements to localized surface processes. It is finally shown that individual nanometer-size electrodes can be functionalized through the selective deposition of platinum on one of the two electrodes in a DCE while leaving the other one unmodified. This provides an indication of the future versatility of this type of probe for nanoscale measurements and imaging.

  20. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure

    OpenAIRE

    Yingzhi Li; Qinghua Zhang; Junxian Zhang; Lei Jin; Xin Zhao; Ting Xu

    2015-01-01

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific ca...

  1. Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Natsui, Keisuke; Iwakawa, Hitomi; Ikemiya, Norihito [Department of Chemistry, Keio University, Yokohama (Japan); Nakata, Kazuya [Photocatalysis International Research Center, Tokyo University of Science, Chiba (Japan); Einaga, Yasuaki [Department of Chemistry, Keio University, Yokohama (Japan); JST-ACCEL, Yokohama (Japan)

    2018-03-01

    High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO{sub 2}). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO{sub 2} to HCOOH was investigated in a flow cell using boron-doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m{sup -2} s{sup -1} at a current density of 15 mA cm{sup -2} with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  3. Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes.

    Science.gov (United States)

    Natsui, Keisuke; Iwakawa, Hitomi; Ikemiya, Norihito; Nakata, Kazuya; Einaga, Yasuaki

    2018-03-01

    High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO 2 ). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO 2 to HCOOH was investigated in a flow cell using boron-doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m -2  s -1 at a current density of 15 mA cm -2 with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    Science.gov (United States)

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  6. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  7. Oxidized multi walled carbon nanotubes for improving the electrocatalytic activity of a benzofuran derivative modified electrode

    Directory of Open Access Journals (Sweden)

    Mohammad Mazloum-Ardakani

    2016-01-01

    Full Text Available In the present paper, the use of a novel carbon paste electrode modified by 7,8-dihydroxy-3,3,6-trimethyl-3,4-dihydrodibenzo[b,d]furan-1(2H-one (DTD and oxidized multi-walled carbon nanotubes (OCNTs is described for determination of levodopa (LD, acetaminophen (AC and tryptophan (Trp by a simple and rapid method. At first, the electrochemical behavior of DTD is studied, then, the mediated oxidation of LD at the modified electrode is investigated. At the optimum pH of 7.4, the oxidation of LD occurs at a potential about 330 mV less positive than that of an unmodified carbon paste electrode. Based on differential pulse voltammetry (DPV, the oxidation current of LD exhibits a linear range between 1.0 and 2000.0 μM of LD with a detection limit (3σ of 0.36 μM. DPV was also used for simultaneous determination of LD, AC and Trp at the modified electrode. Finally, the proposed electrochemical sensor was used for determinations of these substances in human serum sample.

  8. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    Science.gov (United States)

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  9. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  10. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  11. Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes.

    Science.gov (United States)

    Enache, T A; Oliveira-Brett, A M

    2013-02-01

    The direct electrochemical behaviour of peptide methionine sulfoxide reductase A (MsrA) adsorbed on glassy carbon and boron doped diamond electrodes surface, was studied over a wide pH range by cyclic and differential pulse voltammetry. MsrA oxidation mechanism occurs in three consecutive, pH dependent steps, corresponding to the oxidation of tyrosine, tryptophan and histidine amino acid residues. At the glassy carbon electrode, the first step corresponds to the oxidation of tyrosine and tryptophan residues and occurs for the same potential. The advantage of boron doped diamond electrode was to enable the separation of tyrosine and tryptophan oxidation peaks. On the second step occurs the histidine oxidation, and on the third, at higher potentials, the second tryptophan oxidation. MsrA adsorbs on the hydrophobic carbon electrode surface preferentially through the three hydrophobic domains, C1, C2 and C3, which contain the tyrosine, tryptophan and histidine residues, and tryptophan exists only in these regions, and undergo electrochemical oxidation. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors.

    Science.gov (United States)

    Silva, Tiago A; Zanin, Hudson; May, Paul W; Corat, Evaldo J; Fatibello-Filho, Orlando

    2014-12-10

    Porous diamond-like carbon (DLC) electrodes have been prepared, and their electrochemical performance was explored. For electrode preparation, a thin DLC film was deposited onto a densely packed forest of highly porous, vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the carbon nanotubes to clump together to form a microstructured surface with an enlarged surface area. DLC:VACNT electrodes show fast charge transfer, which is promising for several electrochemical applications, including electroanalysis. DLC:VACNT electrodes were applied to the determination of targeted molecules such as dopamine (DA) and epinephrine (EP), which are neurotransmitters/hormones, and acetaminophen (AC), an endocrine disruptor. Using simple and low-cost techniques, such as cyclic voltammetry, analytical curves in the concentration range from 10 to 100 μmol L(-1) were obtained and excellent analytical parameters achieved, including high analytical sensitivity, good response stability, and low limits of detection of 2.9, 4.5, and 2.3 μmol L(-1) for DA, EP, and AC, respectively.

  13. Towards ultrathick battery electrodes: aligned carbon nanotube - enabled architecture

    Energy Technology Data Exchange (ETDEWEB)

    Evanoff, Kara [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Electro-Optical Systems Laboratory, Georgia Tech Research Institute, Atlanta, GA (United States); Khan, Javed; Balandin, Alexander A. [Department of Electrical Engineering, University of California, Riverside, CA (United States); Magasinski, Alexandre; Yushin, Gleb [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Ready, W. Jud [Electro-Optical Systems Laboratory, Georgia Tech Research Institute, Atlanta, GA (United States); Fuller, Thomas F. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2012-01-24

    Vapor deposition techniques were utilized to synthesize very thick ({proportional_to}1 mm) Li-ion battery anodes consisting of vertically aligned carbon nanotubes coated with silicon and carbon. The produced anode demonstrated ultrahigh thermal (>400 W.m{sup -1}.K{sup -1}) and high electrical (>20 S.m{sup -1}) conductivities, high cycle stability, and high average capacity (>3000 mAh.g{sub Si}{sup -1}). The processes utilized allow for the conformal deposition of other materials, thus making it a promising architecture for the development of Li-ion anodes and cathodes with greatly enhanced electrical and thermal conductivities. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    Noble metal nanoparticles (NPs), such as platinum (Pt) and palladium (Pd) NPs are promising catalysts for dioxygen reduction and oxidation of molecules such as formic acid and ethanol in fuel cells. Carbon nanomaterials are ideal supporting materials for electrochemical catalysts due to their good...... by electrochemical SPM. This study offers promise for development of new high-efficiency catalyst types with low-cost for fuel cell technology...

  15. Hierarchical porous carbon/MnO2 hybrids as supercapacitor electrodes.

    Science.gov (United States)

    Lee, Min Eui; Yun, Young Soo; Jin, Hyoung-Joon

    2014-12-01

    Hybrid electrodes of hierarchical porous carbon (HPC) and manganese oxide (MnO2) were synthesized using a fast surface redox reaction of potassium permanganate under facile immersion methods. The HPC/MnO2 hybrids had a number of micropores and macropores and the MnO2 nanoparticles acted as a pseudocapacitive material. The synergistic effects of electric double-layer capacitor (EDLC)-induced capacitance and pseudocapacitance brought about a better electrochemical performance of the HPC/MnO2 hybrid electrodes compared to that obtained with a single component. The hybrids showed a specific capacitance of 228 F g(-1) and good cycle stability over 1000 cycles.

  16. Carbon coated stainless steel as counter electrode for dye sensitized solar cells

    Science.gov (United States)

    Prakash, Shejale Kiran; Sharma, Rakesh K.; Roy, Mahesh S.; Kumar, Mahesh

    2014-10-01

    A new type of counter electrode for dye sensitized solar cells has been fabricated using a stainless steel sheet as substrate and graphite, graphene and multiwall carbon nanotubes as the catalytic material which applied by screen printing technique. The sheet resistances of the substrates and there influence on the dye sensitized solar cells has been studied. The fabricated counter electrodes i.e. SS-graphite, SS-graphene SS-MWCNT and SS-platinum were tested for their photovoltaic response in the form of dye sensitized solar cells.

