WorldWideScience

Sample records for carbon nanotube-enhanced non-invasive

  1. In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node

    International Nuclear Information System (INIS)

    Sentinel lymph node biopsy (SLNB), a less invasive alternative to axillary lymph node dissection (ALND), has become the standard of care for patients with clinically node-negative breast cancer. In SLNB, lymphatic mapping with radio-labeled sulfur colloid and/or blue dye helps identify the sentinel lymph node (SLN), which is most likely to contain metastatic breast cancer. Even though SLNB, using both methylene blue and radioactive tracers, has a high identification rate, it still relies on an invasive surgical procedure, with associated morbidity. In this study, we have demonstrated a non-invasive single-walled carbon nanotube (SWNT)-enhanced photoacoustic (PA) identification of SLN in a rat model. We have successfully imaged the SLN in vivo by PA imaging (793 nm laser source, 5 MHz ultrasonic detector) with high contrast-to-noise ratio (=89) and good resolution (∼500 μm). The SWNTs also show a wideband optical absorption, generating PA signals over an excitation wavelength range of 740-820 nm. Thus, by varying the incident light wavelength to the near infrared region, where biological tissues (hemoglobin, tissue pigments, lipids and water) show low light absorption, the imaging depth is maximized. In the future, functionalization of the SWNTs with targeting groups should allow the molecular imaging of breast cancer.

  2. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  3. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    International Nuclear Information System (INIS)

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  4. Water desalination using carbon-nanotube-enhanced membrane distillation.

    Science.gov (United States)

    Gethard, Ken; Sae-Khow, Ornthida; Mitra, Somenath

    2011-02-01

    Carbon nanotube (CNT) enhanced membrane distillation is presented for water desalination. It is demonstrated that the immobilization of the CNTs in the pores of a hydrophobic membrane favorably alters the water-membrane interactions to promote vapor permeability while preventing liquid penetration into the membrane pores. For a salt concentration of 34 000 mg L(-1) and at 80 °C, the nanotube incorporation led to 1.85 and 15 times increase in flux and salt reduction, respectively. PMID:21188976

  5. Automated non-invasive measurement of cardiac output: comparison of electrical bioimpedance and carbon dioxide rebreathing techniques.

    OpenAIRE

    Smith, S A; Russell, A.E.; West, M. J.; Chalmers, J

    1988-01-01

    Two commercial automated, non-invasive systems for estimation of cardiac output were evaluated. Values of cardiac output obtained by electrical bioimpedance cardiography (BoMed NCCOM3 machine) were compared with values derived from an indirect Fick technique that uses carbon dioxide rebreathing (Gould 9000 IV system) during 103 simultaneous measurements made at rest in 19 randomly selected subjects and on exercise in 11 subjects. Cardiac output values obtained with impedance cardiography were...

  6. Performance evaluation of carbon nanotube enhanced membranes for SWRO pretreatment application

    KAUST Repository

    Lee, Jieun

    2016-04-25

    Multi-wall carbon nanotube (MWCNT) membrane was tested for SWRO pretreatment. The MWCNT membrane itself showed a superior permeate flux (321.3 LMH/bar), which was 4-times as polyethersulfone ultrafiltration (PES-UF) membrane. Reduction of dissolved organic matter improved to 66% with fewer amounts of powder activated carbon (PAC) (0.5 g/L) in MWCNT membrane filtration maintaining a high permeate flux of 600 LMH/bar. It was due to the increased porosity (84.5%) and hydrophilicity (52.9°) by incorporating MWCNT/polyaniline into PES membrane. Ionic strength affected organic removal in seawater filtration by altering electrostatic interaction between organic matter and surface charge of the positively charged MWCNT membrane.

  7. Carbon nanotubes enhanced Seebeck coefficient and power factor of rutile TiO2.

    Science.gov (United States)

    Lai, Yao-Cheng; Tsai, Hsin-Jung; Hung, Chia-I; Fujishiro, Hiroyuki; Naito, Tomoyuki; Hsu, Wen-Kuang

    2015-03-28

    The Seebeck coefficient, according to Ioffe's approximation, is inversely proportional to carrier density and decreases with doping. Herein, we find that the incorporation of multi-walled carbon nanotubes into rutile TiO2 improves the electrical conductivity and Seebeck coefficient at a low filling fraction of tubes; moreover, the former was due to the lengthening of the mean free path and doping modified carrier mobility for the latter. Tube-oxide mixing also causes significant phonon drag at the interfaces and the reduced thermal conductivity was verified by the promoted figure of merit. PMID:25729788

  8. Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites

    CERN Document Server

    Kostopoulos, V

    2013-01-01

    The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The curre...

  9. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    International Nuclear Information System (INIS)

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells. (paper)

  10. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS

    International Nuclear Information System (INIS)

    I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to be

  11. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-04-01

    I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to

  12. The accuracy of non-invasive carbon dioxide monitoring: a clinical evaluation of two transcutaneous systems.

    Science.gov (United States)

    Bolliger, D; Steiner, L A; Kasper, J; Aziz, O A; Filipovic, M; Seeberger, M D

    2007-04-01

    We determined the accuracy of two transcutaneous carbon dioxide monitoring systems (SenTec Digital Monitor with V-Sign Sensor and TOSCA 500 with TOSCA Sensor 92) for the measurement of single values and trends in the arterial partial pressure of carbon dioxide in 122 adult patients during major surgery and in 50 adult patients in the intensive care unit. One or several paired measurements were performed in each patient. The first measurement was used to determine the accuracy of a single value of transcutaneous carbon dioxide; the difference between the first and the last measurements was used to analyse the accuracy and to track trends. We defined a 95% limit of agreement of agreement between transcutaneous carbon dioxide partial pressure values derived from the two systems and arterial carbon dioxide values for both single values and trends as defined by our suggested limit of agreement. We conclude that these systems cannot replace conventional blood gas analysis in the clinical setting studied. PMID:17381578

  13. Non Invasive Surfactant Application

    OpenAIRE

    Hacer Yapicioglu; Eren Kale Cekinmez; Ferda Ozlu

    2013-01-01

    Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. Non-invasive techniques of respiratory support were developed in order to reduce the adverse effects associated with ventilation via an endotracheal tube. Noninvasive surfactant administration technique during spontaneous breathing alon...

  14. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity.

    Science.gov (United States)

    Campos-Garcia, Janaína; Martinez, Diego Stéfani T; Alves, Oswaldo L; Leonardo, Antônio Fernando Gervásio; Barbieri, Edison

    2015-01-01

    The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour. PMID:25450925

  15. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate--comparison between the normal and failing human heart.

    Science.gov (United States)

    Bengel, F M; Permanetter, B; Ungerer, M; Nekolla, S; Schwaiger, M

    2000-03-01

    The clearance kinetics of carbon-11 acetate, assessed by positron emission tomography (PET), can be combined with measurements of ventricular function for non-invasive estimation of myocardial oxygen consumption and efficiency. In the present study, this approach was applied to gain further insights into alterations in the failing heart by comparison with results obtained in normals. We studied ten patients with idiopathic dilated cardiomyopathy (DCM) and 11 healthy normals by dynamic PET with 11C-acetate and either tomographic radionuclide ventriculography or cine magnetic resonance imaging. A "stroke work index" (SWI) was calculated by: SWI = systolic blood pressure x stroke volume/body surface area. To estimate myocardial efficiency, a "work-metabolic index" (WMI) was then obtained as follows: WMI = SWI x heart rate/k(mono), where k(mono) is the washout constant for 11C-acetate derived from monoexponential fitting. In DCM patients, left ventricular ejection fraction was 19%+/-10% and end-diastolic volume was 92+/-28 ml/m2 (vs 64%+/-7% and 55+/-8 ml/m2 in normals, PSWI (1674+/-761 vs 4736+/-895 mmHg x ml/m2; P<0.001) and the WMI as an estimate of efficiency (2.98+/-1.30 vs 6.20+/-2.25 x 10(6) mmHg x ml/m2; P<0.001) were lower in DCM patients, too. Overall, the WMI correlated positively with ejection parameters (r=0.73, P<0.001 for ejection fraction; r=0.93, P<0.001 for stroke volume), and inversely with systemic vascular resistance (r=-0.77; P<0.001). There was a weak positive correlation between WMI and end-diastolic volume in normals (r=0.45; P=0.17), while in DCM patients, a non-significant negative correlation coefficient (r=-0.21; P=0.57) was obtained. In conclusion non-invasive estimates of oxygen consumption and efficiency in the failing heart were reduced compared with those in normals. Estimates of efficiency increased with increasing contractile performance, and decreased with increasing ventricular afterload. In contrast to normals, the failing heart

  16. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.

    Science.gov (United States)

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP-PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP-PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering. PMID:27555770

  17. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds

    Science.gov (United States)

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite–polyetheretherketone (HAP–PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP–PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP–PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering. PMID:27555770

  18. Non Invasive Surfactant Application

    Directory of Open Access Journals (Sweden)

    Hacer Yapicioglu

    2013-08-01

    Full Text Available Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. Non-invasive techniques of respiratory support were developed in order to reduce the adverse effects associated with ventilation via an endotracheal tube. Noninvasive surfactant administration technique during spontaneous breathing along with nasal continous positive airway pressure support successfully reduces the need for further respiratory support and bronchopulmonary dysplasia rate in very low birth weight infants. Here we reviewed the new approches ton surfactant administration. [Archives Medical Review Journal 2013; 22(4.000: 634-644

  19. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, A; Constantinescu, A; Prall, M; Kaderka, R; Durante, M; Graeff, C [GSI Helmholtz Center, Darmstadt, DE (Germany); Lehmann, H I; Takami, M; Packer, D L [Mayo Clinic, Rochester, Minnesota (United States); Lugenbiel, P; Thomas, D [University of Heidelberg, Heidelberg, DE (Germany); Richter, D; Bert, C [University Clinic Erlangen, Erlagen, DE (Germany)

    2015-06-15

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiac motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D{sub 95} over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D{sub 5}-D{sub 95} was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the

  20. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    International Nuclear Information System (INIS)

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiac motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D95 over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D5-D95 was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the Helmholtz Association, the

  1. Non-invasive physiological measurements

    International Nuclear Information System (INIS)

    This book discusses the diagnostic techniques of nondestructive type for monitoring the physiology of various organ systems. The topics covered are: non-invasive assessment of gastric activity; uterine activity, intestinal activity; monitoring of fetal cardiovascular system and bilirubin physiology of infants. Respiratory system of infants is monitored and ultrasonography of heart is discussed

  2. Non-Invasive Prenatal Testing

    OpenAIRE

    McGillivray, Barbara C.

    1988-01-01

    The rate of newborns with trisomy 21 (Down syndrome) who have been referred to our pediatric newborn clinic is very high. This shows that prenatal screening in the region is not carried out well. Prenatal diagnosis and screening methods include invasive prenatal diagnosis methods (amniocentesis, chorionic villus sampling (CVS), and cordocentesis) and non-invasive prenatal diagnosis (NIPT) which cell free fetal DNA (cffDNA) screening of maternal blood samples. After the discovery of the signs ...

  3. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate - comparison between the normal and failing human heart

    International Nuclear Information System (INIS)

    We studied ten patients with idiopathic dilated cardiomyopathy (DCM) and 11 healthy normals by dynamic PET with 11C-acetate and either tomographic radionuclide ventriculography or cine magnetic resonance imaging. A ''stroke work index'' (SWI) was calculated by: SWI = systolic blood pressure x stroke volume/body surface area. To estimate myocardial efficiency, a ''work-metabolic index'' (WMI) was then obtained as follows: WMI = SWI x heart rate/k(mono), where k(mono) is the washout constant for 11C-acetate derived from mono-exponential fitting. In DCM patients, left ventricular ejection fraction was 19%±10% and end-diastolic volume was 92±28 ml/m2 (vs 64%±7% and 55±8 ml/m2 in normals, P2; P6 mmHg x ml/m2; P<0.001) were lower in DCM patients, too. Overall, the WMI correlated positively with ejection parameters (r=0.73, P<0.001 for ejection fraction; r=0.93, P<0.001 for stroke volume), and inversely with systemic vascular resistance (r=-0.77; P<0.001). There was a weak positive correlation between WMI and end-diastolic volume in normals (r=0.45; P=0.17), while in DCM patients, a non-significant negative correlation coefficient (r=-0.21; P=0.57) was obtained. In conclusion non-invasive estimates of oxygen consumption and efficiency in the failing heart were reduced compared with those in normals. Estimates of efficiency increased with increasing contractile performance, and decreased with increasing ventricular afterload. In contrast to normals, the failing heart was not able to respond with an increase in efficiency to increasing ventricular volume.(orig./MG) (orig.)

  4. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate - comparison between the normal and failing human heart

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, F.M.; Nekolla, S.; Schwaiger, M. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik; Permanetter, B. [Abteilung Innere Medizin, Kreiskrankenhaus Wasserburg/Inn (Germany); Ungerer, M. [Technische Univ. Muenchen (Germany). 1. Medizinische Klinik und Poliklinik

    2000-03-01

    We studied ten patients with idiopathic dilated cardiomyopathy (DCM) and 11 healthy normals by dynamic PET with {sup 11}C-acetate and either tomographic radionuclide ventriculography or cine magnetic resonance imaging. A ''stroke work index'' (SWI) was calculated by: SWI = systolic blood pressure x stroke volume/body surface area. To estimate myocardial efficiency, a ''work-metabolic index'' (WMI) was then obtained as follows: WMI = SWI x heart rate/k(mono), where k(mono) is the washout constant for {sup 11}C-acetate derived from mono-exponential fitting. In DCM patients, left ventricular ejection fraction was 19%{+-}10% and end-diastolic volume was 92{+-}28 ml/m{sup 2} (vs 64%{+-}7% and 55{+-}8 ml/m{sup 2} in normals, P<0.001). Myocardial oxidative metabolism, reflected by k(mono), was significantly lower compared with that in normals (0.040{+-}0.011/min vs 0.060{+-} 0.015/min; P<0.003). The SWI (1674{+-}761 vs 4736{+-} 895 mmHg x ml/m{sup 2}; P<0.001) and the WMI as an estimate of efficiency (2.98{+-}1.30 vs 6.20{+-}2.25 x 10{sup 6} mmHg x ml/m{sup 2}; P<0.001) were lower in DCM patients, too. Overall, the WMI correlated positively with ejection parameters (r=0.73, P<0.001 for ejection fraction; r=0.93, P<0.001 for stroke volume), and inversely with systemic vascular resistance (r=-0.77; P<0.001). There was a weak positive correlation between WMI and end-diastolic volume in normals (r=0.45; P=0.17), while in DCM patients, a non-significant negative correlation coefficient (r=-0.21; P=0.57) was obtained. In conclusion non-invasive estimates of oxygen consumption and efficiency in the failing heart were reduced compared with those in normals. Estimates of efficiency increased with increasing contractile performance, and decreased with increasing ventricular afterload. In contrast to normals, the failing heart was not able to respond with an increase in efficiency to increasing ventricular volume.(orig./MG) (orig.)

  5. Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Wang, Jun; Smith, Jordan N.; Timchalk, Charles; Lin, Yuehe

    2009-11-15

    A portable, rapid, and sensitive assessment of sub-clinical organophosphorus (OPs) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Due to the extent of inter-individual ChE activity variability, ChE biomonitoring often requires an initial base-line determination (non-inhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript described an alternative strategy where reactivation of the phosphorylated enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (i.e. after reactivation) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity and at low potentials. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experiment parameters, (e.g. inhibition and reactivation times), have been optimized such that, 92 - 95% ChE reactivation can be achieved over a broad range of ChE inhibition (5 - 94 %) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements.

  6. Non-invasive sensing for food reassurance.

    Science.gov (United States)

    Xiaobo, Zou; Xiaowei, Huang; Povey, Malcolm

    2016-03-01

    Consumers and governments are increasingly interested in the safety, authenticity and quality of food commodities. This has driven attention towards non-invasive sensing techniques used for rapid analyzing these commodities. This paper provides an overview of the state of the art in, and available alternatives for, food assurance based on non-invasive sensing techniques. The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. With continued innovation and attention to key challenges, such non-invasive sensors and biosensors are expected to open up new exciting avenues in the field of portable and wearable wireless sensing devices and connecting with mobile networks, thus finding considerable use in a wide range of food assurance applications. The need for an appropriate regulatory framework is emphasized which acts to exclude unwanted components in foods and includes needed components, with sensors as part of a reassurance framework supporting regulation and food chain management. The integration of these sensor modalities into a single technological and commercial platform offers an opportunity for a paradigm shift in food reassurance. PMID:26835653

  7. Non-Invasive markers for hepatic fibrosis

    Directory of Open Access Journals (Sweden)

    Lal Priyanka

    2011-08-01

    Full Text Available Abstract With great advancements in the therapeutic modalities used for the treatment of chronic liver diseases, the accurate assessment of liver fibrosis is a vital need for successful individualized management of disease activity in patients. The lack of accurate, reproducible and easily applied methods for fibrosis assessment has been the major limitation in both the clinical management and for research in liver diseases. However, the problem of the development of biomarkers capable of non-invasive staging of fibrosis in the liver is difficult due to the fact that the process of fibrogenesis is a component of the normal healing response to injury, invasion by pathogens, and many other etiologic factors. Current non-invasive methods range from serum biomarker assays to advanced imaging techniques such as transient elastography and magnetic resonance imaging (MRI. Among non-invasive methods that gain strongest clinical foothold are FibroScan elastometry and serum-based APRI and FibroTest. There are many other tests that are not yet widely validated, but are none the less, promising. The rate of adoption of non-invasive diagnostic tests for liver fibrosis differs from country to country, but remains limited. At the present time, use of non-invasive procedures could be recommended as pre-screening that may allow physicians to narrow down the patients' population before definitive testing of liver fibrosis by biopsy of the liver. This review provides a systematic overview of these techniques, as well as both direct and indirect biomarkers based approaches used to stage fibrosis and covers recent developments in this rapidly advancing area.

  8. [Non-invasive assessment of liver fibrosis].

    Science.gov (United States)

    Cohen-Ezra, Oranit; Ben-Ari, Ziv

    2015-03-01

    Chronic liver diseases represent a major public health problem, accounting for significant morbidity and mortality worldwide. Prognosis and management of chronic liver diseases depend on the amount of liver fibrosis. Liver biopsy has long remained the gold standard for assessment of liver fibrosis. Liver biopsy is an invasive procedure with associated morbidity, it is rarely the cause for mortality, and has a few limitations. During the past two decades, in an attempt to overcome the limitations of liver biopsy, non-invasive methods for the evaluation of liver fibrosis have been developed, mainly in the field of viral hepatitis. This review will focus on different methods available for non-invasive evaluation of liver fibrosis including a biological approach which quantifies serum levels of biomarkers of fibrosis and physical techniques which measure liver stiffness by transient elastography, ultrasound or magnetic resonance based elastography, their accuracy, advantages and disadvantages. PMID:25962254

  9. Ultrasonic non invasive techniques for microbiological instrumentation

    Science.gov (United States)

    Elvira, L.; Sierra, C.; Galán, B.; Resa, P.

    2010-01-01

    Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.

  10. On non-invasive ultrasonic flowmeasurement

    OpenAIRE

    Spendel, K. D.

    1985-01-01

    This thesis is concerned with non-invasive ultrasonic flow measurement, using the transit time principle. The errors associated with the transit-time flowmeter are investigated and a design of flowmeter is suggested. A theoretical and experimental study of the transmission of sound through pipe walls is carried out where it is shown that advantage can be taken of the excitation of Lamb modes. A design of transducer arrangement is made from the results of the work. A solut...

  11. Physiology of non-invasive respiratory support.

    Science.gov (United States)

    Alexiou, Stamatia; Panitch, Howard B

    2016-06-01

    Non-invasive ventilation (NIV) is used in neonates to treat extrathoracic and intrathoracic airway obstruction, parenchymal lung disease and disorders of control of breathing. Avoidance of airway intubation is associated with a reduction in the incidence of chronic lung disease among preterm infants with respiratory distress syndrome. Use of nasal continuous positive airway pressure (nCPAP) may help establish and maintain functional residual capacity (FRC), decrease respiratory work, and improve gas exchange. Other modes of non-invasive ventilation, which include heated humidified high-flow nasal cannula therapy (HHHFNC), nasal intermittent mandatory ventilation (NIMV), non-invasive pressure support ventilation (NI-PSV), and bi-level CPAP (SiPAP™), have also been shown to provide additional benefit in improving breathing patterns, reducing work of breathing, and increasing gas exchange when compared with nCPAP. Newer modes, such as neurally adjusted ventilatory assist (NAVA), hold the promise of improving patient-ventilator synchrony and so might ultimately improve outcomes for preterm infants with respiratory distress. PMID:26923501

  12. [Non invasive ventilation in the emergency setting].

    Science.gov (United States)

    Wilhelm, Laetitia; Della Santa, Vincent; Hanhart, Walter-Alexandre

    2015-08-12

    Before the development of non invasive ventilation (NIV), endotracheal intubation was the only ventilatory therapy available in case of severe respiratory distress and acute respiratory failure. NIV used to be employed in intensive care settings only. Nowadays, the use of NIV has been democratized to include the emergency room, and the pre-hospital care setting for treatment of acute respiratory failure. Cardiogenic pulmonary edema and acute exacerbation of COPD are indications of choice, since NIV improves mortality. The efficiency of the therapy depends on early treatment; however, endotracheal intubation should not be delayed when it becomes necessary. PMID:26449102

  13. NON-INVASIVE PRENATAL DIAGNOSIS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Madhusudan Dey, Sumita Agarwal and Sumedha Sharma

    2013-04-01

    Full Text Available ABSTRACT: Aneuploidies are one of the important causes of perinatal morbidity and mortality. Initially screening for aneuploidies started with maternal age risk estimation. Later on, serum testing for biochemical markers and ultrasound markers were added. Women detected to be at high risk for aneuploidies were offered invasive testing. Recently, various methods including non-invasive prenatal testing (NIPT by analysis of cell-free fetal DNA (cffDNA in maternal blood has shown promise for highly accurate detection of common fetal autosomal trisomies. Incorporating these new non-invasive technologies into clinical practice will impact the current prenatal screening paradigm for fetal aneuploidy, in which genetic counselling plays an integral role. The advantage of the technique being elimination of risks such as miscarriage associated with invasive diagnostic procedures. But then this new technique has its own set of technical limitations and ethical issues at present and further research is required before implementation. Data was obtained through a literature search via Pubmed and Google as well as detailed search of our library database.

  14. Non-invasive assessment of gastric activity

    International Nuclear Information System (INIS)

    There have been many suggestions for the routine clinical use of the electro-enterogram, but with the exception of the reported usage in the USSR no significant penetration into medical practice has been reported elsewhere. Amongst the many suggestions have been the possible application of electrical stimulation via surface electrodes to overcome post-operative inhibition of intestinal electrical activity, which can be recorded via surface electrodes. Gastric emptying studies have shown that duodenal ulceration is associated with changes in the rate and pattern of emptying of solid meals. Identifiable patterns in the electro-gastrogram following a metal might have diagnostic application. There is some evidence of correlations of electrical activity and pathology in the large intestine. In the colon diverticular disease has been shown to change the frequency content of the slow wave electrical activity and there is some evidence that this might be recorded from surface electrodes. A major obstacle to progress remains the inability to relate non-invasive recordings to intestinal motility. The best hope may be the use of direct and yet non-invasive methods of obtaining motility and in this context real-time ultrasound imaging is probably the most promising technique. The electro-gastrogram has certainly been shown to allow recording of gastric slow wave activity and there is a reasonable hope that further methods of analysis will allow inferential information on motility to be obtained. The following section makes brief mention of these techniques

  15. Non-invasive methods of investigative cardiology

    International Nuclear Information System (INIS)

    Non-invasive assessment of heart and chamber size employs various techniques which yield different information. Overall size as estimated by biplane chest roentgenogram in the upright or - better - supine position is a valuable quantitative method. Correlation with individual chamber size is, however, only fair. Information on wall thickness can currently be obtained only by ultrasound echocardiography. ECG and vectorcardiography as a means for determining ventricular hypertrophy have remained semi-quantitative techniques, but can probably be developed into more quantitative information by means of computer analysis. A method of predicting left ventricular muscle mass using the Frank orthogonal lead system is described. Regional disorders of contraction and contractility have been difficult to assess non-invasively. Kymographic techniques describe only motion of the lateral wall. Ultrasound techniques, even using a two-dimensional approach, rarely include the ventricular apical region. Systolic time intervals and radionuclide minimal transit times have remained of limited importance. The value of ECG-gated computertomography cannot be assessed as yet. The greatest promise can be expected from radionuclide techniques with gated blood pool scanning and myocardial scintigraphic techniques. (orig.)

  16. Non-invasive diagnostic methods in dentistry

    Science.gov (United States)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  17. Non invasive monitoring in mechanically ventilated pediatric patients.

    Science.gov (United States)

    Al-Subu, Awni M; Rehder, Kyle J; Cheifetz, Ira M; Turner, David A

    2014-12-01

    Cardiopulmonary monitoring is a key component in the evaluation and management of critically ill patients. Clinicians typically rely on a combination of invasive and non-invasive monitoring to assess cardiac output and adequacy of ventilation. Recent technological advances have led to the introduction: of continuous non-invasive monitors that allow for data to be obtained at the bedside of critically ill patients. These advances help to identify hemodynamic changes and allow for interventions before complications occur. In this manuscript, we highlight several important methods of non-invasive cardiopulmonary monitoring, including capnography, transcutaneous monitoring, pulse oximetry, and near infrared spectroscopy. PMID:25119483

  18. Non-invasive brain stimulation in early rehabilitation after stroke

    OpenAIRE

    Blesneag, AV; Popa, L.; Stan, AD

    2015-01-01

    The new tendency in rehabilitation involves non-invasive tools that, if applied early after stroke, promote neurorecovery. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation may correct the disruption of cortical excitability and effectively contribute to the restoration of movement and speech. The present paper analyses the results of non-invasive brain stimulation (NIBS) trials, highlighting different aspects related to the repetitive transcranial magne...

  19. Non invasive ventilation as an additional tool for exercise training

    OpenAIRE

    Ambrosino, Nicolino; Cigni, Paolo

    2015-01-01

    Recently, there has been increasing interest in the use of non invasive ventilation (NIV) to increase exercise capacity. In individuals with COPD, NIV during exercise reduces dyspnoea and increases exercise tolerance. Different modalities of mechanical ventilation have been used non-invasively as a tool to increase exercise tolerance in COPD, heart failure and lung and thoracic restrictive diseases. Inspiratory support provides symptomatic benefit by unloading the ventilatory muscles, whereas...

  20. Mark-Recapture with Multiple Non-invasive Marks

    OpenAIRE

    Bonner, Simon J.; Holmberg, Jason A.

    2012-01-01

    Non-invasive marks, including pigmentation patterns, acquired scars,and genetic mark- ers, are often used to identify individuals in mark-recapture experiments. If animals in a population can be identified from multiple, non-invasive marks then some individuals may be counted twice in the observed data. Analyzing the observed histories without accounting for these errors will provide incorrect inference about the population dynamics. Previous approaches to this problem include modeling data f...

  1. Mechanisms of improvement of respiratory failure in patients with restrictive thoracic disease treated with non-invasive ventilation

    OpenAIRE

    Nickol, A; Hart, N.; Hopkinson, N; Moxham, J.; Simonds, A; Polkey, M.

    2005-01-01

    Background: Nocturnal non-invasive ventilation (NIV) is an effective treatment for hypercapnic respiratory failure in patients with restrictive thoracic disease. We hypothesised that NIV may reverse respiratory failure by increasing the ventilatory response to carbon dioxide, reducing inspiratory muscle fatigue, or enhancing pulmonary mechanics.

  2. Non-invasive subcutaneous fat reduction: a review.

    Science.gov (United States)

    Kennedy, J; Verne, S; Griffith, R; Falto-Aizpurua, L; Nouri, K

    2015-09-01

    The risks, financial costs and lengthy downtime associated with surgical procedures for fat reduction have led to the development of a number of non-invasive techniques. Non-invasive body contouring now represents the fastest growing area of aesthetic medicine. There are currently four leading non-invasive techniques for reducing localized subcutaneous adipose tissue: low-level laser therapy (LLLT), cryolipolysis, radio frequency (RF) and high-intensity focused ultrasound (HIFU). To review and compare leading techniques and clinical outcomes of non-invasive subcutaneous fat reduction. The terms 'non-invasive', 'low-level laser', 'cryolipolysis', 'ultrasound' and 'radio frequency' were combined with 'lipolysis', 'fat reduction' or 'body contour' during separate searches in the PubMed database. We identified 31 studies (27 prospective clinical studies and four retrospective chart reviews) with a total of 2937 patients that had been treated with LLLT (n = 1114), cryolipolysis (n = 706), HIFU (n = 843) or RF (n = 116) or other techniques (n = 158) for fat reduction or body contouring. A majority of these patients experienced significant and satisfying results without any serious adverse effects. The studies investigating these devices have all varied in treatment regimen, body locations, follow-up times or outcome operationalization. Each technique differs in offered advantages and severity of adverse effects. However, multiple non-invasive devices are safe and effective for circumferential reduction in local fat tissue by 2 cm or more across the abdomen, hips and thighs. Results are consistent and reproducible for each device and none are associated with any serious or permanent adverse effects. PMID:25664493

  3. A new real non-invasive single fiber tweezers

    Science.gov (United States)

    Zhang, Yu; Liu, Zhihai; Yang, Jun; Yuan, Libo

    2012-02-01

    A new real non-invasive two-core single fiber optical tweezers is proposed and fabricated by fiber grinding and polishing technology. The yeast cells trapping performance of this special designed truncated cone tip fiber probe is demonstrated and investigated. The distributions of the optical field emerging from the truncated cone fiber tip are simulated by Beam Prop Method. Both axial and transverse trapping forces are calculated by FDTD method. This new optical tweezers can realize truly non-invasive remote trapping and manipulating bio-cells.

  4. Non Invasive Transcutaneous Carbondioxide Monitoring in Adult Open Heart Surgery

    OpenAIRE

    UÇAR, P.; GAZİOĞLU, G.; ERDEMLİ, Ö.; ÇİÇEK, Ö. F.; DEMİR, A.

    2013-01-01

    Non Invasive Transcutaneous Carbondioxide Monitoring in Adult Open Heart SurgeryObjective: Follow-up of CO level during open heart surgery is crucial in terms of monitoring and management of the metabolic status. In this prospective observational study,measurement of end tidal CO and arterial CO levels in adult open heart surgery was compared with transcutaneous CO monitoring which is a non-invasive method.Material and Method: The study included 22 ASA II-III patients with an age range of 30-...

  5. Non-invasive measurement of pressure gradients using ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2013-01-01

    A non-invasive method for estimating 2-D pressure gradients from ultrasound vector velocity data is presented. The method relies on in-plane vector velocity fields acquired using the Transverse Oscillation method. The pressure gradients are estimated by applying the Navier-Stokes equations for...

  6. Non-invasive Assessment of Microvascular and Endothelial Function

    OpenAIRE

    Cheng, Cynthia; Daskalakis, Constantine; Falkner, Bonita

    2013-01-01

    The authors have utilized capillaroscopy and forearm blood flow techniques to investigate the role of microvascular dysfunction in pathogenesis of cardiovascular disease. Capillaroscopy is a non-invasive, relatively inexpensive methodology for directly visualizing the microcirculation. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary d...

  7. Non-invasive terahertz field imaging inside parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei;

    2011-01-01

    We present a non-invasive broadband air photonic method of imaging of the electric field of THz pulses propagating inside a tapered parallel plate waveguide. The method is based on field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We apply the...

  8. Method for non-invasive detection of ocular melanoma

    International Nuclear Information System (INIS)

    There is described an apparatus and method for diagnosing ocular cancer that is both non-invasive and accurate which comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67

  9. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  10. Non invasive ventilation as an additional tool for exercise training.

    Science.gov (United States)

    Ambrosino, Nicolino; Cigni, Paolo

    2015-01-01

    Recently, there has been increasing interest in the use of non invasive ventilation (NIV) to increase exercise capacity. In individuals with COPD, NIV during exercise reduces dyspnoea and increases exercise tolerance. Different modalities of mechanical ventilation have been used non-invasively as a tool to increase exercise tolerance in COPD, heart failure and lung and thoracic restrictive diseases. Inspiratory support provides symptomatic benefit by unloading the ventilatory muscles, whereas Continuous Positive Airway Pressure (CPAP) counterbalances the intrinsic positive end-expiratory pressure in COPD patients. Severe stable COPD patients undergoing home nocturnal NIV and daytime exercise training showed some benefits. Furthermore, it has been reported that in chronic hypercapnic COPD under long-term ventilatory support, NIV can also be administered during walking. Despite these results, the role of NIV as a routine component of pulmonary rehabilitation is still to be defined. PMID:25874110

  11. Non-invasive ventilation in acute cardiogenic pulmonary oedema

    OpenAIRE

    Agarwal, R.; Aggarwal, A.; D Gupta; S. Jindal

    2005-01-01

    Non-invasive ventilation (NIV) is the delivery of assisted mechanical ventilation to the lungs, without the use of an invasive endotracheal airway. NIV has revolutionised the management of patients with various forms of respiratory failure. It has decreased the need for invasive mechanical ventilation and its attendant complications. Cardiogenic pulmonary oedema (CPO) is a common medical emergency, and NIV has been shown to improve both physiological and clinical outcomes. From the data prese...

  12. Non-invasive device for detecting metabolites in sweat

    OpenAIRE

    Muñoz-Pascual, F. Xavier; Mas, Roser

    2009-01-01

    [EN] Non-invasive device (1) for measuring metabolites in sweat, which comprises a substrate (2) suitable for attaching to a patient's skin, the inner face of which substrate has at least the following elements: a sweat-generation means (3a, 3b) suitable for causing sweating over a stimulated surface of the patient's skin; and a measuring chip (5), connected to the simuIated surface by means of microchannels (4) capable of directing the sweat generated from the stimulated...

  13. Non-invasive mechanic ventilation in treating acute respiratory failure

    OpenAIRE

    Federico Lari; Novella Scandellari; Ferdinando De Maria; Virna Zecchi; Gianpaolo Bragagni; Fabrizio Giostra; Nicola DiBattista

    2009-01-01

    Non invasive ventilation (NIV) in acute respiratory failure (ARF) improve clinical parameters, arterial blood gases, decrease mortality and endo tracheal intubation (ETI) rate also outside the intensive care units (ICUs). Objective of this study is to verify applicability of NIV in a general non respiratory medical ward. We enrolled 68 consecutive patients (Pts) with Hypoxemic or Hyper capnic ARF: acute cardiogenic pulmonary edema (ACPE), exacerbation of chronic obstructive pulmonary disease ...

  14. Non-invasive Mechanic Ventilation During the “Weaning

    OpenAIRE

    Murat Ünsel,; Perihan Ergin Özcan

    2016-01-01

    SUMMARY Weaning of the patients from mechanical ventilation is a clinically important subject. Recently, applications of non-invasive mechanic ventilation (NIV) are increasing in post extubation respiratory failure. Studies show that NIV is effective in the weaning of chronic obstructive pulmonary disease, presenting with hypercapneic respiratory failure and in the attacks of other chronic respiratory failure, but efficacy and reliability in the other patient ...

  15. Non-invasive respiratory monitoring in paediatric intensive care unit.

    OpenAIRE

    Nadkarni U; Shah A; Deshmukh C

    2000-01-01

    Monitoring respiratory function is important in a Paediatrics Intensive Care Unit (PICU), as majority of patients have cardio-respiratory problems. Non-invasive monitoring is convenient, accurate, and has minimal complications. Along with clinical monitoring, oxygen saturation using pulse oximetry, transcutaneous oxygenation (PtcO2) and transcutaneous PCO2 (PtcCO2) using transcutaneous monitors and end-tidal CO2 using capnography are important and routine measurements done in most PICUs. Cons...

  16. Non-invasive detection of vulnerable coronary plaque

    OpenAIRE

    Faisal Sharif; Lohan, Derek G.; William Wijns

    2011-01-01

    Critical coronary stenoses have been shown to contribute to only a minority of acute coronary syndromes and sudden cardiac death. Autopsy studies have identified a subgroup of high-risk patients with disrupted vulnerable plaque and modest stenosis. Consequently, a clinical need exists to develop methods to identify these plaques prospectively before disruption and clinical expression of disease. Recent advances in invasive and non-invasive imaging techniques have shown the potential to identi...

  17. Applicability of non-invasively collected matrices for human biomonitoring

    Directory of Open Access Journals (Sweden)

    Nickmilder Marc

    2009-03-01

    Full Text Available Abstract With its inclusion under Action 3 in the Environment and Health Action Plan 2004–2010 of the European Commission, human biomonitoring is currently receiving an increasing amount of attention from the scientific community as a tool to better quantify human exposure to, and health effects of, environmental stressors. Despite the policy support, however, there are still several issues that restrict the routine application of human biomonitoring data in environmental health impact assessment. One of the main issues is the obvious need to routinely collect human samples for large-scale surveys. Particularly the collection of invasive samples from susceptible populations may suffer from ethical and practical limitations. Children, pregnant women, elderly, or chronically-ill people are among those that would benefit the most from non-invasive, repeated or routine sampling. Therefore, the use of non-invasively collected matrices for human biomonitoring should be promoted as an ethically appropriate, cost-efficient and toxicologically relevant alternative for many biomarkers that are currently determined in invasively collected matrices. This review illustrates that several non-invasively collected matrices are widely used that can be an valuable addition to, or alternative for, invasively collected matrices such as peripheral blood sampling. Moreover, a well-informed choice of matrix can provide an added value for human biomonitoring, as different non-invasively collected matrices can offer opportunities to study additional aspects of exposure to and effects from environmental contaminants, such as repeated sampling, historical overview of exposure, mother-child transfer of substances, or monitoring of substances with short biological half-lives.

  18. Invasive and non-invasive methods for cardiac output measurement

    Directory of Open Access Journals (Sweden)

    Lavdaniti M.

    2008-01-01

    Full Text Available The hemodynamic status monitoring of high-risk surgical patients and critically ill patients inIntensive Care Units is one of the main objectives of their therapeutic management. Cardiac output is one of the mostimportant parameters for cardiac function monitoring, providing an estimate of whole body perfusion oxygen deliveryand allowing for an understanding of the causes of high blood pressure. The purpose of the present review is thedescription of cardiac output measurement methods as presented in the international literature. The articles documentthat there are many methods of monitoring the hemodynamic status of patients, both invasive and non-invasive, themost popular of which is thermodilution. The invasive methods are the Fick method and thermodilution, whereasthe non-invasive methods are oeshophaegeal Doppler, transoesophageal echocardiography, lithium dilution, pulsecontour, partial CO2 rebreathing and thoracic electrical bioimpedance. All of them have their advantages and disadvantages,but thermodilution is the golden standard for critical patients, although it does entail many risks. The idealsystem for cardiac output monitoring would be non-invasive, easy to use, reliable and compatible in patients. A numberof research studies have been carried out in clinical care settings, by nurses as well as other health professionals, for thepurpose of finding a method of measurement that would have the least disadvantages. Nevertheless, the thermodilutiontechnique remains the most common approach in use today.

  19. Non invasive assessment of the human tear film dynamics.

    Science.gov (United States)

    Ring, M H; Rabensteiner, D F; Horwath-Winter, J; Boldin, I; Schrödl, F; Reitsamer, H; Haslwanter, T

    2015-11-01

    Dry eye disease, or keratoconjunctivitis sicca, is a multifactorial syndrome with altered tear film homeostasis leading to ocular irritations. These alterations cause discomfort and stress for the patient, but only a few objective parameters allow for proper differential diagnosis into different subtypes of this condition. The mostly invasively performed standard assessment procedures for tear film diagnosis are manifold, but often correlate quite poorly with the subjectively reported symptoms. Due to the inherent limitations, e.g. the subjectivity of the commonly performed invasive tests, a number of devices have been developed to assess the human tear film non-invasively. Since the production, delivery, distribution and drainage of the tear film is a dynamic process, we have focused our review on non-invasive methods which are capable of continuous or repetitive observations of the tear film during an inter-blink interval. These dynamic methods include (1) Interferometry, (2) Pattern Projection, (3) Aberrometry, (4) Thermography; and (5) Evaporimetry. These techniques are discussed with respect to their diagnostic value, both for screening and differential diagnostic of Dry Eye Disease. Many of the parameters obtained from these tests have been shown to have the potential to reliably discriminate patients from healthy subjects, especially when the tests are performed automatically and objectively. The differentiation into subtypes based solely on a single, dynamic parameter may not be feasible, but the combination of non-invasively performed procedures may provide good discrimination results. PMID:26406882

  20. Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.

    Science.gov (United States)

    Fang, Yung Chieh; Tai, Cheng-Chi

    2016-08-01

    A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths. PMID:27337628

  1. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    Science.gov (United States)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  2. Instrumentation for Non-Invasive Assessment of Cardiovascular Regulation

    Science.gov (United States)

    Cohen, Richard J.

    1999-01-01

    It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.

  3. An alternative non-invasive treatment for Peyronie's disease

    Directory of Open Access Journals (Sweden)

    Joaquim A. Claro

    2004-06-01

    Full Text Available OBJECTIVE: Surgical correction of the deformity and plaque caused by Peyronie's disease has some important disadvantages and extracorporeal shockwave therapy (ESWT emerged as a new promising therapy. We evaluated prospectively the efficacy and safety of the association of high dose vitamin E and ESWT as a non-invasive treatment for the disease. MATERIALS AND METHODS: Twenty-five patients 42 to 68 years old (mean = 54 presenting penile deviation and sexual distress caused by Peyronie's disease were treated in a non-invasive manner. The time of penile deviation ranged from 16 to 52 months (mean = 30. All patients had previous unsuccessful treatment for Peyronie's disease. The angulation's deformity of the penis was assessed by photography at home. The patients received vitamin E (l.200 mg daily during 3 months and underwent 3 to 6 sessions (mean = 3 of ESWT (3,000 to 4,000 shockwaves at a power level of l to 2 at 1-week intervals. RESULTS: From 25 patients treated, 16 (64% reported an improvement in penile angulation, with a mean reduction of 21 degrees (10 to 40. Eight patients reported improvement in their spontaneous erections. Overall, the patients presented only minimal bruising at the site of treatment and skin hematoma. Four patients presented urethral bleeding. The mean angulation after treatment in the control group was 48.67 degrees (30 - 70 and in the study group was 24.42 degrees (0 - 70, statistically significant. CONCLUSION: Considering the common complications and the unsatisfactory outcome of the surgical correction for Peyronie's disease, the association of high dose vitamin E and ESWT represents a good option for a non-invasive, effective and safe treatment of the penile deformity.

  4. Non-invasive Mechanic Ventilation During the “Weaning

    Directory of Open Access Journals (Sweden)

    Murat Ünsel,

    2016-04-01

    Full Text Available SUMMARY Weaning of the patients from mechanical ventilation is a clinically important subject. Recently, applications of non-invasive mechanic ventilation (NIV are increasing in post extubation respiratory failure. Studies show that NIV is effective in the weaning of chronic obstructive pulmonary disease, presenting with hypercapneic respiratory failure and in the attacks of other chronic respiratory failure, but efficacy and reliability in the other patient group is limited. NIV must be applied by the experienced team in the selected patient group.

  5. Non-invasive respiratory monitoring in paediatric intensive care unit.

    Directory of Open Access Journals (Sweden)

    Nadkarni U

    2000-04-01

    Full Text Available Monitoring respiratory function is important in a Paediatrics Intensive Care Unit (PICU, as majority of patients have cardio-respiratory problems. Non-invasive monitoring is convenient, accurate, and has minimal complications. Along with clinical monitoring, oxygen saturation using pulse oximetry, transcutaneous oxygenation (PtcO2 and transcutaneous PCO2 (PtcCO2 using transcutaneous monitors and end-tidal CO2 using capnography are important and routine measurements done in most PICUs. Considering the financial and maintenance constraints pulse oximetry with end tidal CO2 monitoring can be considered as most feasible.

  6. Non-invasive methodology for diagnostics of bearing impacts

    Science.gov (United States)

    Chi, John N.

    2007-04-01

    Various events in reciprocating machinery, such as connecting rod or piston movement, and diesel combustion produce a series of highly transient forces within the machine. These events generate force transients of short duration and broad frequency content. Even though these events may be part of a machine cycle and therefore periodic, it is often more appropriate to treat them on an individual basis because more diagnostics information is available from a single waveform during a cycle than from averages over several cycles. However, it is very rare for one to have direct access to source waveforms because of the expense and reliability problems associated with the required instrumentation, and non-invasive techniques will have to be used. This paper explores the use of cepstral smoothing and minimum phase extraction technique for non-invasive diagnostics of bearing impacts in reciprocating machinery. The methodology is based on extracting diagnostic signals from vibration measurements taken at a "convenient" location such as the crankshaft casing or bearing end-cap, and consists of source identification, diagnostic signature recovery, and diagnostic system decision-making. A dynamic simulation with lumped mass model is developed to analyze bearing impacts for the big end bearings, experimental measurements from accelerometers, transfer functions of vibration, and the structural response are presented.

  7. Non-invasive diagnostic imaging of colorectal liver metastases

    Institute of Scientific and Technical Information of China (English)

    Pier; Paolo; Mainenti; Federica; Romano; Laura; Pizzuti; Sabrina; Segreto; Giovanni; Storto; Lorenzo; Mannelli; Massimo; Imbriaco; Luigi; Camera; Simone; Maurea

    2015-01-01

    Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases(CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liverdirected therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs.

  8. Potential diagnostic consequences of applying non-invasive prenatal testing

    DEFF Research Database (Denmark)

    Petersen, O B; Vogel, I; Ekelund, C;

    2014-01-01

    OBJECTIVES: Targeted non-invasive prenatal testing (NIPT) tests for trisomies 21, 18 and 13 and sex chromosome aneuploidies and could be an alternative to traditional karyotyping. The aim of this study was to determine the risk of missing other abnormal karyotypes of probable phenotypic significa......OBJECTIVES: Targeted non-invasive prenatal testing (NIPT) tests for trisomies 21, 18 and 13 and sex chromosome aneuploidies and could be an alternative to traditional karyotyping. The aim of this study was to determine the risk of missing other abnormal karyotypes of probable phenotypic...... significance by NIPT. METHODS: This was a retrospective population-based analysis of all singleton pregnancies booked for combined first-trimester screening (cFTS) in Denmark over a 4-year period. Data concerning maternal demographics, cFTS and prenatal or postnatal karyotypes were collected from the Danish...... Fetal Medicine database. Karyotypes were classified according to whether the chromosomal anomaly would have been detected by NIPT and whether it was likely to affect phenotype. RESULTS: cFTS was completed in 193638 pregnancies. 10205 (5.3%) had cytogenetic or molecular analysis performed. Of these, 1122...

  9. Non-invasive means of measuring hepatic fat content

    Institute of Scientific and Technical Information of China (English)

    Sanjeev R Mehta; E Louise Thomas; Jimmy D Bell; Desmond G Johnston; Simon D Taylor-Robinson

    2008-01-01

    Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo 1H MRS is a fast, safe, non-invasive method for the quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis(e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.

  10. Non-invasive quantification of brain tumor-induced astrogliosis

    Directory of Open Access Journals (Sweden)

    Baird Andrew

    2011-01-01

    Full Text Available Abstract Background CNS injury including stroke, infection, and tumor growth lead to astrogliosis, a process that involves upregulation of glial fibrillary acidic protein (GFAP in astrocytes. However, the kinetics of astrogliosis that is related to these insults (i.e. tumor is largely unknown. Results Using transgenic mice expressing firefly luciferase under the regulation of the GFAP promoter (GFAP-luc, we developed a model system to monitor astrogliosis upon tumor growth in a rapid, non-invasive manner. A biphasic induction of astrogliosis was observed in our xenograft model in which an early phase of activation of GFAP was associated with inflammatory response followed by a secondary, long-term upregulation of GFAP. These animals reveal GFAP activation with kinetics that is in parallel with tumor growth. Furthermore, a strong correlation between astrogliosis and tumor size was observed. Conclusions Our results suggest that non-invasive, quantitative bioluminescent imaging using GFAP-luc reporter animal is a useful tool to monitor temporal-spatial kinetics of host-mediated astrogliosis that is associated with glioma and metastatic brain tumor growth.

  11. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy subjects and 8 patients at risk of developing pressure ulcers. Blood flow index (BFI) values from the sacral region of patients were

  12. Hybrid CARS for Non-Invasive Blood Glucose Monitoring

    Science.gov (United States)

    Wang, Xi; Pestov, Dmitry; Zhang, Aihua; Murawski, Robert; Sokolov, Alexei; Welch, George; Laane, Jaan; Scully, Marlan

    2007-10-01

    We develop a spectroscopy technique that combines the advantages of both the frequency-resolved coherent anti-Stokes Raman scattering (CARS) and the time-resolved CARS. We use broadband preparation pulses to get an instantaneous coherent excitation of multiplex molecular vibration levels and subsequent optically shaped time-delayed narrowband probing pulse to detect these vibrations. This technique can suppress the nonresonant background and retrieve the molecular fingerprint signal efficiently and rapidly. We employ this technique to glucose detection, the final goal of which is accurate, non-invasive (i.e. painless) and continuous monitoring of blood glucose concentration in the Diabetes diagnosis to replace the current glucose measurement process, which requires painful fingerpricks and therefore cannot be performed more than a few times a day. We have gotten the CARS spectra of glucose aqueous solution down to 2 mM.

  13. Non-invasive prenatal testing for aneuploidy and beyond

    DEFF Research Database (Denmark)

    Dondorp, Wybo; de Wert, Guido; Bombard, Yvonne;

    2015-01-01

    This paper contains a joint ESHG/ASHG position document with recommendations regarding responsible innovation in prenatal screening with non-invasive prenatal testing (NIPT). By virtue of its greater accuracy and safety with respect to prenatal screening for common autosomal aneuploidies, NIPT has...... the potential of helping the practice better achieve its aim of facilitating autonomous reproductive choices, provided that balanced pretest information and non-directive counseling are available as part of the screening offer. Depending on the health-care setting, different scenarios for NIPT-based screening....... However, multiple false positives may undermine the main achievement of NIPT in the context of prenatal screening: the significant reduction of the invasive testing rate. This document argues for a cautious expansion of the scope of prenatal screening to serious congenital and childhood disorders, only...

  14. Non-invasive Loading Model of Murine Osteoarthritis.

    Science.gov (United States)

    Poulet, Blandine

    2016-07-01

    Osteoarthritis is the commonest degenerative joint disease, leading to joint pain and disability. The mouse has been the primary animal used for research, due to its size, relatively short lifespan, and the availability of genetically modified animals. Importantly, they show pathogenesis similar to osteoarthritis in humans. Mechanical loading is a major risk factor for osteoarthritis, and various mouse models have been developed to study the role and effects of mechanics on health and disease in various joints. This review describes the main mouse models used to non-invasively apply mechanical loads on joints. Most of the mouse models of osteoarthritis target the knee, including repetitive loading and joint injury such as ligament rupture, but a few studies have also characterised models for elbow, temporomandibular joint, and whole-body vibration spinal loading. These models are a great opportunity to dissect the influences of various types of mechanical input on joint health and disease. PMID:27177901

  15. Non invasive sensing technologies for cultural heritage management and fruition

    Science.gov (United States)

    Soldovieri, Francesco; Masini, Nicola

    2016-04-01

    The relevance of the information produced by science and technology for the knowledge of the cultural heritage depends on the quality of the feedback and, consequently, on the "cultural" distance between scientists and end-users. In particular, the solution to this problem mainly resides in the capability of end-users' capability to assess and transform the knowledge produced by diagnostics with regard to: information on both cultural objects and sites (decay patterns, vulnerability, presence of buried archaeological remains); decision making (management plan, conservation project, and excavation plan). From our experience in the field of the cultural heritage and namely the conservation, of monuments, there is a significant gap of information between technologists (geophysicists/physicists/engineers) and end-users (conservators/historians/architects). This cultural gap is due to the difficulty to interpret "indirect data" produced by non invasive diagnostics (i.e. radargrams/thermal images/seismic tomography etc..) in order to provide information useful to improve the historical knowledge (e.g. the chronology of the different phases of a building), to characterise the state of conservation (e.g. detection of cracks in the masonry) and to monitor in time cultural heritage artifacts and sites. The possible answer to this difficulty is in the set-up of a knowledge chain regarding the following steps: - Integrated application of novel and robust data processing methods; - Augmented reality as a tool for making easier the interpretation of non invasive - investigations for the analysis of decay pathologies of masonry and architectural surfaces; - The comparison between direct data (carrots, visual inspection) and results from non-invasive tests, including geophysics, aims to improve the interpretation and the rendering of the monuments and even of the archaeological landscapes; - The use of specimens or test beds for the detection of archaeological features and

  16. Non-invasive examination of multiple sclerosis patients

    International Nuclear Information System (INIS)

    Multiple sclerosis is characterized by a wide range of symptoms and, in many cases, by a highly erratic course. As a result diagnosis is often a problem. Two non-invasive examinations, Computer Tomography (CT scan) and the Evoked Response test (ER), are the subjects of this study which, according to available literature, both can play a role in the establishment of the diagnosis of multiple sclerosis. Clinical trials have been performed and both methods demonstrated abnormalities of the central nervous system which were not suspected on clinical grounds; as a result both methods of examination can contribute to the early establishment of the diagnosis of multiple sclerosis. In addition the diagnosis can be determined with greater certainty when the findings of the CT-scan and the evoked response test are taken into consideration. (Auth.)

  17. Innovative instrumentation for VVERs based in non-invasive techniques

    International Nuclear Information System (INIS)

    Nuclear power plants such as VVERs can greatly benefit from innovative instrumentation to improve plant safety and efficiency. In recent years innovative instrumentation has been developed for PWRs with the aim of providing additional measurements of physical parameters on the primary and secondary circuits: the addition of new instrumentation is made possible by using non-invasive techniques such as ultrasonics and radiation detection. These innovations can be adapted for upgrading VVERs presently in operation and also in future VVERs. The following innovative instrumentation for the control, monitoring or testing at VVERs is described: 1. instrumentation for more accurate primary side direct measurements (for a better monitoring of the primary circuit); 2. instrumentation to monitor radioactivity leaks (for a safer plant); 3. instrumentation-related systems to improve the plant efficiency (for a cheaper kWh)

  18. [Non-invasive prenatal testing: challenges for future implementation].