  17. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired

  18. Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor

    International Nuclear Information System (INIS)

    Morishita, Takahiro; Soneda, Yasushi; Hatori, Hiroaki; Inagaki, Michio

    2007-01-01

    New electrode materials for electrochemical capacitor, tungsten carbide WC and molybdenum carbide Mo 2 C coated by porous carbon, were prepared through a simple heat treatment of the mixture of K 2 WO 4 and K 2 MoO 4 , respectively, with hydroxy propyl cellulose. Carbide changed to hydroxide during the 1st charge-discharge cycle in H 2 SO 4 aqueous electrolyte, which showed redox reaction in further charge-discharge cycles, in addition to electric double layers of the carbon formed on its surface. The carbon-coated carbide gave a high capacitance in 1 mol L -1 H 2 SO 4 electrolyte, as about 350 F cm -3 for carbon-coated WC and 550-750 F cm -3 for carbon-coated Mo 2 C. Coating of carbon inhibits the growth of carbide particles during their formation, of which the small particle size make possible to complete transformation to hydroxides during the 1st charge-discharge cycle, and also disturbs the agglomeration of tungsten and molybdenum hydroxides during charge-discharge cycles, as well as porous carbon coated act as electrode material for electric double layers of electrolyte ions

  19. Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials

    International Nuclear Information System (INIS)

    Kamali, Ali Reza; Schwandt, Carsten; Fray, Derek J.

    2011-01-01

    The electrochemical erosion of a graphite cathode during the electrolysis of molten lithium chloride salt may be used for the preparation of nano-structured carbon materials. It has been found that the structures and morphologies of these carbon nanomaterials are dependent on those of the graphite cathodes employed. A combination of tubular and spherical carbon nanostructures has been produced from a graphite with a microstructure of predominantly planar micro-sized grains and a minor fraction of more irregular nano-sized grains, whilst only spherical carbon nanostructures have been produced from a graphite with a microstructure of primarily nano-sized grains. Based on the experimental results, a best-fit regression equation is proposed that relates the crystalline domain size of the graphite reactants and the carbon products. The carbon nanomaterials prepared possess a fairly uniform mesoporosity with a sharp peak in pore size distribution at around 4 nm. The results are of crucial importance to the production of carbon nanomaterials by way of the molten salt electrolytic method. - Highlights: → Carbon nanomaterials are synthesised by LiCl electrolysis with graphite electrodes. → The degree of crystallinity of graphite reactant and carbon product are related. → A graphite reactant is identified that enables the preparation of carbon nanotubes. → The carbon products possess uniform mesoporosity with narrow pore size distribution.

  20. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.

    Science.gov (United States)

    Penteado, Eduardo D; Fernandez-Marchante, Carmen M; Zaiat, Marcelo; Gonzalez, Ernesto R; Rodrigo, Manuel A

    2017-06-01

    The aim of this work was to evaluate three carbon materials as anodes in microbial fuel cells (MFCs), clarifying their influence on the generation of electricity and on the treatability of winery wastewater, a highly organic-loaded waste. The electrode materials tested were carbon felt, carbon cloth and carbon paper and they were used at the same time as anode and cathode in the tests. The MFC equipped with carbon felt reached the highest voltage and power (72 mV and 420 mW m -2 , respectively), while the lowest values were observed when carbon paper was used as electrode (0.2 mV and 8.37·10 -6  mW m -2 , respectively). Chemical oxygen demand (COD) removal from the wastewater was observed to depend on the electrode material, as well. When carbon felt was used, the MFC showed the highest average organic matter consumption rate (650 mg COD L -1  d -1 ), whereas by using carbon paper the rate decreased to 270 mg COD L -1  d -1 . Therefore, both electricity generation and organic matter removal are strongly related not to the chemical composition of the electrode (which was graphite carbon in the three electrodes), but to its surface features and, consequently, to the amount of biomass adhered to the electrode surface.

  1. Selective oxidation of serotonin and norepinephrine over eriochrome cyanine R film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yao Hong; Li Shaoguang [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China); Tang Yuhai [Institute of Analytical Sciences, Xi' an Jiaotong University, Xi' an 710061 (China); Chen Yan [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China); Chen Yuanzhong [Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001 (China)], E-Mail: chenyz@pub3.fz.fj.cn; Lin Xinhua [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China)], E-mail: xhlin1963@sin.com

    2009-08-01

    A novel ECR-modified electrode is fabricated by electrodeposition of Eriochrome Cyanine R (ECR) at a glassy carbon (GC) electrode by cyclic voltammetry (CV) in double-distilled water. The characterization of the ECR film modified electrode is carried out by atomic force microscopy (AFM), infrared spectra (IR), spectroelectrochemistry and cyclic voltammetry. The results show that a slightly heterogeneous film formed on the surface of the modified electrode, and the calculated surface concentration of ECR is 2 x 10{sup -10} mol/cm{sup -2}. The ECR film modified GC electrode shows excellent electrocatalytic activities toward the oxidation of serotonin (5-HT) and norepinephrine (NE). Furthermore, the modified electrode can separately detect 5-HT and NE, even in the presence of 200-fold concentration of ascorbic acid (AA) and 25-fold concentration of uric acid (UA). Using differential pulse voltammetry (DPV), the peak currents of 5-HT and NE recorded in pH 7 solution are linearly dependent on their concentrations in the range of 0.05-5 {mu}M and 2-50 {mu}M, respectively. The limits of detection are 0.05 and 1.5 {mu}M for 5-HT and NE, respectively. The ECR film modified electrode can be stored stable for at least 1 week in 0.05 M PBS (pH 7) at 4 {sup o}C in a refrigerator. Owing to its excellent selectivity and sensitivity, the modified electrode could provide a promising tool for the simultaneous determination of 5-HT and NE in complex biosamples.

  2. The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer

    International Nuclear Information System (INIS)

    Liu Guozhen; Liu Jingquan; Boecking, Till; Eggers, Paul K.; Gooding, J. Justin

    2005-01-01

    The heterogeneous electron-transfer properties of ferrocenemethylamine coupled to a series of mixed 4-carboxyphenyl/phenyl monolayers on glassy carbon (GC) and gold electrodes were investigated, by cyclic voltammetry, in aqueous buffer solutions. The electrodes were derivatized in a step-wise process. Electrochemical reduction of mixtures of 4-carboxyphenyl and phenyl diazonium salts on the electrode surfaces yielded stable monolayers. The introduction of carboxylic acid moieties onto the surfaces was verified by X-ray photoelectron spectroscopy. Subsequently the 4-carboxyphenyl moieties were activated using water-soluble carbodiimide and N-hydroxysuccinimide and reacted with ferrocenemethylamine. The rate constants of electron transfer through the monolayer systems were determined from cyclic voltammograms using the Marcus theory for electron transfer and were found to be an order of magnitude higher for the ferrocene-modified monolayer systems on gold than those on GC electrodes. The results suggest the electrode material has an important influence on the rate of electron transfer

  3. Use of submicron carbon filaments in place of carbon black as a porous reduction electrode in lithium batteries with a catholyte comprising bromine chloride in thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Wilson Greatbatch, Ltd., Clarence, NY (United States); Shui, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

    1995-12-31

    Submicron carbon filaments used in place of carbon black as porous reduction electrodes in carbon limited lithium batteries in plate and jellyroll configurations with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8,700 mAh/g carbon, compared to a value of up to 2,900 mAh/g carbon for carbon black. The high specific capacity per g carbon (demonstrating superior carbon efficiency) for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity and without a binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode.

  4. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode.

    Science.gov (United States)

    Li, Yonghong; Zhai, Xiurong; Liu, Xinsheng; Wang, Ling; Liu, Herong; Wang, Haibo

    2016-02-01

    A simple bisphenol A (BPA) sensor was successfully fabricated based on ordered mesoporous carbon CMK-3 modified nano-carbon ionic liquid paste electrode (CMK-3/nano-CILPE). The nanostructure of CMK-3 and the surface morphologies of modified electrodes were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Electrochemical properties of the fabricated electrodes were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The fabricated sensor displayed excellent electroactivity towards bisphenol A using linear sweep voltammetry (LSV). Experimental conditions influencing the analytical performance of the modified electrode were optimized. Under optimal conditions, the oxidation peak current was proportional to BPA concentration in the range from 0.2 μM to 150 μM with a detection limit of 0.05 μM (S/N=3). This method was successfully used for determination of BPA leached from drinking bottle and plastic bag with good recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    Science.gov (United States)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  6. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Science.gov (United States)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  7. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    Science.gov (United States)

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Determination of cyanide in wastewaters using modified glassy carbon electrode with immobilized silver hexacyanoferrate nanoparticles on multiwall carbon nanotube

    International Nuclear Information System (INIS)

    Noroozifar, Meissam; Khorasani-Motlagh, Mozhgan; Taheri, Aboozar

    2011-01-01

    Research highlights: → GC electrode modified with silver hexacyanoferrate nanoparticles (SHFNPs) immobilized on MWCNT. → Modified electrode use for determination of Cyanide in waste water. → The detection limit of the sensor is 8.3 nM. → The linear range is from 40.0 nM to 150.0 μM. - Abstract: The sensitive determination of cyanide in wastewaters using modified GC electrode with silver hexacyanoferrate nanoparticles (SHFNPs) immobilized on multiwall carbon nanotube (MWCNT) was reported. The immobilization of SHFNPs on MWCNT was confirmed by transmission electron microscopy (TEM). The TEM image showed that the SHFNPs retained the spherical morphology after immobilized on MWCNT. The size of SHFNPs was examined around 27 nm. The GC/MWCNT-SHFNPs was used for the determination of cyanide in borax buffer (BB) solution (pH 8.0). Using square wave voltammetry, the current response of cyanide increases linearly while increasing its concentration from 40.0 nM to 150.0 μM and a detection limit was found to be 8.3 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 5.0 μM cyanide in the presence of common contaminants at levels presenting in industrial wastewaters. The practical application of the present modified electrode was demonstrated by measuring the concentration of cyanide in industrial wastewater samples. Moreover, the studied sensor exhibited high sensitivity, good reproducibility and long-term stability.

  9. Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Domingo-Garcia, M.; Almazan-Almazan, M.C.; Lopez-Garzon, F.J. [Dpto de Quimica Inorganica, Facultad de Ciencias, 18071 Granada (Spain); Fernandez, J.A.; Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, 33080 Oviedo (Spain); Stoeckli, F. [Physics Department, University of Neuchatel, Rue Emile Argand 11, CH-2009 Neuchatel (Switzerland)

    2010-06-15

    A systematic study by complementary techniques shows that PET-waste from plastic vessels is a competitive precursor of carbon electrodes for supercapacitors. PET derived-activated carbons follow the general trends observed for highly porous carbons and display specific capacitances at low current density as high as 197 F g{sup -1} in 2 M H{sub 2}SO{sub 4} aqueous electrolyte and 98 F g{sup -1} in the aprotic medium 1 M (C{sub 2}H{sub 5}){sub 4}NBF{sub 4}/acetonitrile. Additionally, high performance has also been achieved at high current densities, which confirms the potential of this type of materials for electrical energy storage. A new method based on the basic solvolysis of PET-waste and the subsequent carbonization seems to be an interesting alternative to obtain porous carbons with enhanced properties for supercapacitors. (author)

  10. Transparent Electrodes: A Review of the Use of Carbon-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Edgar J. López-Naranjo

    2016-01-01

    Full Text Available Transparent conducting electrodes (TCE are extensively applied in a great range of optoelectronic and photovoltaic equipment (e.g., solar cells, touch panels, and flexible devices. Carbon-based nanomaterials are considered as suitable replacements to substitute traditional materials to manufacture TCE due to their remarkable characteristics, for example, high optical transmittance and outstanding electrical properties. In comparison with traditional indium tin oxide electrodes, carbon-based electrodes show good mechanical properties, chemical stability, and low cost. Nevertheless, major issues related to the development of good quality manufacture methods to produce carbon-based nanomaterials have to be overcome to meet massive market requirements. Hence, the development of alternative TCE materials as well as appropriate large production techniques that meet the requirements of a proper sheet resistance along with a high optical transparency is a priority. Therefore, in this work, we summarize and discuss novel production and synthesis methods, chemical treatments, and hybrid materials developed to satisfy the worldwide request for carbon-based nanomaterials.

  11. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    Science.gov (United States)

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  12. The selective electrochemical detection of homocysteine in the presence of glutathione, cysteine, and ascorbic acid using carbon electrodes.

    Science.gov (United States)

    Lee, P T; Lowinsohn, D; Compton, R G

    2014-08-07

    The detection of homocysteine, HCys, was achieved with the use of catechol via 1,4-Michael addition reaction using carbon electrodes: a glassy carbon electrode and a carbon nanotube modified glassy carbon electrode. The selective detection of homocysteine was investigated and achieved in the absence and presence of glutathione, cysteine and ascorbic acid using cyclic voltammetry and square wave voltammetry. A calibration curve of homocysteine detection was determined and the sensitivity is (0.20 ± 0.02) μA μM(-1) and the limit of detection is 660 nM within the linear range. Lastly, commercially available multi walled carbon nanotube screen printed electrodes were applied to the system for selective homocysteine detection. This work presents a potential practical application towards medical applications as it can be highly beneficial towards quality healthcare management.

  13. Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes

    Science.gov (United States)

    Liu, Shaobo; Zhao, Yang; Zhang, Baihui; Xia, Hui; Zhou, Jianfei; Xie, Wenke; Li, Hongjian

    2018-03-01

    Hierarchical nano-micro carbon spheres@rice straw-derived porous carbon composites are successfully synthesized by the in situ decoration of the porous carbon with carbon spheres from glucose under the assistance of cetyltrimethyl ammonium bromide micelles and further activated by KOH. The scanning electron microscope images clearly show the carbon spheres disperse homogeneously and orderly onto the surface and in the inner macropores of the porous carbon. The diameter of the carbon spheres varies from 475 nm to 1.6 μm, which can be easily controlled by introducing extra inducing agent. The optimal composites exhibit a large specific surface area (1122 m2 g-1), rich content of oxygen (14.2 wt %), and tunable hierarchical porous structure. When used as supercapacitor electrodes, the novel composites with abundant fruits present a high specific capacitance of 337 F g-1 at 1 A g-1, excellent rate retention of 83% from 1 to 20 A g-1 and a good cycling stability with 96% capacitance retention after 10000 cycles. In this strategy, the thought of shared ion-buffering reservoirs is proposed and the mutual promotion effects between the carbon spheres and porous carbon in the composites are also practically demonstrated to contribute the enhanced electrochemical performances.

  14. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    Science.gov (United States)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  15. Improved immobilization of laccase on a glassy carbon electrode by oriented covalent attachment

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2014-01-01

    Full Text Available A laccase from Thermus thermophilus HB27 was reported to be potentially useful in the design of a temperature controlled biofuel cell. For enhancing its application in different thermal conditions, we engineered a laccase-oriented immobilized electrode. A site-directed mutant N323C of the laccase was constructed. A photometric assay was employed in order to compare the catalytic properties of wild-type laccase and mutant. The mutant was attached to a glass carbon electrode by covalent cross-linking. The electrochemical properties of the immobilized laccase were investigated by cyclic voltammetry. This immobilization allowed the active electrode to function at temperatures up to 95°C. The thermal and pH dependence profiles were similar to those of the soluble enzyme investigated by spectrophotometry.

  16. Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid.

    Science.gov (United States)

    Cesarino, Ivana; Galesco, Heloisa V; Machado, Sergio A S

    2014-07-01

    A new sensor has been developed by a simple electrodeposition of multi-walled carbon nanotubes (MWCNT), polypyrrole (PPy) and colloidal silver nanoparticles on the platinum (Pt) electrode surface. The Pt/MWCNT/PPy/AgNPs electrode was applied to the detection of serotonin in plasmatic serum samples using differential pulse voltammetry (DPV). The synergistic effect of MWCNT/PPy/AgNPs nanohybrid formed yielded a LOD of 0.15 μmol L(-1) (26.4 μg L(-1)). Reproducibility and repeatability values of 2.2% and 1.7%, respectively, were obtained compared to the conventional procedure. The proposed electrode can be an effective material to be used in biological analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    Science.gov (United States)

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  18. Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-01-01

    Full Text Available Capacitive deionization (CDI method has drawn much attention for its low energy consumption, low pollution, and convenient manipulation. Activated carbon fibers (ACFs possess high adsorption ability and can be used as CDI electrode material. Herein, two kinds of PAN-based ACFs with different specific surface area (SSA were used for the CDI electrodes. The CDI performance was investigated; especially asymmetric electrodes’ effect was evaluated. The results demonstrated that PAN-based ACFs showed a high electrosorption rate (complete electrosorption in less than half an hour and moderate electrosorption capacity (up to 0.2 mmol/g. CDI experiments with asymmetric electrodes displayed a variation in electrosorption capacity between forward voltage and reverse voltage. It can be attributed to the electrical double layer (EDL overlap effect and inner pore potential; thus the ions with smaller hydrated ionic radius can be adsorbed more easily.

  19. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.

    Science.gov (United States)

    Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya

    2008-06-01

    Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.

  20. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma

    Directory of Open Access Journals (Sweden)

    Nastaran Hashemzadeh

    2016-08-01

    Full Text Available Low toxic graphene quantum dot (GQD was synthesized by pyrolyzing citric acid in alkaline solution and characterized by ultraviolet--visible (UV–vis spectroscopy, X-ray diffraction (XRD, atomic force microscopy (AFM, spectrofluorimetery and dynamic light scattering (DLS techniques. GQD was used for electrode modification and electro-oxidation of doxorubicin (DOX at low potential. A substantial decrease in the overvoltage (−0.56 V of the DOX oxidation reaction (compared to ordinary electrodes was observed using GQD as coating of glassy carbon electrode (GCE. Differential pulse voltammetry was used to evaluate the analytical performance of DOX in the presence of phosphate buffer solution (pH 4.0 and good limit of detection was obtained by the proposed sensor. Such ability of GQD to promote the DOX electron-transfer reaction suggests great promise for its application as an electrochemical sensor.