    Science.gov (United States)

    Henneman, Lidewij; Page-Chrisiaens, G C M L Lieve; Oepkes, Dick

    2015-01-01

    The non-invasive prenatal test (NIPT) is an accurate and safe test in which blood from the pregnant woman is used to investigate if the unborn child possibly has trisomy 21 (Down's syndrome), trisomy 18 (Edwards' syndrome) or trisomy 13 (Patau syndrome). Since April 2014 the NIPT has been available in the Netherlands as part of the TRIDENT implementation project for those in whom the first trimester combined test showed an elevated risk (> 1:200) of trisomy, or on medical indication, as an alternative to chorionic villous sampling or amniocentesis. Since the introduction of the NIPT the use of these invasive tests, which are associated with a risk of miscarriage, has fallen steeply. The NIPT may replace the combined test. Also the number of conditions that is tested for can be increased. Modification of current prenatal screening will require extensive discussion, but whatever the modification, careful counseling remains essential to facilitate pregnant women's autonomous reproductive decision making. PMID:26530119

  19. Ultrahigh-speed non-invasive widefield angiography

    Science.gov (United States)

    Blatter, Cedric; Klein, Thomas; Grajciar, Branislav; Schmoll, Tilman; Wieser, Wolfgang; Andre, Raphael; Huber, Robert; Leitgeb, Rainer A.

    2012-07-01

    Retinal and choroidal vascular imaging is an important diagnostic benefit for ocular diseases such as age-related macular degeneration. The current gold standard for vessel visualization is fluorescence angiography. We present a potential non-invasive alternative to image blood vessels based on functional Fourier domain optical coherence tomography (OCT). For OCT to compete with the field of view and resolution of angiography while maintaining motion artifacts to a minimum, ultrahigh-speed imaging has to be introduced. We employ Fourier domain mode locking swept source technology that offers high quality imaging at an A-scan rate of up to 1.68 MHz. We present retinal angiogram over ˜48 deg acquired in a few seconds in a single recording without the need of image stitching. OCT at 1060 nm allows for high penetration in the choroid and efficient separate characterization of the retinal and choroidal vascularization.

  20. Non-invasive coronary angiography with multislice spiral CT

    International Nuclear Information System (INIS)

    The short imaging time of 1/4 second, renders the new generation of multiple-slice spiral CT devices with ECG gating enables the investigation of the heart without disturbing motion artefacts. With this method, calcifications of the coronary arteries can be detected or excluded. Certain amounts of coronary 'chalk' in asymptomatic patients with risk factors point to coronary artery disease and thus a need to modulate the risk factors. With the aid of intravenous injection of contrast medium during the examination, non-calcified plaques in the coronary arteries can also be visualized. A limiting factor is that the patient's heart rate should not exceed 60 beats per minute. Indications for this examination are visualization of coronary vessels with the aim of excluding coronary artery disease, pre-operative planning and monitoring of bypass vessels, and non-invasive follow-up after PTCA and stenting. (orig.)

  1. Continuous non-invasive finger blood pressure monitoring in children.

    Science.gov (United States)

    Tanaka, H; Thulesius, O; Yamaguchi, H; Mino, M; Konishi, K

    1994-06-01

    We evaluated the performance of continuous non-invasive finger arterial pressure measurement using the volume-clamp technique (Finapres). This study was designed to compare finger arterial pressure with brachial blood pressure estimated by the auscultatory method in 217 children (90 boys and 127 girls) aged 4-16 years and in 38 adults (aged 18-45 years). Finger and brachial artery pressure readings were obtained consecutively from the ipsilateral side in the supine position. Finger arterial pressure waveforms were recorded in all children except 4 with small and thin fingers. There was good agreement for systolic pressure with only a slight underestimation of 1.9 mmHg and 5.1 mmHg lower for diastolic pressure. This difference most probably reflects inaccuracy of the auscultatory cuff method rather than an error in the Finapres. There was large inter-individual variability in Finapres recordings which might be due to differences in vasomotor tone, as demonstrated by systolic amplification in 5 patients with anorexia. However, Finapres showed a small within-subject variability (3.8 mmHg for systolic and 4.1 mmHg for diastolic pressure) determined in 5 patients during phenylephrine infusion, and as good reproducibility as the auscultatory method. These results suggest that finger arterial pressure measurement in children older than 6 years of age has similar accuracy as that in adults, and that this method is useful for clinical applications in children, especially for the non-invasive evaluation of autonomic control and cardiovascular reflexes involving transient and rapid blood pressure changes. PMID:7919764

  2. Non-invasive diagnosis of alcoholic liver disease.

    Science.gov (United States)

    Mueller, Sebastian; Seitz, Helmut Karl; Rausch, Vanessa

    2014-10-28

    Alcoholic liver disease (ALD) is the most common liver disease in the Western world. For many reasons, it is underestimated and underdiagnosed. An early diagnosis is absolutely essential since it (1) helps to identify patients at genetic risk for ALD; (2) can trigger efficient abstinence namely in non-addicted patients; and (3) initiate screening programs to prevent life-threatening complications such as bleeding from varices, spontaneous bacterial peritonitis or hepatocellular cancer. The two major end points of ALD are alcoholic liver cirrhosis and the rare and clinically-defined alcoholic hepatitis (AH). The prediction and early diagnosis of both entities is still insufficiently solved and usually relies on a combination of laboratory, clinical and imaging findings. It is not widely conceived that conventional screening tools for ALD such as ultrasound imaging or routine laboratory testing can easily overlook ca. 40% of manifest alcoholic liver cirrhosis. Non-invasive methods such as transient elastography (Fibroscan), acoustic radiation force impulse imaging or shear wave elastography have significantly improved the early diagnosis of alcoholic cirrhosis. Present algorithms allow either the exclusion or the exact definition of advanced fibrosis stages in ca. 95% of patients. The correct interpretation of liver stiffness requires a timely abdominal ultrasound and actual transaminase levels. Other non-invasive methods such as controlled attenuation parameter, serum levels of M30 or M65, susceptometry or breath tests are under current evaluation to assess the degree of steatosis, apoptosis and iron overload in these patients. Liver biopsy still remains an important option to rule out comorbidities and to confirm the prognosis namely for patients with AH. PMID:25356026

  3. Invasive exotic plants suffer less herbivory than non-invasive exotic plants

    OpenAIRE

    Cappuccino, Naomi; Carpenter, David

    2005-01-01

    We surveyed naturally occurring leaf herbivory in nine invasive and nine non-invasive exotic plant species sampled in natural areas in Ontario, New York and Massachusetts, and found that invasive plants experienced, on average, 96% less leaf damage than non-invasive species. Invasive plants were also more taxonomically isolated than non-invasive plants, belonging to families with 75% fewer native North American genera. However, the relationship between taxonomic isolation at the family level ...

  4. Non-invasive assessment of intracranial biomechanics of the human brain

    OpenAIRE

    Ragauskas, A.; Daubaris, G.; Petkus, V.; Raišutis, R.; Chomskis, R; Šliteris, R.; Deksnys, V.; Guzaitis, J.; Lengvinas, G.

    2008-01-01

    This review paper describes innovative methods and technology for non-invasive human brain physiological monitoring based on measuring the acoustic properties of the brain parenchyma. The clinical investigation of new technology shows the similarity between the invasively recorded intracranial pressure (ICP) and non-invasively recorded intracranial blood volume (IBV) pulse waves, slow waves and slow trends under intensive care unit (ICU) conditions. Also, the applicability of the non-invasive...

  5. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R;

    2015-01-01

    whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...... of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up...

  6. Imaging the pancreas: from ex vivo to non-invasive technology

    DEFF Research Database (Denmark)

    Holmberg, D; Ahlgren, U

    2008-01-01

    While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real-time monit......While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real...

  7. A holistic multimodal approach to the non-invasive analysis of watercolour paintings

    Science.gov (United States)

    Kogou, Sotiria; Lucian, Andrei; Bellesia, Sonia; Burgio, Lucia; Bailey, Kate; Brooks, Charlotte; Liang, Haida

    2015-11-01

    A holistic approach using non-invasive multimodal imaging and spectroscopic techniques to study the materials (pigments, drawing materials and paper) and painting techniques of watercolour paintings is presented. The non-invasive imaging and spectroscopic techniques include VIS-NIR reflectance spectroscopy and multispectral imaging, micro-Raman spectroscopy, X-ray fluorescence spectroscopy (XRF) and optical coherence tomography (OCT). The three spectroscopic techniques complement each other in pigment identification. Multispectral imaging (near-infrared bands), OCT and micro-Raman complement each other in the visualisation and identification of the drawing material. OCT probes the micro-structure and light scattering properties of the substrate, while XRF detects the elemental composition that indicates the sizing methods and the filler content. The multiple techniques were applied in a study of forty-six nineteenth-century Chinese export watercolours from the Victoria and Albert Museum (V&A) and the Royal Horticultural Society (RHS) to examine to what extent the non-invasive analysis techniques employed complement each other and how much useful information about the paintings can be extracted to address art conservation and history questions. A micro-destructive technique of micro-fade spectrometry was used to assess the vulnerability of the paintings to light exposure. Most of the paint and paper substrates were found to be more stable than ISO Blue Wool 3. The palette was found to be composed of mostly traditional Chinese pigments. While the synthetic pigment, Prussian blue, made in Europe, was found on some of the paintings, none was found on the RHS paintings accurately recorded as being between 1817 and 1831 even though it is known that Prussian blue was imported to China during this period. The scale insect dyes, lac and cochineal, were detected on nearly every painting including those that fall within the identified date range. Cochineal is known to have

  8. Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    Directory of Open Access Journals (Sweden)

    Ameredes Bill T

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO and carbon monoxide (CO in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study. Methods Expired NO (ENO and CO (ECO were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/- with and without allergic airway inflammation (AI induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC, and tin protoporphyrin (SnPP were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing. Results ENO was significantly elevated in naïve IL-10-/- (9–14 ppb and NOS-2-/- (16 ppb mice as compared to others (average: 5–8 ppb, whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm, and MKK3-/- (4–5 ppm mice, as compared to others (average: 2.5 ppm. As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice. Conclusion These results are

  9. Non-invasive Optical Molecular Imaging for Cancer Detection

    Science.gov (United States)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  10. Non-invasive photo acoustic approach for human bone diagnosis.

    Science.gov (United States)

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  11. Novel non-invasive protein and peptide drug delivery approaches.

    Science.gov (United States)

    Wallis, L; Kleynhans, E; Toit, T Du; Gouws, C; Steyn, D; Steenekamp, J; Viljoen, J; Hamman, J

    2014-01-01

    Protein and peptide based therapeutics are typically administered by injection due to their poor uptake when administered via enteral routes of drug administration. Unfortunately, chronic administration of these drugs through multiple injections presents certain patient related problems and it is difficult to mimic the normal physiological release patterns via this mode of drug administration. A need therefore exists to non-invasively deliver these drugs by means of alternative ways such as via the oral, pulmonary, nasal, transdermal and buccal administration routes. Although some attempts of needle free peptide and protein drug delivery have progressed to the clinical stage, relatively limited success has been achieved in terms of commercially available products. Despite the low frequency of clinical breakthroughs with noninvasive protein drug delivery this far, it remains an active research area with renewed interest not only due to its improved therapeutic potential, but also due to the attractive commercial outcomes it offers. It is the aim of this review article to reflect on the main strategies investigated to overcome the barriers against effective systemic protein drug delivery in different routes of drug administration. Approaches based on chemical modifications and pharmaceutical technologies are discussed with reference to examples of drugs and devices that have shown potential, while attempts that have failed are also briefly outlined. PMID:25106909

  12. Alteration of political belief by non- invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Caroline eChawke

    2016-01-01

    Full Text Available People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing and reduced affiliation with opposing political candidates. As such, this study used a method of non- invasive brain simulation (tRNS to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant’s initial political orientation and the political campaign advertisement they were exposed to.

  13. Public viewpoints on new non-invasive prenatal genetic tests.

    Science.gov (United States)

    Farrimond, Hannah R; Kelly, Susan E

    2013-08-01

    Prenatal screening programmes have been critiqued for their routine implementation according to clinical rationale without public debate. A new approach, non-invasive prenatal diagnosis (NIPD), promises diagnosis of fetal genetic disorders from a sample of maternal blood without the miscarriage risk of current invasive prenatal tests (e.g. amniocentesis). Little research has investigated the attitudes of wider publics to NIPD. This study used Q-methodology, which combines factor analysis with qualitative comments, to identify four distinct "viewpoints" amongst 71 UK men and women: 1. NIPD as a new tool in the ongoing societal discrimination against the disabled; 2. NIPD as a positive clinical application offering peace of mind in pregnancy; 3. NIPD as a medical option justified for severe disorders only; and 4. NIPD as a valid expansion of personal choice. Concerns included the "trivialisation of testing" and the implications of commercial/direct-to-consumer tests. Q-methodology has considerable potential to identify viewpoints and frame public debate about new technologies. PMID:23885055

  14. Non-invasive anesthesia for children undergoing proton radiation therapy

    International Nuclear Information System (INIS)

    Background: Proton therapy is a newer modality of radiotherapy during which anesthesiologists face specific challenges related to the setup and duration of treatment sessions. Purpose: Describe our anesthesia practice for children treated in a standalone proton therapy center, and report on complications encountered during anesthesia. Materials and methods: A retrospective review of anesthetic records for patients ⩽18 years of age treated with proton therapy at our institution between January 2006 and April 2013 was performed. Results: A total of 9328 anesthetics were administered to 340 children with a median age of 3.6 years (range, 0.4–14.2). The median daily anesthesia time was 47 min (range, 15–79). The average time between start of anesthesia to the start of radiotherapy was 7.2 min (range, 1–83 min). All patients received Total Intravenous Anesthesia (TIVA) with spontaneous ventilation, with 96.7% receiving supplemental oxygen by non-invasive methods. None required daily endotracheal intubation. Two episodes of bradycardia, and one episode each of; seizure, laryngospasm and bronchospasm were identified for a cumulative incidence of 0.05%. Conclusions: In this large series of children undergoing proton therapy at a freestanding center, TIVA without daily endotracheal intubation provided a safe, efficient, and less invasive option of anesthetic care

  15. An optical approach for non-invasive blood clot testing

    Science.gov (United States)

    Kalchenko, Vyacheslav; Brill, Alexander; Fine, Ilya; Harmelin, Alon

    2007-02-01

    Physiological blood coagulation is an essential biological process. Current tests for plasma coagulation (clotting) need to be performed ex vivo and require fresh blood sampling for every test. A recently published work describes a new, noninvasive, in vivo approach to assess blood coagulation status during mechanical occlusion1. For this purpose, we have tested this approach and applied a controlled laser beam to blood micro-vessels of the mouse ear during mechanical occlusion. Standard setup for intravital transillumination videomicroscopy and laser based imaging techniques were used for monitoring the blood clotting process. Temporal mechanical occlusion of blood vessels in the observed area was applied to ensure blood flow cessation. Subsequently, laser irradiation was used to induce vascular micro-injury. Changes in the vessel wall, as well as in the pattern of blood flow, predispose the area to vascular thrombosis, according to the paradigm of Virchow's triad. In our experiments, two elements of Virchow's triad were used to induce the process of clotting in vivo, and to assess it optically. We identified several parameters that can serve as markers of the blood clotting process in vivo. These include changes in light absorption in the area of illumination, as well as changes in the pattern of the red blood cells' micro-movement in the vessels where blood flow is completely arrested. Thus, our results indicate that blood coagulation status can be characterized by non-invasive, in vivo methodologies.

  16. Non-invasive prenatal screening for trisomy 21: Consumers' perspectives.

    Science.gov (United States)

    Higuchi, Emily C; Sheldon, Jane P; Zikmund-Fisher, Brian J; Yashar, Beverly M

    2016-02-01

    Non-invasive prenatal screening (NIPS) has the potential to dramatically increase the prenatal detection rate of Down syndrome because of improvements in safety and accuracy over existing tests. There is concern that NIPS could lead to more negative attitudes towards Down syndrome and less support for individuals with Down syndrome. To assess the impact of NIPS on support for prenatal testing, decision-making about testing, and beliefs or attitudes about Down syndrome, we performed an Internet-based experiment using adults (N = 1,789) recruited through Amazon Mechanical Turk. Participants were randomly assigned to read a mock news article about NIPS, a mock news article about amniocentesis, or no article. The content in the two articles varied only in their descriptions of the test characteristics. Participants then answered questions about their support for testing, hypothetical testing decision, and beliefs and attitudes about Down syndrome. Reading the mock NIPS news article predicted increased hypothetical test uptake. In addition, the NIPS article group also agreed more strongly that pregnant women, in general, should utilize prenatal testing. We also found that the more strongly participants supported prenatal testing for pregnant women, the less favorable their attitudes towards individuals with Down syndrome; providing some evidence that NIPS may indirectly result in more negative perceptions of individuals with this diagnosis. PMID:26553705

  17. Epilepsy surgery in children and non-invasive evaluation

    International Nuclear Information System (INIS)

    The technique of EEG recording using subdural and depth electrodes has became established, and such invasive EEG is available for epilepsy surgery. However, a non-invasive procedure is required for evaluation of surgical indication for epilepsy patients, particular for children. We analyzed the relationship between the results of presurgical evaluation and seizure outcome, and investigated the role of invasive EEG in epilepsy surgery for children. Over the past decade, 22 children under 16 years of age have been admitted to our hospital for evaluation of surgical indication. High-resolution MR imaging, MR spectroscopy, video-EEG monitoring, and ictal and interictal SPECT were used for presurgical evaluation. Organic lesions were found on MR images from 19 patients. Invasive EEG was recorded in only one patient with occipital epilepsy, who had no lesion. Surgical indication was determined in 17 children, and 6 temporal lobe and 11 extratemporal lobe resections were performed under intraoperative electrocorticogram monitoring. The surgical outcome was excellent in 14 patients who had Engel's class I or II. Surgical complications occurred in two children who had visual field defects. The results showed that a good surgical outcome could be obtained using an intraoperative electrocorticogram, without presurgical invasive EEG, for localization-related epilepsy in children. The role of invasive EEG should be reevaluated in such children. (author)

  18. Non-Invasive Ocular Rigidity Measurement: A Differential Tonometry Approach

    Directory of Open Access Journals (Sweden)

    Efstathios T. Detorakis

    2015-12-01

    Full Text Available Purpose: Taking into account the fact that Goldmann applanation tonometry (GAT geometrically deforms the corneal apex and displaces volume from the anterior segment whereas Dynamic Contour Tonometry (DCT does not, we aimed at developing an algorithm for the calculation of ocular rigidity (OR based on the differences in pressure and volume between deformed and non-deformed status according to the general Friedenwald principle of differential tonometry. Methods: To avoid deviations of GAT IOP from true IOP in eyes with corneas different from the “calibration cornea” we applied the previously described Orssengo-Pye algorithm to calculate an error coefficient “C/B”. To test the feasibility of the proposed model, we calculated the OR coefficient (r in 17 cataract surgery candidates (9 males and 8 females. Results: The calculated r according to our model (mean ± SD, range was 0.0174 ± 0.010 (0.0123–0.022 mmHg/μL. A negative statistically significant correlation between axial length and r was detected whereas correlations between r and other biometric parameters examined were statistically not significant. Conclusions: The proposed method may prove a valid non-invasive tool for the measurement method of OR, which could help in introducing OR in the decision-making of the routine clinical practice.

  19. Non-Invasive Gait Monitoring in a Ubiquitous Computing House

    Science.gov (United States)

    Ohta, Yuji; Motooka, Nobuhisa; Siio, Itiro; Tsukada, Koji; Kambara, Keisuke

    Computers become smaller and cheaper from day to day, and the utilization, as daily life equipments, is now becoming ubiquitous. Therefore, it's essential to discuss the development of applications, as well as the installation of ubiquitous computing technologies into our daily living environments. Based on this idea, in order to investigate how ubiquitous computing can be used in the most efficient way, an experimental house, Ocha House, has been constructed in the campus of Ochanomizu university in 2009. In this study, we described the feature of the design of the experimental house and proposed a non-invasive gait monitoring technique as a healthcare application. Specifically, five wireless accelerometers were fixed on the floor of the house, and the floor vibration was measured when the subject walked along the accelerometers. As a result, the floor acceleration intensity was found to surge at the ground contact, and the gait cycle could be detected. By combining the simple acceleration sensors and the housing structures, human motion monitoring would become less invasive.

  20. Non-invasive imaging of microcirculation: a technology review

    Directory of Open Access Journals (Sweden)

    Eriksson S

    2014-12-01

    Full Text Available Sam Eriksson,1,2 Jan Nilsson,1,2 Christian Sturesson1,2 1Department of Surgery, Clinical Sciences Lund, Lund University, 2Skåne University Hospital, Lund, Sweden Abstract: Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software. Keywords: laser speckle contrast imaging, sidestream dark-field, orthogonal polarization spectral imaging, laser Dopplerimaging

  1. Non-invasive experimental determination of a CT source model.

    Science.gov (United States)

    Alikhani, Babak; Büermann, Ludwig

    2016-01-01

    Non-invasive methods to determine equivalent X-ray source models of a CT scanner are presented. A high-precision technique called TRIC ("Time Resolved Integrated Charge") was developed and used to characterize the bow tie filters (BT) of the CT scanner installed at Physikalisch-Technische Bundesanstalt (PTB). Aluminum (Al) and polymethyl methacrylate (PMMA) equivalent thicknesses of the BT filters at all tube high voltages were evaluated, assuming that those consist of only one material. Thereby two different dose probes were used, a solid state detector and an ionization chamber, the former characterized by a significant and the latter by an almost negligible energy dependence of the air kerma response. A method was developed to correct for the energy dependence of the solid state dose probe. Next, a two-component material was assumed and equivalent BT filters were evaluated. The latter method was also applied using the known real BT filter materials and compared with the shape of the real BT filters. Finally, the results obtained by the TRIC method were compared with those obtained by using the so-called COBRA method ("Characterization Of Bow tie Relative Attenuation"), the latter being more suitable for measurements in a clinical environment. PMID:26602858

  2. Application of optical non-invasive methods in skin physiology

    International Nuclear Information System (INIS)

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled

  3. Non-invasive biosensor and wilreless interrogating system for hypoglycemia

    Science.gov (United States)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Saukesi, K.

    2002-11-01

    Hypoglycemia - abnormal decrease in blood sugar - is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This paper presents the development of a non-invasive sensor with miniaturized telemetry device in a wrist-watch for monitoring glucose concentration in blood. The sensor concept is based on optical chiralit of glucose level in the interstitial fluid. The wrist watch consists of a laser power source of the wavelength compatible with the glucose. A nanofilm with specific chirality is placed at the bottom of the watch. The light then passes through the film and illuminates a small area on the skin.It has been documented that there is certain concentration of sugar level is taken by the intertitial fluid from the blood stream and deposit a portion of it at the dead skin. The wrist-watch when in contact with the outer skin of the human will thus monitor the glucose concentration. A wireless monitoring system in the watch then downloads the data from the watch to a Palm or laptop computer.

  4. Application of optical non-invasive methods in skin physiology

    Science.gov (United States)

    Lademann, J.; Patzelt, A.; Darvin, M.; Richter, H.; Antoniou, C.; Sterry, W.; Koch, S.

    2008-05-01

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled.

  5. SRY sequence in maternal plasma: Implications for non-invasive prenatal diagnosis: First report from India

    Directory of Open Access Journals (Sweden)

    Edna D′Souza

    2012-01-01

    Conclusions: Real time PCR analysis is a highly sensitive and accurate tool for non-invasive prenatal diagnosis, allowing detection of the sex of the fetus as early as 10 weeks of gestation. Non-invasive prenatal diagnosis eliminates the risk of fetal loss associated with the invasive procedure.

  6. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography.

    LENUS (Irish Health Repository)

    Weisz, Dany E

    2012-01-01

    Non-invasive cardiac output monitoring is a potentially useful clinical tool in the neonatal setting. Our aim was to evaluate a new method of non-invasive continuous cardiac output (CO) measurement (NICOM™) based on the principle of bioreactance in neonates.

  7. Advanced signal processing theory and implementation for sonar, radar, and non-invasive medical diagnostic systems

    CERN Document Server

    Stergiopoulos, Stergios

    2009-01-01

    Integrates topics of signal processing from sonar, radar, and medical system technologies by identifying their concept similarities. This book covers non-invasive medical diagnostic system applications, including intracranial ultrasound, a technology that attempts to address non-invasive detection on brain injuries and stroke.

  8. Etiske utfordringer med non-invasive prenatale tester (NIPT

    Directory of Open Access Journals (Sweden)

    Bjørn Hofmann

    2014-05-01

    Full Text Available Analyser av cellefritt DNA fra foster i gravide kvinners blod gir nye muligheter innen fosterdiagnostikk: Testene er bedre enn eksisterende tester, de reduserer risikoen og er billigere. Flere land har tatt i bruk disse testene, og Helsedirektoratet i Norge har mottatt søknad om å ta i bruk en test som erstatter tidlig ultralyd og blodprøver. Likevel nøler norske myndigheter. Hvorfor gjør de det? Ett av svarene er at non-invasive prenatale tester fører med seg en rekke faglige og moralske spørsmål og gir flere grunnleggende etiske utfordringer. Denne artikkelen gjennomgår et bredt knippe av de utfordringene som NIPT reiser. Hensikten er å synliggjøre hvorfor NIPT påkaller etisk refleksjon og å bidra til en åpen debatt og en transparent beslutningsprosess. Artikkelen identifiserer fem sentrale og konkrete spørsmål for vurderingen av NIPT.Nøkkelord: non-invasiv prenatal diagnostikk, testing, fravalg, foster, blodprøve, ekspressivisme, statsliberalt dilemma, dilemma, abort, retten til ikke å viteEnglish summary: Ethical challenges with non-invasive prenatal tests (NIPTNon-invasive prenatal testing (NIPT performed with the use of massively parallel sequencing of cell-free DNA (cfDNA testing in maternal plasma gives extended possibilities in prenatal screening. The tests are claimed to be better than existing alternative tests, they reduce the risk, and it is claimed they are cheaper. They have been used in several countries since 2012, and the University Hospital of North Norway has applied to the Directorate of Health to replace first trimester ultrasound and plasma screening with NIPT. The Directorate of Health is reluctant to reply. Why is this? One of the answers may be that NIPT raises a series of professional and moral questions, and poses profound ethical challenges. This article reviews a series of the challenges with NIPT. The aim is to highlight why NIPT calls for ethical reflection and to contribute to an open debate

  9. Rejuvenecimiento periorbitario no invasivo Non-invasive periorbital rejuvenation

    Directory of Open Access Journals (Sweden)

    J. L. Muñóz del Olmo

    2008-03-01

    Full Text Available Cirujanos plásticos y médicos estéticos se esfuerzan por lograr resultados satisfactorios y estéticos que mejoren o suavicen el paso del tiempo a nivel facial, con un especial interés o énfasis en el área periorbitaria. Un gran número de pacientes consultan para mejorar esta zona, pero por diferentes motivos desean que los procedimientos que se les realicen sean poco invasivos y con resultados rápidos, permitiéndoles así incorporarse lo antes posible a sus actividades cotidianas. Es fundamental el conocimiento de las proporciones faciales y periorbitarias para lograr resultados naturales. El objetivo de la técnica que proponemos es lograr una bioestimulación local de la piel, restaurar los volúmenes y reducir las arrugas de expresión o dinámicas, consiguiendo así una apariencia relajada y juvenil en el paciente.Plastic surgeons and aesthetic doctors are making an effort to reach positive aesthetic results. Their aim is to soften the effects of age on facial features stressing in the periorbital area. Many patients come to improve their facial image on this area, but they are asking for non-invasive and fast procedures to keep on their daily life. It is indispensable the knowledge of facial and periorbital proportions to achieve a more natural effect. The aim of the technique exposed is to achieve a local bioestimulation on skin, to restore volumes and to reduce expression and dynamical wrinkles. The expected result is a relaxing, youthful appearance.

  10. Non-invasive genetic monitoring of wild central chimpanzees.

    Directory of Open Access Journals (Sweden)

    Mimi Arandjelovic

    Full Text Available BACKGROUND: An assessment of population size and structure is an important first step in devising conservation and management plans for endangered species. Many threatened animals are elusive, rare and live in habitats that prohibit directly counting individuals. For example, a well-founded estimate of the number of great apes currently living in the wild is lacking. Developing methods to obtain accurate population estimates for these species is a priority for their conservation management. Genotyping non-invasively collected faecal samples is an effective way of evaluating a species' population size without disruption, and can also reveal details concerning population structure. METHODOLOGY/PRINCIPAL FINDINGS: We opportunistically collected wild chimpanzee faecal samples for genetic capture-recapture analyses over a four-year period in a 132 km(2 area of Loango National Park, Gabon. Of the 444 samples, 46% yielded sufficient quantities of DNA for genotyping analysis and the consequent identification of 121 individuals. Using genetic capture-recapture, we estimate that 283 chimpanzees (range: 208-316 inhabited the research area between February 2005 and July 2008. Since chimpanzee males are patrilocal and territorial, we genotyped samples from males using variable Y-chromosome microsatellite markers and could infer that seven chimpanzee groups are present in the area. Genetic information, in combination with field data, also suggested the occurrence of repeated cases of intergroup violence and a probable group extinction. CONCLUSIONS/SIGNIFICANCE: The poor amplification success rate resulted in a limited number of recaptures and hence only moderate precision (38%, measured as the entire width of the 95% confidence interval, but this was still similar to the best results obtained using intensive nest count surveys of apes (40% to 63%. Genetic capture-recapture methods applied to apes can provide a considerable amount of novel information on

  11. Non-invasive mechanic ventilation in treating acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Federico Lari

    2009-12-01

    Full Text Available Non invasive ventilation (NIV in acute respiratory failure (ARF improve clinical parameters, arterial blood gases, decrease mortality and endo tracheal intubation (ETI rate also outside the intensive care units (ICUs. Objective of this study is to verify applicability of NIV in a general non respiratory medical ward. We enrolled 68 consecutive patients (Pts with Hypoxemic or Hyper capnic ARF: acute cardiogenic pulmonary edema (ACPE, exacerbation of chronic obstructive pulmonary disease (COPD, Pneu - monia, acute lung injury / acute respiratory distress syndrome (ALI/ARDS. NIV treatment was CPAP or PSV + PEEP. 12 Pts (18,5% met primary endpoint (NIV failure: 11 Pts (17% needed ETI (5ALI/ARDS p < 0,0001, 6COPD 16,6%, 1 Patient (1,5% died (Pneumonia. No Pts with ACPE failed (p = 0,0027. Secondary endpoints: significant improvement in Respiratory Rate (RR, Kelly Score, pH, PaCO2, PaO2 vs baseline. Median duration of treatment: 16:06 hours: COPD 18:54, ACPE 4:15. Mean length of hospitalisation: 8.66 days. No patients discontinued NIV, no side effects. Results are consistent with literature. Hypoxemic ARF related to ALI/ARDS and pneumonia show worst outcome: it is not advisable to manage these conditions with NIV outside the ICU. NIV for ARF due to COPD and ACPE is feasible, safe and effective in a general medical ward if selection of Pts, staff’s training and monitoring are appropriate. This should encourage the diffusion of NIV in this specific setting. According to strong evidences in literature, NIV should be considered a first line and standard treatment in these clinical conditions irrespective of the setting.

  12. Autoimmune pancreatitis: Multimodality non-invasive imaging diagnosis.

    Science.gov (United States)

    Crosara, Stefano; D'Onofrio, Mirko; De Robertis, Riccardo; Demozzi, Emanuele; Canestrini, Stefano; Zamboni, Giulia; Pozzi Mucelli, Roberto

    2014-12-01

    Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is the pancreatic manifestation of an IgG4-related systemic disease and is characterized by elevated IgG4 serum levels, infiltration of IgG4-positive plasma cells and extrapancreatic lesions. Type 2 AIP usually has none or very few IgG4-positive plasma cells, no serum IgG4 elevation and appears to be a pancreas-specific disorder without extrapancreatic involvement. AIP is diagnosed in approximately 2%-6% of patients that undergo pancreatic resection for suspected pancreatic cancer. There are three patterns of autoimmune pancreatitis: diffuse disease is the most common type, with a diffuse, "sausage-like" pancreatic enlargement with sharp margins and loss of the lobular contours; focal disease is less common and manifests as a focal mass, often within the pancreatic head, mimicking a pancreatic malignancy. Multifocal involvement can also occur. In this paper we describe the features of AIP at ultrasonography, computed tomography, magnetic resonance and positron emission tomography/computed tomography imaging, focusing on diagnosis and differential diagnosis with pancreatic ductal adenocarcinoma. It is of utmost importance to make an early correct differential diagnosis between these two diseases in order to identify the optimal therapeutic strategy and to avoid unnecessary laparotomy or pancreatic resection in AIP patients. Non-invasive imaging plays also an important role in therapy monitoring, in follow-up and in early identification of disease recurrence. PMID:25493001

  13. Non-invasive investigation of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    JA Tibble; I Bjarnason

    2001-01-01

    The assessment of inflammatory activity in intestinal disease in man can be done using a variety of different techniques. These range from the use of non - invasive acute phase inflammatory markers measured in plasma such as C reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) (both of which give an indirect assessment of disease activity) to the direct assessment of disease activity by intestinal biopsy performed during endoscopy in association with endoscopic scoring systems. Both radiology and endoscopy are conventional for the diagnosis of inflammatory bowel disease (IBD).However these techniques have severe limitations when it comes to assessing functional components of the disease such as activity and prognosis. Here we briefly review the value of two emerging intestinal function tests. Intestinal permeability, although ideally suited for diagnostic screening for small bowel Crohns disease, appears to give reliable predictive data for imminent relapse of small bowel Crohns disease and it can be used to assess responses to treatment. More significantly it is now clear that single stool assay of neutrophil specific proteins (calprotectin, lactoferrin) give the same quantitative data on intestinal inflammation as the 4 - day faecal excretion of 111lndium labelled white cells. Faecal calprotectin is shown to be increased in over 95% of patients with IBD and correlates with clinical disease activity. It reliably differentiates between patients with IBD and irritable bowel syndrome. More importantly, at a given faecal calprotectin concentration in patients with quiescent IBD,the test has a specificity and sensitivity in excess of 85% in predicting clinical relapse of disease. This suggests that relapse of IBD is closely related to the degree of intestinal inflammation and suggests that targeted treatment at an asymptomatic stage of the disease may be indicated.

  14. Effect of non-invasive ventilation on the measurement of ventilatory and metabolic variables.

    Science.gov (United States)

    Dennis, C J; Menadue, C; Harmer, A R; Barnes, D J; Alison, J A

    2016-07-01

    The effect of non-invasive ventilation (NIV) on the accuracy of measurements of ventilation, oxygen consumption (V˙O2) and carbon dioxide production (V˙CO2) was examined using a simulator. Known gas volumes of oxygen and carbon dioxide were delivered to a metabolic system that measured tidal volume, respiratory rate, V˙O2 and V˙CO2, both with and without NIV. Bland-Altman analyses were used to compare between conditions. NIV at pressure support (PS) 20cm H2O compared to without NIV showed: VT, mean difference (MD) 0mL (limits of agreement (LOA) -21 to 21) mL; V˙O2 MD -413 (LOA -810 to 16) mL/min; and V˙CO2 MD 32 (LOA -32 to 97) mL/min. For V˙O2 measurements during NIV, a correction was applied to account for increased air density due to PS. After correction, V˙O2 measurement accuracy improved; MD -46 (LOA -108 to 17) mL/min. Tidal volume and metabolic variables can be measured with acceptable accuracy during NIV, providing V˙O2 is corrected for altered gas density. PMID:26932772

  15. Non-invasive estimation of thermal tissue properties by high-intensity focused ultrasound

    Science.gov (United States)

    Appanaboyina, Sunil; Partanen, Ari; Haemmerich, Dieter

    2013-02-01

    Magnetic Resonance guided High-intensity Focused Ultrasound (MR-HIFU) can be used to locally heat tissue while non-invasively monitoring tissue temperature via MR-based thermometry. The goal of this study was to investigate the use of a computational technique based on inverse heat-transfer modeling for the non-invasive measurement of thermal tissue properties from data collected using an MR-HIFU system.

  16. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology

    OpenAIRE

    Narayan, E. J.

    2013-01-01

    Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and ...

  17. The Role of Invasive and Non-Invasive Procedures in Diagnosing Fever of Unknown Origin

    OpenAIRE

    Mete, Bilgul; Vanli, Ersin; Yemisen, Mucahit; Balkan, Ilker Inanc; Dagtekin, Hilal; Ozaras, Resat; Saltoglu, Nese; Mert, Ali; Ozturk, Recep; Tabak, Fehmi

    2012-01-01

    Background: The etiology of fever of unknown origin has changed because of the recent advances in and widespread use of invasive and non-invasive diagnostic tools. However, undiagnosed patients still constitute a significant number. Objective: To determine the etiological distribution and role of non-invasive and invasive diagnostic tools in the diagnosis of fever of unknown origin. Materials & Methods: One hundred patients who were hospitalized between June 2001 and 2009 with a fever of unkn...

  18. The Role of Invasive and Non-Invasive Procedures in Diagnosing Fever of Unknown Origin

    OpenAIRE

    Bilgul Mete, Ersin Vanli, Mucahit Yemisen, Ilker Inanc Balkan, Hilal Dagtekin, Resat Ozaras, Nese Saltoglu, Ali Mert, Recep Ozturk, Fehmi Tabak

    2012-01-01

    Background: The etiology of fever of unknown origin has changed because of the recent advances in and widespread use of invasive and non-invasive diagnostic tools. However, undiagnosed patients still constitute a significant number.Objective: To determine the etiological distribution and role of non-invasive and invasive diagnostic tools in the diagnosis of fever of unknown origin.Materials & Methods: One hundred patients who were hospitalized between June 2001 and 2009 with a fever of un...

  19. Non-invasive Ventilation in Premature Infants: Based on Evidence or Habit

    OpenAIRE

    Garg, Shalabh; Sinha, Sunil

    2013-01-01

    Despite surfactant and mechanical ventilation being the standard of care for preterm infants with respiratory failure, non-invasive respiratory support is increasingly being employed in neonatal units. The latter can be accomplished in a variety of ways but none of them have been proven so far to be superior to intubation and mechanical ventilation. Nonetheless, they appear to be safe and effective in experienced hands. This article relates to the use of non-invasive forms of respiratory supp...

  20. Critical evaluation and novel design of a non-invasive and wearable health monitoring system

    OpenAIRE

    Abbasi, Saddedine

    2008-01-01

    This thesis was submitted for the degree of Master of Philosophy and awarded by Brunel University. This study is about developing a non-invasive wearable health-monitoring system. The project aims to achieve miniaturisation as much as possible, using nanotechnology. The achieved results of the project are nothing but conceptual images of a convertible watch. The system is a non-invasive health measurement system. An important part of the study is researching the automation of blood pre...

  1. Continuous Non-Invasive Arterial Pressure Technique Improves Patient Monitoring during Interventional Endoscopy

    OpenAIRE

    Sylvia Siebig, Felix Rockmann, Karl Sabel, Ina Zuber-Jerger, Christine Dierkes, Tanja Brünnler, Christian E. Wrede

    2009-01-01

    Introduction: Close monitoring of arterial blood pressure (BP) is a central part of cardiovascular surveillance of patients at risk for hypotension. Therefore, patients undergoing diagnostic and therapeutic procedures with the use of sedating agents are monitored by discontinuous non-invasive BP measurement (NIBP). Continuous non-invasive BP monitoring based on vascular unloading technique (CNAP®, CN Systems, Graz) may improve patient safety in those settings. We investigated if this new...

  2. Continuous Non-Invasive Arterial Pressure Technique Improves Patient Monitoring during Interventional Endoscopy

    OpenAIRE

    Siebig, Sylvia; Rockmann, Felix; Sabel, Karl; Zuber-Jerger, Ina; Dierkes, Christine; Brünnler, Tanja; Wrede, Christian E.

    2009-01-01

    Introduction: Close monitoring of arterial blood pressure (BP) is a central part of cardiovascular surveillance of patients at risk for hypotension. Therefore, patients undergoing diagnostic and therapeutic procedures with the use of sedating agents are monitored by discontinuous non-invasive BP measurement (NIBP). Continuous non-invasive BP monitoring based on vascular unloading technique (CNAP®, CN Systems, Graz) may improve patient safety in those settings. We investigated if this new tech...

  3. Transcranial MR-guided High Intensity Focused Ultrasound for Non-Invasive Functional Neurosurgery

    Science.gov (United States)

    Werner, Beat; Morel, Anne; Zadicario, Eyal; Jeanmonod, Daniel; Martin, Ernst

    2010-03-01

    While the development of transcranial MR-guided High Intensity Focused Ultrasound has been driven mainly by applications for tumor ablation this new intervention method is also very attractive for functional neurosurgery due to its non-invasiveness, the absence of ionizing radiation and the closed-loop intervention control by MRI. Here we provide preliminary data to demonstrate the clinical feasibility, safety and precision of non-invasive functional neurosurgery by transcranial MR-guided High Intensity Focused Ultrasound.

  4. Exploring microstructure and surface features of Chinese coins using non-invasive approaches

    International Nuclear Information System (INIS)

    Highlights: • The microstructure and surface features of Chinese coins were systematically explored. • The application of non-invasive techniques enables unambiguous explorations of the component, morphology, microstructure and physical properties of the coins. • This work provides a new insight into exploration of surface properties of precious metal objects, metallic artefacts as well as monuments without causing any damage to them. - Abstract: Despite the apparent significance of Chinese coins, the knowledge about the surface properties of the coins is still largely unknown. To date, most analytical techniques (e.g., cross-section analysis, inductively coupled plasma-mass spectrometry, thermal analysis) require the partial or total destruction of the investigated sample, which is fatal to precious objects (e.g., artefacts and monuments). Herein, we systematically investigate the surface of a series of one yuan Chinese coins to disclose their chemical composition, morphology, and microstructure features using non-invasive techniques. Investigations were performed with scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy, and X-ray diffraction. The application of these approaches enables unambiguous explorations of the component, morphology, microstructure and physical properties of the samples without destroying them. The identification of the coins was achieved in light of the name of issuing authority and floral pattern. The morphology observations of the samples display that these coins possess mostly homogeneous surfaces; hence such a finding allows the formulation of a possible minting technology. Besides, the energy dispersive X-ray spectroscopy has proved of great role in exploring these coins, mainly because of its detectability to easily probe the presence of certain minor elements, which is critical in understanding surface finishing technologies, and production processes. The findings manifest that the coins were made

  5. Development of low cost instrumentation for non-invasive detection of Helicobacter pylori

    Science.gov (United States)

    Kannath, A.; Rutt, H. N.

    2007-02-01

    A new clinical diagnostic instrument for urea breath test (UBT) based non-invasive detection of Helicobacter Pylori is presented here. Its compact and low cost design makes it an economical and commercial alternative for the more expensive Isotope Ratio Mass Spectrometer (IRMS). The instrument is essentially a two channel non-dispersive IR spectrometer that performs high precision ratio measurements of the two carbon isotopomers ( 12CO II and 13CO II) present in exhaled breath. A balanced absorption system configuration was designed where the two channel path lengths would roughly be in the ratio of their concentrations. Equilibrium between the transmitted channel intensities was maintained by using a novel feedback servo mechanism to adjust the length of the 13C channel cell. Extensive computational simulations were performed to study the effect of various possible interferents and their results were considered in the design of the instrument so as to achieve the desired measurement precision of 1%. Specially designed gas cells and a custom made gas filling rig were also developed. A complete virtual interface for both instrument control and data acquisition was implemented in LABVIEW. Initial tests were used to validate the theory and a basic working device was demonstrated.

  6. The role of surfactant and non-invasive mechanical ventilation in early management of respiratory distress syndrome in premature infants

    Institute of Scientific and Technical Information of China (English)

    Narayan Prabhu Iyer; Maroun Jean Mhanna

    2014-01-01

    Background: Surfactant replacement therapy has been used for few decades for the treatment of respiratory distress syndrome (RDS) and has significantly improved morbidity and mortality in premature infants. Non-invasive respiratory support has recently emerged as a strategy in the early management of RDS. In this review, we discuss the different strategies of early management of RDS. Data sources: A literature search of PubMed database was conducted to review the subject. The quality of evidence of key clinical studies was graded according to a modified grading system of the international GRADE group. Results: Continuous positive airway pressure (CPAP) with selective surfactant is a safe alternative to routine intubation, surfactant and mechanical ventilation in preterm infants with spontaneous breathing, and such an approach has been associated with decreased risk of death and bronchopulmonary dysplasia. There is a risk of pneumothorax when using a high pressure of CPAP (≥8 cm of H2O), a high partial pressure of carbon dioxide (PCO2 >75 mm of Hg), and a high fraction of inspired oxygen (FiO2 >0.6) as a threshold for intubation while on CPAP. Conclusion: Not all preterm infants need surfactant treatment, and non-invasive respiratory support is a safe and effective approach.

  7. Image-guided non-invasive stereotactic radiosurgery/radiotherapy

    International Nuclear Information System (INIS)

    The objective of this study is to develop a non-invasive intracranial stereotactic radiosurgery technique with the same high degree of accuracy as that of the current invasive head ring SRS technique. The proposed methodology is to use the image registration to correlate the daily CT images with the planning images and use the head frame with bite block assembly, such that the target isocenter is coincided with the LINAC isocenter through stereotactic setup. In addition, the treatment delivery system (Varian LINAC/CT-on-rails unit) is equipped with a 6D robotic couch top, which the head frame interface device could always be maintained perpendicular to the couch-top surface. Through the head phantom study and the limited patient treatments to demonstrate, a new era of treating intracranial SRS without the pins screwed into the patient's skull but achieve the same precision of treatment delivery, is available now. A stereotactic QA head phantom was used to evaluate the proposed technique. The QA head phantom was attached to a head ring and the phantom was leveled by adjusting the robotic arms of the 6D couch-top. A set of planning CT scans was acquired. Then, a sphere ball inside the QA phantom was chosen as the target. A plan was generated for this test as seen: to remove the phantom, then reattach the head phantom to the head frame interface device. The phantom was not leveled at this time to simulate a different setup (the phantom had a 0.3 degree roll and the weight of the phantom was tilted down by 0.4 degree). A set of CT images was acquired to represent as the daily CT prior to the treatment. The daily CT images were registered with the planning CT images. Then, the 9-rod on the daily CT images was identified and the dose distributions were optimized based on the daily CT images; a daily isocenter was used. The localized target laser frame (LTLF) was set to the coordinates of the new isocenter, then the AP and RT LAT EPID portal images were acquired. For the

  8. Non-invasive laser Raman detection of lycopene and ž-carotene antioxidants in skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2003-07-01

    The predominant long-chain carotenoids found in the human skin are lycopene and β-carotene. They are powerful antioxidants and thought to act as scavengers for free radicals and single oxygen that are formed by excessive exposure of skin to sunlight. However the role of the particular representatives of the carotenoid antioxidants family in the skin defense mechanism is still unclear and has to be clarified. We demonstrate the opportunity for fast non-invasive selective quantitative detection of β-carotene and lycopene in human skin employing Raman spectroscopy. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the molecules under blue and green laser excitation we were able to characterize quantitativly the concentrations of each carotenoid in alive human skin. In this method we take an advantage of different Raman cross-section spectral profile for β-carotene and lycopene molecules. This novel technique allows the quantitative assessment of individual carotenoid species in the skin rather then the cumulative level of long-chain carotenoids mixture as we could measure in our previous works. The required laser light exposure levels are well within safety standards. Prelimininary dichoromatic Raman measurements reveal significant differences in the carotenoid composition of different volunteer's skin: even in statistically small group of seven subjects the ratio of β-carotene-to-lycopene in their skin vary from 0.5 to 1.6. This technique holds promise as a method of rapid screening of carotenoids composition of human skin in large populations and suitable in clinical studies for assessing the risk for cutaneous diseases.

  9. Striving for habitual well-being in non-invasive ventilation

    DEFF Research Database (Denmark)

    Sørensen, Dorthe; Frederiksen, Kirsten; Grøfte, Thorbjørn;

    2013-01-01

    ’ behaviour. Conclusions. The substantive theory revealed that the patients’ behaviour was related to their breathlessness, sensation of being restrained by the mask and head gear, and the side effects of non-invasive ventilation. Relevance to clinical practice. This inter-relationship should be addressed in......Aims: We present a theoretical account of the pattern of behaviour in patients with acute respiratory failure due to chronic obstructive pulmonary disease while undergoing non-invasive ventilation in a hospital setting. Background. Strong evidence supports a positive effect of non....... A constant comparative classic grounded theory study was performed. Methods. Data collection consisted of participant observation during the treatment of 21 patients undergoing non-invasive ventilation, followed by interviews with 11 of the patients after treatment completion. Data were collected...

  10. Non-Invasive Radiofrequency-Induced Targeted Hyperthermia for the Treatment of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mustafa Raoof

    2011-01-01

    Full Text Available Targeted biological therapies for hepatocellular cancer have shown minimal improvements in median survival. Multiple pathways to oncogenesis leading to rapid development of resistance to such therapies is a concern. Non-invasive radiofrequency field-induced targeted hyperthermia using nanoparticles is a radical departure from conventional modalities. In this paper we underscore the need for innovative strategies for the treatment of hepatocellular cancer, describe the central paradigm of targeted hyperthermia using non-invasive electromagnetic energy, review the process of characterization and modification of nanoparticles for the task, and summarize data from cell-based and animal-based models of hepatocellular cancer treated with non-invasive RF energy. Finally, future strategies and challenges in bringing this modality from bench to clinic are discussed.

  11. Intraspecies differenes in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Brix, Hans

    2012-01-01

    High phenotypic plasticity has been hypothesized to affect the invasiveness of plants, as high plasticity may enlarge the breath of environments in which the plants can survive and reproduce. Here we compare the phenotypic plasticity of invasive and non-invasive populations of the same species...... in response to growth temperature. Populations of the submerged macrophyte Ceratophyllum demersum from New Zealand, where the species is introduced and invasive, and from Denmark, where the species is native and non-invasive, were grown in a common garden setup at temperatures of 12, 18, 25 and 35 ◦C. We...... hypothesized that the phenotypic plasticity in fitness-related traits like growth and photosynthesis were higher in the invasive than in the non-invasive population. The invasive population acclimated to elevated temperatures through increased rates of photosynthesis (range: Pamb: 8–452 mol O2 g−1 DM h−1...

  12. Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring

    Science.gov (United States)

    Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon

    2014-10-01

    Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we introduce a new non-invasive mechanism of tissue-informative measurement, where an experimental phenomenon called subcutaneous tissue pressure equilibrium is revealed and related for application in detection of absolute blood pressure. A prototype was experimentally verified to provide an absolute blood pressure measurement by wearing a watch-type measurement module that does not cause any discomfort. This work is supposed to contribute remarkably to the advancement of continuous non-invasive mobile devices for 24-7 daily-life ambulatory blood-pressure monitoring.

  13. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology.

    Science.gov (United States)

    Narayan, E J

    2013-01-01

    Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo-pituitary-interrenal axis) and the reproductive endocrine system (the hypothalamo-pituitary-gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology for

  14. Comparison of non-invasive and invasive blood pressure in aeromedical care.

    Science.gov (United States)

    McMahon, N; Hogg, L A; Corfield, A R; Exton, A D

    2012-12-01

    Blood pressure measurement is an essential physiological measurement for all critically ill patients. Previous work has shown that non-invasive blood pressure is not an accurate reflection of invasive blood pressure measurement. In a transport environment, the effects of motion and vibration may make non-invasive blood pressure less accurate. Consecutive critically ill patients transported by a dedicated aeromedical retrieval and critical care transfer service with simultaneous invasive and non-invasive blood pressure measurements were analysed. Two sets of measurements were recorded, first in a hospital environment before departure (pre-flight) and a second during aeromedical transport (in-flight). A total of 56 complete sets of data were analysed. Bland-Altman plots showed limits of agreement (precision) for pre-flight systolic blood pressure were -37.3 mmHg to 30.0 mmHg, and for pre-flight mean arterial pressure -20.5 mmHg to 25.0 mmHg. The limits of agreement for in-flight systolic blood pressure were -40.6 mmHg to 33.1 mmHg, while those for in-flight mean blood pressure in-flight were -23.6 mmHg to 24.6 mmHg. The bias for the four conditions ranged from 0.5 to -3.8 mmHg. There were no significant differences in values between pre-flight and in-flight blood pressure measurements for all categories of blood pressure measurement. Thus, our data show that non-invasive blood pressure is not a precise reflection of invasive intra-arterial blood pressure. Mean blood pressure measured non-invasively may be a better marker of invasive blood pressure than systolic blood pressure. Our data show no evidence of non-invasive blood pressures being less accurate in an aeromedical transport environment. PMID:23033983

  15. Non-invasive imaging of human telomerase activity-targeting enzyme in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Tujino, H.; Imahori, Y.; Mineura, K. [Kyoto Prefectural Univ. of Medicine, Dept. of Neurosurgery, Kyoto (Japan); Ono, K. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Fujii, R. [Nishijin Hospital, Kyoto (Japan); Ueda, S. [Maizuru National Hospital, Kyoto (Japan)

    2000-10-01

    In the present study, we achieved non-invasive imaging of gene expression of human telomerase (hTRT) in brain tumors by systemic administration of antisense peptide nucleic acid (PNA) and phosphorothioate-derivative (S-oligomer) labeled with {sup 11}C as a positron emitter. The difference in the rate of incorporation of antisense between the tumor and the surrounding normal brain tissue is large enough to apply this technique practically to non-invasive imaging of gene expression in humans using positron emission tomography (PET). We also expected that this technique can be used in developing the peculiar boron carrier in the neutron capture therapy. (author)

  16. Non-invasive imaging of human telomerase activity-targeting enzyme in BNCT

    International Nuclear Information System (INIS)

    In the present study, we achieved non-invasive imaging of gene expression of human telomerase (hTRT) in brain tumors by systemic administration of antisense peptide nucleic acid (PNA) and phosphorothioate-derivative (S-oligomer) labeled with 11C as a positron emitter. The difference in the rate of incorporation of antisense between the tumor and the surrounding normal brain tissue is large enough to apply this technique practically to non-invasive imaging of gene expression in humans using positron emission tomography (PET). We also expected that this technique can be used in developing the peculiar boron carrier in the neutron capture therapy. (author)

  17. Domiciliary Non-Invasive Ventilation in the Elderly. Effective, Tolerated and Justified.

    OpenAIRE

    Comer, DM; Oakes, A; Mukherjee, R.

    2015-01-01

    Aim: To determine if the long terms effects of non-invasive home mechanical ventilation (NIHMV) in the elderly are as beneficial as in younger subjects for a dedicated non-invasive ventilation unit in a tertiary referral hospital within the UK. Patients and Methods: The study population included 256 patients who were successfully established on NIHMV between May 2009 and August 2013. Patients were divided into three groups according to age: group 1 (n=103) ≥75; group 2 (n=81) 65 -74; and grou...