  1. Electrochemical Determination of Uric Acid at CdTe Quantum Dot Modified Glassy Carbon Electrodes.

    Science.gov (United States)

    Pan, Deng; Rong, Shengzhong; Zhang, Guangteng; Zhang, Yannan; Zhou, Qiang; Liu, Fenghai; Li, Miaojing; Chang, Dong; Pan, Hongzhi

    2015-01-01

    Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of uric acid (UA) at a CdTe quantum dot (QD) modified the glassy carbon electrode (GCE). CdTe QDs, as new semiconductor nanocrystals, can greatly improve the peak current of UA. The anodic peak current of UA was linear with its concentration between 1.0×10(-6) and 4.0×10(-4) M in 0.1 M pH 5.0 phosphate buffer solution. The LOD for UA at the CdTe electrode (1.0×10(-7) M) was superior to that of the GCE. In addition, we also determined the effects of scan rate, pH, and interferences of UA for the voltammetric behavior and detection. The results indicated that modified electrode possessed excellent reproducibility and stability. Finally, a new and efficient electrochemical sensor for detecting UA was developed.

  2. A. C. response of lithium, stainless steel, and porous carbon electrodes in thionyl chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mogensen, M.

    1985-01-15

    Impedance measurements on Li electrodes in SOCl/sub 2/ electrolytes indicate that the structure of the passivating surface layer formed in 1.8M LiAlCl/sub 4/ differs from that formed in 1.8M AlCl/sub 3/, 1.2M LiCl, 0.6M SO/sub 2/. Also, porous carbon electrodes are found to behave differently in these two electrolytes. Unpolarised stainless steel electrodes show a 67/sup 0/ constant phase angle impedance over a wide frequency range whereas polarised to 0 mV ..nu..s. Li the impedance diagram is very similar to that of Li. Finally, it is found that passivation may develop differently for Li pressed onto stainless steel from that of Li pressed onto glass.

  3. Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode.

    Science.gov (United States)

    Zhao, Jun; Zhang, Yu; Wu, Kangbing; Chen, Jianwei; Zhou, Yikai

    2011-09-15

    A novel electrochemical method using multi-wall carbon nanotube (MWNT) film-modified electrode was developed for the detection of quinoline yellow. In pH 8 phosphate buffer, an irreversible oxidation peak at 0.71V was observed for quinoline yellow. Compared with the unmodified electrode, the MWNT film-modified electrode greatly increases the oxidation peak current of quinoline yellow, showing notable enhancement effect. The effects of pH value, amount of MWNT, accumulation potential and time were studied on the oxidation peak current of quinoline yellow. The linear range is from 0.75 to 20mgL(-1), and the limit of detection is 0.5mgL(-1). It was applied to the detection of quinoline yellow in commercial soft drinks, and the results consisted with the value that obtained by high-performance liquid chromatography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Development of a sensitive and selective Riboflavin sensor based on carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Safavi, Afsaneh; Maleki, Norouz; Ershadifar, Hamid; Tajabadi, Fariba

    2010-01-01

    The electrochemical properties of Riboflavin adsorbed on carbon ionic liquid electrode (CILE) were studied by cyclic voltammetry. A film with a surface coverage of up to 3.3 x 10 -9 mol cm -2 was formed after 10 min exposure time. Electron transfer coefficient and rate constant of electron transfer across the modified electrode were found to be 0.43 and 3.03 s -1 , respectively. Differential pulse voltammetry was used for the determination of Riboflavin. Two linear working ranges of 0.8-110 nM and 0.11-1.0 μM were obtained with correlation coefficients of 0.998 and 0.996, respectively. The experimental detection limit was obtained as 0.1 nM. The relative standard deviation for five replicate analyses was 4.7%. Other soluble vitamins had no significant interferences and the electrode was used for the determination of Riboflavin in pharmaceutical products, nutrition and beverages.

  5. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator

    Science.gov (United States)

    Wu, Guan; Hu, Ying; Liu, Yang; Zhao, Jingjing; Chen, Xueli; Whoehling, Vincent; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Chen, Wei

    2015-01-01

    Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we report a graphitic carbon nitride nanosheet electrode-based ionic actuator that displays high electrochemical activity and electromechanical conversion abilities, including large specific capacitance (259.4 F g−1) with ionic liquid as the electrolyte, fast actuation response (0.5±0.03% in 300 ms), large electromechanical strain (0.93±0.03%) and high actuation stability (100,000 cycles) under 3 V. The key to the high performance lies in the hierarchical pore structure with dominant size actuation performance. PMID:26028354

  6. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  7. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Science.gov (United States)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  8. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    International Nuclear Information System (INIS)

    Xue Kuanhong; Liu Jiamei; Wei Ribing; Chen Shaopeng

    2006-01-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2 SO 4 , at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E pa and E pc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k 0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process

  9. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    Science.gov (United States)

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    Science.gov (United States)

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrochemical Treatment of Wastewater Containing Mixed Reactive Dyes Using Carbon Nanotube Modified Cathode Electrodes

    Directory of Open Access Journals (Sweden)

    Nader Djafarzadeh

    2016-11-01

    Full Text Available Nowadays, advanced electrochemical oxidation processes are promising methods for the treatment of wastewaters containing organic dyes. One of these methods is the Electro-Fenton (EF technique in which an electrical current is applied to the cathode and anode electrodes to promote electrochemical reactions that generate hydroxyl radicals which mineralize organic pollutants and remove them from wastewater. To carry out the Electro-Fenton process iIn this work, the carbon paper (CP electrode was initially modified with carbon nanotubes (CNT to produce the CP-CNT electrode which was used as the cathode to remove a mixture of organic dyestuff (containing Reactive Blue 69, Reactive Red 195, and Reactive Yellow 84 from wastewaters. Comparison of the two types of cathode electrodes (i.e., CNT and the modified CP-CNT showed that the CP-CNT outperformed the CP electrode. The EF process was employed to treat 500 ml of a mixture of dyes (50 mg/L of each dye containing sodium soulfate and Fe+3 ions. The results revealed that the highest color removal efficiency was achieved when a current of 300 mA was applied for 210 min. COD measurments were used to calculate the effective current and power consumption. It was found that the 300 mA current applied over a period of 210 min yielded the highest effective current and the lowest power consumption. The amount of dyes mineralized by the EF process in the dye solution indicated that 78% of the initial COD had been removed under the above conditions. It may be concluded that the Electro-Fenton process can be successfully used for the treatment of wastewaters containing mixtures of dye pollutants. Cathode electrode type, electrical current, and electrolysis duration were identified as the parameters affecting the process.

  12. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.

    Science.gov (United States)

    Sameenoi, Yupaporn; Mensack, Meghan M; Boonsong, Kanokporn; Ewing, Rebecca; Dungchai, Wijitar; Chailapakul, Orawan; Cropek, Donald M; Henry, Charles S

    2011-08-07

    Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented. The new CPEs are composed of graphite powder and a binder consisting of a mixture of poly(dimethylsiloxane) (PDMS) and mineral oil. The electrodes are made by filling channels molded in previously cross-linked PDMS using a method analogous to screen printing. The optimal binder composition was investigated to obtain electrodes that were physically robust and performed well electrochemically. After studying the basic electrochemistry, the PDMS-oil CPEs were modified with multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPC) for the detection of catecholamines and thiols, respectively, to demonstrate the ease of electrode chemical modification. Significant improvement of analyte signal detection was observed from both types of modified CPEs. A nearly 2-fold improvement in the electrochemical signal for 100 μM dithiothreitol (DTT) was observed when using a CoPC modified electrode (4.0 ± 0.2 nA (n = 3) versus 2.5 ± 0.2 nA (n = 3)). The improvement in signal was even more pronounced when looking at catecholamines, namely dopamine, using MWCNT modified CPEs. In this case, an order of magnitude improvement in limit of detection was observed for dopamine when using the MWCNT modified CPEs (50 nM versus 500 nM). CoPC modified CPEs were successfully used to detect thiols in red blood cell lysate while MWCNT modified CPEs were used to monitor temporal changes in catecholamine release from PC12 cells following stimulation with potassium.

  13. Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes.