  18. Evaluation of four non-invasive methods for examination and characterization of pressure ulcers

    DEFF Research Database (Denmark)

    Andersen, E.S.; Karlsmark, T.

    2008-01-01

    , we here report on usability of four non-invasive techniques for evaluation of pressure ulcers. Methods: Fifteen pressure ulcers in stage 0-IV were examined using four different non-invasive techniques [redness index, skin temperature, skin elasticity (i.e. retraction time), and ultrasound scanning...... at all pressure ulcers, but none at the reference points. The skin retraction time was often higher at the location of a pressure ulcer than at the reference location. We found no correlation between the stage of the ulcers and temperature, redness index, subepidermal layer thickness, or retraction...

  19. Non-invasive continuous core temperature measurement by zero heat flux

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Klewer, J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2011-01-01

    Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to deter

  20. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt;

    2015-01-01

    inflammatory myopathies (IIM) by means of non-invasive techniques. METHODS: Fourteen patients with IIM (8 polymyositis, 4 dermatomyositis, 2 cancer-associated dermatomyositis) and 14 gender- and age- matched healthy control subjects were investigated. Participant assessments included a cardiac questionnaire...

  1. Pre-Analytical Conditions in Non-Invasive Prenatal Testing of Cell-Free Fetal RHD

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Jakobsen, Tanja Roien; Rieneck, Klaus;

    2013-01-01

    Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an Rh...

  2. Non-invasive monitoring of living cell culture by lensless digital holography imaging

    Institute of Scientific and Technical Information of China (English)

    Yunxin Wang; Dayong Wang; Jie Zhao; Yishu Yang; Xiangqian Xiao; Huakun Cui

    2011-01-01

    @@ A non-invasive detection method for the status analysis of cell culture is presented based on digital holography technology.Lensless Fourier transform digital holography (LFTDH) configuration is developed for living cell imaging without prestaining.Complex amplitude information is reconstructed by a single inverse fast Fourier transform, and the phase aberration is corrected through the two-step phase subtraction method.The image segmentation is then applied to the automatic evaluation of confluency.Finally,the cervical cancer cell TZMbl is employed for experimental validation, and the results demonstrate that LFTDH imaging with the corresponding image post-processing can provide an automatic and non-invasive approach for monitoring living cell culture.%A non-invasive detection method for the status analysis of cell culture is presented based on digital holography technology. Lensless Fourier transform digital holography (LFTDH) configuration is developed for living cell imaging without prestaining. Complex amplitude information is reconstructed by a single inverse fast Fourier transform, and the phase aberration is corrected through the two-step phase subtraction method. The image segmentation is then applied to the automatic evaluation of confluency. Finally,the cervical cancer cell TZMbl is employed for experimental validation, and the results demonstrate that LFTDH imaging with the corresponding image post-processing can provide an automatic and non-invasive approach for monitoring living cell culture.

  3. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der;

    2010-01-01

    were susceptible to photobleaching by a non-invasive procedure and whether this would lead to optical rejuvenation of the lens. Methodology/Principal Findings: Nine human donor lenses were treated with an 800 nm infra-red femtosecond pulsed laser in a treatment zone measuring 1 x 1 x 0.52 mm. After...

  4. Non-invasive liver iron concentration measurement by MRI : Comparison of two validated protocols

    NARCIS (Netherlands)

    Olthof, Allard W.; Sijens, Paul E.; Kreeftenberg, Herman G.; Kappert, Peter; van der Jagt, Eric J.; Oudkerk, Matthijs

    2009-01-01

    In the non-invasive determination of the liver iron concentration several validated MRI methods are available, two of which are compared in this study. Twenty-eight patients were examined by MRI and evaluated by the methods of Kreeftenberg et al. [Kreeftenberg Jr HG, Mcoyaart EL, Huizenga JR, Sluite

  5. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements.

    Science.gov (United States)

    Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Gagnon, Louis; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A; Nizar, Krystal; Yaseen, Mohammad A; Hagler, Donald J; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A; Silva, Gabriel A; Masliah, Eliezer; Kleinfeld, David; Vinogradov, Sergei; Buxton, Richard B; Einevoll, Gaute T; Boas, David A; Dale, Anders M; Devor, Anna

    2016-10-01

    The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574309

  6. Mechanical ventilation in emergency departments: Non invasive or invasive mechanical ventilation. Where is the answer?

    OpenAIRE

    Esquinas Rodriguez Antonio M; Cosentini Roberto; Papadakos Peter J

    2012-01-01

    The Emergency Department length of stay for patients requiring mechanical ventilation paper in this issue is very illustrative of many variables that still confound the way we treat patients that may not require endotracheal intubation (ETI) but may benefit from non-invasive mechanical ventilation (NIV) [1].

  7. Non Invasive Biomedical Analysis - Breath Networking Session at PittCon 2011, Atlanta, Georgia

    Science.gov (United States)

    This was the second year that our breath colleagues organized a networking session at the Pittsburgh Conference and Exposition or ''PittCon'' (http://www.pincon.org/).This time it was called "Non-invasive Biomedical Analysis" to broaden the scope a bit, but the primary focus rema...

  8. Molecular Insights on the Transition of Non-invasive DCIS to Invasive ductal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Dihua YU

    2009-01-01

    @@ More than 90% of breast cancer-related deaths are caused by metastasis not primary tumor. To effectively reduce cancer mortality, it is extremely im-portant to predict the risk of, and to intervene in, the critical transition from non-invasive ductal carcinoma in situ (DCIS) to life-threatening invasive ductal carcinoma (IDC).

  9. Non-invasive imaging in detecting myocardial viability: Myocardial function versus perfusion

    Directory of Open Access Journals (Sweden)

    Iqbal A. Elfigih

    2014-12-01

    Full Text Available Coronary artery disease (CAD is the most prevalent and single most common cause of morbidity and mortality [1] with the resulting left ventricular (LV dysfunction an important complication. The distinction between viable and non-viable myocardium in patients with LV dysfunction is a clinically important issue among possible candidates for myocardial revascularization. Several available non-invasive techniques are used to detect and assess ischemia and myocardial viability. These techniques include echocardiography, radionuclide images, cardiac magnetic resonance imaging and recently myocardial computed tomography perfusion imaging. This review aims to distinguish between the available non-invasive imaging techniques in detecting signs of functional and perfusion viability and identify those which have the most clinical relevance in detecting myocardial viability in patients with CAD and chronic ischemic LV dysfunction. The most current available studies showed that both myocardial perfusion and function based on non-invasive imaging have high sensitivity with however wide range of specificity for detecting myocardial viability. Both perfusion and function imaging modalities provide complementary information about myocardial viability and no optimum single imaging technique exists that can provide very accurate diagnostic and prognostic viability assessment. The weight of the body of evidence suggested that non-invasive imaging can help in guiding therapeutic decision making in patients with LV dysfunction.

  10. Non-invasive imaging of kupffer cell status using radiolabelled mannosylated albumin

    NARCIS (Netherlands)

    Mahajan, V.; Hartimath, S.; Comley, R.; Stefan-Gueldner, M.; Roth, A.; Poelstra, K.; Reker-Smit, C.; Kamps, J.; Dierckx, R.; de Vries, Erik

    2014-01-01

    Background and Aims: Kupffer cells are responsible for maintaining liver homeostasis and have a vital role in chronic hepatotoxicity and various liver diseases. Positron Imaging Tomography (PET) is a non-invasive imaging technique that allows quantification and visualization of biochemical processes

  11. Non-invasive versus invasive mechanical ventilation for respiratory failure in severe acute respiratory syndrome

    Institute of Scientific and Technical Information of China (English)

    Loretta YC Yam; Alfred YF Chan; Thomas MT Cheung; Eva LH Tsui; Jane CK Chan; Vivian CW Wong

    2005-01-01

    Background Severe acute respiratory syndrome is frequently complicated by respiratory failure requiring ventilatory support. We aimed to compare the efficacy of non-invasive ventilation against invasive mechanical ventilation treating respiratory failure in this disease. Methods Retrospective analysis was conducted on all respiratory failure patients identified from the Hong Kong Hospital Authority Severe Acute Respiratory Syndrome Database. Intubation rate, mortality and secondary outcome of a hospital utilizing non-invasive ventilation under standard infection control conditions (NIV Hospital) were compared against 13 hospitals using solely invasive ventilation (IMV Hospitals). Multiple logistic regression analyses with adjustments for confounding variables were performed to test for association between outcomes and hospital groups. Results Both hospital groups had comparable demographics and clinical profiles, but NIV Hospital (42 patients) had higher lactate dehydrogenase ratio and worse radiographic score on admission and ribavirin-corticosteroid commencement. Compared to IMV Hospitals (451 patients), NIV Hospital had lower adjusted odds ratios for intubation (0.36, 95% CI 0.164-0.791, P=0.011) and death (0.235, 95% CI 0.077-0.716, P=0.011), and improved earlier after pulsed steroid rescue. There were no instances of transmission of severe acute respiratory syndrome among health care workers due to the use of non-invasive ventilation.Conclusion Compared to invasive mechanical ventilation, non-invasive ventilation as initial ventilatory support for acute respiratory failure in the presence of severe acute respiratory syndrome appeared to be associated with reduced intubation need and mortality.

  12. Who is who? Non-invasive methods to individually sex and mark altricial chicks.

    Science.gov (United States)

    Adam, Iris; Scharff, Constance; Honarmand, Mariam

    2014-01-01

    Many experiments require early determination of offspring's sex as well as early marking of newborns for individual recognition. According to animal welfare guidelines, non-invasive techniques should be preferred whenever applicable. In our group, we work on different species of song birds in the lab and in the field, and we successfully apply non-invasive methods to sex and individually mark chicks. This paper presents a comprehensive non-invasive tool-box. Sexing birds prior to the expression of secondary sexual traits requires the collection of DNA-bearing material for PCR. We established a quick and easy method to sex birds of any age (post hatching) by extracting DNA from buccal swabs. Results can be obtained within 3 hours. For individual marking chick's down feathers are trimmed in specific patterns allowing fast identification within the hatching order. This set of methods is easily applicable in a standard equipped lab and especially suitable for working in the field as no special equipment is required for sampling and storage. Handling of chicks is minimized and marking and sexing techniques are non-invasive thereby supporting the RRR-principle of animal welfare guidelines. PMID:24893585

  13. Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms

    International Nuclear Information System (INIS)

    The standard electrocardiogram (ECG) is the most common non-invasive way to study atrial fibrillation (AF). In this respect, previous works have shown that the surface lead V1 reflects mainly the dominant atrial frequency (DAF) of the right atrium (RA), which has been widely used to study AF. In a similar way, AF organization and fibrillatory (f) wave amplitude are two recently proposed non-invasive AF markers. These markers need to be validated with invasive recordings in order to assess their capability to reliably reflect the internal fibrillatory activity dynamics. In this work, these two non-invasive metrics have been compared with similar measures recorded from two unipolar atrial electrograms (AEGs). For both ECG and AEG signals, AF organization has been computed by applying a nonlinear regularity index, such as sample entropy (SampEn), to the atrial activity (AA) and to its fundamental waveform, defined as the main atrial wave (MAW). The surface and epicardial f wave amplitude has been estimated through their mean power. Results obtained for 38 patients showed statistically significant correlations between the values measured from surface and invasive recordings, thus corroborating the usefulness of the aforesaid markers in the non-invasive study of AF. Precisely, for AF organization computed from the MAW, the correlation coefficients between surface and both AEGs were R = 0.926 (p < 0.001) and R = 0.932 (p < 0.001). For f wave amplitude, slightly lower significant relationships were noticed, the correlation coefficients being R = 0.765 (p < 0.001) and R = 0.842 (p < 0.001). These outcomes together with interesting linear relationships found among the parameters suggest that AF regularity estimated via SampEn and f wave amplitude can non-invasively characterize the epicardial activity related to AF

  14. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung.

    Science.gov (United States)

    Murphy, Sean V; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-04-15

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the ​in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. PMID:26546729

  15. A non-invasive exploitation of energy conservation potentials using ultrasonics. Non-invasive diagnostics; Mit Ultraschall eingriffsfrei Energieeinsparpotenziale erschliessen. Nichtinvasive Diagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, Joerg [Flexim GmbH, Berlin (Germany)

    2013-05-15

    Energy conservation is profitable. The independent energy efficiency service provider Eta Cube (Frankfurt, Federal Republic of Germany) provides an intelligent energy optimization which is financed by consumption cuts. A non-invasive measuring clamp-on ultrasonic system is used in order to determine the efficiency potential in the preparation of hot water and domestic water as well as for the air conditioning of buildings. The Fluxus F601 Double Energy from Flexim Flexible Industriemesstechnik GmbH (Berlin, Federal Republic of Germany) determines the performance and efficiency of thermal consumers without interruption of the supply.

  16. L.I.F.E.: laser induced fluorescence emission, a non-invasive tool to detect photosynthetic pigments in glacial ecosystems

    Science.gov (United States)

    Tilg, Markus; Storrie-Lombardi, Michael; Kohstall, Christoph; Trenkwalder, Andreas; Psenner, Roland; Sattler, Birgit

    2011-10-01

    The cryosphere harbours diverse microbial communities which are contributing to the global carbon budget. Various ice ecosystems like ice covers of freshwater lakes, sea ice and supraglacial areas are highly sensitive to temperate rise due to resulting enhanced availability of liquid water which is the prerequisite for life. To assess the overall importance of these communities we require a non-invasive tool which provides high resolution measurements of photosynthetic pigments such as phycoerythrin. Here we present the preliminary calibration processes for L.I.F.E. (laser induced fluorescence emission).

  17. A holistic multimodal approach to the non-invasive analysis of watercolour paintings

    CERN Document Server

    Kogou, Sotiria; Bellesia, Sonia; Burgio, Lucia; Bailey, Kate; Brooks, Charlotte; Liang, Haida

    2015-01-01

    A holistic approach using non-invasive multimodal imaging and spectroscopic techniques to study the materials (pigments, drawing materials and paper) and painting techniques of watercolour paintings is presented. The non-invasive imaging and spectroscopic techniques include VIS-NIR reflectance spectroscopy and multispectral imaging, micro-Raman spectroscopy, X-ray fluorescence spectroscopy (XRF) and optical coherence tomography (OCT). The three spectroscopic techniques complement each other in pigment identification. Multispectral imaging (near infrared bands), OCT and micro-Raman complement each other in the visualisation and identification of the drawing material. OCT probes the microstructure and light scattering properties of the substrate while XRF detects the elemental composition that indicates the sizing methods and the filler content. The multiple techniques were applied in a study of forty six 19th century Chinese export watercolours from the Victoria & Albert Museum (V&A) and the Royal Hort...

  18. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Science.gov (United States)

    McCarthy, B. M.; O'Flynn, B.; Mathewson, A.

    2011-08-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  19. Feasibility of non-invasive optical blood-glucose detection using overtone circular dichroism

    CERN Document Server

    Hokr, Brett H; Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2016-01-01

    Diabetes is one of the most debilitating and costly diseases currently plaguing humanity. It is a leading cause of death and dismemberment in the world, and we know how to treat it. Accurate, continuous monitoring and control of blood glucose levels via insulin treatments are widely known to mitigate the majority of detrimental effects caused by the disease. The primary limitation of continuous glucose monitoring is patient non-compliance due to the unpleasant nature of "finger-stick" testing methods. This limitation can be largely, or even completely, removed by non-invasive testing methods. In this report, we demonstrate the vibrational overtone circular dichroism properties of glucose and analyze its use as a method of non-invasive glucose monitoring, capable of assuaging this trillion dollar scourge.

  20. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  1. Non-invasive online detection of microbial lysine formation in stirred tank bioreactors by using calorespirometry.

    Science.gov (United States)

    Regestein, Lars; Maskow, Thomas; Tack, Andreas; Knabben, Ingo; Wunderlich, Martin; Lerchner, Johannes; Büchs, Jochen

    2013-05-01

    Non-invasive methods for online monitoring of biotechnological processes without compromising the integrity of the reactor system are very important to generate continuous data. Even though calorimetry has been used in conventional biochemical analysis for decades, it has not yet been specifically applied for online detection of product formation at technical scale. Thus, this article demonstrates a calorespirometric method for online detection of microbial lysine formation in stirred tank bioreactors. The respective heat generation of two bacterial strains, Corynebacterium glutamicum ATCC 13032 (wild-type) and C. glutamicum DM1730 (lysine producer), was compared with the O2 -consumption in order to determine whether lysine was formed. As validation of the proposed calorespirometric method, the online results agreed well with the offline measured data. This study has proven that calorespirometry is a viable non-invasive technique to detect product formation at any time point. PMID:23280310

  2. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, B M; O' Flynn, B; Mathewson, A, E-mail: brian.mccarthy@tyndall.ie [Tyndall National Institute, UCC, Lee Maltings, Prospect Row, Cork (Ireland)

    2011-08-17

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  3. A non-invasive technique for rapid extraction of DNA from fish scales.

    Science.gov (United States)

    Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S

    2007-11-01

    DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales. PMID:18072545

  4. Non-invasive monitoring and control in silicon photonics by CMOS integrated electronics

    CERN Document Server

    Grillanda, Stefano; Morichetti, Francesco; Ciccarella, Pietro; Annoni, Andrea; Ferrari, Giorgio; Strain, Michael; Sorel, Marc; Sampietro, Marco; Melloni, Andrea

    2014-01-01

    As photonics breaks away from today's device level toward large scale of integration and complex systems-on-a-chip, concepts like monitoring, control and stabilization of photonic integrated circuits emerge as new paradigms. Here, we show non-invasive monitoring and feedback control of high quality factor silicon photonics resonators assisted by a transparent light detector directly integrated inside the cavity. Control operations are entirely managed by a CMOS microelectronic circuit, hosting many parallel electronic read-out channels, that is bridged to the silicon photonics chip. Advanced functionalities, such as wavelength tuning, locking, labeling and swapping are demonstrated. The non-invasive nature of the transparent monitor and the scalability of the CMOS read-out system offer a viable solution for the control of arbitrarily reconfigurable photonic integrated circuits aggregating many components on a single chip.

  5. Reactivity of Dogs' Brain Oscillations to Visual Stimuli Measured with Non-Invasive Electroencephalography

    OpenAIRE

    Kujala, Miiamaaria V.; Törnqvist, Heini; Somppi, Sanni; Hänninen, Laura; Christina M. Krause; Vainio, Outi; Kujala, Jan

    2013-01-01

    Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris) while they stayed still to observe photos of dog and hum...

  6. Visual event-related potentials of dogs: a non-invasive electroencephalography study

    OpenAIRE

    Törnqvist, Heini; Kujala, Miiamaaria V.; Somppi, Sanni; HÀnninen, Laura; Pastell, Matti; Christina M. Krause; Kujala, Jan; Vainio, Outi

    2013-01-01

    Previously, social and cognitive abilities of dogs have been studied within behavioral experiments, but the neural processing underlying the cognitive events remains to be clarified. Here, we employed completely non-invasive scalp-electroencephalography in studying the neural correlates of the visual cognition of dogs. We measured visual event-related potentials (ERPs) of eight dogs while they observed images of dog and human faces presented on a computer screen. The dogs were trained to lie ...

  7. Non-Invasive Detection of Anaemia Using Digital Photographs of the Conjunctiva

    OpenAIRE

    Collings, Shaun; Thompson, Oliver; Hirst, Evan; Goossens, Louise; George, Anup; Weinkove, Robert

    2016-01-01

    Background and Aims Anaemia is a major health burden worldwide. Although the finding of conjunctival pallor on clinical examination is associated with anaemia, inter-observer variability is high, and definitive diagnosis of anaemia requires a blood sample. We aimed to detect anaemia by quantifying conjunctival pallor using digital photographs taken with a consumer camera and a popular smartphone. Our goal was to develop a non-invasive screening test for anaemia. Patients and Methods The conju...

  8. Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation

    OpenAIRE

    Katharine A Dunlop; Blake eWoodside; Jonathan eDownar

    2016-01-01

    The term eating disorders (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are accessible forms of neuromodulation that alter...

  9. Detecting Fetal Movements Using Non-Invasive Accelerometers: A Preliminary Analysis

    OpenAIRE

    Girier, T.; O'Toole, J; Mesbah, M.; Boashash, B.; Clough, I.; Wilson, S; Fuentes, M; Callan, S.; East, C; COLDITZ, P

    2010-01-01

    Monitoring fetal movement is important to assess fetal health. Standard clinical fetal monitoring technologies include ultrasound imaging and cardiotocography. Both have limited prognostic value and require significant health resources. We have recently developed a low-cost, passive, non-invasive system to monitor fetal activity, and therefore fetal health. This accelerometer-based system does not require trained operators and can be used outside a clinic. This work is a preliminary study to ...

  10. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs.

    Science.gov (United States)

    Nemeth, Matthias; Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals' natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels

  11. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites

    OpenAIRE

    Kim, J.; Valdés-Ramírez, G; Bandodkar, AJ; W. Jia; Martinez, AG; Ramírez, J.; Mercier, P.; Wang, J

    2014-01-01

    The present work describes the first example of a wearable salivary metabolite biosensor based on the integration of a printable enzymatic electrode on a mouthguard. The new mouthguard enzymatic biosensor, based on an immobilized lactate oxidase and a low potential detection of the peroxide product, exhibits high sensitivity, selectivity and stability using whole human saliva samples. Such non-invasive mouthguard metabolite biosensors could tender useful real-time information regarding a wear...

  12. Liver fibrosis can be assessed by non-invasive ultrasound elastography

    DEFF Research Database (Denmark)

    Thielsen, Peter; Wilkens, Rune; Rafaelsen, Søren Rafael;

    2014-01-01

    Diagnosis and assessment of liver fibrosis is of great importance for initiating treatment and starting hepatocellular carcinoma surveillance in patients with established cirrhosis. Liver biopsy is still considered the gold standard for liver fibrosis staging, however; it is far from perfect. Non......-invasive assessment of liver fibrosis is becoming more available and is well tolerated. This review describes the feasibility and reliability of two elastography methods: transient elastography and Acoustic Radiation Force Impulse-elastography....

  13. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    OpenAIRE

    A. O. Shevchenko; I. U. Tunjaieva; A. A. Nasyrova; B. L. Mironkov; I. M. Ilinsky; N. P. Mozhejko; I. I. Muminov; O. P. Shevchenko

    2015-01-01

    Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW) variables ...

  14. Non-invasive method of determination of thermoelectric materials figure of merit

    Directory of Open Access Journals (Sweden)

    Ashcheulov А. А.

    2009-04-01

    Full Text Available Thermoelectric effects arising in a sample placed in a measuring oscillating loop have been studied. It has been shown that asymmetric character of flowing current results in a volumetric bundle of induced Foucault currents and regions of Peltier heat release by thermoelectric sample which leads to increasing of irreversible heat losses recorded by measuring oscillating loop. The presence of this effect has caused the emergence of ingenious non-invasive method for recording of thermoelectric materials figure of merit.

  15. Fatal brain gas embolism during non-invasive positive pressure ventilation

    OpenAIRE

    Rivara, Claire B; Chevrolet, Jean-Claude; Gasche, Yvan; Charbonney, Emmanuel

    2008-01-01

    Gas embolism is a dreaded complication following invasive medical procedures, traumatic lung injury and decompression accidents. We report a case of fatal gas embolism following the use of non-invasive ventilation (NIV) with bilevel positive airway pressure (BiPAP). The patient initially underwent left bronchial artery embolisation for massive haemoptysis in the context of severe tuberculotic sequels. Under NIV and after heavy coughing he became hemiparetic and his level of consciousness sudd...

  16. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics

    OpenAIRE

    Alberola Rubio, José; Prats Boluda, Gema; Ye Lin, Yiyao; Valero, J; PERALES MARIN, ALFREDO JOSE; Garcia Casado, Francisco Javier

    2013-01-01

    Non-invasive recording of uterine myoelectric activity (electrohysterogram, EHG) could provide an alternative to monitoring uterine dynamics by systems based on tocodynamometer (TOCO). Laplacian recording of bioelectric signals has been shown to give better spatial resolution and less interference than mono and bipolar surface recordings. The aim of this work was to study the signal quality obtaines from monopolar, bipolar and Laplacian techniques in EHG recordings, as well as to assess their...

  17. Reliability of non-invasive tissue sampling methods for DNA extraction in rabbits (Oryctolagus Cuniculus)

    OpenAIRE

    Manel Ben Larbi; Tircazes, A.; K. Feve; TUDELA, F.; Bolet, G

    2012-01-01

    Deoxyribonucleic acid (DNA) can be extracted from different tissue sources. The most common is blood, but in some situations it can be easier to take a biopsy. In some cases when it is difficult to capture animals, especially in wild populations, faeces and hairs can be considered as a source of DNA. This paper presents a pilot study conducted to compare the applicability of invasive and non-invasive sampling methods for extracting DNA for use in genetic studies of rabbits (Oryctolagus cunicu...

  18. Comparing the Validity of Non-Invasive Methods in Measuring Thoracic Kyphosis and Lumbar Lordosis

    Directory of Open Access Journals (Sweden)

    Mohammad Yousefi

    2012-04-01

    Full Text Available Background: the purpose of this article is to study the validity of each of the non-invasive methods (flexible ruler, spinal mouse, and processing the image versus the one through-Ray radiation (the basic method and comparing them with each other.Materials and Methods: for evaluating the validity of each of these non-invasive methods, the thoracic Kyphosis and lumber Lordosis angle of 20 students of Birjand University (age mean and standard deviation: 26±2, weight: 72±2.5 kg, height: 169±5.5 cm through fours methods of flexible ruler, spinal mouse, and image processing and X-ray.Results: the results indicated that the validity of the methods including flexible ruler, spinal mouse, and image processing in measuring the thoracic Kyphosis and lumber Lordosis angle respectively have an adherence of 0.81, 0.87, 0.73, 0.76, 0.83, 0.89 (p>0.05. As a result, regarding the gained validity against the golden method of X-ray, it could be stated that the three mentioned non-invasive methods have adequate validity. In addition, the one-way analysis of variance test indicated that there existed a meaningful relationship between the three methods of measuring the thoracic Kyphosis and lumber Lordosis, and with respect to the Tukey’s test result, the image processing method is the most precise one.Conclusion as a result, this method could be used along with other non-invasive methods as a valid measuring method.

  19. Composite Biomarkers For Non-invasive Screening, Diagnosis And Prognosis Of Colorectal Cancer

    KAUST Repository

    Mansour, Hicham

    2014-09-11

    The present invention concerns particular biomarkers for diagnosing and/or prognosticating colorectal cancer, in particular in a non-invasive manner. The methods and compositions concern analysis of methylation patterns of one or more genes from a set of 29 genes identified as described herein. In certain embodiments, the gene set includes at least P15.INK4b, SST, GAS7, CNRIP1, and PIK3CG.

  20. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    OpenAIRE

    Al-Mulla, Mohamed R.; Martin Colley,; Francisco Sepulveda

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-...

  1. CT fractional flow reserve: the next level in non-invasive cardiac imaging

    OpenAIRE

    Meijs, M.F.L.; Cramer, M. J.; El Aidi, H.; Doevendans, P.A.

    2012-01-01

    The haemodynamic effect of a coronary artery stenosis is a better predictor of prognosis than anatomical lumen obstruction. Until recently, no individual non-invasive test could provide both accurate coronary anatomy and lesion-specific myocardial ischaemia. However, computer tomography (CT) fractional flow reserve, which can be calculated from a standard CT coronary angiogram, was recently demonstrated to accurately detect and rule out the haemodynamic significance of individual coronary art...

  2. Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain.

    Science.gov (United States)

    Naro, Antonino; Milardi, Demetrio; Russo, Margherita; Terranova, Carmen; Rizzo, Vincenzo; Cacciola, Alberto; Marino, Silvia; Calabro, Rocco S; Quartarone, Angelo

    2016-01-01

    Neuromodulatory effects of non-invasive brain stimulation (NIBS) have been extensively studied in chronic pain. A hypothetic mechanism of action would be to prevent or revert the ongoing maladaptive plasticity within the pain matrix. In this review, the authors discuss the mechanisms underlying the development of maladaptive plasticity in patients with chronic pain and the putative mechanisms of NIBS in modulating synaptic plasticity in neuropathic pain conditions. PMID:27512368

  3. Non-invasive assessment of in-vitro embryo quality to improve transfer success

    OpenAIRE

    Højbøge, Tina Rødgaard; Peter M H Heegaard; Callesen, Henrik

    2015-01-01

    Although IVF has been performed routinely for many years to help couples with fertility problems and in relation to modern breeding of farm animals, pregnancy rates after transfer to a recipient have not improved during the last decade. Early prediction of the viability of in-vitro developed embryos before the transfer to a recipient still remains challenging. Presently, the predominant non-invasive technique for selecting viable embryos is based on morphology, where parameters such as rates ...

  4. Non-invasive ventilation for surgical patients with acute respiratory failure

    OpenAIRE

    Lee, Byoung Chul; Kyoung, Kyu Hyouck; Kim, Young Hwan; Hong, Suk-Kyung

    2011-01-01

    Purpose Acute respiratory failure is a relatively common complication in surgical patients, especially after abdominal surgery. Non-invasive ventilation (NIV) is increasingly used in the treatment of acute respiratory failure. We have assessed the usefulness of NIV in surgical patients with acute respiratory failure. Methods We retrospectively reviewed the medical charts of patients who were admitted to a surgical intensive care unit between March 2007 and February 2008 with acute respiratory...

  5. Sub-millimeter Bunch Length Non-invasive Diagnostic Based on the Diffraction and Cherenkov Radiation

    International Nuclear Information System (INIS)

    A layout for the investigation the coherent Cherenkov radiation from a dielectric target with a large spectral dispersion and the coherent diffraction radiation from a conducting screen as a tool for non-invasive longitudinal electron beam profile diagnostics are proposed for the 20∼30MeV Linac at Shanghai Institute of Applied Physics (SINAP). In this paper the status of the joint experiment and future plans are presented.

  6. Non-invasive sources of cells with primary cilia from pediatric and adult patients

    OpenAIRE

    Ajzenberg, H.; Slaats, G.G.; Stokman, M.F.; Arts, H.H.; Logister, I; Kroes, H Y; Renkema, K.Y.; van Haelst, M. M.; Terhal, P.A.; van Rooij, I. A. L. M.; Keijzer-Veen, M.G.; Knoers, N V; Lilien, M.R.; Jewett, M A; Giles, R. H.

    2015-01-01

    BACKGROUND: Ciliopathies give rise to a multitude of organ-specific pathologies; obtaining relevant primary patient material is useful for both diagnostics and research. However, acquisition of primary ciliated cells from patients, particularly pediatric patients, presents multiple difficulties. Biopsies and blood samples are invasive, and patients (and their parents) may be reluctant to travel to medical centers, especially for research purposes. We sought to develop non-invasive methods of ...

  7. A meta-analysis of trait differences between invasive and non-invasive plant species

    OpenAIRE

    van Kleunen, Mark; Weber, Ewald; Fischer, Markus

    2010-01-01

    A major aim in ecology is identifying determinants of invasiveness. We performed a meta-analysis of 117 field or experimental-garden studies that measured pair-wise trait differences of a total of 125 invasive and 196 non-invasive plant species in the invasive range of the invasive species. We tested whether invasiveness is associated with performance-related traits (physiology, leaf-area allocation, shoot allocation, growth rate, size and fitness), and whether such associations depend on typ...

  8. A Non-Invasive Software Architecture Style for RFID Data Provisioning

    OpenAIRE

    Ying Liu; Tao Lin; Sudha Ram; Xuemei Su

    2010-01-01

    Integrating real-time RFID data into autonomous and heterogeneous information systems across the business value chain presents a number of challenges. At an abstract architecture level, this paper identifies important requirements for RFID data provisioning and points of integration. A non-invasive architecture style is proposed to satisfy these requirements. It has the advantages of low entry barriers, low latency, high flexibility, and independent evolvability. The architecture style is use...

  9. Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva

    OpenAIRE

    Malik, Sarul; Khadgawat, Rajesh; Anand, Sneh; Gupta, Shalini

    2016-01-01

    Machine learning techniques such as logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) were used to detect fasting blood glucose levels (FBGL) in a mixed population of healthy and diseased individuals in an Indian population. The occurrence of elevated FBGL was estimated in a non-invasive manner from the status of an individual’s salivary electrochemical parameters such as pH, redox potential, conductivity and concentration of sodium, potassium and calc...

  10. The use of non-invasive genetic sampling to study mountain ungulates

    Czech Academy of Sciences Publication Activity Database

    Hájková, Petra; Zemanová, Barbora; Hájková, Andrea; Zima Jr., Jan; Bryja, Josef

    Granada: Junta de Andalucia. Consejería de Medio Ambiente , 2009. s. 220-221. [World conference on mountain ungulates /5./. 10.11.2009-14.11.2009, Granada] R&D Projects: GA AV ČR IAA600930609 Institutional research plan: CEZ:AV0Z60930519 Keywords : non-invasive genetic sampling * faeces * microsatellites * chamois * conservation genetics Subject RIV: EB - Genetics ; Molecular Biology

  11. A robust and reliable non-invasive test for stress responsivity in mice

    OpenAIRE

    Zimprich, Annemarie; Garrett, Lillian; Deussing, Jan M.; Carsten T. Wotjak; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Wurst, Wolfgang; Hölter, Sabine M.

    2014-01-01

    Stress and an altered stress response have been associated with many multifactorial diseases, such as psychiatric disorders or neurodegenerative diseases. As currently mouse mutants for each single gene are generated and phenotyped in a large-scale manner, it seems advisable also to test these mutants for alterations in their stress responses. Here we present the determinants of a robust and reliable non-invasive test for stress-responsivity in mice. Stress is applied through restraining the ...

  12. Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring

    OpenAIRE

    Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon

    2014-01-01

    Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we in...

  13. Possibility of non-invasive blood pressure estimation by measurements of force and arteries diameter

    OpenAIRE

    Veye, Florent; Mestre, Sandrine; Perez-Martin, Antonia; Triboulet, Jean

    2014-01-01

    International audience Ultrasound examination is the first line procedure for the diagnosis and follow-up of cardiovascular diseases. Instrumenting an ultrasound probe with a force sensor may improve the non-invasive measurement of arterial biomechanical parameters (diameter, pulsatility, intima-media thickness and flow-dependent dilation) by measuring and controlling the force exerted by the sonographer. We present here the results obtained with this approach coupled with image processing...

  14. Combined use of non-invasive techniques to predict pulmonary arterial pressure in chronic respiratory disease.

    OpenAIRE

    Bishop, J M; Csukas, M

    1989-01-01

    The value of non-invasive procedures for predicting pulmonary arterial pressure was investigated in 370 patients with chronic obstructive lung diseases and in 73 with fibrosing alveolitis in a combined study at nine centres in six European countries. Measurements included forced expiratory volume in one second, arterial blood gas tensions, standard electrocardiogram, radiographic dimensions of pulmonary artery, right ventricle dimensions by M mode echocardiography, and myocardial scintigraphy...

  15. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    OpenAIRE

    Naidu, M.U.R; C Prabhakar Reddy

    2012-01-01

    Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV) measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG) with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood p...

  16. Non Invasive Measurement of Systolic Blood Pressure in Rats: A Simple Technique

    OpenAIRE

    Maria Pauline; Avadhany, Sandhya T.; K.N. Maruthy

    2011-01-01

    Background: Non invasive, simple and economical instrument to measure blood pressure in r365-ats is important in cardiovascular research. Methods: Systolic blood pressure measuring instrument was fabricated using a tail cuff, photoplethysmograph, pressure transducer and PC with Biopac Software for recording. Tail cuff was used to occlude the tail artery, photoplethysmograph picked the blood flow pulses in the rat tail and the pressure transducer measured the cuff pressure and converted it int...

  17. Improve non-Invasive Intracranial Pressure Assessment with Nonlinear Kernel Regression

    OpenAIRE

    Xu, Peng; Kasprowicz, Magdalena; Bergsneider, Marvin; Hu, Xiao

    2009-01-01

    The only established technique for intracranial pressure (ICP) measurement is an invasive procedure requiring surgically penetrating the skull for placing pressure sensors. However, there are many clinical scenarios where a noninvasive assessment of ICP is highly desirable. With an assumption of a linear relationship among arterial blood pressure (ABP), ICP and flow velocity (FV) of major cerebral arteries, an approach has been previously developed to estimate ICP non-invasively, the core of ...

  18. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    OpenAIRE

    Vappou, J.; Luo, J; Okajima, K.; Di Tullio, M; Konofagou, E E

    2011-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound sig...

  19. Targeting Neural Endophenotypes of Eating Disorders with Non-invasive Brain Stimulation

    OpenAIRE

    Katharine A Dunlop; Woodside, Blake; Downar, Jonathan

    2016-01-01

    The term “eating disorders” (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), are accessible forms of neuromodulation that al...

  20. The Role of Invasive and Non-Invasive Procedures in Diagnosing Fever of Unknown Origin

    Directory of Open Access Journals (Sweden)

    Bilgul Mete, Ersin Vanli, Mucahit Yemisen, Ilker Inanc Balkan, Hilal Dagtekin, Resat Ozaras, Nese Saltoglu, Ali Mert, Recep Ozturk, Fehmi Tabak

    2012-01-01

    Full Text Available Background: The etiology of fever of unknown origin has changed because of the recent advances in and widespread use of invasive and non-invasive diagnostic tools. However, undiagnosed patients still constitute a significant number.Objective: To determine the etiological distribution and role of non-invasive and invasive diagnostic tools in the diagnosis of fever of unknown origin.Materials & Methods: One hundred patients who were hospitalized between June 2001 and 2009 with a fever of unknown origin were included in this study. Clinical and laboratory data were collected from the patients' medical records retrospectively.Results: Fifty three percent of the patients were male, with a mean age of 45 years. The etiology of fever was determined to be infectious diseases in 26, collagen vascular diseases in 38, neoplastic diseases in 14, miscellaneous in 2 and undiagnosed in 20 patients. When the etiologic distribution was analyzed over time, it was noted that the rate of infectious diseases decreased, whereas the rate of rheumatological and undiagnosed diseases relatively increased because of the advances in imaging and microbiological studies. Seventy patients had a definitive diagnosis, whereas 10 patients had a possible diagnosis. The diagnoses were established based on clinical features and non-invasive tests for 61% of the patients and diagnostic benefit was obtained for 49% of the patients undergoing invasive tests. Biopsy procedures contributed a rate of 42% to diagnoses in patients who received biopsies.Conclusion: Clinical features (such as detailed medical history-taking and physical examination may contribute to diagnoses, particularly in cases of collagen vascular diseases. Imaging studies exhibit certain pathologies that guide invasive studies. Biopsy procedures contribute greatly to diagnoses, particularly for malignancies and infectious diseases that are not diagnosed by non-invasive procedures.

  1. Non-invasive estimation of the mean pressure difference in aortic stenosis by Doppler ultrasound.

    OpenAIRE

    Teien, D; Karp, K; Eriksson, P.

    1986-01-01

    The mean pressure difference across the valve in aortic stenosis is an indicator of the severity of the obstruction to flow. Non-invasive determination of the mean pressure gradient by Doppler ultrasonography is, however, complicated by the squared relation between instantaneous velocities and pressure differences. The validity of a new simple formula for calculation of the mean pressure difference from the peak pressure difference was evaluated in 26 patients with aortic stenosis. The formul...

  2. Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests

    OpenAIRE

    Felipo, Vicente; Urios, Amparo; Giménez-Garzó, Carla; Cauli, Omar; Andrés-Costa, Maria-Jesús; González, Olga; Serra, Miguel A; Sánchez-González, Javier; Aliaga, Roberto; Giner-Durán, Remedios; Belloch, Vicente; Montoliu Félix, Carmina

    2014-01-01

    AIM: To assess whether non invasive blood flow measurement by arterial spin labeling in several brain regions detects minimal hepatic encephalopathy.METHODS: Blood flow (BF) was analyzed by arterial spin labeling (ASL) in different brain areas of 14 controls, 24 cirrhotic patients without and 16 cirrhotic patients with minimal hepatic encephalopathy (MHE). Images were collected using a 3 Tesla MR scanner (Achieva 3T-TX, Philips, Netherlands). Pulsed ASL was performed. Patients showing MHE wer...

  3. Urinary high molecular weight matrix metalloproteinases as non-invasive biomarker for detection of bladder cancer

    OpenAIRE

    Mohammed, Mohammed A; Seleim, Manar F; Abdalla, Mohga S.; Sharada, Hayat M; Abdel Wahab, Abdel Hady A.

    2013-01-01

    Background Matrix Metalloproteinases (MMPs) are key molecules for tumor growth, invasion and metastasis. Over-expression of different MMPs in tumor tissues can disturb the homeostasis and increase the level of various body fluids. Many MMPs including high molecular weights (HMWs) were detected in the urine of prostate and bladder cancer patients. Our aim here is to assess the usefulness of HMW MMPs as non invasive biomarkers in bilharzial bladder cancer in Egyptian patients. Methods The activ...

  4. The challenge to detect heart transplant rejection and transplant vasculopathy non-invasively - a pilot study

    OpenAIRE

    Helber Uwe; Schroeder Stephen; Aebert Hermann; Burgstahler Christof; Usta Engin; Kopp Andreas F; Ziemer Gerhard

    2009-01-01

    Abstract Background Cardiac allograft rejection and vasculopathy are the main factors limiting long-term survival after heart transplantation. In this pilot study we investigated whether non-invasive methods are beneficial to detect cardiac allograft rejection (Grade 03 R) and cardiac allograft vasculopathy. Thus we compared multi-slice computed tomography and magnetic resonance imaging with invasive methods like coronary angiography and left endomyocardial biopsy. Methods 10 asymptomatic lon...

  5. Non-invasive assessment of endothelial function. Intra and inter-observer variability

    OpenAIRE

    Sotomayor González,Arturo; Kostine,Andrea; Gómez-Flores,Jorge R; MANLIO F. MÁRQUEZ; Hermosillo,Antonio G; Verdejo París,Juan; Iturralde Torres,Pedro; Colin Lizalde,Luis; Nava Townsend,Santiago; Cárdenas , Manuel

    2006-01-01

    Background and objectives: Non-invasive evaluation of endothelial function with high resolution ultrasound has become a widely accepted tool in determination of high risk subjects for early atherosclerosis. Despite its simple appearance, ultrasonographic assessment of brachial artery changes, is technically challenging and has a significant learning curve. In the present study, we evaluate the intra and inter-observer variability in assessing peripheral endothelial function with high resoluti...

  6. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening

    OpenAIRE

    Dondorp, Wybo; de Wert, Guido; Bombard, Yvonne; Bianchi, Diana W; Bergmann, Carsten; Borry, Pascal; Chitty, Lyn S; Fellmann, Florence; Forzano, Francesca; Hall, Alison; Henneman, Lidewij; Howard, Heidi C; Lucassen, Anneke; Ormond, Kelly; Peterlin, Borut

    2015-01-01

    This paper contains a joint ESHG/ASHG position document with recommendations regarding responsible innovation in prenatal screening with non-invasive prenatal testing (NIPT). By virtue of its greater accuracy and safety with respect to prenatal screening for common autosomal aneuploidies, NIPT has the potential of helping the practice better achieve its aim of facilitating autonomous reproductive choices, provided that balanced pretest information and non-directive counseling are available as...

  7. The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis

    OpenAIRE

    Elisavet A. Papageorgiou; George Koumbaris; Elena Kypri; Michael Hadjidaniel; Patsalis, Philippos C.

    2014-01-01

    Epigenetic modifications have proven to play a significant role in cancer development, as well as fetal development. Taking advantage of the knowledge acquired during the last decade, great interest has been shown worldwide in deciphering the fetal epigenome towards the development of methylation-based non-invasive prenatal tests (NIPT). In this review, we highlight the different approaches implemented, such as sodium bisulfite conversion, restriction enzyme digestion and methylated DNA immun...

  8. Non-invasive mechanical ventilation in hematology patients: let's agree on several things first

    OpenAIRE

    Schnell, David; Lemiale, Virginie; Azoulay, Élie

    2012-01-01

    Acute respiratory failure is a dreaded and life-threatening event that represents the main reason for ICU admission. Respiratory events occur in up to 50% of hematology patients, including one-half of those admitted to the ICU. Mortality from acute respiratory failure in hematology patients depends on the patient's general status, acute respiratory failure etiology, need for mechanical ventilation and associated organ dysfunction. Non-invasive mechanical ventilation is clearly beneficial for ...

  9. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    Science.gov (United States)

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment. PMID:27441427

  10. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have

    OpenAIRE

    Herreros-Villanueva, Marta; Bujanda, Luis

    2016-01-01

    Pancreatic cancer (PC) is probably the most lethal tumor being forecast as the second most fatal cancer by 2020 in developed countries. Only the earliest forms of the disease are a curable disease but it has to be diagnosed before symptoms starts. Detection at curable phase demands screening intervention for early detection and differential diagnosis. Unfortunately, no successful strategy or image technique has been concluded as effective approach and currently non-invasive biomarkers are the...

  11. Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes

    OpenAIRE

    Koman, Volodymyr B.; Santschi, Christian; Martin, Olivier J. F.

    2015-01-01

    The continuous measurement of uptake or release of biomarkers provides invaluable information for understanding and monitoring the metabolism of cells. In this work, a multiscattering-enhanced optical biosensor for the multiplexed, non-invasive, and continuous detection of hydrogen peroxide (H2O2), lactate and glucose is presented. The sensing scheme is based on optical monitoring of the oxidation state of the metalloprotein cytochrome c (cyt c). The analyte of interest is enzymatically conve...

  12. The non-invasive Xe-133 method: evaluation of CBF indices

    International Nuclear Information System (INIS)

    Application of the non-invasive Xe133 method (inhalation or IV injection) in head injury, stroke and other severe pathology presents a problem with respect to the stability and interpretation of blood flow indices. The standard two-compartment analysis of the clearance curve is particularly sensitive to shifts in compartment size, a phenomenon referred to as 'slippage'. The present study was designed to assess the effect of slippage on both compartmental and non-compartmental indices of blood flow. (Auth.)

  13. Cell-free nucleic acids as a non-invasive route for investigating atherosclerosis.

    Science.gov (United States)

    Cerne, Darko; Bajalo, Jana Lukac

    2014-01-01

    Metabolic syndrome is directly linked with atherosclerotic burden and cell-free nucleic acids (cf-NA) analysis has recently emerged as a novel research tool in atherosclerosis practice and research. cf-NA are nucleic acids (DNA, mRNA, miRNA, mitochondrial DNA) found in plasma and cell-free fractions of various other biological fluids. They have all the characteristics of the nucleic acids in the cells of their origin, thus constituting an emerging field for non-invasive assessment. Initially, quantitative and qualitative analysis of cf-NA has been accepted as clinically useful in non-invasive prenatal diagnosis, and in the diagnosis and monitoring of numerous cancers. As to atherosclerosis, cf-NA analysis poses an important challenge in diagnosis and prognostic evaluation of acute coronary syndrome, in prediction of cardiovascular disease, in non-invasive early detection of atherosclerosis and understanding its pathological mechanism in vivo, in assessing various issues of treatment for atherosclerosis in vivo, and in the unique simultaneous measurement of mRNA levels and protein concentrations in a single sample of plasma. Examples of its use are presented in this review. Besides the advances in technologies, the precise evaluation and optimization of pre-analytical and analytical aspects of cf-NA analysis have impacted importantly on the reliability of test results. We have, therefore, reviewed the most important analytical considerations. Further clinical studies and analytical improvements will answer the question as to whether cf-NA, as novel biomarkers, can be reliably applied clinically in non-invasive, early diagnosis and monitoring of the vulnerable atherosclerotic plaques of patients who could suffer from acute coronary syndrome. PMID:24320033

  14. Non-invasive pressure difference estimation from PC-MRI using the work-energy equation.

    Science.gov (United States)

    Donati, Fabrizio; Figueroa, C Alberto; Smith, Nicolas P; Lamata, Pablo; Nordsletten, David A

    2015-12-01

    Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245

  15. Comparison of invasive and non-invasive blood pressure monitoring during clinical anaesthesia in dogs.

    Science.gov (United States)

    MacFarlane, Paul D; Grint, Nicola; Dugdale, Alexandra

    2010-03-01

    Monitoring blood pressure during anaesthesia is widely recommended in man and animals. The accuracy of any device used to measure blood pressure is an important consideration when selecting monitoring equipment, the ANSI/AAMI SP10 standard is widely cited in this respect in recent veterinary publications. Blood pressure was monitored using invasive and non-invasive techniques during clinical anaesthesia in 19 dogs. The results were compared using Bland-Altman analysis. The bias (and limits of agreement) between invasive and non-invasive measurement was 7.1 mmHg (+/-34.7) for systolic blood pressure, -1.8 mmHg (+/-27.4) for mean blood pressure and 6.9 mmHg (+/-27.5) for diastolic blood pressure. In a clinical setting the bias between invasive and non-invasive measurement techniques was similar or smaller than laboratory reports, however the limits of agreement were considerably wider suggesting that care should be exercised when interpreting NIBP values. PMID:20306347

  16. The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques

    Science.gov (United States)

    Doherty, B.; Daveri, A.; Clementi, C.; Romani, A.; Bioletti, S.; Brunetti, B.; Sgamellotti, A.; Miliani, C.

    2013-11-01

    This paper highlights the efficacy of non-invasive portable spectroscopy for assessing the execution technique and constituent materials in one of the most important medieval manuscripts, the Book of Kells. An aimed campaign of in situ measurements by the MObile LABoratory (MOLAB) has analyzed its elemental composition and vibrational and electronic molecular properties. The ample analytical toolbox has afforded complementary diagnostic information of the pigment palette permitting the characterization of both inorganic and organic materials as pigments and dyes in the white, purple, blue, red, orange, green and black areas. In particular, the novel widespread use of calcinated gypsum (anhydrite) as both a white pigment and in correlation to the organic dyes in this manuscript has been noted. The non-invasive identification of the organic dye orchil is significant considering its rare non invasive detection in medieval manuscripts. Finally the occurrence of particular alterations of the organic black areas giving rise to calcium carboxylate and calcium oxalate has been specifically highlighted. Importantly, this work elaborates complex aspects of the employed painting materials which have given rise to numerous significant points of interest for a more elaborate understanding of this Irish treasure.

  17. A non-invasive method for the determination of liquid injectables by Raman spectroscopy.

    Science.gov (United States)

    Zhao, Yu; Ji, Nan; Yin, Lihui; Wang, Jun

    2015-08-01

    Drug safety has become a very important subject, and more countries have joined in the fight against counterfeit drugs. This study demonstrated a non-invasive Raman spectroscopy method that could be utilized for screening liquid injectable drugs for spurious/falsely-labeled/falsified/counterfeit medical products (SFFCs). Two problems were solved to remove the blocks in identification and quantitation: one problem was the weak API signal extraction from the non-invasive Raman spectra and the other was the problem of Raman absolute measurement. Principal component analysis (PCA) and classical least square (CLS) algorithms were performed to establish the models. Water was chosen as the "internal standard" to normalize the spectra to solve the problem of Raman absolute measurement. The results showed that the 11 positive samples and 66 negative samples were all well identified with a threshold of 0.95. One of the positive samples contained the excipient propylene glycol, which was identified successfully at the same time. The accuracy of quantitative results was approximately 5% for doxofylline liquid injectables and about 10% for the low-concentration and big glass bottle-containers of Levofloxacin Lactate and Sodium Chloride Injections as compared to the results using an HPLC method, this is satisfactory for fast screening of SFFCs. In conclusion, with the development of a database of identification and quantitation models, this method may determine liquid injectable drugs in a fast and non-invasive way and become one of the most powerful weapons against SFFCs. Graphical Abstract ᅟ. PMID:25588367

  18. Photoplethysmography for non-invasive in vivo measurement of bone hemodynamics

    International Nuclear Information System (INIS)

    Developments in photoplethysmography (PPG) hardware make this device a promising tool for non-invasive deep-tissue hemodynamic measurements. The aim of this study was to validate the use of PPG as a tool for non-invasive bone hemodynamic measurements. A new PPG device capable of measuring bone hemodynamic responses was designed, tested and validated. Validation experiments included cold exposure, arterial occlusion, skin occlusion and nitroglycerin exposure. Cold exposure resulted in a decrease in skin perfusion (p = 0.011) and bone perfusion (p = 0.005); arterial occlusion also resulted in decreased skin perfusion (p < 0.001) and bone perfusion (p = 0.008), with arterial occlusion resulting in a greater decrease in perfusion than cold exposure. The independence of the skin and bone PPG signals was demonstrated by the ability to independently increase (p = 0.003) and decrease (p = 0.005) the skin signal without significantly affecting the bone signal. Our experiments build upon and expand previous PPG developments and validation studies. Our custom-made PPG hardware represents a state-of-the-art tool for non-invasive monitoring of deep tissues, and our data support the use of PPG as a valid tool for measuring bone hemodynamic responses in vivo. (paper)

  19. Topical gene electrotransfer to the epidermis of hairless guinea pig by non-invasive multielectrode array.

    Directory of Open Access Journals (Sweden)

    Siqi Guo

    Full Text Available Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after gene electrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest gene electrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient.

  20. Non-invasive ventilation in the postoperative period: Is there a role?

    Directory of Open Access Journals (Sweden)

    Ashu S Mathai

    2011-01-01

    Full Text Available Non-invasive positive pressure ventilation or non-invasive ventilation (NIV has emerged as a simpler and safer alternative to invasive mechanical ventilation in patients developing acute postoperative respiratory failure. The benefits of NIV as compared to intubation and mechanical ventilation include lower complications, shorter duration of hospital stay, reduced morbidity, lesser cost of treatment and even reduced mortality rates. However, its use may not be uniformly applicable in all patient groups. This article reviews the indications, contraindications and evidence supporting the use of NIV in individual patient groups in the postoperative period. The anaesthesiologist needs to recognise the subset of patients most likely to benefit from NIV therapy so as to apply it most effectively. It is equally important to promptly identify signs of failure of NIV therapy and be prepared to initiate alternate ways of respiratory support. The author searched PubMed and Ovid MEDLINE, without date restrictions. Search terms included Non-invasive ventilation, postoperative and respiratory failure. Foreign literature was included, though only articles with English translation were used.

  1. Non-invasive wave reflection quantification in patients with reduced ejection fraction

    International Nuclear Information System (INIS)

    The non-invasive quantification of arterial wave reflection is an increasingly important concept in cardiovascular research. It is commonly based on pulse wave analysis (PWA) of aortic pressure. Alternatively, wave separation analysis (WSA) considering both aortic pressure and flow waveforms can be applied. Necessary estimates of aortic flow can be measured by Doppler ultrasound or provided by mathematical models. However, this approach has not been investigated intensively up to now in subjects developing systolic heart failure characterized by highly reduced ejection fraction (EF). We used non-invasively generated aortic pressure waveforms and Doppler flow measurements to derive wave reflection parameters in 61 patients with highly reduced and 122 patients with normal EF. Additionally we compared these readings with estimates from three different flow models known from literature (triangular, averaged, Windkessel). After correction for confounding factors, all parameters of wave reflection (PWA and WSA) were comparable for patients with reduced and normal EF. Wave separations assessed with the Windkessel based model were similar to those derived from Doppler flow in both groups. The averaged waveform performed poorer in reduced than in normal EF, whereas triangular flow represented a better approximation for reduced EF. Overall, the non-invasive assessment of WSA parameters based on mathematical models compared to ultrasound seems feasible in patients with reduced EF. (paper)

  2. Non-invasive monitoring of Streptococcus pyogenes vaccine efficacy using biophotonic imaging.

    Directory of Open Access Journals (Sweden)

    Faraz M Alam

    Full Text Available Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 10(5 bacterial colony forming units (CFU in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines.

  3. Invasive or non invasive angiography? The role of conventional catheder angiography

    International Nuclear Information System (INIS)

    Within the last decade, diagnostic and interventional angiography have been developed to a high degree of performance, due to the widespread use of DSA, the miniaturisation of the puncture trauma and the introduction sets (catheters, sheaths), the development of high-tech materials (e.g., Nitinol guidewires) and the application of non-ionic, low osmolal contrast media. The specific risks of the procedure, thereby, have been significantly reduced, but could not be totally eliminated. To evaluate vascular diseases non-invasively, special attention was attributed to the progress of colour coded duplex, (spiral) CT-angiography and (CE)MR-angiography, based on the estbalished imaging with US, CT and MRT. The matter in question is whether or not they can substitute the role of conventional angiography as the 'gold standard' of vessel imaging. Clinical validity and economic efficiency both determine the indication for the use of invasive or non-invasive methods. In diagnostic procedures, there is a growing tendency for the use of non-invasive techniques, like in imaging of the abdominal and thoracic aorta, the renal, pulmonary and extra- and intra-cranial arteries. Conventional angiography is still reserved for the evaluation of small vessels of the upper and lower extremities, and vessel status in preoperative conditions (carotid, celiac trunk, mesenteric and renal arteries and aneurysms of the cerebral vasculature). Fluoroscopic guiding of catheters and contrast enhancement in interventional procedures, however, cannot be substituted by alternative techniques in the foreseeable future. (orig.)

  4. Non-Invasive Techniques for Detection and Diagnosis of Oral Potentially Malignant Disorders.

    Science.gov (United States)

    Liu, Dongjuan; Zhao, Xin; Zeng, Xin; Dan, Hongxia; Chen, Qianming

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is the most common oral and maxillofacial malignancy, and its morbidity and mortality rates are still high in most countries. Oral potentially malignant disorders (PMDs) are used to refer to a heterogeneous group of conditions that are characterized by increased risk for malignant transformation to OSCC. Currently identified oral PMDs include leukoplakia, erythroplakia, palatal lesions associated with reverse smoking, oral lichen planus, oral submucous fibrosis, actinic keratosis, and discoid lupus erythematosus. The early detection and diagnosis of these lesions are important for cancer prevention and disease management. In recent years, there has been a growing and persistent demand for new non-invasive, practical diagnostic techniques that might facilitate the early detection of oral PMDs. The non-invasive detection techniques evaluated in this review are divided into four categories: vital staining with a solution that can be used as a mouth rinse or applied onto a suspected area of the mouth, light-based detection systems, optical diagnostic technologies that employ returned optical signals to reflect structural and morphological changes within tissues, and salivary biomarkers. Most of these techniques have shown great potential for screening and monitoring oral PMDs. In this review article, the authors critically assess these non-invasive detection techniques for oral PMDs. We also provide a summary of the sensitivity and specificity of each technique in detecting oral PMDs and oral cancer, as well as their advantages, disadvantages, clinical applications, and indications. PMID:26888696

  5. Multi-scale simulations predict responses to non-invasive nerve root stimulation

    Science.gov (United States)

    Laakso, Ilkka; Matsumoto, Hideyuki; Hirata, Akimasa; Terao, Yasuo; Hanajima, Ritsuko; Ugawa, Yoshikazu

    2014-10-01

    Objective. Established biophysical neurone models have achieved limited success in reproducing electrophysiological responses to non-invasive stimulation of the human nervous system. This is related to our insufficient knowledge of the induced electric currents inside the human body. Despite the numerous research and clinical applications of non-invasive stimulation, it is still unclear which internal sites are actually affected by it. Approach. We performed multi-scale computer simulations that, by making use of advances in computing power and numerical algorithms, combine a microscopic model of electrical excitation of neurones with a macroscopic electromagnetic model of the realistic whole-body anatomy. Main results. The simulations yield responses consistent with those experimentally recorded following magnetic and electrical motor root stimulation in human subjects, and reproduce the observed amplitudes and latencies for a wide variety of stimulation parameters. Significance. Our findings demonstrate that modern computational techniques can produce detailed predictions about which and where neurones are activated, leading to improved understanding of the physics and basic mechanisms of non-invasive stimulation and enabling potential new applications that make use of improved targeting of stimulation.

  6. Non-invasive optical detection of glucose in cell culture nutrient medium

    Science.gov (United States)

    Cote, Gerald L.

    1993-01-01

    The objective of the proposed research was to begin the development of a non-invasive optical sensor for measuring glucose concentration in the output medium of cell cultures grown in a unique NASA bioreactor referred to as an integrated rotating-wall vessel (IRWV). The input, a bovine serum based nutrient media, has a known glucose concentration. The cells within the bioreactor digest a portion of the glucose. Thus, the non-invasive optical sensor is needed to monitor the decrease in glucose due to cellular consumption since the critical parameters for sustained cellular productivity are glucose and pH. Previous glucose sensing techniques have used chemical reactions to quantify the glucose concentration. Chemical reactions, however, cannot provide for continuous, real time, non-invasive measurement as is required in this application. Our effort while in the fellowship program was focused on the design, optical setup, and testing of one bench top prototype non-invasive optical sensor using a mid-infrared absorption spectroscopy technique. Glucose has a fundamental vibrational absorption peak in the mid-infrared wavelength range at 9.6 micron. Preliminary absorption data using a CO2 laser were collected at this wavelength for water based glucose solutions at different concentrations and one bovine serum based nutrient medium (GTSF) with added glucose. The results showed near linear absorption responses for the glucose-in-water data with resolutions as high at 108 mg/dl and as low as 10 mg/dl. The nutrient medium had a resolution of 291 mg/dl. The variability of the results was due mainly to thermal and polarization drifts of the laser while the decrease in sensitivity to glucose in the nutrient medium was expected due to the increase in the number of confounders present in the nutrient medium. A multispectral approach needs to be used to compensate for these confounders. The CO2 laser used for these studies was wavelength tunable (9.2 to 10.8 micrometers), however

  7. A non-invasive identification of hormone metabolites, gonadal event and reproductive status of captive female tigers

    OpenAIRE

    HERI DWI PUTRANTO

    2011-01-01

    Putranto HD (2011) A non-invasive identification of hormone metabolites, gonadal event and reproductive status of captive female tigers. Biodiversitas 12: 131-135. As a non-invasive method, fecal sample provides some advantage for animal and collector. The purpose of the present study were to monitor the reproductive status of female Siberian tigers (Panthera tigris altaica) by assessing changes in fecal during natural ovarian activity and pregnancy and to identify whether progesterone (P4) e...

  8. Non-invasive mechanical ventilation and mortality in elderly immunocompromised patients hospitalized with pneumonia: a retrospective cohort study

    OpenAIRE

    Johnson, Christopher S; Frei, Christopher R; Metersky, Mark L.; Anzueto, Antonio R.; Mortensen, Eric M

    2014-01-01

    Background Mortality after pneumonia in immunocompromised patients is higher than for immunocompetent patients. The use of non-invasive mechanical ventilation for patients with severe pneumonia may provide beneficial outcomes while circumventing potential complications associated with invasive mechanical ventilation. The aim of our study was to determine if the use of non-invasive mechanical ventilation in elderly immunocompromised patients with pneumonia is associated with higher all-cause m...

  9. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C

    OpenAIRE

    Boursier Jérôme; Bertrais Sandrine; Oberti Frédéric; Gallois Yves; Fouchard-Hubert Isabelle; Rousselet Marie-Christine; Zarski Jean-Pierre; Calès Paul

    2011-01-01

    Abstract Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-inva...

  10. Non-invasive mechanical ventilation in acute respiratory failure due to chronic obstructive pulmonary disease: correlates for success.

    OpenAIRE

    Ambrosino, N; Foglio, K; Rubini, F.; Clini, E.; Nava, S.; M. Vitacca

    1995-01-01

    BACKGROUND--Non-invasive mechanical ventilation is increasingly used in the treatment of acute respiratory failure in patients with chronic obstructive pulmonary disease (COPD). The aim of this study was to identify simple parameters to predict the success of this technique. METHODS--Fifty nine episodes of acute respiratory failure in 47 patients with COPD treated with non-invasive mechanical ventilation were analysed, considering each one as successful (78%) or unsuccessful (22%) according t...

  11. Ancient and historic steel in Japan, India and Europe, a non-invasive comparative study using thermal neutron diffraction.

    Science.gov (United States)

    Grazzi, F; Civita, F; Williams, A; Scherillo, A; Barzagli, E; Bartoli, L; Edge, D; Zoppi, M

    2011-05-01

    The production and refinement of steel has followed very different paths in different parts of the Eurasian continent. In aiming to characterize the similarities and differences between various smelting and smithing methods, we have analysed steel samples from four different areas and historic periods: the Kotō Age in Japan (twelfth-sixteenth century), the Moghul Empire in India (seventeenth-nineteenth century), the Ottoman Turkish Empire (seventeenth century) and the late Middle Ages (fifteenth century) in Italy. The best quality steel was employed for forging arms and armour of high quality, so that we have selected samples from Japan, India, the Middle East and Italy belonging to such a category. Traditional methods, such as metallography, used to characterize different steels in terms of their carbon contents, microconstituents and slag inclusions, entailed an invasive approach. Since many of the selected artefacts are in a very good state of conservation, a different and non-invasive approach was desirable. To this aim, we have used time of flight neutron diffraction on the Italian Neutron Experimental Station diffractometer, located at the pulsed neutron source ISIS in the United Kingdom. By this technique, we were able to quantify the phase distribution of the metal phases, the slag inclusion content, and the oxidation state of the samples, both as average concentration on the whole artefact and in selected gauge volumes. The results of the present investigation offer an interesting picture of the steel metallurgy in different areas of the world. PMID:21400072

  12. Non-Invasive Prenatal Diagnosis of Lethal Skeletal Dysplasia by Targeted Capture Sequencing of Maternal Plasma

    Science.gov (United States)

    Wang, Yaoshen; Chen, Chao; Gao, Changxin; Yu, Song; Liu, Yan; Song, Wei; Asan; Zhu, Hongmei; Yang, Ling; Deng, Hongmei; Su, Yue; Yi, Xin

    2016-01-01

    Background Since the discovery of cell-free foetal DNA in the plasma of pregnant women, many non-invasive prenatal testing assays have been developed. In the area of skeletal dysplasia diagnosis, some PCR-based non-invasive prenatal testing assays have been developed to facilitate the ultrasound diagnosis of skeletal dysplasias that are caused by de novo mutations. However, skeletal dysplasias are a group of heterogeneous genetic diseases, the PCR-based method is hard to detect multiple gene or loci simultaneously, and the diagnosis rate is highly dependent on the accuracy of the ultrasound diagnosis. In this study, we investigated the feasibility of using targeted capture sequencing to detect foetal de novo pathogenic mutations responsible for skeletal dysplasia. Methodology/Principal Findings Three families whose foetuses were affected by skeletal dysplasia and two control families whose foetuses were affected by other single gene diseases were included in this study. Sixteen genes related to some common lethal skeletal dysplasias were selected for analysis, and probes were designed to capture the coding regions of these genes. Targeted capture sequencing was performed on the maternal plasma DNA, the maternal genomic DNA, and the paternal genomic DNA. The de novo pathogenic variants in the plasma DNA data were identified using a bioinformatical process developed for low frequency mutation detection and a strict variant interpretation strategy. The causal variants could be specifically identified in the plasma, and the results were identical to those obtained by sequencing amniotic fluid samples. Furthermore, a mean of 97% foetal specific alleles, which are alleles that are not shared by maternal genomic DNA and amniotic fluid DNA, were identified successfully in plasma samples. Conclusions/Significance Our study shows that capture sequencing of maternal plasma DNA can be used to non-invasive detection of de novo pathogenic variants. This method has the potential

  13. Non-invasive assessment of adrenocortical function in captive Nile crocodiles (Crocodylus niloticus).

    Science.gov (United States)

    Ganswindt, Stefanie B; Myburgh, Jan G; Cameron, Elissa Z; Ganswindt, Andre

    2014-11-01

    The occurrence of stress-inducing factors in captive crocodilians is a concern, since chronic stress can negatively affect animal health and reproduction, and hence production. Monitoring stress in wild crocodiles could also be beneficial for assessing the state of health in populations which are potentially threatened by environmental pollution. In both cases, a non-invasive approach to assess adrenocortical function as a measure of stress would be preferable, as animals are not disturbed during sample collection, and therefore sampling is feedback-free. So far, however, such a non-invasive method has not been established for any crocodilian species. As an initial step, we therefore examined the suitability of two enzyme-immunoassays, detecting faecal glucocorticoid metabolites (FGMs) with a 11β,21-diol-20-one and 5β-3α-ol-11-one structure, respectively, for monitoring stress-related physiological responses in captive Nile crocodiles (Crocodylus niloticus). An adrenocorticotropic hormone (ACTH) challenge was performed on 10 sub-adult crocodiles, resulting in an overall increase in serum corticosterone levels of 272% above the pre-injection levels 5h post-injection. Saline-treated control animals (n=8) showed an overall increase of 156% in serum corticosterone levels 5h post-administration. Faecal samples pre- and post-injection could be obtained from three of the six individually housed crocodiles, resulting in FGM concentrations 136-380% above pre-injection levels, always detected in the first sample collected post-treatment (7-15 days post-injection). FGM concentrations seem comparatively stable at ambient temperatures for up to 72 h post-defaecation. In conclusion, non-invasive hormone monitoring can be used for assessing adrenocortical function in captive Nile crocodiles based on FGM analysis. PMID:25066028

  14. Health technology assessment of non-invasive interventions for weight loss and body shape in Iran

    Science.gov (United States)

    Nojomi, Marzieh; Moradi-Lakeh, Maziar; Velayati, Ashraf; Naghibzadeh-Tahami, Ahmad; Dadgostar, Haleh; Ghorabi, Gholamhossein; Moradi-Joo, Mohammad; Yaghoubi, Mohsen

    2016-01-01

    Background: The burden of obesity and diet-related chronic diseases is increasing in Iran, and prevention and treatment strategies are needed to address this problem. The aim of this study was to determine the outcome, cost, safety and cost-consequence of non-invasive weight loss interventions in Iran. Methods: We performed a systematic review to compare non-invasive interventions (cryolipolysis and radiofrequency/ ultrasonic cavitation) with semi-invasive (lipolysis) and invasive (liposuction). A sensitive electronic searching was done to find available interventional studies. Reduction of abdomen circumference (cm), reduction in fat layer thickness (%) and weight reduction (kg) were outcomes of efficacy. Meta-analysis with random models was used for pooling efficacy estimates among studies with the same follow-up duration. Average cost per intervention was estimated based on the capital, maintenance, staff, consumable and purchase costs. Results: Of 3,111 studies identified in our reviews, 13 studies assessed lipolysis, 10 cryolipolysis and 8 considered radiofrequency. Nine studies with the same follow-up duration in three different outcome group were included in meta-analysis. Radiofrequency showed an overall pooled estimate of 2.7 cm (95% CI; 2.3-3.1) of mean reduction in circumference of abdomen after intervention. Pooled estimate of reduction in fat layer thickness was 78% (95% CI; 73%-83%) after Lipolysis and a pooled estimate of weight loss was 3.01 kg (95% CI; 2.3-3.6) after lipousuction. The cost analysis revealed no significant differences between the costs of these interventions. Conclusion: The present study showed that non-invasive interventions appear to have better clinical efficacy, specifically in the body shape measurement, and less cost compared to invasive intervention (liposuction) PMID:27390717

  15. Non invasive fibrosis biomarkers reduce but not substitute the need for liver biopsy

    Institute of Scientific and Technical Information of China (English)

    Giada Sebastiani; Alfredo Alberti

    2006-01-01

    Chronic liver diseases are very common worldwide,particularly those linked to viral hepatitis and to alcoholic and non-alcoholic fatty liver. Their natural history is variable and long-term evolution differs in individual patients. Optimised clinical management of compensated chronic liver diseases requires precise definition of the stage of liver fibrosis, the main determinant of prognosis and of most therapeutic decisions. Liver biopsy is the gold standard for assessment of hepatic fibrosis.However, it is invasive with possible complications,costly and prone to sampling errors. Many non-invasive markers of liver fibrosis have been recently proposed and assessed in the clinical setting as surrogates of liver biopsy. Direct markers are based on biochemical parameters directly linked to fibrogenesis while indirect markers use simple or more sophisticated parameters that correlate with liver fibrosis stages. Non-invasive markers of liver fibrosis have been tested in different forms of chronic liver disease and showed variable diagnostic performance, but accuracy rarely was above 75%-80%. Better results were obtained when markers were combined. On this line, we have recently proposed a set of algorithms that combine sequentially indirectnon-invasive markers of liver fibrosis, reaching 90%-95%diagnostic accuracy with significant reduction in the need for liver biopsy. Based on available evidence, it can be anticipated that non-invasive markers of liver fibrosis and their combined use will soon become a most useful tool in the clinical management of many forms of chronic liver disease. However, their implementation is expected to reduce, but not to completely eliminate, the need for liver biopsy.

  16. Reliability of non-invasive tissue sampling methods for DNA extraction in rabbits (Oryctolagus cuniculus

    Directory of Open Access Journals (Sweden)

    Manel Ben Larbi

    2012-05-01

    Full Text Available Deoxyribonucleic acid (DNA can be extracted from different tissue sources. The most common is blood, but in some situations it can be easier to take a biopsy. In some cases when it is difficult to capture animals, especially in wild populations, faeces and hairs can be considered as a source of DNA. This paper presents a pilot study conducted to compare the applicability of invasive and non-invasive sampling methods for extracting DNA for use in genetic studies of rabbits (Oryctolagus cuniculus. The study included 24 rabbits from the INRA 1001 strain.  Blood, hair, ear biopsies and faeces were collected and used as DNA sources. Our aim was to verify the quantity of DNA obtained from different tissues using two or three types of extraction. DNA was obtained for all tissue types and all extraction methods. DNA extraction was shown to be optimal with the LGC (Laboratory of Cellular Genetics blood extraction method. With regard to non-invasive methods, DNA extraction for hair using the LGC protocol and QIAamp® DNA mini kit gave very low quantities of DNA that could not be used for PCR reactions. The Chelex extraction protocol gave good results for PCR but could not be quantified. DNA extracted from faeces is a viable source of DNA for determining individual genotypes. The use of such non-invasive samples as a source of genetic material is a recent and very promising technique, especially for the study of endangered species, but these techniques are still too unreliable and costly to altogether replace invasive techniques when the latter are possible.

  17. Non-invasive therapy for the prevention of moist desquamation following β-radiation exposure

    International Nuclear Information System (INIS)

    Full text: In an environment of potential nuclear mishap, effective therapies are lacking for radiation-induced skin burns. In this report we describe an effective, non-invasive therapy for post acute radiation exposure based on skin compression. A pig skin model of β-radiation-induced moist desquamation (MD) was employed in this study. Exposure to 30 Gy was used to induce skin lesions involving >80% MD in prescribed test sites on flank skin of female Large White pigs (n 18 per flank). The animals' left flank was placed under pressure from the weight of the pig's own body for 3 hours, immediately following radiation exposure. The right flank served as control, and was not subject to compression following irradiation. Percentage differences in MD were measured between sites on both flanks based on the the area of the test site containing 50% MD (severe) as determined by clinical assessment using blinded observers. The incidence of MD was significantly higher on the uncompressed right flank as compared to the compressed left flank (p < 0.005). A 61% and 45% reduction of MD was observed in both total and severe MD, respectively, during the 8-week study period. Radiation-induced MD was significantly reduced by immediate, mild skin compression (approx. 1.5 psi) for 3 hours immediately following exposure. This observation suggests that skin lesion development from radiation-induced oxidative damage cascades may be modulated non-invasively. Understanding the mechanism(s) at work and developing devices based on this non-invasive therapeutic principle may provide a novel treatment for consequent skin injury in radiation oncology, cosmetic and therapeutic UV, laser, glycolic and derm abrasion procedures

  18. Detection of fetal mutations causing hemoglobinopathies by non-invasive prenatal diagnosis from maternal plasma

    Directory of Open Access Journals (Sweden)

    E D′Souza

    2013-01-01

    Full Text Available Background: Prenatal diagnosis of hemoglobinopathies enables couples at risk to have a healthy child. Currently used fetal sampling procedures are invasive with some risk of miscarriage. A non-invasive approach to obtain fetal deoxyribonucleic acid (DNA for diagnosis would eliminate this risk. Aim: To develop and evaluate a non-invasive prenatal diagnostic approach for hemoglobinopathies using cell-free fetal DNA circulating in the maternal plasma. Settings and Design: Couples referred to us for prenatal diagnosis of hemoglobinopathies where the maternal and paternal mutations were different were included in the study. Materials and Methods: Maternal peripheral blood was collected at different periods of gestation before the invasive fetal sampling procedure was done. The blood was centrifuged to isolate the plasma and prepare DNA. A size separation approach was used to isolate fetal DNA. Nested polymerase chain reaction (PCR-based protocols were developed for detection of the presence or absence of the paternal mutation. Results and Conclusions: There were 30 couples where the parental mutations were different. Of these, in 14 cases the paternal mutation was absent and in 16 cases it was present in the fetus. Using cell-free fetal DNA from maternal plasma, the absence of the paternal mutation was accurately determined in 12 of the 14 cases and the presence of the paternal mutation was correctly identified in 12 of the 16 cases. Thus, this non-invasive approach gave comparable results to those obtained by the conventional invasive fetal sampling methods in 24 cases giving an accuracy of 80.0%. Although the nested PCR approach enabled amplification of small quantities of cell-free DNA from maternal plasma at different periods of gestation after size separation to eliminate the more abundant maternal DNA, an accurate diagnosis of the presence or absence of the paternal mutation in the fetus was not possible in all cases to make it clinically

  19. Non- invasive in vivo analysis of a murine aortic graft using high resolution ultrasound microimaging

    International Nuclear Information System (INIS)

    Introduction: As yet, murine aortic grafts have merely been monitored histopathologically. The aim of our study was to examine how these grafts can be monitored in vivo and non-invasively by using high-resolution ultrasound microimaging to evaluate function and morphology. A further aim was to prove if this in vivo monitoring can be correlated to immunohistological data that indicates graft integrity. Methods: Murine infrarenal aortic isografts were orthotopically transplanted into 14 female mice (C57BL/6-Background) whereas a group of sham-operated animals (n = 10) served as controls. To assess the graft morphology and hemodynamics, we examined the mice over a post-operative period of 8 weeks with a sophisticated ultrasound system (Vevo 770, Visual Sonics). Results: The non-invasive graft monitoring was feasible in all transplanted mice. We could demonstrate a regular post-transplant graft function and morphology, such as anterior/posterior wall displacement and wall thickness. Mild alterations of anterior wall motion dynamics could only be observed at the site of distal graft anastomosis (8 weeks after grafting (transplant vs. sham mice: 0.02 mm ± 0.01 vs. 0.03 mm ± 0.01, p < 0.05). However, the integrity of the entire graft wall could be confirmed by histopathological evaluation of the grafts. Conclusions: With regard to graft patency, function and morphology, high resolution ultrasound microimaging has proven to be a valuable tool for longitudinal, non-invasive, in vivo graft monitoring in this murine aortic transplantation model. Consequently, this experimental animal model provides an excellent basis for molecular and pharmacological studies using genetically engineered mice.

  20. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  1. Non-invasive assessment of leaf water status using a dual-mode microwave resonator.

    Science.gov (United States)

    Dadshani, Said; Kurakin, Andriy; Amanov, Shukhrat; Hein, Benedikt; Rongen, Heinz; Cranstone, Steve; Blievernicht, Ulrich; Menzel, Elmar; Léon, Jens; Klein, Norbert; Ballvora, Agim

    2015-01-01

    The water status in plant leaves is a good indicator for the water status in the whole plant revealing stress if the water supply is reduced. The analysis of dynamic aspects of water availability in plant tissues provides useful information for the understanding of the mechanistic basis of drought stress tolerance, which may lead to improved plant breeding and management practices. The determination of the water content in plant tissues during plant development has been a challenge and is currently feasible based on destructive analysis only. We present here the application of a non-invasive quantitative method to determine the volumetric water content of leaves and the ionic conductivity of the leaf juice from non-invasive microwave measurements at two different frequencies by one sensor device. A semi-open microwave cavity loaded with a ceramic dielectric resonator and a metallic lumped-element capacitor- and inductor structure was employed for non-invasive microwave measurements at 150 MHz and 2.4 Gigahertz on potato, maize, canola and wheat leaves. Three leaves detached from each plant were chosen, representing three developmental stages being representative for tissue of various age. Clear correlations between the leaf- induced resonance frequency shifts and changes of the inverse resonator quality factor at 2.4 GHz to the gravimetrically determined drying status of the leaves were found. Moreover, the ionic conductivity of Maize leaves, as determined from the ratio of the inverse quality factor and frequency shift at 150 MHz by use of cavity perturbation theory, was found to be in good agreement with direct measurements on plant juice. In conjunction with a compact battery- powered circuit board- microwave electronic module and a user-friendly software interface, this method enables rapid in-vivo water amount assessment of plants by a handheld device for potential use in the field. PMID:25918549

  2. A literature review on the diagnosis and non-invasive treatment of small caries lesions

    OpenAIRE

    Nilsen, Bo Wold; Lund Olsen, Marius

    2012-01-01

    Diagnosis and treatment of the caries disease and post-treatment follow-up are interconnected concepts. The aim of the study was to map out the diagnostic methods available for early caries lesions, the existing non-invasive caries treatment, and in what way the follow-ups of these treatments are conducted. The selection of articles was based on a primary search using the PubMed search engine, including search words associated with the topic. The papers which the primary search yielded we...

  3. Non-invasive estimation of the metabolic heat production of breast tumors using digital infrared imaging

    CERN Document Server

    González, Francisco Javier

    2011-01-01

    In this work the metabolic heat generated by breast tumors was estimated indirectly and noninvasively from digital infrared images and numerically simulating a simplified breast model and a cancerous tumor, this parameter can be of clinical importance since it has been related to the doubling volume's time and malignancy for that particular tumor. The results indicate that digital infrared imaging has the potential to estimate in a non-invasive way the malignancy of a tumor by calculating its metabolic heat generation from bioheat thermal transfer models.

  4. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  5. Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds

    International Nuclear Information System (INIS)

    In this study, we introduce a cellular differentiation cellular model based on dielectric spectroscopy that characterizes epithelial differentiation processes. Non-invasive cellular monitoring was achieved within a three-dimensional microenvironment consisting of a cell-containing collagen I gel seeded onto microfabricated scaffolds. In this proof-of-concept investigation, Madin–Darby canine kidney cells were cultured within microfabricated, geometrically controlled scaffolds and allowed us to differentiate to hollow cyst-like structures. This transformation within the three-dimensional environment is monitored and characterized through dielectric spectroscopy while maintaining cell culture in vitro. (paper)

  6. Validation of a non-invasive arterial monitor GATE model for PET

    Energy Technology Data Exchange (ETDEWEB)

    Giansiracusa, P.J., E-mail: pgia@student.unimelb.edu.au [School of Physics, The University of Melbourne, Parkville (Australia); Peake, D.J. [DETECT Australia, Bundoora (Australia); Sobott, B.A. [School of Physics, The University of Melbourne, Parkville (Australia); O' Keefe, G. [The Austin PET Centre, Austin Hospital, Heidelberg (Australia); Rassool, R.P. [School of Physics, The University of Melbourne, Parkville (Australia)

    2014-02-11

    The Non-Invasive Arterial Monitor (NIAM3) is an SiPM based detector system designed for calibrating Positron-Emission Tomography (PET) images without invasive blood sampling. By imaging the radial and ulnar arteries in the wrist directly with a custom built PET system the resultant PET images can be calibrated. An integral step in the development of a complex detector system is the creation of a model which accurately reflects the physical reality being studied. This paper describes the development of a simulation for NIAM which shows good agreement between the model and physical detector setup.

  7. Non-invasive prediction of skin flap shrinkage: a new concept based on animal experimental evidence.

    Science.gov (United States)

    Lim, K H; Jeyapalina, S; Ho, H N; Chew, C M; Chen, P C Y; Teo, C L; Lim, B H

    2008-01-01

    A non-invasive, in vivo method has been developed to predict the skin flap shrinkage (retraction) following a harvest. It involves the use of a novel custom-designed extensometer to measure the force-displacement behaviour of skin and subsequent data analysis to estimate the shrinkage. In validation experiments performed on pigs, this method has been shown to produce results with an average absolute error of 6.0% between the actual and predicted shrinkages. This may be close to what an experienced surgeon would estimate subjectively, thus indicating the potential usefulness of this method to predict flap shrinkage of patient's donor sites. PMID:18485350

  8. [Research on a non-invasive pulse wave detection and analysis system].

    Science.gov (United States)

    Li, Ting; Yu, Gang

    2008-10-01

    A novel non-invasive pulse wave detection and analysis system has been developed, including the software and the hardware. Bi-channel signals can be acquired, stored and shown on the screen dynamically at the same time. Pulse wave can be reshown and printed after pulse wave analysis and pulse wave velocity analysis. This system embraces a computer which is designed for fast data saving, analyzing and processing, and a portable data sampling machine which is based on a singlechip. Experimental results have shown that the system is stable and easy to use, and the parameters are calculated accurately. PMID:19024446

  9. Using of Telomerase Enzyme in Urine as a Non invasive Marker for Cancer Bladder Detection

    Directory of Open Access Journals (Sweden)

    Azza A Hassan*, Fawzia A . El- Sheshtawey** , Seliem A. Seliem

    2008-12-01

    Full Text Available Background: Urinary bladder cancer is one of the major health problem all over the world. Cystoscopy remains the gold standard for identifying bladder cancer but it is invasive and expensive, therefore, a simple, non invasive test for detecting bladder cancer would be helpful. Several biomarkers for bladder cancer have been used, but no single marker has been accurate and conclusive. Aim: The current study aimed to measure telomerase enzyme in urine as a useful non invasive marker for detection of bladder cancer. Methods : Forty eight patients ( 39 males and 9 females were included, They are complaining of urinary symptoms and undergo cystoscopy with biopsy of bladder lesions and histopathological examination. They were divided into groups: Group I: 16 patients ( 11 males and 5 females have benign urologic conditions. Group II: 32 patients (28 males and 4 females have proven bladder cancer patients underwent transurethral resection of bladder tumor or cystoscopy with biopsy of bladder lesions. Also, 15 apparently healthy volunteers with matched age and sex with patients were served as a control group. All subjects were submitted to laboratory estimation of the following in urine: urinary creatinine, urine cytology, telomerase enzyme in urine by telomerase PCR and complete urine examination. Results : The results of this study revealed that a highly significant increase in the frequency of cytolological positive cases for tumor cells in malignant group than each of benign group and healthy subjects, while no significant difference was detected between benign group and healthy subjects. The frequency of telomerase in urine was significantly higher in malignant group than each of benign group and healthy subjects, while no significant difference was detected between benign group and healthy subjects. The telomerase activity has sensitivity of 90.6% for diagnosis of cancer bladder with 93.7% for specificity and PPV was 96.6%, NPV was 83.3% and

  10. Luminescent Tension-Indicating Orthopedic Strain Gauges for Non-Invasive Measurements Through Tissue

    Science.gov (United States)

    Anker, Jeffrey (Inventor); Rogalski, Melissa (Inventor); Anderson, Dakota (Inventor); Heath, Jonathon (Inventor)

    2015-01-01

    Strain gauges that can provide information with regard to the state of implantable devices are described. The strain gauges can exhibit luminescence that is detectable through living tissue, and the detectable luminescent emission can vary according to the strain applied to the gauge. A change in residual strain of the device can signify a loss of mechanical integrity and/or loosening of the implant, and this can be non-invasively detected either by simple visual detection of the luminescent emission or through examination of the emission with a detector such as a spectrometer or a camera.

  11. Non-invasive assessment of shunt and ventilation/perfusion ratio in neonates with pulmonary failure

    OpenAIRE

    H. Smith; Jones, J.

    2001-01-01

    AIMS—To make non-invasive measurements of right to left (R-L) shunt and reduced ventilation/perfusion ratio (VA/Q) in neonates with pulmonary failure and to examine sequential changes in these variables after treatment.
METHODS—Twelve neonates with pulmonary failure were studied. They ranged in gestational age from 24 to 37 (median 27) weeks and were 1-39 (median 4) days old. Shunt and reduced VA/Q were derived from their effects on the relation between inspired oxygen...

  12. Urine Exosomes for Non-Invasive Assessment of Gene Expression and Mutations of Prostate Cancer

    Science.gov (United States)

    Sadeghi, Neda; Salazar, Guillermo; Shapiro, Edan; Ahn, Jennifer; Lipsky, Michael; Lin, James; Hruby, Greg W.; Badani, Ketan K.; Petrylak, Daniel P.; Benson, Mitchell C.; Donovan, Michael J.; Comper, Wayne D.; McKiernan, James M.

    2016-01-01

    Purpose The analysis of exosome/microvesicle (extracellular vesicles (EVs)) and the RNA packaged within them (exoRNA) has the potential to provide a non-invasive platform to detect and monitor disease related gene expression potentially in lieu of more invasive procedures such as biopsy. However, few studies have tested the diagnostic potential of EV analysis in humans. Experimental Design The ability of EV analysis to accurately reflect prostate tissue mRNA expression was examined by comparing urinary EV TMPRSS2:ERG exoRNA from pre-radical prostatectomy (RP) patients versus corresponding RP tissue in 21 patients. To examine the differential expression of TMPRSS2:ERG across patient groups a random urine sample was taken without prostate massage from a cohort of 207 men including prostate biopsy negative (Bx Neg, n = 39), prostate biopsy positive (Bx Pos, n = 47), post-radical prostatectomy (post-RP, n = 37), un-biopsied healthy age-matched men (No Bx, n = 44), and young male controls (Cont, n = 40). The use of EVs was also examined as a potential platform to non-invasively differentiate Bx Pos versus Bx Neg patients via the detection of known prostate cancer genes TMPRSS2:ERG, BIRC5, ERG, PCA3 and TMPRSS2. Results In this technical pilot study urinary EVs had a sensitivity: 81% (13/16), specificity: 80% (4/5) and an overall accuracy: 81% (17/21) for non-invasive detection of TMPRSS2:ERG versus RP tissue. The rate of TMPRSS2:ERG exoRNA detection was found to increase with age and the expression level correlated with Bx Pos status. Receiver operator characteristic analyses demonstrated that various cancer-related genes could differentiate Bx Pos from Bx Neg patients using exoRNA isolated from urinary EVs: BIRC5 (AUC 0.674 (CI:0.560–0.788), ERG (AUC 0.785 (CI:0.680–0.890), PCA3 (AUC 0.681 (CI:0.567–0.795), TMPRSS2:ERG (AUC 0.744 (CI:0.600–0.888), and TMPRSS2 (AUC 0.637 (CI:0.519–0.754). Conclusion This pilot study suggests that urinary EVs have the potential

  13. [Non-invasive mechanical ventilation therapy in patients with heart failure].

    Science.gov (United States)

    Dursunoğlu, Dursun; Dursunoğlu, Neşe

    2012-05-01

    Non-invasive mechanical ventilation (NIMV) therapy in patients with acute heart failure (HF) improves left ventricular functions via decreasing left ventricular afterload and reduces intubation rate and short-term mortality. In patients with chronic HF, NIMV therapy eliminates central and obstructive apneas and Cheyne-Stokes respiration, and improves morbidity. There are essentially three modes of NIMV that are used in the treatment of HF: Continuous positive airway pressure (CPAP), bilevel positive airway pressure (BIPAP) and adaptive servo-ventilation (ASV). Hereby, NIMV therapy in patients with acute and chronic HF is reviewed as well as methods, indications, effectiveness and complications. PMID:22381927

  14. NON-INVASIVE SPECTROSCOPIC ON-LINE METHODS TO MONITOR INDUSTRIAL PROCESSES

    DEFF Research Database (Denmark)

    Brooker, M. H.; Berg, Rolf W.

    2003-01-01

    Vibrational spectroscopy can be used to identify and establish concentrations of many common molecules and complex ions over a wide range of concentrations and conditions. Advances in CCD detection devices, notch-filters, lasers, micro- and fiber-optics have made it possible to use infrared and R......, studied with non-invasive Raman spectroscopy), and finally a discussion of some recent advances in experimental methods that make it possible to use Raman and infrared spectroscopy for on line analyses in some industrial applications....

  15. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    OpenAIRE

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2011-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) ...

  16. Non-invasive index of liver fibrosis induced by alcohol, thioacetamide and schistosomal infection in mice

    Directory of Open Access Journals (Sweden)

    El-Beltagy Doha M

    2010-06-01

    Full Text Available Abstract Background Non invasive approaches will likely be increasing utilized to assess liver fibrosis. This work provides a new non invasive index to predict liver fibrosis induced in mice. Methods Fibrosis was generated by thioacetamide (TAA, chronic intake of ethanol, or infection with S. mansoni in 240 mice. Both progression and regression of fibrosis (after treatment with silymarin and/or praziquantel were monitored. The following methods were employed: (i The METAVIR system was utilized to grade and stage liver inflammation and fibosis; (ii Determination of hepatic hydroxyproline and collagen; and (iii Derivation of a new hepatic fibrosis index from the induced changes, and its prospective validation in a group of 70 mice. Results The index is composed of 4 serum variable including total proteins, γ-GT, bilirubin and reduced glutathione (GSH, measured in diseased, treated and normal mice. These parameters were highly correlated with both the histological stage and the grade. They were combined in a logarithmic formula, which non-invasively scores the severity of liver fibrosis through a range (0 to 2, starting with healthy liver (corresponding to stage 0 to advanced fibrosis (corresponding stage 3.Receiver operating characteristic curves (ROC for the accuracy of the index to predict the histological stages demonstrated that the areas under the curve (AUC were 0.954, 0.979 and 0.99 for index values corresponding to histological stages 1, 2 and 3, respectively. Also, the index was correlated with stage and grade, (0.947 and 0.859, respectively. The cut off values that cover the range between stages 0-1, 1-2 and 2-3 are 0.4, 1.12 and 1.79, respectively. The results in the validation group confirmed the accuracy of the test. The AUROC was 0.869 and there was good correlation with the stage of fibrosis and grade of inflammation. Conclusion The index fulfils the basic criteria of non-invasive marker of liver fibrosis since it is liver

  17. Non-invasive determination of cardiac output by Doppler echocardiography and electrical bioimpedance

    OpenAIRE

    Silke, Bernard

    1990-01-01

    Cardiac output measured by thermodilution in 25 patients within 24 hours of acute myocardial infarction was compared with cardiac output measured by Doppler echocardiography (24 patients) and electrical bioimpedance (25 patients). The mean (range) cardiac outputs measured by Doppler (4.03 (2.2-6.0) 1/min) and electrical bioimpedance (3.79 (1.1-6.2) 1/min) were similar to the mean thermodilution value (3.95 (2.1-6.2) 1/min). Both non-invasive techniques agreed closely with thermodilution in mo...

  18. Non-invasive evaluation of arrhythmic risk in dilated cardiomyopathy:From imaging to electrocardiographic measures

    Institute of Scientific and Technical Information of China (English)

    Massimo; Iacoviello; Francesco; Monitillo

    2014-01-01

    Malignant ventricular arrhythmias are a major adverse event and worsen the prognosis of patients affected by ischemic and non-ischemic dilated cardiomyopathy.The main parameter currently used to stratify arrhythmic risk and guide decision making towards the implantation of a cardioverter defibrillator is the evaluation of the left ventricular ejection fraction.However,this strategy is characterized by several limitations and consequently additional parameters have been suggested in order to improve arrhythmic risk stratification.The aim of this review is to critically revise the prognostic significance of non-invasive diagnostic tools in order to better stratify the arrhythmic risk prognosis of dilated cardiomyopathy patients.

  19. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  20. Acquired myasthenia gravis associated with a non-invasive thymic carcinoma in a dog.

    Science.gov (United States)

    Stenner, V J; Parry, B W; Holloway, S A

    2003-09-01

    An 8 1/2-year-old neutered male Beagle was diagnosed with acquired myasthenia gravis associated with a non-invasive thymic carcinoma. The thymic mass was surgically excised and the dog was treated with pyridostigmine, prednisolone and azathioprine. Serial acetylcholine receptor antibody titres were increased initially but slowly declined to normal values over a period of 24 weeks. Improved exercise tolerance was seen following therapy, however, oesophageal dysfunction persisted. The dog was euthanased 26 weeks after initial presentation due to a complicating illness. A necropsy showed no regrowth or metastasis of the thymic carcinoma. PMID:15086092

  1. Localized proton MR spectroscopy. A non-invasive way to insights into brain metabolism

    International Nuclear Information System (INIS)

    Recent progress in image-controlled, localized proton MR spectroscopy offers a non-invasive means of gaining unique insights into human brain metabolism in man. Combined studies with MR imaging can be performed within about 1 h. Results obtained in healthy subjects provide the basis for reliable identification and quantification of metabolite concentration in the CNS and allow determination of their regional variability and age dependence. Clinical applications include infarcts, tumors, and neurodegenerative diseases, and also of metabolic disturbances resulting from diseases of the internal organs, such as diabetes mellitus or liver cirrhosis. (orig.)

  2. A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring

    Science.gov (United States)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2016-01-01

    We have developed a range of glucose sensing contact lenses, using a daily, disposable contact lens embedded with newly developed boronic acid containing fluorophores. Our findings show that our approach may be suitable for the continuous monitoring of tear glucose levels in the range 50–1000 μM, which typically track blood glucose levels, which are ≈5–10 fold higher. Our non-invasive approach may well offer an alternative solution to current invasive glucose monitoring techniques for diabetes, such as “finger pricking.” PMID:27340364

  3. Non-medical applications of non invasive prenatal testing: ethical issues and apllicabilities

    OpenAIRE

    Tasinato, Paola

    2013-01-01

    The possibility of obtaining material for foetal molecular analysis without the need of invasive procedures has been a long wished improvement of practice in prenatal diagnostics. The demonstration of the presence of foetal cells and circulating foetal free-DNA in a sample of mother-to-be’s blood promised that a non-invasive approach for prenatal diagnostics is near to becoming a reality. The presence of foetal cells (albeit in low numbers) in maternal blood has been known since 1893, when...

  4. Soil carbon measurement using non-invasive inelastic neutron scattering technique

    Science.gov (United States)

    Rapid and accurate procedures are needed to not only quantify but also to assess changes in soil C due to changes in adopted management systems. Current procedures that are used to evaluate soil C are invasive, costly, and are time and labor intensive. Emerging technologies including Inelastic Neutr...

  5. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system

    Science.gov (United States)

    Pai, Praful P.; Sanki, Pradyut K.; Sarangi, Satyabrata; Banerjee, Swapna

    2015-06-01

    This paper examines the use of photoacoustic spectroscopy (PAS) at an excitation wavelength of 905 nm for making continuous non-invasive blood glucose measurements. The theoretical background of the measurement technique is verified through simulation. An apparatus is fabricated for performing photoacoustic measurements in vitro on glucose solutions and in vivo on human subjects. The amplitude of the photoacoustic signals measured from glucose solutions is observed to increase with the solution concentration, while photoacoustic amplitude obtained from in vivo measurements follows the blood glucose concentration of the subjects, indicating a direct proportionality between the two quantities. A linear calibration method is applied separately on measurements obtained from each individual in order to estimate the blood glucose concentration. The estimated glucose values are compared to reference glucose concentrations measured using a standard glucose meter. A plot of 196 measurement pairs taken over 30 normal subjects on a Clarke error grid gives a point distribution of 82.65% and 17.35% over zones A and B of the grid with a mean absolute relative deviation (MARD) of 11.78% and a mean absolute difference (MAD) of 15.27 mg/dl (0.85 mmol/l). The results obtained are better than or comparable to those obtained using photoacoustic spectroscopy based methods or other non-invasive measurement techniques available. The accuracy levels obtained are also comparable to commercially available continuous glucose monitoring systems.

  6. Non-invasive treatment of intractable posterior epistaxis with hot-water irrigation.

    Science.gov (United States)

    Schlegel-Wagner, Christoph; Siekmann, Ulrich; Linder, Thomas

    2006-03-01

    Posterior nose bleeding is a frequent and challenging emergency. The authors report their experience using hot water irrigation as a non-invasive treatment option for posterior epistaxis. Between January 2003 and January 2005 a group of 103 patients were enrolled in this prospective study evaluating the effectiveness of a "hot water irrigation" technique to control acute posterior nose bleeding. All patients with posterior epistaxis were included, whereas anterior epistaxis was controlled using conventional methods. The patient's nose was initially anaesthetized with topical Tetracain 4% (without vasoconstriction) and a modified epistaxis-balloon-catheter was introduced into the bleeding nasal cavity obstructing the choana. The bleeding nasal cavity was continuously irrigated using 500 ml of 50 degrees C hot water. In a total of 84 patients (82%) the bleeding was successfully and permanently stopped. Forty-seven of these patients (56%) regularly took antiplatelet agents or anticoagulants. The method failed in 19 of 103 patients (18%). In the group with unsuccessful irrigation, 11 patients (58%) were receiving treatment with antiplatelet agents or anticoagulants. Their proportion was not different from the successfully treated group. The success rate of hot water irrigation as non-invasive treatment of posterior epistaxis appears at least as effective as conventional methods. However it avoids painful packing, hospitalizations, or immediate surgery, and allows the patient to breath normally through his open nasal cavities. PMID:16550958

  7. A non-invasive study of alopecia in Japanese macaques Macaca fuscata

    Institute of Scientific and Technical Information of China (English)

    Peng ZHANG

    2011-01-01

    This article provides information on the phenomenon of alopecia in Japanese macaques, Macaca fuscata, in various environments and proposes a 3-step scoring system for a quantitative assessment of hair loss. Results suggest that alopecia is commonly observed in Japanese macaques, with 20.5% of individuals showing head alopecia and 4.7% showing back alopecia across eight study groups. Alopecia was more commonly observed in adult females (30.8% individuals showing head alopecia and 15.3% showing back alopecia) than in other age-sex classes. Seasonal variation of back alopecia was noted, in particular, individuals with patchy back hair were more frequently observed in winter than in summer. Seasonal variation was not observed in head hair. The distribution of alopecia was also different among study groups. The wild population generally had better hair condition than provisioned populations and captive populations. The present study used a non-invasive alopecia scoring system which can be a useful, rapid and non-invasive tool to monitor animal health and well-being at a population level.

  8. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.

    Science.gov (United States)

    Lowe, A; Harrison, W; El-Aklouk, E; Ruygrok, P; Al-Jumaily, A M

    2009-09-18

    Elevated central arterial (aortic) blood pressure is related to increased risk of cardiovascular disease. Methods of non-invasively estimating this pressure would therefore be helpful in clinical practice. To achieve this goal, a physics-based model is derived to correlate the arterial pressure under a suprasystolic upper-arm cuff to the aortic pressure. The model assumptions are particularly applicable to the measurement method and result in a time-domain relation with two parameters, namely, the wave propagation transit time and the reflection coefficient at the cuff. Central pressures estimated by the model were derived from completely automatic, non-invasive measurement of brachial blood pressure and suprasystolic waveform and were compared to simultaneous invasive catheter measurements in 16 subjects. Systolic blood pressure agreement, mean (standard deviation) of difference was -1 (7)mmHg. Diastolic blood pressure agreement was 4 (4)mmHg. Correlation between estimated and actual central waveforms was greater than 90%. Individualization of model parameters did not significantly improve systolic and diastolic pressure agreement, but increased waveform correlation. Further research is necessary to confirm that more accurate brachial pressure measurement improves central pressure estimation. PMID:19665136

  9. Non-invasive temperature monitoring using small coils during radio-frequency heating

    International Nuclear Information System (INIS)

    In hyperthermia treatment of malignant tumors, thermal tissue injury increases drastically with every degree of increase in the tissue temperature above 42.5 .deg. C Accurate temperature monitoring during hyperthermia is important. Therefore, we developed a non-invasive method to monitor the tissue temperature during radio-frequency hyperthermia by detecting the magnetic field induced by the radio-frequency currents that flow through the heated tissue. This technique uses small multi-channel coil antennas to detect radio-frequency currents and generates two-dimensional distribution in the tissue. A rectifying circuit was connected to each coil antenna, and the current was converted with a fixed resistance into voltage. Since the voltage output from each antenna was attenuated at 1/2pr (r: distance from the radio-frequency current), single-peaked projection data were prepared, and after treatment of various signals, radio-frequency currents that flowed through the heated object were determined as a two-dimensional current distribution profile by back-projection. A high correlation was observed between the distribution of radio-frequency currents detected with the coil antennas and the temperature distribution detected by thermography. Our method of the temperature distribution suggests the possibility of non-invasive evaluation of the temperature distribution in the target of hyperthermia and clinical usefulness of this method for temperature monitoring during hyperthermia

  10. Pneumococci in biofilms are non-invasive: implications on nasopharyngeal colonization

    Directory of Open Access Journals (Sweden)

    Ryan Paul Gilley

    2014-11-01

    Full Text Available Streptococcus pneumoniae (the pneumococcus is an opportunistic pathogen that colonizes the human nasopharynx asymptomatically. Invasive pneumococcal disease develops following bacterial aspiration into the lungs. Pneumococci within the nasopharynx exist as biofilms, a growth phenotype characterized by surface attachment, encasement within an extracellular matrix, and antimicrobial resistance. Experimental evidence indicates that biofilm pneumococci are attenuated versus their planktonic counterpart. Biofilm pneumococci failed to cause invasive disease in experimentally challenged mice and in vitro were shown to be non-invasive despite being hyper-adhesive. This attenuated phenotype corresponds with observations that biofilm pneumococci elicit significantly less cytokine and chemokine production from host cells than their planktonic counterparts. Microarray and proteomic studies show that pneumococci within biofilms have decreased metabolism, less capsular polysaccharide, and reduced production of the pore-forming toxin pneumolysin. Biofilm pneumococci are predominately in the transparent phenotype, which has elevated cell wall phosphorylcholine, an adhesin subject to C-reactive protein mediated opsonization. Herein, we review these changes in virulence, interpret their impact on colonization and transmission, and discuss the notion that non-invasive biofilms are principal lifestyle of S. pneumoniae.

  11. Electro-resistive bands for non-invasive cardiac and respiration monitoring, a feasibility study

    International Nuclear Information System (INIS)

    Continuous unobtrusive monitoring of tidal volume, particularly for critical care patients (i.e. neonates and patients in intensive care) during sleep studies and during daily activities, is still an unresolved monitoring need. Also a successful monitoring solution is yet to be proposed for continuous non-invasive cardiac stroke volume monitoring that is a novel clinical need. In this paper we present the feasibility study for a wearable, non-invasive, non-contact and unobtrusive sensor (embedded in a standard T-shirt) based on four electro-resistive bands that simultaneously monitors tidal volume and cardiac stroke volume changes. This low power sensor system (requires only 100 mW and accepts a wide power supply range up to ±18 V); thus the sensor can be easily embedded in existing wearable solutions (i.e. Holter monitors). Moreover, being contactless, it can be worn over bandages or electrodes, and as it does not rely over the integrity of the garment to work, it allows practitioners to perform procedures during monitoring. For this preliminary evaluation, one subject has worn the sensor over the period of 24 h (removing it only to shower); the accuracy of the tidal volume tested against a portable spirometer reported a precision of ±10% also during physical activity; accuracy tests for cardiac output (as it may require invasive procedure) have not been carried out in this preliminary trial. (note)

  12. Peroral cholangioscopy for non-invasive papillary cholangiocarcinoma with extensive superficial ductal spread

    Institute of Scientific and Technical Information of China (English)

    Toshifumi Wakai; Yoshio Shirai; Katsuyoshi Hatakeyama

    2005-01-01

    Papillary carcinoma arising from the extrahepatic bile duct often shows superficial ductal spread. We report herein the case of a patient with extensive superficial spread of non-invasive papillary cholangiocarcinoma,which was depicted with peroral cholangioscopy. A 65-year-old woman presented with the sudden-onset of severe epigastric pain. Ultrasonography revealed acute acalculous cholecystitis. Endoscopic retrograde cholangiography found small protruding lesions around the confluence of the cystic duct, suggestive of a cholangiocarcinoma. As the contour of the middle and upper bile ducts it was slightly irregular on the cholangiogram, the presence of superficial ductal spread was suspected. Peroral cholangioscopy revealed small papillary lesions around the confluence of the cystic duct and fine granular mucosal lesions in the middle and upper bile ducts and the right hepatic duct, suggesting a superficially spreading tumor. A right hepatectomy with bile duct resection was performed and no residual tumor was found. Histological examination revealed a non-invasive papillary carcinoma arising from the cystic duct with extensive superficial spread. Our experience of this case and a review of the literature suggest that a fine granular or fine papillary appearance of the ductal mucosae on cholangioscopy indicates superficial spread of papillary cholangiocarcinoma, for which peroral cholangioscopy is an efficient diagnostic option.