    Science.gov (United States)

    Bui, Minh-Phuong Ngoc; Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2012-01-01

    A flexible, transparent, single-walled carbon nanotube (SWCNT) film electrode was prepared by vacuum filtering methods, followed by photolithographic patterning of a photoresist polymer on the SWCNT surface. The morphology of the SWCNT film electrode surface was characterized using a field-emission scanning electron microscope coupled to an energy-dispersive X-ray spectrophotometer. The electrodes were successfully used as a mercury-free electrochemical sensor for individual and simultaneous detection of cadmium (Cd(2+)) and lead (Pb(2+)) in 0.02 M HCl by square-wave stripping voltammetry. Some important operational parameters, including deposition time, deposition potential, square-wave amplitude, and square wave-frequency were optimized for the detection of Cd(2+) and Pb(2+). The newly developed sensor showed good linear behavior in the examined concentration. For individual Cd(2+) and Pb(2+) ion detection, the linear range was found from 0.033 to 0.228 ppm with detection limits of 0.7 ppb (R(2) = 0.985) for Cd(2+) and 0.8 ppb (R(2) = 0.999) for Pb(2+). For simultaneous detection, the linear range was found from 0.033 to 0.280 ppm with a limit of detection of 2.2 ppb (R(2) = 0.976) and 0.6 ppb (R(2) = 0.996) for Cd(2+) and Pb(2+), respectively. SWCNT film electrodes offered favorable reproducibility of ± 5.4% and 4.3% for Cd(2+) and Pb(2+), respectively. The experiments demonstrated the applicability of carbon nanotubes, specifically in the preparation of SWCNT films. The results suggest that the proposed flexible SWCNT film electrodes can be applied as simple, efficient, cost-effective, and/or disposable electrodes for simultaneous detection of heavy metal ions.

  14. Preparation, characterization and simulation studies of carbon nanotube electrodes for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Frank; Endler, Ingolf [Fraunhofer-Institut fuer Keramische Technologien und Systeme (IKTS), Dresden (Germany); Lorrmann, Henning [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany); Pastewka, Lars [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2010-07-01

    Chemical Vapor Deposition (CVD) was employed to synthesize multiwalled carbon nanotubes (MWCNT) on different carrier materials for electrode applications. In the field of electrochemical energy storage it is essential to grow MWCNT on conducting substrates. For this reason titanium nitride (TiN) layers as well as a copper foil were used as substrates. The MWCNT grown on TiN layers show diameters of about 20 nm and lengths up to 13 {mu}m. In the case of copper foil substrates a remarkably higher nanotube diameter of several tens of nanometers was found. First electrochemical characterization via cyclic voltammetry shows the potential of MWCNT as electrodes for energy storage applications. The CNT were measured in an organic carbonate electrolyte vs. a lithium counter electrode with various scan rates. Until now the preliminary investigations by cyclic voltammetry for electrodes consisting of aligned MWCNT on TiN showed a capacity of around 130 F g{sup -1} in the range of 1 - 3 V vs. Li/Li{sup +}. In support of the experiments we construct a one dimensional Poisson-Nernst-Planck (PNP) continuum model that has been shown to yield agreement with corresponding molecular dynamics simulations to model ion transport into these types of electrodes. Our simulations show that first the ions accumulate at the tips of the tubes because the inner volume of the electrodes is initially field-free. A homogeneous charge distribution is then established through diffusion. The PNP model is used to compute cyclic voltammograms which show qualitative agreement with the experiments. (orig.)

  15. In Situ Laser Activation of Electrochemical Kinetics at Carbon Electrodes

    Science.gov (United States)

    1994-05-31

    essy ubmli - ppad the practice of fracturing a glue carbon rod in solution has I I I - l11 is ese beashofI I as belechge. if th esur bee dopledi In...0.6 ~ ~ ~ ~ ~ ub 0. .. 03. scam 0-1.6 V vs Ag/A90 in 0.1 M KNO3. DA coricenbsIdoi Floure 3. VObIthISSy of caucha101 anI- frS bm d 020- oopwhS Is 10 04...July 25, 1991. Accepted November 6, i. J. WCn&’od rn. Sac. 1M.4. 131, 1578. 1991. 3124 Reprinted from. The Journal of Physical Clamidstry. 19M2 X6

  16. Determination of zinc and cadmium with characterized Electrodes of carbon and polyurethane modified by a bismuth film

    Directory of Open Access Journals (Sweden)

    Jossy Karla Brasil Bernardelli

    2011-09-01

    Full Text Available This study aims to use electrodes modified with bismuth films for the determination of zinc and cadmium. The film was electrodeposited ex situ on a composite carbon electrode with polyurethane and 2% metallic bismuth (2BiE and on a carbon bar electrode (CBE. The electrodes were characterized by scanning electron microscopy and energy dispersive spectroscopy. Through differential pulse anodic stripping voltammetry, the electrodes 2BiE and CBE containing bismuth films showed a limit of detection (LOD of 5.56 × 10-5 and 3.07 × 10-5 g.L-1 for cadmium and 1.24 × 10-4 and 1.53 × 10-4 g.L-1 for zinc, respectively. The presence of a bismuth film increased the sensitivity of both electrodes.

  17. Novel electroanalysis of hydroxyurea at glassy carbon and gold electrode surfaces

    Directory of Open Access Journals (Sweden)

    Keerti M. Naik

    2014-09-01

    Full Text Available A simple and a novel electroanalysis of hydroxyurea (HU drug at glassy carbon and gold electrode was investigated for the first time using cyclic, linear sweep and differential pulse voltammetric techniques. The oxidation of HU was irreversible and exhibited a diffusion controlled process on both electrodes. The oxidation mechanism was proposed. The dependence of the current on pH, the concentration, nature of buffer, and scan rate was investigated to optimize the experimental conditions for the determination of HU. It was found that the optimum buffer pH was 7.0, a physiological pH. In the range of 0.01 to 1.0 mM, the current measured by differential pulse voltammetry showed a linear relationship with HU concentration with limit of detection of 0.46 µM for glassy carbon electrode and 0.92 µM for gold electrode. In addition, reproducibility, precision and accuracy of the method were checked as well. The developed method was successfully applied to HU determination in pharmaceutical formulation and human biological fluids. The method finds its applications in quality control laboratories and pharmacokinetics.

  18. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T

    Directory of Open Access Journals (Sweden)

    Karim Asadpour-Zeynali

    2017-06-01

    Full Text Available In this work poly eriochrome black T (EBT was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH was investigated. The poly (EBT-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak current depends on the concentration of INH and solution pH. The number of electrons involved in the rate determining step was found 1. The diffusion coefficient of isoniazid was also estimated using chronoamperometry technique. The experimental results showed that the mediated oxidation peak current of isoniazid is linearly dependent on the concentration of isoniazid in the ranges of 8.0 × 10-6 – 1.18 × 10-3 M and 2.90 × 10-5 M – 1.67× 10-3 M with differential pulse voltammetry (DPV and amperometry methods, respectively. The detection limits (S/N = 3 were found to be 6.0 μM and 16.4 μM by DPV and amperometry methods, respectively. This developed method was applied to the determination of isoniazid in tablet samples with satisfactory results.

  19. Electrocatalytic behavior of carbon paste electrode modified with metal phthalocyanines nanoparticles toward the hydrogen evolution

    International Nuclear Information System (INIS)

    Abbaspour, Abdolkarim; Norouz-sarvestani, Fatemeh; Mirahmadi, Ehsan

    2012-01-01

    Highlights: ► The new construction of a carbon paste electrode impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). ► The decrease overpotential and higher current value obtained in nano ZnPc and nano NiPc compared to bulky ZnPc and bulky NiPc, respectively. ► Types of the catalyst and pH of the solution affect the electro catalytic proton reduction reaction considerably. - Abstract: This paper describes the construction of a carbon paste electrode (CPE) impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). These new electrodes (nano ZnPc-CPE and nano NiPc-CPE) reveal interesting electrocatalytic behavior toward hydrogen evolution reaction (HER). Voltammetric characteristics indicated that the proposed electrodes display better electrocatalytic activity compared to their corresponding bulky modified metal phthalocyanines (MPcs) in minimizing overpotential and increasing the reduction current of HER. Electrocatalytic activities irregularly change with the pH of the solution. However by increasing the pH while nano MPcs are still active, bulky MPcs are almost inactive, and their corresponding ΔE increase by increasing the pH.

  20. Coulometric determination of dissolved hydrogen with a multielectrolytic modified carbon felt electrode-based sensor.

    Science.gov (United States)

    Matsuura, Hiroaki; Yamawaki, Yosuke; Sasaki, Kosuke; Uchiyama, Shunichi

    2013-06-01

    A multielectrolytic modified carbon electrode (MEMCE) was fabricated by the electrolytic-oxidation/reduction processes. First, the functional groups containing nitrogen atoms such as amino group were introduced by the electrode oxidation of carbon felt electrode in an ammonium carbamate aqueous solution, and next, this electrode was electroreduced in sulfuric acid. The redox waves between hydrogen ion and hydrogen molecule at highly positive potential range appeared in the cyclic voltammogram obtained by MEMCE. A coulometric cell using MEMCE with a catalytic activity of electrooxidation of hydrogen molecule was constructed and was used for the measurement of dissolved hydrogen. The typical current vs. time curve was obtained by the repetitive measurement of the dissolved hydrogen. These curves indicated that the measurement of dissolved hydrogen was finished completely in a very short time (ca. 10 sec). A linear relationship was obtained between the electrical charge needed for the electrooxidation process of hydrogen molecule and dissolved hydrogen concentration. This indicates that the developed coulometric method can be used for the determination of the dissolved hydrogen concentration.

  1. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode

    International Nuclear Information System (INIS)

    Zhou Ming; Guo Liping; Lin Fanyun; Liu Haixia

    2007-01-01

    In this work, we have developed a convenient and efficient method for the functionalization of ordered mesoporous carbon (OMC) using polyoxometalate H 6 P 2 Mo 18 O 62 .xH 2 O (P 2 Mo 18 ). By the method, glassy carbon (GC) electrode modified with P 2 Mo 18 which was immobilized on the channel surface of OMC was prepared and characterized for the first time. The large specific surface area and porous structure of the modified OMC particles result in high heteropolyacid loading, and the P 2 Mo 18 entrapped in this order matrix is stable. Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption-desorption isotherm and X-ray diffraction (XRD) were employed to give insight into the intermolecular interaction between OMC and P 2 Mo 18 . The electrochemical behavior of the modified electrode was studied in detail, including pH-dependence, stability and so on. The cyclic voltammetry (CV) and amperometry studies demonstrated that P 2 Mo 18 /OMC/GC electrode has high stability, fast response and good electrocatalytic activity for the reduction of nitrite, bromate, idonate, and hydrogen peroxide. The mechanism of catalysis on P 2 Mo 18 /OMC/GC electrode was discussed. Moreover, the development of our approach for OMC functionalization suggests the potential applications in catalysis, molecular electronics and sensors

  2. Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel-Cobalt Sulfide Nanosheets.

    Science.gov (United States)

    Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin

    2018-03-28

    The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.

  3. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Daneshi, M.; Nami-Ana, F. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Behbahani, M.; Bagheri, A. [Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2016-11-15

    Highlights: • An electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode was developed. • The electrode provides an accessible surface for simultaneous determination of hydroquinone and catechol. • Hydroquinone and catechol are highly toxic to both environment and human even at very low concentrations. - Abstract: A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120 mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0 μM–1.0 mM range for hydroquinone with the detection limit of 1.2 μM and from 30.0 μM–1.0 mM for catechol with the detection limit of 1.1 μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  4. Carbon paste electrode with covalently immobilized thionine for electrochemical sensing of hydrogen peroxide

    Science.gov (United States)

    Thenmozhi, K.; Sriman Narayanan, S.

    2017-11-01

    A water-soluble redox mediator, thionin was covalently immobilized to the functionalized graphite powder and a carbon paste electrode was fabricated from this modified graphite powder. The immobilization procedure proved to be effective in anchoring the thionin mediator in the graphite electrode setup without any leakage problem during the electrochemical studies. The covalent immobilization of the thionin mediator was studied with FT-IR and the electrochemical response of the thionin carbon paste electrode was optimized on varying the supporting electrolyte, pH and scan rate. The modified electrode exhibited well-defined electrocatalytic activity towards the reduction of H2O2 at a lower potential of -0.266 V with good sensitivity. The developed amperometric sensor was efficient towards H2O2 in the linear range from 2.46 × 10-5 M to 4.76 × 10-3 M, with a detection limit of 1.47 × 10-5 M respectively. Important advantages of this sensor are its excellent electrochemical performance, simple fabrication, easy renewability, reproducible analytical results, acceptable accuracy and good operational and long-term stability.

  5. Indirect Electrochemical Oxidation with Multi Carbon Electrodes for Restaurant Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    I Dewa Ketut Sastrawidana

    2018-01-01

    Full Text Available The removal of organic matter from the restaurant wastewater was investigated using the electrochemical oxida-tion method with multi carbon electrodes in a parallel construction. The degradation process was monitored by the measurement of COD concentration as a function of electrolysis time. The effectof operating parameter conditions on COD removal were investigated including initial pH, distance between electrodes, and the applied voltage difference.The results showed that the treatment of restaurant wastewater containing 2 g/L chloride ion using the electrochemical oxidation technique at the operation conditions characterized by: pH 5, distance between electrode of 10 cm and applied voltage of 12 V, enabled to obtained COD removal of 92.84% within 90 min electrolysis time. It is can be concluded that the indirect electrochemical oxidation method with multi carbon electrodes can be used effectivelyas an alternative technology for reducing COD and may be potentially applied for removal organic pollutants from wastewater at the industrial scale.

  6. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Svegl, Irena Grabec; Bele, Marjan [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia); Ogorevc, Bozidar [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia)], E-mail: bogorevc@ki.si

    2008-11-03

    A new type of carbon film electrode, composed of a thin layer of tightly packed carbon black (CB) nanoparticles deposited onto a gelatin-covered indium tin oxide/glass support using the surface-induced deposition (SID) approach, is presented. Some parameters of the novel SID method were optimized and the surface image and functionalization of the investigated carbon black film electrode (CBFE) was inspected by employing scanning electron microscopy and infrared spectroscopy. A cyclic voltammetry (CV) study was conducted in which the electron-transfer kinetics and CBFE interfacial characteristics were evaluated employing several selected reference redox systems, such as [Ru(NH{sub 3}){sub 6}]{sup 3+/2+}, [Fe(CN){sub 6}]{sup 3-/4-} and Fe{sup 3+/2+} in aqueous, and ferrocene/ferrocenium in acetonitrile media. CV recordings were also performed in order to compare the electrochemical behavior of the CBFE with that of some well-known and established bare carbon-based electrodes. In order to confirm the validity of the CB film preparation method, the electroanalytical performance of the proposed CBFE was examined by carrying out linear sweep voltammetry of ascorbic acid (AA), anodic stripping square-wave voltammetry of Cu(II) in acidic medium, and amperometric measurements of hydrogen peroxide under flow injection conditions. The sensing characteristics of the novel carbon film electrode, demonstrated in this preliminary study, comprise: (i) a wide working potential window ranging from +1.0 to -1.3 V (depending on the solution pH), (ii) a wide applicable pH range (at least from 2 to 12), (iii) low voltammetric background (<5 {mu}A cm{sup -2}), (iv) a satisfactory linear voltammetric and amperometric response (r{sup 2} > 0.99) to various analytes, (v) good reproducibility (for example, r.s.d. of 2% in amperometric detection of H{sub 2}O{sub 2} and r.s.d. of 8.5% for electrode-to-electrode CV runs), and (vi) stable and fast current response (at least 100 CV runs with

  7. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  8. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  9. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    International Nuclear Information System (INIS)

    Souza, Leticia Lopes de

    2011-01-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface

  10. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors

    Science.gov (United States)

    2014-01-01

    Hierarchical mesoporous NiCo2O4 nanoneedle arrays on carbon cloth have been fabricated by a simple hydrothermal approach combined with a post-annealing treatment. Such unique array nanoarchitectures exhibit remarkable electrochemical performance with high capacitance and desirable cycle life at high rates. When evaluated as an electrode material for supercapacitors, the NiCo2O4 nanoneedle arrays supported on carbon cloth was able to deliver high specific capacitance of 660 F g-1 at current densities of 2 A g-1 in 2 M KOH aqueous solution. In addition, the composite electrode shows excellent mechanical behavior and long-term cyclic stability (91.8% capacitance retention after 3,000 cycles). The fabrication method presented here is facile, cost-effective, and scalable, which may open a new pathway for real device applications. PMID:24661431

  11. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-04-01

    Full Text Available Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, Britton–Robinson (BR buffer of pH 2.5. The effect of surfactants like sodium lauryl sulfate (SLS, cetyl trimethyl ammonium bromide (CTAB and Tween 20 was studied. Among these surfactants SLS showed significant enhancement in reduction peak. The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coefficient of 0.99. Keywords: Midazolam, Voltammetry, Surfactant, Glassy carbon electrode, Parenteral dosage form

  12. Enhanced electrochemical performances with a copper/xylose-based carbon composite electrode

    Science.gov (United States)

    Sirisomboonchai, Suchada; Kongparakul, Suwadee; Nueangnoraj, Khanin; Zhang, Haibo; Wei, Lu; Reubroycharoen, Prasert; Guan, Guoqing; Samart, Chanatip

    2018-04-01

    Copper/carbon (Cu/C) composites were prepared through the simple and environmentally benign hydrothermal carbonization of xylose in the presence of Cu2+ ions. The morphology, specific surface area, phase structure and chemical composition were investigated. Using a three-electrode system in 0.1 M H2SO4 aqueous electrolyte, the Cu/C composite (10 wt% Cu) heat-treated at 600 °C gave the highest specific capacitance (316.2 and 350.1 F g-1 at 0.5 A g-1 and 20 mV s-1, respectively). The addition of Cu was the major factor in improving the electrochemical performance, enhancing the specific capacitance more than 30 times that of the C without Cu. Therefore, the Cu/C composite presented promising results in improving biomass-based C electrodes for supercapacitors.