  13. Solid non-invasive ovarian masses on MR: Histopathology and a diagnostic approach

    International Nuclear Information System (INIS)

    Purpose: The purpose is to clarify the histopathology of the solid, non-invasive ovarian masses and to investigate the MR characteristics that distinguish benign from malignant. Materials and methods: From 1996 to 2008, we identified 38 cases with predominantly solid non-invasive ovarian masses examined by contrast MR. We evaluated the signal intensity on T2WI and degree of contrast enhancement. In 31 of these cases with dynamic contrast study, we classified the enhancing patterns of the masses into gradually increasing and plateau after rapid increase patterns. Result: Sixteen cases were benign sex-cord stromal tumors, three were other types of benign tumors, nine cases were diagnosed with primary malignant ovarian tumors, and 10 showed metastatic tumors. Low intensity on T2WI was observed in 15 benign and 2 malignant tumors. The gradually increasing pattern was observed in all 17 benignancies and 5 of the 14 malignancies. In the equilibrium phase, the masses were weakly enhanced in all 19 benignancies and only 4 of 19 malignancies. The diagnostic criteria, that low signal intensity masses with gradual weak enhancement are benign showed 93.3% accuracy and 100% positive predictive value. Conclusion: Benign solid ovarian masses tended to show low signal intensity on T2WI and gradual weak enhancement.

  14. Frontal non-invasive neurostimulation modulates antisaccade preparation in non-human primates.

    Directory of Open Access Journals (Sweden)

    Antoni Valero-Cabre

    Full Text Available A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF in saccadic activity. We hereby gauged the ability of a non-invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS, to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site, TMS modality (present under active but not sham TMS on the FEF area, TMS intensity (intensities of at least 40% of the TMS machine maximal output required, TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset and visual hemifield (relative latency decreases mainly for ipsilateral AS. Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes.

  15. Non-invasive continuous core temperature measurement by zero heat flux

    International Nuclear Information System (INIS)

    Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to determine the performance of a new ZHF device on the forehead regarding these issues. Seven healthy subjects performed a protocol of 10 min rest, 30 min submaximal exercise (average temperature increase about 1.5 °C) and 10 min passive recovery in ambient conditions of 35 °C and 50% relative humidity. ZHF temperature (Tzhf) was compared to oesophageal (Tes) and rectal (Tre) temperature. ΔTzhf–Tes had an average bias ± standard deviation of 0.17 ± 0.19 °C in rest, −0.05 ± 0.18 °C during exercise and −0.01 ± 0.20 °C during recovery, the latter two being not significant. The 95% limits of agreement ranged from −0.40 to 0.40 °C and Tzhf had hardly any delay compared to Tes. Tre showed a substantial delay and deviation from Tes when core temperature changed rapidly. Results indicate that the studied ZHF sensor tracks Tes very well in hot and stable ambient conditions and may be a promising alternative for reliable non-invasive continuous core temperature measurement in hospital

  16. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Prashanth Makaram

    2014-04-01

    Full Text Available Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring.

  17. Non-Invasive Health Diagnostics using Eye as a 'Window to the Body'

    Science.gov (United States)

    Ansari, Rafat R.

    2002-01-01

    As a 'window to the body', the eye offers the opportunity to use light in various forms to detect ocular and systemic abnormalities long before clinical symptoms appear and help develop preventative/therapeutic countermeasures early. The effects of space travel on human body are similar to those of normal aging. For example, radiation exposure in space could lead to formation of cataracts and cancer by damaging the DNA and causing gene mutation. Additionally, the zero-gravity environment causes fluid shifts in the upper extremities of the body and changes the way blood flows and organ system performs. Here on Earth, cataract, age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are major eye diseases and are expected to double in next two decades. To detect, prevent, and treat untoward effects of prolonged space travel in real-time requires the development of non-invasive diagnostic technologies that are compact and powerful. We are developing fiber-optic sensors to evaluate the ocular tissues in health, aging, and disease employing the techniques of dynamic light scattering (cataract, uveitis, Alzheimer's, glaucoma, DR, radiation damage, refractive surgery outcomes), auto-fluorescence (aging, DR), laser-Doppler flowmetry (choroidal blood flow), Raman spectroscopy (AMD), polarimetry (diabetes), and retinal oximetry (occult blood loss). The non-invasive feature of these technologies integrated in a head-mounted/goggles-like device permits frequent repetition of tests, enabling evaluation of the results to therapy that may ultimately be useful in various telemedicine applications on Earth and in space.

  18. Non-invasive and micro-destructive investigation of the Domus Aurea wall painting decorations.

    Science.gov (United States)

    Clementi, Catia; Ciocan, Valeria; Vagnini, Manuela; Doherty, Brenda; Tabasso, Marisa Laurenzi; Conti, Cinzia; Brunetti, Brunetto Giovanni; Miliani, Costanza

    2011-10-01

    The paper reports on the exploitation of an educated multi-technique analytical approach based on a wide non invasive step followed by a focused micro-destructive step, aimed at the minimally invasive identification of the pigments decorating the ceiling of the Gilded Vault of the Domus Aurea in Rome. The combination of elemental analysis with molecular characterization provided by X-ray fluorescence and UV-vis spectroscopies, respectively, allowed for the in situ non-invasive identification of a remarkable number of pigments, namely Egyptian blue, green earth, cinnabar, red ochre and an anthraquinonic lake. The study was completed with the Raman analysis of two bulk samples, in particular, SERS measurements allowed for the speciation of the anthraquinonic pigment. Elemental mapping by scanning electron microscopy-energy dispersive spectrometer combined with micro-fluorimetry on cross-section gave an insight into both the distribution of different blend of pigments and on the nature of the inorganic support of the red dye. PMID:21805319

  19. The non-invasive documentation of coronary microcirculation impairment: role of transthoracic echocardiography

    Directory of Open Access Journals (Sweden)

    Galderisi Maurizio

    2005-08-01

    Full Text Available Abstract Transthoracic Doppler echocardiographic-derived coronary flow reserve is an useful hemodynamic index to assess dysfunction of coronary microcirculation. Isolated coronary microvascular abnormalities are overt by reduced coronary flow reserve despite normal epicardial coronary arteries. These abnormalities may occur in several diseases (arterial hypertension, diabetes mellitus, hypercholesterolemia, syndrome X, aortic valve disease, hypertrophic cardiomyopathy and idiopathic dilated cardiomyopathy. The prognostic role of impaired microvascular coronary flow reserve has been shown unfavourable especially in hypertrophic or idiopathic dilated cardiomyopathies. Coronary flow reserve reduction may be reversible, for instance after regression of left ventricular hypertrophy subsequent to valve replacement in patients with aortic stenosis, after anti-hypertensive treatment or using cholesterol lowering drugs. Coronary flow reserve may increase by 30% or more after pharmacological therapy and achieve normal level >3.0. In contrast to other non invasive tools as positron emission tomography, very expensive and associated with radiation exposure, transthoracic Doppler-derived coronary flow reserve is equally non invasive but cheaper, very accessible and prone to a reliable exploration of coronary microvascular territories, otherwise not detectable by invasive coronary angiography, able to visualize only large epicardial arteries.

  20. Non-invasive liver iron concentration measurement by MRI: Comparison of two validated protocols

    International Nuclear Information System (INIS)

    In the non-invasive determination of the liver iron concentration several validated MRI methods are available, two of which are compared in this study. Twenty-eight patients were examined by MRI and evaluated by the methods of Kreeftenberg et al. [Kreeftenberg Jr HG, Mooyaart EL, Huizenga JR, Sluiter WJ, Kreeftenberg Sr HG. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence. Neth J Med 2000;56:133-7] and Gandon et al. [Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004;363:357-62]. It is concluded that the latter shows a better inter- and intra-observer correlation and is more accurate because of the automated preselection of one of five sequences most sensitive in the estimated liver iron concentration range. In the Kreeftenberg method combining the results of three suboptimal sequences, leads to underestimation of the liver iron concentration.

  1. Non-invasive liver iron concentration measurement by MRI: Comparison of two validated protocols

    Energy Technology Data Exchange (ETDEWEB)

    Olthof, Allard W. [Department of Radiology, Bethesda Hospital, Dr.G.H. Amshoffweg 1, 7909 AA Hoogeveen (Netherlands)], E-mail: a.w.olthof@hotmail.com; Sijens, Paul E. [Department of Radiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen (Netherlands); Kreeftenberg, Herman G. [Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen (Netherlands); Kappert, Peter; Jagt, Eric J. van der; Oudkerk, Matthijs [Department of Radiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen (Netherlands)

    2009-07-15

    In the non-invasive determination of the liver iron concentration several validated MRI methods are available, two of which are compared in this study. Twenty-eight patients were examined by MRI and evaluated by the methods of Kreeftenberg et al. [Kreeftenberg Jr HG, Mooyaart EL, Huizenga JR, Sluiter WJ, Kreeftenberg Sr HG. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence. Neth J Med 2000;56:133-7] and Gandon et al. [Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004;363:357-62]. It is concluded that the latter shows a better inter- and intra-observer correlation and is more accurate because of the automated preselection of one of five sequences most sensitive in the estimated liver iron concentration range. In the Kreeftenberg method combining the results of three suboptimal sequences, leads to underestimation of the liver iron concentration.

  2. Deconstructing autofluorescence: non-invasive detection and monitoring of biochemistry in cells and tissues (Conference Presentation)

    Science.gov (United States)

    Goldys, Ewa M.; Gosnell, Martin E.; Anwer, Ayad G.; Cassano, Juan C.; Sue, Carolyn M.; Mahbub, Saabah B.; Pernichery, Sandeep M.; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol; Sutton-Mcdowall, Melanie L.; Thompson, Jeremy G.

    2016-03-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous fluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from imaging of native fluorescence has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Multispectral intrinsic fluorescence imaging was applied to patient olfactory neurosphere-derived cells, cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast, subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. The versatility of our method is further illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent.

  3. Non-invasive in vivo imaging of myocardial apoptosis and necrosis

    International Nuclear Information System (INIS)

    Myocardial necrosis plays an important role in the pathogenesis of various cardiovascular disorders and can result from different myocardial insults. Its non-invasive identification and localisation therefore may help in the diagnosis of these disorders, as well as in prognosis and assessment of treatment response. Apoptosis, or programmed cell death, is important in the spectrum of myocardial damage since it is gradually becoming more apparent that cell death may begin as apoptosis and not as necrosis. First attempts to directly visualise the area of myocardial necrosis were based on recognition of myocardial infarction with ''hot spot imaging agents'' in patients with chest pain. Since then, the study of myocardial necrosis with gamma imaging agents has gone beyond the detection of myocardial infarction, and attempts have been made to diagnose other cardiovascular disorders associated with cardiac cell death such as heart transplant rejection, myocarditis, cardiotoxicity and cardiomyopathies. Traditionally, two hot spot imaging agents have been used for the detection of myocardial necrosis, 99mTc-pyrophosphate and 111In-antimyosin. In addition, preliminary studies have demonstrated promising results with 99mTc-glucarate. Recently, 99mTc-annexin V has been successfully used for non-invasive gamma imaging of apoptosis after acute myocardial infarction, acute myocardial ischaemia, acute cardiac allograft rejection and malignant intracardiac tumours. This review article focusses on the characteristics of these different myocardial necrotic and apoptotic markers and compares their role in the assessment of myocardial damage. (orig.)

  4. Studies of X-ray tube aging by non-invasive methods

    International Nuclear Information System (INIS)

    The objective of the present work was the evaluation of an x ray tube aging with an anode made of tungsten, used in radio diagnostic. Workloads were applied, in accordance with Brazilian workload distribution, and periodic measurements of quantities related to the radiation quality of the beam were performed. For the purpose of this work, a single phase, full bridge clinical system was employed. For the long term x ray tube characteristics evaluation related to the applied workload, it was necessary to measure parameters that could quantitatively represent the tube aging, with special attention to the anode roughening. For the indirect measurement of tube aging, four parameters were chosen, some of them normally applied in x ray diagnostic quality control: first and second half value layers (HVL), focal spot dimensions, non invasive measurement of Practical Peak Voltage (PPV) and x ray spectroscopy. These parameters were measured before any workload and after each workload intervals. To assure confidence of the results reproducibility conditions were stated to each evaluated parameter. The uncertainties involved in all measurement processes were calculated to evaluate the real contributions of x ray tube aging effects on non invasive parameters. Within all evaluated parameters, the most sensitive to long term workload were the mean energy obtained from spectroscopy and half value layers. A model related to these parameters was applied and estimates of x ray tube aging rate for different acceleration voltages and anodic currents were calculated. (author)

  5. Development of a Portable Non-Invasive Swallowing and Respiration Assessment Device

    Directory of Open Access Journals (Sweden)

    Wann-Yun Shieh

    2015-05-01

    Full Text Available Dysphagia is a condition that happens when a person cannot smoothly swallow food from the mouth to the stomach. It causes malnourishment in patients, or can even cause death due to aspiration pneumonia. Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend. In this study, we aimed to integrate the timing and pattern monitoring of respiration and swallowing by using a portable and non-invasive approach which can be applied at the bedside in hospitals or institutions, or in a home environment. In this approach, we use a force sensing resistor (FSR to detect the motions of the thyroid cartilage in the pharyngeal phase. We also use the surface electromyography (sEMG to detect the contraction of the submental muscle in the oral phase, and a nasal cannula to detect nasal airflow for respiration monitoring during the swallowing process. All signals are received and processed for swallowing event recognition. A total of 19 volunteers participated in the testing and over 57 measurements were made. The results show that the proposed approach can effectively distinguish the swallowing function in people of different ages and genders.

  6. Reactivity of dogs' brain oscillations to visual stimuli measured with non-invasive electroencephalography.

    Directory of Open Access Journals (Sweden)

    Miiamaaria V Kujala

    Full Text Available Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris while they stayed still to observe photos of dog and human faces. Spontaneous oscillatory activity of the dogs, peaking in the sensors over the parieto-occipital cortex, was suppressed statistically significantly during visual task compared with resting activity at the frequency of 15-30 Hz. Moreover, a stimulus-induced low-frequency (~2-6 Hz suppression locked to the stimulus onset was evident at the frontal sensors, possibly reflecting a motor rhythm guiding the exploratory eye movements. The results suggest task-related reactivity of the macroscopic oscillatory activity in the dog brain. To our knowledge, the study is the first to reveal non-invasively measured reactivity of brain electrophysiological oscillations in healthy dogs, and it has been based purely on positive operant conditional training, without the need for movement restriction or medication.

  7. Novel algorithm for non-invasive assessment of fibrosis in NAFLD.

    Directory of Open Access Journals (Sweden)

    Jan-Peter Sowa

    Full Text Available INTRODUCTION: Various conditions of liver disease and the downsides of liver biopsy call for a non-invasive option to assess liver fibrosis. A non-invasive score would be especially useful to identify patients with slow advancing fibrotic processes, as in Non-Alcoholic Fatty Liver Disease (NAFLD, which should undergo histological examination for fibrosis. PATIENTS/METHODS: Classic liver serum parameters, hyaluronic acid (HA and cell death markers of 126 patients undergoing bariatric surgery for morbid obesity were analyzed by machine learning techniques (logistic regression, k-nearest neighbors, linear support vector machines, rule-based systems, decision trees and random forest (RF. Specificity, sensitivity and accuracy of the evaluated datasets to predict fibrosis were assessed. RESULTS: None of the single parameters (ALT, AST, M30, M60, HA did differ significantly between patients with a fibrosis score 1 or 2. However, combining these parameters using RFs reached 79% accuracy in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RFs identified the cell death markers M30 and M65 as more important for the decision than the classic liver parameters. CONCLUSION: On the basis of serum parameters the generation of a fibrosis scoring system seems feasible, even when only marginally fibrotic tissue is available. Prospective evaluation of novel markers, i.e. cell death parameters, should be performed to identify an optimal set of fibrosis predictors.

  8. Non-invasive in vivo imaging of myocardial apoptosis and necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Flotats, Albert; Carrio, Ignasi [Hospital de la Santa Creu i Sant Pau, Barcelona (Spain)

    2003-04-01

    Myocardial necrosis plays an important role in the pathogenesis of various cardiovascular disorders and can result from different myocardial insults. Its non-invasive identification and localisation therefore may help in the diagnosis of these disorders, as well as in prognosis and assessment of treatment response. Apoptosis, or programmed cell death, is important in the spectrum of myocardial damage since it is gradually becoming more apparent that cell death may begin as apoptosis and not as necrosis. First attempts to directly visualise the area of myocardial necrosis were based on recognition of myocardial infarction with ''hot spot imaging agents'' in patients with chest pain. Since then, the study of myocardial necrosis with gamma imaging agents has gone beyond the detection of myocardial infarction, and attempts have been made to diagnose other cardiovascular disorders associated with cardiac cell death such as heart transplant rejection, myocarditis, cardiotoxicity and cardiomyopathies. Traditionally, two hot spot imaging agents have been used for the detection of myocardial necrosis, {sup 99m}Tc-pyrophosphate and {sup 111}In-antimyosin. In addition, preliminary studies have demonstrated promising results with {sup 99m}Tc-glucarate. Recently, {sup 99m}Tc-annexin V has been successfully used for non-invasive gamma imaging of apoptosis after acute myocardial infarction, acute myocardial ischaemia, acute cardiac allograft rejection and malignant intracardiac tumours. This review article focusses on the characteristics of these different myocardial necrotic and apoptotic markers and compares their role in the assessment of myocardial damage. (orig.)

  9. Distribution of emm types in invasive and non-invasive group A and G streptococci.

    Science.gov (United States)

    Vähäkuopus, S; Vuento, R; Siljander, T; Syrjänen, J; Vuopio, J

    2012-06-01

    Our study describes the emm type distributions of invasive and non-invasive group A streptococci (GAS) and group G streptococci (GGS) strains in one of the biggest Health Districts in Finland. A total of 571 GAS or GGS were recovered from patients with invasive or non-invasive infections during a 1-year period in 2008-2009 in Pirkanmaa Health District in Finland. We describe here the emm type distributions of GAS and GGS collected from throat (n = 246), pus (n = 217), deep tissue (n = 56) and blood (n = 52). The most common emm types among GAS were emm77, emm1, emm28, emm89 and emm12. Among GGS, the most common emm types were stG480, stG643, stG6, stC6979 and stG485. Some emm types were found to associate with certain infection focus. In GAS, emm77 associated with pus isolates, whereas emm1 and emm12 were more frequent among throat isolates. In GGS, stG480 was more commonly found from throat isolates. PMID:22002182

  10. KV waveform measurement using oscilloscope and various non-invasive kVp meter

    International Nuclear Information System (INIS)

    The measurement of kilovoltage (kV) waveform using oscilloscope and various non-invasive kVp meter is investigated in radiographic range. The kV waveform was produced during the x-ray exposure when the tube kilovoltage varies with time. A general x-ray machine, Bennett General X-Ray System model HFQ-6000SE is used to provide radiation in various kV range. The digital oscilloscope DL1540 and selected non-invasive kVp meter also used in this experiment to measured the waveform. The filtration dependence and linearity correction also taking into consideration when calculated the actual kV. In radiographic mode, the result shown that Keithley kVp divider model 35080B with 37617C wide range filter pack and Radcal model 9010 with Accu kV model 40X5-W gave a better result compared to PMX III multifunction meter for nominal dial setting kVp. A more detail results of this study are presented in this paper. (Author)

  11. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  12. Exhaled breath condensate pH and hydrogen peroxide as non-invasive markers for asthma

    International Nuclear Information System (INIS)

    Objective was to estimate the predictive value of exhaled breath condensate (EBC) hydrogen peroxide (H2O2) concentration and pH as non-invasive markers in asthma. Fifty patients with unstable, steroid naive atopic asthma were included in this study, 25 with persistent asthma. Asthma diagnosis was according to the National Heart Lung and Blood Institute guidelines for the diagnosis and management of asthma. Forced expiratory volume in one second (FEV1) was measured by computerized spirometry. The EBC H2O2 assay was carried out using the colorimetric assay. The study was conducted from January to December 2005 in the Asthma and Allergy Center, Tikrit, Iraq. The EBC H2O2 concentration was higher in the asthmatic group (0.91mol) as compared with the control (0.23 mol). There was inverse correlation between EBC H2O2 concentration and FEV1 predicted percent for asthmatic patients. The mean EBC pH was lower in the asthmatic than the control group. There was a positive correlation between EBC pH and FEV 1 predicted percent for asthmatic patients. There was an inverse correlation between EBC H2O2 concentration and pH for all asthmatic patients, intermittent, and persistent asthmatic group. Exhaled breath condensate hydrogen peroxide concentration and pH was a good non-invasive marker for asthma, whether it was with a persistent or intermittent course. (author)

  13. Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features.

    Science.gov (United States)

    Gosnell, Martin E; Anwer, Ayad G; Mahbub, Saabah B; Menon Perinchery, Sandeep; Inglis, David W; Adhikary, Partho P; Jazayeri, Jalal A; Cahill, Michael A; Saad, Sonia; Pollock, Carol A; Sutton-McDowall, Melanie L; Thompson, Jeremy G; Goldys, Ewa M

    2016-01-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from autofluorescence imaging has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent. Label-free classifications are validated by the analysis of Classification Determinant (CD) antigen expression. The versatility of our method is illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. PMID:27029742

  14. Non-invasive ventilation with neurally adjusted ventilatory assist in newborns.

    Science.gov (United States)

    Stein, Howard; Beck, Jennifer; Dunn, Michael

    2016-06-01

    Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation in which both the timing and degree of ventilatory assist are controlled by the patient. Since NAVA uses the diaphragm electrical activity (Edi) as the controller signal, it is possible to deliver synchronized non-invasive NAVA (NIV-NAVA) regardless of leaks and to monitor continuously patient respiratory pattern and drive. Advantages of NIV-NAVA over conventional modes include improved patient-ventilator interaction, reliable respiratory monitoring and self-regulation of respiratory support. In theory, these characteristics make NIV-NAVA an ideal mode to provide effective, appropriate non-invasive support to newborns with respiratory insufficiency. NIV-NAVA has been successfully used clinically in neonates as a mode of ventilation to prevent intubation, to allow early extubation, and as a novel way to deliver nasal continuous positive airway pressure. The use of NAVA in neonates is described with an emphasis on studies and clinical experience with NIV-NAVA. PMID:26899957

  15. Microwave radiometry for non-invasive detection of vesicoureteral reflux (VUR) following bladder warming

    Science.gov (United States)

    Stauffer, Paul R.; Maccarini, Paolo F.; Arunachalam, Kavitha; De Luca, Valeria; Salahi, Sara; Boico, Alina; Klemetsen, Oystein; Birkelund, Yngve; Jacobsen, Svein K.; Bardati, Fernando; Tognolotti, Piero; Snow, Brent

    2011-03-01

    Background: Vesicoureteral reflux (VUR) is a serious health problem leading to renal scarring in children. Current VUR detection involves traumatic x-ray imaging of kidneys following injection of contrast agent into bladder via invasive Foley catheter. We present an alternative non-invasive approach for detecting VUR by radiometric monitoring of kidney temperature while gently warming the bladder. Methods: We report the design and testing of: i) 915MHz square slot antenna array for heating bladder, ii) EMI-shielded log spiral microstrip receive antenna, iii) high-sensitivity 1.375GHz total power radiometer, iv) power modulation approach to increase urine temperature relative to overlying perfused tissues, and v) invivo porcine experiments characterizing bladder heating and radiometric temperature of aaline filled 30mL balloon "kidney" implanted 3-4cm deep in thorax and varied 2-6°C from core temperature. Results: SAR distributions are presented for two novel antennas designed to heat bladder and monitor deep kidney temperatures radiometrically. We demonstrate the ability to heat 180mL saline in in vivo porcine bladder to 40-44°C while maintaining overlying tissues =2°C rise in 30mL "urine" located 3-4cm deep in thorax, demonstrating more than sufficient sensitivity to detect Grade 4-5 reflux of warmed urine for non-invasive detection of VUR.

  16. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have.

    Science.gov (United States)

    Herreros-Villanueva, Marta; Bujanda, Luis

    2016-04-01

    Pancreatic cancer (PC) is probably the most lethal tumor being forecast as the second most fatal cancer by 2020 in developed countries. Only the earliest forms of the disease are a curable disease but it has to be diagnosed before symptoms starts. Detection at curable phase demands screening intervention for early detection and differential diagnosis. Unfortunately, no successful strategy or image technique has been concluded as effective approach and currently non-invasive biomarkers are the hope. Multiple translational research studies have explored minimally or non-invasive biomarkers in biofluids-blood, urine, stool, saliva or pancreatic juice, but diagnostic performance has not been validated yet. Nowadays no biomarker, alone or in combination, has been superior to carbohydrate antigen 19-9 (CA19-9) in sensitivity and specificity. Although the number of novel biomarkers for early diagnosis of PC has been increasing during the last couple of years, no molecular signature is ready to be implemented in clinical routine. Under the uncertain future, miRNAs profiling and methylation status seem to be the most promising biomarkers. However, good results in larger validations are urgently needed before application. Industry efforts through biotech and pharmaceutical companies are urgently required to demonstrate accuracy and validate promising results from basic and translational results. PMID:27162784

  17. Non invasive methods for genetic analysis applied to ecological and behavioral studies in Latino-America

    Directory of Open Access Journals (Sweden)

    Susana González

    2007-07-01

    Full Text Available Documenting the presence and abundance of the neotropical mammals is the first step for understanding their population ecology, behavior and genetic dynamics in designing conservation plans. The combination of field research with molecular genetics techniques are new tools that provide valuable biological information avoiding the disturbance in the ecosystems, trying to minimize the human impact in the process to gather biological information. The objective of this paper is to review the available non invasive sampling techniques that have been used in Neotropical mammal studies to apply to determine the presence and abundance, population structure, sex ratio, taxonomic diagnostic using mitochondrial markers, and assessing genetic variability using nuclear markers. There are a wide range of non invasive sampling techniques used to determine the species identification that inhabit an area such as searching for tracks, feces, and carcasses. Other useful equipment is the camera traps that can generate an image bank that can be valuable to assess species presence and abundance by morphology. With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in feces and amplify it to analyze the species diversity in an area, and the genetic variability at intraspecific level. This is particularly helpful in cases of sympatric and cryptic species in which morphology failed to diagnose the taxonomic status of several species of brocket deer of the genus Mazama.

  18. Non-invasive screening of cytochrome c oxidase deficiency in children using a dipstick immunocapture assay.

    Science.gov (United States)

    Rodinová, M; Trefilová, E; Honzík, T; Tesařová, M; Zeman, J; Hansíková, H

    2014-01-01

    Cytochrome c oxidase (CIV) deficiency is among the most common childhood mitochondrial disorders. The diagnosis of this deficiency is complex, and muscle biopsy is used as the gold standard of diagnosis. Our aim was to minimize the patient burden and to test the use of a dipstick immunocapture assay (DIA) to determine the amount of CIV in non-invasively obtained buccal epithelial cells. Buccal smears were obtained from five children with Leigh syndrome including three children exhibiting a previously confirmed CIV deficiency in muscle and fibroblasts and two children who were clinical suspects for CIV deficiency; the smear samples were analysed using CI and CIV human protein quantity dipstick assay kits. Samples from five children of similar age and five adults were used as controls. Analysis of the controls demonstrated that only samples of buccal cells that were frozen for a maximum of 4 h after collection provide accurate results. All three patients with confirmed CIV deficiency due to mutations in the SURF1 gene exhibited significantly lower amounts of CIV than the similarly aged controls; significantly lower amounts were also observed in two new patients, for whom later molecular analysis also confirmed pathologic mutations in the SURF1 gene. We conclude that DIA is a simple, fast and sensitive method for the determination of CIV in buccal cells and is suitable for the screening of CIV deficiency in non-invasively obtained material from children who are suspected of having mitochondrial disease. PMID:25629267

  19. Quantitative whole body biodistribution of fluorescent-labeled agents by non-invasive tomographic imaging.

    Directory of Open Access Journals (Sweden)

    Kristine O Vasquez

    Full Text Available When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR or near infrared (NIR imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D fluorescence reflectance imaging of excised intact organs (r²  =  0.996 and 0.969, respectively. Dynamic FMT imaging (multiple times from 0 to 24 h performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20-50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor

  20. Analysis of uncultured extremophilic snow algae by non-invasive single cell Raman spectroscopy

    Science.gov (United States)

    Beer, Thomas; Tanaka, Zuki; Netzter, Nathan; Rothschild, Lynn J.; Chen, Bin

    2011-10-01

    The study of life in extreme environments is a critical component of Astrobiology. But many of the so-called "extremophiles" are not readily cultivatable and therefore difficult to study under laboratory conditions. An example of such an extremophile is the snow alga Chlamydomonas cd. nivalis which expresses still unstudied secondary metabolites within its life cycle. In this paper, we present the first time the non-invasive single cell Raman spectroscopy of the life cycle dependent metabolite composition of C. nivalis. These secondary metabolites are likely related to the adaptation of C. nivalis to various stress factors. Normalized carotenoid Raman spectra intensities reveal characteristic ratio differences that allow identification of life cycle stages and putative secondary metabolites.

  1. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Directory of Open Access Journals (Sweden)

    Thierry Jacq

    2010-08-01

    Full Text Available This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee and they are centralized and stored on a PC computer.

  2. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    Science.gov (United States)

    Edward, Kert; Farahi, Faramarz

    2014-05-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition.

  3. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qizhi; Carney, Paul R; Yuan Zhen; Jiang Huabei [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu Zhao [Department of Pediatrics, Division of Pediatric Neurology, University of Florida, Gainesville, FL 32610 (United States); Chen Huanxin; Roper, Steven N [Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265 (United States)], E-mail: hjiang@bme.ufl.edu

    2008-04-07

    Non-invasive laser-induced photoacoustic tomography (PAT) is an emerging imaging modality that has the potential to image the dynamic function of the brain due to its unique ability of imaging biological tissues with high optical contrast and ultrasound resolution. Here we report the first application of our finite-element-based PAT for imaging of epileptic seizures in an animal model. In vivo photoacoustic images were obtained in rats with focal seizures induced by microinjection of bicuculline, a GABA{sub A} antagonist, into the neocortex. The seizure focus was accurately localized by PAT as confirmed with gold-standard electroencephalogram (EEG). Compared to the existing neuroimaging modalities, PAT not only has the unprecedented advantage of high spatial and temporal resolution in a single imaging modality, but also is portable and low in cost, making it possible to bring brain imaging to the bedside.

  4. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    International Nuclear Information System (INIS)

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition. (letters)

  5. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    Science.gov (United States)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  6. Early diagnosis of incipient caries based on non-invasive lasers

    Science.gov (United States)

    Velescu, A.; Todea, C.; Vitez, B.

    2016-03-01

    AIM: The aim of this study is to detect incipient caries and enamel demineralization using laser fluorescence.This serves only as an auxilary aid to identify and to monitor the development of these lesions. MATERIALS AND METHODS: 6 patients were involved in this study, three females and three male. Each patient underwent a professional cleaning, visual examination of the oral cavity, and then direct inspection using DiagnoCam and DIAGNOdent. After data recording each patient was submitted to retro-alveolar X-ray on teeth that were detected with enamel lesions. All data was collected and analyzed statistically. RESULTS: Of 36 areas considered in clinically healthy, 24 carious surfaces were found using laser fluorescence, a totally non-invasive method for detecting incipient carious lesions compared with the radiographic examination. CONCLUSIONS: This method has good applicability for patients because it improves treatment plan by early detection of caries and involves less fear for anxious patients and children.

  7. Novel Non-invasive Treatment With High-intensity Focused Ultrasound (HIFU).

    Science.gov (United States)

    Marinova, M; Rauch, M; Schild, H H; Strunk, H M

    2016-02-01

    Ultrasound is not only used for diagnostic purposes but it also can be applied therapeutically so far that nowadays high-intensity focused ultrasound (HIFU) even represents a novel non-invasive treatment modality for various solid tumors. HIFU works by causing selectively deep tissue destruction of target lesions within the body without harming adjacent and overlying structures. In this article, we present an overview on both the mode of action and requirements for a HIFU treatment as well as on the safety and the current status of indications and possible applications with regard to benign and malignant gynecological diseases. Based on numerous studies and original articles, HIFU proved to be an effective and low-risk treatment option particularly for uterine fibroids and adenomyosis, but it also seems to be effective for breast fibroadenomas or even for breast cancer in special cases and other rare entities. PMID:26251996

  8. Neurosonological examination: A non-invasive approach for the detection of cerebrovascular impairment in AD

    Directory of Open Access Journals (Sweden)

    Barbora eUrbanova

    2014-01-01

    Full Text Available There has been a growing interest in vascular impairment associated with Alzheimer’s disease (AD. This interest was stimulated by the findings of higher incidence of vascular risk factors in AD. Signs of vascular impairment were investigated notably in the field of imaging methods. Our aim was to explore ultrasonographic studies of extra- and intracranial vessels in patients with AD and mild cognitive impairment (MCI and define implications for diagnosis, treatment and prevention of the disease. The most frequently studied parameters with extracranial ultrasound are intima-media thickness in common carotid artery, carotid atherosclerosis, and total cerebral blood flow. The transcranial ultrasound concentrates mostly on flow velocities, pulsatility indices, cerebrovascular reserve capacity, cerebral microembolization. Studies suggest there is morphological and functional impairment of cerebral circulation in AD compared to healthy subjects. Ultrasound as a non-invasive method could be potentially useful in identifying individuals in a higher risk of progression of cognitive decline.

  9. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops.

    Science.gov (United States)

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a "brain in the loop" using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a "brain-state dynamics" loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a "task dynamics" loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  10. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro

    Science.gov (United States)

    Radaszkiewicz, Katarzyna Anna; Sýkorová, Dominika; Karas, Pavel; Kudová, Jana; Kohút, Lukáš; Binó, Lucia; Večeřa, Josef; Víteček, Jan; Kubala, Lukáš; Pacherník, Jiří

    2016-02-01

    The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.

  11. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.

    Science.gov (United States)

    Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa

    2012-05-30

    Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems. PMID:22608458

  12. Non-invasive measurement of the blood pressure pulse using multiple PPGs

    Science.gov (United States)

    Seymour, John; Pennington, Gary

    Heart disease, the leading cause of death in the US, may be spotted early on by looking at photoplethysmogram (PPG) data. This experiment explores a new method of continuously monitoring the blood pressure pulse with PPG data. In contrast to the traditional sphygmomanometer (cuff) method, which yields only the systolic and diastolic pressure during measurement, this method tracks the blood pressure pulse wave in a non-invasive continuous manner. This procedure allows for fast, inexpensive, and detailed analysis of the patient's blood pressure implementable on a large scale. We also explore the second derivative of the PPG data. In combination with the above method, the patient's heart risk can be effectively detected. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics, Towson University.

  13. Fluid Vessel Quantity Using Non-invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    Science.gov (United States)

    Garofalo, Anthony A

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  14. Non-invasive monitoring of underground power cables using Gaussian-enveloped chirp reflectometry

    International Nuclear Information System (INIS)

    In this paper, we introduce non-invasive Gaussian-enveloped linear chirp (GELC) reflectometry for the diagnosis of live underground power cables. The GELC reflectometry system transmits the incident signal to live underground power cables via an inductive coupler. To improve the spatial resolution of the GELC reflectometry, we used the multiple signal classification method, which is a super-resolution method. An equalizer, which is based on Wiener filtering, is used to compensate for the signal distortion due to the propagation characteristics of underground power cables and inductive couplers. The proposed method makes it possible to detect impedance discontinuities in live underground power cables with high spatial resolution. Experiments to find the impedance discontinuity in a live underground power cable were conducted to verify the performance of the proposed method. (paper)

  15. Non-invasive functional brain imaging using combined MEG-fMRI techniques

    International Nuclear Information System (INIS)

    Reconstruction of the distribution of neural activities in the brain from extra-cranial electromagnetic fields (MEG: magnetoencephalography), which is also called the MEG inverse problem, is inherently ill-posed, and can only be solved under certain mathematical and/or physiological assumptions. This paper introduces a method of integrating neuroimaging data obtained from a functional magnetic resonance imaging (fMRI) experiment as well as the anatomical brain structure into the MEG inverse problem to enhance spatial resolution without compromising the excellent temporal resolution of MEG measurements. A 'weighted' minimum-norm estimation framework was used to include fMRI activation maps into the MEG inverse procedure. The proposed method was applied to reconstruct the spatiotemporal dynamics of brain activity during the perception of 3D object structures from 2D motion, and showed promise in improving the spatial and temporal resolution of non-invasive visualizations of human brain activities. (author)

  16. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    Science.gov (United States)

    Garofalo, Anthony A.

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  17. Monitoring the ingestion of anti-tuberculosis drugs by simple non-invasive methods.

    Science.gov (United States)

    Sirgel, F A; Maritz, J S; Venter, A; Langdon, G; Smith, P J; Donald, P R

    2006-01-13

    This investigation retrospectively assessed inexpensive non-invasive qualitative methods to monitor the ingestion of anti-tuberculosis drugs isoniazid, rifampicin and rifapentine. Results showed that commercial test strips detected the isoniazid metabolites isonicotinic acid and isonicotinylglycine as efficiently as the isonicotinic acid method in 150 urine samples. The presence of rifamycins in urine samples (n=1085) was detected by microbiological assay techniques and the sensitivity compared to the n-butanol extraction colour test in 91 of these specimens. The proportions detected by the two methods were significantly different and the sensitivity of the n-butanol procedure was only 63.8% (95% CL 51.2-76.4%) as compared to that of the superior microbiological method. Final validation (n=691) showed that qualitative assays measure isoniazid and rifamycin ingestion with an efficiency similar to high-performance liquid chromatography. The qualitative procedures may therefore be valuable in clinical trials and in tuberculosis clinics to confirm drug ingestion. PMID:16303269

  18. Non-invasive measurement of bone: a review of clinical and research applications in the horse

    International Nuclear Information System (INIS)

    The current methods for non-invasive measurement of bone quality are reviewed. In the horse this has traditionally involved the use of radiography, but there are now two other modalities available for the critical evaluation of cortical bone quality and strength. These utilise single photon absorptiometry and ultrasound velocity. Photon absorptiometry gives a direct measurement of bone mineral content, by using a monoenergetic radionuclide source, and transverse ultrasound velocity in bone gives a measure of bone stiffness or elasticity. They can both be used conveniently on the metacarpus of the conscious horse. Both ultrasound velocity and bone mineral content can be used as accurate indicators of skeletal maturity. In addition, the effects of disuse on bone and certain types of lameness can be monitored accurately. Preliminary data show an association with exercise in young and mature horses. There also appears to be considerable scope for in vivo research of bone changes in horses produced by immobilisation, weightlessness, exercise and nutrition

  19. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa;

    2016-01-01

    and 'offline' NTBS effects outlasting plasticity-inducing NTBS protocols can be assessed. Finally, both strategies can be combined to close the loop between measuring and modulating brain activity by means of closed-loop brain state-dependent NTBS. In this paper, we will provide a conceptual framework......Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures or...... neuronal activity patterns for a given brain function. It is nowadays feasible to combine NTBS, either consecutively or concurrently, with a variety of neuroimaging and electrophysiological techniques. Here we discuss what kind of information can be gained from combined approaches, which often are...

  20. Application of heat-resistant non invasive acoustic transducers for coolant control in the NPP pipelines

    International Nuclear Information System (INIS)

    The use of ultrasonic waves enables remote testing of the coolant flow, detection of solid and gaseous occlusions and measuring of the water velocity and level. Analysis of the acoustic noise makes it possible to detect coolant leaks and diagnose the state and operation of the rotating mechanisms and bearings. Results are given of the research in the development of highly reliable waveguide-type non-invasive acoustic transducers with a long service life. Examples are given of the use of transducers in various fields of nuclear technology: detection of gas in coolant, indication of the coolant level, control of pipe filling and drainage, measurement of liquid film velocity at the pipe inner surface. (M.D.)

  1. The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Elisavet A. Papageorgiou

    2014-04-01

    Full Text Available Epigenetic modifications have proven to play a significant role in cancer development, as well as fetal development. Taking advantage of the knowledge acquired during the last decade, great interest has been shown worldwide in deciphering the fetal epigenome towards the development of methylation-based non-invasive prenatal tests (NIPT. In this review, we highlight the different approaches implemented, such as sodium bisulfite conversion, restriction enzyme digestion and methylated DNA immunoprecipitation, for the identification of differentially methylated regions (DMRs between free fetal DNA found in maternal blood and DNA from maternal blood cells. Furthermore, we evaluate the use of selected DMRs identified towards the development of NIPT for fetal chromosomal aneuploidies. In addition, we perform a comparison analysis, evaluate the performance of each assay and provide a comprehensive discussion on the potential use of different methylation-based technologies in retrieving the fetal methylome, with the aim of further expanding the development of NIPT assays.

  2. Non-invasive assessment of in-vitro embryo quality to improve transfer success

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Heegaard, Peter M. H.; Callesen, Henrik

    2015-01-01

    Although IVF has been performed routinely for many years to help couples with fertility problems and in relation to modern breeding of farm animals, pregnancy rates after transfer to a recipient have not improved during the last decade. Early prediction of the viability of in-vitro developed embr......RNA. This review outlines the potential of several non-invasive in-vitro methods based on analysis of spent embryo culture medium.......Although IVF has been performed routinely for many years to help couples with fertility problems and in relation to modern breeding of farm animals, pregnancy rates after transfer to a recipient have not improved during the last decade. Early prediction of the viability of in-vitro developed...

  3. A case of pneumothorax due to non-invasive mechanical ventilation

    Directory of Open Access Journals (Sweden)

    İbrahim Koç

    2014-09-01

    Full Text Available Emphysema is enlargement of alveolus, alveolary ducts and destruction of alveolary wall. One of complications of non-invasive mechanical ventilation (NIMV is barotrauma of damaged lung. Here we present a 75 years old male who had Chronic Obstructive Pulmonary Disease (COPD, emphysema for 5 years and suffered from pneumothorax after NIMV. During treatment with NIMV his general condition deteriorated and oxygen saturation decreased immediately. Chest X-ray and tomography revealed pneumothorax. Chest tube inserted under local anesthesia. Although NIMV might seem like innocent, in patients whose general condition immediately worsens, oxygen saturation decreases, has emphysema and bullous lesions pneumothorax must be excluded. J Clin Exp Invest 2014; 5 (3: 469-471

  4. Non-invasive ventilation in surgical patients in a district general hospital.

    Science.gov (United States)

    Badiger, R; Green, M; Hackwood, H; Palin, C; Shee, C D

    2004-10-01

    We have retrospectively audited the use of non-invasive ventilation (NIV) in surgical patients. We analysed the case notes of 38 surgical patients who received NIV over a 9-month period. Twenty-three patients received NIV following emergency surgery, eight after elective surgery, and seven did not have an operation. Co-morbidity was common. The commonest reasons for starting NIV were chest infection, acute respiratory distress syndrome and pulmonary oedema. NIV was often only one aspect of treatment in surgical patients with complex medical problems. With intensive support from the critical care outreach team, NIV can be safely delivered on a surgical ward, and may sometimes prevent intensive care unit admission. Use of NIV on the intensive care unit may obviate the need for tracheal intubation in some patients. In very ill surgical patients with a poor prognosis, NIV was frequently used as the ceiling of respiratory support. PMID:15488054

  5. Application of fluorescence spectroscopy and multispectral imaging for non-invasive estimation of GFP transfection efficiency

    Science.gov (United States)

    Tamošiūnas, M.; Jakovels, D.; Lihačovs, A.; Kilikevičius, A.; Baltušnikas, J.; Kadikis, R.; Šatkauskas, S.

    2014-10-01

    Electroporation and ultrasound induced sonoporation has been showed to induce plasmid DNA transfection to the mice tibialis cranialis muscle. It offers new prospects for gene therapy and cancer treatment. However, numerous experimental data are still needed to deliver the plausible explanation of the mechanisms governing DNA electro- or sono-transfection, as well as to provide the updates on transfection protocols for transfection efficiency increase. In this study we aimed to apply non-invasive optical diagnostic methods for the real time evaluation of GFP transfection levels at the reduced costs for experimental apparatus and animal consumption. Our experimental set-up allowed monitoring of GFP levels in live mice tibialis cranialis muscle and provided the parameters for DNA transfection efficiency determination.

  6. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.

    Science.gov (United States)

    Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred

    2016-01-01

    Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization. PMID:26137889

  7. Investigation of opportunities of the optical non-invasive diagnostics method for the blood sugar control

    Science.gov (United States)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2015-03-01

    The relevance of noninvasive method for determining the blood sugar is caused by necessity of regular monitoring of glucose levels in diabetic patients blood. Traditional invasive method is painful, because it requires a finger pricking. Despite the active studies in the field of non-invasive medical diagnostics, to date the painless and inexpensive instrument for blood sugar control for personal use doesn't exist. It's possible to measure the concentration of glucose in the blood with help of spectrophotometry method. It consists of registering and analyzing the spectral characteristics of the radiation which missed, reflected or absorbed by the object. The authors proposed a measuring scheme for studying the spectral characteristics of the radiation, missed by earlobe. Ultra-violet, visible and near infrared spectral ranges are considered. The paper presents the description of construction and working principles of the proposed special retaining clip and results of experiment with real patient.

  8. In vivo neuro MR spectroscopy: a non-invasive insight into cerebral metabolism

    International Nuclear Information System (INIS)

    In addition to conventional magnetic resonance imaging (MRI) for examining anatomical structure, in vivo proton magnetic resonance spectroscopy (MRS) is currently being used as a non-invasive clinical tool for monitoring altered brain metabolism. Conditions such as head injury, dementia, multiple sclerosis, tumour, stroke, epilepsy and inborn errors of metabolism are all presently being investigated with MRS. At the Centre for Magnetic Resonance, we are currently undertaking a longitudinal study of dementia progression in Alzheimer's disease (AD) utilising both MRS and volumetric MRI techniques. The aim is to identify metabolic differences between this patient group and normal older adults and to correlate these measures with cognitive function. Cerebral artrophy, or loss of brain matter, together with ventricular enlargement , or enlargement of normally occuring cavities, is clearly present on MRI exams in patients with moderate and severe AD

  9. Fat embolism syndrome managed by non-invasive ventilation--a case report.

    Science.gov (United States)

    Ashok, R; Kumar, R Vinoth; Saravanan, K; Kalaivani

    2012-02-01

    A 31-year-old male was struck by a motor cycle and diagnosed to have closed injury to the thigh involving right sided femur shaft fracture. Patient was operated on the next day by the orthopaedic surgeon. The patient did not have any signs of fat embolism syndrome before and after surgery. But the rare ECG change of S1Q3T3 (pulmonary embolism) was present before and after surgery. The presence of oedematous retina and cherry red spots in the macula was also present in the young patient. Patient developed all the classical signs of fat embolism syndrome 18 hours after surgery. The case had classic presentations of fat embolism syndrome managed by non-invasive ventilation. The role of steroids and albumin is also discussed as it was always a controversy in the management of fat embolism syndrome. PMID:23029849

  10. Modulating pathological oscillations by rhythmic non-invasive brain stimulation – a therapeutic concept?

    Directory of Open Access Journals (Sweden)

    Lutz eKrawinkel

    2015-03-01

    Full Text Available A large amount of studies of the last decades revealed an association between human behaviour and oscillatory activity in the human brain. Alike, abnormalities of oscillatory activity were related with pathological behaviour in many neuropsychiatric disorders, such as in Parkinson’s disease (PD or in schizophrenia (SCZ. As a therapeutic tool, non-invasive brain stimulation (NIBS has demonstrated the potential to improve behavioural performance in patients suffering from neuropsychiatric disorders. Since evidence accumulates that NIBS might be able to modulate oscillatory activity and related behaviour in a scientific setting, this review focuses on discussing potential interventional strategies to target abnormalities in oscillatory activity in neuropsychiatric disorders. In particular, we will review oscillatory changes described in patients after stroke, with PD or suffering from SCZ. Potential ways of targeting interventionally the underlying pathological oscillations to improve related pathological behaviour will be further discussed.

  11. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    Science.gov (United States)

    Wróbel, M. S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described.

  12. Non- invasive technique using breath analysis for detection and classification of diabetes

    Directory of Open Access Journals (Sweden)

    Lekha Srinivasan

    2015-08-01

    Full Text Available Diabetes, a metabolic disease that is characterized by high glucose level in the blood, is a major problem affecting millions of people today. This disease if left unchecked can create enormous implication on the health of the population. Among the various non-invasive methods of detection, breath analysis presents an easier, more accurate and viable method in providing comprehensive clinical care for the disease. This paper examines the concentration of acetone levels in breath for monitoring blood-glucose levels and thus predicting diabetes. The analysis uses the support vector mechanism to classify the response to healthy and diabetic samples. For the analysis, ten subject samples of acetone levels are taken into consideration and are classified according to three labels, which are healthy, type one diabetic and type two diabetic.

  13. Non-invasive Estimation of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Traberg, Marie Sand;

    2014-01-01

    This paper investigates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The presented set-up is based on vector velocity fields measured on a blood mimicking fluid moving at a peak flow rate of 1 ml/s through a constricted vessel. Fields of...... pressure gradients are calculated using the Navier-Stokes equations. Flow data are acquired to a depth of 3 cm using directional synthetic aperture flow imaging on a linear array transducer producing 1500 image frames of velocity estimates per second. Scans of a carotid bifurcation phantom with a 70......% constriction are performed using an experimental scanner. The performance of the presented estimator is evaluated by comparing its results to a numerical simulation model, which geometry is reconstructed from MRI data. The study showed pressure gradients varying from 0 kPa/m to 4.5 kPa/m with a maximum bias...

  14. The importance of optical methods for non-invasive measurements in the skin care industry

    Science.gov (United States)

    Stamatas, Georgios N.

    2010-02-01

    Pharmaceutical and cosmetic industries are concerned with treating skin disease, as well as maintaining and promoting skin health. They are dealing with a unique tissue that defines our body in space. As such, skin provides not only the natural boundary with the environment inhibiting body dehydration as well as penetration of exogenous aggressors to the body, it is also ideally situated for optical measurements. A plurality of spectroscopic and imaging methods is being used to understand skin physiology and pathology and document the effects of topically applied products on the skin. The obvious advantage of such methods over traditional biopsy techniques is the ability to measure the cutaneous tissue in vivo and non-invasively. In this work, we will review such applications of various spectroscopy and imaging methods in skin research that is of interest the cosmetic and pharmaceutical industry. Examples will be given on the importance of optical techniques in acquiring new insights about acne pathogenesis and infant skin development.

  15. High Definition Oscillometry: Non-invasive Blood Pressure Measurement and Pulse Wave Analysis.

    Science.gov (United States)

    Egner, Beate

    2015-01-01

    Non-invasive monitoring of blood pressure has become increasingly important in research. High-Definition Oscillometry (HDO) delivers not only accurate, reproducible and thus reliable blood pressure but also visualises the pulse waves on screen. This allows for on-screen feedback in real time on data validity but even more on additional parameters like systemic vascular resistance (SVR), stroke volume (SV), stroke volume variances (SVV), rhythm and dysrhythmia. Since complex information on drug effects are delivered within a short period of time, almost stress-free and visible in real time, it makes HDO a valuable technology in safety pharmacology and toxicology within a variety of fields like but not limited to cardiovascular, renal or metabolic research. PMID:26091643

  16. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...... simulations and initial experimental measurements. By simulations, a parameter study has investigated what mechanisms of the driving pulse are important to optimize the ambient pressure sensitivity when utilizing the subharmonic component. Investigating two different types of microbubbles clearly showed that...... conditions, this setup showed that the subharmonic component by itself cannot be used as an ambient sensitivity measure. Instead, a new technique looking at the ratio of the subharmonic energy to the energy of the fundamental component was used. Doing so, an ambient pressure dependent behavior of the...

  17. Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study

    Science.gov (United States)

    Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas

    2013-11-01

    Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.

  18. Non-invasive measurement of pressure and volume parameters of left ventricle performance

    International Nuclear Information System (INIS)

    The volume parameters of cardiac function, obtained by gated-blood-pool scintigraphy, were supplemented by the ventricle dimensions and by the medium arterial pressure, measured non-invasively after Riva-Rocci. From this, the systolic effect as a load-dependent parameter of contractility and the global effect of the left ventricle were derived. If the latter is related to the volume effect, information about the relative efficiency of the heart action is obtained. By studying three collectives of patients with different performance abilities of the left ventricle it was shown that, by including the ventricle geometry and the medium arterial pressure, the myocardial contractility can better assessed quantitatively as well as qualitatively and that useful data about the performance economy of the heart can be obtained. (orig.)

  19. Non-invasive diagnostic modality for peripheral arterial occlusive disease in hemodialysis patients

    International Nuclear Information System (INIS)

    Peripheral arterial occlusive disease (PAOD) has impacts on mortality and quality of life of hemodialysis (HD) patients. Although ankle-brachial pressure index (ABPI) is widely used to detect PAOD as screening measurement, it yields false negative results due to calcified lesions of vascular walls. Multidetector-row computed tomography (MDCT) was performed in 36 HD patients. Then, we compared these two non-invasive methods: ABPI or skin perfusion pressure (SPP) and MDCT by calculating the sensitivity and specificity to detect PAOD. The sensitivity of ABPI was only 29.9%, while SPP was more accurate with the sensitivity of 84.9% and the specificity of 76.9%. Our findings suggest that SPP is a useful tool to detect PAOD even in HD patients. (author)

  20. Non-invasive measurer of dentistry KVp for x-rays

    International Nuclear Information System (INIS)

    In this paper it is discussed the response of an instrument developed for non invasive measure of the kilovoltage (KVp) applied to the X-ray tube. The operation principle of the instrument is based on the differential attenuation of the X-ray beam that is produced by copper filters of different thickness. The ratio of the signals produced by photodiodes detectors is related with the KVp applied to the X-ray tube. The equipment response was compared with a calibrated digital equipment (RMI), that measures KVp. The results have shown an excellent correlation between the ratio of signs of both sensors and the KVp. The variation in KVp measured with the instrument and the obtained with RMI was less than 2%. (author)

  1. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    Science.gov (United States)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  2. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P

    2014-01-01

    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  3. Wearable system for non-invasive and continuous monitoring central aortic pressure curve and augmentation index.

    Science.gov (United States)

    Krivoshei, Andrei; Lamp, Jürgen; Min, Mart; Uuetoa, Tiina; Uuetoa, Hasso; Annus, Paul

    2013-01-01

    The paper presents a non-invasive method and system for a long-term and continuous monitoring of the central aortic pressure (CAP) waveform and the augmentation index (AI). The CAP curve is estimated from the measured radial electrical bio-impedance (EBI) using spectral domain transfer functions (TF), which are established on the basis of data analysis during clinical experiments. Experiments were carried out on 3 volunteers by now. During the experiment, a 0.5 mg sublingual nitroglycerin tablet was administrated to each volunteer. Both, the reconstructed CAP curve and the AI have very good correlation with the results obtained by the SphygmoCor system. But, in opposite to the traditional tonometry based CAP curve and AI estimation methods, the proposed one is more convenient to use and allows continuous and long-term personalized monitoring of the CAP curve and of the AI. PMID:23739366

  4. Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects

    Directory of Open Access Journals (Sweden)

    Maximo Zimerman

    2010-12-01

    Full Text Available Healthy aging is accompanied by changes in cognitive and motor functions that result in impairment of activities of daily living. This process involves a number of modifications in the brain and is associated with metabolic, structural and physiological changes; some of these serving as adaptive responses to the functional declines. Up to date there are no universally accepted strategies to ameliorate declining functions in this population. An essential basis to develop such strategies is a better understanding of neuroplastic changes during healthy aging. In this context, non-invasive brain stimulation techniques, such as transcranial direct current or transcranial magnetic stimulation, provide an attractive option to modulate cortical neuronal assemblies, even with subsequent changes in neuroplasticity. Thus, in the present review we discuss the use of these techniques as a tool to study underlying cortical mechanisms during healthy aging and as an interventional strategy to enhance declining functions and learning abilities in aged subjects.