  13. Nanocomposite of cobalt oxide and ordered mesoporous carbon as the electrode materials for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Liu, P.; Zhao, J.; Feng, J.; Tang, B. [Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering

    2010-07-01

    An incipient wetness impregnation method was used to prepare a cobalt oxide ordered mesoporous carbon composite for use as an electrode in supercapacitor applications. The composite was then incorporated inside periodic nanoholes in the ordered mesoporous carbon (OMC). X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherm analyses were used to characterize the structures of the samples. The specific capacitance of the synthesized materials was estimated using cyclic voltammetric (CV) analyses. The study showed that composites prepared using the new method exhibited a higher reversible specific capacitance of 594.8 F per g at a scan rate of 5 mV per second. The composite also showed good cyclic stability. Results suggested that the composite can be used as an electrode material in supercapacitors.

  14. Voltammetric determination of carbidopa and folic acid using a modified carbon nanotubes paste electrode

    Directory of Open Access Journals (Sweden)

    Keshtkar Nasrin

    2015-01-01

    Full Text Available A novel electrochemical sensor for the selective and sensitive detection of carbidopa in presence of large excess of folic acid at physiological pH was developed by the bulk modification of carbon paste electrode (CPE with carbon nanotubes (CNTs and vinylferrocene. Large peak separation, good sensitivity and stability allow this modified electrode to analyze carbidopa individually and simultaneously along with folic acid. Applying square wave voltammetry (SWV, a linear dynamic range of 1.0×10-6- 7.0×10-4 M with detection limit of 2.0×10-7 M was obtained for carbidopa. Finally, the proposed method was applied to the determination of carbidopa and folic acid in urine sample.

  15. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode

    Directory of Open Access Journals (Sweden)

    FATEMEH KARIMI

    2009-12-01

    Full Text Available A chemically modified carbon paste electrode (MCPE containing ferrocene (FC and carbon nanotubes (CNT was constructed. The electrochemical behavior and stability of the MCPE were investigated by cyclic voltammetry. The electrocatalytic activity of the MCPE was investigated and it showed good characteristics for the oxidation of carbidopa (CD in phosphate buffer solution (PBS. A linear concentration range of 5 to 600 μM CD, with a detection limit of 3.6±0.17 μM CD, was obtained. The diffusion coefficient of CD and the transfer coefficient ( were also determined. The MCPE showed good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for the determination of CD in real samples, such as urine samples.

  16. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    Science.gov (United States)

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.

  17. Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode.

    Science.gov (United States)

    Aswini, K K; Vinu Mohan, A M; Biju, V M

    2014-04-01

    A methacrylic acid (MAA) based molecularly imprinted polymer (MIP) modified carbon paste electrode (CPE) was developed for electrochemical detection of L-cysteine (Cys). Characterisation of MIP was done with FTIR and the modified electrode with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). CV, DPV and impedance analysis demonstrated that the modified electrode is responsive towards the target molecule. The optimum percentage composition of MIP for MIP/CPE and the effect of pH towards the electrode response for Cys were studied. The detection of Cys in the range of 2×10(-8) to 18×10(-8)M at MIP/CPE was monitored by DPV with a limit of detection of 9.6nM and R(2) of 0.9974. Also, various physiological interferents such as ascorbic acid, L-tryptophan, D-glucose, D-cysteine and L-cysteine were found to have little effect on DPV response at MIP/CPE. The utility of the electrode was proved by the effective detection of Cys from tap water and human blood plasma samples with reproducible results. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes.

    Science.gov (United States)

    Taylor, I Mitch; Robbins, Elaine M; Catt, Kasey A; Cody, Patrick A; Happe, Cassandra L; Cui, Xinyan Tracy

    2017-03-15

    Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    Science.gov (United States)

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  20. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.

    Science.gov (United States)

    Saheb-Alam, Soroush; Singh, Abhijeet; Hermansson, Malte; Persson, Frank; Schnürer, Anna; Wilén, Britt-Marie; Modin, Oskar

    2018-02-15

    The enrichment of CO 2 -reducing microbial biocathodes is challenging. Previous research has shown that a promising approach could be to first enrich bioanodes and then lower the potential so the electrodes are converted into biocathodes. However, the effect of such a transition on the microbial community on the electrode has not been studied. The goal of this study was thus to compare the start-up of biocathodes from preenriched anodes with direct start-up from bare electrodes and to investigate changes in microbial community composition. The effect of three electrode materials on the long-term performance of the biocathodes was also investigated. In this study, preenrichment of acetate-oxidizing bioanodes did not facilitate the start-up of biocathodes. It took about 170 days for the preenriched electrodes to generate substantial cathodic current, compared to 83 days for the bare electrodes. Graphite foil and carbon felt cathodes produced higher current at the beginning of the experiment than did graphite rods. However, all electrodes produced similar current densities at the end of the over 1-year-long study (2.5 A/m 2 ). Methane was the only product detected during operation of the biocathodes. Acetate was the only product detected after inhibition of the methanogens. Microbial community analysis showed that Geobacter sp. dominated the bioanodes. On the biocathodes, the Geobacter sp. was succeeded by Methanobacterium spp., which made up more than 80% of the population. After inhibition of the methanogens, Acetobacterium sp. became dominant on the electrodes (40% relative abundance). The results suggested that bioelectrochemically generated H 2 acted as an electron donor for CO 2 reduction. IMPORTANCE In microbial electrochemical systems, living microorganisms function as catalysts for reactions on the anode and/or the cathode. There is a variety of potential applications, ranging from wastewater treatment and biogas generation to production of chemicals. Systems

  1. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic binder, which can also promote ion transport. The CCE structure also has a high active surface area and is chemically and thermally robust. This paper presented an investigation of CCE materials prepared using 3-aminopropyl trimethoxysilane. Several electrochemical experiments including cyclic voltammetry and electrochemical impedance spectroscopy were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the copper-chlorine thermochemical cycle. Subsequent experiments included the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements were also presented. Specifically, the paper presented the experiment with particular reference to the CCE preparation; electrochemical experiments; thermal analysis; and scanning electron microscopy. Results were also provided. These included TGA analysis; scanning electron microscopy analysis; electrochemical characterization; and anodic polarization. Characterization of these CCE material demonstrated that they had good thermal stability, could be used at high temperatures, and were therefore, very promising anode materials. 15 refs., 7 figs.

  2. Performance of Solution Processed Carbon Nanotube Field Effect Transistors with Graphene Electrodes

    OpenAIRE

    Gangavarapu, P R Yasasvi; Lokesh, Punith Chikkahalli; Bhat, K N; Naik, A K

    2016-01-01

    This work evaluates the performance of carbon nanotube field effect transistors (CNTFET) using few layer graphene as the contact electrode material. We present the experimental results obtained on the barrier height at CNT graphene junction using temperature dependent IV measurements. The estimated barrier height in our devices for both holes and electrons is close to zero or slightly negative indicating the Ohmic contact of graphene with the valence and conduction bands of CNTs. In addition,...

  3. Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode

    OpenAIRE

    Yoshiyuki Show

    2012-01-01

    Electrical double-layer capacitor (EDLC) was fabricated with addition of carbon nanotube (CNT) to polarization electrodes as a conducting material. The CNT addition reduced the series resistance of the EDLC by one-twentieth, while the capacitance was not increased by the CNT addition. The low series resistance leaded to the high electrical energy stored in the EDLC. In this paper, the dependence of the series resistance, the specific capacitance, the energy, and the energy efficiencies on the...

  4. Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Ostatná, Veronika; Černocká, Hana; Kurzatkowska, K.; Paleček, Emil

    2012-01-01

    Roč. 735, JUL (2012), s. 31-36 ISSN 0003-2670 R&D Projects: GA AV ČR(CZ) KJB100040901; GA ČR(CZ) GAP301/11/2055; GA MŠk(CZ) ME09038 Institutional research plan: CEZ:AV0Z50040702 Keywords : protein denaturation * carbon electrodes * edge plane pyrolytic graphite Subject RIV: BO - Biophysics Impact factor: 4.387, year: 2012

  5. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    International Nuclear Information System (INIS)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun

    2010-01-01

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of ∼ 2 cm 2 V -1 s -1 , On/Off ratio of ∼ 10 2 , transmittance of ∼ 81% and excellent mechanical bendability.

  6. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun, E-mail: ahnj@skku.edu, E-mail: byunghee@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-10-22

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of {approx} 2 cm{sup 2} V{sup -1} s{sup -1}, On/Off ratio of {approx} 10{sup 2}, transmittance of {approx} 81% and excellent mechanical bendability.

  7. Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode

    International Nuclear Information System (INIS)

    Zarei, Mahmoud; Salari, Darioush; Niaei, Aligoli; Khataee, Alireza

    2009-01-01

    The electrochemical treatment of solutions containing C.I. Basic Yellow 2 (BY2) in aqueous solutions with carbon-PTFE (polytetrafluoroethylene) and carbon nanotube (CNT)-PTFE electrodes as cathode has been studied. The fabricated electrodes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The amount of electrogenerated H 2 O 2 on the surface of these electrodes was investigated, too. The results showed that the amount of H 2 O 2 obtained with the CNT-PTFE electrode was nearly three times higher than that of carbon-PTFE electrode. The decolorization efficiency of BY2 in peroxi-coagulation process reached 62% and 96% in the first 10 min by carbon-PTFE and CNT-PTFE electrodes at 100 mA, respectively. The effect of operational parameters such as applied current, initial pH and initial dye concentration was studied in an attempt to reach higher decolorization efficiency. The degradation and mineralization of BY2 using CNT-PTFE electrode were followed by total organic carbon (TOC) and GC-MS analysis. The results of TOC measurements indicated that peroxi-coagulation with carbon-PTFE allowed 81% mineralization after 6 h of electrolysis; whereas peroxi-coagulation with CNT-PTFE yields 92% mineralization under the same conditions. GC-MS analysis verified the identity of intermediates and a reaction pathway based on them was proposed.

  8. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  9. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method

    International Nuclear Information System (INIS)

    Liu, Zaijian; Wang, Wei; Wang, Jia; Peng, Xin; Wang, Yanhua; Zhang, Penghui; Wang, Haijie; Gao, Congjie

    2014-01-01

    Corrosion behavior of carbon steel under seawater film with various thickness was investigated by the wire beam electrode (WBE) method. It was found that the corrosion rate of carbon steel increased significantly under thin seawater film than it was immersed in seawater. The current variation under seawater film indicated that the thickness of diffusion layer of oxygen was about 500 μm, and the maximal current appeared around 40 μm, at which corrosion rate transited from cathodic control to anodic control. The results suggest that WBE method is helpful to study the corrosion process under thin electrolyte film

  10. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries

    OpenAIRE

    Hellqvist Kjell, Maria; Jacques, Eric; Zenkert, Dan; Behm, Mårten; Lindbergh, Göran

    2011-01-01

    Several grades of commercially-available polyacrylonitrile (PAN)-based carbon fibers have been studied for structural lithium-ion batteries to understand how the sizing, different lithiation rates and number of fibers per tow affect the available reversible capacity, when used as both current collector and electrode, for use in structural batteries. The study shows that at moderate lithiation rates, 100 mA g-1, most of the carbon fibers display a reversible capacity close to or above 100 mAh ...

  11. Raman spectra of zinc phthalocyanine monolayers absorbed on glassy carbon and gold electrodes by application of a confocal Raman microspectrometer

    NARCIS (Netherlands)

    Palys-Staron, B.J.; Palys, B.J.; Puppels, G.J.; Puppels, G.J.; van den Ham, D.M.W.; van den Ham, D.M.W.; Feil, D.; Feil, D.

    1992-01-01

    Raman spectra of zinc phthalocyanine monolayers, adsorbed on gold and on glassy carbon surfaces (electrodes), are presented. These spectra have been recorded with the electrodes inside and outside an electrochemical cell filled with an aqueous electrolyte. A confocal Raman microspectrometer was

  12. TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR FOR DETECTION OF PHENOLS: BINDER AND PRE-OXIDATION EFFECTS

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil or paraffin wax oil yielded a greater response to phenol and catechol than those using the hi...

  13. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    International Nuclear Information System (INIS)

    Haghighi, Behzad; Tabrizi, Mahmoud Amouzadeh

    2011-01-01

    Highlights: → A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. → A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. → The apparent electron transfer rate constant was measured to be 5.27 s -1 . → A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E o ') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k s ) was calculated to be 5.27 s -1 . The dependence of E o ' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  14. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Tabrizi, Mahmoud Amouzadeh [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. > A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. > The apparent electron transfer rate constant was measured to be 5.27 s{sup -1}. > A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E{sup o}') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k{sub s}) was calculated to be 5.27 s{sup -1}. The dependence of E{sup o}' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  15. Potentiometric application of boron- and phosphorus-doped glassy carbon electrodes

    Directory of Open Access Journals (Sweden)

    ZORAN V. LAUSEVIC

    2001-03-01

    Full Text Available Acomparative study was carried out of the potentiometric application of boronand phosphorus-doped and undoped glassy carbon samples prepared at the same heat treatment temperature (HTT 1000°C. The electrochemical activities of the obtained electrode materials were investigated on the example of argentometric titrations. It was found that the electrochemical behaviour of the doped glassy carbon samples are very similar to a Sigri (undoped glassy carbon sample (HTT 2400°C. The experiments showed that the potentiometric response depends on the polarization mode, the nature of the sample, the pretreatment of the electrode surface, and the nature of the supporting electrolyte. The amounts of iodide, bromide, and of chloridewere determined to be 1.27 mg, 0.80 mg and 0.54 mg, respectively, with a maximum relative standard deviation of less than 1.1%. The obtained results are in good agreement with the results of comparative potentiometric titrations using a silver indicator electrode. The titrationmethod was applied to the indirect determination of pyridoxine hydrochloride, i.e., vitamin B6.

  16. Carbon paste electrode modified molecularly imprinted polymer as a sensor for creatinine analysis by stripping voltammetry

    Science.gov (United States)

    Khasanah, M.; Darmokoesoemo, H.; Rizki, D. A.

    2017-09-01

    Modification of carbon paste electrode with molecularly imprinted polymer (CP-MIP) as a voltammetric sensor for creatinine has been developed. MIP was synthesized by reacting melamine, chloranil and creatinine with a mole ratio of 1:1:0.1. Creatinine was extracted from polymer chain by using hot water to form a specific imprinted for creatinine molecule. Carbon paste-MIP electrode was prepared by mixing activated carbon, solid paraffin, and MIP in a 45:40:15(w/w %) ratio. The optimum conditions of creatinine analysis by differential pulse stripping voltammetry (DPSV) using the developed electrode were the accumulation potential -1000 mV during 90 s at pH 5. The precision of the method for 0.1-0.5 μlg/L creatinine was 88.7-96.3%, while the detection limit of this method was 0.0315 μlg/L. The accuracy compared by spectrophotometric method was 95.3-103.6%

  17. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode.

    Science.gov (United States)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m 2  g -1 ) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g -1 at 1.0 A g -1 in 0.5 M Na 2 SO 4 ; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g -1 at 11 A g -1 ). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  18. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  19. Mechanism of 3,4-dihydroxybenzaldehyde electropolymerization at carbon paste electrodes : catalytic detection of NADH

    Directory of Open Access Journals (Sweden)

    Delbem Maria Flávia

    2002-01-01

    Full Text Available Cyclic voltammetry was used to study 3,4-dihydroxybenzaldehyde (3,4-DHB electropolymerization processes on carbon paste electrodes. The characteristics of the electropolymerized films were highly dependent on pH, anodic switching potential, scan rate, 3,4-DHB concentrations and number of cycles. Film stability was determined in citrate/phosphate buffer solutions at the same pH used during the electropolymerization process. The best conditions to prepare carbon paste modified electrodes were pH 7.8; 0.0 <= Eapl <= 0.25 V; 10 mV s-1; 0.25 mmol L-1 3,4-DHB and 10 scans. These carbon paste modified electrodes were used for NADH catalytic detection at 0.23 V in the range 0.015 <= [NADH] <= 0.21 mmol L-1. Experimental data were used to propose a mechanism for the 3,4--DHB electropolymerization processes, which involves initial phenoxyl radical formation.

  20. Boron-doped MnO{sub 2}/carbon fiber composite electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hong Zhong, E-mail: hzchi@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhu, Hongjie [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Gao, Linhui [Center of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Interstitial ion in MnO{sub 2} lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO{sub 2}/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO{sub 2}/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO{sub 2} crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO{sub 2} lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO{sub 2} still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn{sup 2+} and the absence of active site on the outer surface.