  5. Non-invasive sex assessment in bovine semen by Raman spectroscopy

    International Nuclear Information System (INIS)

    X- and Y-chromosome-bearing sperm cell sorting is of great interest, especially for animal production management systems and genetic improvement programs. Here, we demonstrate an optical method based on Raman spectroscopy to separate X- and Y-chromosome-bearing sperm cells, overcoming many of the limitations associated with current sex-sorting protocols. A priori Raman imaging of bull spermatozoa was utilized to select the sampling points (head-neck region), which were then used to discriminate cells based on a spectral classification model. Main variations of Raman peaks associated with the DNA content were observed together with a variation due to the sex membrane proteins. Next, we used principal component analysis to determine the efficiency of our device as a cell sorting method. The results (>90% accuracy) demonstrated that Raman spectroscopy is a powerful candidate for the development of a highly efficient, non-invasive, and non-destructive tool for sperm sexing. (letters)

  6. [Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].

    Science.gov (United States)

    Shin, Jung Woo; Park, Neung Hwa

    2016-07-25

    The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis. PMID:27443617

  7. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops

    Science.gov (United States)

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a “brain in the loop” using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a “brain-state dynamics” loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a “task dynamics” loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  8. Non-invasive prenatal testing for fetal chromosome abnormalities: review of clinical and ethical issues.

    Science.gov (United States)

    Gekas, Jean; Langlois, Sylvie; Ravitsky, Vardit; Audibert, François; van den Berg, David Gradus; Haidar, Hazar; Rousseau, François

    2016-01-01

    Genomics-based non-invasive prenatal screening using cell-free DNA (cfDNA screening) was proposed to reduce the number of invasive procedures in current prenatal diagnosis for fetal aneuploidies. We review here the clinical and ethical issues of cfDNA screening. To date, it is not clear how cfDNA screening is going to impact the performances of clinical prenatal diagnosis and how it could be incorporated in real life. The direct marketing to users may have facilitated the early introduction of cfDNA screening into clinical practice despite limited evidence-based independent research data supporting this rapid shift. There is a need to address the most important ethical, legal, and social issues before its implementation in a mass setting. Its introduction might worsen current tendencies to neglect the reproductive autonomy of pregnant women. PMID:26893576

  9. Non-invasive prenatal testing for fetal chromosome abnormalities: review of clinical and ethical issues

    Science.gov (United States)

    Gekas, Jean; Langlois, Sylvie; Ravitsky, Vardit; Audibert, François; van den Berg, David Gradus; Haidar, Hazar; Rousseau, François

    2016-01-01

    Genomics-based non-invasive prenatal screening using cell-free DNA (cfDNA screening) was proposed to reduce the number of invasive procedures in current prenatal diagnosis for fetal aneuploidies. We review here the clinical and ethical issues of cfDNA screening. To date, it is not clear how cfDNA screening is going to impact the performances of clinical prenatal diagnosis and how it could be incorporated in real life. The direct marketing to users may have facilitated the early introduction of cfDNA screening into clinical practice despite limited evidence-based independent research data supporting this rapid shift. There is a need to address the most important ethical, legal, and social issues before its implementation in a mass setting. Its introduction might worsen current tendencies to neglect the reproductive autonomy of pregnant women. PMID:26893576

  10. Feasibility of optical diffraction radiation for a non-invasive low-emittance beam diagnostics

    CERN Document Server

    Urakawa, J; Kubo, K; Kuroda, S; Terunuma, N; Kuriki, M; Okugi, T; Naito, T; Araki, S; Potylitsin, A P; Naumenko, G A; Karataev, P; Potylitsyna, N A; Vnukov, I; Hirose, T; Hamatsu, R; Muto, T; Ikezawa, M; Shibata, Y

    2001-01-01

    A 'proof-of-principle' experiment on the optical diffraction radiation (ODR) as a single-pulse beam profile monitor is planned using an electron beam extracted from the KEK-ATF damping ring. The main goals of this experiment are the following: (i) To measure the yield and the angular distributions of the optical diffraction radiation from a large-size target at different wavelengths, impact parameters and beam characteristics for a comparison with analogous characteristics of optical transition radiation from a foil with identical optical parameters and for a verification of the model assumption (perfectly conducting semi-infinite target). (ii) To investigate the ODR angular distributions from a tilted target with a slit for observing the interference effects. (iii) To compare the results obtained by simulations based on classical approaches, taking into account the optical characteristics of the equipment and the beam parameters. (iv) To estimate the prospects of using ODR as a new non-invasive tool for ultr...

  11. Insights into Parkinson's disease models and neurotoxicity using non-invasive imaging

    International Nuclear Information System (INIS)

    Loss of dopamine in the nigrostriatal system causes a severe impairment in motor function in patients with Parkinson's disease and in experimental neurotoxic models of the disease. We have used non-invasive imaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (MRI) to investigate in vivo the changes in the dopamine system in neurotoxic models of Parkinson's disease. In addition to classic neurotransmitter studies, in these models, it is also possible to characterize associated and perhaps pathogenic factors, such as the contribution of microglia activation and inflammatory responses to neuronal damage. Functional imaging techniques are instrumental to our understanding and modeling of disease mechanisms, which should in turn lead to development of new therapies for Parkinson's disease and other neurodegenerative disorders

  12. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Kastrup, Jens

    2013-01-01

    Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods...... improvements. To better understand the underlying mechanisms of these results, a reverse translation from bedside to bench has been opened. Non-invasive cell tracking after implantation has a pivotal role in this translation. Imaging based methods can help elucidate important issues such as retention......, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used...

  13. Consideration of the non-invasive coronary angiography using synchrotron radiation

    International Nuclear Information System (INIS)

    After a close examination of the currently applied different non-invasive diagnostic methods, only the method of digital subtraction angiography (DSA) seems to be promising with respect to space and time resolution. Here the state of the art is presented in this field of medical diagnostics. As a result the dichromography method using synchrotron radiation is most promising for the imaging of coronar arteries. The physical principles of dichromography are presented together with the first experiments at SSRL and DESY. The experiments planed at DESY are described in more detail. Due to the expected time and space resolution of the detector system, studies of the human heart should be feasible. Some problems are discussed related with radiation exposition rates, process cycle times and the expected contrast media concentrations. (orig./MG)

  14. A General Approach to the Non-Invasive Imaging of Transgenes Using Cis-Linked Herpes Simplex Virus Thymidine Kinase

    Directory of Open Access Journals (Sweden)

    Juri G. Tjuvajev

    1999-10-01

    Full Text Available Non-invasive imaging of gene expression opens new prospects for the study of transgenic animals and the implementation of genetically based therapies in patients. We have sought to establish a general paradigm to enable whole body non-invasive imaging of any transgene. We show that the expression and imaging of HSV1-tk (a marker gene can be used to monitor the expression of the LacZ gene (a second gene under the transcriptional control of a single promoter within a bicistronic unit that includes a type II internal ribosomal entry site. In cells bearing a single copy of the vector, the expression of the two genes is proportional and constant, both in vitro and in vivo. We demonstrate that non-invasive imaging of HSV1-tk gene accurately reflects the topology and activity of the other cis-linked transgene.

  15. The theoretical basis of minimally-invasive and non-invasive medicine: Treatments--Minimize harm to patients.

    Science.gov (United States)

    Wang, Zhibiao

    2015-11-01

    This perspective, for the first time, proposed the theoretical basis for the minimally-invasive and non-invasive medicine. It sets the goal of medical treatment that is to minimize harm to patients and to maximize the natural self-healing power for fighting against the disease. It took a historical review on the technological developments shaped by the minimally-invasive and non-invasive ideology with a focus on the course of research, development and clinical deployment of the high-intensity focused ultrasound (HIFU) ablation therapy by the Chinese research team. It also summarized the highlights of the "1st Yangtze International Summit of Minimally-invasive and Non-invasive Medicine 2013" and the mandate of the newly inaugurated International Society of the Minimally-invasive and Noninvasive Medicine (ISMINIM). It provides a perspective on the future development of this emerging field and its impact on human civilization. PMID:26074209

  16. Fractional flow reserve derived from coronary CT angiography in stable coronary disease: a new standard in non-invasive testing?

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard, B.L.; Jensen, J.M. [Aarhus University Hospital Skejby, Department of Cardiology B, Aarhus N (Denmark); Leipsic, J. [St. Paul' s Hospital, Department Radiology, Vancouver, British Columbia (Canada)

    2015-08-15

    Fractional flow reserve (FFR) measured during invasive coronary angiography is the gold standard for lesion-specific decisions on coronary revascularization in patients with stable coronary artery disease (CAD). Current guidelines recommend non-invasive functional or anatomic testing as a gatekeeper to the catheterization laboratory. However, the ''holy grail'' in non-invasive testing of CAD is to establish a single test that quantifies both coronary lesion severity and the associated ischemia. Most evidence to date of such a test is based on the addition of computational analysis of FFR to the anatomic information obtained from standard-acquired coronary CTA data sets at rest (FFR{sub CT}). This review summarizes the clinical evidence for the use of FFR{sub CT} in stable CAD in context to the diagnostic performance of other non-invasive testing modalities. (orig.)

  17. Non-invasive monitoring of pulmonary artery pressure from timing information by EIT: experimental evaluation during induced hypoxia.

    Science.gov (United States)

    Proença, Martin; Braun, Fabian; Solà, Josep; Adler, Andy; Lemay, Mathieu; Thiran, Jean-Philippe; Rimoldi, Stefano F

    2016-06-01

    Monitoring of pulmonary artery pressure (PAP) in pulmonary hypertensive patients is currently limited to invasive solutions. We investigate a novel non-invasive approach for continuous monitoring of PAP, based on electrical impedance tomography (EIT), a safe, low-cost and non-invasive imaging technology. EIT recordings were performed in three healthy subjects undergoing hypoxia-induced PAP variations. The pulmonary pulse arrival time (PAT), a timing parameter physiologically linked to the PAP, was automatically calculated from the EIT signals. Values were compared to systolic PAP values from Doppler echocardiography, and yielded strong correlation scores ([Formula: see text]) for all three subjects. Results suggest the feasibility of non-invasive, unsupervised monitoring of PAP. PMID:27212013

  18. Non-invasive in vivo imaging of early metabolic tumor response to therapies targeting choline metabolism.

    Science.gov (United States)

    Mignion, Lionel; Danhier, Pierre; Magat, Julie; Porporato, Paolo E; Masquelier, Julien; Gregoire, Vincent; Muccioli, Giulio G; Sonveaux, Pierre; Gallez, Bernard; Jordan, Bénédicte F

    2016-04-15

    The cholinic phenotype, characterized by elevated phosphocholine and a high production of total-choline (tCho)-containing metabolites, is a metabolic hallmark of cancer. It can be exploited for targeted therapy. Non-invasive imaging biomarkers are required to evaluate an individual's response to targeted anticancer agents that usually do not rapidly cause tumor shrinkage. Because metabolic changes can manifest at earlier stages of therapy than changes in tumor size, the aim of the current study was to evaluate (1) H-MRS and diffusion-weighted MRI (DW-MRI) as markers of tumor response to the modulation of the choline pathway in mammary tumor xenografts. Inhibition of choline kinase activity was achieved with the direct pharmacological inhibitor H-89, indirect inhibitor sorafenib and down-regulation of choline-kinase α (ChKA) expression using specific short-hairpin RNA (shRNA). While all three strategies significantly decreased tCho tumor content in vivo, only sorafenib and anti-ChKA shRNA significantly repressed tumor growth. The increase of apparent-diffusion-coefficient of water (ADCw) measured by DW-MRI, was predictive of the induced necrosis and inhibition of the tumor growth in sorafenib treated mice, while the absence of change in ADC values in H89 treated mice predicted the absence of effect in terms of tumor necrosis and tumor growth. In conclusion, (1) H-choline spectroscopy can be useful as a pharmacodynamic biomarker for choline targeted agents, while DW-MRI can be used as an early marker of effective tumor response to choline targeted therapies. DW-MRI combined to choline spectroscopy may provide a useful non-invasive marker for the early clinical assessment of tumor response to therapies targeting choline signaling. PMID:26595604

  19. A non-invasive heuristic approach to shape optimization in forming

    Science.gov (United States)

    Landkammer, P.; Steinmann, P.

    2016-02-01

    The aim is to determine—relating to a given forming process—the optimal material (undeformed) configuration of a workpiece when knowing the target spatial (deformed) configuration. Therefore, the nodal positions of a discretized setting based on the finite element method (FEM) are the discrete free parameters of the form finding problem. As a verification, inputting the determined optimal material nodal positions, a subsequent re-computation of the forming process should then result in exactly the target spatial nodal positions. A new, non-invasive iterative algorithm, which is purely based on the nodal data of each iteration, is proposed to determine the discretized optimal material configuration. Specifically, the L^2-smoothed deformation gradient at each discretization node is used to update the discretized material configuration by a transformation of the difference vectors between the currently computed and the target spatial nodal positions. The iterative strategy can be easily coupled in a non-invasive fashion via subroutines with arbitrary external FEM software. Since only the computed positions of the discretization nodes are required for an update step within the form finding algorithm, the procedure does not depend on the specific material modelling and is moreover applicable to arbitrary element types, e. g. solid- or solid-shell-elements. Furthermore the convergence rate for solving the form finding problem is nearly linear. This is demonstrated by examples that are realized by a coupling of Matlab (iterative update procedure) and MSC.Marc (external FEM software). Solving the form finding problem to determine an optimum workpiece design is of great interest especially for metal forming applications.

  20. Non-Invasive Biomarkers for Duchenne Muscular Dystrophy and Carrier Detection

    Directory of Open Access Journals (Sweden)

    Mónica Alejandra Anaya-Segura

    2015-06-01

    Full Text Available Non-invasive biological indicators of the absence/presence or progress of the disease that could be used to support diagnosis and to evaluate the effectiveness of treatment are of utmost importance in Duchenne Muscular Dystrophy (DMD. This neuromuscular disorder affects male children, causing weakness and disability, whereas female relatives are at risk of being carriers of the disease. A biomarker with both high sensitivity and specificity for accurate prediction is preferred. Until now creatine kinase (CK levels have been used for DMD diagnosis but these fail to assess disease progression. Herein we examined the potential applicability of serum levels of matrix metalloproteinase 9 (MMP-9 and matrix metalloproteinase 2 (MMP-2, tissue inhibitor of metalloproteinases 1 (TIMP-1, myostatin (GDF-8 and follistatin (FSTN as non-invasive biomarkers to distinguish between DMD steroid naïve patients and healthy controls of similar age and also for carrier detection. Our data suggest that serum levels of MMP-9, GDF-8 and FSTN are useful to discriminate DMD from controls (p < 0.05, to correlate with some neuromuscular assessments for DMD, and also to differentiate between Becker muscular dystrophy (BMD and Limb-girdle muscular dystrophy (LGMD patients. In DMD individuals under steroid treatment, GDF-8 levels increased as FSTN levels decreased, resembling the proportions of these proteins in healthy controls and also the baseline ratio of patients without steroids. GDF-8 and FSTN serum levels were also useful for carrier detection (p < 0.05. Longitudinal studies with larger cohorts are necessary to confirm that these molecules correlate with disease progression. The biomarkers presented herein could potentially outperform CK levels for carrier detection and also harbor potential for monitoring disease progression.

  1. Continuous Non-Invasive Arterial Pressure Technique Improves Patient Monitoring during Interventional Endoscopy

    Directory of Open Access Journals (Sweden)

    Sylvia Siebig, Felix Rockmann, Karl Sabel, Ina Zuber-Jerger, Christine Dierkes, Tanja Brünnler, Christian E. Wrede

    2009-01-01

    Full Text Available Introduction: Close monitoring of arterial blood pressure (BP is a central part of cardiovascular surveillance of patients at risk for hypotension. Therefore, patients undergoing diagnostic and therapeutic procedures with the use of sedating agents are monitored by discontinuous non-invasive BP measurement (NIBP. Continuous non-invasive BP monitoring based on vascular unloading technique (CNAP®, CN Systems, Graz may improve patient safety in those settings. We investigated if this new technique improved monitoring of patients undergoing interventional endoscopy. Methods: 40 patients undergoing interventional endoscopy between April and December 2007 were prospectively studied with CNAP® in addition to standard monitoring (NIBP, ECG and oxygen saturation. All monitoring values were extracted from the surveillance network at one-second intervals, and clinical parameters were documented. The variance of CNAP® values were calculated for every interval between two NIBP measurements. Results: 2660 minutes of monitoring were recorded (mean 60.1±34.4 min/patient. All patients were analgosedated with midazolam and pethidine, and 24/40 had propofol infusion (mean 90.9±70.3 mg. The mean arterial pressure for CNAP® was 102.4±21.2 mmHg and 106.8±24.8 mmHg for NIBP. Based on the first NIBP value in an interval between two NIBP measurements, BP values determined by CNAP® showed a maximum increase of 30.8±21.7% and a maximum decrease of 22.4±28.3% (mean of all intervals. Discussion: Conventional intermittent blood pressure monitoring of patients receiving sedating agents failed to detect fast changes in BP. The new technique CNAP® improved the detection of rapid BP changes, and may contribute to a better patient safety for those undergoing interventional procedures.

  2. Non-invasive computation of aortic pressure maps: a phantom-based study of two approaches

    Science.gov (United States)

    Delles, Michael; Schalck, Sebastian; Chassein, Yves; Müller, Tobias; Rengier, Fabian; Speidel, Stefanie; von Tengg-Kobligk, Hendrik; Kauczor, Hans-Ulrich; Dillmann, Rüdiger; Unterhinninghofen, Roland

    2014-03-01

    Patient-specific blood pressure values in the human aorta are an important parameter in the management of cardiovascular diseases. A direct measurement of these values is only possible by invasive catheterization at a limited number of measurement sites. To overcome these drawbacks, two non-invasive approaches of computing patient-specific relative aortic blood pressure maps throughout the entire aortic vessel volume are investigated by our group. The first approach uses computations from complete time-resolved, three-dimensional flow velocity fields acquired by phasecontrast magnetic resonance imaging (PC-MRI), whereas the second approach relies on computational fluid dynamics (CFD) simulations with ultrasound-based boundary conditions. A detailed evaluation of these computational methods under realistic conditions is necessary in order to investigate their overall robustness and accuracy as well as their sensitivity to certain algorithmic parameters. We present a comparative study of the two blood pressure computation methods in an experimental phantom setup, which mimics a simplified thoracic aorta. The comparative analysis includes the investigation of the impact of algorithmic parameters on the MRI-based blood pressure computation and the impact of extracting pressure maps in a voxel grid from the CFD simulations. Overall, a very good agreement between the results of the two computational approaches can be observed despite the fact that both methods used completely separate measurements as input data. Therefore, the comparative study of the presented work indicates that both non-invasive pressure computation methods show an excellent robustness and accuracy and can therefore be used for research purposes in the management of cardiovascular diseases.

  3. Non-invasive detection of early retinal neuronal degeneration by ultrahigh resolution optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Debbie Tudor

    Full Text Available Optical coherence tomography (OCT has revolutionises the diagnosis of retinal disease based on the detection of microscopic rather than subcellular changes in retinal anatomy. However, currently the technique is limited to the detection of microscopic rather than subcellular changes in retinal anatomy. However, coherence based imaging is extremely sensitive to both changes in optical contrast and cellular events at the micrometer scale, and can generate subtle changes in the spectral content of the OCT image. Here we test the hypothesis that OCT image speckle (image texture contains information regarding otherwise unresolvable features such as organelle changes arising in the early stages of neuronal degeneration. Using ultrahigh resolution (UHR OCT imaging at 800 nm (spectral width 140 nm we developed a robust method of OCT image analyses, based on spatial wavelet and texture-based parameterisation of the image speckle pattern. For the first time we show that this approach allows the non-invasive detection and quantification of early apoptotic changes in neurons within 30 min of neuronal trauma sufficient to result in apoptosis. We show a positive correlation between immunofluorescent labelling of mitochondria (a potential source of changes in cellular optical contrast with changes in the texture of the OCT images of cultured neurons. Moreover, similar changes in optical contrast were also seen in the retinal ganglion cell- inner plexiform layer in retinal explants following optic nerve transection. The optical clarity of the explants was maintained throughout in the absence of histologically detectable change. Our data suggest that UHR OCT can be used for the non-invasive quantitative assessment of neuronal health, with a particular application to the assessment of early retinal disease.

  4. The application of artificial neural network model in the non-invasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    Bo LI

    2012-12-01

    Full Text Available Objective  To construct and evaluate an artificial neural network (ANN model as a new non-invasive diagnostic method for clinical assessment of liver fibrosis at early stage. Methods  The model was set up and tested among 683 chronic hepatitis B (CHB patients, with authentic positive clinical biopsy results, proved to have liver fibrosis or cirrhosis, admitted to 302 Hospital of PLA from May 2008 to March 2011. Among 683 samples, 504 samples were diagnosed as cirrhosis as a result of CHB, and 179 liver fibrosis due to other liver diseases. 134 out of 683 patients were included in training group by stratified sampling, and the others for verification. Six items (age, AST, PTS, PLT, GGT and DBil were selected as input layer indexes to set up the model for evaluation. Results  The ANN model for diagnosis of liver fibrosis was set up. The diagnostic accuracy was 77.4%, sensitivity was 76.8%, and specificity was 77.8%. Its Kappa concordance tests showed the diagnosis result of the model was consistent with biopsy result (Kappa index=0.534. The accuracy, sensitivity and specificity of CHB patients were 80.4%, 79.9% and 80.7% (Kappa index=0.598 respectively, and those for other liver diseases were 67.9%, 64.3% and 69.7% (Kappa index=0.316. Conclusion  The artificial neural network model established by the authors demonstrates its high sensitivity and specificity as a new non-invasive diagnostic method for liver fibrosis induced by HBV infection. However, it shows limited diagnostic reliability to fibrosis as a result of other liver diseases.

  5. A practical guide to non-invasive foetal electrocardiogram extraction and analysis.

    Science.gov (United States)

    Behar, Joachim; Andreotti, Fernando; Zaunseder, Sebastian; Oster, Julien; Clifford, Gari D

    2016-05-01

    Non-Invasive foetal electrocardiography (NI-FECG) represents an alternative foetal monitoring technique to traditional Doppler ultrasound approaches, that is non-invasive and has the potential to provide additional clinical information. However, despite the significant advances in the field of adult ECG signal processing over the past decades, the analysis of NI-FECG remains challenging and largely unexplored. This is mainly due to the relatively low signal-to-noise ratio of the FECG compared to the maternal ECG, which overlaps in both time and frequency. This article is intended to be used by researchers as a practical guide to NI-FECG signal processing, in the context of the above issues. It reviews recent advances in NI-FECG research including: publicly available databases, NI-FECG extraction techniques for foetal heart rate evaluation and morphological analysis, NI-FECG simulators and the methodology and statistics for assessing the performance of the extraction algorithms. Reference to the most recent work is given, recent findings are highlighted in the form of intermediate summaries, references to open source code and publicly available databases are provided and promising directions for future research are motivated. In particular we emphasise the need and specifications for building a new open reference database of NI-FECG signals, and the need for new algorithms to be benchmarked on the same database, employing the same evaluation statistics. Finally we motivate the need for research in NI-FECG to address morphological analysis, since this represent one of the most promising avenues for this foetal monitoring modality. PMID:27067431

  6. Non-invasive prenatal testing for fetal chromosome abnormalities: review of clinical and ethical issues

    Directory of Open Access Journals (Sweden)

    Gekas J

    2016-02-01

    Full Text Available Jean Gekas,1,2 Sylvie Langlois,3 Vardit Ravitsky,4 François Audibert,5 David Gradus van den Berg,6 Hazar Haidar,4 François Rousseau2,7 1Prenatal Diagnosis Unit, Department of Medical Genetics and Pediatrics, Faculty of Medicine, Université Laval, Québec City, QC, Canada; 2Department of Medical Biology, CHU de Québec, Québec City, QC, Canada; 3Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; 4Bioethics Program, Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada; 5Department of Obstetrics and Gynecology, Hospital Sainte-Justine, Montreal, QC, Canada; 6Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada; 7Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, Canada Abstract: Genomics-based non-invasive prenatal screening using cell-free DNA (cfDNA screening was proposed to reduce the number of invasive procedures in current prenatal diagnosis for fetal aneuploidies. We review here the clinical and ethical issues of cfDNA screening. To date, it is not clear how cfDNA screening is going to impact the performances of clinical prenatal diagnosis and how it could be incorporated in real life. The direct marketing to users may have facilitated the early introduction of cfDNA screening into clinical practice despite limited evidence-based independent research data supporting this rapid shift. There is a need to address the most important ethical, legal, and social issues before its implementation in a mass setting. Its introduction might worsen current tendencies to neglect the reproductive autonomy of pregnant women. Keywords: prenatal diagnosis, Down syndrome, non-invasive prenatal testing, cell-free fetal DNA, informed consent, reproductive autonomy

  7. [An automatic non-invasive method for the measurement of systolic, diastolic and mean blood pressure].

    Science.gov (United States)

    Morel, D; Suter, P

    1981-01-01

    A new automatic apparatus for the measurement of arterial pressure by a non-invasive technique was compared with direct intra-arterial measurement in 20 adult patients in a surgical intensive care unit. The apparatus works on the basis of the principle of oscillometry. Blood pressure is determined with a microprocessor by analysis of the amplitude of the oscillations produced by a cuff which is inflated then deflated automatically. Thus mean arterial pressure corresponds to the maximum amplitude. Systolic and diastolic pressures are deduced by extrapolation to zero of the amplitudes on either side of the maximum reading. Mean arterial pressure (AP) proved to be very reliable within the limits studied: 8.0 - 14.7 kPa (60 - 110 mmHg) with a difference in mean direct AP and indirect AP of 0,09 +/- 0.9 kPa SD (0.71 +/- 7 mmHg) and a coefficient of linear correlation between the two methods of r = 0.82. This non-invasive technique determined systolic arterial pressure (sAP) in a less reliable fashion than AP when compared with the invasive technique, with a tendency to flatten the extreme values. The correlation coefficient here was 0.68. Finally, diastolic arterial pressure (dAP) showed a better degree of agreement through with a difference in mean indirect AP and mean direct AP of 1.0 +/- 0.8 kPa (7.6 +/- 6.0 mmHg). These results indicate a good degree of agreement for measurements of mean arterial pressure, clinically the most important, between the two methods used. Measurements of diastolic pressure and above all of diastolic pressure seemed to be less in agreement. This difference could be due to an error in determination of the automatic apparatus tested or to the peripheral site (radial artery) of the intra-arterial catheter used, itself falsifying the humeral arterial pressure. PMID:6113805

  8. 1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis

    Directory of Open Access Journals (Sweden)

    Negar Ghazi

    2016-01-01

    Full Text Available Background: So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. Objective: The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs and quadratic discriminant analysis (QDA modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by 1H- NMR based metabolomics. Materials and Methods: This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease. Results: The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis. Conclusion: The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients.

  9. Non-invasive integrative analysis of contraction energetics in intact beating heart.

    Science.gov (United States)

    Deschodt-Arsac, Véronique; Calmettes, Guillaume; Gouspillou, Gilles; Chapolard, Mathilde; Raffard, Gérard; Rouland, Richard; Jais, Pierre; Haissaguerre, Michel; Dos Santos, Pierre; Diolez, Philippe

    2013-01-01

    The comprehensive study of human pathologies has revealed the complexity of the interactions involved in cardiovascular physiology. The recent validation of system's biology approaches - like our Modular Control and Regulation Analysis (MoCA) - motivates the current interest for new integrative and non-invasive analyses that could be used for medical study of human heart contraction energetics. By considering heart energetics as a supply-demand system, MoCA gives access to integrated organ function and brings out a new type of information, the "elasticities", which describe in situ the regulation of both energy demand and supply by cellular energetic status. These regulations determine the internal control of contraction energetics and may therefore be a key to the understanding of the links between molecular events in pathologies and whole organ function/dysfunction. A wider application to the effects of cardiac drugs in conjunction with the direct study of heart pathologies may be considered in the near future. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology (elasticity analyses), but also to provide a quantitative description of how these defects influence global heart function (regulation analysis) and therefore open new therapeutic perspectives. Several key examples of current applications to intact isolated beating heart are presented in this paper. The future application to human pathologies will require the use of non-invasive NMR techniques for the simultaneous measurement of energy status ((31)P NMR) and heart contractile activity (3D MRI). This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy. PMID:22789933

  10. Blow collection as a non-invasive method for measuring cortisol in the beluga (Delphinapterus leucas.

    Directory of Open Access Journals (Sweden)

    Laura A Thompson

    Full Text Available Non-invasive sampling techniques are increasingly being used to monitor glucocorticoids, such as cortisol, as indicators of stressor load and fitness in zoo and wildlife conservation, research and medicine. For cetaceans, exhaled breath condensate (blow provides a unique sampling matrix for such purposes. The purpose of this work was to develop an appropriate collection methodology and validate the use of a commercially available EIA for measuring cortisol in blow samples collected from belugas (Delphinapterus leucas. Nitex membrane stretched over a petri dish provided the optimal method for collecting blow. A commercially available cortisol EIA for measuring human cortisol (detection limit 35 pg ml-1 was adapted and validated for beluga cortisol using tests of parallelism, accuracy and recovery. Blow samples were collected from aquarium belugas during monthly health checks and during out of water examination, as well as from wild belugas. Two aquarium belugas showed increased blow cortisol between baseline samples and 30 minutes out of water (Baseline, 0.21 and 0.04 µg dl-1; 30 minutes, 0.95 and 0.14 µg dl-1. Six wild belugas also showed increases in blow cortisol between pre and post 1.5 hour examination (Pre 0.03, 0.23, 0.13, 0.19, 0.13, 0.04 µg dl-1, Post 0.60, 0.31, 0.36, 0.24, 0.14, 0.16 µg dl-1. Though this methodology needs further investigation, this study suggests that blow sampling is a good candidate for non-invasive monitoring of cortisol in belugas. It can be collected from both wild and aquarium animals efficiently for the purposes of health monitoring and research, and may ultimately be useful in obtaining data on wild populations, including endangered species, which are difficult to handle directly.

  11. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings

    International Nuclear Information System (INIS)

    Non-invasive fetal electrocardiography is still an open research issue. The recent publication of an annotated dataset on Physionet providing four-channel non-invasive abdominal ECG traces promoted an international challenge on the topic. Starting from that dataset, an algorithm for the identification of the fetal QRS complexes from a reduced number of electrodes and without any a priori information about the electrode positioning has been developed, entering into the top ten best-performing open-source algorithms presented at the challenge. In this paper, an improved version of that algorithm is presented and evaluated exploiting the same challenge metrics. It is mainly based on the subtraction of the maternal QRS complexes in every lead, obtained by synchronized averaging of morphologically similar complexes, the filtering of the maternal P and T waves and the enhancement of the fetal QRS through independent component analysis (ICA) applied on the processed signals before a final fetal QRS detection stage. The RR time series of both the mother and the fetus are analyzed to enhance pseudoperiodicity with the aim of correcting wrong annotations. The algorithm has been designed and extensively evaluated on the open dataset A (N = 75), and finally evaluated on datasets B (N = 100) and C (N = 272) to have the mean scores over data not used during the algorithm development. Compared to the results achieved by the previous version of the algorithm, the current version would mark the 5th and 4th position in the final ranking related to the events 1 and 2, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. On dataset A, the algorithm achieves 0.982 median sensitivity and 0.976 median positive predictivity. (paper)

  12. Non-invasive technique for assessment of vascular wall stiffness using laser Doppler vibrometry

    Science.gov (United States)

    Campo, Adriaan; Segers, Patrick; Heuten, Hilde; Goovaerts, Inge; Ennekens, Guy; Vrints, Christiaan; Baets, Roel; Dirckx, Joris

    2014-06-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter is best known when estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery in the groin, but may also be determined locally from short-distance measurements on a short vessel segment. In this work, we propose a novel, non-invasive, non-contact laser Doppler vibrometry (LDV) technique for evaluating PWV locally in an elastic vessel. First, the method was evaluated in a phantom setup using LDV and a reference method. Values correlated significantly between methods (R ≤ 0.973 (p ≤ 0.01)); and a Bland-Altman analysis indicated that the mean bias was reasonably small (mean bias ≤ -2.33 ms). Additionally, PWV was measured locally on the skin surface of the CCA in 14 young healthy volunteers. As a preliminary validation, PWV measured on two locations along the same artery was compared. Local PWV was found to be between 3 and 20 m s-1, which is in line with the literature (PWV = 5-13 m s-1). PWV assessed on two different locations on the same artery correlated significantly (R = 0.684 (p < 0.01)). In summary, we conclude that this new non-contact method is a promising technique to measure local vascular stiffness in a fully non-invasive way, providing new opportunities for clinical diagnosing.

  13. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758)

    Science.gov (United States)

    Ferreira, João C. P.; Fujihara, Caroline J.; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C.; Teixeira, Carlos R.; Pantoja, José C. F.; Schmidt, Elizabeth M. S.; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots’ physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3–9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  14. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758.

    Directory of Open Access Journals (Sweden)

    João C P Ferreira

    Full Text Available Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA to measure glucocorticoid metabolites (GCM in droppings of 24 Blue-fronted parrots (Amazona aestiva, two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1 and one week later assigned to four different treatments (experiment 2: Control (undisturbed, Saline (0.2 mL of 0.9% NaCl IM, Dexamethasone (1 mg/kg IM and Adrenocorticotropic hormone (ACTH; 25 IU IM. Treatments (always one week apart were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment. Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations. Following ACTH injection, GCM concentration increased about 13.1-fold (median at the peak (after 3-9 h, and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  15. A non-invasive method of quantifying pancreatic volume in mice using micro-MRI.

    Directory of Open Access Journals (Sweden)

    Jose L Paredes

    Full Text Available In experimental models of pancreatic growth and recovery, changes in pancreatic size are assessed by euthanizing a large cohort of animals at varying time points and measuring organ mass. However, to ascertain this information in clinical practice, patients with pancreatic disorders routinely undergo non-invasive cross-sectional imaging of the pancreas using magnetic resonance imaging (MRI or computed tomography (CT. The aim of the current study was to develop a thin-sliced, optimized sequence protocol using a high field MRI to accurately calculate pancreatic volumes in the most common experimental animal, the mouse. Using a 7 Telsa Bruker micro-MRI system, we performed abdominal imaging in whole-fixed mice in three standard planes: axial, sagittal, and coronal. The contour of the pancreas was traced using Vitrea software and then transformed into a 3-dimensional (3D reconstruction, from which volumetric measurements were calculated. Images were optimized using heart perfusion-fixation, T1 sequence analysis, and 0.2 to 0.4 mm thick slices. As proof of principle, increases in pancreatic volume among mice of different ages correlated tightly with increasing body weight. In summary, this is the first study to measure pancreatic volumes in mice, using a high field 7 Tesla micro-MRI and a thin-sliced, optimized sequence protocol. We anticipate that micro-MRI will improve the ability to non-invasively quantify changes in pancreatic size and will dramatically reduce the number of animals required to serially assess pancreatic growth and recovery.

  16. Non-invasive shallow seismic source comparison for hazardous waste site investigations

    International Nuclear Information System (INIS)

    Many commonly used shallow seismic sources are unacceptable for hazardous waste site investigations because they risk exhumation of contaminants in the soil, they add contaminants (e.g. lead) which are not allowed by regulations, or they add new migration paths for contaminants. Furthermore, recently developed high frequency vibrators for shallow investigations could be more effective at some sites than non-invasive impulsive sources because of their ability to tailor the source spectrum and reduce interference. The authors show preliminary results of a comparison test of eight non-invasive impulsive and swept sources in preparation for seismic reflection profiling on the Oak Ridge Reservation, Tennessee. Well log data are used to determine geologic contacts and to generate synthetic seismograms for the site. Common midpoint (CMP) seismic data for each source were collected at 95 geophone groups from 125 shot points along a 400m test line. Hydrophone data were obtained at 1.5m spacing between 61m and 133m depth in a hole near the center of the CMP line. As of March, 1994, brute stacks have been completed for three of the eight sources. Depth penetration is demonstrated in brute stacks and shot gathers, which show a 200ms reflector for all of the sources tested along portions of the line. Source effectiveness will also be evaluated by comparing images of several shallower reflectors (40--150ms) which are apparent in many of the records. Imaging of these reflectors appears to depend upon the ability of the source to generate sufficient high frequency energy (>100 Hz)

  17. 1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis

    Science.gov (United States)

    Ghazi, Negar; Arjmand, Mohammad; Akbari, Ziba; Mellati, Ali Owsat; Saheb-Kashaf, Hamid; Zamani, Zahra

    2016-01-01

    Background: So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. Objective: The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs) and quadratic discriminant analysis (QDA) modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by 1H- NMR based metabolomics. Materials and Methods: This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III) who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease. Results: The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis. Conclusion: The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients.

  18. Non-invasive volumetric assessment of aortic atheroma: a core laboratory validation using computed tomography angiography.

    Science.gov (United States)

    Hammadah, Muhammad; Qintar, Mohammed; Nissen, Steven E; John, Julie St; Alkharabsheh, Saqer; Mobolaji-Lawal, Motunrayo; Philip, Femi; Uno, Kiyoko; Kataoka, Yu; Babb, Brett; Poliszczuk, Roman; Kapadia, Samir R; Tuzcu, E Murat; Schoenhagen, Paul; Nicholls, Stephen J; Puri, Rishi

    2016-01-01

    Aortic atherosclerosis has been linked with worse peri- and post-procedural outcomes following a range of aortic procedures. Yet, there are currently no standardized methods for non-invasive volumetric pan-aortic plaque assessment. We propose a novel means of more accurately assessing plaque volume across whole aortic segments using computed tomography angiography (CTA) imaging. Sixty patients who underwent CTA prior to trans-catheter aortic valve implantation were included in this analysis. Specialized software analysis (3mensio Vascular™, Pie Medical, Maastricht, Netherlands) was used to reconstruct images using a centerline approach, thus creating true cross-sectional aortic images, akin to those images produced with intravascular ultrasonography. Following aortic segmentation (from the aortic valve to the renal artery origin), atheroma areas were measured across multiple contiguous evenly spaced (10 mm) cross-sections. Percent atheroma volume (PAV), total atheroma volume (TAV) and calcium score were calculated. In our populations (age 79.9 ± 8.5 years, male 52 %, diabetes 27 %, CAD 84 %, PVD 20 %), mean ± SD number of cross sections measured for each patient was 35.1 ± 3.5 sections. Mean aortic PAV and TAV were 33.2 ± 2.51 % and 83,509 ± 17,078 mm(3), respectively. Median (IQR) calcium score was 1.5 (0.7-2.5). Mean (SD) inter-observer coefficient of variation and agreement for plaque area among 4 different analysts was 14.1 (5.4), and the mean (95 % CI) Lin's concordance correlation coefficient was 0.79 (0.62-0.89), effectively simulating a Core Laboratory scenario. We provide an initial validation of cross-sectional volumetric aortic atheroma assessment using CTA. This proposed methodology highlights the potential for utilizing non-invasive aortic plaque imaging for risk prediction across a range of clinical scenarios. PMID:25962864

  19. Non-invasive optoacoustic temperature determination during retinal cw-laser treatments

    Science.gov (United States)

    Kandulla, Jochen; Elsner, Hanno; Sandeau, Julien; Birngruber, Reginald; Brinkmann, Ralf

    2006-02-01

    In almost all retinal laser treatments the therapeutic effect is initiated by a transient temperature increase. Due to differences in tissue properties and physiology like pigmentation and vascular blood flow an individually different temperature increase might occur with crucial effects on the therapeutic benefit of the treatment. In order to determine the individual retinal temperature increase during cw-laser irradiation in real-time we developed a non-invasive method based on optoacoustics. Simultaneously to the cw-laser irradiation (λ = 810 nm, P pressure wave, which amplitude was found to be temperature dependent following in good approximation a 2 nd order polynomial. The pressure wave was measured by an ultrasonic transducer embedded in a contact lens placed on the cornea. The experiments were performed in-vivo on rabbits. Simultaneous measurements with a miniaturized thermocouple showed a similar slope with a maximum local deviation of 0.4 °C for a temperature increase of 5.5 °C. On two rabbits measurements pre and post mortem at the same location were performed. The temperature increase after 60 s was found to raise by 12.0 % and 66.7 % post mortem, respectively. These data were used to calculate the influence of heat convection by blood circulation using a numerical model based on two absorbing layers and assuming a constant perfusion rate for the choriocapillaris and the choroid. Overall the presented optoacoustic method seems feasible for a non-invasive real-time determination of cw-laser induced retinal temperature increases and might serve as a temperature based dosimetry control during retinal laser treatments.

  20. Peripheral venous blood oxygen saturation can be non-invasively estimated using photoplethysmography.

    Science.gov (United States)

    Khan, Musabbir; Pretty, Christopher G; Amies, Alexander C; Elliott, Rodney B; Suhaimi, Fatanah M; Shaw, Geoffrey M; Chase, J Geoffrey

    2015-08-01

    Measurement of peripheral venous oxygen saturation (SvO2) is currently performed using invasive catheters or direct blood draw. The purpose of this study was to non-invasively determine SvO2 using a variation of pulse oximetry techniques. Artificial respiration-like modulations applied to the peripheral vascular system were used to infer regional SvO2 using photoplethysmography (PPG) sensors. To achieve this modulation, an artificial pulse generating system (APG) was developed to generate controlled, superficial perturbations on the finger using a pneumatic digit cuff. These low pressure and low frequency modulations affect blood volumes in veins to a much greater extent than arteries due to significant arterial-venous compliance differences. Ten healthy human volunteers were recruited for proof-ofconcept testing. The APG was set at a modulation frequency of 0.2 Hz (12 bpm) and 45-50 mmHg compression pressure. Initial analysis showed that induced blood volume changes in the venous compartment could be detected by PPG. Estimated arterial oxygen saturation (97% [IQR=96.1%-97.4%]) matches published values (95%-99%). Estimated venous oxygen saturation (93.2% [IQR=91.-93.9%]) agrees with reported ranges (92%-95%) measured in peripheral regions. The median difference between the two saturations was 3.6%, while the difference between paired measurements in each subject was statistically significant (p=0.002). These results demonstrate the feasibility of this method for real-time, low cost, non-invasive estimation of SvO2. Further validation of this method is warranted. PMID:26737758

  1. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  2. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography

    International Nuclear Information System (INIS)

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 ± 13 years, 78 ± 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC—end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Ω cm to 1583 Ω cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method

  3. Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior

    International Nuclear Information System (INIS)

    A methodology of studying of ingestive behavior by non-invasive monitoring of swallowing (deglutition) and chewing (mastication) has been developed. The target application for the developed methodology is to study the behavioral patterns of food consumption and producing volumetric and weight estimates of energy intake. Monitoring is non-invasive based on detecting swallowing by a sound sensor located over laryngopharynx or by a bone-conduction microphone and detecting chewing through a below-the-ear strain sensor. Proposed sensors may be implemented in a wearable monitoring device, thus enabling monitoring of ingestive behavior in free-living individuals. In this paper, the goals in the development of this methodology are two-fold. First, a system comprising sensors, related hardware and software for multi-modal data capture is designed for data collection in a controlled environment. Second, a protocol is developed for manual scoring of chewing and swallowing for use as a gold standard. The multi-modal data capture was tested by measuring chewing and swallowing in 21 volunteers during periods of food intake and quiet sitting (no food intake). Video footage and sensor signals were manually scored by trained raters. Inter-rater reliability study for three raters conducted on the sample set of five subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 0.988 for chews and 0.98 for swallows. The collected sensor signals and the resulting manual scores will be used in future research as a gold standard for further assessment of sensor design, development of automatic pattern recognition routines and study of the relationship between swallowing/chewing and ingestive behavior

  4. Optical non-invasive 3D characterization of pottery of pre-colonial Paranaiba valley tribes

    Science.gov (United States)

    Magalhães, Wagner; Alves, Márcia Angelina; Costa, Manuel F.

    2014-08-01

    Optical non-invasive inspection tools and methods had expensively proven, for several decades now, their invaluable importance in the preservation of cultural heritage and artwork. In this paper we will report on an optical non-invasive microtopographic characterization work on pre-historical and pre-colonial ceramics and pottery of tribes in the Paranaiba valley in Minas Gerais, Brazil. The samples object of this work were collected at the Inhazinha archeological site (19º 10'00" S / 47° 11'00" W) in the vicinity of Perdizes municipality in transition between the West mining area and the "triangle" area in the center of Brazil. It is a hilly region (850m high) traversed by a number of rivers and streams tributary of Araguari river like Quebra Anzol river and Macaúba and Olegário streams. The Inhazinha site' excavations are part of the Project Jigsaw Hook which since 1980 aimed the establishment of a chrono-cultural framework associated with the study of the socio-cultural dynamics corresponding to successive occupations of hunter-recollector-farmer' tribes in prehistoric and pre-colonial times in the Paranaíba valley in Minas Gerais, Brazil. Two groups of indigenous Indian occupations were found. Both of the pre-colonial period dated at 1,095 ± 186 years ago (TL-FATEC/SP for Zone 1) and of the early nineteenth century dated at 212 ± 19 years ago (EMS-CENA-USP/SP) and 190 ± 30 years ago (C14- BETA/USA) in Zone 2 seemingly occupied by southern Kayapós tribes. The pottery found is decorated with incisions with different geometric distributions and levels of complexity.

  5. Non-invasive detection of high gamma band activity during motor imagery

    Directory of Open Access Journals (Sweden)

    Melissa M Smith

    2014-10-01

    Full Text Available High gamma oscillations (70-150 Hz; HG are rapidly evolving, spatially localized neurophysiological signals that are believed to be the best representative signature of engaged neural populations. The HG band has been best characterized from invasive electrophysiological approaches such as electrocorticography (ECoG because of the increased signal-to-noise ratio that results when by-passing the scalp and skull. Despite the recent observation that HG activity can be detected non-invasively by electroencephalography (EEG, it is unclear to what extent EEG can accurately resolve the spatial distribution of HG signals during active task engagement. We have overcome some of the limitations inherent to acquiring HG signals across the scalp by utilizing individual head anatomy in combination with an inverse modeling method. We applied a linearly constrained minimum variance beamformer (LCMV method on EEG data during a motor imagery paradigm to extract a time-frequency spectrogram at every voxel location on the cortex. To confirm spatially distributed patterns of HG responses, we contrasted overlapping maps of the EEG HG signal with BOLD fMRI data acquired from the same set of neurologically normal subjects during a separate session. We show that scalp-based HG band activity detected by EEG during motor imagery spatially co-localizes with BOLD fMRI data. Taken together, these results suggest that EEG can accurately resolve spatially specific estimates of local cortical high frequency signals, potentially opening an avenue for non-invasive measurement of HG potentials from diverse sets of neurologically impaired populations for diagnostic and therapeutic purposes

  6. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    Science.gov (United States)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  7. Thermal Imaging to Study Stress Non-invasively in Unrestrained Birds.

    Science.gov (United States)

    Jerem, Paul; Herborn, Katherine; McCafferty, Dominic; McKeegan, Dorothy; Nager, Ruedi

    2015-01-01

    Stress, a central concept in biology, describes a suite of emergency responses to challenges. Among other responses, stress leads to a change in blood flow that results in a net influx of blood to key organs and an increase in core temperature. This stress-induced hyperthermia is used to assess stress. However, measuring core temperature is invasive. As blood flow is redirected to the core, the periphery of the body can cool. This paper describes a protocol where peripheral body temperature is measured non-invasively in wild blue tits (Cyanistes caeruleus) using infrared thermography. In the field we created a set-up bringing the birds to an ideal position in front of the camera by using a baited box. The camera takes a short thermal video recording of the undisturbed bird before applying a mild stressor (closing the box and therefore capturing the bird), and the bird's response to being trapped is recorded. The bare skin of the eye-region is the warmest area in the image. This allows an automated extraction of the maximum eye-region temperature from each image frame, followed by further steps of manual data filtering removing the most common sources of errors (motion blur, blinking). This protocol provides a time series of eye-region temperature with a fine temporal resolution that allows us to study the dynamics of the stress response non-invasively. Further work needs to demonstrate the usefulness of the method to assess stress, for instance to investigate whether eye-region temperature response is proportional to the strength of the stressor. If this can be confirmed, it will provide a valuable alternative method of stress assessment in animals and will be useful to a wide range of researchers from ecologists, conservation biologists, physiologists to animal welfare researchers. PMID:26575985

  8. Pilot study of temporary controllable gastric pseudobezoars for dynamic non-invasive gastric volume reduction

    International Nuclear Information System (INIS)

    Invasive surgical procedures for gastric volume reduction or bypass have been considered the most effective approach to sustainable long-term weight reduction. However, non-invasive techniques for dynamic volume reduction from inside the stomach are lacking. The aim of this study was to propose temporary, permeable, controllable pseudobezoars for non-invasive, long-term sustainable gastric volume reduction and to test them in pilot human studies. Permeable sac-like carriers made from biocompatible and biodegradable material were filled with expandable superabsorbent fiber and polymer granules. The implements were designed to prevent the expulsion of the pseudobezoars through the pylorus for a controlled time period. The pseudobezoars were administered transorally to two human patients (2M, 78.9 kg/174 cm, girth 88.1 cm, and 89.7 kg/175, girth 95.2 cm). Body weight dynamics, girth, level of satiety, stools, bowel regularity and notable side effects were monitored in three distinct 1 month periods: baseline, therapy and washout. Sonographic verification of the presence of pseudobezoars in the stomachs of both subjects was performed at the end of the therapy month and was repeated at the end of the washout period to examine the clearance of the implements. During the therapy month, both individuals exhibited significant weight and girth reduction (p < 0.05), and substantially increased satiety levels. The patients retained their bowel regularity and did not report any notable side effects. The temporary pseudobezoars were clearly noticeable sonographically in both patients at the end of the therapy month and cleared after its discontinuation. Controllable temporary pseudobezoars were designed and tested in pilot studies

  9. EXPERIENCE WITH NON - INVASIVE VENTILATION IN TYPE II RESPIRATORY FAILURE AT DEPARTMENT OF PULMONARY MEDICINE, KURNOOL MEDICAL COLLEGE, KURNOOL

    Directory of Open Access Journals (Sweden)

    Sailaja

    2015-07-01

    Full Text Available BACKGROUND : Non - invasive ventilation (NIV is the delivery of positive pressure ventilation through an interface to upper airways without using the invasive airway. Use of NIV is becoming common with the increasing recognition of its benefits. OBJECTIVES: This study was done to evaluate the feasibility and outcome of NIV (BiPAP in Type II Respiratory Failu re in Department of Pulmonary Medicine, Kurnool Medical College. Materials and Methods: An observational study conducted over a period of 18 months in Department of pulmonary medicine, Kurnool Medical C ollege in 40 patients who were treated by NIV (BiPaP. Patients were stratified on basis of set of exclusion and inclusion criteria. NIV was given in accordance with the arterial blood gas (ABG parameters defining Type II respiratory failure. RESULTS: In the present study NIPPV was successful in 34(85% and failed in 6(15% patients . The most common indication of NIV in our hospital was acute exacerbation of chronic obstructive pulmonary disease (AE - COPD 90% and 88% of AE - COPD patients were improved by NIV. Application of NIV resulted in significant improvem ent of pH and blood gases in COPD patients. Kyphoscoliosis, Obstructive Sleep Apnea (OSA patients with Type II Respirato r y failure also showed significant improvement in partial pressure of oxygen and carbon dioxide. CONCLUSION: This study demonstrates and encourages the use of NIV as the first - line ventilator treatment in AE - COPD patients with Type II respiratory failure. It also supports NIV usage in other causes of type II Respiratory failure as a promising step toward prevention of mechanical ventila tion.

  10. Effects of non-invasive ventilation on objective sleep and nocturnal respiration in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Boentert, Matthias; Brenscheidt, Inga; Glatz, Christian; Young, Peter

    2015-09-01

    In amyotrophic lateral sclerosis (ALS), non-invasive ventilation (NIV) is indicated if sleep-disordered breathing (SDB), daytime hypercapnia, or significant diaphragmatic weakness is present. We investigated both short-term and long-term effects of NIV on objective measures of sleep and nocturnal respiration in patients with ALS. Polysomnography (PSG) and transcutaneous capnography were conducted for diagnosis of SDB (T0), for treatment initiation (T1), and follow-up 3, 9, and 15 months later (T2, T3, and T4, respectively). Records from 65 patients were retrospectively analyzed at T0 and T1. At subsequent timepoints, the number of full data sets decreased since follow-up sleep studies frequently included polygraphy rather than PSG (T2, 38 patients, T3, 17 patients, T4, 11 patients). At T0, mean age was 63.2 years, 29 patients were female, and 22 patients had bulbar ALS. Immediate sequelae of NIV initiation included significant increases of slow wave sleep, rapid eye movement sleep, and oxygen saturation. Mean apnea-hypopnea index, respiratory rate, and the maximum transcutaneous carbon dioxide tension were reduced. At T2-T4, normoxia and normocapnia were preserved. Sleep quality measures showed no alteration as diurnal use of NIV gradually increased reflecting disease progression. In contrast to previous reports, improvement of sleep and respiratory outcomes was found in both non-bulbar and bulbar patients. NIV significantly improves objective sleep quality and SDB in the first night of treatment in patients with bulbar and non-bulbar ALS. NIV warrants nocturnal normoventilation without deterioration of sleep quality in the long run with only minor changes to ventilator settings. PMID:26076745

  11. Long-term non-invasive positive pressure ventilation in severe stable chronic obstructive pulmonary disease: a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; LIANG Bin-miao; XU Zhi-bo; TANG Yong-jiang; WANG Ke; XIAO Jun; YI Qun; SUN Jian; FENG Yu-lin

    2011-01-01

    Background The evidence for non-invasive positive pressure ventilation (NIPPV) used in patients with severe stable chronic obstructive pulmonary disease (COPD) is insufficient.The aim of the meta-analysis was to assess the treatment effects of long-term NIPPV on gas change,lung function,health-related quality of life (HRQL),survival and mortality in severe stable COPD patients.Methods Randomized controlled trials (RCTs) and crossover studies comparing the treatment effects of NIPPV with conventional therapy were identified from electronic databases and reference lists from January 1995 to August 2010.Two reviewers independently assessed study quality.Data were combined using Review Manager 5.0.Both pooled effects and 95% confidence intervals were calculated.Results Five RCTs and one randomized crossover study with a total of 383 severe stable COPD patients were included.NIPPV improved gas change significantly when using a higher inspiratory positive airway pressures.The weighted mean difference (WMD) for the partial pressure of carbon dioxide in artery (PaCO2) was -3.52 (-5.26,-1.77) mmHg and for the partial pressure of oxygen in artery (PaO2) 2.84 (0.23,5.44) mmHg.There were significant improvements in dyspnea and sleep quality,but gained no benefits on lung function.The standardized mean difference (SMD) for the forced expiratory volume in 1 second (FEV1)was 0.00 (0.29,0.29).And the benefits for exercise tolerance,mood,survival and mortality remained unclear.Conclusions Patients with severe stable COPD can gain some substantial treatment benefits when using NIPPV,especially improvements in gas change,dyspnea and sleep quality.Studies of high methodological quality with large population,especially those based on a higher inspiratory positive airway pressures are required to provide more evidences.

  12. Non-invasive scanning ion-selective electrode technique and its applications to the research of higher plants

    Institute of Scientific and Technical Information of China (English)

    Sun Tong; Xu Yue; Li Peng; Yu Shangguan; Yin Liping

    2007-01-01

    The process of various ions and molecules getting into and out of cells is critical for plant survival. The non-invasive scanning ion-selective electrode technique (SIET) is a non-invasive method to obtain the information of ions/molecules across membranes in plant. This technique can measure the absolute concentration of ions and molecules, and also their fluxes and directions of movement.The samples to be analyzed can be a single cell, a piece of tissue, a whole organ and even an intact seedling. This article reviews the recent progress made in plant physiology by using this technique and discusses its potentials in future studies on plant physiology.

  13. State-of-the-Art Sensor Technology in Spain: Invasive and Non-Invasive Techniques for Monitoring Respiratory Variables

    Directory of Open Access Journals (Sweden)

    Christian Domingo

    2010-05-01

    Full Text Available The interest in measuring physiological parameters (especially arterial blood gases has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables.

  14. Non-invasive monitoring of blood pressure using the Philips Intellivue MP50 monitor cannot replace invasive blood pressure techniques in surgery patients under general anesthesia

    OpenAIRE

    Meng, Xianghu; ZANG, GUANGHUI; FAN, LONGCHANG; Zheng, Lei; DAI, JINZHEN; WANG, XUEREN; Xia, Wei; Liu, Jihong; ZHANG, CHUANHAN

    2013-01-01

    The Philips Intellivue MP50 monitor provides a method for non-invasive, near-continuous blood pressure (BP) monitoring and is designed to be an alternative to direct intra-arterial BP (IABP) measurement. However, no studies have specifically compared non-invasive and invasive BP measurements using the monitor. The present retrospective study observed 515 patients undergoing surgery with general anesthesia, whose invasive (intra-radial, femoral or dorsalis pedis artery) and non-invasive (oscil...

  15. A reliable genetic technique for sex determination of giant panda (Ailuropoda melanoleuca) from non-invasively collected hair samples

    NARCIS (Netherlands)

    Durnin, Matthew E.; Palsboll, Per J.; Ryder, Oliver A.; McCullough, Dale R.

    2007-01-01

    Extractions from non-invasive hair samples usually yield low amounts of highly degraded DNA. Previously developed mammal molecular sexing methods were not designed with such sub-optimal conditions in mind. We developed a simple and reliable PCR-based sexing method aimed at degraded, low yield DNA ex

  16. Advantages and Disadvantages of Different Implementation Strategies of Non-Invasive Prenatal Testing in Down Syndrome Screening Programmes

    NARCIS (Netherlands)

    Mersy, E.; Die-Smulders, C.E. de; Coumans, A.B.; Smits, L.J.; Wert, G.M.W.R. de; Frints, S.G.; Veltman, J.A.

    2015-01-01

    BACKGROUND: Implementation of non-invasive prenatal testing (NIPT) in Down syndrome screening programmes requires health policy decisions about its combination with other tests and its timing in pregnancy. AIM: Our aim was to aid health policy decision makers by conducting a quantitative analysis of

  17. The consequences of implementing non-invasive prenatal testing in Dutch national health care: a cost-effectiveness analysis

    NARCIS (Netherlands)

    Beulen, L.; Grutters, J.P.C.; Faas, B.H.W.; Feenstra, I.; Vugt, J.M.G. van; Bekker, M.N.

    2014-01-01

    OBJECTIVE: Non-invasive prenatal testing (NIPT) using cell-free fetal DNA in maternal plasma has been developed for the detection of fetal aneuploidy. Clinical trials have shown high sensitivity and specificity for trisomy 21 (T21) in both high-risk and average-risk populations. Although its great p

  18. Non-invasive sensor for determining functional characteristics of the cornea, device including said sensor and use thereof

    OpenAIRE

    Guimera Brunet, Antoni; Villa Sanz, Rosa; Gabriel Buguna, Gemma; Maldonado, Miguel José

    2010-01-01

    [EN] The invention relates to a sensor and a device including said sensor for non-invasively obtaining data that can be used to detennine the functional characteristics of the cornea, in particular to establish a correlation between the impedance to different frequencies and the penneability of the endothelium and the epithelium and the hydration level ofthe stroma.

  19. Non-Invasive Determination of Cardiac Output in Pre-Capillary Pulmonary Hypertension.

    Directory of Open Access Journals (Sweden)

    Frédéric Lador

    Full Text Available Cardiac output (CO is a major diagnostic and prognostic factor in pre-capillary pulmonary hypertension (PH. Reference methods for CO determination, like thermodilution (TD, require invasive procedures and allow only steady-state measurements. The Modelflow (MF method is an appealing technique for this purpose as it allows non-invasive and beat-by-beat determination of CO.We aimed to compare CO values obtained simultaneously from non-invasive pulse wave analysis by MF (COMF and by TD (COTD to determine its precision and accuracy in pre-capillary PH. The study was performed on 50 patients with pulmonary arterial hypertension (PAH or chronic thrombo-embolic PH (CTEPH. CO was determined at rest in all patients (n = 50 and during nitric oxide vasoreactivity test, fluid challenge or exercise (n = 48.Baseline COMF and COTD were 6.18 ± 1.95 and 5.46 ± 1.95 L·min-1, respectively. Accuracy and precision were 0.72 and 1.04 L·min-1, respectively. Limits of agreement (LoA ranged from -1.32 to 2.76 L·min-1. Percentage error (PE was ±35.7%. Overall sensitivity and specificity of COMF for directional change were 95.2% and 82.4%, (n = 48 and 93.3% and 100% for directional changes during exercise (n = 16, respectively. After application of a correction factor (1.17 ± 0.25, neither proportional nor fixed bias was found for subsequent CO determination (n = 48. Accuracy was -0.03 L·min-1 and precision 0.61 L·min-1. LoA ranged from -1.23 to 1.17 L·min-1 and PE was ±19.8%.After correction against a reference method, MF is precise and accurate enough to determine absolute values and beat-by-beat relative changes of CO in pre-capillary PH.

  20. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    Science.gov (United States)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  1. Non-invasive Technology to Study Local Passivity Breakdown of Metal Alloys in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Alan M. Shipley

    2005-03-09

    Little is known about the basic mechanisms of passive oxide breakdown, repair, and localized corrosion of metals. A non-invasive instrument and methods have been developed to study local events and mechanisms that initiate passivity breakdown and subsequent corrosion of metals in aqueous media. The ''difference viewer imaging technique'' (DVIT) is a rapid, real time, non-invasive assay to study metal surfaces in corrosive solutions. It has a spatial resolution of less than 10.0 ?m (1cm x 1cm sample, 1000 x 1000 pixel CCD) to observe initial corrosion processes of the order of seconds. DVIT is a software-controlled video microscopy system and methods to collect and analyze pixel changes in video images. These images are recorded from a digital CCD video camera and frame grabber package using visible light for illumination. The DVIT system detects changes in video images that represent initial corrosive events that lead to passivity breakdown and re-passivation on metal surfaces in situ. This visual technique is easy to use and apply. It compliments other metal surface measurement techniques and can be used simultaneously with them. DVIT has proven to be more sensitive in detecting changes than scanning microelectrode techniques. DVIT is also much easier than other methods to apply and operate. It has the further advantage of providing a real time image of the entire metal surface under study instead of waiting for a microelectrode to scan a number of data points over a sample then plot the results. This project has fulfilled all specifications as outlined in the Department of Energy solicitation responsible for this grant application and award and exceeded a number of the specifications. Applicable Electronics, Inc. now has a marketable instrument and software package available for sale now. Further development of the system will be ongoing as driven by customer needs and discoveries. This technology has immediate applications in corrosion labs

  2. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    Directory of Open Access Journals (Sweden)

    M.U.R. Naidu

    2012-01-01

    Full Text Available Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood pressures were recorded in a randomised manner using both the oscillometric and tonometric devices. All recordings were performed 10 minutes after the patient lying comfortably in a noise-free temperature-controlled room. The test was performed between 09 am and 10 am after overnight fast. A minimum of three measurements were performed by the same skilled and trained operator. From the raw data obtained with two devices, software calculated the final vascular parameters. Results: A total of 49 patients (8 women and 41 men, of mean age 40.5 years (range: 19-81 years participated in the present study. After transforming the brachial pressures into aortic pressures, the correlation coefficient between the Aortic Systolic Pressure (ASP values obtained with two methods was 0.9796 (P<0.0001. The mean difference between ASP with two methods was 0.3 mm Hg. Similarly, Aortic Diastolic Pressure (ADP values obtained with two methods also correlated significantly with correlation coefficient of 0.9769 (P<0.0001. The mean difference of ADP was 0.2 mm Hg. In case of Aortic Pulse Pressure (APP, the mean difference was 0.1 mm Hg. All parameters of central aortic pressures obtained with two methods correlated significantly. Conclusion: The new method of transforming the Carotid Femoral PWV (cfPWV and brachial blood pressure values into aortic blood pressure values seems to be reasonably good. The significant correlation between the values obtained by tonometric device and

  3. Gingival crevicular blood: As a non-invasive screening tool for diabetes mellitus in dental clinics

    Directory of Open Access Journals (Sweden)

    Neema Shetty

    2013-01-01

    Full Text Available Background: A high number of patients with periodontitis may have undiagnosed diabetes. Self-monitoring devices provide a simple method for rapid monitoring of the glucose level in the blood by utilizing a blood sample from the finger, but this method requires a needle puncture to obtain blood. It is possible that gingival crevicular blood (GCB from routine periodontal probing may be a source of blood for glucose measurements. Aim: To establish whether GCB can be used as a non-invasive diagnostic aid in screening for diabetes mellitus during routine periodontal examination. Materials and Methods: The study involved 50 diabetics and 50 non-diabetics, with an age range of 26-66 years. Both diabetic and non-diabetic patients had moderate to severe gingivitis with at least one tooth in the maxillary anterior region showing bleeding upon probing. The Gingival Index and Oral Hygiene Index-Simplified were recorded. Blood oozing from the gingival sulcus/pocket following periodontal pocket probing was collected using a capillary tube and transferred to the test stick of a glucose self-monitoring device (Accu-Chek, Roche Diagnostic, Germany in patients with comparable gingival and oral hygiene status. This value was compared with the peripheral fingerstick blood glucose (PFBG value, which was obtained by pricking the finger tip at the same visit. Statistical analysis was performed using Pearson′s correlation coefficient. Result: There was no statistically significant difference between the gingival crevicular blood glucose (GCBG values and the PFBG values in both the diabetic (P = 0.129, NS and the non-diabetic (P = 0.503, NS groups. Karl Pearson′s product-moment correlation coefficient was calculated, which showed a positive correlation between the two measurements in the diabetic (r = 0.943 as well as the non-diabetic (r = 0.926 groups. Conclusion: The results suggest that GCB can be used as a non-invasive diagnostic aid in screening for diabetes

  4. Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity

    International Nuclear Information System (INIS)

    Surface recording of electroenterogram (EEnG) is a non-invasive method for monitoring intestinal myoelectrical activity. However, surface EEnG is seriously affected by a variety of interferences: cardiac activity, respiration, very low frequency components and movement artefacts. The aim of this study is to eliminate respiratory interference and very low frequency components from external EEnG recording by means of empirical mode decomposition (EMD), so as to obtain more robust indicators of intestinal pacemaker activity from the external EEnG signal. For this purpose, 11 recording sessions were performed in an animal model under fasting conditions and in each individual session the myoelectrical signal was recorded simultaneously in the intestinal serosa and the external abdominal surface in physiological states. Various parameters have been proposed for evaluating the efficacy of the method in reducing interferences: the signal-to-interference ratio (S/I ratio), attenuation of the target and interference signals, the normal slow wave percentage and the stability of the dominant frequency (DF) of the signal. The results show that the S/I ratio of the processed signals is significantly greater than the original values (9.66 ± 4.44 dB versus 1.23 ± 5.13 dB), while the target signal was barely attenuated (−0.63 ± 1.02 dB). The application of the EMD method also increased the percentage of the normal slow wave to 100% in each individual session and enabled the stability of the DF of the external signal to be increased considerably. Furthermore, the variation coefficient of the DF derived from the external processed signals is comparable to the coefficient obtained using internal recordings. Therefore, the EMD method could be a very useful tool to improve the quality of external EEnG recording in the low frequency range and therefore to obtain more robust indicators of the intestinal pacemaker activity from non-invasive EEnG recordings

  5. Graft complications following orthotopic liver transplantation: Role of non-invasive cross-sectional imaging techniques.

    Science.gov (United States)

    Boraschi, Piero; Della Pina, Maria Clotilde; Donati, Francescamaria

    2016-07-01

    Orthotopic liver transplantation is the treatment of choice in adult patients with endstage liver disease. Survival of both graft and patient has progressively improved over time due to improvements in surgical and medical treatment. However, post-transplant complications still have a significant impact on morbidity and mortality associated with transplant surgery. The most common adverse events of the graft include vascular (arterial and venous stenosis and thrombosis), biliary (leakage, strictures, stones) and parenchymal complications (hepatitis virus C infection, HCC recurrence, liver abscesses). The diagnosis of these adverse events is often challenging because of the low specificity of clinical and biologic findings. Different diagnostic algorithms have been proposed for the detection of graft complications and, in this setting, radiological evaluation plays a key role in differential diagnosis of graft complications and the exclusion of other adverse events. Ultrasound examination is established the first-line method of identifying adverse events in liver transplant recipients but a normal or a technically unsatisfactory study cannot exclude the presence of biliary, vascular and/or parenchymal complications. In these circumstances, before planning any treatment, multi-detector CT and/or MR imaging and MR cholangiography should be performed for the evaluation of vascular structures, biliary system, liver parenchyma and fluid collections. The aim of this review is to illustrate the role and state-of-the-art of non-invasive cross-sectional imaging techniques in the diagnosis and management of complications which primarily affect the graft in patients after liver transplantation. PMID:27235874

  6. Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Although the non-invasive glucose measurement technique based on near-infrared (NIR) spectroscopy has been an active research area for over twenty years, a reliable monitoring method has not been established yet. The key problem is that the spectral variations due to glucose concentration are extremely small compared to that from other biological components. In addition, there are also some ambiguous time-dependent physiological processes, which make the explanation of the model more difficult, especially in the universal calibration. Therefore, in order to produce a model that is related to the actual spectral variation of glucose, reproducible measurements and clinical validation experiments that improve the selectivity and signal to noise ratio of glucose measurement are needed. In this paper, chance correlation in spectroscopy analysis is investigated, which is one of the obstacles to achieving successful NIR spectroscopy analysis, especially in in vivo measurement. The reasons for chance correlation in the in vitro and in vivo experiments are analysed. Methods to avoid it are suggested accordingly and verified with the in vitro experiments. We also investigate the chance correlation for the in vivo NIR diffuse reflectance spectroscopy monitoring blood. Results show that there is significant signal variation after glucose is taken, and the potential chance correlation factors including the instrument-related and physiology-related variations during the in vivo experiments do not contribute to the multivariate model for glucose concentration

  7. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring.

    Science.gov (United States)

    Bandodkar, Amay J; Molinnus, Denise; Mirza, Omar; Guinovart, Tomás; Windmiller, Joshua R; Valdés-Ramírez, Gabriela; Andrade, Francisco J; Schöning, Michael J; Wang, Joseph

    2014-04-15

    This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains. PMID:24333582

  8. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    Science.gov (United States)

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. PMID:27221544

  9. The non-invasive investigation of lumbar disc degeneration in patients with chronic low back pain

    International Nuclear Information System (INIS)

    The painful degenerate disc is a recognised cause of low back pain. Magnetic Resonance Imaging (MRI) has now replaced discography in the non-invasive assessment of disk degeneration. However, the prohibitive capital expense of MRI and the small number of MR units in Australia produce limitations in clinical access. In contrast, Computed Tomography (CT) is readily available and is performed in most patients prior to MRI referral. This prospective study was undertaken to determine whether preliminary CT could offer any information about disc degeneration and so reduce the demand on a MRI scanner. 30 consecutive patients were studied all of whom had both CT and MRI examinations. Of a total 107 discs examined by both techniques, MRI was able to identify 37 degenerate discs. Conclusive evidence of degeneration (i.e. the presence of intervertebral gas) was only seen in 3 discs at CT (1 patient). Of the 29 posterior disc bulges found on CT, all were both bulging and degenerate on MRI. Indications for MRI based on the CT findings are recommended. Using these criteria, 13% (4 patients) of this study group could have avoided an expensive and unnecessary MR investigation. A useful algorithm for the investigation and assessment of patients with chronic low back pain is discussed. 8 refs., 5 figs., 1 tab

  10. Transient micro-elastography:A novel non-invasive approach to measure liver stiffness in mice

    Institute of Scientific and Technical Information of China (English)

    Cécile Bastard; Matteo R Bosisio; Michèle Chabert; Athina D Kalopissis; Meriem Mahrouf-Yorgov; Hélène Gilgenkrantz; Sebastian Mueller; Laurent Sandrin

    2011-01-01

    AIM:To develop and validate a transient micro-elastography device to measure liver stiffness (LS) in mice. METHODS:A novel transient micro-elastography (TME) device,dedicated to LS measurements in mice with a range of measurement from 1-170 kPa,was developed using an optimized vibration frequency of 300 Hz and a 2 mm piston.The novel probe was validated in a classical fibrosis model (CCl4) and in a transgenic murine model of systemic amyloidosis.RESULTS:TME could be successfully performed in control mice below the xiphoid cartilage,with a mean LS of 4.4 ± 1.3 kPa,a mean success rate of 88%,and an excellent intra-observer agreement (0.98).Treatment with CCl4 over seven weeks drastically increased LS as compared to controls (18.2 ± 3.7 kPa vs 3.6 ± 1.2 kPa).Moreover, fibrosis stage was highly correlated with LS (Spearman coefficient = 0.88,P 150 kPa.LS significantly correlated with the amyloidosis index (0.93,P < 0.0001) and the plasma concentration of mutant hapoA-Ⅱ (0.62,P < 0.005). CONCLUSION:Here,we have established the first non-invasive approach to measure LS in mice,and have successfully validated it in two murine models of high LS.

  11. Establishment of an X radiation equipment quality control programme using non invasive meters

    International Nuclear Information System (INIS)

    The objective of this work was to study the behavior of the mainly X ray equipment calibration laboratory of IPEN, operated in the range from 25 kV to 150 kV using a PTW non invasive meter, model DiavoltTM, and an ORTEC spectrometry system, model NOMAD-PLUS 92X, for the establishment of a quality control programme. The Diavolt meter was used for measurements of air kerma, peak voltage and practical peak voltage. The measurements were made varying parameters such as electrical current, X radiation quality for radiation diagnostic, angulations of the meter and its distance in relation to the focal spot of the X ray tube. The results were compared with data found in the literature. Several spectra were generated with the spectrometer system with the purpose of determine the peak voltage in function of the nominal voltage and to characterize the radiation qualities for radiation diagnostic previously determined. The established quality control programme enables the management of the appropriate functioning of the measurement instruments (ionization chambers, voltage and current meter and spectrometer) as well as of the X radiation system. This work also has proposed a time interval to run each one of the tests. (author)

  12. Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Katharine A Dunlop

    2016-02-01

    Full Text Available The term eating disorders (ED encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS. NIBS, including repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related rewards and punishment cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and their underlying behavioral and neurobiological targets associated with ED as potential candidates for NIBS and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED.

  13. Development of a FBG probe for non-invasive carotid pulse waveform assessment

    Science.gov (United States)

    Leitão, C.; Bilro, L.; Alberto, N.; Antunes, P.; Lima, H.; André, P. S.; Nogueira, R.; Pinto, J. L.

    2012-06-01

    One of the early predictors of cardiovascular diseases, with growing interest, is the arterial stiffness which is typically evaluated through the velocity and morphology of the arterial pressure wave. In each cardiac cycle the heart generates a pressure wave which propagates through the arterial tree. Along its path, the pressure wave interacts with the arterial walls and, consequently, the morphology of a local arterial pressure wave can be assessed by the arterial distention movement. Due to its superficiality, proximity of the heart and high probability of atherosclerosis development, the carotid artery has particular interest to be monitored. In this work, the development of a non-invasive fibre Bragg grating (FBG) probe for the acquisition of the arterial distention wave is presented. Comparing to traditional methods, optical FBG based sensors can offer many advantages, namely, compactness, immunity to electromagnetic interference, high sensitivity, low noise and immunity to light source intensity due to its codification in the wavelength domain. The arterial movements induce strain on a uniform FBG, with the arterial distention pattern. The carotid pulse wave was successful accessed in young human carotid artery, with an acquisition rate of 950 Hz, allowing a clear distinction of the carotid pulse identification points.

  14. Seeing Through the Surface: Non-invasive Characterization of Biomaterial-Tissue Interactions Using Photoacoustic Microscopy.

    Science.gov (United States)

    Zhang, Yu Shrike; Wang, Lihong V; Xia, Younan

    2016-03-01

    At the intersection of life sciences, materials science, engineering, and medicine, regenerative medicine stands out as a rapidly progressing field that aims at retaining, restoring, or augmenting tissue/organ functions to promote the human welfare. While the field has witnessed tremendous advancements over the past few decades, it still faces many challenges. For example, it has been difficult to visualize, monitor, and assess the functions of the engineered tissue/organ constructs, particularly when three-dimensional scaffolds are involved. Conventional approaches based on histology are invasive and therefore only convey end-point assays. The development of volumetric imaging techniques such as confocal and ultrasonic imaging has enabled direct observation of intact constructs without the need of sectioning. However, the capability of these techniques is often limited in terms of penetration depth and contrast. In comparison, the recently developed photoacoustic microscopy (PAM) has allowed us to address these issues by integrating optical and ultrasonic imaging to greatly reduce the effect of tissue scattering of photons with one-way ultrasound detection while retaining the high optical absorption contrast. PAM has been successfully applied to a number of studies, such as observation of cell distribution, monitoring of vascularization, and interrogation of biomaterial degradation. In this review article, we highlight recent progress in non-invasive and volumetric characterization of biomaterial-tissue interactions using PAM. We also discuss challenges ahead and envision future directions. PMID:26471785

  15. Non-Invasive Diagnosis of Abdomino-Pelvic Masses: Role of Multimodality Imaging

    Directory of Open Access Journals (Sweden)

    Vijayanadh Ojili

    2013-01-01

    Full Text Available Recent advances in radiology have greatly increased the ability to make highly accurate diagnosis. Biopsy of many commonly seen lesions is no longer performed as the radiological findings are pathognomonic. This gives rise to the concept of ′virtual biopsy′, a term coined on the lines of other imaging techniques such as virtual colonoscopy. Virtual biopsy is not a new imaging technique but a new concept which refers to the use of existing imaging modalities to evaluate the morphological features of tumors and arriving at a non-invasive diagnosis with a high degree of confidence obviating the need for true biopsy. Elements of virtual biopsy have already been incorporated into some evidence-based guidelines, and it is expected that with further technological advancements, an increasing number of tumors may be diagnosed and managed accordingly. A wider acceptance of virtual biopsy could further reduce the need for invasive biopsies and its attendant costs and risks. In this review article, we use index cases to further emphasize this concept.

  16. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561

  17. Artificial neural network aided non-invasive grading evaluation of hepatic fibrosis by duplex ultrasonography

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2012-06-01

    Full Text Available Abstract Background Artificial neural networks (ANNs are widely studied for evaluating diseases. This paper discusses the intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy. Methods 239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to accuracy, sensitivity, specificity, Youden’s index and receiver operating characteristic (ROC analysis. Results 5 ultrasonographic parameters; i.e., the liver parenchyma, thickness of spleen, hepatic vein (HV waveform, hepatic artery pulsatile index (HAPI and HV damping index (HVDI, were enrolled as the input neurons in the ANN model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were 95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI was 0.80. Conclusions The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-invasive grading diagnosis of liver fibrosis in clinical practice.

  18. Picosecond acoustics in vegetal cells: non invasive in vitro measurements at a sub-cell scale

    Science.gov (United States)

    Audoin, Bertrand; Rossignol, Clément; Chigarev, Nikolay; Ducousso, Mathieu; Forget, Guillaume; Guillemot, Fabien; Durrieu, Marie-Christine

    2010-01-01

    A 100 fs laser pulse passes through a single transparent cell and is absorbed at the surface of a metallic substrate. Picosecond acoustic waves are generated and propagate through the cell in contact with the metal. Interaction of the high frequency acoustic pulse with a probe laser light gives rise to stimulated Brillouin oscillations. The measurements are thus made with lasers for both the opto-acoustic generation and the acousto-optic detection. The technique offers perspectives for single cell imaging. The in plane resolution is limited by the pump and probe spot sizes, i.e ˜1 μm, and the in depth resolution is provided by the acoustic frequencies, typically in the GHz range. The effect of the technique on cell safety is discussed. Experiments achieved in vegetal cells illustrate reproducibility and sensitivity of the measurements. The acoustic responses of cell organelles are significantly different. The results support the potentialities of the hypersonic non invasive technique in the fields of bio-engineering and medicine.

  19. Non-invasive ultrasonographic diagnostics of Rh(D) alloimmunized pregnancies

    International Nuclear Information System (INIS)

    A non-invasive ultrasonographic assessment of systolic ejection peak in the middle cerebral artery is very efficient in detection of anomalies in alloimmunized pregnancies and is a diagnostic method of choice prior to cordocentesis. This is applied in combination with detection of titre of Rh(D) antibodies. In our study, two groups of patients were tested and results were compared. The first sample included 52 newborns in the period 1998-2007 (initial period of intrauteral intravascular transfusion, while the second one included 16 newborns from the period 1998-2008 (second period, when better prenatal control was achieved). Levels of titter of antibodies in salty environment, in both the control and the analyzed group, indicated moderate sensitization in a small group of patients. However, in albumin and in particular Coombs environment, the level of sensitization was significant in all patients (p>0.05; DF = 67). Our investigation suggests that with ultrasound as a method of choice and with prenatal screening it is possible to achieve better diagnosis and prognosis in the case of Rh(D) conditions of alloimmunized pregnancies. (author)

  20. Evaluation of the cerebrovascular pressure reactivity index using non-invasive finapres arterial blood pressure

    International Nuclear Information System (INIS)

    A pressure reactivity index (PRx) can be assessed in patients with continuous monitoring of arterial blood pressure (ABP) and intracranial pressure (ICP) as a moving correlation coefficient between slow fluctuations of these two signals within a low frequency bandwidth. The study aimed to investigate whether the invasive ABP monitoring can be replaced with non-invasive measurement of ABP using a Finapres plethysmograph (fABP) to calculate the fPRx. There is a well-defined group of patients, suffering from hydrocephalus and undergoing CSF pressure monitoring, which may benefit from such a measurement. 41 simultaneous day-by-day monitoring of ICP, ABP and fABP were performed for about 30 min in 10 head injury patients. A Bland–Altman assessment for agreement was used to compare PRx and fPRx calculations. Performance metrics and the McNemary test were used to determine whether fPRx is sensitive enough to distinguish between functioning and disturbed cerebrovascular pressure reactivity. The fPRx correlated with PRx (RSpearman = 0.92, p < 0.001; bias = −0.04; lower and upper limits of agreement: −0.26 and 0.17, respectively). The fPRx distinguished between active and passive reactivity in more than 89% cases. The fPRx can be used with care for assessment of cerebrovascular reactivity in patients for whom invasive ABP measurement is not feasible. The fPRx is sensitive enough to distinguish between functional and deranged reactivity

  1. Evaluation of the cerebrovascular pressure reactivity index using non-invasive finapres arterial blood pressure.

    Science.gov (United States)

    Kasprowicz, M; Schmidt, E; Kim, D J; Haubrich, C; Czosnyka, Z; Smielewski, P; Czosnyka, M

    2010-09-01

    A pressure reactivity index (PRx) can be assessed in patients with continuous monitoring of arterial blood pressure (ABP) and intracranial pressure (ICP) as a moving correlation coefficient between slow fluctuations of these two signals within a low frequency bandwidth. The study aimed to investigate whether the invasive ABP monitoring can be replaced with non-invasive measurement of ABP using a Finapres plethysmograph (fABP) to calculate the fPRx. There is a well-defined group of patients, suffering from hydrocephalus and undergoing CSF pressure monitoring, which may benefit from such a measurement. 41 simultaneous day-by-day monitoring of ICP, ABP and fABP were performed for about 30 min in 10 head injury patients. A Bland-Altman assessment for agreement was used to compare PRx and fPRx calculations. Performance metrics and the McNemary test were used to determine whether fPRx is sensitive enough to distinguish between functioning and disturbed cerebrovascular pressure reactivity. The fPRx correlated with PRx (R(Spearman) = 0.92, p agreement: -0.26 and 0.17, respectively). The fPRx distinguished between active and passive reactivity in more than 89% cases. The fPRx can be used with care for assessment of cerebrovascular reactivity in patients for whom invasive ABP measurement is not feasible. The fPRx is sensitive enough to distinguish between functional and deranged reactivity. PMID:20664157

  2. Non-invasive detection of periodontal disease using diffuse reflectance spectroscopy: a clinical study

    Science.gov (United States)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Subhash, Narayanan; Jayanthi, Jayaraj L.; Prasanthila, Janam

    2012-03-01

    In clinical diagnostic procedures, gingival inflammation is considered as the initial stage of periodontal breakdown. This is often detected clinically by bleeding on probing as it is an objective measure of inflammation. Since conventional diagnostic procedures have several inherent drawbacks, development of novel non-invasive diagnostic techniques assumes significance. This clinical study was carried out in 15 healthy volunteers and 25 patients to demonstrate the applicability of diffuse reflectance (DR) spectroscopy for quantification and discrimination of various stages of inflammatory conditions in periodontal disease. The DR spectra of diseased lesions recorded using a point monitoring system consisting of a tungsten halogen lamp and a fiber-optic spectrometer showed oxygenated hemoglobin absorption dips at 545 and 575 nm. Mean DR spectra on normalization shows marked differences between healthy and different stages of gingival inflammation. Among the various DR intensity ratios investigated, involving oxy Hb absorption peaks, the R620/R575 ratio was found to be a good parameter of gingival inflammation. In order to screen the entire diseased area and its surroundings instantaneously, DR images were recorded with an EMCCD camera at 620 and 575 nm. We have observed that using the DR image intensity ratio R620/R575 mild inflammatory tissues could be discriminated from healthy with a sensitivity of 92% and specificity of 93%, and from moderate with a sensitivity of 83% and specificity of 96%. The sensitivity and specificity obtained between moderate and severe inflammation are 82% and 76% respectively.

  3. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema

    Science.gov (United States)

    Rezaeieh, S. Ahdi; Zamani, A.; Bialkowski, K. S.; Mahmoud, A.; Abbosh, A. M.

    2015-09-01

    Pulmonary oedema is a common manifestation of various fatal diseases that can be caused by cardiac or non-cardiac syndromes. The accumulated fluid has a considerably higher dielectric constant compared to lungs’ tissues, and can thus be detected using microwave techniques. Therefore, a non-invasive microwave system for the early detection of pulmonary oedema is presented. It employs a platform in the form of foam-based bed that contains two linear arrays of wideband antennas covering the band 0.7-1 GHz. The platform is designed such that during the tests, the subject lays on the bed with the back of the torso facing the antenna arrays. The antennas are controlled using a switching network that is connected to a compact network analyzer. A novel frequency-based imaging algorithm is used to process the recorded signals and generate an image of the torso showing any accumulated fluids in the lungs. The system is verified on an artificial torso phantom, and animal organs. As a feasibility study, preclinical tests are conducted on healthy subjects to determinate the type of obtained images, the statistics and threshold levels of their intensity to differentiate between healthy and unhealthy subjects.

  4. Non-invasive mechanical properties estimation of embedded objects using tactile imaging sensor

    Science.gov (United States)

    Saleheen, Firdous; Oleksyuk, Vira; Sahu, Amrita; Won, Chang-Hee

    2013-05-01

    Non-invasive mechanical property estimation of an embedded object (tumor) can be used in medicine for characterization between malignant and benign lesions. We developed a tactile imaging sensor which is capable of detecting mechanical properties of inclusions. Studies show that stiffness of tumor is a key physiological discerning parameter for malignancy. As our sensor compresses the tumor from the surface, the sensing probe deforms, and the light scatters. This forms the tactile image. Using the features of the image, we can estimate the mechanical properties such as size, depth, and elasticity of the embedded object. To test the performance of the method, a phantom study was performed. Silicone rubber balls were used as embedded objects inside the tissue mimicking substrate made of Polydimethylsiloxane. The average relative errors for size, depth, and elasticity were found to be 67.5%, 48.2%, and 69.1%, respectively. To test the feasibility of the sensor in estimating the elasticity of tumor, a pilot clinical study was performed on twenty breast cancer patients. The estimated elasticity was correlated with the biopsy results. Preliminary results show that the sensitivity of 67% and the specificity of 91.7% for elasticity. Results from the clinical study suggest that the tactile imaging sensor may be used as a tumor malignancy characterization tool.

  5. Test of a non-invasive bunch shape monitor at the GSI high current LINAC

    International Nuclear Information System (INIS)

    At the heavy ion LINAC at GSI, a novel scheme of non-invasive Bunch Shape Monitor has been tested with several ion beams at 11.4 MeV/u. Caused by the beam impact on the residual gas, secondary electrons are liberated. These electrons are accelerated by an electrostatic field, transported through a sophisticated electrostatic energy analyzer and an rf-deflector, acting as a time-to-space converter. Finally a MCP detects the electron distribution. For the applied beam settings this Bunch Shape Monitor is able to obtain longitudinal profiles down to 400 ps with a resolution of 50 ps, corresponding to 2 degree of the 36 MHz acceleration frequency. During a long shutdown period for the GSI accelerators in 2013, the monitor underwent a general technical retrofit: Influence of the beam has been significantly reduced, due enhanced electrodes, new apertures have been installed to decrease electron scattering, sophisticated stepping motors will allow better image properties, a MCP shielding plate will prevent high background. Together with these improvements the achievements of the monitor are discussed.

  6. Test of a non-invasive bunch shape monitor at the GSI high current LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, Benjamin; Forck, Peter; Kester, Oliver [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Institut fuer Angewandte Physik, Goethe Universitaet Frankfurt (Germany); Dorn, Christoph; Kowina, Piotr [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2014-07-01

    At the heavy ion LINAC at GSI, a novel scheme of non-invasive Bunch Shape Monitor has been tested with several ion beams at 11.4 MeV/u. Caused by the beam impact on the residual gas, secondary electrons are liberated. These electrons are accelerated by an electrostatic field, transported through a sophisticated electrostatic energy analyzer and an rf-deflector, acting as a time-to-space converter. Finally a MCP detects the electron distribution. For the applied beam settings this Bunch Shape Monitor is able to obtain longitudinal profiles down to 400 ps with a resolution of 50 ps, corresponding to 2 degree of the 36 MHz acceleration frequency. During a long shutdown period for the GSI accelerators in 2013, the monitor underwent a general technical retrofit: Influence of the beam has been significantly reduced, due enhanced electrodes, new apertures have been installed to decrease electron scattering, sophisticated stepping motors will allow better image properties, a MCP shielding plate will prevent high background. Together with these improvements the achievements of the monitor are discussed.

  7. Volatile organic compounds as non-invasive markers for plant phenotyping.

    Science.gov (United States)

    Niederbacher, B; Winkler, J B; Schnitzler, J P

    2015-09-01

    Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants. PMID:25969554

  8. Using non-invasive brain stimulation to augment motor training-induced plasticity

    Directory of Open Access Journals (Sweden)

    Pascual-Leone Alvaro

    2009-03-01

    Full Text Available Abstract Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS. These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.

  9. Domiciliary Non-invasive Ventilation in COPD: An International Survey of Indications and Practices.

    Science.gov (United States)

    Crimi, Claudia; Noto, Alberto; Princi, Pietro; Cuvelier, Antoine; Masa, Juan F; Simonds, Anita; Elliott, Mark W; Wijkstra, Peter; Windisch, Wolfram; Nava, Stefano

    2016-08-01

    Despite the fact that metanalyses and clinical guidelines do not recommend the routine use of domiciliary non-invasive ventilation (NIV) for patients diagnosed with severe stable Chronic Obstructive Pulmonary Disease (COPD) and with chronic respiratory failure, it is common practice in some countries. We conducted an international web-survey of physicians involved in provision of long-term NIV to examine patterns of domiciliary NIV use in patients diagnosed with COPD. The response rate was 41.6%. A reduction of hospital admissions, improvements in quality of life and dyspnea relief were considered as the main expected benefits for patients. Nocturnal oxygen saturation assessment was the principal procedure performed before NIV prescription. Recurrent exacerbations (>3) requiring NIV and failed weaning from in hospital NIV were the most important reasons for starting domiciliary NIV. Pressure support ventilation (PSV) was the most common mode, with "low" intensity settings (PSV-low) the most popular (44.4 ± 30.1%) compared with "high" intensity (PSV-high) strategies (26.9 ± 25.9%), with different geographical preferences. COPD is confirmed to be a common indication for domiciliary NIV. Recurrent exacerbations and failed weaning from in-hospital NIV were the main reasons for its prescription. PMID:26744042

  10. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    International Nuclear Information System (INIS)

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH3-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acute gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity

  11. Targeting Neural Endophenotypes of Eating Disorders with Non-invasive Brain Stimulation

    Science.gov (United States)

    Dunlop, Katharine A.; Woodside, Blake; Downar, Jonathan

    2016-01-01

    The term “eating disorders” (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related to rewards and punishment, cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC) initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and the underlying behavioral and neurobiological targets associated with ED. This review will also identify candidate targets for NIBS based on these dimensions and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED. PMID:26909013

  12. Non-invasive measurement of glucose uptake of skeletal muscle tissue models using a glucose nanobiosensor.

    Science.gov (United States)

    Obregón, Raquel; Ahadian, Samad; Ramón-Azcón, Javier; Chen, Luyang; Fujita, Takeshi; Shiku, Hitoshi; Chen, Mingwei; Matsue, Tomokazu

    2013-12-15

    Skeletal muscle tissues play a significant role to maintain the glucose level of whole body and any dysfunction of this tissue leads to the diabetes disease. A culture medium was created in which the muscle cells could survive for a long time and meanwhile it did not interfere with the glucose sensing. We fabricated a model of skeletal muscle tissues in vitro to monitor its glucose uptake. A nanoporous gold as a high sensitive nanobiosensor was then successfully developed and employed to detect the glucose uptake of the tissue models in this medium upon applying the electrical stimulation in a rapid, and non-invasive approach. The response of the glucose sensor was linear in a wide concentration range of 1-50 mM, with a detection limit of 3 μM at a signal-to-noise ratio of 3.0. The skeletal muscle tissue was electrically stimulated during 24 h and glucose uptake was monitored during this period. During the first 3 h of stimulation, electrically stimulated muscle tissue consumed almost twice the amount of glucose than counterpart non-stimulated sample. In total, the glucose consumption of muscle tissues was higher for the electrically stimulated tissues compared to those without applying the electrical field. PMID:23856563

  13. Non-invasive measurement of skin autofluorescence to evaluate diabetic complications.

    Science.gov (United States)

    Yamanaka, Mikihiro; Matsumura, Takeshi; Ohno, Rei-Ichi; Fujiwara, Yukio; Shinagawa, Masatoshi; Sugawa, Hikari; Hatano, Kota; Shirakawa, Jun-Ichi; Kinoshita, Hiroyuki; Ito, Kenji; Sakata, Noriyuki; Araki, Eiichi; Nagai, Ryoji

    2016-03-01

    Although the accumulation of advanced glycation end-products (AGEs) of the Maillard reaction in our body is reported to increase with aging and is enhanced by the pathogenesis of lifestyle-related diseases such as diabetes, routine measurement of AGEs is not applied to regular clinical diagnoses due to the lack of conventional and reliable techniques for AGEs analyses. In the present study, a non-invasive AGEs measuring device was developed and the association between skin AGEs and diabetic complications was evaluated. To clarify the association between the duration of hyperglycemia and accumulation of skin fluorophores, diabetes was induced in mice by streptozotocin. As a result, the fluorophore in the auricle of live mice was increased by the induction of diabetes. Subsequent studies revealed that the fingertip of the middle finger in the non-dominant hand is suitable for the measurement of the fluorescence intensity by the standard deviation value. Furthermore, the fluorescence intensity was increased by the presence of diabetic microvascular complications. This study provides the first evidence that the accumulation of fluorophore in the fingertip increases with an increasing number of microvascular complications, demonstrating that the presence of diabetic microvascular complications may be predicted by measuring the fluorophore concentration in the fingertip. PMID:27013780

  14. Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects

    Science.gov (United States)

    Mannes, D.; Schmid, F.; Frey, J.; Schmidt-Ott, K.; Lehmann, E.

    The combined utilization of neutron and X-ray imaging for non-invasive investigations of cultural heritage objects is demonstrated on the example of a short sword found a few years ago in lake Zug, Switzerland. After conservation treatments carried out at the Swiss National Museum the sword was examined at the Paul Scherrer Institut (PSI), Villigen (CH), by means of neutron and X-ray computer tomography (CT). The two types of radiation show different interaction behavior with matter, which makes the two methods complementary. While X-rays show a strong correlation of the attenuation with the atomic number, neutrons demonstrate a high sensitivity for some light elements, such as Hydrogen and thus organic material, while some heavy elements (such as Lead) show high penetrability. The examined object is a composite of metal and organic material, which makes it an ideal example to show the complementarity of the two methods as it features materials, which are rather transparent for one type of radiation, while yielding at the same time high contrast for the other. Only the combination of the two methods made an exhaustive examination of the object possible and allowed to rebuild an accurate replica of the sword.

  15. Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes.

    Science.gov (United States)

    Koman, Volodymyr B; Santschi, Christian; Martin, Olivier J F

    2015-07-01

    The continuous measurement of uptake or release of biomarkers provides invaluable information for understanding and monitoring the metabolism of cells. In this work, a multiscattering-enhanced optical biosensor for the multiplexed, non-invasive, and continuous detection of hydrogen peroxide (H2O2), lactate and glucose is presented. The sensing scheme is based on optical monitoring of the oxidation state of the metalloprotein cytochrome c (cyt c). The analyte of interest is enzymatically converted into H2O2 leading to an oxidation of the cyt c. Contact microspotting is used to prepare nanoliter-sized sensing spots containing either pure cyt c, a mixture of cyt c with glucose oxidase (GOx) to detect glucose, or a mixture of cyt c with lactate oxidase (LOx) to detect lactate. The sensing spots are embedded in a multiscattering porous medium that enhances the optical signal. We achieve limits of detection down to 240 nM and 110 nM for lactate and glucose, respectively. A microfluidic embodiment enables multiplexed and crosstalk-free experiments on living organisms. As an example, we study the uptake of exogenously supplied glucose by the green algae Chlamydomonas reinhardtii and simultaneously monitor the stress-related generation of H2O2. This multifunctional detection scheme provides a powerful tool to study biochemical processes at cellular level. PMID:26203366

  16. Non-Invasive Prenatal Testing: Review of Ethical, Legal and Social Implications

    Directory of Open Access Journals (Sweden)

    Haidar, Hazar

    2016-02-01

    Full Text Available Non-invasive prenatal testing (NIPT using cell-free fetal DNA (cffDNA from maternal blood has recently entered clinical practice in many countries, including Canada. This test can be performed early during pregnancy to detect Down syndrome and other conditions. While NIPT promises numerous benefits, it also has challenging ethical, legal and social implications (ELSI. This paper reviews concerns currently found in the literature on the ELSI of NIPT. We make four observations. First, NIPT seems to exacerbate some of the already existing concerns raised by other prenatal tests (amniocentesis and maternal serum screening such as threats to women’s reproductive autonomy and the potential for discrimination and stigmatization of disabled individuals and their families. This may be due to the likely upcoming large scale implementation and routinization of NIPT. Second, the distinction between NIPT as a screening test (as it is currently recommended and as a diagnostic test (potentially in the future, has certain implications for the ELSI discussion. Third, we observed a progressive shift in the literature from initially including mostly conceptual analysis to an increasing number of empirical studies. This demonstrates the contribution of empirical bioethics approaches as the technology is being implemented into clinical use. Finally, we noted an increasing interest in equity and justice concerns regarding access to NIPT as it becomes more widely implemented.

  17. Non-invasive prenatal testing for trisomies 21, 18 and 13

    DEFF Research Database (Denmark)

    Gao, Y.; Jiang, F.; Fu, M.;

    2015-01-01

    OBJECTIVES: To report the clinical performance of massively parallel sequencing-based non-invasive prenatal testing (NIPT) in detecting trisomies 21, 18 and 13 in over 140 000 clinical samples and to compare its performance in low-risk and high-risk pregnancies. METHODS: Between 1 January 2012...... and 31 August 2013, 147 314 NIPT requests to screen for fetal trisomies 21, 18 and 13 using low-coverage whole-genome sequencing of plasma cell-free DNA were received. The results were validated by karyotyping or follow-up of clinical outcomes. RESULTS: NIPT was performed and results obtained in 146 958...... samples, for which outcome data were available in 112 669 (76.7%). Repeat blood sampling was required in 3213 cases and 145 had test failure. Aneuploidy was confirmed in 720/781 cases positive for trisomy 21, 167/218 cases positive for trisomy 18 and 22/67 cases positive for trisomy 13 on NIPT. Nine false...

  18. Fluorescence spectroscopy of collagen crosslinking: non-invasive and in situ evaluation of corneal stiffness

    Science.gov (United States)

    Franco, Walfre; Ortega-Martinez, Antonio; Zhu, Hong; Wang, Ruisheng; Kochevar, Irene E.

    2015-03-01

    Collagen is a long fibrous structural protein that imparts mechanical support, strength and elasticity to many tissues. The state of the tissue mechanical environment is related to tissue physiology, disease and function. In the cornea, the collagen network is responsible for its shape and clarity; disruption of this network results in degradation of visual acuity, for example in the keratoconus eye disease. The objective of the present study is to investigate the feasibility of using the endogenous fluorescence of collagen crosslinks to evaluate variations in the mechanical state of tissue, in particular, the stiffness of cornea in response to different degrees of photo-crosslinking or RGX treatment—a novel keratoconus treatment. After removing the epithelium, rabbit corneas were stained with Rose Bengal and then irradiated with a 532 nm solid-state laser. Analysis of the excitation spectra obtained by fluorescence spectroscopy shows a correlation between the fluorescence intensity at 370/460 nm excitation/emission wavelengths and the mechanical properties. In principle, it may be feasible to use the endogenous fluorescence of collagen crosslinks to evaluate the mechanical stiffness of cornea non-invasively and in situ.

  19. Invasive Insects Differ from Non-Invasive in Their Thermal Requirements.

    Directory of Open Access Journals (Sweden)

    Vojtěch Jarošík

    Full Text Available We tested whether two basic thermal requirements for insect development, lower developmental thresholds, i.e. temperatures at which development ceases, and sums of effective temperatures, i.e. numbers of day degrees above the lower developmental thresholds necessary to complete development, differ among insect species that proved to be successful invaders in regions outside their native range and those that did not. Focusing on species traits underlying invasiveness that are related to temperature provides insights into the mechanisms of insect invasions. The screening of thermal requirements thus could improve risk-assessment schemes by incorporating these traits in predictions of potentially invasive insect species. We compared 100 pairs of taxonomically-related species originating from the same continent, one invasive and the other not reported as invasive. Invasive species have higher lower developmental thresholds than those never recorded outside their native ranges. Invasive species also have a lower sum of effective temperatures, though not significantly. However, the differences between invasive and non-invasive species in the two physiological measures were significantly inversely correlated. This result suggests that many species are currently prevented from invading by low temperatures in some parts of the world. Those species that will overcome current climatic constraints in regions outside their native distribution due to climate change could become even more serious future invaders than present-day species, due to their potentially faster development.

  20. A coherent and non-invasive open analysis architecture and framework with applications in CMS

    International Nuclear Information System (INIS)

    The CMS IGUANA project has implemented an open analysis architecture that enables the creation of an integrated analysis environment. In this 'analysis desktop' environment a physicist is able to perform most analysis-related tasks, not just the presentation and visualisation steps usually associated with analysis tools. The motivation behind IGUANA's approach is that physics analysis includes much more than just the visualisation and data presentation. Many factors contribute to the increasing importance of making analysis and visualisation software an integral part of the experiment's software: object oriented and ever more advanced data models, GRID, and automated hierarchical storage management systems to name just a few. At the the same time the analysis toolkits should be modular and non-invasive to be usable in different contexts within one experiment and generally across experiments. Ideally the analysis environment would appear to be perfectly customised to the experiment and the context, but would mostly consist of generic components. The authors describe how the IGUANA project is addressing these issues and present both the architecture and examples of how different aspects of analysis appear to the users and the developers

  1. Non-invasive investigation on a VI century purple codex from Brescia, Italy

    Science.gov (United States)

    Aceto, Maurizio; Idone, Ambra; Agostino, Angelo; Fenoglio, Gaia; Gulmini, Monica; Baraldi, Pietro; Crivello, Fabrizio

    2014-01-01

    Purple codices are among the most relevant and prestigious book productions of Late Antique and Medieval age. They usually contained texts from Holy Writings written with golden or silver inks on parchment dyed in a purple hue. According to the tradition, the colour of parchment was obtained by the well renowned Tyrian purple dye. From the material point of view, however, very little is known about the compounds actually used in the manufacture of these manuscripts. Presently, the information available is limited to the ancient art treatises, with very few diagnostic evidences supporting them and, moreover, none confirming the presence of Tyrian purple. It is more than apparent, then, the need to have at disposal larger and more complete information at the concern, in order to verify what came to us from the literary tradition only. In this study, preliminary results are presented from non-invasive investigation on a VI century purple codex, the so-called CodexBrixianus, held in the Biblioteca Civica Queriniana at Brescia (Italy). Analyses were carried out with XRF spectrometry, UV-visible diffuse reflectance spectrophotometry, molecular spectrofluorimetry and optical microscopy. The results suggest the hypothesis that Tyrian purple had been used as a minor component mixed with other less precious dyes such as folium or orchil.

  2. Development of a mobile gammacamera computer system for non invasive ventricular function determination

    International Nuclear Information System (INIS)

    As a reliable non-invasive method, dynamic ventricular volume determination by means of gammacamera computer scintigraphy is now generally accepted to be most useful in clinical cardiology. In view to the fact, however, that the required instrumentation is in general unwieldy and not mobile sophisticated cardiac function studies could not be performed up to now in many intensive care units. In order to overcome this problem we developed a compact scintigraphic system consisting of a mobile gammacamera (Siemens Mobicon) with a conductive build-in minicomputer (Siemens R 20: 16 bit, 128 kB). It renders possible a combined investigation of ventricular volume and pressure. The volume curve is acquired by sequential scintigrahpy whereas the pessure is simultaneously measured manometrically by means of heart catheter. As a result of this comprehensive investigation a pressure-volume loop is plottes the enclosed area of which represents the cardiac work performance. Additionally, functional parameters such as compliance (dV/dp) or stiffness (dp/dV) can be derived from the loop diagram. Besides of the mentioned procedures, the mobile system can also be used for detection of acute infarctions as well as for myocardial scintigraphy in general. (orig.)

  3. Chemical sensor platform for non-invasive monitoring of activity and dehydration.

    Science.gov (United States)

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  4. Non-invasive determination of the irradiation dose in fingers using low-frequency EPR

    Energy Technology Data Exchange (ETDEWEB)

    Zdravkova, M [Laboratory of Biomedical Magnetic Resonance, Universite catholique de Louvain, UCL, Avenue Hippocrate, 10, B-1200 Brussels (Belgium); Crokart, N [Laboratory of Biomedical Magnetic Resonance, Universite catholique de Louvain, UCL, Avenue Hippocrate, 10, B-1200 Brussels (Belgium); Trompier, F [Service de Dosimetrie Externe, Departement de Radioprotection et de Protection de l' Homme, Institut de Radioprotection et de Surete Nucleaire, IRSN, BP no 17, F-92262 Fontenay-aux-Roses Cedex (France); Beghein, N [Laboratory of Biomedical Magnetic Resonance, Universite catholique de Louvain, UCL, Avenue Hippocrate, 10, B-1200 Brussels (Belgium); Gallez, B [Laboratory of Biomedical Magnetic Resonance, Universite catholique de Louvain, UCL, Avenue Hippocrate, 10, B-1200 Brussels (Belgium); Debuyst, R [Laboratory of Biomedical Magnetic Resonance, Universite catholique de Louvain, UCL, Avenue Hippocrate, 10, B-1200 Brussels (Belgium)

    2004-07-07

    Several reports in the literature have described the effects of radiation in workers who exposed their fingers to intense radioactive sources. The radiation injuries occurring after local exposure to a high dose (20 to 100 Gy) could lead to the need for amputation. Follow-up of victims needs to be more rational with a precise knowledge of the irradiated area that risks tissue degradation and necrosis. It has been described previously that X-band electron paramagnetic resonance (EPR) spectroscopy could be used to assess the dose in irradiated amputated fingers. Here, we propose the use of low-frequency EPR spectroscopy to evaluate non-invasively the absorbed dose. Low-frequency microwaves are indeed less absorbed by water and penetrate more deeply into living material ({approx}10 mm in tissues using 1 GHz spectrometers). This work presents preliminary results obtained with baboon and human fingers compared with human dry phalanxes placed inside a surface-coil resonator. The EPR signal increased linearly with the dose. The ratio of the slopes of the dry bone to whole finger linear regression lines was around 5. The detection limit achievable with the present spectrometer and resonator is around 60 Gy, which is well within the range of accidentally exposed fingers. It is likely that the detection limit could be improved in the future, thanks to further technical spectrometer and resonator developments as well as to appropriate spectrum deconvolution into native and dosimetric signals.

  5. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems

    Directory of Open Access Journals (Sweden)

    Thierry Castermans

    2013-12-01

    Full Text Available In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS, functional magnetic resonance imaging (fMRI, positron-emission tomography (PET, single-photon emission-computed tomography (SPECT] and invasive studies. The first brain-computer interface (BCI applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation.

  6. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke

    Directory of Open Access Journals (Sweden)

    Maximilian Jonas Wessel

    2015-05-01

    Full Text Available Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current (tDCS, transcranial magnetic (TMS and paired associative (PAS stimulation are noninvasive brain stimulation techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  7. Non-invasive in vivo mapping of tumour vascular and interstitial volume fractions

    International Nuclear Information System (INIS)

    Non-invasive measurement of haemodynamic parameters and imaging of neovasculature architecture is of importance in determining tumour prognosis, in directing tissue sampling and in assessing treatment efficacy. In the current research we investigated a dual tracer nuclear magnetic resonance (NMR) technique to map the tumour vascular (VVF) and interstitial volume fraction (IVF) noninvasively in vivo. We hypothesised that a NMR signal emanating after intravenous administration of a vascular paramagnetic probe (MPEG-PL-GdDTPA) can be maximised so that additional signal after administration of a second interstitial probe (GdDTPA) would only reflect the IVF but not the VVF. The method and its assumptions were verified and experimental conditions optimised both in phantoms and in C6 glioma bearing rats. Data derived from in vivobrain. Image maps showed intratumoral and intertumoral heterogeneity of both parameters at submillimetre pixel resolution. The method is applicable to a wide variety of tumour models and can theoretically be performed repeatedly to study tumour growth or involution during therapy. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.

    Science.gov (United States)

    Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim

    2015-12-01

    Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard. PMID:26108204

  9. Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva.

    Science.gov (United States)

    Malik, Sarul; Khadgawat, Rajesh; Anand, Sneh; Gupta, Shalini

    2016-01-01

    Machine learning techniques such as logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) were used to detect fasting blood glucose levels (FBGL) in a mixed population of healthy and diseased individuals in an Indian population. The occurrence of elevated FBGL was estimated in a non-invasive manner from the status of an individual's salivary electrochemical parameters such as pH, redox potential, conductivity and concentration of sodium, potassium and calcium ions. The samples were obtained from 175 randomly selected volunteers comprising half healthy and half diabetic patients. The models were trained using 70 % of the total data, and tested upon the remaining set. For each algorithm, data points were cross-validated by randomly shuffling them three times prior to implementing the model. The performance of the machine learning technique was reported in terms of four statistically significant parameters-accuracy, precision, sensitivity and F1 score. SVM using RBF kernel showed the best performance for classifying high FBGLs with approximately 85 % accuracy, 84 % precision, 85 % sensitivity and 85 % F1 score. This study has been approved by the ethical committee of All India Institute of Medical Sciences, New Delhi, India with the reference number: IEC/NP-278/01-08-2014, RP-29/2014. PMID:27350930

  10. Radionuclide cardangiography as non-invasive assessment in coronary heart disease

    International Nuclear Information System (INIS)

    The method of radionuclide cardangiography (RNCA) has become a well-established method amongst non-invasise assessments in coronary heart disease (CHD). By means of RNCA the most important parameters of left ventricular function, viz. ejection fraction (EF) and wall motion (WM), can be determined very exactly. The first bolus pass method (FBP), which allows satisfactory separation between right and left heart, enables the additional determination of EF distribution, stroke volume (SV) and SV distribution. This method requires the technical necessity of a multicrystal gamma camera. Special nuclear medicine characteristics have been worked out for different groups of CHD. EF and WM show typical signs in angina pectoris, caused by exercise correlating with reduced perfusion in the referring section of WM. While these changes may be reversible after nitrate administration, pathological myocardial function caused by acute myocardial infarction (AMI) or manifest heart failure is not reversed by nitroglycerine. Typical findings were seen in the course of AMI: initial decease in global EF and diffuse (multilocated) asynergies in the left venticular wall; in the second week possible start of recovery, including regression of dyskinesia to akinesia at the end of hospitalization. Especially in the early phase of AMI it was demonstrated that FBP-as a non-invasive technique-gives high information quality which is unequalled by other comparable methods. Therefore, the described method of FBP should be classified as very useful and effective in clinical cardiology. (author)

  11. Graft revascularization is essential for non-invasive monitoring of transplanted islets with radiolabeled exendin.

    Science.gov (United States)

    Eter, Wael A; Bos, Desirée; Frielink, Cathelijne; Boerman, Otto C; Brom, Maarten; Gotthardt, Martin

    2015-01-01

    Islet transplantation is a novel promising strategy to cure type 1 diabetes. However, the long-term outcome is still poor, because both function and survival of the transplant decline over-time. Non-invasive imaging methods have the potential to enable monitoring of islet survival after transplantation and the effects of immunosuppressive drugs on transplantation outcome. (111)In-labeled exendin-3 is a promising tracer to visualize native and transplanted islets by SPECT (Single Photon Emission Computed Tomography). In the present study, we hypothesized that islet microvasculature plays an important role determining the uptake of exendin-3 in islets when monitoring transplant survival. We observed (111)In-exendin-3 accumulation in the transplant as early as three days after transplantation and an increase in the uptake up to three weeks post-transplantation. Islet-revascularization correlated with the increase in (111)In-exendin-3 uptake, whereas fully re-established islet vasculature coincided with a stabilized uptake of the radiotracer in the transplant. Here, we demonstrate the importance of islet vasculature for in vivo delivery of radiotracers to transplanted islets and we demonstrate that optimal and stable uptake of exendin four weeks after transplantation opens the possibility for long-term monitoring of islet survival by SPECT imaging. PMID:26490110

  12. A Wide-Band Electromagnetic Impedance Profiling System forNon-Invasive Subsurface Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2004-12-17

    A non-invasive, wide-band electromagnetic (EM) impedance difference system for shallow subsurface electrical structure characterization in environmental and engineering problems has been developed at the Lawrence Berkeley National Laboratory (LBNL). Electrical parameters of interest are electrical conductivity and dielectric permittivity that are deduced from the impedance difference data. The prototype system includes a magnetic loop transmitter, which operates between 0.1 MHz and 100 MHz, an electrical dipole antenna for observing the electric field, and a loop antenna for measuring the magnetic field.All antennas are mounted on a cart made of non-metallic material for easy movement of the whole array for profiling. Surface EM impedance difference is obtained by taking the difference of the ratios of the electric fields to the magnetic fields at selected frequencies at two different levels. Numerical simulations will be presented to verify this new approach. A set of the impedance difference data acquired at the University of California's Richmond Field Station compares reasonably well with simulation results based on a model obtained with the resistivity method and in situ TDR (time domain reflectometry)measurements.

  13. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community

    Science.gov (United States)

    Tapio, Ilma; Shingfield, Kevin J.; McKain, Nest; Bonin, Aurélie; Fischer, Daniel; Bayat, Ali R.; Vilkki, Johanna; Taberlet, Pierre; Snelling, Timothy J.; Wallace, R. John

    2016-01-01

    Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint. PMID:26986467

  14. Possibility of non-invasive diagnosis of gastric mucosal precancerous changes

    Institute of Scientific and Technical Information of China (English)

    Victor D. Pasechnikov; Sergey Z. Chukov; Sergey M. Kotelevets; Alexander N. Mostovov; Varvara P. Mernova; Maria B. Polyakova

    2004-01-01

    AIM: To assess the possibility of non-invasive screening of atrophic chronic gastritis for preventing further development of gastric cancer.METHODS: One hundred and seventy-eight consecutive Helicobacter pylori ( H pylori)-positive dyspeptic patients after detection of serum levels of pepsinogen-1 (PG-1) and gastrin-17 (G-17) by enzyme immunoassay were proposed for endoscopy and histology. The serologic and morphologic results were compared with estimating the sensitivity,specificity and prognostic values of the tests.RESULTS: There was statistically significant reverse dependence between the grade of stomach mucosal antral or corpus atrophy and the proper decreasing of serum G17or PG1 levels. The serologic method was quite sensitive in the diagnosis of non-atrophic and severe antral and corpus gastritis. Also, it was characterized by the high positive and negative prognostic values.CONCLUSION: Detection of serum G-17 and PG1 levels can be offered as the screening tool for atrophic gastritis. The positive serologic results require further chromoendoscopy with mucosal biopsy, for revealing probable progressing of atrophic process with development of intestinal metaplasia,dysplasia or gastric cancer.

  15. Relating external compressing pressure to mean arterial pressure in non-invasive blood pressure measurements.

    Science.gov (United States)

    Chin, K Y; Panerai, R B

    2015-01-01

    Arterial volume clamping uses external compression of an artery to provide continuous non-invasive measurement of arterial blood pressure. It has been assumed that mean arterial pressure (MAP) corresponds to the point where unloading leads to the maximum oscillation of the arterial wall as reflected by photoplethysmogram (PPG), an assumption that has been challenged. Five subjects were recruited for the study (three males, mean age (SD) = 32 (15) years). The PPG waveform was analysed to identify the relationship between the external compressing pressure, PPG pulse amplitude and MAP. Two separate tests were carried out at compression step intervals of 10 mmHg and 2 mmHg, respectively. No significant differences were found between the two tests. The bias between the compressing pressure and the MAP was -4.7 ± 5.63 mmHg (p < 0.001) showing a normal distribution. Further research is needed to identify optimal algorithms for estimation of MAP using PPG associated with arterial compression. PMID:25429784

  16. Non-invasive baroreflex sensitivity assessment using wavelet transfer function-based time–frequency analysis

    International Nuclear Information System (INIS)

    A novel approach for the estimation of baroreflex sensitivity (BRS) is introduced based on time–frequency analysis of the transfer function (TF). The TF method (TF-BRS) is a well-established non-invasive technique which assumes stationarity. This condition is difficult to meet, especially in cardiac patients. In this study, the classical TF was replaced with a wavelet transfer function (WTF) and the classical coherence was replaced with wavelet transform coherence (WTC), adding the time domain as an additional degree of freedom with dynamic error estimation. Error analysis and comparison between WTF-BRS and TF-BRS were performed using simulated signals with known transfer function and added noise. Similar comparisons were performed for ECG and blood pressure signals, in the supine position, of 19 normal subjects, 44 patients with a history of previous myocardial infarction (MI) and 45 patients with chronic heart failure. This yielded an excellent linear association (R > 0.94, p < 0.001) for time-averaged WTF-BRS, validating the new method as consistent with a known method. The additional advantage of dynamic analysis of coherence and TF estimates was illustrated in two physiological examples of supine rest and change of posture showing the evolution of BRS synchronized with its error estimations and sympathovagal balance

  17. Non Invasive Measurement of Systolic Blood Pressure in Rats: A Simple Technique

    Directory of Open Access Journals (Sweden)

    Maria Pauline

    2011-10-01

    Full Text Available Background: Non invasive, simple and economical instrument to measure blood pressure in r365-ats is important in cardiovascular research. Methods: Systolic blood pressure measuring instrument was fabricated using a tail cuff, photoplethysmograph, pressure transducer and PC with Biopac Software for recording. Tail cuff was used to occlude the tail artery, photoplethysmograph picked the blood flow pulses in the rat tail and the pressure transducer measured the cuff pressure and converted it into analog voltage. PPG signals were converted into voltage and amplified by the recording system with two channel amplifiers and in addition it also amplified analog voltage converted by the pressure transducer. Results: Calibration of the instrument entailed a simple Bland Altman’s plot of pressure recorded as voltage changes against pressure changes in the mercury sphygmomanometer which is considered as gold standard. A regression value of r=0.9 and p=0.00 was obtained. A pilot study was done on ten female rats. Three blood pressure readings were taken on two occasions. Between - animal variation of BP was 123±7 (mean SD, CV=5.9% and within - animal variation of BP was 120 ±7, CV=5.5%. Conclusion: The tail cuff and PPG based technique to measure systolic blood pressure in rats is simple, economic, accurate and reliable.

  18. Ankle Brachial Index: simple non-invasive estimation of peripheral artery disease

    Science.gov (United States)

    Pieniak, Marcin; Cieślicki, Krzysztof; Żyliński, Marek; Górski, Piotr; Murgrabia, Agnieszka; Cybulski, Gerard

    2014-11-01

    According to international guidelines, patients with Peripheral Artery Disease (PAD) are burdened with high cardiovascular risk. One of the simplest, non-invasive methods for PAD detection is the ankle-brachial index (ABI) measurement. The ABI is calculated as the ratio of systolic blood pressure at the ankle (pressure in the posterior tibial artery or the dorsal artery) to the systolic pressure in the arm (in the brachial artery) when the body is in a horizontal position. The physiological value of the ABI is assumed to be between 1 and 1.3; however, these limits vary from study to study. A value less than 0.9 indicates PAD. Some authors propose also measuring the ABI on both sides of the body to highlight possible differences in blood pressure between the opposite arterial segments. The aim of this study was to perform a meta-analysis of the ABI diagnostic criteria used in different publications. Additionally, ABI measurements were performed on 19 healthy patients in age ranged from 20 to 63 years. The results showed a slight dependence between age and the differences between the values obtained from left and right sides of the body.

  19. Non-invasive method and apparatus for measuring pressure within a pliable vessel

    Science.gov (United States)

    Shimizu, M. (Inventor)

    1983-01-01

    A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.

  20. Dynamics of the brain: Mathematical models and non-invasive experimental studies

    Science.gov (United States)

    Toronov, V.; Myllylä, T.; Kiviniemi, V.; Tuchin, V. V.

    2013-10-01

    Dynamics is an essential aspect of the brain function. In this article we review theoretical models of neural and haemodynamic processes in the human brain and experimental non-invasive techniques developed to study brain functions and to measure dynamic characteristics, such as neurodynamics, neurovascular coupling, haemodynamic changes due to brain activity and autoregulation, and cerebral metabolic rate of oxygen. We focus on emerging theoretical biophysical models and experimental functional neuroimaging results, obtained mostly by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). We also included our current results on the effects of blood pressure variations on cerebral haemodynamics and simultaneous measurements of fast processes in the brain by near-infrared spectroscopy and a very novel functional MRI technique called magnetic resonance encephalography. Based on a rapid progress in theoretical and experimental techniques and due to the growing computational capacities and combined use of rapidly improving and emerging neuroimaging techniques we anticipate during next decade great achievements in the overall knowledge of the human brain.

  1. Landfills as critical infrastructures: synergy between non-invasive monitoring technologies

    Science.gov (United States)

    Scozzari, Andrea; Raco, Brunella; Battaglini, Raffaele

    2014-05-01

    This work deals with a methodology for estimating the behaviour of a landfill system by means of the integration between two different non-invasive technologies. In fact, there is a widespread agreement on the fact that these infrastructures produce about 23% of the total anthropogenic methane released to the atmosphere. Despite that, there's still no internationally accepted protocol to quantify the leakage of biogas from a landfill with a common standard approach. This work proposes an assessment of the performance of a landfill system in terms of biogas release to the atmosphere. Such evaluation is performed by means of a direct measurement of gas flux with the accumulation chamber method, combined with the detection of thermal anomalies by infrared radiometry. In order to derive flux maps from a set of punctual measurements and calculate an overall quantity of emitted gas, a geostatistical technique is necessarily applied and briefly illustrated. A case study regarding an infrastructure located in Tuscany (Italy) is shown, where a discussion about the evolution of the landfill site through successive campaigns is also suggested. The role played by infrared thermography and its synergy with direct flux measurements is clearly perceivable in this context. The main benefit of the presented approach is a significant increase of the energy recovered from the landfill sites by optimising the collection of biogas, which implies a reduction of the total anthropogenic methane originated from the disposal of wastes released to the atmosphere.

  2. Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues

    Institute of Scientific and Technical Information of China (English)

    Yichao Teng; Haishu Ding; Lan Huang; Yue Li; Quanzhong Shan; Datian Ye; Haiyan Ding; Jenchung Chien; Betau Hwang

    2008-01-01

    In this paper,the biological tissue oxygen saturation(rS02)is obtained non-invasively and in real time based on near infrared spec-troscopy(NIRS)using two emitting wavelengths and two detectors,where the tissue is covered with overlying tissues.Our group devel-oped an NIRS oximeter based on the above principle independently,and validated it using liquid tissue model calibrations and animal experiments.The results indicate that(1)in the normal range of tissue oxygen saturation(40-70%),the rS02 measured by NIRS is accu-rate enough and little influenced by the background absorptions(such as the absorption of water)and overlying tissues(such as fat);(2)during cerebral hypoxia and recovery of three piglets,there is excellent correlation(p<0.001)between cerebral rS02 and jugular venous oxygen saturation(Sj02),meaning that the rS02 can be indicated by the Sj02 to a large extent;during the death of the three piglets induced by heart beat stopping,cerebral rS02 decreases continuously to significantly low levels(<25%)because cerebral blood supply does not exist any more.All the above results are of explicit physiological importance.

  3. Non-invasive method for the aortic blood pressure waveform estimation using the measured radial EBI

    International Nuclear Information System (INIS)

    The paper presents a method for the Central Aortic Pressure (CAP) waveform estimation from the measured radial Electrical Bio-Impedance (EBI). The method proposed here is a non-invasive and health-safe approach to estimate the cardiovascular system parameters, such as the Augmentation Index (AI). Reconstruction of the CAP curve from the EBI data is provided by spectral domain transfer functions (TF), found on the bases of data analysis. Clinical experiments were carried out on 30 patients in the Center of Cardiology of East-Tallinn Central Hospital during coronary angiography on patients in age of 43 to 80 years. The quality and reliability of the method was tested by comparing the evaluated augmentation indices obtained from the invasively measured CAP data and from the reconstructed curve. The correlation coefficient r = 0.89 was calculated in the range of AICAP values from 5 to 28. Comparing to the traditional tonometry based method, the developed one is more convenient to use and it allows long-term monitoring of the AI, what is not possible with tonometry probes.

  4. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  5. Imaging-guided non-invasive therapy should become a new field of interventional radiology

    International Nuclear Information System (INIS)

    The author has reviewed the definition of interventional radiology proposed in the past century by the professional predecessors in the field of interventional radiology. The definition of interventional radiology is described as 'It is a kind of therapeutic technique that is carried out under the monitoring of the imaging equipments, by using puncture needle, catheter, guide wire and other devices through minimally-invasive management to obtain tissue samples or to perform therapeutic procedure for the targeted lesions'. Recently, the interventional organizations in more than 40 countries of the world have made a joint publication: 'Global Interventional Radiology Joint Declaration'. In the declaration the interventional organizations clearly demand that the interventional workers should possess the ability of continuous innovation and creativity for developing new interventional technologies, equipments and surgical procedures. With the progress of therapeutic means, the continuous innovation of equipments, and the use of high-intensity focused ultrasound and ultrasonic lithotripsy in clinical practice,the author believes that it is time to propose the concept of 'non-invasive intervention'.(authors)

  6. Serum adiponectin and transient elastography as non-invasive markers for postoperative biliary atresia

    Directory of Open Access Journals (Sweden)

    Udomsinprasert Wanvisa

    2011-02-01

    Full Text Available Abstract Background Biliary atresia (BA is a progressive inflammatory disorder of the extrahepatic bile ducts leading to the obliteration of bile flow. The purpose of this study was to determine serum adiponectin in BA patients and to investigate the relationship of adiponectin with clinical parameters and liver stiffness scores. Methods Sixty BA patients post Kasai operation and 20 controls were enrolled. The mean age of BA patients and controls was 9.6 ± 0.7 and 10.1 ± 0.7 years, respectively. BA patients were classified into two groups according to their serum total bilirubin (TB levels (non-jaundice, TB Results BA patients had markedly higher serum adiponectin levels (15.5 ± 1.1 vs. 11.1 ± 1.1 μg/ml, P = 0.03 and liver stiffness than controls (30.1 ± 3.0 vs. 5.1 ± 0.5 kPa, P P P r = 0.58, r = 0.46, and r = 0.60, P Conclusions Serum adiponectin and liver stiffness values were higher in BA patients compared with normal participants. The elevated serum adiponectin levels also positively correlated with the degree of hepatic dysfunction and liver fibrosis. Accordingly, serum adiponectin and transient elastography could serve as the useful non-invasive biomarkers for monitoring the severity and progression in postoperative BA.

  7. Towards novel compact laser sources for non-invasive diagnostics and treatment

    Science.gov (United States)

    Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.

    2015-08-01

    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.

  8. Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer

    International Nuclear Information System (INIS)

    We present a numerical study of an array-based microwave beamforming approach for non-invasive hyperthermia treatment of pediatric brain tumors. The transmit beamformer is designed to achieve localized heating-that is, to achieve constructive interference and selective absorption of the transmitted electromagnetic waves at the desired focus location in the brain while achieving destructive interference elsewhere. The design process takes into account patient-specific and target-specific propagation characteristics at 1 GHz. We evaluate the effectiveness of the beamforming approach using finite-difference time-domain simulations of two MRI-derived child head models from the Virtual Family (IT'IS Foundation). Microwave power deposition and the resulting steady-state thermal distribution are calculated for each of several randomly chosen focus locations. We also explore the robustness of the design to mismatch between the assumed and actual dielectric properties of the patient. Lastly, we demonstrate the ability of the beamformer to suppress hot spots caused by pockets of cerebrospinal fluid (CSF) in the brain. Our results show that microwave beamforming has the potential to create localized heating zones in the head models for focus locations that are not surrounded by large amounts of CSF. These promising results suggest that the technique warrants further investigation and development.

  9. Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph

    International Nuclear Information System (INIS)

    Cardiac ejection of blood into the aorta generates a reaction force on the body that can be measured externally via the ballistocardiogram (BCG). In this study, a commercial bathroom scale was modified to measure the BCGs of nine healthy subjects recovering from treadmill exercise. During the recovery, Doppler echocardiogram signals were obtained simultaneously from the left ventricular outflow tract of the heart. The percentage changes in root-mean-square (RMS) power of the BCG were strongly correlated with the percentage changes in cardiac output measured by Doppler echocardiography (R2 = 0.85, n = 275 data points). The correlation coefficients for individually analyzed data ranged from 0.79 to 0.96. Using Bland–Altman methods for assessing agreement, the mean bias was found to be −0.5% (±24%) in estimating the percentage changes in cardiac output. In contrast to other non-invasive methods for trending cardiac output, the unobtrusive procedure presented here uses inexpensive equipment and could be performed without the aid of a medical professional

  10. Advances in selective activation of muscles for non-invasive motor neuroprostheses.

    Science.gov (United States)

    Koutsou, Aikaterini D; Moreno, Juan C; Del Ama, Antonio J; Rocon, Eduardo; Pons, José L

    2016-01-01

    Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments. PMID:27296478

  11. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    Directory of Open Access Journals (Sweden)

    Dmitry Solovei

    2015-01-01

    Full Text Available A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes’ coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  12. Non-invasive investigation of Spironucleus vortens transmission in freshwater angelfish Pterophyllum scalare.

    Science.gov (United States)

    Williams, C F; Vacca, A R; Lloyd, D; Schelkle, B; Cable, J

    2013-09-01

    Spironucleus vortens is a protozoan fish parasite of veterinary and economic importance in the ornamental aquaculture industry. Despite this, key aspects of the life cycle of this organism, including its mode of transmission, have not been fully elucidated. We developed a non-invasive method for quantifying S. vortens in freshwater angelfish, which was then used to investigate parasite transmission and aggregation within host populations. As previously observed for S. meleagridis and S. salmonis, motile S. vortens trophozoites were detected in host faeces using light microscopy. Species-level identification of these flagellates was confirmed using 16S rDNA PCR. Faecal trophozoite counts were significantly correlated with trophozoite counts from the posterior intestine, the primary habitat of the parasite. This novel finding allowed effective prediction of intestinal parasite load from faecal counts. Overall, faecal count data revealed that 20% of hosts harbour 83% of parasites, conforming to the Pareto Principle (80/20 rule) of parasite aggregation with implications for parasite transmission. Trophozoites survived for ≥36 d outside the host within faeces and remained motile at low pH (comparable with that of angelfish stomach). No putative S. vortens cysts were observed in cultures or faecal samples. This calls into question the commonly accepted hypothesis that a protective cyst is required in the life cycle of S. vortens to facilitate transmission to a new host. PMID:23999705

  13. Non-invasive brain stimulation for the treatment of symptoms following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Simarjot K Dhaliwal

    2015-08-01

    Full Text Available Background: Traumatic brain injury (TBI is a common cause of physical, psychological, and cognitive impairment, but many current treatments for TBI are ineffective or produce adverse side effects. Non-invasive methods of brain stimulation could help ameliorate some common trauma-induced symptoms.Objective: This review summarizes instances in which repetitive Transcranial Magnetic Stimulation (rTMS and transcranial Direct Current Stimulation (tDCS have been used to treat symptoms following a traumatic brain injury. A subsequent discussion attempts to determine the value of these methods in light of their potential risks.Methods: The research databases of PubMed/MEDLINE and PsycINFO were electronically searched using terms relevant to the use of rTMS and tDCS as a tool to decrease symptoms in the context of rehabilitation post-TBI.Results: Eight case-studies and four multi-subject reports using rTMS and six multi-subject studies using tDCS were found. Two instances of seizure are discussed. Conclusions: There is evidence that rTMS can be an effective treatment option for some post-TBI symptoms such as depression, tinnitus, and neglect. Although the safety of this method remains uncertain, the use of rTMS in cases of mild-TBI without obvious structural damage may be justified. Evidence on the effectiveness of tDCS is mixed, highlighting the need for additional

  14. Non-invasive prenatal testing for aneuploidy: current status and future prospects.

    Science.gov (United States)

    Benn, P; Cuckle, H; Pergament, E

    2013-07-01

    Non-invasive prenatal testing (NIPT) for aneuploidy using cell-free DNA in maternal plasma is revolutionizing prenatal screening and diagnosis. We review NIPT in the context of established screening and invasive technologies, the range of cytogenetic abnormalities detectable, cost, counseling and ethical issues. Current NIPT approaches involve whole-genome sequencing, targeted sequencing and assessment of single nucleotide polymorphism (SNP) differences between mother and fetus. Clinical trials have demonstrated the efficacy of NIPT for Down and Edwards syndromes, and possibly Patau syndrome, in high-risk women. Universal NIPT is not cost-effective, but using NIPT contingently in women found at moderate or high risk by conventional screening is cost-effective. Positive NIPT results must be confirmed using invasive techniques. Established screening, fetal ultrasound and invasive procedures with microarray testing allow the detection of a broad range of additional abnormalities not yet detectable by NIPT. NIPT approaches that take advantage of SNP information potentially allow the identification of parent of origin for imbalances, triploidy, uniparental disomy and consanguinity, and separate evaluation of dizygotic twins. Fetal fraction enrichment, improved sequencing and selected analysis of the most informative sequences should result in tests for additional chromosomal abnormalities. Providing adequate prenatal counseling poses a substantial challenge given the broad range of prenatal testing options now available. PMID:23765643

  15. Non-invasive 3D geometry extraction of a Sea lion foreflipper

    Science.gov (United States)

    Friedman, Chen; Watson, Martha; Zhang, Pamela; Leftwich, Megan

    2015-11-01

    We are interested in underwater propulsion that leaves little traceable wake structure while producing high levels of thrust. A potential biological model is the California sea lion, a highly maneuverable aquatic mammal that produces thrust primarily with its foreflippers without a characteristic flapping frequency. The foreflippers are used for thrust, stability, and control during swimming motions. Recently, the flipper's kinematics during the thrust phase was extracted using 2D video tracking. This work extends the tracking ability to 3D using a non-invasive Direct Linear Transformation technique employed on non-research sea lions. marker-less flipper tracking is carried out manually for complete dorsal-ventral flipper motions. Two cameras are used (3840 × 2160 pixels resolution), calibrated in space using a calibration target inserted into the sea lion habitat, and synchronized in time using a simple light flash. The repeatability and objectivity of the tracked data is assessed by having two people tracking the same clap and comparing the results. The number of points required to track a flipper with sufficient detail is also discussed. Changes in the flipper pitch angle during the clap, an important feature for fluid dynamics modeling, will also be presented.

  16. Non-invasive geophysical investigation and thermodynamic analysis of a palsa in Lapland, northwest Finland

    CERN Document Server

    Kohout, Tomáš; Rasmus, Kai; Leppäranta, Matti; Matero, Ilkka

    2014-01-01

    Non-invasive geophysical prospecting and a thermodynamic model were used to examine the structure, depth and lateral extent of the frozen core of a palsa near Lake Peeraj\\"arvi, in northwest Finland. A simple thermodynamic model verified that the current climatic conditions in the study area allow sustainable palsa development. A ground penetrating radar (GPR) survey of the palsa under both winter and summer conditions revealed its internal structure and the size of its frozen core. GPR imaging in summer detected the upper peat/core boundary, and imaging in winter detected a deep reflector that probably represents the lower core boundary. This indicates that only a combined summer and winter GPR survey completely reveals the lateral and vertical extent of the frozen core of the palsa. The core underlies the active layer at a depth of ~0.6 m and extends to about 4 m depth. Its lateral extent is ~15 m x ~30 m. The presence of the frozen core could also be traced as minima in surface temperature and ground condu...

  17. MRI mediated, non-invasive tracking of intratumoral distribution of nanocarriers in rat glioma

    International Nuclear Information System (INIS)

    Nanocarrier mediated therapy of gliomas has shown promise. The success of systemic nanocarrier-based chemotherapy is critically dependent on the so-called leaky vasculature to permit drug extravasation across the blood-brain barrier. Yet, the extent of vascular permeability in individual tumors varies widely, resulting in a correspondingly wide range of responses to the therapy. However, there exist no tools currently for rationally determining whether tumor blood vessels are amenable to nanocarrier mediated therapy in an individualized, patient specific manner today. To address this need for brain tumor therapy, we have developed a multifunctional 100 nm scale liposomal agent encapsulating a gadolinium-based contrast agent for contrast-enhanced magnetic resonance imaging with prolonged blood circulation. Using a 9.4 T MRI system, we were able to track the intratumoral distribution of the gadolinium-loaded nanocarrier in a rat glioma model for a period of three days due to improved magnetic properties of the contrast agent being packaged in a nanocarrier. Such a nanocarrier provides a tool for non-invasively assessing the suitability of tumors for nanocarrier mediated therapy and then optimizing the treatment protocol for each individual tumor. Additionally, the ability to image the tumor in high resolution can potentially constitute a surgical planning tool for tumor resection

  18. Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging.

    Science.gov (United States)

    White, Steven K; Sado, Daniel M; Flett, Andrew S; Moon, James C

    2012-05-01

    The myocardial interstitial or extracellular space exists as a complex and dynamic environment, vital for normal cardiac structure and function. The physiological pathways for normal control of collagen turnover, and the pathological development of fibrosis are beginning to be understood, as are their relationships to cardiac remodelling and adverse outcomes. Emerging non-invasive imaging techniques (echocardiography, cardiovascular magnetic resonance, positron emission tomography) may allow a clearer understanding and measurement of these processes in vivo. Preliminary results are exciting, spanning valvular and congenital heart disease, cardiomyopathy and rarer diseases such as amyloid. In this review, such developments and research directions are explored, including the rapid developments in cardiovascular magnetic resonance T1 mapping and its use with contrast to derive extracellular volume. The authors present a state-of-the-art assessment of the strengths and weaknesses of each modality, and distil a framework to equip the reader with an understanding of the technical issues useful for the interpretation of emerging clinical studies. PMID:22422587

  19. A concept for non-invasive temperature measurement during injection moulding processes

    Science.gov (United States)

    Hopmann, Christian; Spekowius, Marcel; Wipperfürth, Jens; Schöngart, Maximilian

    2016-03-01

    Current models of the injection moulding process insufficiently consider the thermal interactions between melt, solidified material and the mould. A detailed description requires a deep understanding of the underlying processes and a precise observation of the temperature. Because todays measurement concepts do not allow a non-invasive analysis it is necessary to find new measurement techniques for temperature measurements during the manufacturing process. In this work we present the idea of a set up for a tomographic ultrasound measurement of the temperature field inside a plastics melt. The goal is to identify a concept that can be installed on a specialized mould for the injection moulding process. The challenges are discussed and the design of a prototype is shown. Special attention is given to the spatial arrangement of the sensors. Besides the design of a measurement set up a reconstruction strategy for the ultrasound signals is required. We present an approach in which an image processing algorithm can be used to calculate a temperature distribution from the ultrasound scans. We discuss a reconstruction strategy in which the ultrasound signals are converted into a spartial temperature distribution by using pvT curves that are obtained by dilatometer measurements.

  20. Invasive and non-invasive ventilation for prematurely born infants - current practice in neonatal ventilation.

    Science.gov (United States)

    Greenough, Anne; Lingam, Ingran

    2016-02-01

    Non-invasive techniques, include nasal continuous positive airways pressure (nCPAP), nasal intermittent positive pressure ventilation (NIPPV) and heated, humidified, high flow cannula (HHFNC). Randomised controlled trials (RCTs) of nCPAP versus ventilation have given mixed results, but one demonstrated fewer respiratory problems during infancy. Meta-analysis demonstrated NIPPV rather than nCPAP provided better support post extubation. After extubation or initial support HHFNC has similar efficacy to CPAP. Invasive techniques include those that synchronise inflations with the patient's respiratory efforts. Assist control/ synchronised intermittent mandatory ventilation compared to non triggered modes only reduce the duration of ventilation. Further data are required to determine the efficacy of proportional assist ventilation and neurally adjusted ventilatory assist. Other techniques aim to minimise volutrauma. RCTs of volume targeted ventilation demonstrated reductions in BPD and respiratory medication usage at follow-up. Prophylactic high frequency oscillatory ventilation does not reduce BPD, but is associated with superior lung function at school age. PMID:26698269

  1. Non-invasive evaluation for pulmonary circulatory impairment during exercise in patients with chronic lung disease

    International Nuclear Information System (INIS)

    Thallium-201 myocardial scintigraphy was performed at rest and during exercise on sixteen patients with chronic lung disease to evaluate the secondary pulmonary hypertension during exercise with non-invasive technique. An inverse significant correlation was found between thallium activity ratio (TAR) of left ventricle plus ventricular septum to right ventricle and both of pulmonary vascular resistance and right to left ventricular work index ratio during exercise. The patients were divided into three groups according to mean pulmonary arterial pressure (P-barPA) at rest and during exercise: the first group consisted of six patients with pulmonary hypertension during exercise (P-barPA: below 25 mmHg at rest and above 30 mmHg during exercise), the second group consisted of four patients with pulmonary hypertension at rest (P-barPA above 25 mmHg at rest), and the third group consisted of six patients without pulmonary hypertension (P-barPA below 25 mmHg at rest, below 30 mmHg during exercise). In the first group, TAR during exercise was lowered than at rest in four patients, and in the second group TAR during exercise was lowered than at rest in all, while in the third group TAR during exercise was increased than at rest in five patients. These results suggest that thallium-201 myocardial scintigraphy can reflect pulmonary hemodynamics during exercise in patients with chronic lung disease and it is of great use to predict the patients with pulmonary hypertension during exercise. (author)

  2. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance

    Institute of Scientific and Technical Information of China (English)

    Gauri; S; Desai; Suresh; T; Mathews

    2014-01-01

    Saliva has been progressively studied as a non-invasive and relatively stress-free diagnostic alternative to blood. Currently, saliva testing is used for clinical assessment of hormonal perturbations, detection of HIV antibodies, DNA analysis, alcohol screening, and drug testing. Recently, there has been increasing interest in evaluating the diagnostic potential of saliva in obesity, inflammation, and insulin-resistance. Current literature has demonstrated elevated levels of inflammatory biomarkers including C-reactive protein, tumor necrosis factor-α, interleukin-6, and interferon-γ in saliva of obese/overweight children and adults. Salivary antioxidant status has also been studied as a measure of oxidative stress in individuals with type 2 diabetes. Further, several studies have demonstrated correlations of salivary markers of stress and insulin resistance including cortisol, insulin, adiponectin, and resistin with serum concentrations. These findings suggest the potential diagnostic value of saliva in health screening and risk stratification studies, particularly in the pediatric population, with implications for inflammatory, metabolic and cardiovascular conditions. However, additionalstudies are required to standardize saliva collection and storage procedures, validate analytical techniques for biomarker detection, and establish reference ranges for routine clinical use. The purpose of this review is to summarize and evaluate recent advancements in using saliva as a diagnostic tool for inflammation and insulinresistance.

  3. Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer

    Energy Technology Data Exchange (ETDEWEB)

    Burfeindt, Matthew J; Zastrow, Earl; Hagness, Susan C; Van Veen, Barry D [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI (United States); Medow, Joshua E, E-mail: bmatthew@wisc.edu, E-mail: earl.zastrow@ieee.org, E-mail: hagness@engr.wisc.edu, E-mail: vanveen@engr.wisc.edu, E-mail: medow@neurosurg.wisc.edu [Department of Neurological Surgery, University of Wisconsin-Madison, WI (United States)

    2011-05-07

    We present a numerical study of an array-based microwave beamforming approach for non-invasive hyperthermia treatment of pediatric brain tumors. The transmit beamformer is designed to achieve localized heating-that is, to achieve constructive interference and selective absorption of the transmitted electromagnetic waves at the desired focus location in the brain while achieving destructive interference elsewhere. The design process takes into account patient-specific and target-specific propagation characteristics at 1 GHz. We evaluate the effectiveness of the beamforming approach using finite-difference time-domain simulations of two MRI-derived child head models from the Virtual Family (IT'IS Foundation). Microwave power deposition and the resulting steady-state thermal distribution are calculated for each of several randomly chosen focus locations. We also explore the robustness of the design to mismatch between the assumed and actual dielectric properties of the patient. Lastly, we demonstrate the ability of the beamformer to suppress hot spots caused by pockets of cerebrospinal fluid (CSF) in the brain. Our results show that microwave beamforming has the potential to create localized heating zones in the head models for focus locations that are not surrounded by large amounts of CSF. These promising results suggest that the technique warrants further investigation and development.

  4. Image-assisted non-invasive and dynamic biomechanical analysis of human joints

    Science.gov (United States)

    Muhit, Abdullah A.; Pickering, Mark R.; Scarvell, Jennifer M.; Ward, Tom; Smith, Paul N.

    2013-07-01

    Kinematic analysis provides a strong link between musculoskeletal injuries, chronic joint conditions, treatment planning/monitoring and prosthesis design/outcome. However, fast and accurate 3D kinematic analysis still remains a challenge in order to translate this procedure into clinical scenarios. 3D computed tomography (CT) to 2D single-plane fluoroscopy registration is a promising non-invasive technology for biomechanical examination of human joints. Although this technique has proven to be very precise in terms of in-plane translation and rotation measurements, out-of-plane motion estimations have been a difficulty so far. Therefore, to enable this technology into clinical translation, precise and fast estimation of both in-plane and out-of-plane movements is crucial, which is the aim of this paper. Here, a fast and accurate 3D/2D registration technique is proposed to evaluate biomechanical/kinematic analysis. The proposed algorithm utilizes a new multi-modal similarity measure called ‘sum of conditional variances’, a coarse-to-fine Laplacian of Gaussian filtering approach for robust gradient-descent optimization and a novel technique for the analytic calculation of the required gradients for out-of-plane rotations. Computer simulations and in vitro experiments showed that the new approach was robust in terms of the capture range, required significantly less iterations to converge and achieved good registration and kinematic accuracy when compared to existing techniques and to the ‘gold-standard’ Roentgen stereo analysis.

  5. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging

    Directory of Open Access Journals (Sweden)

    Muhammad Taha Jilnai

    2016-01-01

    Full Text Available The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement.

  6. Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing.

    Science.gov (United States)

    McLamore, Eric S; Porterfield, D Marshall

    2011-11-01

    Biophysical phenomena related to cellular biochemistry and transport are spatially and temporally dynamic, and are directly involved in the regulation of physiology at the sub-cellular to tissue spatial scale. Real time monitoring of transmembrane transport provides information about the physiology and viability of cells, tissues, and organisms. Combining information learned from real time transport studies with genomics and proteomics allows us to better understand the functional and mechanistic aspects of cellular and sub-cellular systems. To accomplish this, ultrasensitive sensing technologies are required to probe this functional realm of biological systems with high temporal and spatial resolution. In addition to ongoing research aimed at developing new and enhanced sensors (e.g., increased sensitivity, enhanced analyte selectivity, reduced response time, and novel microfabrication approaches), work over the last few decades has advanced sensor utility through new sensing modalities that extend and enhance the data recorded by sensors. A microsensor technique based on phase sensitive detection of real time biophysical transport is reviewed here. The self-referencing technique converts non-invasive extracellular concentration sensors into dynamic flux sensors for measuring transport from the membrane to the tissue scale. In this tutorial review, we discuss the use of self-referencing micro/nanosensors for measuring physiological activity of living cells/tissues in agricultural, environmental, and biomedical applications comprehensible to any scientist/engineer. PMID:21761069

  7. Biodegradable nano-films for capture and non-invasive release of circulating tumor cells.

    Science.gov (United States)

    Li, Wei; Reátegui, Eduardo; Park, Myoung-Hwan; Castleberry, Steven; Deng, Jason Z; Hsu, Bryan; Mayner, Sarah; Jensen, Anne E; Sequist, Lecia V; Maheswaran, Shyamala; Haber, Daniel A; Toner, Mehmet; Stott, Shannon L; Hammond, Paula T

    2015-10-01

    Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an important capability for both clinical medicine and biological research. Current techniques to perform this task place the isolated cells under excessive stresses that reduce cell viability, and potentially induce phenotype change, therefore losing valuable information about the isolated cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a library of ultrathin coatings using a broad range of materials through complementary interactions. By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on command, we are able to gently isolate cancer cells and recover them without compromising cell viability or proliferative potential. Our approach has the capability to overcome practical hurdles and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell genomics, and in vitro cell culture of recovered cells. Furthermore, CTCs from cancer patients were also captured, identified, and successfully released using the LbL-modified microchips. PMID:26142780

  8. Non-invasive measurement of cardiac output by Finometer in patients with cirrhosis

    DEFF Research Database (Denmark)

    Kaltoft, Nicolai Stefan; Hobolth, L; Møller, S

    2010-01-01

    The Finometer measures haemodynamic parameters including cardiac output (CO) using non-invasive volume-clamp techniques. The aim of this study was to determine the accuracy of the Finometer in hyperdynamic cirrhotic patients using an invasive indicator dilution technique as control. CO was measured......(I) was 6.1 +/- 1.6 [3.9;9.7] l min(-1) (mean +/- SD [range]) compared to mean CO(F) of 7.2 +/- 2.3 [3.1;11.9] l min(-1). There was a mean difference between CO(F) and CO(I) of 1.0 +/- 1.8 [-2.1;4.0] l min(-1) and 95% confidence interval of [0.2;1.8], P<0.001. In patients with measurements before and...... after beta-blockade, mean DeltaCO(I) was 1.6 +/- 1.4 [-0.1;3.3] l min(-1) compared to mean DeltaCO(F) of 1.9 +/- 1.3 [0.4;3.8] l min(-1). Mean difference between DeltaCO(F) and DeltaCO(I) was 0.3 +/- 0.3 [-0.2;0.7] l min(-1) with a 95% confidence interval of [-0.1;0.6], P = 0.11. Compared with invasive...

  9. Development of a non-invasive LED based device for adipose tissue thickness measurements in vivo

    Science.gov (United States)

    Volceka, K.; Jakovels, D.; Arina, Z.; Zaharans, J.; Kviesis, E.; Strode, A.; Svampe, E.; Ozolina-Moll, L.; Butnere, M. M.

    2012-06-01

    There are a number of techniques for body composition assessment in clinics and in field-surveys, but in all cases the applied methods have advantages and disadvantages. High precision imaging methods are available, though expensive and non-portable, however, the methods devised for the mass population, often suffer from the lack of precision. Therefore, the development of a safe, mobile, non-invasive, optical method that would be easy to perform, precise and low-cost, but also would offer an accurate assessment of subcutaneous adipose tissue (SAT) both in lean and in obese persons is required. Thereof, the diffuse optical spectroscopy is advantageous over the aforementioned techniques. A prototype device using an optical method for measurement of the SAT thickness in vivo has been developed. The probe contained multiple LEDs (660nm) distributed at various distances from the photo-detector which allow different light penetration depths into the subcutaneous tissue. The differences of the reflected light intensities were used to create a non-linear model, and the computed values were compared with the corresponding thicknesses of SAT, assessed by B-mode ultrasonography. The results show that with the optical system used in this study, accurate results of different SAT thicknesses can be obtained, and imply a further potential for development of multispectral optical system to observe changes of SAT thickness as well as to determine the percentage of total body fat.

  10. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  11. Experiences of high-risk pregnant women who were offered a choice between non-invasive prenatal testing, invasive testing or no follow-up test

    NARCIS (Netherlands)

    Van Schendel, Rachel; Page-Christiaens, Lieve; Beulen, Lean; Bilardo, Katia; De Boer, Marjon; Coumans, Audrey; Faas, Brigitte; Van Langen, Irene; Lichtenbelt, Klaske; Van Maarle, Merel; Macville, Merryn; Oepkes, Dick; Pajkrt, Eva; Henneman, Lidewij

    2015-01-01

    OBJECTIVES: The TRIDENT study (Trial by Dutch laboratories for Evaluation of Non-Invasive Prenatal Testing) evaluates the implementation of non-invasive prenatal testing (NIPT) in the Dutch healthcare system. Here we report on the preferences and experiences of pregnant women at high risk for fetal

  12. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    International Nuclear Information System (INIS)

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence of radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered

  13. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bahar, N; Roberts, K; Stabile, F; Mongillo, N; Decker, RD; Wilson, LD; Husain, Z; Contessa, J; Carlson, DJ [Yale University School of Medicine, New Haven, Connecticut (United States); Williams, BB; Flood, AB; Swartz, HM [Geisel Medical School at Dartmouth University, Hanover, New Hampshire (United States)

    2015-06-15

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence of radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered

  14. Calibration of non-invasive electronic kVp meters using an intrinsic germanium detector

    International Nuclear Information System (INIS)

    Full text: The peak kilo-voltage (kVp) of a diagnostic x-ray generator is an important parameter that determines radiation quality and exposure to patients. Because this parameter has the potential to increase radiation exposure to the population, it is regularly monitored within the quality assurance programs. Non-invasive electronic kVp meters (like the NERO 6000 series) are extensively used to measure the peak voltage of equipment. Compliance testing protocols call for these instruments to be calibrated regularly. We have employed a spectroscopic technique using an intrinsic germanium detector to accurately determine x-ray spectral distribution. Energy resolution of 300 eV or better can be achieved at the diagnostic range. The method allows direct non-invasive measurement of the x-ray spectrum under real operating conditions of the x-ray generator. The end point of the spectral distribution corresponds to the peak kilovoltage. The detector system resolution introduces a small high energy tail to the measured spectrum. This tail does not introduce any error in the measured kVp greater than that of the system resolution at FWHM. The tail shape is a function of the wave form. The instantaneous spectrum taken at any point in the wave form cycle has a different tail shape, but the end point represents a mean kVp value. This kVp value is determined by extrapolating the high energy linear region down to the background level. This is one of the values the modern electronic kVp meters determine. The experimental set-up consists of a co-axial arrangement of an x-ray generator and a germanium detector with a series of collimators and Thoraeus filters (Trout ED et al, Amer J Roentgenol 85:933, 1961) in between. One of the collimators has a pin-hole aperture of a few tens of microns in diameter. This pin-hole aperture has to be accurately aligned with the focal spot of the generator. The aim of the extensive collimation is to reduce the photon flux by five to six orders of

  15. Cognitive and Neurophysiological Effects of Non-invasive Brain Stimulation in Stroke Patients after Motor Rehabilitation.

    Science.gov (United States)

    D'Agata, Federico; Peila, Elena; Cicerale, Alessandro; Caglio, Marcella M; Caroppo, Paola; Vighetti, Sergio; Piedimonte, Alessandro; Minuto, Alice; Campagnoli, Marcello; Salatino, Adriana; Molo, Maria T; Mortara, Paolo; Pinessi, Lorenzo; Massazza, Giuseppe

    2016-01-01

    The primary aim of this study was to evaluate and compare the effectiveness of two specific Non-Invasive Brain Stimulation (NIBS) paradigms, the repetitive Transcranial Magnetic Stimulation (rTMS), and transcranial Direct Current Stimulation (tDCS), in the upper limb rehabilitation of patients with stroke. Short and long term outcomes (after 3 and 6 months, respectively) were evaluated. We measured, at multiple time points, the manual dexterity using a validated clinical scale (ARAT), electroencephalography auditory event related potentials, and neuropsychological performances in patients with chronic stroke of middle severity. Thirty four patients were enrolled and randomized. The intervention group was treated with a NIBS protocol longer than usual, applying a second cycle of stimulation, after a washout period, using different techniques in the two cycles (rTMS/tDCS). We compared the results with a control group treated with sham stimulation. We split the data analysis into three studies. In this first study we examined if a cumulative effect was clinically visible. In the second study we compared the effects of the two techniques. In the third study we explored if patients with minor cognitive impairment have most benefit from the treatment and if cognitive and motor outcomes were correlated. We found that the impairment in some cognitive domains cannot be considered an exclusion criterion for rehabilitation with NIBS. ERP improved, related to cognitive and attentional processes after stimulation on the motor cortex, but transitorily. This effect could be linked to the restoration of hemispheric balance or by the effects of distant connections. In our study the effects of the two NIBS were comparable, with some advantages using tDCS vs. rTMS in stroke rehabilitation. Finally we found that more than one cycle (2-4 weeks), spaced out by washout periods, should be used, only in responder patients, to obtain clinical relevant results. PMID:27445730

  16. Update: Non-Invasive Positive Pressure Ventilation in Chronic Respiratory Failure Due to COPD.

    Science.gov (United States)

    Altintas, Nejat

    2016-01-01

    Long-term non-invasive positive pressure ventilation (NPPV) has widely been accepted to treat chronic hypercapnic respiratory failure arising from different etiologies. Although the survival benefits provided by long-term NPPV in individuals with restrictive thoracic disorders or stable, slowly-progressing neuromuscular disorders are overwhelming, the benefits provided by long-term NPPV in patients with chronic obstructive pulmonary disease (COPD) remain under question, due to a lack of convincing evidence in the literature. In addition, long-term NPPV reportedly failed in the classic trials to improve important physiological parameters such as arterial blood gases, which might serve as an explanation as to why long-term NPPV has not been shown to substantially impact on survival. However, high intensity NPPV (HI-NPPV) using controlled NPPV with the highest possible inspiratory pressures tolerated by the patient has recently been described as a new and promising approach that is well-tolerated and is also capable of improving important physiological parameters such as arterial blood gases and lung function. This clearly contrasts with the conventional approach of low-intensity NPPV (LI-NPPV) that uses considerably lower inspiratory pressures with assisted forms of NPPV. Importantly, HI-NPPV was very recently shown to be superior to LI-NPPV in terms of improved overnight blood gases, and was also better tolerated than LI-NPPV. Furthermore, HI-NPPV, but not LI-NPPV, improved dyspnea, lung function and disease-specific aspects of health-related quality of life. A recent study showed that long-term treatment with NPPV with increased ventilatory pressures that reduced hypercapnia was associated with significant and sustained improvements in overall mortality. Thus, long-term NPPV seems to offer important benefits in this patient group, but the treatment success might be dependent on effective ventilatory strategies. PMID:26418151

  17. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available BACKGROUND: The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present the quantitative use of two-photon excited fluorescence (TPEF and second harmonic generation (SHG as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(PH, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(PH and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress. CONCLUSIONS/SIGNIFICANCE: In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool

  18. Hyperintense vessels on FLAIR: A useful non-invasive method for assessing intracerebral collaterals

    International Nuclear Information System (INIS)

    Objective: This study was aimed to evaluate relationship between hyperintense vessels (HV) on fluid-attenuated inversion recovery (FLAIR) and artery steno-occlusion related intracerebral collaterals. Materials and methods: A total of 233 patients with 260 atherosclerotic lesions in the M1 segment of the middle cerebral artery (MCA) were examined with FLAIR and digital subtraction angiography (DSA). HV were graded as 0, 1, 2 and 3 by its distributions in the MCA territory. Grade 0 indicated no HV; Grade 1 indicated the HV limited in Sylvian fissure; Grade 2 indicated the HV limited in Sylvian fissure and the temporal-occipital junction; Grade 3 indicated the HV extended to frontal-parietal lobes. Collateral blood flows were classified by DSA results. The relationship between HV grades and patterns of collateral flows was analyzed. Results: HV were observed in 76 out of 260 hemispheres. For patients with Grade 1 HV, most of their collateral flows (80.8%) were antegrade; for patients with Grade 2, the retrograde leptomeningeal flows were commonly manifested as anterior cerebral artery to MCA (75%); for patients with Grade 3 HV, most of the retrograde leptomeningeal flows were manifested as posterior cerebral artery to MCA (81.8%). As the grade HV increased, the frequency of retrograde leptomeningeal collateral from ACA to MCA decreased (100% to 75% and to 18.2%), and increased (0% to 25% and to 81.8%) for the retrograde leptomeningeal collateral via PCA to MCA (P < 0.001). Conclusions: The HV could assess non-invasively intracerebral collaterals in patients with steno-occlusive lesions of M1 segment of MCA.

  19. Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride

    Directory of Open Access Journals (Sweden)

    Laura Batti

    2013-05-01

    Full Text Available Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli] is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2 in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC50 to Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC50 of Cli was estimated to be 61 mM and 54 mM in macrophages and DRG respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo.

  20. Restoring cognitive functions using non-invasive brain stimulation techniques in patients with cerebellar disorders

    Directory of Open Access Journals (Sweden)

    RChrisMiall

    2014-04-01

    Full Text Available Numerous studies have highlighted the possibility of modulating the excitability of cerebro-cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral-lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato-rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro-cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided towards neuro-enhancement in certain patient populations, using what is commonly termed 'non-invasive brain stimulation' as a cognitive rehabilitation tool to modulate cerebro-cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo