WorldWideScience

Sample records for carbon nanotube networks

  1. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  2. Fabrication of porous carbon nanotube network.

    Science.gov (United States)

    Su, Jun-Wei; Fu, Shu-Juan; Gwo, Shangjr; Lin, Kuan-Jiuh; Lin, Kuna-Jiuh

    2008-11-21

    We used the spin-coating method combined with ultrasonic atomization as a continuous, one-step process to generate a two-dimensional honeycomb network that was constructed from pure multi-walled carbon nanotubes.

  3. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  4. Physical Removal of Metallic Carbon Nanotubes from Nanotube Network Devices Using a Thermal and Fluidic Process

    OpenAIRE

    Ford, Alexandra C.; Shaughnessy, Michael; Wong, Bryan M.; Kane, Alexander A.; Kuznetsov, Oleksandr V.; Krafcik, Karen L.; Billups, W. E.; Hauge, Robert H.; Léonard, François

    2013-01-01

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is ...

  5. Fabrication of 3D carbon nanotube networks

    Science.gov (United States)

    Laera, Anna Maria; Mirenghi, Luciana; Schioppa, Monica; Nobile, Concetta; Capodieci, Laura; Grazia Scalone, Anna; Di Benedetto, Francesca; Tapfer, Leander

    2016-08-01

    We report on the synthesis and characterization of a hyperbranched polymer englobing single-wall carbon nanotubes (SWCNTs). This new material was obtained by using SWCNTs functionalized with carboxylic groups as starting reagent. The acid groups were firstly converted in acyl chloride moieties and afterwards were bound to hexamethylenediamine (HMDA) via formation of amide functionality. The acquired spectra of attenuated total reflectance and the analysis performed through x-ray photoelectron spectroscopy confirmed the amide bond formation. The hyperbranched polymer characterization was completed by using scanning and transmission electron microscopy, thermo-gravimetric analysis and Raman spectroscopy. The electron microscopy analyses showed the formation of an amorphous polymeric material englobing a dense network of SWCNTs without phase segregation, demonstrating that the reaction with HMDA allows a reorganization of SWCNTs in a complex three-dimensional network.

  6. Stretchable Conductive Networks of Carbon Nanotubes Using Plasticised Colloidal Templates

    Directory of Open Access Journals (Sweden)

    Patnarin eWorajittiphon

    2015-03-01

    Full Text Available We present a study of the behavior of highly ordered, segregated single-wall carbon nanotube networks under applied strain. Polymer latex templates induce self-assembly of carbon nanotubes into hexagonal (2D and honeycomb (3D networks within the matrix. Using mechanical and spectroscopic analysis, we have studied the strain transfer mechanisms between the carbon nanotube network and the polymer matrix. Axial deformation of the nanotube network under applied strain is indicated by downshifts in the 2D mode in the Raman spectra, as well as variation in the Radial Breathing modes. The slippage within nanotube bundles at high strain is indicated by a reduction in the 2D mode rate of change. The fractional resistance change of the composites with strain obeys power law dependence. We present a model for the behavior of carbon nanotube bundles under strain informed by these measurements, and potential applications for such composite materials in elastic electronic devices that can tolerate high strain.

  7. The mechanism of selective molecular capture in carbon nanotube networks.

    Science.gov (United States)

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  8. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  9. Smart Cellulose Fibers Coated with Carbon Nanotube Networks

    OpenAIRE

    Haisong Qi; Jianwen Liu; Edith Mäder

    2014-01-01

    Smart multi-walled carbon nanotube (MWCNT)-coated cellulose fibers with a unique sensing ability were manufactured by a simple dip coating process. The formation of electrically-conducting MWCNT networks on cellulose mono- and multi-filament fiber surfaces was confirmed by electrical resistance measurements and visualized by scanning electron microscopy. The interaction between MWCNT networks and cellulose fiber was investigated by Raman spectroscopy. The piezoresistivity of these fibers fo...

  10. Inter-allotropic transformations in the heterogeneous carbon nanotube networks.

    Science.gov (United States)

    Jung, Hyun Young; Jung, Sung Mi; Kim, Dong Won; Jung, Yung Joon

    2017-01-19

    The allotropic transformations of carbon provide an immense technological interest for tailoring the desired molecular structures in the scalable nanoelectronic devices. Herein, we explore the effects of morphology and geometric alignment of the nanotubes for the re-engineering of carbon bonds in the heterogeneous carbon nanotube (CNT) networks. By applying alternating voltage pulses and electrical forces, the single-walled CNTs in networks were predominantly transformed into other predetermined sp(2) carbon structures (multi-walled CNTs and multi-layered graphitic nanoribbons), showing a larger intensity in a coalescence-induced mode of Raman spectra with the increasing channel width. Moreover, the transformed networks have a newly discovered sp(2)-sp(3) hybrid nanostructures in accordance with the alignment. The sp(3) carbon structures at the small channel are controlled, such that they contain up to about 29.4% networks. This study provides a controllable method for specific types of inter-allotropic transformations/hybridizations, which opens up the further possibility for the engineering of nanocarbon allotropes in the robust large-scale network-based devices.

  11. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    Science.gov (United States)

    Lee, Jeonyoon; Stein, Itai Y.; Devoe, Mackenzie E.; Lewis, Diana J.; Lachman, Noa; Kessler, Seth S.; Buschhorn, Samuel T.; Wardle, Brian L.

    2015-02-01

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network.

  12. Applications of three-dimensional carbon nanotube networks

    Directory of Open Access Journals (Sweden)

    Manuela Scarselli

    2015-03-01

    Full Text Available In this paper, we show that it is possible to synthesize carbon-based three-dimensional networks by adding sulfur, as growth enhancer, during the synthesis process. The obtained material is self-supporting and consists of curved and interconnected carbon nanotubes and to lesser extent of carbon fibers. Studies on the microstructure indicate that the assembly presents a marked variability in the tube external diameter and in the inner structure. We study the relationship between the observed microscopic properties and some potential applications. In particular, we show that the porous nature of the network is directly responsible for the hydrophobic and the lipophilic behavior. Moreover, we used a cut piece of the produced carbon material as working electrode in a standard electrochemical cell and, thus, demonstrating the capability of the system to respond to incident light in the visible and near-ultraviolet region and to generate a photocurrent.

  13. Novel gas sensors based on carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Sayago, I; Aleixandre, M; Horrillo, M C; Fernandez, M J; Gutierrez, J [Laboratorio de Sensores IFA-CSIC, Serrano 144, 28006 Madrid (Spain); Terrado, E; Lafuente, E; Maser, W K; Benito, A M; Martinez, M T; Munoz, E [Instituto de CarboquImica CSIC, Miguel Luesma Castan 4, 50018 Zaragoza (Spain); Urriolabeitia, E P; Navarro, R [Departamento de Quimica Inorganica, ICMA (Universidad de Zaragoza-CSIC), 50009 Zaragoza (Spain)], E-mail: sayago@ifa.cetef.csic.es, E-mail: edgar@icb.csic.es

    2008-08-15

    Novel resistive gas sensors based on single-walled carbon nanotube (SWNT) networks as the active sensing element nave been investigated for gas detection. SWNTs networks were fabricated by airbrushing on alumina substrates. As-produced- and Pd-decorated SWNT materials were used as sensitive layers for the detection of NO{sub 2} and H{sub 2}, respectively. The studied sensors provided good response to NO{sub 2} and H{sub 2} as well as excellent selectivities to interfering gases.

  14. The elastic buckling of super-graphene and super-square carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Li Ying; Qiu Xinming [AML, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, 100084 Beijing (China); Yin Yajun, E-mail: yinyj@tsinghua.edu.c [AML, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, 100084 Beijing (China)] [Division of Mechanics, Nanjing University of Technology, 210009 Nanjing (China); Yang Fan [AML, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, 100084 Beijing (China); Fan Qinshan [Division of Mechanics, Nanjing University of Technology, 210009 Nanjing (China)

    2010-04-05

    The super-graphene (SG) and super-square (SS) carbon nanotube network are built by the straight single-walled carbon nanotubes and corresponding junctions. The elastic buckling behaviors of these carbon nanotube networks under different boundary conditions are explored through the molecular structural mechanics method. The following results are obtained: (a) The critical buckling forces of the SG and SS networks decrease as the side lengths or aspect ratios of the networks increase. The continuum plate theory could give good predictions to the buckling of the SS network but not the SG network with non-uniform buckling modes. (b) The carbon nanotube networks are more stable structures than the graphene structures with less carbon atoms.

  15. Carbon nanotube dispersed conductive network for microbial fuel cells

    Science.gov (United States)

    Matsumoto, S.; Yamanaka, K.; Ogikubo, H.; Akasaka, H.; Ohtake, N.

    2014-08-01

    Microbial fuel cells (MFCs) are promising devices for capturing biomass energy. Although they have recently attracted considerable attention, their power densities are too low for practical use. Increasing their electrode surface area is a key factor for improving the performance of MFC. Carbon nanotubes (CNTs), which have excellent electrical conductivity and extremely high specific surface area, are promising materials for electrodes. However, CNTs are insoluble in aqueous solution because of their strong intertube van der Waals interactions, which make practical use of CNTs difficult. In this study, we revealed that CNTs have a strong interaction with Saccharomyces cerevisiae cells. CNTs attach to the cells and are dispersed in a mixture of water and S. cerevisiae, forming a three-dimensional CNT conductive network. Compared with a conventional two-dimensional electrode, such as carbon paper, the three-dimensional conductive network has a much larger surface area. By applying this conductive network to MFCs as an anode electrode, power density is increased to 176 μW/cm2, which is approximately 25-fold higher than that in the case without CNTs addition. Maximum current density is also increased to approximately 8-fold higher. These results suggest that three-dimensional CNT conductive network contributes to improve the performance of MFC by increasing surface area.

  16. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Directory of Open Access Journals (Sweden)

    I-Ju Teng

    2011-08-01

    Full Text Available The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD. The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3.

  17. A simple solution route to assemble three-dimensional carbon nanotube networks

    Institute of Scientific and Technical Information of China (English)

    WU ChangZheng; LUO Wei; NING Bo; XIE Yi

    2009-01-01

    Three-dimensional (3D) carbon nanotube networks (CNNW) have been successfully constructed by a simple solution route for the first time. The as-obtained networks consist of the ordered alignment of nanotubes cross-linked with a joint-angle of approximately 90. Also, the joint points in the networks are very stable and the hollowing joints are conducted with the neighbored carbon nanotubes. These network characteristics would receive much attention to the applications such as electrical conductiv-ity and even mass transport. Further work found that the as-obtained CNNW and CNNW/silver com-posites can both be applied as NH3 gas sensors. The solution-phase technique for the construction of CNNWs made the assembling networks possible without introducing physical and complicated meth-odologies, providing an alternative way for the next generation carbon nanotube assembly.

  18. Chemical sensors using coated or doped carbon nanotube networks

    Science.gov (United States)

    Li, Jing (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  19. Smart Cellulose Fibers Coated with Carbon Nanotube Networks

    Directory of Open Access Journals (Sweden)

    Haisong Qi

    2014-11-01

    Full Text Available Smart multi-walled carbon nanotube (MWCNT-coated cellulose fibers with a unique sensing ability were manufactured by a simple dip coating process. The formation of electrically-conducting MWCNT networks on cellulose mono- and multi-filament fiber surfaces was confirmed by electrical resistance measurements and visualized by scanning electron microscopy. The interaction between MWCNT networks and cellulose fiber was investigated by Raman spectroscopy. The piezoresistivity of these fibers for strain sensing was investigated. The MWCNT-coated cellulose fibers exhibited a unique linear strain-dependent electrical resistance change up to 18% strain, with good reversibility and repeatability. In addition, the sensing behavior of these fibers to volatile molecules (including vapors of methanol, ethanol, acetone, chloroform and tetrahydrofuran was investigated. The results revealed a rapid response, high sensitivity and good reproducibility for these chemical vapors. Besides, they showed good selectivity to different vapors. It is suggested that the intrinsic physical and chemical features of cellulose fiber, well-formed MWCNT networks and favorable MWCNT-cellulose interaction caused the unique and excellent sensing ability of the MWCNT-coated cellulose fibers, which have the potential to be used as smart materials.

  20. Modeling Heterogeneous Carbon Nanotube Networks for Photovoltaic Applications Using Silvaco Atlas Software

    Science.gov (United States)

    2012-06-01

    efficiency of solar cells. A method for simulating the use of semi-transparent carbon nanotube networks as a charge collector for solar cells in Silvaco... solar cells. A method for simulating the use of semi-transparent carbon nanotube networks as a charge collector for solar cells in Silvaco ATLAS...electron hole pairs by the absorption of photons with energy greater than the bandgap allows solar cells to deliver power to a load. The producible

  1. Viscosity of carbon nanotube suspension using artificial neural networks with principal component analysis

    Science.gov (United States)

    Yousefi, Fakhri; Karimi, Hajir; Mohammadiyan, Somayeh

    2016-11-01

    This paper applies the model including back-propagation network (BPN) and principal component analysis (PCA) to estimate the effective viscosity of carbon nanotubes suspension. The effective viscosities of multiwall carbon nanotubes suspension are examined as a function of the temperature, nanoparticle volume fraction, effective length of nanoparticle and the viscosity of base fluids using artificial neural network. The obtained results by BPN-PCA model have good agreement with the experimental data.

  2. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  3. Lithography-free fabrication of carbon nanotube network transistors

    Energy Technology Data Exchange (ETDEWEB)

    Timmermans, Marina Y; Nasibulin, Albert G; Kauppinen, Esko I [NanoMaterials Group, Department of Applied Physics and Center for New Materials, Aalto University School of Science and Technology, PO Box 15100, 00076 Aalto (Finland); Grigoras, Kestutis; Franssila, Sami [Microfabrication Group, Department of Materials Science and Engineering, Aalto University School of Science and Technology, PL 13000, 00076 Aalto (Finland); Hurskainen, Ville; Ermolov, Vladimir, E-mail: marina.timmermans@hut.fi, E-mail: kestas.grigoras@tkk.fi [Nokia Research Center, Itaemerenkatu 9, 00180 Helsinki (Finland)

    2011-02-11

    A novel non-lithographic technique for the fabrication of carbon nanotube thin film transistors is presented. The whole transistor fabrication process requires only one mask which is used both to pattern transistor channels based on aerosol synthesized carbon nanotubes and to deposit electrodes by metal evaporation at different angles. An important effect of electrodynamic focusing was utilized for the directed assembly of transistor channels with feature sizes smaller than the mask openings. This dry non-lithographic method opens up new avenues for device fabrication especially for low cost flexible and transparent electronics.

  4. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.

    Science.gov (United States)

    Fabbro, Alessandra; Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2012-08-15

    In the past decade, nanotechnology applications to the nervous system have often involved the study and the use of novel nanomaterials to improve the diagnosis and therapy of neurological diseases. In the field of nanomedicine, carbon nanotubes are evaluated as promising materials for diverse therapeutic and diagnostic applications. Besides, carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube-neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for nongenetic manipulations of neuronal performance and network signaling.

  5. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  6. Change in the electrical characteristics of single-walled carbon nanotube networks under photoresist treatment

    Science.gov (United States)

    Si, Mi-Suk; Kim, Ju-Jin; Choi, Won Jin; Lee, Jeong-O.

    2016-08-01

    The electrical properties of a single-walled carbon nanotube network were investigated after photoresist treatment with the pristine device. Atomic force microscopy found that the diameters of the single-walled carbon nanotubes were increased after photoresist treatment and that the photoresist could not be completely removed from nanotube surfaces by using a simple cleaning process with an organic solvent. Although the presence of a residual photoresist had no noticeable effects on the Raman spectrum of single-walled carbon nanotubes in our devices, the charge carrier mobilities and the on/off ratios of the single-walled carbon nanotube devices were lowered due to the photoresist treatment, and the gate-hysteresis behavior in the devices that had undergone photoresist treatment was found to be different from that of pristine devices.

  7. Carbon Nanotubes as Reinforcement of Cellulose Liquid Crystalline Responsive Networks.

    Science.gov (United States)

    Echeverria, Coro; Aguirre, Luis E; Merino, Esther G; Almeida, Pedro L; Godinho, Maria H

    2015-09-30

    The incorporation of small amount of highly anisotropic nanoparticles into liquid crystalline hydroxypropylcellulose (LC-HPC) matrix improves its response when is exposed to humidity gradients due to an anisotropic increment of order in the structure. Dispersed nanoparticles give rise to faster order/disorder transitions when exposed to moisture as it is qualitatively observed and quantified by stress-time measurements. The presence of carbon nanotubes derives in a improvement of the mechanical properties of LC-HPC thin films.

  8. Selective breakdown of metallic pathways in double-walled carbon nanotube networks.

    Science.gov (United States)

    Ng, Allen L; Sun, Yong; Powell, Lyndsey; Sun, Chuan-Fu; Chen, Chien-Fu; Lee, Cheng S; Wang, YuHuang

    2015-01-07

    Covalently functionalized, semiconducting double-walled carbon nanotubes exhibit remarkable properties and can outperform their single-walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double-walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double-walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ∼62% retention of the ON-state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON-state conductance.

  9. Synthesis of single-walled carbon nanotube networks using monodisperse metallic nanocatalysts encapsulated in reverse micelles

    Directory of Open Access Journals (Sweden)

    Gayduchenko Igor A.

    2016-01-01

    Full Text Available We report on a method of synthesis of single-walled carbon nanotubes percolated networks on silicon dioxide substrates using monodisperse Co and Ni catalyst. The catalytic nanoparticles were obtained by modified method of reverse micelles of bis-(2-ethylhexyl sulfosuccinate sodium in isooctane solution that provides the nanoparticle size control in range of 1 to 5 nm. The metallic nanoparticles of Ni and Co were characterized using transmission electron microscopy (TEM and atomic-force microscopy (AFM. Carbon nanotubes were synthesized by chemical vapor deposition of CH4/H2 composition at temperature 1000 °С on catalysts pre-deposited on silicon dioxide substrate. Before temperature treatment during the carbon nanotube synthesis most of the catalyst material agglomerates due to magnetic forces while during the nanotube growth disintegrates into the separate nanoparticles with narrow diameter distribution. The formed nanotube networks were characterized using AFM, scanning electron microscopy (SEM and Raman spectroscopy. We find that the nanotubes are mainly single-walled carbon nanotubes with high structural perfection up to 200 μm long with diameters from 1.3 to 1.7 nm consistent with catalyst nanoparticles diameter distribution and independent of its material.

  10. Functional Carbon Nanotube/Mesoporous Carbon/MnO2 Hybrid Network for High-Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tao Tao

    2014-01-01

    Full Text Available A functional carbon nanotube/mesoporous carbon/MnO2 hybrid network has been developed successfully through a facile route. The resulting composites exhibited a high specific capacitance of 351 F/g at 1 A g−1, with intriguing charge/discharge rate performance and cycling stability due to a synergistic combination of large surface area and excellent electron-transport capabilities of MnO2 with the good conductivity of the carbon nanotube/mesoporous carbon networks. Such composite shows great potential to be used as electrodes for supercapacitors.

  11. Electric Characteristics of the Carbon Nanotube Network Transistor with Directly Grown ZnO Nanoparticles.

    Science.gov (United States)

    Kim, Un Jeong; Bae, Gi Yoon; Suh, Dong Ik; Park, Wanjun

    2016-03-01

    We report on the electrical characteristics of field effect transistors fabricated with random networks of single-walled carbon nanotubes with surfaces modified by ZnO nanoparticles. ZnO nanoparticles are directly grown on single-walled carbon nanotubes by atomic layer deposition using diethylzinc (DEZ) and water. Electrical observations show that ZnO nanoparticles act as charge transfer sources that provide electrons to the nanotube channel. The valley position in ambipolar transport of nanotube transistors is negatively shifted for 3V due to the electronic n-typed property of ZnO nanoparticles. However, the Raman resonance remains invariant despite the charge transfer effect produced by ZnO nanoparticles.

  12. Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Hu Pingan; Zhang Jia; Wen Zhenzhong [Research Centre for Micro/Nanotechnology, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080 (China); Zhang Can, E-mail: hupa@hit.edu.cn [Centre for Advanced Photonics and Electronics, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2011-08-19

    Detection of proteins is powerfully assayed in the diagnosis of diseases. A strategy for the development of an ultrahigh sensitivity biosensor based on a network single-walled carbon nanotube (SWNT) field-effect transistor (FET) has been demonstrated. Metallic SWNTs (m-SWNTs) in the network nanotube FET were selectively removed or cut via a carefully controlled procedure of electrical break-down (BD), and left non-conducting m-SWNTs which magnified the Schottky barrier (SB) area. This nanotube FET exhibited ultrahigh sensitivity and fast response to biomolecules. The lowest detection limit of 0.5 pM was achieved by exploiting streptavidin (SA) or a biotin/SA pair as the research model, and BD-treated nanotube biosensors had a 2 x 10{sup 4}-fold lower minimum detectable concentration than the device without BD treatment. The response time is in the range of 0.3-3 min.

  13. Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model.

    Science.gov (United States)

    Filho, Jose de Souza; Matsubara, Elaine Y; Franchi, Leonardo Pereira; Martins, Igor Pinheiro; Rivera, Luis Miguel Ramires; Rosolen, José Mauricio; Grisolia, Cesar Koppe

    2014-10-01

    This is a detailed in vivo study of the biological response to carbon nanotubes network as probed by the zebrafish model. First, we prepared pristine carbon nanotubes (CNTs) by methanol chemical vapor deposition in the presence of Mn and Co as catalysts, followed by purification in acid, which furnished curved tubes with diameters lying between 10 and 130 nm. The CNT network consisted of pristine CNTs dispersed in water in the presence of a surfactant. The CNT network pellets corresponded to agglomerated multi-walled CNTs with an average diameter of about 500 nm. Although the same pristine CNTs had been previously found to exert genotoxic effects in vitro, here we verified that the CNT network was not genotoxic in vivo. Indeed, Raman spectroscopy and microscopy conducted in the intestine of the zebrafish revealed complete clearance of the CNT network as well as minimal disturbances, such as aneurysms, hyperemia, and reversible inflammatory focus in the zebrafish gills.

  14. High Performance Ambipolar Field-Effect Transistor of Random Network Carbon Nanotubes

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Gao, Jia; Derenskyi, Vladimir; Gomulya, Widianta; Iezhokin, Igor; Gordiichuk, Pavlo; Herrmann, Andreas; Loi, Maria Antonietta

    2012-01-01

    Ambipolar field-effect transistors of random network carbon nanotubes are fabricated from an enriched dispersion utilizing a conjugated polymer as the selective purifying medium. The devices exhibit high mobility values for both holes and electrons (3 cm(2)/V.s) with a high on/off ratio (10(6)). The

  15. A promising approach to enhanced thermoelectric properties using carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Chuizhou; Liu, Changhong; Fan, Shoushan [Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics Tsinghua University Beijing (China)

    2010-01-26

    Enhanced Seebeck coefficients and power factors - important for the conversion of heat to electrical energy - are obtained in polyaniline/carbon nanotube (PANI/CNT) composites in which PANI coats CNT networks. The values are several times larger than those of either of the individual components. This new approach has potential for synthesizing high-performance thermoelectric materials. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Capacitive tunnels in single-walled carbon nanotube networks on flexible substrate

    Science.gov (United States)

    Iqbal, M. Z.; Iqbal, M. W.; Eom, Jonghwa; Ahmad, Muneer; Ferrer-Anglada, Núria

    2012-03-01

    We report the analysis of single-walled carbon nanotube networks, which are expected to be suitable as miniaturized flexible radio frequency RC filters and also have important implications for high frequency devices. The surface morphology obtained by atomic force microscopy shows that most of the growth on polypropylene carbonate substrate is homogeneous. The large value of peak intensity ratio of G and D band in Raman spectra indicates the high purity network. Nyquist plots of carbon nanotube networks on a flexible substrate are close to real circles, indicating that the material is conducting, and suggest a simple equivalent circuit having a resistor in parallel with a capacitor. The Bode plots give the dependence of real and imaginary impedances on frequency. While at high frequency, the impedance decreases, due to generation of capacitance between a single-walled carbon nanotube; at low frequency, it shows the normal behavior, having constant value. The tunnels among different carbon nanotubes are capable of storing electric charge. The accumulative capacitances of tunnels for three varied concentrations are calculated by electrochemical impedance spectroscopy simulations to fit the observed Nyquist plots.

  17. Biosensors based on carbon nanotube-network field-effect transistors.

    Science.gov (United States)

    Cid, Cristina C; Riu, Jordi; Maroto, Alicia; Rius, F Xavier

    2010-01-01

    We describe in detail the different steps involved in the construction of a carbon nanotube field-effect transistor (CNTFET) based on a network of single-walled carbon nanotubes (SWCNTs), which can selectively detect human immunoglobulin G (HIgG). HIgG antibodies, which are strongly adsorbed onto the walls of the SWCNTs, are the basic elements of the recognition layer. The nonspecific binding of proteins or other interferences are avoided by covering the nonadsorbed areas of the SWCNTs with Tween 20. The CNTFET is a reagentless device that does not need labels to detect HIgG.

  18. Single-walled carbon nanotube networks for flexible and printed electronics

    Science.gov (United States)

    Zaumseil, Jana

    2015-07-01

    Networks of single-walled carbon nanotubes (SWNTs) can be processed from solution and have excellent mechanical properties. They are highly flexible and stretchable. Depending on the type of nanotubes (semiconducting or metallic) they can be used as replacements for metal or transparent conductive oxide electrodes or as semiconducting layers for field-effect transistors (FETs) with high carrier mobilities. They are thus competitive alternatives to other solution-processable materials for flexible and printed electronics. This review introduces the basic properties of SWNTs, current methods for dispersion and separation of metallic and semiconducting SWNTs and techniques to deposit and pattern dense networks from dispersion. Recent examples of applications of carbon nanotubes as conductors and semiconductors in (opto-)electronic devices and integrated circuits will be discussed.

  19. VRH investigation of polyaniline–multiwalled carbon nanotube nanocomposite network

    Indian Academy of Sciences (India)

    Amin Imani; Gholamali Farzi

    2015-08-01

    Polyaniline and polyaniline/multi-walled carbon nanotube (PAni/MWCNT) nanocomposites were synthesized by in-situ chemical oxidative polymerization of aniline. Ammonium peroxydisulphate and p-toluenesulphonic acid were used as an initiator and surfactant dopant, respectively. The molar ratio of monomer unit to initiator and dopant was 1:1:1 and the percentage of MWCNT in PAni varied from 1 to 10 wt%. The structure of the resulting nanocomposite was characterized by scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The effects of MWCNT concentration on the electrical properties of the resulting nanocomposites were studied at temperatures between 90 and 300 K. Conductivity increases with the combination of MWCNT in the PAni environment. The strong coupling between the MWCNT and the PAni chains enhances the average localization length and hence conductivity increases for the nanocomposites.

  20. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  1. [The interaction between nerve cells and carbon nanotube networks made by CVD process investigation].

    Science.gov (United States)

    Bobrinetskiĭ, I I; Seleznev, A S; Gaĭduchenko, I A; Fedorov, G E; Domantovskiĭ, A G; Presniakov, M Iu; Podcherniaeva, R Ia; Mikhaĭlova, G R; Suetina, I A

    2013-01-01

    In this research we investigate neuroblastoma cells cultivated on single-walled carbon nanotubes networks made by CVD method on silicon substrates. The complex analysis of grown cells made by atomic force, electron microscopy and Raman spectroscopy was carried out and the effect of nanotube growth process on proliferation factor was investigated. It is shown that despite of a weak decrease in proliferation, cell morphology remains unchanged and no physical or chemical interaction between carbon nanotubes and cells is observed. The results of the research can be used to investigate the interaction between conductive nanomaterials and cells for the development of neural replacement implants. Also they can be useful in bio-electronic interface investigation of signal propagation in neurons.

  2. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  3. Bundling dynamics regulates the active mechanics and transport in carbon nanotube networks and their nanocomposites

    Science.gov (United States)

    Hahm, Myung Gwan; Wang, Hailong; Jung, Hyun Young; Hong, Sanghyun; Lee, Sung-Goo; Kim, Sung-Ryong; Upmanyu, Moneesh; Jung, Yung Joon

    2012-05-01

    High-density carbon nanotube networks (CNNs) continue to attract interest as active elements in nanoelectronic devices, nanoelectromechanical systems (NEMS) and multifunctional nanocomposites. The interplay between the network nanostructure and its properties is crucial, yet current understanding remains limited to the passive response. Here, we employ a novel superstructure consisting of millimeter-long vertically aligned single walled carbon nanotubes (SWCNTs) sandwiched between polydimethylsiloxane (PDMS) layers to quantify the effect of two classes of mechanical stimuli, film densification and stretching, on the electronic and thermal transport across the network. The network deforms easily with an increase in the electrical and thermal conductivities, suggestive of a floppy yet highly reconfigurable network. Insight from atomistically informed coarse-grained simulations uncover an interplay between the extent of lateral assembly of the bundles, modulated by surface zipping/unzipping, and the elastic energy associated with the bent conformations of the nanotubes/bundles. During densification, the network becomes highly interconnected yet we observe a modest increase in bundling primarily due to the reduced spacing between the SWCNTs. The stretching, on the other hand, is characterized by an initial debundling regime as the strain accommodation occurs via unzipping of the branched interconnects, followed by rapid rebundling as the strain transfers to the increasingly aligned bundles. In both cases, the increase in the electrical and thermal conductivity is primarily due to the increase in bundle size; the changes in network connectivity have a minor effect on the transport. Our results have broad implications for filamentous networks of inorganic nanoassemblies composed of interacting tubes, wires and ribbons/belts.High-density carbon nanotube networks (CNNs) continue to attract interest as active elements in nanoelectronic devices, nanoelectromechanical systems

  4. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    Science.gov (United States)

    Muckley, Eric S.; Nelson, Anthony J.; Jacobs, Christopher B.; Ivanov, Ilia N.

    2016-04-01

    Interaction between ultraviolet (UV) light and carbon nanotube (CNT) networks plays a central role in gas adsorption, sensor sensitivity, and stability of CNT-based electronic devices. To determine the effect of UV light on sorption kinetics and resistive gas/vapor response of different CNT networks, films of semiconducting single-wall nanotubes (s-SWNTs), metallic single-wall nanotubes, and multiwall nanotubes were exposed to O2 and H2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O2 and H2O, whereas resistance of s-SWNT networks decreases. UV irradiation decreases the resistance of metallic nanotube networks in the presence of O2 and H2O and increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. s-SWNT networks show evidence of delamination from the gold-plated quartz crystal microbalance crystal, possibly due to preferential adsorption of O2 and H2O on gold. UV irradiation increases the sensitivity of all CNT networks to O2 and H2O by an order of magnitude, which demonstrates the importance of UV light for enhancing response and lowering detection limits in CNT-based gas/vapor sensors.

  5. Bundling dynamics regulates the active mechanics and transport in carbon nanotube networks and their nanocomposites.

    Science.gov (United States)

    Hahm, Myung Gwan; Wang, Hailong; Jung, Hyun Young; Hong, Sanghyun; Lee, Sung-Goo; Kim, Sung-Ryong; Upmanyu, Moneesh; Jung, Yung Joon

    2012-06-01

    High-density carbon nanotube networks (CNNs) continue to attract interest as active elements in nanoelectronic devices, nanoelectromechanical systems (NEMS) and multifunctional nanocomposites. The interplay between the network nanostructure and its properties is crucial, yet current understanding remains limited to the passive response. Here, we employ a novel superstructure consisting of millimeter-long vertically aligned single walled carbon nanotubes (SWCNTs) sandwiched between polydimethylsiloxane (PDMS) layers to quantify the effect of two classes of mechanical stimuli, film densification and stretching, on the electronic and thermal transport across the network. The network deforms easily with an increase in the electrical and thermal conductivities, suggestive of a floppy yet highly reconfigurable network. Insight from atomistically informed coarse-grained simulations uncover an interplay between the extent of lateral assembly of the bundles, modulated by surface zipping/unzipping, and the elastic energy associated with the bent conformations of the nanotubes/bundles. During densification, the network becomes highly interconnected yet we observe a modest increase in bundling primarily due to the reduced spacing between the SWCNTs. The stretching, on the other hand, is characterized by an initial debundling regime as the strain accommodation occurs via unzipping of the branched interconnects, followed by rapid rebundling as the strain transfers to the increasingly aligned bundles. In both cases, the increase in the electrical and thermal conductivity is primarily due to the increase in bundle size; the changes in network connectivity have a minor effect on the transport. Our results have broad implications for filamentous networks of inorganic nanoassemblies composed of interacting tubes, wires and ribbons/belts.

  6. Enhanced Strain-Dependent Electrical Resistance of Polyurethane Composites with Embedded Oxidized Multiwalled Carbon Nanotube Networks

    Directory of Open Access Journals (Sweden)

    R. Benlikaya

    2013-01-01

    Full Text Available The effect of different chemical oxidation of multiwalled carbon nanotubes with H2O2, HNO3, and KMnO4 on the change of electrical resistance of polyurethane composites with embedded oxidized nanotube networks subjected to elongation and bending has been studied. The testing has shown about twenty-fold increase in the electrical resistance for the composite prepared from KMnO4 oxidized nanotubes in comparison to the composites prepared from the pristine and other oxidized nanotubes. The evaluated sensitivity of KMnO4 treated composite in terms of the gauge factor increases with strain to nearly 175 at the strain 11%. This is a substantial increase, which ranks the composite prepared from KMnO4 oxidized nanotubes among materials as strain gauges with the highest electromechanical sensitivity. The observed differences in electromechanical properties of the composites are discussed on basis of their structure which is examined by the measurements of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope. The possible practical use of the composites is demonstrated by monitoring of elbow joint flexion during two different physical exercises.

  7. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  8. Synthesis of carbon nanotubes.

    Science.gov (United States)

    Awasthi, Kalpana; Srivastava, Anchal; Srivastava, O N

    2005-10-01

    Carbon nanotubes play a fundamental role in the rapidly developing field of nanoscience and nanotechnology because of their unique properties and high potential for applications. In this article, the different synthesis methods of carbon nanotubes (both multi-walled and single-walled) are reviewed. From the industrial point of view, the chemical vapor deposition method has shown advantages over laser vaporization and electric arc discharge methods. This article also presents recent work in the controlled synthesis of carbon nanotubes with ordered architectures. Special carbon nanotube configurations, such as nanocoils, nanohorns, bamboo-shaped and carbon cylinder made up from carbon nanotubes are also discussed.

  9. Electron Microscopy Imaging of Single-Wall Carbon Nanotube Networks in Polymers

    Science.gov (United States)

    Jesse, Stephen; Guillorn, Michael; Ivanov, Ilia; Puretzky, Alex; Howe, Jane; Britt, Phillip; Geohegan, David

    2004-03-01

    Scanning electron microscopy (SEM) imaging techniques have been applied to study the electrical transport properties of conducting networks of single-walled carbon nanotubes (SWNTs) in insulating polymers. Two SEM techniques were used. One approach uses specimen current (SC) measurements to visualize current flow within the SWNT network. Another and novel approach is highly sensitive to electrical potential within the networks and occurs as a result of the large electric fields generated in the vicinity of the nanotube bundles. High-resolution transmission electron microscopy was used to characterize the SWNT bundles in the PMMA. These techniques permit a direct experimental approach to characterize and understand potential distribution and current flow through percolation networks formed by nanotube bundles in polymers, or more generally, nanorods or nanowires in various matrices. This research was sponsored by NASA-Langley Research Center and the Laboratory-Directed Research and Development Program at ORNL, and the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC.

  10. An Electrically Conductive and Organic Solvent Vapors Detecting Composite Composed of an Entangled Network of Carbon Nanotubes Embedded in Polystyrene

    Directory of Open Access Journals (Sweden)

    R. Olejnik

    2012-01-01

    Full Text Available A composite composed of electrically conductive entangled carbon nanotubes embedded in a polystyrene base has been prepared by the innovative procedure, when the nonwoven polystyrene filter membrane is enmeshed with carbon nanotubes. Both constituents are then interlocked by compression molding. The mechanical and electrical resistance testing show that the polymer increases nanotube network mechanical integrity, tensile strength, and the reversibility of electrical resistance in deformation cycles. Another obvious effect of the supporting polymer is the reduction of resistance temperature dependence of composite and the reproducibility of methanol vapor sensing.

  11. Influence of O-2 and N-2 on the conductivity of carbon nanotube networks

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Morgan, C.; Thygesen, Kristian Sommer

    2009-01-01

    We have performed experiments on single-wall carbon nanotube (SWNT) networks and compared with density-functional theory (DFT) calculations to identify the microscopic origin of the observed sensitivity of the network conductivity to physisorbed O-2 and N-2. Previous DFT calculations of the trans......We have performed experiments on single-wall carbon nanotube (SWNT) networks and compared with density-functional theory (DFT) calculations to identify the microscopic origin of the observed sensitivity of the network conductivity to physisorbed O-2 and N-2. Previous DFT calculations...... of the transmission function for isolated pristine SWNTs have found physisorbed molecules have little influence on their conductivity. However, by calculating the four-terminal transmission function of crossed SWNT junctions, we show that physisorbed O-2 and N-2 do affect the junction's conductance. This may...... be understood as an increase in tunneling probability due to hopping via molecular orbitals. We find the effect is substantially larger for O-2 than for N-2, and for semiconducting rather than metallic SWNTs junctions, in agreement with experiment....

  12. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption

    Science.gov (United States)

    Ketolainen, T.; Havu, V.; Puska, M. J.

    2015-02-01

    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green's function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.

  13. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ketolainen, T., E-mail: tomi.ketolainen@aalto.fi; Havu, V.; Puska, M. J. [COMP, Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto (Finland)

    2015-02-07

    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green’s function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.

  14. Tuning the resonance properties of 2D carbon nanotube networks towards a mechanical resonator

    Science.gov (United States)

    Zhan, Haifei; Zhang, Guiyong; Zhang, Baocheng; Bell, John M.; Gu, Yuantong

    2015-08-01

    The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.

  15. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin- film transistors

    Institute of Scientific and Technical Information of China (English)

    Zhao Li; Jianfu Ding; Paul Finnie; Jacques Lefebvre; Fuyong Cheng; ChristopherT. Kingston; Patrick R. L. Malenfant

    2015-01-01

    With recent improvements in carbon nanotube separation methods, the accurate determination of residual metallic carbon nanotubes in a purified nanotube sample is important, particularly for those interested in using semiconducting single-walled carbon nanotubes (SWCNTs) in electronic device applications such as thin-film transistors (TFTs). This work demonstrates that Raman microscopy mapping is a powerful characterization tool for quantifying residual metallic carbon nanotubes present in highly enriched semiconducting nanotube networks. Raman mapping correlates well with absorption spectroscopy, yet it provides greater differentiation in purity. Electrical data from TFTs with channel lengths of 2.5 and 5μ m demonstrate the utility of the method. By comparing samples with nominal purities of 99.0% and 99.8%, a clear differentiation can be made when evaluating the current on/off ratio as a function of channel length, and thus the Raman mapping method provides a means to guide device fabrication by correlating SWCNT network density and purity with TFT channel scaling.

  16. Carbon nanotubes filled polymer composites: A comprehensive study on improving dispersion, network formation and electrical conductivity

    Science.gov (United States)

    Chakravarthi, Divya Kannan

    In this dissertation, we determine how the dispersion, network formation and alignment of carbon nanotubes in polymer nanocomposites affect the electrical properties of two different polymer composite systems: high temperature bismaleimide (BMI) and polyethylene. The knowledge gained from this study will facilitate optimization of the above mentioned parameters, which would further enhance the electrical properties of polymer nanocomposites. BMI carbon fiber composites filled with nickel-coated single walled carbon nanotubes (Ni-SWNTs) were processed using high temperature vacuum assisted resin transfer molding (VARTM) to study the effect of lightning strike mitigation. Coating the SWNTs with nickel resulted in enhanced dispersions confirmed by atomic force microscopy (AFM) and dynamic light scattering (DLS). An improved interface between the carbon fiber and Ni-SWNTs resulted in better surface coverage on the carbon plies. These hybrid composites were tested for Zone 2A lightning strike mitigation. The electrical resistivity of the composite system was reduced by ten orders of magnitude with the addition of 4 weight percent Ni-SWNTs (calculated with respect to the weight of a single carbon ply). The Ni-SWNTs - filled composites showed a reduced amount of damage to simulated lightning strike compared to their unfilled counterparts indicated by the minimal carbon fiber pull out. Methods to reduce the electrical resistivity of 10 weight percent SWNTs --- medium density polyethylene (MDPE) composites were studied. The composites processed by hot coagulation method were subjected to low DC electric fields (10 V) at polymer melt temperatures to study the effect of viscosity, nanotube welding, dispersion and, resultant changes in electrical resistivity. The electrical resistivity of the composites was reduced by two orders of magnitude compared to 10 wt% CNT-MDPE baseline. For effective alignment of SWNTs, a new process called Electric field Vacuum Spray was devised to

  17. Networks of connected Pt nanoparticles supported on carbon nanotubes as superior catalysts for methanol electrooxidation

    Science.gov (United States)

    Huang, Meihua; Zhang, Jianshuo; Wu, Chuxin; Guan, Lunhui

    2017-02-01

    The high cost and short lifetime of the Pt-based anode catalyst for methanol oxidation reaction (MOR) hamper the widespread commercialization of direct methanol fuel cell (DMFC). Therefore, improving the activity of Pt-based catalysts is necessary for their practical application. For the first time, we prepared networks of connected Pt nanoparticles supported on multi-walled carbon nanotubes with loading ratio as high as 91 wt% (Pt/MWCNTs). Thanks for the unique connected structure, the Pt mass activity of Pt/MWCNTs for methanol oxidation reaction is 4.4 times as active as that of the commercial Pt/C (20 wt%). When carbon support is considered, the total mass activity of Pt/MWCNTs is 20 times as active as that of the commercial Pt/C. The durability and anti-poisoning ability are also improved greatly.

  18. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gayduchenko, I., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); National Research Centre “Kurchatov Institute,” Moscow 123128 (Russian Federation); Kardakova, A.; Voronov, B.; Finkel, M. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Fedorov, G., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700 (Russian Federation); Jiménez, D. [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Morozov, S. [Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700 (Russian Federation); Presniakov, M. [National Research Centre “Kurchatov Institute,” Moscow 123128 (Russian Federation); Goltsman, G. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Moscow 109028 (Russian Federation)

    2015-11-21

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.

  19. Pressure-Induced Interlinking of Carbon Nanotubes

    OpenAIRE

    Yildirim, T.; Gulseren, O.; Kilic, C.; Ciraci, S.

    2000-01-01

    We predict new forms of carbon consisting of one and two dimensional networks of interlinked single wall carbon nanotubes, some of which are energetically more stable than van der Waals packing of the nanotubes on a hexagonal lattice. These interlinked nanotubes are further transformed with higher applied external pressures to more dense and complicated stable structures, in which curvature-induced carbon sp$^{3}$ re-hybridizations are formed. We also discuss the energetics of the bond format...

  20. A morphological investigation of conductive networks in polymers loaded with carbon nanotubes

    KAUST Repository

    Lubineau, Gilles

    2017-01-13

    Loading polymers with conductive nanoparticles, such as carbon nanotubes, is a popular approach toward improving their electrical properties. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. Because these conductive particles are only capable of charge transfer over a very short range, most do not interact with the percolated paths nor do they participate to the electrical transfer. Understanding how these particles are arranged is necessary to increase their efficiency. It is of special interest to understand how these particles participate in creating percolated clusters, either in a specific or in all directions, and non-percolated clusters. For this, we present a computational modeling strategy based on a full morphological analysis of a network to systematically analyse conductive networks and show how particles are arranged. This study provides useful information for designing these types of materials and examples suitable for characterizing important features, such as representative volume element, the role of nanotube tortuosity and the role of tunneling cutoff distance.

  1. Fabrication of an interpenetrated network of carbon nanotubes and electroactive polymers to be used in oligonucletide biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, D.F. [Departamento de Quimica, Universidad Nacional de Rio Cuarto - Ruta 8, km 601, 5800 Rio Cuarto (Argentina); Reisberg, S.; Piro, B. [ITODYS, University Paris VII-CNRS, 1, Rue Guy de la Brosse, 75005 Paris (France); Peralta, D.O.; Miras, M.C. [Departamento de Quimica, Universidad Nacional de Rio Cuarto - Ruta 8, km 601, 5800 Rio Cuarto (Argentina); Pham, M.C. [ITODYS, University Paris VII-CNRS, 1, Rue Guy de la Brosse, 75005 Paris (France); Barbero, C.A. [Departamento de Quimica, Universidad Nacional de Rio Cuarto - Ruta 8, km 601, 5800 Rio Cuarto (Argentina)], E-mail: cbarbero@exa.unrc.edu.ar

    2008-04-20

    Layers of multiwall carbon nanotubes (MWNT), with different thickness, are built by sequential drop coating of a MWNT-Nafion dispersion in ethanol onto glassy carbon substrates. The layers form a 3D conductive network towards the electrochemical reactions of soluble redox couples (Fe{sup 3+/2+}) in aqueous solutions. Digital simulation of the electrochemical response suggests that the electron transfer is controlled by finite diffusion of the redox species inside the network. It is possible to create an interpenetrated network of carbon nanotubes and electroactive polymers (poly(hydroxynaphtoquinones)) by electropolymerization in nonaqueous media, which are electroactive in aqueous and nonaqueous media. The electrochemical response, both in cyclic voltammetry (CV) and square wave voltammetry (SWV), is significantly increased. In that way, the sensitivity of sensors (e.g. DNA biosensors based on the change of electroactive polymer response upon hybridization) could be improved.

  2. Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Tianhong Cui

    2009-03-01

    Full Text Available This paper presents an investigation on the humidity sensitivity of deposited multi-walled carbon nanotube (MWCNT networks using ac dielectrophoresis (DEP between interdigitated electrodes (IDEs. MWCNTs dispersed in ethanol were trapped and enriched between IDEs on a Si/SiO2 substrate under a positive DEP force. After the DEP process, the ethanol was evaporated and the MWCNT network on a substrate with IDEs was put into a furnace for repeated thermal annealing. It was found that the resistance stability of the network was effectively improved through thermal annealing. The humidity sensitivity was obtained by measuring the resistance of the MWCNT network with different relative humidity at room temperature. The experimental results show the resistance increases linearly with increasing the relative humidity from 25% to 95% RH with a sensitivity of 0.5%/%RH. The MWCNT networks have a reversible humidity sensing capacity with response time and recovery time of about 3 s and 25 s, respectively. The resistance is dependent on temperature with a negative coefficient of about -0.33%/K in a temperature range from 293 K to 393 K.

  3. Nanomechanics of carbon nanotubes.

    Science.gov (United States)

    Kis, Andras; Zettl, Alex

    2008-05-13

    Some of the most important potential applications of carbon nanotubes are related to their mechanical properties. Stiff sp2 bonds result in a Young's modulus close to that of diamond, while the relatively weak van der Waals interaction between the graphitic shells acts as a form of lubrication. Previous characterization of the mechanical properties of nanotubes includes a rich variety of experiments involving mechanical deformation of nanotubes using scanning probe microscopes. These results have led to promising prototypes of nanoelectromechanical devices such as high-performance nanomotors, switches and oscillators based on carbon nanotubes.

  4. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks.

    Science.gov (United States)

    Svedružić, Draženka; Blackburn, Jeffrey L; Tenent, Robert C; Rocha, John-David R; Vinzant, Todd B; Heben, Michael J; King, Paul W

    2011-03-30

    We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.

  5. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.

    Science.gov (United States)

    Ee, Shu Jing; Pang, Hongchang; Mani, Ulaganathan; Yan, Qingyu; Ting, Siong Luong; Chen, Peng

    2014-08-25

    A porous interwoven network is synthesized, consisting of ultralong MnO2 nanowires and multi-walled carbon nanotubes (MWCNTs). Serving as the anode for a lithium-ion battery, this nanocomposite demonstrates excellent performance due to the synergistic integration of these two 1D materials. Taking advantage of the excellent flexibility and strength of this MnO2-MWCNT network, a full, bendable battery is made that offers high capacity, cycling stability, and low cost.

  6. Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Prasantha R. Mudimela

    2012-01-01

    Full Text Available Single-walled carbon nanotube network field effect transistors were fabricated and studied as humidity sensors. Sensing responses were altered by changing the gate voltage. At the open channel state (negative gate voltage, humidity pulse resulted in the decrease of the source-drain current, and, vice versa, the increase in the source-drain current was observed at the positive gate voltage. This effect was explained by the electron-donating nature of water molecules. The operation speed and signal intensity was found to be dependent on the gate voltage polarity. The positive or negative change in current with humidity pulse at zero-gate voltage was found to depend on the previous state of the gate electrode (positive or negative voltage, respectively. Those characteristics were explained by the charge traps in the gate dielectric altering the effective gate voltage, which influenced the operation of field effect transistor.

  7. Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode.

    Science.gov (United States)

    Sansuk, Siriwat; Bitziou, Eleni; Joseph, Maxim B; Covington, James A; Boutelle, Martyn G; Unwin, Patrick R; Macpherson, Julie V

    2013-01-02

    The electrochemical measurement of dopamine (DA), in phosphate buffer solution (pH 7.4), with a limit of detection (LOD) of ∼5 pM in 50 μL (∼ 250 attomol) is achieved using a band electrode comprised of a sparse network of pristine single-walled carbon nanotubes (SWNTs), which covers dopamine (DA), reported herein, is significantly lower than previous reports using FIA-electrochemical detection. Furthermore, the SWNT electrodes can be used as grown, i.e., they do not require chemical modification or cleanup. The extremely low background signals of the SWNT electrodes, as a consequence of the sparse surface coverage and the low intrinsic capacitance of the SWNTs, means that no signal processing is required to measure the low currents for DA oxidation at trace levels. DA detection in artificial cerebral fluid is also possible with a LOD of ∼50 pM in 50 μL (∼2.5 fmol).

  8. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  9. Super square carbon nanotube network: a new promising water desalination membrane

    Science.gov (United States)

    Sun, Ligang; He, Xiaoqiao; Lu, Jian

    2016-04-01

    Super square (SS) carbon nanotube (CNT) networks, acting as a new kind of nanoporous membrane, manifest excellent water desalination performance. Nanopores in SS CNT network can efficiently filter NaCl from water. The water desalination ability of such nanoporous membranes critically depends on the pore diameter, permitting water molecule permeatration while salt ion obstruction. On the basis of the systematical analysis on the interaction among water permeability, salt concentration limit and pressure on the membranes, an empirical formula is developed to describe the relationship between pressure and concentration limit. In the meantime, the nonlinear relationship between pressure and water permeability is examined. Hence, by controlling pressure, optimal plan can be easily made to efficiently filter the saltwater. Moreover, steered molecular dynamics (MD) method uncovers bending and local buckling of SS CNT network that leads to salt ions passing through membranes. These important mechanical behaviours are neglected in most MD simulations, which may overestimate the filtration ability. Overall, water permeability of such material is several orders of magnitude higher than the conventional reverse osmosis membranes and several times higher than nanoporous graphene membranes. SS CNT networks may act as a new kind of membrane developed for water desalination with excellent filtration ability.

  10. Electrical properties of carbon-nanotube-network transistors in air after gamma irradiation

    Science.gov (United States)

    Ishii, Satoshi; Yabe, Daisuke; Enomoto, Shotaro; Koshio, Shigeru; Konishi, Teruaki; Hamano, Tsuyoshi; Hirao, Toshio

    2017-02-01

    We experimentally evaluate the electrical properties of carbon nanotube (CNT)-network transistors before and after 60Co gamma-ray irradiation up to 50 kGy in an air environment. When the total dose is increased, the degree of the threshold voltage (Vth) shift towards positive gate voltages in the drain current-gate voltage (ID-VGS) characteristics decreases for total irradiation doses above 30 kGy, although it is constant below 30 kGy. From our analysis of the ID-VGS characteristics along with micro-Raman spectroscopy, the gamma-ray irradiation does not change the structure of the CNT network channel for total doses up to 50 kGy; it instead generates charge traps near the CNT/SiO2 gate insulator interfaces. These traps are located within the SiO2 layer and/or the adsorbate on the device surface. The positively charged traps near the CNT/SiO2 interface contribute less to the Vth shift than the interface dipoles at the CNT/metal electrode interfaces and the segment of the CNT network channel below doses of 30 kGy, while the contribution of the charge traps increases for total doses above 30 kGy. Our findings indicate the possibility of the application of CNT-network transistors as radiation detectors suitable for use in air for radiation doses above 30 kGy.

  11. Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Yan, Hong; Sun, Xiaoming; Zhang, Han; Luo, Liang; Lei, Xiaodong; Wan, Pengbo; Chen, Xiaodong

    2015-11-18

    Transparent and conductive film based electronics have attracted substantial research interest in various wearable and integrated display devices in recent years. The breakdown of transparent electronics prompts the development of transparent electronics integrated with healability. A healable transparent chemical gas sensor device is assembled from layer-by-layer-assembled transparent healable polyelectrolyte multilayer films by developing effective methods to cast transparent carbon nanotube (CNT) networks on healable substrates. The healable CNT network-containing film with transparency and superior network structures on self-healing substrate is obtained by the lateral movement of the underlying self-healing layer to bring the separated areas of the CNT layer back into contact. The as-prepared healable transparent film is assembled into healable transparent chemical gas sensor device for flexible, healable gas sensing at room temperature, due to the 1D confined network structure, relatively high carrier mobility, and large surface-to-volume ratio. The healable transparent chemical gas sensor demonstrates excellent sensing performance, robust healability, reliable flexibility, and good transparency, providing promising opportunities for developing flexible, healable transparent optoelectronic devices with the reduced raw material consumption, decreased maintenance costs, improved lifetime, and robust functional reliability.

  12. Random networks of carbon nanotubes optimized for transistor mass-production: searching for ultimate performance

    Science.gov (United States)

    Žeželj, M.; Stanković, I.

    2016-10-01

    Random networks of as-grown single-walled carbon nanotubes (CNTs) contain both metallic (m-CNTs) and semiconducting (s-CNTs) nanotubes in an approximate ratio of 1:2, which leads to a trade-off between on-conductance and the on/off ratio. We demonstrate how this design problem can be solved with a realistic numerical approach. We determine the CNT density, length, and channel dimensions under which CNT thin-film transistors simultaneously attain on-conductance higher than 1 μS and an on/off ratio higher than 104. The fact that asymmetric systems have more pronounced finite-size scaling behavior than symmetric systems allows us additional design freedom. A realization probability of the desired characteristics higher than 99% is obtained for the channels with aspect ratio {L}{{CH}}/{W}{{CH}}\\lt 1.2 and normalized size {L}{{CH}}{W}{{CH}}/{l}{{CNT}}2\\gt 250 when the CNT length is {l}{{CNT}}=4-20 μ {{m}} and the normalized density of CNTs is close to the value where the probability of percolation through only s-CNT pathways reaches its maximum.

  13. Single-WalledCarbon Nanotube Networked Field-Effect Transistors Functionalized with Thiolated Heme for NO2 Sensing

    Institute of Scientific and Technical Information of China (English)

    魏昂; 李维维; 汪静霞; 龙庆; 王钊; 熊莉; 董晓臣; 黄维

    2011-01-01

    The gas sensing properties of the single-walled carbon nanotube networked field-effect transistors for NO2 are investigated. After the modification of the gold contact electrodes of the carbon nanotube transistors with the thiolated heme, the NO2 sensing results indicate that the sensing sensitivity of the modified transistors is enhanced greatly and the sensing limit can reach below Woppb. It is also proposed that the mechanism of the sensitivity enhancement for NO2 detection mainly results from the modulation of the Schottky energy barrier at the Au/CNTs junction upon thiolated heme facilitated NO2 adsorption.%The gas sensing properties of the single-walled carbon nanotube networked field-effect transistors for NO2 are investigated.After the modification of the gold contact electrodes of the carbon nanotube transistors with the thiolated heme,the NO2 sensing results indicate that the sensing sensitivity of the modified transistors is enhanced greatly and the sensing limit can reach below 100ppb.It is also proposed that the mechanism of the sensitivity enhancement for NO2 detection mainly results from the modulation of the Schottky energy barrier at the Au/CNTs junction upon thiolated heme facilitated NO2 adsorption.

  14. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells.

    Science.gov (United States)

    Li, Zhen; Kulkarni, Sneha A; Boix, Pablo P; Shi, Enzheng; Cao, Anyuan; Fu, Kunwu; Batabyal, Sudip K; Zhang, Jun; Xiong, Qihua; Wong, Lydia Helena; Mathews, Nripan; Mhaisalkar, Subodh G

    2014-07-22

    Organic-inorganic metal halide perovskite solar cells were fabricated by laminating films of a carbon nanotube (CNT) network onto a CH3NH3PbI3 substrate as a hole collector, bypassing the energy-consuming vacuum process of metal deposition. In the absence of an organic hole-transporting material and metal contact, CH3NH3PbI3 and CNTs formed a solar cell with an efficiency of up to 6.87%. The CH3NH3PbI3/CNTs solar cells were semitransparent and showed photovoltaic output with dual side illuminations due to the transparency of the CNT electrode. Adding spiro-OMeTAD to the CNT network forms a composite electrode that improved the efficiency to 9.90% due to the enhanced hole extraction and reduced recombination in solar cells. The interfacial charge transfer and transport in solar cells were investigated through photoluminescence and impedance measurements. The flexible and transparent CNT network film shows great potential for realizing flexible and semitransparent perovskite solar cells.

  15. Coated or doped carbon nanotube network sensors as affected by environmental parameters

    Science.gov (United States)

    Li, Jing (Inventor)

    2011-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  16. Random networks of single-walled carbon nanotubes promote mesenchymal stem cell's proliferation and differentiation.

    Science.gov (United States)

    Lee, Jae-Hyeok; Shim, Wooyoung; Choolakadavil Khalid, Najeeb; Kang, Won-Seok; Lee, Minsu; Kim, Hyo-Sop; Choi, Je; Lee, Gwang; Kim, Jae-Ho

    2015-01-28

    Studies on the interaction of cells with single-walled carbon nanotubes (SWCNTs) have been receiving increasing attention owing to their potential for various cellular applications. In this report, we investigated the interactions between biological cells and nanostructured SWCNTs films and focused on how morphological structures of SWCNT films affected cellular behavior such as cell proliferation and differentiation. One directionally aligned SWCNT Langmuir-Blodgett (LB) film and random network SWCNT film were fabricated by LB and vacuum filteration methods, respectively. We demonstrate that our SWCNT LB and network film based scaffolds do not show any cytotoxicity, while on the other hand, these scaffolds promote differentiation property of rat mesenchymal stem cells (rMSCs) when compared with that on conventional tissue culture polystyrene substrates. Especially, the SWCNT network film with average thickness and roughness values of 95 ± 5 and 9.81 nm, respectively, demonstrated faster growth rate and higher cell thickness for rMSCs. These results suggest that systematic manipulation of the thickness, roughness, and directional alignment of SWCNT films would provide the convenient strategy for controlling the growth and maintenance of the differentiation property of stem cells. The SWCNT film could be an alternative culture substrate for various stem cells, which often require close control of the growth and differentiation properties.

  17. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  18. Inkjet Printing of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryan P. Tortorich

    2013-07-01

    Full Text Available In an attempt to give a brief introduction to carbon nanotube inkjet printing, this review paper discusses the issues that come along with preparing and printing carbon nanotube ink. Carbon nanotube inkjet printing is relatively new, but it has great potential for broad applications in flexible and printable electronics, transparent electrodes, electronic sensors, and so on due to its low cost and the extraordinary properties of carbon nanotubes. In addition to the formulation of carbon nanotube ink and its printing technologies, recent progress and achievements of carbon nanotube inkjet printing are reviewed in detail with brief discussion on the future outlook of the technology.

  19. A compressible mesoporous SiO2 sponge supported by a carbon nanotube network

    Science.gov (United States)

    Yang, Yanbing; Shi, Enzheng; Li, Peixu; Wu, Dehai; Wu, Shiting; Shang, Yuanyuan; Xu, Wenjing; Cao, Anyuan; Yuan, Quan

    2014-03-01

    Applications of mesoporous silica (m-SiO2) have suffered from its fragility (monolithic m-SiO2 easily collapses under compression) and limited internal molecular exchange through small channels. Previously reported hierarchical porous m-SiO2 structures containing interconnected macropores could improve adsorption properties, but they were still intrinsically fragile without sufficient mechanical strength to sustain deformation. Here, we embed a three-dimensional carbon nanotube (CNT) skeleton into m-SiO2 to fabricate bulk, robust sponges that can be compressed to large strains (60% volume reduction) repeatedly in both air and water. This is done by directly casting a uniform m-SiO2 layer with tunable thickness onto the surface of CNTs while maintaining the original network and open porous structure, resulting in a core-shell CNT@m-SiO2 hybrid sponge. By pumping fluid through the CNT@m-SiO2 sponges under cyclic compression, the adsorption rate and efficiency of dye molecules can be significantly enhanced due to the mesoporous coating on CNTs and enhanced fluid exchange throughout internal pores. The CNT@m-SiO2 sponges may be used as robust and flexible adsorption media, and chemical and biological sensors with high performance.Applications of mesoporous silica (m-SiO2) have suffered from its fragility (monolithic m-SiO2 easily collapses under compression) and limited internal molecular exchange through small channels. Previously reported hierarchical porous m-SiO2 structures containing interconnected macropores could improve adsorption properties, but they were still intrinsically fragile without sufficient mechanical strength to sustain deformation. Here, we embed a three-dimensional carbon nanotube (CNT) skeleton into m-SiO2 to fabricate bulk, robust sponges that can be compressed to large strains (60% volume reduction) repeatedly in both air and water. This is done by directly casting a uniform m-SiO2 layer with tunable thickness onto the surface of CNTs while

  20. Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network.

    Science.gov (United States)

    Bahrami, Afarin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Behzad, Kasra; M Abdi, Mahnaz; Din, Fasih Ud

    2012-11-14

    Polypyrrole (PPy) and polypyrrole-carboxylic functionalized multi wall carbon nanotube composites (PPy/f-MWCNT) were synthesized by in situ chemical oxidative polymerization of pyrrole on the carbon nanotubes (CNTs). The structure of the resulting complex nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The effects of f-MWCNT concentration on the electrical properties of the resulting composites were studied at temperatures between 100 K and 300 K. The Hall mobility and Hall coefficient of PPy and PPy/f-MWCNT composite samples with different concentrations of f-MWCNT were measured using the van der Pauw technique. The mobility decreased slightly with increasing temperature, while the conductivity was dominated by the gradually increasing carrier density.

  1. Advanced Composite Armor: In Situ Sensing with Carbon Nanotube Networks for Improved Damage Tolerance

    Science.gov (United States)

    2013-08-19

    containing carbon nanotubes using VARTM before resin infusion. We found that both methods achieved electrical percolation however the fiber sizing agent...agent and epoxy resin were applied using VARTM methodology. In order to evaluate the response of thick-section composites (0.35 in/8.9 mm) under dynamic

  2. Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network

    Science.gov (United States)

    Zhou, Guoxiang; Zhang, Heng; Xu, Shuping; Gui, Xuchun; Wei, Hongqiu; Leng, Jinsong; Koratkar, Nikhil; Zhong, Jing

    2016-04-01

    In this work, a 3-D porous carbon nanotube sponge (CNTS) was embedded within a shape memory polymer (SMPs) matrix. We demonstrate complete infiltration and filling of the SMPs into the CNTS by capillary force without any damage to the CNTS structure. With only ~0.2 wt% carbon nanotube loading, the glass transition temperature is increased by ~20 °C, indicating strong interaction between CNTS and the SMPs matrix. Further, we find that the uniform distribution of the carbon nanotubes in the nanocomposite results in high electrical conductivity, and thus highly effective electricity triggering capability. The carbon nanotube sponge shape memory polymer (CNTS/SMPs) nanocomposite could be triggered within ~10 seconds by the application of ~10 volts. Results from finite element simulations showed good agreement with the experimental results, and indicated that for our system the interface thermal energy loss does not have a significant effect on the heating rate of the polymer matrix.

  3. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  4. Carbon nanotube junctions and devices

    NARCIS (Netherlands)

    Postma, H.W.Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconduct

  5. Understanding the doping effects on the structural and electrical properties of ultrathin carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: y-shuu@aist.go.jp; Shimada, Satoru; Azumi, Reiko [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565 Tsukuba (Japan); Saito, Takeshi [Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565 Tsukuba (Japan)

    2015-12-07

    Similar to other semiconductor technology, doping of carbon nanotube (CNT) thin film is of great significance for performance improvement or modification. However, it still remains a challenge to seek a stable and effective dopant. In this paper, we unitize several spectroscopic techniques and electrical characterizations under various conditions to investigate the effects of typical dopants and related methods. Nitric acid (HNO{sub 3}) solution, I{sub 2} vapor, and CuI nanoparticles are used to modify a series of ultrathin CNT networks. Although efficient charge transfer is achieved initially after doping, HNO{sub 3} is not applicable because it suffers from severe reliability problems in structural and electrical properties, and it also causes a number of undesired structural defects. I{sub 2} vapor doping at 150 °C can form some stable C-I bonding structures, resulting in relatively more stable but less efficient electrical performances. CuI nanoparticles seem to be an ideal dopant. Photonic curing enables the manipulation of CuI, which not only results in the construction of novel CNT-CuI hybrid structures but also encourages the deepest level of charge transfer doping. The excellent reliability as well as processing feasibility identify the bright perspective of CNT-CuI hybrid film for practical applications.

  6. Optimized network of multi-walled carbon nanotubes for chemical sensing

    Science.gov (United States)

    Gohier, A.; Chancolon, J.; Chenevier, P.; Porterat, D.; Mayne-L'Hermite, M.; Reynaud, C.

    2011-03-01

    This work reports the design of a resistive gas sensor based on 2D mats of multi-walled carbon nanotubes (MWCNTs) grown by aerosol-assisted chemical vapour deposition. The sensor sensitivity was optimized using chlorine as analyte by tuning both CNT network morphology and CNT electronic properties. Optimized devices, operating at room temperature, have been calibrated over a large range of concentration and are shown to be sensitive down to 27 ppb of chlorine. The as-grown MWCNT response is compared with responses of 2000 °C annealed CNTs, as well as of nitrogen-doped CNTs and CNTs functionalized with polyethyleneimine (PEI). Under chlorine exposure, the resistance decrease of as-grown and annealed CNTs is attributed to charge transfer from chlorine to CNTs and demonstrates their p-type semiconductor behaviour. XPS analysis of CNTs exposed to chlorine shows the presence of chloride species that confirms electron charge transfer from chlorine to CNTs. By contrast, the resistance of nitrogen-doped and PEI functionalized CNTs exposed to chlorine increases, in agreement with their n-type semiconductor nature. The best response is obtained using annealed CNTs and is attributed to their higher degree of crystallinity.

  7. Magnetite-Bridged Carbon Nanotubes/Graphene Sheets Three-Dimensional Network with Excellent Microwave Absorption

    Science.gov (United States)

    Wei, Renbo; Wang, Jialing; Wang, Zicheng; Tong, Lifen; Liu, Xiaobo

    2017-04-01

    A series of three-dimensional carbon nanotubes/graphene sheets network bridged by magnetite (Fe3O4-CNT/GS) is fabricated by solvothermal reaction and used as microwave absorption materials. Phthalonitrile-functionalized CNT (CNT-CN) and graphene oxide (GO-CN) are prepared by reacting acidulated CNT and GO with isophorone diisocyanate and 3-aminophenoxyphthalonitrile. The Fe3O4-CNT/GS is then obtained by the solvothermal reaction from CNT-CN and GO-CN with FeCl3·6H2O. Fe3O4-CNT/GS is characterized by x-ray photoelectron spectroscopic, x-ray diffraction and vibrating sample magnetometer, and its three-dimensional structure is confirmed by scanning electron microscope observation. Due to the formation of three-dimensional nano-architecture and the proper ratio of CNT and GS, the obtained Fe3O4-CNT/GS shows excellent microwave absorption with the minimum reflection loss as high as -45.3 dB at a thickness of 2.5 mm and a bandwidth below -10 dB of 3.8 GHz at a thickness of 1.5 mm. This Fe3O4-CNT/GS material will be a potential candidate as a microwave absorption material.

  8. The Evolution of Carbon Nanotube Network Structure in Unidirectional Nanocomposites Resolved by Quantitative Electron Tomography.

    Science.gov (United States)

    Natarajan, Bharath; Lachman, Noa; Lam, Thomas; Jacobs, Douglas; Long, Christian; Zhao, Minhua; Wardle, Brian L; Sharma, Renu; Liddle, J Alexander

    2015-06-23

    Carbon nanotube (CNT) reinforced polymers are next-generation, high-performance, multifunctional materials with a wide array of promising applications. The successful introduction of such materials is hampered by the lack of a quantitative understanding of process-structure-property relationships. These relationships can be developed only through the detailed characterization of the nanoscale reinforcement morphology within the embedding medium. Here, we reveal the three-dimensional (3D) nanoscale morphology of high volume fraction (V(f)) aligned CNT/epoxy-matrix nanocomposites using energy-filtered electron tomography. We present an automated phase-identification method for fast, accurate, representative rendering of the CNT spatial arrangement in these low-contrast bimaterial systems. The resulting nanometer-scale visualizations provide quantitative information on the evolution of CNT morphology and dispersion state with increasing V(f), including network structure, CNT alignment, bundling and waviness. The CNTs are observed to exhibit a nonlinear increase in bundling and alignment and a decrease in waviness as a function of increasing V(f). Our findings explain previously observed discrepancies between the modeled and measured trends in bulk mechanical, electrical and thermal properties. The techniques we have developed for morphological quantitation are applicable to many low-contrast material systems.

  9. Polyaniline nanoparticle-carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity

    Science.gov (United States)

    Lu, Jianbo; Park, Bong Jun; Kumar, Bijandra; Castro, Mickaël; Choi, Hyoung Jin; Feller, Jean-François

    2010-06-01

    Chemo-resistive sensors were prepared from monodisperse poly(aniline) nanoparticles (PaniNP) synthesized via oxidative dispersion polymerization. Poly(styrene sulfonic acid) (PSSA) was used as the stabilizer and dopant agent. PaniNP transducers were assembled by spraying layer by layer a solution containing different concentrations of PaniNP and multi-wall carbon nanotubes (MWNT) onto interdigitated electrodes. This process led to stable sensors with reproducible responses upon chemical cycling. Chemo-electrical properties of these sensors have been investigated in sequential flows of pure nitrogen and nitrogen saturated with a set of volatile organic compounds (VOC). Interestingly the sensing mode of PaniNP transducers (the NVC or PVC effect) can be switched simply by increasing PaniNP content or by the addition of only 0.5% of MWNT to reach a resistance lower than 150 Ω. Due to their original conducting architecture well imaged by atomic force microscopy (AFM), i.e. a double percolated conductive network, PaniNP-MWNT hybrids present both higher sensitivity and selectivity than other formulations, demonstrating a positive synergy. Mechanisms are proposed to describe the original chemo-electrical behaviours of PaniNP-based sensors and explain the origin of their selectivity and sensing principle. These features make them attractive to be integrated in e-noses.

  10. Polyaniline nanoparticle-carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jianbo; Kumar, Bijandra; Castro, Mickael; Feller, Jean-Francois [Smart Plastics Group, European University of Brittany (UEB), LIMAT-B-UBS, Lorient 56321 (France); Park, Bong Jun; Choi, Hyoung Jin, E-mail: jean-francois.feller@univ-ubs.fr [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2010-06-25

    Chemo-resistive sensors were prepared from monodisperse poly(aniline) nanoparticles (PaniNP) synthesized via oxidative dispersion polymerization. Poly(styrene sulfonic acid) (PSSA) was used as the stabilizer and dopant agent. PaniNP transducers were assembled by spraying layer by layer a solution containing different concentrations of PaniNP and multi-wall carbon nanotubes (MWNT) onto interdigitated electrodes. This process led to stable sensors with reproducible responses upon chemical cycling. Chemo-electrical properties of these sensors have been investigated in sequential flows of pure nitrogen and nitrogen saturated with a set of volatile organic compounds (VOC). Interestingly the sensing mode of PaniNP transducers (the NVC or PVC effect) can be switched simply by increasing PaniNP content or by the addition of only 0.5% of MWNT to reach a resistance lower than 150 {Omega}. Due to their original conducting architecture well imaged by atomic force microscopy (AFM), i.e. a double percolated conductive network, PaniNP-MWNT hybrids present both higher sensitivity and selectivity than other formulations, demonstrating a positive synergy. Mechanisms are proposed to describe the original chemo-electrical behaviours of PaniNP-based sensors and explain the origin of their selectivity and sensing principle. These features make them attractive to be integrated in e-noses.

  11. A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper.

    Science.gov (United States)

    Chen, Chuchu; Yang, Chuang; Li, Suiyi; Li, Dagang

    2015-12-10

    We reported a highly conductive nanocomposite made with multiwalled carbon nanotubes (MWCNTs) and chitin nanofibers (ChNFs). The MWCNTs were dispersed into ChNFs by the simple process of vacuum-filtration, forming a three-dimensional network structure. In this approach, MWCNT acted as a filler to introduce electron channel paths throughout the ChNF skeleton. And then, a hybrid hydrogel system (20 wt.% NaOH, -18 °C) was applied to prepare the ChNF/MWCNT gel-film followed with drying process. It is found that the resultant ChNF/MWCNT gel-film exposed much more MWCNT areas forming denser structure due to the shrinking of ChNFs after the gelation treatment. Compared with ChNF/MWCNT film, the one treated under hydrogel system (ChNF/MWCNT gel-film) exhibited almost twice higher conductivity (9.3S/cm for 50 wt.% MWCNTs in gel-film; whereas 4.7S/cm for 50 wt.% MWCNTs in film). Moreover, the facile and low-cost of this conductive paper may have great potential in development of foldable electronic devices.

  12. Carbon nanotubes for supercapacitor.

    Science.gov (United States)

    Pan, Hui; Li, Jianyi; Feng, Yuanping

    2010-01-05

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  13. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  14. Electrical behavior of Langmuir-Blodgett networks of sorted metallic and semiconducting single-walled carbon nanotubes.

    Science.gov (United States)

    Massey, Mark K; Rosamond, Mark C; Pearson, Christopher; Zeze, Dagou A; Petty, Michael C

    2012-10-30

    Langmuir-Blodgett deposition has been used to form thin film networks of both metallic and semiconducting single-walled carbon nanotubes. These have been investigated to understand their physical, optical, and morphological properties. The electrical conductivities over the temperature range 80-350 K and across electrode gaps of 220 nm and 2 mm have been explored. In the case of semiconducting tubes, the results suggest that Poole-Frenkel conduction is the dominant electrical process at temperatures below 150 K and electric fields of greater than 1 MV m(-1). Metallic nanotube networks exhibit a decrease in resistance with a reduction in temperature. This can be approximated by a linear relationship, giving a temperature coefficient of resistance of 10(-3) K(-1).

  15. Highly Uniform Thin-Film Transistors Printed on Flexible Plastic Films with Morphology-Controlled Carbon Nanotube Network Channels

    Science.gov (United States)

    Numata, Hideaki; Ihara, Kazuki; Saito, Takeshi; Endoh, Hiroyuki; Nihey, Fumiyuki

    2012-05-01

    Carbon nanotube (CNT) transistor arrays were fabricated on plastic films by printing. All the device elements were directly patterned by maskless printing without any additional patterning process, and minimum materials were used. During fabrication, the morphology of the CNT random network was controlled by an adsorption mechanism on the surface to be printed, which resulted in excellent and uniform electrical properties. The field-effect mobility was further improved by post-treatment to modify the morphology of the CNT network. These results are promising for realizing printed electronics integrated with CNT transistors.

  16. Ordered phases of cesium in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-10-15

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  17. All-carbon nanotube diode and solar cell statistically formed from macroscopic network

    Institute of Scientific and Technical Information of China (English)

    Albert G. Nasibulin[1,2,3; Adinath M. Funde[3,4; Ilya V. Anoshkin[3; Igor A. Levitskyt[5,6

    2015-01-01

    Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at N20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

  18. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  19. Carbon nanotubes for microelectronics?

    Science.gov (United States)

    Graham, Andrew P; Duesberg, Georg S; Seidel, Robert V; Liebau, Maik; Unger, Eugen; Pamler, Werner; Kreupl, Franz; Hoenlein, Wolfgang

    2005-04-01

    Despite all prophecies of its end, silicon-based microelectronics still follows Moore's Law and continues to develop rapidly. However, the inherent physical limits will eventually be reached. Carbon nanotubes offer the potential for further miniaturization as long as it is possible to selectively deposit them with defined properties.

  20. Origin of conductivity cross over in entangled multi-walled carbon nanotube network filled by iron

    OpenAIRE

    Chimowa, George; Linganiso, Ella C.; Churochkin, Dmitry; Neil J. Coville; Bhattacharyya, Somnath

    2011-01-01

    A realistic transport model showing the interplay of the hopping transport between the outer shells of iron filled entangled multi-walled carbon nanotubes (MWNT) and the diffusive transport through the inner part of the tubes, as a function of the filling percentage, is developed. This model is based on low-temperature electrical resistivity and magneto-resistance (MR) measurements. The conductivity at low temperatures showed a crossover from Efros-Shklovski (E-S) variable range hopping (VRH)...

  1. Hierarchical and Multifunctional Three-dimensional Network of Carbon Nanotubes for Supercapacitor and Strain Sensor Applications

    Science.gov (United States)

    2016-05-19

    STATEMENT Approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A coaxial carbon nanotube/manganese oxide material (3DNC/MnO2) was...attracted numerous research works during recent decades. 0D, 1D, 2D and 3D nanostructured MnO2 with different morphologies have been developed as...evaluation: Sample morphologies were characterized by field-emission scanning electron microscope (FE-SEM, S-4800, Hitachi), transmission spectroscope (TEM

  2. Effects of single-walled carbon nanotubes on lysozyme gelation.

    Science.gov (United States)

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology.

  3. The effect of molecular mobility on electronic transport in carbon nanotube-polymer composites and networks

    Energy Technology Data Exchange (ETDEWEB)

    Shenogin, Sergei, E-mail: sergei.shenogin.ctr.ru@us.af.mil [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States); Lee, Jonghoon [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 (United States); UTC, Inc., 1270 N Fairfield Rd, Dayton, Ohio 45432 (United States); Voevodin, Andrey A.; Roy, Ajit K. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2014-12-21

    A multiscale modeling approach to the prediction of electrical conductivity in carbon nanotube (CNT)–polymer composite materials is developed, which takes into account thermally activated molecular mobility of the matrix and the CNTs. On molecular level, a tight-binding density functional theory and non-equilibrium Green's function method are used to calculate the static electron transmission function in the contact between two metallic carbon nanotubes that corresponds to electron transport at 0 K. For higher temperatures, the statistical distribution of effective contact resistances is considered that originates from thermal fluctuations of intermolecular distances caused by molecular mobility of carbon nanotube and the polymer matrix. Based on this distribution and using effective medium theory, the temperature dependence of macroscopic electrical resistivity for CNT-polymer composites and CNT mats is calculated. The predicted data indicate that the electrical conductivity of the CNT-polymer composites increases linearly with temperature above 50 K, which is in a quantitative agreement with the experiments. Our model predicts a slight nonlinearity in temperature dependence of electric conductivity at low temperatures for percolated composites with small CNT loading. The model also explains the effect of glass transition and other molecular relaxation processes in the polymer matrix on the composite electrical conductivity. The developed multiscale approach integrates the atomistic charge transport mechanisms in percolated CNT-polymer composites with the macroscopic response and thus enables direct comparison of the prediction with the measurements of macroscopic material properties.

  4. Nitrogen doping in carbon nanotubes.

    Science.gov (United States)

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  5. Carbon Nanotubes: Molecular Electronic Components

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  6. The Toxicology of Carbon Nanotubes

    Science.gov (United States)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  7. Making junctions between carbon nanotubes using an ion beam

    CERN Document Server

    Krasheninnikov, A V; Keinonen, J; Banhart, F

    2003-01-01

    Making use of empirical potential molecular dynamics, we study ion bombardment of crossed single-walled carbon nanotubes as a tool to join the nanotubes. We demonstrate that ion irradiation should result in welding of crossed nanotubes, both suspended and deposited on substrates. We further predict optimum ion doses and energies for ion-mediated nanotube welding which may potentially be used for developing complicated networks of joined nanotubes.

  8. Carbon Nanotube Purification and Functionalization

    Science.gov (United States)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  9. Surface enhanced Raman spectroscopy on silver-nanoparticle-coated carbon-nanotube networks fabricated by electrophoretic deposition

    Science.gov (United States)

    Sarkar, Anirban; Wang, Hao; Daniels-Race, Theda

    2014-03-01

    In this study, the efficiency of silver nanoparticle (AgNP) decorated carbon nanotube (CNT) based porous substrates has been investigated for surface-enhanced Raman spectroscopy (SERS) applications. The fabrication of uniform thin coatings of carbon nanotubes is accomplished by Electrophoretic Deposition (EPD) on organosilane functionalized silicon substrates. The deposition process exemplifies a fast, reproducible and single-step room temperature coating strategy to fabricate horizontally aligned porous CNT network. Surfactant stabilized AgNPs were deposited on the CNT networks by immersion coating. The acquired Raman spectra of Rhodamine6G (R6G) analyte examined on the fabricated Ag-CNT-Si substrates exhibited enhanced signal intensity values when compared to SERS-active planar AgNP-Si substrates. An overall enhancement factor of ˜109 was achieved for the tested analyte which enables pushing the limit of detection to 1 × 10-12 M (1 pM). The enhancement can be attributed to the large surface area offered by the AgNP-CNT porous network, which is expected to increase the number of effective "hot spots" for the SERS effect.

  10. Production of carbon nanotubes

    Science.gov (United States)

    Journet, C.; Bernier, P.

    Carbon nanostructures such as single-walled and multi-walled nanotubes (SWNTs and MWNTs) or graphitic polyhedral nanoparticles can be produced using various methods. Most of them are based on the sublimation of carbon under an inert atmosphere, such as the electric arc discharge process, the laser ablation method, or the solar technique. But chemical methods can also be used to synthesize these kinds of carbon materials: the catalytic decomposition of hydrocarbons, the production by electrolysis, the heat treatment of a polymer, the low temperature solid pyrolysis, or the in situ catalysis.

  11. Field-effect and frequency dependent transport in semiconductor-enriched single-wall carbon nanotube network device.

    Science.gov (United States)

    Jaiswal, Manu; Sangeeth, C S Suchand; Wang, Wei; Sun, Ya-Ping; Menon, Reghu

    2009-11-01

    The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.

  12. Carbon Nanotube Thermoelectric Coolers

    Science.gov (United States)

    2015-02-06

    conductance. Inside thecentral section of the carbon nanotube, we obtained an impressive Peltier cooling 57 K down from the liquid nitrogentemperature. 15... trapped charges or dipoles) that occur either at the interface between the CNT and the gate dielectric (interface defects) or at some position within... liquid nitrogen temperature 77T  K up to hot 134 8T  K, or decreases from 77T  K down to about cold 20 6T  K, thus evidencing a strong

  13. Carbon nanotube biosensors

    OpenAIRE

    Tîlmaciu, Carmen-Mihaela; Morris, May C

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we pr...

  14. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  15. Carbon Nanotubes Based Quantum Devices

    Science.gov (United States)

    Lu, Jian-Ping

    1999-01-01

    This document represents the final report for the NASA cooperative agreement which studied the application of carbon nanotubes. The accomplishments are reviewed: (1) Wrote a review article on carbon nanotubes and its potentials for applications in nanoscale quantum devices. (2) Extensive studies on the effects of structure deformation on nanotube electronic structure and energy band gaps. (3) Calculated the vibrational spectrum of nanotube rope and the effect of pressure. and (4) Investigate the properties of Li intercalated nanotube ropes and explore their potential for energy storage materials and battery applications. These studies have lead to four publications and seven abstracts in international conferences.

  16. Sorting carbon nanotubes for electronics.

    Science.gov (United States)

    Martel, Richard

    2008-11-25

    Because of their unique structure and composition, single-wall carbon nanotubes (SWNTs) are at the interface between molecules and crystalline solids. They also present properties that are ideal for making lightweight, inexpensive, and flexible electronics. The raw material is composed of a heterogeneous mixture of SWNTs that differ in helicity and diameter and, therefore, requires purification and separation. In a series of groundbreaking experiments, a robust process serving this purpose was developed based on SWNTs encapsulated in surfactants and water. Ultracentrifugation in a density gradient combined with surfactant mixtures provided buoyant density differences, enabling enrichment for both diameter and electronic properties. A new paper in this issue explores further the process through the hydrodynamic properties of SWNT-surfactant complexes. The study reveals that we have just begun to uncover the dynamics and properties of nanotube-surfactant interactions and highlights the potential that could be gained from a better understanding of their chemistry. The time scale of integration of carbon nanotubes into electronics applications remains unclear, but the recent developments in sorting out SWNTs paves the way for improving on the properties of network-based SWNTs.

  17. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation.

    Science.gov (United States)

    Cho, Hyun Woo; Kim, Sang Won; Kim, Jeongmin; Kim, Un Jeong; Im, Kyuhyun; Park, Jong-Jin; Sung, Bong June

    2016-05-21

    We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs upon uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.

  18. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    Science.gov (United States)

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  19. Lithium interaction with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nalimova, V.A. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul`tet; Sklovsky, D.E. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul`tet; Bondarenko, G.N. [Topcheiv Institute of Petrochemical Synthesis, Leninsky Prospekt, 29, Moscow (Russian Federation); Alvergnat-Gaucher, H. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France); Bonnamy, S. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France); Beguin, F. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France)

    1997-05-01

    Lithium interaction with catalytic carbon nanotubes under high-pressure conditions was studied. A large amount of Li (2Li/C) reacted with the carbon nanotubes forming an intercalation compound (I{sub c}{proportional_to}4.1 A) which follows from X-ray diffraction and IR spectroscopy data. We cannot exclude also the possibility of insertion of a part of Li into the channel of the nanotubes. (orig.)

  20. Carbon nanotube Archimedes screws.

    Science.gov (United States)

    Oroszlány, László; Zólyomi, Viktor; Lambert, Colin J

    2010-12-28

    Recently, nanomechanical devices composed of a long stationary inner carbon nanotube and a shorter, slowly rotating outer tube have been fabricated. In this paper, we study the possibility of using such devices as nanoscale transducers of motion into electricity. When the outer tube is chiral, we show that such devices act like quantum Archimedes screws, which utilize mechanical energy to pump electrons between reservoirs. We calculate the pumped charge from one end of the inner tube to the other, driven by the rotation of a chiral outer nanotube. We show that the pumped charge can be greater than one electron per 360° rotation, and consequently, such a device operating with a rotational frequency of 10 MHz, for example, would deliver a current of ≈1 pAmp.

  1. Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis: control of the specific surface area over three orders of magnitude

    NARCIS (Netherlands)

    Miller, T.S.; Sansuk, S.; Lai, S.C.S.; Macpherson, J.V.; Unwin, P.R.

    2015-01-01

    The electrodeposition of Pt nanoparticles (NPs) on two-dimensional single walled carbon nanotube (SWNT) network electrodes is investigated as a means of tailoring electrode surfaces with a well-defined amount of electrocatalytic material. Both Pt NP deposition and electrocatalytic studies are undert

  2. Carbon Nanotubes and Modern Nanoagriculture

    KAUST Repository

    Bayoumi, Maged Fouad

    2015-01-27

    Since their discovery, carbon nanotubes have been prominent members of the nanomaterial family. Owing to their extraordinary physical, chemical, and mechanical properties, carbon nanotubes have been proven to be a useful tool in the field of plant science. They were frequently perceived to bring about valuable biotechnological and agricultural applications that still remain beyond experimental realization. An increasing number of studies have demonstrated the ability of carbon nanotubes to traverse different plant cell barriers. These studies, also, assessed the toxicity and environmental impacts of these nanomaterials. The knowledge provided by these studies is of practical and fundamental importance for diverse applications including intracellular labeling and imaging, genetic transformation, and for enhancing our knowledge of plant cell biology. Although different types of nanoparticles have been found to activate physiological processes in plants, carbon nanotubes received particular interest. Following addition to germination medium, carbon nanotubes enhanced root growth and elongation of some plants such as onion, cucumber and rye-grass. They, also, modulated the expression of some genes that are essential for cell division and plant development. In addition, multi-walled carbon nanotubes were evidenced to penetrate thick seed coats, stimulate germination, and to enhance growth of young tomato seedlings. Multi-walled carbon nanotubes can penetrate deeply into the root system and further distribute into the leaves and the fruits. In recent studies, carbon nanotubes were reported to be chemically entrapped into the structure of plant tracheary elements. This should activate studies in the fields of plant defense and wood engineering. Although, all of these effects on plant physiology and plant developmental biology have not been fully understood, the valuable findings promises more research activity in the near future toward complete scientific understanding of

  3. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  4. Carbon Nanotubes for Space Applications

    Science.gov (United States)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  5. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  6. 3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply.

    Science.gov (United States)

    Han, Zhao Jun; Levchenko, Igor; Yick, Samuel; Ostrikov, Kostya Ken

    2011-11-01

    Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices.

  7. Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes.

    Science.gov (United States)

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films.

  8. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  9. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  10. Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Loos, Joachim [Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands) and Laboratory of Polymer Technology, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands) and Dutch Polymer Institute, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)]. E-mail: j.loos@tue.nl; Alexeev, Alexander [Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); NT-MDT Ltd., 124460, Moscow (Russian Federation); Grossiord, Nadia [Dutch Polymer Institute, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Laboratory of Polymer Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Koning, Cor E. [Dutch Polymer Institute, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Laboratory of Polymer Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Regev, Oren [Dutch Polymer Institute, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Laboratory of Polymer Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Department of Chemical Engineering and The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University in the Negev, 84105 Beer-Sheva (Israel)

    2005-09-15

    The morphology of conductive nanocomposites consisting of low concentration of single-wall carbon nanotubes (SWNT) and polystyrene (PS) has been studied using atomic force microscopy (AFM), transmission electron microscopy (TEM) and, in particular, scanning electron microscopy (SEM). Application of charge contrast imaging in SEM allows visualization of the overall SWNT dispersion within the polymer matrix as well as the identification of individual or bundled SWNTs at high resolution. The contrast mechanism involved will be discussed. In conductive nanocomposites the SWNTs are homogeneously dispersed within the polymer matrix and form a network. Beside fairly straight SWNTs, strongly bended SWNTs have been observed. However, for samples with SWNT concentrations below the percolation threshold, the common overall charging behavior of an insulating material is observed preventing the detailed morphological investigation of the sample.

  11. Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging.

    Science.gov (United States)

    Loos, Joachim; Alexeev, Alexander; Grossiord, Nadia; Koning, Cor E; Regev, Oren

    2005-09-01

    The morphology of conductive nanocomposites consisting of low concentration of single-wall carbon nanotubes (SWNT) and polystyrene (PS) has been studied using atomic force microscopy (AFM), transmission electron microscopy (TEM) and, in particular, scanning electron microscopy (SEM). Application of charge contrast imaging in SEM allows visualization of the overall SWNT dispersion within the polymer matrix as well as the identification of individual or bundled SWNTs at high resolution. The contrast mechanism involved will be discussed. In conductive nanocomposites the SWNTs are homogeneously dispersed within the polymer matrix and form a network. Beside fairly straight SWNTs, strongly bended SWNTs have been observed. However, for samples with SWNT concentrations below the percolation threshold, the common overall charging behavior of an insulating material is observed preventing the detailed morphological investigation of the sample.

  12. Atomic transportation via carbon nanotubes.

    Science.gov (United States)

    Wang, Quan

    2009-01-01

    The transportation of helium atoms in a single-walled carbon nanotube is reported via molecular dynamics simulations. The efficiency of the atomic transportation is found to be dependent on the type of the applied loading and the loading rate as well as the temperature in the process. Simulations show the transportation is a result of the van der Waals force between the nanotube and the helium atoms through a kink propagation initiated in the nanotube.

  13. Method for synthesizing carbon nanotubes

    Science.gov (United States)

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  14. Carbon nanotubes: engineering biomedical applications.

    Science.gov (United States)

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges.

  15. Controlled functionalisation of single-walled carbon nanotube network electrodes for the enhanced voltammetric detection of dopamine.

    Science.gov (United States)

    E, Sharel P; Miller, Thomas S; Macpherson, Julie V; Unwin, Patrick R

    2015-10-21

    Voltammetric studies of dopamine (DA) oxidation on pristine and acid-treated single-walled carbon nanotube (SWNT) network electrodes were undertaken in order to investigate both the effect of network density and acid treatment times on the voltammetric characteristics for DA oxidation and the susceptibility of the electrodes to fouling. Through careful control of catalysed chemical vapour deposition growth parameters, multiply interconnected and randomly oriented SWNT networks of two significantly different densities were grown (high density, HD, coverage ≫10 μm length of SWNT per μm(-2) and low density, LD, coverage = 5 (±1) μmSWNTμm(-2)). Acid treatment was performed to provide materials with different electrochemical properties and SWNT coverage, as determined by field emission-scanning electron microscopy, atomic force microscopy and micro-Raman spectroscopy. A high concentration of DA (100 μM) was deliberately employed to accelerate the fouling phenomenon associated with DA oxidation in order to evaluate the lifetime of the electrodes. HD pristine SWNT networks were found to promote more facile electron transfer (ET) and were less susceptible to blocking, compared to LD pristine SWNT networks. Acid treatment resulted in both a further enhancement of the ET rate and a reduction in susceptibility towards electrode fouling. However, lengthy acid treatment detrimentally affected ET, due to a decrease in network density and significant damage to the SWNT network structure. These studies highlight the subtle interplay between SWNT coverage and degree of acid functionalisation when seeking to achieve the optimal SWNT electrode for the voltammetric detection of DA.

  16. Carbon nanotubes in neuroregeneration and repair.

    Science.gov (United States)

    Fabbro, Alessandra; Prato, Maurizio; Ballerini, Laura

    2013-12-01

    In the last decade, we have experienced an increasing interest and an improved understanding of the application of nanotechnology to the nervous system. The aim of such studies is that of developing future strategies for tissue repair to promote functional recovery after brain damage. In this framework, carbon nanotube based technologies are emerging as particularly innovative tools due to the outstanding physical properties of these nanomaterials together with their recently documented ability to interface neuronal circuits, synapses and membranes. This review will discuss the state of the art in carbon nanotube technology applied to the development of devices able to drive nerve tissue repair; we will highlight the most exciting findings addressing the impact of carbon nanotubes in nerve tissue engineering, focusing in particular on neuronal differentiation, growth and network reconstruction.

  17. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  18. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  19. Carbon nanotube biconvex microcavities

    Science.gov (United States)

    Butt, Haider; Yetisen, Ali K.; Ahmed, Rajib; Yun, Seok Hyun; Dai, Qing

    2015-03-01

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2-3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  20. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  1. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individua...

  2. Pure carbon nanoscale devices: Nanotube heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Chico, L.; Crespi, V.H.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States)]|[Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)

    1996-02-01

    Introduction of pentagon-heptagon pair defects into the hexagonal network of a single carbon nanotube can change the helicity of the tube and alter its electronic structure. Using a tight-binding method to calculate the electronic structure of such systems we show that they behave as nanoscale metal/semiconductor or semiconductor/semiconductor junctions. These junctions could be the building blocks of nanoscale electronic devices made entirely of carbon. {copyright} {ital 1996 The American Physical Society.}

  3. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  4. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  5. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  6. Enhanced Metal Contacts to Carbon Nanotube Networks through Chemical and Physical Modification

    Science.gov (United States)

    Cox, Nathanael David

    Carbon nanotubes (CNTs) are an emerging class of nano-structured carbon materials which are currently being studied for applications which would benefit from their desirable electrical and mechanical properties. Potential benefits such as improved current density, flexure tolerance, weight savings, and even radiation tolerance have led to their implementation into numerous devices and structures, many of which are slated for use in space environments. The role of CNTs can be quite diverse, with varied CNT electronic-types and morphologies dictated by the specific application. Despite numerous CNT types and morphologies employed by these technologies, a common link between nearly all of these devices and structures is metal contact to CNTs, where the metal components often provide the link between the carbon nanotubes and the external system. In this work, a variety of CNT-metal systems were characterized in terms of metal morphology analysis and CNT-metal electrical and mechanical interactions, in response to chemical and structural modifications. A large portion of the work additionally focuses on ion irradiation environments. A diverse number of experiments related to CNT-metal interactions will be discussed. For instance, electrochemical interactions between ion-irradiated single-wall CNTs (SWCNTs) and metal salt solutions were utilized to selectively deposit Au nanoparticles (Au-NPs) onto the SWCNTs. A direct correlation was established between defect density and Au-NP areal density, resulting in a method for rapid spatial profiling of ion-irradiation induced defects in SWCNTs. The effect of ion irradiation on the CNT-metal interface was also investigated and it was found that the contact resistance of Ag-SWCNT structures increases, while the specific contact resistance decreases. The increase in overall contact resistance was attributed to increased series resistance in the system due to damage of the bulk SWCNT films, while the decrease in specific contact

  7. Properties of Carbon Nanotubes

    Science.gov (United States)

    Masood, Samina; Bullmore, Daniel; Duran, Michael; Jacobs, Michael

    2012-10-01

    Different synthesizing methods are used to create various nanostructures of carbon; we are mainly interested in single and multi-wall carbon nanotubes, (SWCNTs) and (MWCNTs) respectively. The properties of these tubes are related to their synthetic methods, chirality, and diameter. The extremely sturdy structure of CNTs, with their distinct thermal and electromagnetic properties, suggests a tremendous use of these tubes in electronics and medicines. Here, we analyze various physical properties of SWCNTs with a special emphasis on electromagnetic and chemical properties. By examining their electrical properties, we demonstrate the viability of discrete CNT based components. After considering the advantages of using CNTs over microstructures, we make a case for the advancement and development of nanostructures based electronics. As for current CNT applications, it's hard to overlook their use and functionality in the development of cancer treatment. Whether the tubes are involved in chemotherapeutic drug delivery, molecular imaging and targeting, or photodynamic therapy, we show that the remarkable properties of SWCNTs can be used in advantageous ways by many different industries.

  8. Carbon nanotube computer.

    Science.gov (United States)

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  9. Carbon Nanotube Purification

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)

    2005-01-01

    A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.

  10. Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Jean-François Feller

    2014-01-01

    Full Text Available Different grades of chemically functionalized carbon nanotubes (CNT have been processed by spraying layer-by-layer (sLbL to obtain an array of chemoresistive transducers for volatile organic compound (VOC detection. The sLbL process led to random networks of CNT less conductive, but more sensitive to vapors than filtration under vacuum (bucky papers. Shorter CNT were also found to be more sensitive due to the less entangled and more easily disconnectable conducting networks they are making. Chemical functionalization of the CNT’ surface is changing their selectivity towards VOC, which makes it possible to easily discriminate methanol, chloroform and tetrahydrofuran (THF from toluene vapors after the assembly of CNT transducers into an array to make an e-nose. Interestingly, the amplitude of the CNT transducers’ responses can be enhanced by a factor of five (methanol to 100 (chloroform by dispersing them into a polymer matrix, such as poly(styrene (PS, poly(carbonate (PC or poly(methyl methacrylate (PMMA. COOH functionalization of CNT was found to penalize their dispersion in polymers and to decrease the sensors’ sensitivity. The resulting conductive polymer nanocomposites (CPCs not only allow for a more easy tuning of the sensors’ selectivity by changing the chemical nature of the matrix, but they also allow them to adjust their sensitivity by changing the average gap between CNT (acting on quantum tunneling in the CNT network. Quantum resistive sensors (QRSs appear promising for environmental monitoring and anticipated disease diagnostics that are both based on VOC analysis.

  11. A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction.

    Science.gov (United States)

    Li, Jin-Cheng; Zhao, Shi-Yong; Hou, Peng-Xiang; Fang, Ruo-Pian; Liu, Chang; Liang, Ji; Luan, Jian; Shan, Xu-Yi; Cheng, Hui-Ming

    2015-12-01

    A nitrogen-doped mesoporous carbon containing a network of carbon nanotubes (CNTs) was produced for use as a catalyst for the oxygen reduction reaction (ORR). SiO2 nanoparticles were decorated with clusters of Fe atoms to act as catalyst seeds for CNT growth, after which the material was impregnated with aniline. After polymerization of the aniline, the material was pyrolysed and the SiO2 was removed by acid treatment. The resulting carbon-based hybrid also contained some Fe from the CNT growth catalyst and was doped with N from the aniline. The Fe-N species act as active catalytic sites and the CNT network enables efficient electron transport in the material. Mesopores left by the removal of the SiO2 template provide short transport pathways and easy access to ions. As a result, the catalyst showed not only excellent ORR activity, with 59 mV more positive onset potential and 30 mV more positive half-wave potential than a Pt/C catalyst, but also much longer durability and stronger tolerance to methanol crossover than a Pt/C catalyst.

  12. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  13. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  14. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  15. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  16. Effect of Acid and Alcohol Network Forces within Functionalized Multiwall Carbon Nanotubes Bundles on Adsorption of Copper (II) Species

    Science.gov (United States)

    Adsorption of metals on carbon nanotubes (CNTs) has important applications in sensors, membranes, and water treatment. The adsorptive capacity of multiwall CNTs for copper species in water depends on the type of functional group present on their surface. The alcohol (COOH) and ac...

  17. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  18. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  19. The Random Network of Carbon Nanotubes and Its Percolation Properties%随机纳米碳管网络及其渗流性质

    Institute of Scientific and Technical Information of China (English)

    贾龙涛; 朱陈平; 刘小廷; 陈昌东

    2011-01-01

    In this paper, we numerically simulate a solution-deposited approach to form carbon nanotube networks in experiments. Different from generally used random network models, we have taken various lengths and intersecting configurations of carbon nanotubes into account. The degree distribution of the network is found to be Gaussion type and the average clustering coefficient of it is about 0. 11 by simulation. The ensemble of networks arrives at percolation when the average density of carbon nanotubes takes the values around 179 200 pieces/cm2. Near the threshold, the global connecting probability p, the conductance G between two electric poles and the maximum connected numbers of tubes all behave power-low relations with the difference of density △σ on the two-dimensional plane. Moreover, considering Kapizza contacting thermal resistance between carbon nanotubes, we obtain the thermal resistance of the whole network. The percolation thermal resistance between the high and low heat reservoirs behaves linearly with the summation of squares of lengths of connecting carbon nanotubes.%数值模拟了实验上构造纳米碳管网络的溶液沉积方法.与一般的随机网络模型不同,将碳管的长度计算在内,而且考虑了不同的空间相交位形.数值模拟发现网络的度分布为高斯分布,平均集聚系数约为0.11.当网络中碳管平均面密度取值在σ0=179 200根/cm2附近时,网络系综达到渗流.在临界点附近,网络的连通概率p、两极之间电导G、最大连接数S与碳管的面密度差Δσ之间都存在幂律关系.除此之外,考虑碳管之间的Kapizza接触热阻,计算出碳管网络的热阻,发现高低温热源之间的渗流热阻与导通碳管的长度的平方和成线性关系.

  20. Hydrodynamic properties of carbon nanotubes.

    Science.gov (United States)

    Walther, J H; Werder, T; Jaffe, R L; Koumoutsakos, P

    2004-06-01

    We study water flowing past an array of single walled carbon nanotubes using nonequilibrium molecular dynamics simulations. For carbon nanotubes mounted with a tube spacing of 16.4 x 16.4 nm and diameters of 1.25 and 2.50 nm, respectively, we find drag coefficients in reasonable agreement with the macroscopic, Stokes-Oseen solution. The slip length is -0.11 nm for the 1.25 nm carbon nanotube, and 0.49 for the 2.50 nm tube for a flow speed of 50 m/s, respectively, and 0.28 nm for the 2.50 nm tube at 200 m/s. A slanted flow configuration with a stream- and spanwise velocity component of 100 ms(-1) recovers the two-dimensional results, but exhibits a significant 88 nm slip along the axis of the tube. These results indicate that slip depends on the particular flow configuration.

  1. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  2. Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance

    Science.gov (United States)

    Sun, Peng; Yi, Huan; Peng, Tianquan; Jing, Yuting; Wang, Ruijing; Wang, Huanwen; Wang, Xuefeng

    2017-02-01

    Manganese dioxide is a promising electrode material for electrochemical supercapacitors, but its poor electronic conductivity (10-5∼10-6 S cm-1) limits the fast charge/discharge rate for practical applications. In the present work, we use the chemical vapor deposition (CVD) method to grow highly conductive carbon nanotube (CNT) networks on flexible Ni mesh, on which MnO2 nanoflake layers are deposited by a simple solution method, forming a hierarchical core-shell structure. Under the optimized mass loading, the as-fabricated MnO2 nanoflake@CNTs/Ni mesh electrode exhibits a high specific capacitance of 1072 F g-1 at 1 A g-1 in three-electrode configuration. Due to advantageous features of these core-shell electrodes (e.g., high conductivity, direct current path, structure stability), the as-assembled symmetric supercapacitor (SSC) based on MnO2@CNTs/Ni mesh has a wide working voltage (2.0 V) in 1 M Na2SO4 aqueous electrolyte. Finally an impressive energy density of 94.4 Wh kg-1 at 1000 W kg-1 and a high power density of 30.2 kW kg-1 at 33.6 Wh kg-1 have been achieved for the as-assembled SSC, which exhibits a great potential as a low-cost, high energy density and attractive wearable energy storage device.

  3. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  4. An effective electrical sensing scheme using AC electrothermal flow on a biosensor platform based on a carbon nanotube network

    Science.gov (United States)

    Lee, Won Cheol; Lee, Hoseok; Lim, Jaeheung; Park, Young June

    2016-11-01

    We report a simple and efficient electrical sensing scheme that can be used to overcome the "diffusion limit" of affinity-based biosensors by incorporating the structural advantage of a concentric electrode biosensor platform and the microstirring effect of AC electrothermal flow (ACEF). To prove the effect of ACEF on the biosensor performance, we performed both simulations and experiments for the detection of cardiac troponin-I, which is a biomarker for acute myocardial infarction. The finite element simulation results indicate that AC bias to the electrode (which has a concentric structure in our device) can induce fast convection flow, which facilitates the transport of the target molecules to the binding region located between the two electrodes. In our device, the channel region made of a carbon nanotube network decorated with gold nanoparticles, which act as the attaching sites of the probe molecules, is used as a highly sensitive electrical channel. We find that the electrical sensing method exhibited extremely fast sensing speeds compared with those under no bias (diffusion-limited) conditions.

  5. Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing.

    Science.gov (United States)

    Wan, Pengbo; Wen, Xuemei; Sun, Chaozheng; Chandran, Bevita K; Zhang, Han; Sun, Xiaoming; Chen, Xiaodong

    2015-10-28

    A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in-situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as-prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high-performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface-to-volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low-cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices.

  6. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  7. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  8. Closely packed sodium and potassium nanowires in ultrathin carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Ju [Sangmyung University, Chonan (Korea, Republic of)

    2004-07-15

    We have investigated the structural phases of sodium and potassium encapsulated in ultrathin carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, structures are found in various phases from an atomic strand to multi-shell packs composed of coaxial cylindrical shells and in both helical and layered structures. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of a circular rolling of a triangular network can explain multi-shell phases of sodium and potassium in carbon nanotubes.

  9. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  10. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  11. Carbon nanotube--poly(3-octylthiophene) composite photovoltaic cells.

    Science.gov (United States)

    Carroll, David L; Czerw, Richard; Harrison, Benjamin

    2006-07-01

    The effects of varying nanotube loading/concentration in carbon nanotube-poly(3-octylthiophene) blends used as thin film photovoltaic cells, have been studied. The network of single walled nanotubes clearly aids in exciton separation and modifies carrier mobility within the active layer as suggested by a bulk heterojunction model. Further, modifications to the metal-polymer interface occur with the addition of nanotubes leading to variations in the observed VOC of the photovoltaic cells. Finally, the "nanocomposite" devices exhibit significant enhancements to external power conversion efficiencies, with the overall efficiency strongly dependent on device design parameters such as the addition of buffer layers.

  12. Carbon Nanotube Flexible and Stretchable Electronics

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  13. Carbon Nanotube Flexible and Stretchable Electronics.

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-12-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  14. Peel test of spinnable carbon nanotube webs

    Science.gov (United States)

    Khandoker, Noman; Hawkins, Stephen C.; Ibrahim, Raafat; Huynh, Chi P.

    2014-06-01

    This paper presents results of peel tests with spinnable carbon nanotube webs. Peel tests were performed to study the effect of orientation angles on interface energies between nanotubes. In absence of any binding agent the interface energy represents the Van Der Waals energies between the interacting nanotubes. Therefore, the effect of the orientations on Van Der Waals energies between carbon nanotubes is obtained through the peel test. It is shown that the energy for crossed nanotubes at 90° angle is lower than the energy for parallel nanotubes at 0° angle. This experimental observation was validated by hypothetical theoretical calculations.

  15. From carbon nanotubes to carbon atomic chains

    Science.gov (United States)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  16. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  17. Pulsed laser deposition of carbon nanotube and polystyrene-carbon nanotube composite thin films

    Science.gov (United States)

    Stramel, A. A.; Gupta, M. C.; Lee, H. R.; Yu, J.; Edwards, W. C.

    2010-12-01

    In this work, we report on the fabrication of carbon nanotube thin films via pulsed laser deposition using a pulsed, diode pumped, Tm:Ho:LuLF laser with 2 μm wavelength. The thin films were deposited on silicon substrates using pure carbon nanotube targets and polystyrene-carbon nanotube composite targets. Raman spectra, scanning electron micrographs, and transmission electron micrographs show that carbon nanotubes are present in the deposited thin films, and that the pulsed laser deposition process causes minimal degradation to the quality of the nanotubes when using pure carbon nanotube targets.

  18. Bloch oscillations in carbon nanotubes.

    Science.gov (United States)

    Jódar, Esther; Pérez-Garrido, Antonio; Rojas, Fernando

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case.

  19. Bloch oscillations in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jodar, Esther; Perez-Garrido, Antonio [Departamento Fisica Aplicada, Antiguo Hospital de Marina Campus Muralla del Mar, UPCT, Cartagena 30202 Murcia (Spain); Rojas, Fernando [Centro de Nanociencias y Nanotecnologia-UNAM, Apartado Postal 356, Ensenada, Baja California 22800 (Mexico)], E-mail: ejodar@upct.es

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case. (fast track communication)

  20. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    Science.gov (United States)

    2014-03-27

    rates are realized by this faster search. 1.3 Assumptions The machine learning approach used for extracting optimal growth parameters assumes the catalyst...and high strength polymers. [25] All carbon to carbon bonds are filled in a CNT so they are chemically inert and stable in acids, bases and solvents ...research in maximizing CNT length. SWNTs of 18.5 cm in length were obtained by using an ethanol precursor and an iron molybdenum catalyst [10]. Also, by

  1. Carbon Nanotubes for Space Photovoltaic Applications

    Science.gov (United States)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  2. Fabrication of Carbon Nanotube Networks on Three-Dimensional Building Blocks and Their Applications

    Science.gov (United States)

    2012-10-27

    highly crystalline SWCNT 3D networks minimizing the plasma etching effects. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Detail experimental procedures are described elsewhere. Pt or Cu was coated by 20 nm on CNTs-networked substrates using physical vapor deposition ( PVD ...wafer by PVD (99.99%, Sigma-Aldrich) was chosen for commercial untreated gold electrode as a reference. 3D gold electrodes were characterized by

  3. Different Technical Applications of Carbon Nanotubes

    OpenAIRE

    Abdalla, S; Al-Marzouki, F.; Ahmed A. Al-Ghamdi; Abdel-Daiem, A.

    2015-01-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc....

  4. Faster and Smaller with Carbon Nanotubes?

    OpenAIRE

    Seidel, Robert V.; Graham, Andrew P.; Duesberg, Georg S.; Liebau, Maik; Unger, Eugen; Kreupl, Franz; Hoenlein, Wolfgang

    2004-01-01

    Carbon Nanotubes seem to be one of the most promising candidates for nanoelectronic devices beyond presumable scaling limits of silicon and compound semiconductors and independent from lithographic limitations. Discovered only about a decade ago, there has been a tremendous advance in the field of carbon nanotubes. Their exciting properties, especially with respect to electronic applications, and their fabrication methods will be discussed. A variety of Carbon Nanotube...

  5. Carbon Nanotubes and Related Structures

    Directory of Open Access Journals (Sweden)

    Kingsuk Mukhopadhyay

    2008-07-01

    Full Text Available Carbon nanotubes have attracted the fancy of many scientists world wide. The small dimensions,strength, and the remarkable physical properties of these structures make them a unique material with a whole range of promising applications. In this review, the structural aspects, the advantages and disadvantages of different for their procedures synthesis, the qualitative and quantitative estimation of carbon nanotubes by different analytical techniques, the present status on their applications as well as the current challenges faced in the application field, national, in particular DRDO, DMSRDE status, and interest in this field, have been discussed.Defence Science Journal, 2008, 58(4, pp.437-450, DOI:http://dx.doi.org/10.14429/dsj.58.1666

  6. Ballistic Fracturing of Carbon Nanotubes.

    Science.gov (United States)

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  7. Torsional Carbon Nanotube Artificial Muscles

    Science.gov (United States)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  8. Adjustable hydrazine modulation of single-wall carbon nanotube network field effect transistors from p-type to n-type

    Science.gov (United States)

    Dai, Ruixuan; Xie, Dan; Xu, Jianlong; Sun, Yilin; Sun, MengXing; Zhang, Cheng; Li, Xian

    2016-11-01

    Single-wall carbon nanotube (SWCNT) network field effect transistors (FETs), which show decent p-type electronic properties, have been fabricated. The use of hydrazine as an aqueous solution and a strong n-type dopant for the SWCNTs is demonstrated in this paper. The electrical properties are obviously tuned by hydrazine treatment at different concentrations on the surface of the SWCNT network FETs. The transport behavior of SWCNTs can be modulated from p-type to n-type, demonstrating the controllable and adjustable doping effect of hydrazine. With a higher concentration of hydrazine, more electrons can be transferred from the hydrazine molecules to the SWCNT network films, thus resulting in a change of threshold voltage, carrier mobility and on-current. By cleaning the device, the hydrazine doping effects vanish, which indicates that the doping effects of hydrazine are reversible. Through x-ray photoelectron spectroscopy (XPS) characterization, the doping effects of hydrazine have also been studied.

  9. Carbon nanotubes in tissue engineering.

    Science.gov (United States)

    Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2014-01-01

    As a result of their peculiar features, carbon nanotubes (CNTs) are emerging in many areas of nanotechnology applications. CNT-based technology has been increasingly proposed for biomedical applications, to develop biomolecule nanocarriers, bionanosensors and smart material for tissue engineering purposes. In the following chapter this latter application will be explored, describing why CNTs can be considered an ideal material able to support and boost the growth and the proliferation of many kinds of tissues.

  10. A Thermal Model for Carbon Nanotube Interconnects

    Science.gov (United States)

    Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay

    2013-01-01

    In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.

  11. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2014-01-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  12. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... are known. The parameters of the liquid surface model and its potential applications are discussed. The model has been suggested for open end and capped nanotubes. The influence of the catalytic nanoparticle, atop which nanotubes grow, on the nanotube stability is also discussed. The suggested model gives...

  13. Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

    Directory of Open Access Journals (Sweden)

    Christoph Nick

    2014-09-01

    Full Text Available The growth of cortical neurons on three dimensional structures of spatially defined (structured randomly oriented, as well as on vertically aligned, carbon nanotubes (CNT is studied. Cortical neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures. These neuron cells attach preferentially on the CNT sidewalls of the vertically aligned CNT architecture instead than onto the tips of the individual CNT pillars.

  14. Carbon Nanotubes: Printed Carbon Nanotube Electronics and Sensor Systems (Adv. Mater. 22/2016).

    Science.gov (United States)

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printed electronics and sensors enable new applications ranging from low-cost disposable analytical devices to large-area sensor networks. Recent progress in printed carbon nanotube electronics in terms of materials, processing, devices, and applications is discussed on page 4397 by A. Javey and co-workers. The research challenges and opportunities regarding the processing and system-level integration are also discussed for enabling of practical applications.

  15. LDRD final report on carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, P.A.; Rand, P.B.

    1997-04-01

    Carbon nanotubes and their composites were examined using computational and experimental techniques in order to modify the mechanical and electrical properties of resins. Single walled nanotubes were the focus of the first year effort; however, sufficient quantities of high purity single walled nanotubes could not be obtained for mechanical property investigations. The unusually high electrical conductivity of composites loaded with <1% of multiwalled nanotubes is useful, and is the focus of continuing, externally funded, research.

  16. Engineering carbon nanotubes and nanotube circuits using electrical breakdown.

    Science.gov (United States)

    Collins, P G; Arnold, M S; Avouris, P

    2001-04-27

    Carbon nanotubes display either metallic or semiconducting properties. Both large, multiwalled nanotubes (MWNTs), with many concentric carbon shells, and bundles or "ropes" of aligned single-walled nanotubes (SWNTs), are complex composite conductors that incorporate many weakly coupled nanotubes that each have a different electronic structure. Here we demonstrate a simple and reliable method for selectively removing single carbon shells from MWNTs and SWNT ropes to tailor the properties of these composite nanotubes. We can remove shells of MWNTs stepwise and individually characterize the different shells. By choosing among the shells, we can convert a MWNT into either a metallic or a semiconducting conductor, as well as directly address the issue of multiple-shell transport. With SWNT ropes, similar selectivity allows us to generate entire arrays of nanoscale field-effect transistors based solely on the fraction of semiconducting SWNTs.

  17. Fast Electromechanical Switches Based on Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  18. Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites

    Indian Academy of Sciences (India)

    Smrutisikha Bal

    2010-02-01

    Carbon nanotube based epoxy composites have been fabricated at room temperature and refrigeration process using sonication principle. Flexural moduli, electrical conductivity, glass transition temperature of epoxy resin as well as nanocomposite samples have been determined. Distribution behaviour of carbon nanotubes in the epoxy matrix was examined through scanning electron microscopy. Composite samples showed better properties than resin samples due to strengthening effect of the filled nanotubes. Refrigerated nanocomposites obtained increasing mechanical property because of better dispersion due to low temperature settlement of polymers. Improvement of electrical conductivity was due to the fact that aggregated phases form a conductive three-dimensional network throughout the whole sample. The increasing glass transition temperature was indicative of restricting movement of polymer chains that ascribe strong interaction presented between carbon nanotubes and epoxy chains that was again supplemented by Raman study and SEM.

  19. Plasticity and Kinky Chemistry of Carbon Nanotubes

    Science.gov (United States)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  20. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also...... the potential of distinguishing between nanotubes of different electrical properties, which is very important for the optimisation of the properties of the carbon nanotube sensors. Various cantilever and planar structures were designed, fabricated and tested both with multi-walled and single-walled carbon...

  1. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  2. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  3. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  4. A Tunable Carbon Nanotube Oscillator

    Science.gov (United States)

    Sazonova, Vera

    2005-03-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. Carbon nanotubes (NT) are perhaps the ultimate material for realizing a NEMS device as they are the stiffest material known, have low density, ultrasmall cross sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus is able to sense its own motion. Here, we report the electrical actuation and detection of the guitar-string oscillation modes of doubly-clamped NT oscillators. We observed resonance frequencies in the 5MHz to 150MHz range with quality factors in the 50 to 100 range. We showed that the resonance frequencies can be widely tuned by a gate voltage. We also report on the temperature dependence of the quality factor and present a discussion of possible loss mechanisms.

  5. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  6. Hydrogen Storage in Carbon Nanotubes

    Science.gov (United States)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  7. Controlling signal transport in a carbon nanotube opto-transistor

    Science.gov (United States)

    Li, Jinjin; Chu, Yanhui; Zhu, Ka-Di

    2016-11-01

    With the highly competitive development of communication technologies, modern information manufactures place high importance on the ability to control the transmitted signal using easy miniaturization materials. A controlled and miniaturized optical information device is, therefore, vital for researchers in information and communication fields. Here we propose a controlled signal transport in a doubly clamped carbon nanotube system, where the transmitted signal can be controlled by another pump beam. Pump off results in the transmitted signal off, while pump on results in the transmitted signal on. The more pump, the more amplified output signal transmission. Analogous with traditional cavity optomechanical system, the role of optical cavity is played by a localized exciton in carbon nanotube while the role of the mechanical element is played by the nanotube vibrations, which enables the realization of an opto-transistor based on carbon nanotube. Since the signal amplification and attenuation have been observed in traditional optomechanical system, and the nanotube optomechanical system has been realized in laboratory, the proposed carbon nanotube opto-transistor could be implemented in current experiments and open the door to potential applications in modern optical networks and future quantum networks.

  8. Polymer Self-assembly on Carbon Nanotubes

    Science.gov (United States)

    Giulianini, Michele; Motta, Nunzio

    This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV-Vis and Raman), we show how the polymer's higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT π-π stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

  9. Suspended carbon nanotubes coupled to superconducting circuits

    NARCIS (Netherlands)

    Schneider, B.H.

    2014-01-01

    Carbon nanotubes are unique candidates to study quantum mechanical properties of a nanomechanical resonator. However to access this quantum regime, present detectors are not yet sensitive enough. In this thesis we couple a carbon nanotube CNT mechanical resonator to a superconducting circuit which i

  10. Carbon Nanotubes – Interactions with Biological Systems

    OpenAIRE

    Reis, Joana; Capela-Silva, Fernando; Potes, José; Fonseca, Alexandra; Oliveira, Mónica; Kanagaraj, Subramani; Marques, António Torres

    2011-01-01

    his book chapter discusses the prospective biomedical applications of carbon nanotubes based materials, the impact of carbon nanotubes properties in the interaction with biological systems. Protein adsorption, impact on cell viability and cytokine production are explored. Potential respiratory and dermal toxicity are reviewed, as the difficulties on studying the biological response. In face of recent studies, special attention is drawn upon promising orthopaedic use.

  11. Multiscale Simulations of Carbon Nanotubes and Liquids

    Science.gov (United States)

    Koumoutsakos, Petros

    2005-11-01

    We present molecular dynamics and hybrid continuum/atomistic simulations of carbon nanotubes in liquid environments with an emphasis on aqueous solutions. We emphasize computational issues such as interaction potentials and coupling techniques and their influence on the simulated physics. We present results from simulations of water flows inside and outside doped and pure carbon nanotubes and discuss their implications for experimental studies.

  12. Nanosensors for the smart city : new insight on promising carbon nanotubes devices

    OpenAIRE

    Lebental, Bérengère

    2011-01-01

    The development of nanosensors for the smart-city is discussed in the framework of the Sense-City Equipex project. Two types of carbon nanotubes based sensors are discussed, a field effect transistor using a carbon nanotubes randow network as channel for humidity sensing and a microsonar using an aligned array of carbon nanotubes as vibrating membrane for microporosity monitoring in concrete. The Sense-city project is also described.

  13. A contribution from dielectric analysis to the study of the formation of multi-wall carbon nanotubes percolated networks in epoxy resin under an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Risi, Celso L.S.; Hattenhauer, Irineu; Ramos, Airton; Coelho, Luiz A.F.; Pezzin, Sérgio H., E-mail: sergio.pezzin@udesc.br

    2015-06-15

    The formation of percolation networks in epoxy matrix nanocomposites reinforced with multi-wall carbon nanotubes (MWNT) during the curing process, at different MWNT contents, was studied by using a parallel plate cell subjected to a 300 V/cm AC electric field at 1 kHz. The percolation was verified by the electrical current output measured during and after the resin curing. The behavior of electric dipoles was characterized by impedance spectroscopy and followed the Debye first order dispersion model, by which an average relaxation time of 6.0 × 10{sup −4} s and a cut-off frequency of 1.7 kHz were experimentally found. By applying the theory of percolation, a critical probability, p{sub c}, equal to 0.038 vol% and an exponent of conductivity of 2.0 were found. Both aligned and random samples showed dipole relaxation times typical of interfacial and/or charge-hopping polarization, while the permittivity exhibited an exponential decrease with frequency. This behavior can be related to the increased ability to trap electrical charges due to the formation of the carbon nanotubes network. Optical and electron microscopies confirm the theoretical prediction that the application of an electric field during cure helps the process of MWNT debundling in epoxy resin. - Highlights: • We report the formation of percolating networks of MWNTs under AC electric field. • MWNT/epoxy dielectric properties were measured by impedance spectroscopy. • Lower percolation thresholds were obtained for composites with aligned CNTs. • Application of AC electric field helps the debundling of CNTs. • CNT/Epoxy with percolated networks presents interfacial and hopping polarizations.

  14. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  15. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  16. Laponite assisted dispersion of carbon nanotubes in water.

    Science.gov (United States)

    Loginov, Maksym; Lebovka, Nikolai; Vorobiev, Eugene

    2012-01-01

    The ability of Laponite to stabilize aqueous suspensions of multiwalled carbon nanotubes (MWCNTs) was investigated with the help of analytical centrifugation, microscopic image analysis, and measurements of electrical conductivity of hybrid Laponite+MWCNT suspensions. The impact of nanotube concentration C(n) (0.0025-0.5 wt%) and Laponite/MWCNTs ratio X (varied within 0-1 wt/wt) on the properties of Laponite+MWCNT hybrid suspensions was discussed. It was observed that sonication of MWCNTs at critical minimal concentration of Laponite X(c)≈0.25±0.05 resulted in efficient dispersion and formation of stabilized suspensions of individual nanotubes. The stabilization of nanotubes in the presence of Laponite was explained by adsorption of Laponite particles and formation of a hydrophilic charged shell on the surface of nanotubes. Increase of MWCNT concentration above the critical value resulted in percolation and formation of spatially extended electrically conductive networks of particles.

  17. Epitaxial Approaches to Carbon Nanotube Organization

    Science.gov (United States)

    Ismach, Ariel

    Carbon nanotubes have unique electronic, mechanical, optical and thermal properties, which make them ideal candidates as building blocks in nano-electronic and electromechanical systems. However, their organization into well-defined geometries and arrays on surfaces remains a critical challenge for their integration into functional nanosystems. In my PhD, we developed a new approach for the organization of carbon nanotubes directed by crystal surfaces. The principle relies on the guided growth of single-wall carbon nanotubes (SWNTs) by atomic features presented on anisotropic substrates. We identified three different modes of surface-directed growth (or 'nanotube epitaxy'), in which the growth of carbon nanotubes is directed by crystal substrates: We first observed the nanotube unidirectional growth along atomic steps ('ledge-directed epitaxy') and nanofacets ('graphoepitaxy') on the surface of miscut C-plane sapphire and quartz. The orientation along crystallographic directions ('lattice-directed epitaxy') was subsequently observed by other groups on different crystals. We have proposed a "wake growth" mechanism for the nanotube alignment along atomic steps and nanofacets. In this mechanism, the catalyst nanoparticle slides along the step or facet, leaving the nanotube behind as a wake. In addition, we showed that the combination of surface-directed growth with external forces, such as electric-field and gas flow, can lead to the simultaneous formation of complex nanotube structures, such as grids and serpentines. The "wake growth" model, which explained the growth of aligned nanotubes, could not explain the formation of nanotube serpentines. For the latter, we proposed a "falling spaghetti" mechanism, in which the nanotube first grows by a free-standing process, aligned in the direction of the gas flow, then followed by absorption on the stepped surface in an oscillatory manner, due to the competition between the drag force caused by the gas flow on the suspended

  18. Growing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yoshinori Ando

    2004-10-01

    Full Text Available The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the subsequent discovery of ‘carbon nanotubes’ (CNTs, the elongated fullerene added a new dimension to the knowledge of technology2;. Today, ‘nanotechnology’ is a hot topic attracting scientists, industrialists, journalists, governments, and even the general public. Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc. at that length scale. CNTs are supposed to be a key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

  19. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  20. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  1. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  2. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications

    Science.gov (United States)

    Setaro, Antonio; Adeli, Mohsen; Glaeske, Mareen; Przyrembel, Daniel; Bisswanger, Timo; Gordeev, Georgy; Maschietto, Federica; Faghani, Abbas; Paulus, Beate; Weinelt, Martin; Arenal, Raul; Haag, Rainer; Reich, Stephanie

    2017-01-01

    Covalent functionalization tailors carbon nanotubes for a wide range of applications in varying environments. Its strength and stability of attachment come at the price of degrading the carbon nanotubes sp2 network and destroying the tubes electronic and optoelectronic features. Here we present a non-destructive, covalent, gram-scale functionalization of single-walled carbon nanotubes by a new [2+1] cycloaddition. The reaction rebuilds the extended π-network, thereby retaining the outstanding quantum optoelectronic properties of carbon nanotubes, including bright light emission at high degree of functionalization (1 group per 25 carbon atoms). The conjugation method described here opens the way for advanced tailoring nanotubes as demonstrated for light-triggered reversible doping through photochromic molecular switches and nanoplasmonic gold-nanotube hybrids with enhanced infrared light emission.

  3. Purification of carbon nanotube by wet oxidation; Shisshiki sanka ni yoru carbon nanotube no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan)

    1997-07-10

    In order to efficiently recover carbon nanotubes, the purification method by wet oxidation with orthoperiodic acid and perchloric acid is investigated. The reactivity of the carbonaceous material toward the acids depends on the type of carbon. Carbon nanotubes are selectively recovered under the mild oxidation conditions. The degree of purification depends on the concentration of orthoperiodic acid. It is suggested that wet oxidation is an effective method for purification of carbon nanotubes. 17 refs., 6 figs.

  4. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  5. The Adsorption Properties of Bacillus atrophaeus Spore on Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    P. Cortes

    2010-01-01

    Full Text Available An equilibrium study of Bacillus atrophaeus (B.a spores on functionalized Single-Wall Carbon Nanotubes (SWCNTs has been performed in order to characterize the adsorption properties of the spores/nanotubes complex. The carbon nanotubes here investigated were subjected to a two-step purification and functionalization treatment in order to introduce chemical groups on their basal planes. The inclusion of carboxyl functional groups on the nanotubes was corroborated by Raman and infrared spectroscopy. These carboxyl groups appear to enhance the nanotube-B.a. interaction by reacting with the proteinaceous pili appendages present on the spore surface. The adsorption data demonstrate that bacillus spores diffuse faster on functionalized carbon nanotubes than on as-received and purified nanomaterials. Transmission Electron Microscopy also shows that the chemically treated nanotubes resulted in a swollen nano-network which seems to further enhance the bacillus adsorption due to a more extensive spore-nanotube contact area.

  6. Reinforcement of Epoxies Using Single Walled Carbon Nanotubes

    Science.gov (United States)

    Krishnamoorti, Ramanan; Sharma, Jitendra; Chatterjee, Tirtha

    2008-03-01

    The reinforcement of bisphenol-A and bisphenol-F epoxies using single walled carbon nanotubes has been approached experimentally by understanding the nature of interactions between the matrices and nanotubes. Unassisted dispersions of single walled carbon nanotubes in epoxies were studied by a combination of radiation scattering (elastic small angle scattering and inelastic scattering), DSC based glass transition determination, melt rheology and solid-state mechanical testing in order to understand and correlate changes in local and global dynamics to the tailoring of composite mechanical properties. Significant changes in the glass transition temperature of the matrix can successfully account for changes in the viscoelastic properties of the epoxy dispersions for concentrations below the percolation threshold, while above the percolation threshold the network superstructure formed by the nanotubes controls the viscoelastic properties.

  7. Carbon nanotubes in drug delivery: focus on infectious diseases.

    Science.gov (United States)

    Rosen, Yitzhak; Elman, Noel M

    2009-05-01

    Carbon nanotubes have the potential to address the challenges of combating infectious agents by both minimizing toxicity by dose reduction of standard therapeutics and allowing a multiple payload capacity to achieve both targeted activity and combating infectious strains, resistant strains in particular. One of their unique characteristics is the network of carbon atoms in the nanometer scale, allowing the creation of nano-channels via cellular membranes. This review focuses on the characterization, development, integration and application of carbon nanotubes as nanocarrier-based delivery systems and their appropriate design for achieving the desired drug delivery results in the different areas of infectious diseases. While a more extensive toxicological and pharmacological profile must be obtained, this review will focus on existing research and pre-clinical data concerning the potential use of carbon nanotubes.

  8. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  9. Selective intercalation of polymers in carbon nanotubes.

    Science.gov (United States)

    Bazilevsky, Alexander V; Sun, Kexia; Yarin, Alexander L; Megaridis, Constantine M

    2007-07-03

    A room-temperature, open-air method is devised to selectively intercalate relatively low-molecular-weight polymers (approximately 10-100 kDa) from dilute, volatile solutions into open-end, as-grown, wettable carbon nanotubes with 50-100 nm diameters. The method relies on a novel self-sustained diffusion mechanism driving polymers from dilute volatile solutions into carbon nanotubes and concentrating them there. Relatively low-molecular-weight polymers, such as poly(ethylene oxide) (PEO, 600 kDa) and poly(caprolactone) (PCL, 80 kDa), were encapsulated in graphitic nanotubes as confirmed by transmission electron microscopy, which revealed morphologies characteristic of mixtures in nanoconfinements affected by intermolecular forces. Whereas relatively small, flexible polymer molecules can conform to enter these nanotubes, larger macromolecules (approximately 1000 kDa) remain outside. The selective nature of this process is useful for filling nanotubes with polymers and could also be valuable in capping nanotubes.

  10. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    Science.gov (United States)

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-01

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability.

  11. SYNTHESIS OF CARBON NANOTUBES FOR ACETYLENE DETECTION

    Directory of Open Access Journals (Sweden)

    M.Y. FAIZAH

    2008-04-01

    Full Text Available A gas sensor, utilizing carbon nanotubes (CNTs in a pellet form for acetylene detection has been developed. This research was carried out to investigate the absorption effect of acetylene (C2H2 towards the change of resistance of carbon nanotubes pellet as sensor signal. Source Measurement Unit (SMU was used to study the gas sensing behaviour of resistance based sensors employing carbon nanotubes pellet as the active sensing element. Studies revealed that the absorption of acetylene into the carbon nanotubes pellet resulting in increase in pellet resistance. The changes are attributed to p-type conductivity in semiconducting carbon nanotubes. Carbon nanotubes used in this research was synthesized by means of Floating Catalyst Chemical Vapor Deposition (FC-CVD method. Benzene was used as a hydrocarbon source while ferrocene as a source of catalyst with Hydrogen and Argon as carrier and purge gas respectively. From the research, it was shown that carbon nanotubes show high sensitivity towards acetylene. The highest sensitivity recorded was 1.21, 1.16 and 17.86 for S1, S2 and S3 respectively. It is expected that many applications of CNT-based sensors will be explored in future as the interest of the nanotechnology research in this field increases.

  12. A Tester for Carbon Nanotube Mode Lockers

    Science.gov (United States)

    Song, Yong-Won; Yamashita, Shinji

    2007-05-01

    We propose and demonstrate a tester for laser pulsating operation of carbon nanotubes employing a circulator with the extra degree of freedom of the second port to access diversified nanotube samples. The nanotubes are deposited onto the end facet of a dummy optical fiber by spray method that guarantees simple sample loading along with the minimized perturbation of optimized laser cavity condition. Resultant optical spectra, autocorrelation traces and pulse train of the laser outputs with qualified samples are presented.

  13. Ambient effects on the electrical conductivity of carbon nanotubes

    DEFF Research Database (Denmark)

    Roch, Aljoscha; Greifzu, Moritz; Roch Talens, Esther

    2015-01-01

    We show that the electrical conductivity of single walled carbon nanotubes (SWCNT) networks is affected by oxygen and air humidity under ambient conditions by more than a magnitude. Later, we intentionally modified the electrical conductivity by functionalization with iodine and investigated...

  14. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications.

    Science.gov (United States)

    Byon, Hye Ryung; Choi, Hee Cheul

    2006-02-22

    Highly sensitive single-walled carbon nanotube-field effect transistor (SWNT-FET) devices, which detect protein adsorptions and specific protein-protein interactions at 1 pM concentrations, have been achieved. The detection limit has been improved 104-fold compared to the devices fabricated by photolithography. The substantially increased sensitivity is mainly due to the increased Schottky contact area which accommodates relatively more numbers of proteins even at very low concentration. The augmented number of proteins adsorbed on a device induces instant modulation of the work function of metal contact electrodes, which eventually changes the conductance of the device. Such devices have been attained by addressing metal electrodes on network-type SWNTs using a shadow mask on a tilted angle sample stage. The shadow mask allows metals to penetrate underneath the mask efficiently, therefore forming a thin and wide Schottky contact area on SWNT channels.

  15. Enzymatic degradation of multiwalled carbon nanotubes.

    Science.gov (United States)

    Zhao, Yong; Allen, Brett L; Star, Alexander

    2011-09-01

    Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes.

  16. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  17. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  18. Microcapsule carbon nanotube devices for therapeutic applications

    Science.gov (United States)

    Kulamarva, Arun; Raja, Pavan M. V.; Bhathena, Jasmine; Chen, Hongmei; Talapatra, Saikat; Ajayan, Pulickel M.; Nalamasu, Omkaram; Prakash, Satya

    2009-01-01

    Carbon nanotubes are a new class of nanomaterials that have immense potential in the field of biomedicine. Their ability to carry large quantities of therapeutic molecules makes them prime candidates for providing targeted delivery of therapeutics for use in various diseases. However, their utility is limited due to the problems faced during their delivery to target sites. This article for the first time describes the design of a novel microcapsule carbon nanotube targeted delivery device. This device has potential in the targeted delivery of carbon nanotubes in suitable membranes along with their cargo, safely and effectively to the target loci.

  19. Highly oriented carbon nanotube papers made of aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ding; Song Pengcheng; Liu Changhong; Wu Wei; Fan Shoushan [Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, Beijing 100084 (China)], E-mail: chliu@tsinghua.edu.cn

    2008-02-20

    Paper-like carbon nanotube (CNT) materials have many important applications such as in catalysts, in filtration, actuators, capacitor or battery electrodes, and so on. Up to now, the most popular way of preparing buckypapers has involved the procedures of dispersion and filtration of a suspension of CNTs. In this work, we present a simple and effective macroscopic manipulation of aligned CNT arrays called 'domino pushing' in the preparation of the aligned thick buckypapers with large areas. This simple method can efficiently ensure that most of the CNTs are well aligned tightly in the buckypaper. The initial measurements indicate that these buckypapers have better performance on thermal and electrical conductance. These buckypapers with controllable structure also have many potential applications, including supercapacitor electrodes.

  20. The electrical conduction variation in stained carbon nanotubes

    Science.gov (United States)

    Sun, Shih-Jye; Wei Fan, Jun; Lin, Chung-Yi

    2012-01-01

    Carbon nanotubes become stained from coupling with foreign molecules, especially from adsorbing gas molecules. The charge exchange, which is due to the orbital hybridization, occurred in the stained carbon nanotube induces electrical dipoles that consequently vary the electrical conduction of the nanotube. We propose a microscopic model to evaluate the electrical current variation produced by the induced electrical dipoles in a stained zigzag carbon nanotube. It is found that stronger orbital hybridization strengths and larger orbital energy differences between the carbon nanotube and the gas molecules help increasing the induced electrical dipole moment. Compared with the stain-free carbon nanotube, the induced electrical dipoles suppress the current in the nanotube. In the carbon nanotubes with induced dipoles the current increases as a result of increasing orbital energy dispersion via stronger hybridization couplings. In particular, at a fixed hybridization coupling, the current increases with the bond length for the donor-carbon nanotube but reversely for the acceptor-carbon nanotube.

  1. Methods for preparation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rakov, Eduard G [D.I. Mendeleev Russian University of Chemical Technology, Moscow (Russian Federation)

    2000-01-31

    The most important methods of synthesis and purification of carbon nanotubes, a new form of material, are described. The prospects for increasing the scale of preparation processes and for more extensive application of nanotubes are evaluated. The bibliography includes 282 references.

  2. Carbon nanotubes for RF and microwaves

    OpenAIRE

    Burke, P. J.; Yu, Z; Rutherglen, C.

    2005-01-01

    In this invited overview paper we provide a brief up-to-date summary of the potential applications of carbon nanotubes for RF and microwave devices and systems. We focus in particular on the use of nanotubes as ultra-high speed interconnects in integrated circuits.

  3. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties...

  4. Carbon Nanotubes for Human Space Flight

    Science.gov (United States)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  5. Carbon Nanotubes for Thin Film Transistor: Fabrication, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Yucui Wu

    2013-01-01

    Full Text Available We review the present status of single-walled carbon nanotubes (SWCNTs for their production and purification technologies, as well as the fabrication and properties of single-walled carbon nanotube thin film transistors (SWCNT-TFTs. The most popular SWCNT growth method is chemical vapor deposition (CVD, including plasma-enhanced chemical vapor deposition (PECVD, floating catalyst chemical vapor deposition (FCCVD, and thermal CVD. Carbon nanotubes (CNTs used to fabricate thin film transistors are sorted by electrical breakdown, density gradient ultracentrifugation, or gel-based separation. The technologies of applying CNT random networks to work as the channels of SWCNT-TFTs are also reviewed. Excellent work from global researchers has been benchmarked and analyzed. The unique properties of SWCNT-TFTs have been reviewed. Besides, the promising applications of SWCNT-TFTs have been explored. Finally, the key issues to be solved in future have been summarized.

  6. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  7. Microfabricated electroactive carbon nanotube actuators

    Science.gov (United States)

    Ahluwalia, Arti; Baughman, Ray H.; De Rossi, Danilo; Mazzoldi, Alberto; Tesconi, Mario; Tognetti, Alessandro; Vozzi, Giovanni

    2001-07-01

    A variety of microfabrication techniques have been developed at the University of Pisa. They are based either on pressure or piston actuated microsyringes or modified ink-jet printers. This work present the results of a study aimed at fabricating carbon nanotube (NT) actuators using micro-syringes. In order to prevent the nanotubes from aggregating into clumps, they were enclosed in a partially cross-linked polyvinylalcohol - polyallylamine matrix. After sonication the solution remained homogenously dispersed for about 40 minutes, which was sufficient time for deposition. Small strips of NT, about 5 mm across and 15 mm long were deposited. Following deposition, the films were baked at 80 degree(s)C and their thickness, impedance and mechanical resistance measured. The results indicate that 50 minutes of baking time is sufficient to give a constant resistivity of 1.12 x 10-2 (Omega) m per layer similar to a typical semiconductor, and each layer has a thickness of about 6 micrometers .

  8. Flightweight Carbon Nanotube Magnet Technology

    Science.gov (United States)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  9. Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Badamshina, E R; Gafurova, M P; Estrin, Yakov I [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The results of studies, mainly published in recent years, on modification of carbon nanotubes and design of composites with these nanotubes for the manufacture of new-generation materials are generalized and analyzed. The methods of modification of the nanotubes by low- and high-molecular compounds and methods of polymer modification by carbon nanotubes are considered. Data on the properties of modified nanotubes are presented. The current and potential applications of materials based on the nanotubes are indicated.

  10. Purification of Carbon Nanotubes: Alternative Methods

    Science.gov (United States)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  11. Deconvoluting hepatic processing of carbon nanotubes

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  12. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    Science.gov (United States)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  13. Functionalized carbon nanotubes: biomedical applications.

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.

  14. Carbon Nanotube Tape Vibrating Gyroscope

    Science.gov (United States)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  15. Aligned carbon nanotubes for nanoelectronics

    Science.gov (United States)

    Choi, Won Bong; Bae, Eunju; Kang, Donghun; Chae, Soodoo; Cheong, Byung-ho; Ko, Ju-hye; Lee, Eungmin; Park, Wanjun

    2004-10-01

    We discuss the central issues to be addressed for realizing carbon nanotube (CNT) nanoelectronics. We focus on selective growth, electron energy bandgap engineering and device integration. We have introduced a nanotemplate to control the selective growth, length and diameter of CNTs. Vertically aligned CNTs are synthesized for developing a vertical CNT-field effect transistor (FET). The ohmic contact of the CNT/metal interface is formed by rapid thermal annealing. Diameter control, synthesis of Y-shaped CNTs and surface modification of CNTs open up the possibility for energy bandgap modulation. The concepts of an ultra-high density transistor based on the vertical-CNT array and a nonvolatile memory based on the top gate structure with an oxide-nitride-oxide charge trap are also presented. We suggest that the deposited memory film can be used for the quantum dot storage due to the localized electric field created by a nano scale CNT-electron channel.

  16. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  17. Carbon nanotube polymer composition and devices

    Science.gov (United States)

    Liu, Gao; Johnson, Stephen; Kerr, John B.; Minor, Andrew M.; Mao, Samuel S.

    2011-06-14

    A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.

  18. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  19. A Thermal Model for Carbon Nanotube Interconnects

    Directory of Open Access Journals (Sweden)

    Clay Mayberry

    2013-04-01

    Full Text Available In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.

  20. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  1. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  2. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  3. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2016-12-13

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  4. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2016-11-15

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  5. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2016-10-25

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  6. [Hygienic evaluation of multilayer carbon nanotubes].

    Science.gov (United States)

    Haliullin, T O; Zalyalov, R R; Shvedova, A A; Tkachov, A G

    2015-01-01

    The authors demonstrate that traditional methods evaluating work conditions on contemporary innovative enterprises producing nanomaterials assess these conditions as harmless and safe. At the same time, special investigation methods enable to reveal new hazards for workers' health: the study results prove that workers engaged into multilayer carbon nanotubes production are exposed to multilayer carbon nanotubes aerosols in concentrations exceeding internationally acceptable levels of 1 μg/ml (NIOSH)--that can harm the workers' health.

  7. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  8. Carbon nanotubes field effect transistors biosensors

    OpenAIRE

    Martínez, M.T.; Tseng, Y. C.; Ormategui, N.; Loinaz, I.; Eritja Casadellà, Ramón; Salvador, Juan Pablo; Marco, María Pilar; Bokor, J.

    2012-01-01

    [EN] Carbon nanotube transistor arrays (CNTFETs) were used as biosensors to detect NA hybridization and to recognize two anabolic steroids, stanozolol (Stz) and methylboldenone (MB). Single strand DNA and antibodies specific for STz and MB were immobilized on the carbon nanotubes (CNTs) in situ in the device using two different approaches: direct noncovalent bonding of antibodies to the devices and covalently trough a polymer previously attached to the CNTFETs. A new approach to ensure specif...

  9. Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Y. F. Zhang; Y. F. Wang; N. Chen; Y. Y. Wang; Y. Z. Zhang; Z. H. Zhou; L. M. Wei

    2010-01-01

    Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes (SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes µm-2, an enhancement of 3.92%in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.

  10. Filling of carbon nanotubes and nanofibres

    Directory of Open Access Journals (Sweden)

    Reece D. Gately

    2015-02-01

    Full Text Available The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications.

  11. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  12. Electronic conduction in polymers, carbon nanotubes and graphene.

    Science.gov (United States)

    Kaiser, Alan B; Skákalová, Viera

    2011-07-01

    In the years since the discovery of organic polymers that exhibited electrical conductivities comparable to some metals, other novel carbon-based conductors have been developed, including carbon nanotubes and graphene (monolayers of carbon atoms). In this critical review, we discuss the common features and the differences in the conduction mechanisms observed in these carbon-based materials, which range from near ballistic and conventional metallic conduction to fluctuation-assisted tunnelling, variable-range hopping and more exotic mechanisms. For each category of material, we discuss the dependence of conduction on the morphology of the sample. The presence of heterogeneous disorder is often particularly important in determining the overall behaviour, and can lead to surprisingly similar conduction behaviour in polymers, carbon nanotube networks and chemically-derived graphene (122 references).

  13. Exploring Carbon Nanotubes for Nanoscale Devices

    Science.gov (United States)

    Han, Jie; Dai; Anantram; Jaffe; Saini, Subhash (Technical Monitor)

    1998-01-01

    Carbon nanotubes (CNTs) are shown to promise great opportunities in nanoelectronic devices and nanoelectromechanical systems (NEMS) because of their inherent nanoscale sizes, intrinsic electric conductivities, and seamless hexagonal network architectures. I present our collaborative work with Stanford on exploring CNTs for nanodevices in this talk. The electrical property measurements suggest that metallic tubes are quantum wires. Furthermore, two and three terminal CNT junctions have been observed experimentally. We have proposed and studied CNT-based molecular switches and logic devices for future digital electronics. We also have studied CNTs based NEMS inclusing gears, cantilevers, and scanning probe microscopy tips. We investigate both chemistry and physics based aspects of the CNT NEMS. Our results suggest that CNT have ideal stiffness, vibrational frequencies, Q-factors, geometry-dependent electric conductivities, and the highest chemical and mechanical stabilities for the NEMS. The use of CNT SPM tips for nanolithography is presented for demonstration of the advantages of the CNT NEMS.

  14. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  15. Carbon nanotubes and graphene towards soft electronics

    Science.gov (United States)

    Chae, Sang Hoon; Lee, Young Hee

    2014-04-01

    Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.

  16. Fast readout of carbon nanotube mechanical resonators

    Science.gov (United States)

    Meerwaldt, Harold; Singh, Vibhor; Schneider, Ben; Schouten, Raymond; van der Zant, Herre; Steele, Gary

    2013-03-01

    We perform fast readout measurements of carbon nanotube mechanical resonators. Using an electronic mixing scheme, we can detect the amplitude of the mechanical motion with an intermediate frequency (IF) of 46 MHz and a timeconstant of 1 us, up to 5 orders of magnitude faster than before. Previous measurements suffered from a low bandwidth due to the combination of the high resistance of the carbon nanotube and a large stray capacitance. We have increased the bandwidth significantly by using a high-impedance, close-proximity HEMT amplifier. The increased bandwidth should allow us to observe the nanotube's thermal motion and its transient response, approaching the regime of real-time detection of the carbon nanotube's mechanical motion.

  17. Manipulation and cutting of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanomanipulation plays an important role in nanofabrication, it is also a technology necessary in exploring the secrets of nanoworld, and it thus beco mesa start point to research future nanomachine. In this study, manipulation and cutting of carbon nanotubes have been conducted in order to examine whether we can move a nanocomponent from one site to another by using the tip of atomic fo rce microscope (AFM). The technique may also be valuable for providing the const ructive materials of nanofabrication. While exploring the method for manipulatin g and cutting of nanotubes, some new phenomena have been observed during the process. Results show that carbon nanotubes present a feature of deformation combin ing bending and distortion when subjected to large mechanical forces exerted by the tip of AFM. In special cases, long carbon nanotubes can be cut into two part s, by which we can remove the part where crystal lattice is flawed, and therefor e a perfect nanocomponent can be obtained.

  18. Unzipped Nanotube Sheet Films Converted from Spun Multi-Walled Carbon Nanotubes by O2 Plasma.

    Science.gov (United States)

    Jangr, Hoon-Sik; Jeon, Sang Koo; Shim, Dae Seob; Lee, Nam Hee; Nahm, Seung Hoon

    2015-11-01

    Large-scale graphene or carbon nanotube (CNT) films are good candidates for transparent flexible electrodes, and the strong interest in graphene and CNT films has motivated the scalable production of a good-conductivity and an optically transmitting film. Unzipping techniques for converting CNTs to graphene are especially worthy of notice. Here, we performed nanotube unzipping of the spun multi-walled carbon nanotubes (MWCNTs) to produce networked graphene nanoribbon (GNR) sheet films using an 02 plasma etching method, after which we produced the spun MWCNT film by continually pulling MWCNTs down from the vertical well aligned MWCNTs on the substrate. The electrical resistance was slightly decreased and the optical transmittance was significantly increased when the spun MWCNT films were etched for 20 min by O2 plasma of 100 mA. Plasma etching for the optimized time, which does not change the thickness of the spun MWCNT films, improved the electrical resistance and the optical transmittance.

  19. Static and dynamic wetting measurements of single carbon nanotubes.

    Science.gov (United States)

    Barber, Asa H; Cohen, Sidney R; Wagner, H Daniel

    2004-05-07

    Individual carbon nanotubes were immersed and removed from various organic liquids using atomic force microscopy. The carbon nanotube-liquid interactions could be monitored in situ, and accurate measurements of the contact angle between liquids and the nanotube surface were made. These wetting data were used to produce Owens and Wendt plots giving the dispersive and polar components of the nanotube surface.

  20. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  1. Oscillatory characteristics of carbon nanotubes inside carbon nanotube bundles

    Science.gov (United States)

    Ansari, R.; Alipour, A.; Sadeghi, F.

    2012-12-01

    This article presents a comprehensive study on the mechanics of carbon nanotubes (CNTs) oscillating in CNT bundles. Using the continuum approximation along with Lennard-Jones (LJ) potential function, new semi-analytical expressions in terms of double integrals are presented to evaluate van der Waals (vdW) potential energy and interaction force upon which the equation of motion is directly solved. The obtained potential expression enables one to arrive at a new semi-analytical formula for the exact evaluation of oscillation frequency. Also, an algebraic frequency formula is extracted on the basis of the simplifying assumption of constant vdW force. Based on the present expressions, a thorough study on various aspects of operating frequencies under different system parameters is given, which permits fresh insight into the problem. The strong dependence of oscillation frequency on system parameters, such as the extrusion distance and initial velocity of the core as initial conditions for the motion is indicated. Interestingly, a specific initial velocity is found at which the oscillation frequency is independent of the core length. In addition, a relation between this specific initial velocity and the escape velocity is disclosed.

  2. 75 FR 56880 - Multi-Walled Carbon Nanotubes and Single-Walled Carbon Nanotubes; Significant New Use Rules

    Science.gov (United States)

    2010-09-17

    ... structural characteristics entitled ``Material Characterization of Carbon Nanotubes for Molecular Identity... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AB27 Multi-Walled Carbon Nanotubes and Single-Walled Carbon...). The two chemical substances are identified generically as multi-walled carbon nanotubes (MWCNT) (PMN...

  3. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes.

    Science.gov (United States)

    Mouchet, Florence; Landois, Perine; Puech, Pascal; Pinelli, Eric; Flahaut, Emmanuel; Gauthier, Laury

    2010-08-01

    The potential impact of industrial multiwalled carbon nanotubes (MWNTs) was investigated under normalized laboratory conditions according to the International Standard micronucleus assay ISO 21427-1 for 12 days of half-static exposure to 0.1, 1, 10 and 50 mg/l of MWNTs in water. Three different end points were carried out for 12 days of exposure: mortality, growth inhibition and micronuclei induction in erythrocytes of the circulating blood of larvae. Raman spectroscopy analysis was used to study the presence of carbon nanotubes in the biological samples. Considering the high diversity of carbon nanotubes according to their different characteristics, MWNTs were analyzed in Xenopus larvae, comparatively to double-walled carbon nanotubes used in a previous study in similar conditions. Growth inhibition in larvae exposed to 50 mg/l of MWNTs was evidenced; however, no genetoxicity (micronucleus assay) was noticed, at any concentration. Carbon nanotube localization in the larvae leads to different possible hypothesis of mechanisms explaining toxicity in Xenopus.

  4. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries.

    Science.gov (United States)

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-05

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.

  5. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries

    Science.gov (United States)

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-01

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g-1 at a high rate of 100C even after 1000 cycles.

  6. Carbon Nanotube-Based Synthetic Gecko Tapes

    Science.gov (United States)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  7. Wetting of doped carbon nanotubes by water droplets

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Demosthenous, E.; Walther, Jens Honore

    2005-01-01

    We study the wetting of doped single- and multi-walled carbon nanotubes by water droplets using molecular dynamics simulations. Chemisorbed hydrogen is considered as a model of surface impurities. We study systems with varying densities of surface impurities and we observe increased wetting......, as compared to the pristine nanotube case, attributed to the surface dipole moment that changes the orientation of the interfacial water. We demonstrate that the nature of the impurity is important as here hydrogen induces the formation of an extended hydrogen bond network between the water molecules...

  8. A carbon nanotube wall membrane for water treatment.

    Science.gov (United States)

    Lee, Byeongho; Baek, Youngbin; Lee, Minwoo; Jeong, Dae Hong; Lee, Hong H; Yoon, Jeyong; Kim, Yong Hyup

    2015-05-14

    Various forms of carbon nanotubes have been utilized in water treatment applications. The unique characteristics of carbon nanotubes, however, have not been fully exploited for such applications. Here we exploit the characteristics and corresponding attributes of carbon nanotubes to develop a millimetre-thick ultrafiltration membrane that can provide a water permeability that approaches 30,000 l m(-2) h(-1) bar(-1), compared with the best water permeability of 2,400 l m(-2) h(-1) bar(-1) reported for carbon nanotube membranes. The developed membrane consists only of vertically aligned carbon nanotube walls that provide 6-nm-wide inner pores and 7-nm-wide outer pores that form between the walls of the carbon nanotubes when the carbon nanotube forest is densified. The experimental results reveal that the permeance increases as the pore size decreases. The carbon nanotube walls of the membrane are observed to impede bacterial adhesion and resist biofilm formation.

  9. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  10. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  11. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  12. Carbon Nanotube Reinforced Polymers for Radiation Shielding Applications

    Science.gov (United States)

    Thibeault, S. (Technical Monitor); Vaidyanathan, Ranji

    2004-01-01

    This viewgraph presentation provides information on the use of Extrusion Freeform Fabrication (EEF) for the fabrication of carbon nanotubes. The presentation addresses TGA analysis, Raman spectroscopy, radiation tests, and mechanical properties of the carbon nanotubes.

  13. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  14. Carbon Nanotube-Based Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Park, H G; Bakajin, O; Noy, A; Huser, T; Eaglesham, D

    2004-04-06

    A membrane of multiwalled carbon nanotubes embedded in a silicon nitride matrix was fabricated for use in studying fluid mechanics on the nanometer scale. Characterization by fluorescent tracer diffusion and scanning electron microscopy suggests that the membrane is void-free near the silicon substrate on which it rests, implying that the hollow core of the nanotube is the only conduction path for molecular transport. Assuming Knudsen diffusion through this nanotube membrane, a maximum helium transport rate (for a pressure drop of 1 atm) of 0.25 cc/sec is predicted. Helium flow measurements of a nanoporous silicon nitride membrane, fabricated by sacrificial removal of carbon, give a flow rate greater than 1x10{sup -6} cc/sec. For viscous, laminar flow conditions, water is estimated to flow across the nanotube membrane (under a 1 atm pressure drop) at up to 2.8x10{sup -5} cc/sec (1.7 {micro}L/min).

  15. Functionalized carbon nanotubes for potential medicinal applications.

    Science.gov (United States)

    Zhang, Yi; Bai, Yuhong; Yan, Bing

    2010-06-01

    Functionalized carbon nanotubes display unique properties that enable a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity. High aspect ratio, unique optical property and the likeness as small molecule make carbon nanotubes an unusual allotrope of element carbon. After functionalization, carbon nanotubes display potentials for a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity.

  16. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  17. Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes.

    Science.gov (United States)

    Sawaya, Shintaro; Arie, Takayuki; Akita, Seiji

    2011-04-22

    This study investigated the mechanical properties of vibrating cantilevered multiwall carbon nanotubes in terms of energy loss in a vibrating nanotube. Young's moduli of the nanotubes show a clear dependence of the perfection of the sp(2) carbon network, as determined from Raman spectroscopy. The energy loss corresponding to the inverse of the quality factor increases with increasing tube diameter, although the nanotube maintains high mechanical strength around 0.5 TPa. This fact implies that the vibration energy is dissipated mainly not by defects, but by van der Waals interactions between walls.

  18. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  19. Localized Excitons in Carbon Nanotubes.

    Science.gov (United States)

    Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei

    2015-03-01

    It has been historically known that unintentional defects in carbon nanotubes (CNTs) may fully quench the fluorescence. However, some dopants may enhance the fluorescence by one order of magnitude thus turning the CNTs, which are excellent light absorbers, in good emitters. We have correlated the experimentally observed photoluminescence spectra to the electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the lowest bright exciton peak. Our simulations suggest an association of these peaks with deep trap states tied to different specific chemical adducts. While the wave functions of excitons in undoped CNTs are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with the experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from scattering of acoustic phonons on localized excitons. Our work lays the foundation to utilize doping as a generalized route for wave function engineering and direct control of carrier dynamics in SWCNTs toward enhanced light emission properties for photonic applications.

  20. Thermal Transport in Carbon Nanotubes

    Science.gov (United States)

    Christman, Jeremy; Moore, Andrew; Khatun, Mahfuza

    2011-10-01

    Recent advances in nanostructure technology have made it possible to create small devices at the nanoscale. Carbon nanotubes (CNT's) are among the most exciting building blocks of nanotechnology. Their versatility and extremely desirable properties for electronic and other devices have driven intense research and development efforts in recent years. A review of electrical and thermal conduction of the structures will be presented. The theoretical investigation is mainly based on molecular dynamics. Green Kubo relation is used for the study of thermal conductivity. Results include kinetic energy, potential energy, heat flux autocorrelation function, and heat conduction of various CNT structures. Most of the computation and simulation has been conducted on the Beowulf cluster at Ball State University. Various software packages and tools such as Visual Molecular Dynamics (VMD), Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), and NanoHUB, the open online resource at Purdue University have been used for the research. The work has been supported by the Indiana Academy of Science Research Fund, 2010-2011.

  1. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage

    Science.gov (United States)

    Lee, Byeongyong; Lee, Chongmin; Liu, Tianyuan; Eom, Kwangsup; Chen, Zhongming; Noda, Suguru; Fuller, Thomas F.; Jang, Hee Dong; Lee, Seung Woo

    2016-06-01

    Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes.Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes

  2. Different Technical Applications of Carbon Nanotubes.

    Science.gov (United States)

    Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A

    2015-12-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  3. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  4. Different Technical Applications of Carbon Nanotubes

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, Ahmed A.; Abdel-Daiem, A.

    2015-09-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  5. Edge effects in finite elongated carbon nanotubes

    CERN Document Server

    Hod, O; Scuseria, G E; Hod, Oded; Peralta, Juan E.; Scuseria, Gustavo E.

    2006-01-01

    The importance of finite-size effects for the electronic structure of long zigzag and armchair carbon nanotubes is studied. We analyze the electronic structure of capped (6,6), (8,0), and (9,0) single walled carbon nanotubes as a function of their length up to 60 nm, using a divide and conquer density functional theory approach. For the metallic nanotubes studied, most of the physical features appearing in the density of states of an infinite carbon nanotube are recovered at a length of 40 nm. The (8,0) semi-conducting nanotube studied exhibits pronounced edge effects within the energy gap that scale as the inverse of the length of the nanotube. As a result, the energy gap reduces from the value of ~1 eV calculated for the periodic system to a value of ~0.25 eV calculated for a capped 62 nm long CNT. These edge effects are expected to become negligible only at tube lengths exceeding 6 micrometers. Our results indicate that careful tailoring of the nature of the system and its capping units should be applied w...

  6. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  7. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  8. Deposition of the platinum crystals on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new technique and the affecting factors for depositing platinum on the carbon nanotubes were investigated. The results show that the deposited platinum crystals in the atmosphere of hydrogen or nitrogen have a small size and a homogeneous distribution on the surface of the carbon nanotubes. The pretreatment would decrease the platinum particles on the carbon nanotubes significantly.

  9. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  10. Interaction of pristine and functionalized carbon nanotubes with lipid membranes.

    Science.gov (United States)

    Baoukina, Svetlana; Monticelli, Luca; Tieleman, D Peter

    2013-10-10

    Carbon nanotubes are widely used in a growing number of applications. Their interactions with biological materials, cell membranes in particular, is of interest in applications including drug delivery and for understanding the toxicity of carbon nanotubes. We use extensive molecular dynamics simulations with the MARTINI model to study the interactions of model nanotubes of different thickness, length, and patterns of chemical modification with model membranes. In addition, we characterize the interactions of small bundles of carbon nanotubes with membrane models. Short pristine carbon nanotubes readily insert into membranes and adopt an orientation parallel to the plane of the membrane in the center of the membrane. Larger aggregates and functionalized nanotubes exhibit a range of possible interactions. The distribution and orientation of carbon nanotubes can be controlled by functionalizing the nanotubes. Free energy calculations provide thermodynamic insight into the preferred orientations of different nanotubes and quantify structural defects in the lipid matrix.

  11. Graphene-carbon nanotube hybrid materials and use as electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  12. Carbon nanotube suspensions, dispersions, & composites

    Science.gov (United States)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  13. Nano-engineering of SWNT networks for enhanced charge transport at ultralow nanotube loading.

    Science.gov (United States)

    Barbero, David R; Boulanger, Nicolas; Ramstedt, Madeleine; Yu, Junchun

    2014-05-21

    We demonstrate a simple and controllable method to form periodic arrays of highly conductive nano-engineered single wall carbon nanotube networks from solution. These networks increase the conductivity of a polymer composite by as much as eight orders of magnitude compared to a traditional random network. These nano-engineered networks are demonstrated in both polystyrene and polythiophene polymers.

  14. Effect of aligned carbon nanotubes on electrical conductivity behaviour in polycarbonate matrix

    Indian Academy of Sciences (India)

    M M Larijani; E J Khamse; Z Asadollahi; M Asadi

    2012-06-01

    This article reports effects of alignment of embedded carbon nanotubes in a polycarbonate polymer matrix under magnetic, direct and alternating current electric fields on the electrical properties of the resulting nanocomposites. Composites consisting of different quantities of carbon nanotubes in a polycarbonate matrix have been prepared using a solution casting technique. The effects of field strength and nanotube concentration on the resulted network structure and conductivity of the composites were studied by in situ optical microscopy, transmission electron microscopy and four-point probe technique. The results showed that the composites prepared in the presence of field had better conductivity than those of as-prepared composites. It was also concluded that the application of alternating current electric field and magnetic field in this system led to the formation of relatively continuing networks while direct current electric field only prevented agglomeration of the carbon nanotubes in the polycarbonate matrix and created relatively uniform distribution of nanotubes in the matrix.

  15. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    Science.gov (United States)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  16. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  17. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  18. A review on protein functionalized carbon nanotubes.

    Science.gov (United States)

    Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra

    2015-12-18

    Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.

  19. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  20. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  1. Carbon Nanotubes Synthesis Through Gamma Radiation

    Science.gov (United States)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  2. Nanotubes on Display: How Carbon Nanotubes Can Be Integrated into Electronic Displays

    KAUST Repository

    Opatkiewicz, Justin

    2010-06-22

    Random networks of single-walled carbon nanotubes show promise for use in the field of flexible electronics. Nanotube networks have been difficult to utilize because of the mixture of electronic types synthesized when grown. A variety of separation techniques have been developed, but few can readily be scaled up. Despite this issue, when metallic percolation pathways can be separated out or etched away, these networks serve as high-quality thinfilm transistors with impressive device characteristics. A new article in this issue illustrates this point and the promise of these materials. With more work, these devices can be implemented in transparent displays in the next generation of hand-held electronics. © 2010 American Chemical Society.

  3. Influence of impurity on electronic properties of carbon nanotube superlattices

    Directory of Open Access Journals (Sweden)

    AA Shokri

    2013-09-01

    Full Text Available   In this paper, electronic properties of single-wall armchair and zigzag carbon nanotubes (CNTs superlattices, n(12,0/m(6,6 and n(12,0/m(11,0 are investigated. For this reason, the topological defects of pentagon–heptagon pairs at interfaces of carbon hexagonal network appear. These defects break the symmetry of the system, and then change the electrical properties. The calculations include two parts: investigation of the structures in the absence and presence of the impurity effect, which are calculated by the nearest-neighbor tight binding model . Out numerical results can be useful in designing nanoelectronic devices based on carbon nanotubes.

  4. Carbon nanotube based hybrid nanocarbon foam

    Science.gov (United States)

    Shahrizan Jamal, M.; Zhang, Mei

    2017-03-01

    Carbon nanotube (CNT) based nanocarbon foams (NFs) and the hybrid nanocarbon foams (HNFs) are fabricated in this work. The NFs are formed by using poly(methyl methacrylate) microspheres as a template to create micro-scaled pores. The cell walls are made of CNT networks with nano-scaled pores. The interconnections among CNTs are secured using graphene and nanographite generated via carbonization of polyacrylonitrile. The resulting NFs are ultra-lightweight, highly elastic, electrically and thermally conductive, and robust in structure. The HNFs are made by infiltrating thermoplastic polymer into the NFs in a controllable procedure. Compared to NFs, the HNFs have much higher strength, same electrical conductivity, and limited increase in density. The compressive strength of the HNF increased more than 50 times while the density was changed less than 10 times due to the polymer infiltration. It is found that the deformed HNFs can recover in both structure and property when they are heated over the glass transition temperature of the infiltrated polymer. Such remarkable healing capability could broaden the applications of the HNFs.

  5. Can a wearable strain sensor based on a carbon nanotube network be an alternative to an isokinetic dynamometer for the measurement of knee-extensor muscle strength?

    Science.gov (United States)

    Benlikaya, Ruhan; Ege, Yavuz; Pündük, Zekine; Slobodian, Petr; Meriç, Gökhan

    2017-04-01

    This study aimed to find out whether a wearable strain sensor including thermoplastic polyurethane composite with a multi-walled carbon nanotube network could be a viable alternative to an isokinetic dynamometer for the measurement of knee-extensor muscle strength. For the first time, the voltage-torque and angle–time relations of the sensor were determined to allow a comparison between the angle-dependent torque changes of the dynamometer and the sensor. This comparison suggested that the torque–angle relations of the dynamometer and the sensor did not have the same characteristics. In this regard, the sensor may be used in the torque measurements due to the moderate correlation between the torque values determined via the isokinetic dynamometer and the sensor and due to the significant difference between low and high torque values of the sensor. By the same token, the torque-angle graph of the sensor may be more informative than that of the dynamometer in evaluation of knee problems.

  6. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials.

    Science.gov (United States)

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-07-28

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm(-1), 28.20 emu g(-1), 16.66 emu g(-1) and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed.

  7. Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery

    Science.gov (United States)

    Zhu, Xiao; Wu, Xianwen; Doan, The Nam Long; Tian, Ye; Zhao, Hongbin; Chen, P.

    2016-09-01

    Highly flexible LiMn2O4/carbon nanotube (CNT) electrodes are developed and used as a high power cathode for the Rechargeable Hybrid Aqueous Battery (ReHAB). LiMn2O4 particles are entangled into CNT networks, forming a self-supported free-standing hybrid films. Such hybrid films can be used as electrodes of ARLB without using any additional binders. The binder-free LiMn2O4/CNT electrode exhibits good mechanical properties, high conductivity, and effective charge transport. High-rate capability and high cycling stability are obtained. Typically, the LiMn2O4/CNT electrode achieves a discharge capacity of 72 mAh g-1 at the large-current of 20 C (1 C = 120 mAh g-1), and exhibits good cycling performance and high reversibility: Coulombic efficiency of almost 100% over 300 charge-discharge cycles at 4 C. By reducing the weight, and improving the large-current rate capability simultaneously, the LiMn2O4/CNT electrode can highly enhance the energy/power density of ARLB and hold potential to be used in ultrathin, lightweight electronic devices.

  8. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  9. Micromechanics of carbon nanotube turfs

    Science.gov (United States)

    Torabi, Hamid

    Complex structures consisting of intertwined, nominally vertical carbon nanotubes (CNTs) are called turfs. Unique electrical, thermal, optical, and permeability properties of these turfs have attracted growing attention during the past decade, and have rendered them as appropriate candidates for applications such as contact thermal switches. These properties are controlled by the details of the turf microstructures. Due to the application of the turfs in different fields, they are subjected to different loading conditions. Deformation changes the microstructure of a CNT turf, which results in change of effective properties. Many researchers have recently studied the collective mechanical behavior of CNT turfs to compression loading, as this behavior determines their performance. However, their complex and intertwined structure must be investigated in more details to find the relation between their deformation and their underlying morphology. Under uniform compression experiments, CNT turfs exhibit irreversible collective buckling of a layer preceded by reorientation of CNT segments. Experimentally observed independence of the buckling stress and the buckling wavelength on the turf width suggests the existence of an intrinsic material length. To investigate the relationship the macroscopic material properties and the statistical parameters describing the nano-scale geometry of the turf (tortuosity, density and connectivity) we develop a nano-scale computational model, based on the representation of CNT segments as elastica finite elements with van der Waals interactions. The virtual turfs are generated by means of a constrained random walk algorithm and subsequent relaxation. The resulting computational model is robust and is capable of modeling the collective behavior of CNTs. We first establish the dependence of statistical parameters on the computational parameters used for turf generation, then establish relationships between post-buckling stress, initial

  10. Laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  11. Carbon nanotubes for in vivo cancer nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The latest progress of using carbon nanotubes(CNTs) for in vivo cancer nanotechnology is reviewed.CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications.In vivo behaviors and toxicology studies of CNTs are summarized,suggesting no significant toxicity of well functionalized CNTs to the treated mice.Owing to their unique chemical and physical properties,CNTs,especially single-walled carbon nanotubes(SWNTs),have been widely used for various modalities of in vivo cancer treatment and imaging.Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.

  12. Piezoresistive effect in carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The piezoresistive effect of the pristine carbon nanotube (CNT) films has been studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition. The piezoresistive effect in the pristine CNT films was studied by a three-point bending test. The gauge factor for the pristine CNT films under 500 microstrains was found to be at least 65 at room temperature, and increased with temperature, exceeding that of polycrystalline silicon (30) at 35℃. The origin of the piezoresistivity in CNT films may be ascribed to a pressure-induced change in the band gap and the defects.

  13. Nanoscale atomic waveguides with suspended carbon nanotubes

    CERN Document Server

    Peano, V; Kasper, A; Egger, R

    2005-01-01

    We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows to overcome the problem of fragmentation of the atom cloud. Adding a second nanowire allows to create a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime.

  14. Carbon nanotube based transparent conductive thin films.

    Science.gov (United States)

    Yu, X; Rajamani, R; Stelson, K A; Cui, T

    2006-07-01

    Carbon nanotube (CNT) based optically transparent and electrically conductive thin films are fabricated on plastic substrates in this study. Single-walled carbon nanotubes (SWNTs) are chemically treated with a mixture of concentrated sulfuric acid and nitric acid before being dispersed in aqueous surfactant-contained solutions. SWNT thin films are prepared from the stable SWNT solutions using wet coating techniques. The 100 nm thick SWNT thin film exhibits a surface resistivity of 6 kohms/square nanometer with an average transmittance of 88% on the visible light range, which is three times better than the films prepared from the high purity as-received SWNTs.

  15. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two....... In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli...

  16. A tunable carbon nanotube electromechanical oscillator

    Science.gov (United States)

    Sazonova, Vera; Yaish, Yuval; Üstünel, Hande; Roundy, David; Arias, Tomás A.; McEuen, Paul L.

    2004-09-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection, radio-frequency signal processing, and as a model system for exploring quantum phenomena in macroscopic systems. Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made. Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.

  17. Shear Flow Induced Alignment of Carbon Nanotubes in Natural Rubber

    Directory of Open Access Journals (Sweden)

    Yan He

    2015-01-01

    Full Text Available A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.

  18. Carbon nanotubes as tips for atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    国立秋; 徐宗伟; 赵铁强; 赵清亮; 张飞虎; 董申

    2004-01-01

    Ordinary AFM probes' characters prevent the AFM' s application in various scopes. Carbon nanotubes represent ideal AFM probe materials for their higher aspect ratio, larger Young' s modulus, unique chemical structure, and well-defined electronic property. Carbon nanotube AFM probes are obtained by using a new method of attaching carbon nanotubes to the end of ordinary AFM probes, and are then used for doing AFM experiments. These experiments indicated that carbon nanotube probes have higher elastic deformation, higher resolution and higher durability. And it was also found that carbon nanotube probes can accurately reflect the morphology of deep narrow gaps, while ordinary probes can not reflect.

  19. Computational Nanomechanics of Carbon Nanotubes and Composites

    Science.gov (United States)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  20. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application

    Science.gov (United States)

    Abdalla, Ahmed M.; Sahu, Rakesh P.; Wallar, Cameron J.; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K.

    2017-02-01

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g-1 and an areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm-2.

  1. Flexible microdevices based on carbon nanotubes

    Science.gov (United States)

    Allen, Ashante'; Cannon, Andrew; Lee, Jungchul; King, William P.; Graham, Samuel

    2006-12-01

    This work reports the fabrication and testing of flexible carbon nanotube microdevices made using hot embossing material transfer. Both micro-plasma and photodetector devices were made using as-grown unpurified multi-wall carbon nanotubes printed on PMMA substrates. Optical detectors were fabricated by attaching metal wires and monitoring the resistance as a function of light exposure. The electrical resistance of the nanotubes showed a strong sensitivity to light exposure which was also enhanced by heating the devices. While such processes in MWCNTs are not fully understood, the addition of thermal energy is believed to generate additional free charge carriers in the nanotubes. The plasma-generating microdevices consisted of a thin layer of thermoplastic polymer having the CNT electrode on one side and a metal electrode on the reverse side. The devices were electrically tested under atmospheric conditions with 0.01-1 kV ac and at 2.5 kHz, with the plasma igniting near 0.7 kV. The fabrication of these flexible organic devices demonstrates the ability to pattern useful carbon nanotube microdevices in low-cost thermoplastic polymers.

  2. Carbon nanotubes as optical biomedical sensors.

    Science.gov (United States)

    Kruss, Sebastian; Hilmer, Andrew J; Zhang, Jingqing; Reuel, Nigel F; Mu, Bin; Strano, Michael S

    2013-12-01

    Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.

  3. Improved Method of Purifying Carbon Nanotubes

    Science.gov (United States)

    Delzeit, Lance D.

    2004-01-01

    An improved method of removing the residues of fabrication from carbon nanotubes has been invented. These residues comprise amorphous carbon and metal particles that are produced during the growth process. Prior methods of removing the residues include a variety of processes that involved the use of halogens, oxygen, or air in both thermal and plasma processes. Each of the prior methods entails one or more disadvantages, including non-selectivity (removal or damage of nanotubes in addition to removal of the residues), the need to dispose of toxic wastes, and/or processing times as long as 24 hours or more. In contrast, the process described here does not include the use of toxic chemicals, the generation of toxic wastes, causes little or no damage to the carbon nanotubes, and involves processing times of less than 1 hour. In the improved method, purification is accomplished by flowing water vapor through the reaction chamber at elevated temperatures and ambient pressures. The impurities are converted to gaseous waste products by the selective hydrogenation and hydroxylation by the water in a reaction chamber. This process could be performed either immediately after growth or in a post-growth purification process. The water used needs to be substantially free of oxygen and can be obtained by a repeated freeze-pump-thaw process. The presence of oxygen will non-selectively attach the carbon nanotubes in addition to the amorphous carbon.

  4. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  5. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2016-10-04

    Disclosed here is a device comprising a porous carbon aerogel or composite thereof as an energy storage material, catalyst support, sensor or adsorbent, wherein the porous carbon aerogel comprises a network of interconnected struts comprising carbon nanotube bundles covalently crosslinked by graphitic carbon nanoparticles, wherein the carbon nanotubes account for 5 to 95 wt. % of the aerogel and the graphitic carbon nanoparticles account for 5 to 95 wt. % of the aerogel, and wherein the aerogel has an electrical conductivity of at least 10 S/m and is capable of withstanding strains of more than 10% before fracture.

  6. Electrostatic gating in carbon nanotube aptasensors

    Science.gov (United States)

    Zheng, Han Yue; Alsager, Omar A.; Zhu, Bicheng; Travas-Sejdic, Jadranka; Hodgkiss, Justin M.; Plank, Natalie O. V.

    2016-07-01

    Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10 picomolar. The signal was shown to arise from a specific aptamer-target interaction that stabilises a G-quadruplex structure, bringing high negative charge density near the CNT channel. Electrostatic gating is established via the specificity and the sign of the current response, and by observing its suppression when higher ionic strength decreases the Debye length at the CNT-water interface. Sensitivity towards potassium and selectivity against other ions is demonstrated in both resistive mode and real time transistor mode measurements. The effective device architecture presented, along with the identification of clear response signatures, should inform the development of new electronic biosensors using the growing library of aptamer receptors.Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10

  7. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    Institute of Scientific and Technical Information of China (English)

    夏丹; 袁喆; 李家明

    2002-01-01

    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  8. Three-dimensional helical carbon materials: Microcoiled carbon fibers, carbon nanocoils, carbon nanotubes: Synthesis, properties and applications

    Science.gov (United States)

    Xie, Jining

    . Due to their extraordinary properties, carbon nanotubes have been expected to have wide applications. Efforts have been made on the synthesis of high quality carbon nanotubes economically in this work. A novel catalyst/catalyst support pair, iron/magnesium carbonate, has been developed for synthesis of multi-walled carbon nanotubes with high purity. The coil morphology is induced by insertion of pentagon-heptagon pairs into hexagonal network of nanotube wall periodically. Thorough purification of carbon nanotubes is always a concern before investigating their properties and potential applications. Impurities in raw carbon nanotube material have to be removed by chemical treatment. A couple of purification methods are presented in this work. Various techniques have been used to characterize these micro- and nano-3D materials, such as scanning electron microscopy (SEM), energy dispersive spectrum (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer Emmett-Teller (BET), thermal gravimetric analysis (TGA), etc. Growth mechanisms are proposed based on the experimental and characterization results. It is verified that the nonuniform carbon deposition rate on catalyst particles leads to the bending of the carbon fiber/tubule, and hence results in the coil morphology. To conclude, the research work reported here is a systematic study on synthesis, characterizations, and applications of micro- and nano-3D helical carbon materials, such as micro coiled carbon fibers, carbon nanocoils and carbon nanotubes. A few suggestions for future research directions are also listed.

  9. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders;

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  10. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  11. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  12. In-line manufacture of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  13. Biodistribution of Carbon Nanotubes in Animal Models

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; Møller, Peter; Clausen, Per Axel

    2016-01-01

    The many physical and chemical properties of carbon nanotubes (CNT) make it one of the most commercially attractive materials in the era of nanotechnology. Here, we review the recent publications on in vivo biodistribution of pristine and functionalized forms of single-walled and multi-walled CNT...

  14. Conductance of AFM Deformed Carbon Nanotubes

    Science.gov (United States)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  15. Multiwall carbon nanotubes reinforced epoxy nanocomposites

    Science.gov (United States)

    Chen, Wei

    The emergence of carbon nanotubes (CNTs) has led to myriad possibilities for structural polymer composites with superior specific modulus, strength, and toughness. While the research activities in carbon nanotube reinforced polymer composites (NRPs) have made enormous progress towards fabricating next-generation advanced structural materials with added thermal, optical, and electrical advantages, questions concerning the filler dispersion, interface, and CNT alignment in these composites remain partially addressed. In this dissertation, the key technical challenges related to the synthesis, processing, and reinforcing mechanics governing the effective mechanical properties of NRPs were introduced and reviewed in the first two chapters. Subsequently, issues on the dispersion, interface control, hierarchical structure, and multi-functionality of NRPs were addressed based on functionalized multi-walled carbon nanotube reinforced DGEBA epoxy systems (NREs). In chapter 3, NREs with enhanced flexural properties were discussed in the context of improved dispersion and in-situ formation of covalent bonds at the interface. In chapter 4, NREs with controlled interface and tailored thermomechanical properties were demonstrated through the judicious choice of surface functionality and resin chemistry. In chapter 5, processing-condition-induced CNT organization in hierarchical epoxy nanocomposites was analyzed. In Chapter 6, possibilities were explored for multi-functional NREs for underwater acoustic structural applications. Finally, the findings of this dissertation were concluded and future research was proposed for ordered carbon nanotube array reinforced nanocomposites in the last chapter. Four journal publications resulted from this work are listed in Appendix.

  16. Spatially resolved spectroscopy on carbon nanotubes

    NARCIS (Netherlands)

    Janssen, J.W.

    2001-01-01

    Carbon nanotubes are small cylindrical molecules with a typical diameter of 1 nm and lengths of up to micrometers. These intriguing molecules exhibit, depending on the exact atomic structure, either semiconducting or metallic behavior. This makes them ideal candidates for possible future molecular e

  17. Chemistry of Carbon Nanotubes for Everyone

    Science.gov (United States)

    Basu-Dutt, Sharmistha; Minus, Marilyn L.; Jain, Rahul; Nepal, Dhriti; Kumar, Satish

    2012-01-01

    Carbon nanotubes (CNTs) have the extraordinary potential to change our lives by improving existing products and enabling new ones. Current and future research and industrial workforce professionals are very likely to encounter some aspects of nanotechnology including CNT science and technology in their education or profession. The simple structure…

  18. Single electron-ics with carbon nanotubes

    NARCIS (Netherlands)

    Götz, G.T.J.

    2010-01-01

    We experimentally investigate Quantum Dots, formed in Carbon Nanotubes. The first part of this thesis deals with charge sensing on such quantum dots. The charge sensor is a metallic Single-electron-transistor, sensitive to the charge of a single electron on the quantum dot. We use this technique for

  19. Photothermal effects of immunologically modified carbon nanotubes

    Science.gov (United States)

    Griswold, Ryan T.; Henderson, Brock; Goddard, Jessica; Tan, Yongqiang; Hode, Tomas; Liu, Hong; Nordquist, Robert E.; Chen, Wei R.

    2013-02-01

    Carbon nanotubes have a great potential in the biomedical applications. To use carbon nanotubes in the treatment of cancer, we synthesized an immunologically modified single-walled carbon nanotube (SWNT) using a novel immunomodifier, glycated chitosan (GC), as an effective surfactant for SWNT. This new composition SWNT-GC was stable due to the strong non-covalent binding between SWNT and GC. The structure of SWNT-GC is presented in this report. The photothermal effect of SWNT-GC was investigated under irradiation of a near-infrared laser. SWNT-GC retained the optical properties of SWNT and the immunological properties of GC. Specifically, the SWNT-GC could selectively absorb a 980-nm light and induce desirable thermal effects in tissue culture and in animals. It could also induce tumor cell destruction, controlled by the laser settings and the doses of SWNT and GC. Laser+SWNT-GC treatment could also induce strong expression of heat shock proteins on the surface of tumor cells. This immunologically modified carbon nanotube could be used for selective photothermal interactions in noninvasive tumor treatment.

  20. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  1. A New Resistance Formulation for Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2008-01-01

    Full Text Available A new resistance formulation for carbon nanotubes is suggested using fractal approach. The new formulation is also valid for other nonmetal conductors including nerve fibers, conductive polymers, and molecular wires. Our theoretical prediction agrees well with experimental observation.

  2. A new mechanism for carbon nanotube evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Key discoveries on the growth mechanism of carbon nanotubes(CNTs) have recently been achieved by CAS researcher ZHU Zhenping and his research group at the State Key Laboratory of Coal Conversion,the Institute of Coal Chemistry of CAS, funded by the National Natural Science Foundation of China and the CAS Bairen Program.

  3. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.

    2015-01-01

    modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two....... In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli...

  4. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  5. Exploring the Immunotoxicity of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yu Yanmei

    2008-01-01

    Full Text Available Abstract Mass production of carbon nanotubes (CNTs and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation.

  6. Preparation of double-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; WEI Jinquan; CI Lijie; WU Dehai

    2004-01-01

    Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200℃; the catalyst vapor temperature is 80℃; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.

  7. Synthesis, characterisation and applications of coiled carbon nanotubes.

    Science.gov (United States)

    Hanus, Monica J; Harris, Andrew T

    2010-04-01

    Coiled carbon nanotubes are helical carbon structures formed when heptagonal and pentagonal rings are inserted into the hexagonal backbone of a 'straight' nanotube. Coiled carbon nanotubes have been reported with both regular and irregular helical structures. In this work the structure, growth mechanism(s), synthesis, properties and potential applications of coiled carbon nanotubes are reviewed. Published data suggests that coiled carbon nanotube synthesis occurs due to nonuniform extrusion of carbon from a catalyst surface. To date, coiled carbon nanotubes have been synthesised using catalyst modification techniques including: (i) the addition of S or P containing compounds during synthesis; (ii) the use of binary or ternary metal catalysts; (iii) the use of microwaves to create a local temperature gradient around individual catalyst particles and; (iv) the use of pH control during catalyst preparation. In most instances coiled carbon nanotubes are produced as a by-product; high yield and/or large-scale synthesis of coiled carbon nanotubes remains problematic. The qualitative analysis of coiled carbon nanotubes is currently hindered by the absence of specific characterisation data in the literature, e.g., oxidation profiles measured by thermogravimetric analysis and Raman spectra of pure coiled carbon nanotube samples.

  8. Carbon nanotube oscillators for applications as nanothermometers

    Science.gov (United States)

    Rahmat, Fainida; Thamwattana, Ngamta; Hill, James M.

    2010-10-01

    Nanostructures such as carbon nanotubes have a broad range of potential applications such as nanomotors, nano-oscillators and electromechanical nanothermometers, and a proper understanding of the molecular interaction between nanostructures is fundamentally important for these applications. In this paper, we determine the molecular interaction potential of interacting carbon nanotubes for two configurations. The first is a shuttle configuration involving a short outer tube sliding on a fixed inner tube, and the second involves a telescopic configuration for which an inner tube moves both in the region between two outer tubes and through the tubes themselves. For the first configuration we examine two cases of semi-infinite and finite inner carbon nanotubes. We employ the continuum approximation and the 6-12 Lennard-Jones potential for non-bonded molecules to determine the molecular interaction potential and the resulting van der Waals force, and we evaluate the resulting surface integrals numerically. We also investigate the acceptance condition and suction energy for the first configuration. Our results show that for the shuttle configuration with a semi-infinite inner tube, the suction energy is maximum when the difference between the outer and inner tubes radii is approximately 3.4 Å, which is the ideal inter-wall spacing between graphene sheets. For the finite inner tube, the potential energy is dependent on both the inner and outer tube lengths as well as on the inter-wall spacing. In terms of the oscillating frequency, the critical issue is the length of the moving outer tube, and the shorter the length, the higher the frequency. Further, for the telescopic configuration with two semi-infinite outer nanotubes of different radii, we find that the interaction energy also depends on the difference of the tube radii. For two outer nanotubes of equal radii we observe that the shorter the distance between the two outer nanotubes, the higher the magnitude of the

  9. Evolution of Electronic Circuits using Carbon Nanotube Composites

    Science.gov (United States)

    Massey, M. K.; Kotsialos, A.; Volpati, D.; Vissol-Gaudin, E.; Pearson, C.; Bowen, L.; Obara, B.; Zeze, D. A.; Groves, C.; Petty, M. C.

    2016-08-01

    Evolution-in-materio concerns the computer controlled manipulation of material systems using external stimuli to train or evolve the material to perform a useful function. In this paper we demonstrate the evolution of a disordered composite material, using voltages as the external stimuli, into a form where a simple computational problem can be solved. The material consists of single-walled carbon nanotubes suspended in liquid crystal; the nanotubes act as a conductive network, with the liquid crystal providing a host medium to allow the conductive network to reorganise when voltages are applied. We show that the application of electric fields under computer control results in a significant change in the material morphology, favouring the solution to a classification task.

  10. Evolution of Electronic Circuits using Carbon Nanotube Composites.

    Science.gov (United States)

    Massey, M K; Kotsialos, A; Volpati, D; Vissol-Gaudin, E; Pearson, C; Bowen, L; Obara, B; Zeze, D A; Groves, C; Petty, M C

    2016-08-25

    Evolution-in-materio concerns the computer controlled manipulation of material systems using external stimuli to train or evolve the material to perform a useful function. In this paper we demonstrate the evolution of a disordered composite material, using voltages as the external stimuli, into a form where a simple computational problem can be solved. The material consists of single-walled carbon nanotubes suspended in liquid crystal; the nanotubes act as a conductive network, with the liquid crystal providing a host medium to allow the conductive network to reorganise when voltages are applied. We show that the application of electric fields under computer control results in a significant change in the material morphology, favouring the solution to a classification task.

  11. Evolution of Electronic Circuits using Carbon Nanotube Composites

    Science.gov (United States)

    Massey, M. K.; Kotsialos, A.; Volpati, D.; Vissol-Gaudin, E.; Pearson, C.; Bowen, L.; Obara, B.; Zeze, D. A.; Groves, C.; Petty, M. C.

    2016-01-01

    Evolution-in-materio concerns the computer controlled manipulation of material systems using external stimuli to train or evolve the material to perform a useful function. In this paper we demonstrate the evolution of a disordered composite material, using voltages as the external stimuli, into a form where a simple computational problem can be solved. The material consists of single-walled carbon nanotubes suspended in liquid crystal; the nanotubes act as a conductive network, with the liquid crystal providing a host medium to allow the conductive network to reorganise when voltages are applied. We show that the application of electric fields under computer control results in a significant change in the material morphology, favouring the solution to a classification task. PMID:27558444

  12. Field-effect transistors assembled from functionalized carbon nanotubes

    OpenAIRE

    Klinke, Christian; Hannon, James B.; Afzali, Ali; Avouris, Phaedon

    2006-01-01

    We have fabricated field effect transistors from carbon nanotubes using a novel selective placement scheme. We use carbon nanotubes that are covalently bound to molecules containing hydroxamic acid functionality. The functionalized nanotubes bind strongly to basic metal oxide surfaces, but not to silicon dioxide. Upon annealing, the functionalization is removed, restoring the electronic properties of the nanotubes. The devices we have fabricated show excellent electrical characteristics.

  13. Porous carbon nanotubes: Molecular absorption, transport, and separation

    Science.gov (United States)

    Yzeiri, Irena; Patra, Niladri; Král, Petr

    2014-03-01

    We use classical molecular dynamics simulations to study nanofluidic properties of porous carbon nanotubes. We show that saturated water vapor condenses on the porous nanotubes, can be absorbed by them and transported in their interior. When these nanotubes are charged and placed in ionic solutions, they can selectively absorb ions in their interior and transport them. Porous carbon nanotubes can also be used as selective molecular sieves, as illustrated on a room temperature separation of benzene and ethanol.

  14. Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes

    DEFF Research Database (Denmark)

    Dimaki, Maria; Bøggild, Peter

    2008-01-01

    Networks of single-walled carbon nanotubes were assembled onto microelectrodes by dielectrophoresis. The dependence of the obtained networks on several assembly parameters such as bias voltage, field application time, frequency, electrode geometry and the nanotube solvent were investigated both...... structurally and electrically. Reproducible differences in morphological and electrical properties were observed for the parameters investigated. Application of a bias voltage above 10 V for more than 30 seconds with nanotubes in an SDS solution, resulted in dense networks with a relatively low resistance...... in the 10 k Omega regime. On the other hand, individual nanotubes and bundles were assembled with lower voltages applied for less than 10 seconds and with other nanotubes solutions. The experimental results were combined with theoretical calculations in order to find a geometry and voltage independent...

  15. Carbon nanotubes on a spider silk scaffold

    Science.gov (United States)

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-09-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

  16. Localization in single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrer, M.S.; Cohen, M.L.; Zettl, A.; Crespi, V.H.

    1998-08-15

    We demonstrate that in low temperature semiconductor-like regions the electrical resistance of single-walled carbon nanotube mats is highly nonlinear with a temperature-dependent threshold field for the onset of nonohmic conduction. The modest applied electric field completely suppresses the upturn in resistance and recovers metallic behavior over the entire temperature range 2.2K < T < 300K. The transport data indicate low-temperature localization of charge carriers arise from disorder on the nanotube bundles themselves and not from granularity caused by weak interbundle connections. The temperature-independent localization radius a is determined to be approximately 330 nm.

  17. A new method of preparing single-walled carbon nanotubes

    OpenAIRE

    Vivekchang, SRC; Govindaraj, A.

    2003-01-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized single-walled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spect...

  18. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    OpenAIRE

    Giuseppe Cirillo; Silke Hampel; Umile Gianfranco Spizzirri; Ortensia Ilaria Parisi; Nevio Picci; Francesca Iemma

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites i...

  19. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    S R C Vivekchand; A Govindaraj

    2003-10-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

  20. Light-scattering and dispersion behavior of multiwalled carbon nanotubes

    Science.gov (United States)

    Saltiel, Craig; Manickavasagam, Siva; Pinar Mengüc, M.; Andrews, Rodney

    2005-08-01

    Elliptically polarized light-scattering measurements were performed to investigate the dispersion behavior of multiwalled carbon nanotubes (MWNT). Xylene- and pyridine-derived MWNT powders were dispersed in water and ethanol in separate optic cells and allowed to sit undisturbed over a two-week time period after probe sonication. Continuous light-scattering measurements taken between scattering angles of 10-170 deg and repeated over several days showed that the nanotubes formed fractal-like networks. The pyridine-derived MWNTs showed greater dispersion variation over time, tending to aggregate and clump much faster than the xylene-derived tubes. The water suspensions appeared much more stable than the ethanol suspensions, which transformed into nonfractal morphology after a few hours. We relate the dispersion stability to size and fringe patterns on the outer surface of the nanotubes. Measured values of fractal dimension were distinctly lower than those in previous studies of single-walled carbon nanotubes. Profiles of both diagonal and off-diagonal scattering matrix elements are presented.

  1. Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection

    Science.gov (United States)

    2009-02-01

    Carbon Nanotube Functionalization /Doping Polyvinylpyrrolidone (PVP) A) p-Doping C) Polymer Wrapping Model B) n-Doping Polyethyleneimine ( PEI ) SWCNT Paint...fluorine-containing) groups functions as the barrier layer Multilayer Smart Carbon Nanotube Coating Insoluble polymer layer top coating -PMMA Substrate...Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection Zafar Iqbal Department of Chemistry and Environmental Science New

  2. Functionalization of vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Eloise Van Hooijdonk

    2013-02-01

    Full Text Available This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs. The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  3. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.

    Science.gov (United States)

    Martinelli, Valentina; Cellot, Giada; Toma, Francesca Maria; Long, Carlin S; Caldwell, John H; Zentilin, Lorena; Giacca, Mauro; Turco, Antonio; Prato, Maurizio; Ballerini, Laura; Mestroni, Luisa

    2013-07-23

    Myocardial tissue engineering currently represents one of the most realistic strategies for cardiac repair. We have recently discovered the ability of carbon nanotube scaffolds to promote cell division and maturation in cardiomyocytes. Here, we test the hypothesis that carbon nanotube scaffolds promote cardiomyocyte growth and maturation by altering the gene expression program, implementing the cell electrophysiological properties and improving networking and maturation of functional syncytia. In our study, we combine microscopy, biological and electrophysiological methodologies, and calcium imaging, to verify whether neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes acquire a physiologically more mature phenotype compared to control (gelatin). We show that the carbon nanotube substrate stimulates the induction of a gene expression profile characteristic of terminal differentiation and physiological growth, with a 2-fold increase of α-myosin heavy chain (P carbon nanotubes appear to exert a protective effect against the pathologic stimulus of phenylephrine. Finally, cardiomyocytes on carbon nanotubes demonstrate a more mature electrophysiological phenotype of syncytia and intracellular calcium signaling. Thus, carbon nanotubes interacting with cardiomyocytes have the ability to promote physiological growth and functional maturation. These properties are unique in the current vexing field of tissue engineering, and offer unprecedented perspectives in the development of innovative therapies for cardiac repair.

  4. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation

    Science.gov (United States)

    Kagan, Valerian E.; Konduru, Nagarjun V.; Feng, Weihong; Allen, Brett L.; Conroy, Jennifer; Volkov, Yuri; Vlasova, Irina I.; Belikova, Natalia A.; Yanamala, Naveena; Kapralov, Alexander; Tyurina, Yulia Y.; Shi, Jingwen; Kisin, Elena R.; Murray, Ashley R.; Franks, Jonathan; Stolz, Donna; Gou, Pingping; Klein-Seetharaman, Judith; Fadeel, Bengt; Star, Alexander; Shvedova, Anna A.

    2010-05-01

    We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.

  5. Adsorption of Gases on Carbon Nanotubes

    Science.gov (United States)

    Mbaye, Mamadou Thiao

    2014-01-01

    This research focus in studying the interaction between various classical and quantum gases with novel carbon nanostructures, mainly carbon nanotubes (CNTs). Since their discovery by the Japanese physicist Sumio Iijima [1] carbon nanotubes have, experimentally and theoretically, been subjected to many scientific investigation. Studies of adsorption on CNTs are particularly directed toward their better usage in gas storage, gas separation, catalyst, drug delivery, and water purification. We explore the adsorption of different gases entrapped in a single, double, or multi-bundles of CNTs using computer simulations. The first system we investigate consists of Ar and Kr films adsorbed on zigzag or armchair nanotubes. Our simulations revealed that Kr atoms on intermediate size zigzag NTs undergo two phase transitions: A liquid-vapor (L→V), and liquid-commensurate (L→CS) with a fractional coverage of one Kr atoms adsorbed for every four carbon atoms. For Ar on zigzag and armchair NTs, the only transition observed is a L→V. In the second problem, we explore the adsorption of CO2 molecules in a nanotube bundle and calculate the isosteric heat of adsorption of the entrapped molecules within the groove. We observed that the lower the temperature, the higher the isosteric of adsorption. Last, we investigate the adsorption of hydrogen, Helium, and Neon gases on the groove site of two parallel nanotubes. At low temperature, the transverse motion on the plane perpendicular to the tubes' axis is frozen out and as a consequence, the heat capacity is reduced to 1/2. At high temperature, the atoms gain more degree of freedom and as a consequence the heat capacity is 5/2.

  6. Purification of Carbon Nanotubes by Proton Irradiation

    Science.gov (United States)

    Kim, Euikwoun; Lee, Jeonggil; Lee, Younman; Jeon, Jaekyun; Kim, Jae-Yong; Kim, Jeongha; Shin, Kwanwoo; Youn, Sang-Pil; Kim, Kyeryung

    2007-10-01

    Carbon nanotubes (CNTs) exhibit variety of superior physical properties including well-defined nanodimensional structure, high electrical and thermal conductivity, and good mechanical stability against external irradiations. Further, a large specific surface area per unit weight suggests that carbon nanotubes could be excellent candidates for gas storage, purification, and separation. However, the practical application of CNTs is limited mainly due to the metallic impurities that were used as a catalyst during the fabrication process. Here, we irradiated CNTs by using high energy proton beams (35.7 MeV at the Bragg Peak). Interestingly, metallic impurities such as Fe, Ni, Co and chunk of amorphous carbon that were attached on the surface of CNTs were completely removed after the irradiation. The mechanism of such the purification process is not understood. The possible speculation will be demonstrated combined with the changes of physical properties including the appearance of the magnetism after the irradiation.

  7. Mechanical properties of functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z Q; Liu, B; Chen, Y L; Hwang, K C [FML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Jiang, H [Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287 (United States); Huang, Y [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208 (United States)], E-mail: liubin@tsinghua.edu.cn, E-mail: y-huang@northwestern.edu

    2008-10-01

    Carbon nanotubes (CNTs) used to reinforce polymer matrix composites are functionalized to form covalent bonds with the polymer in order to enhance the CNT/polymer interfaces. These bonds destroy the perfect atomic structures of a CNT and degrade its mechanical properties. We use atomistic simulations to study the effect of hydrogenization on the mechanical properties of single-wall carbon nanotubes. The elastic modulus of CNTs gradually decreases with the increasing functionalization (percentage of C-H bonds). However, both the strength and ductility drop sharply at a small percentage of functionalization, reflecting their sensitivity to C-H bonds. The cluster C-H bonds forming two rings leads to a significant reduction in the strength and ductility. The effect of carbonization has essentially the same effect as hydrogenization.

  8. On the Nanoindentation of the Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Petre P. Teodorescu

    2010-01-01

    Full Text Available A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would initiate in the outermost shell, when nanotubes are short. The nanoindentation technique is simulated for the axially compressed of individual nanotubes, in order to evaluate the load-unloaded-displacement, the curve critical buckling and the appropriate values for local Lamé constants.

  9. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  10. Carbon Micronymphaea: Graphene on Vertically Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Jong Won Choi

    2013-01-01

    Full Text Available This paper describes the morphology of carbon nanomaterials such as carbon nanotube (CNT, graphene, and their hybrid structure under various operating conditions during a one-step synthesis via plasma-enhanced chemical vapor deposition (PECVD. We focus on the synthetic aspects of carbon hybrid material composed of heteroepitaxially grown graphene on top of a vertical array of carbon nanotubes, called carbon micronymphaea. We characterize the structural features of this unique nanocomposite by uses of electron microscopy and micro-Raman spectroscopy. We observe carbon nanofibers, poorly aligned and well-aligned vertical arrays of CNT sequentially as the growth temperature increases, while we always discover the carbon hybrids, called carbon micronymphaea, at specific cooling rate of 15°C/s, which is optimal for the carbon precipitation from the Ni nanoparticles in this study. We expect one-pot synthesized graphene-on-nanotube hybrid structure poses great potential for applications that demand ultrahigh surface-to-volume ratios with intact graphitic nature and directional electronic and thermal transports.

  11. Multifunctional Carbon Nanotube Fiber Composites

    Science.gov (United States)

    2007-11-02

    coagulant. The second process (patent pending) is novel in that it directly results polymer-free nanotube fibers without using a super acid spinning...chemical and electrochemical stability, hydrophobicity and viscosity . The generic structure, chemical name and abbreviations for the most common ions...modification procedure involved the electrochemical infiltration of small amounts of the polypyrrole/p-toluene sulphonate (PPy/PTS) conducting polymer

  12. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  13. Filled and empty states of carbon nanotubes in water: Dependence on nanotube diameter, wall thickness and dispersion interactions

    Indian Academy of Sciences (India)

    Malay Rana; Amalendu Chandra

    2007-09-01

    We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube as a solute to investigate the filling and emptying of the nanotube and also the modifications of the density and hydrogen bond distributions of water inside and also in the vicinity of the outer surfaces of the nanotube. Our primary goal is to look at the effects of varying nanotube diameter, wall thickness and also solute-solvent interactions on the solvent structure in the confined region also near the outer surfaces of the solute. The thickness of the walls is varied by considering single and multi-walled nanotubes and the interaction potential is varied by tuning the attractive strength of the 12-6 pair interaction potential between a carbon atom of the nanotubes and a water molecule. The calculations are done for many different values of the tuning parameter ranging from fully Lennard-Jones to pure repulsive pair interactions. It is found that both the solvation characteristics and hydrogen bond distributions can depend rather strongly on the strength of the attractive part of the solute-water interaction potential. The thickness of the nanotube wall, however, is found to have only minor effects on the density profiles, hydrogen bond network and the wetting characteristics. This indicates that the long range electrostatic interactions between water molecules inside and on the outer side of the nanotube do not make any significant contribution to the overall solvation structure of these hydrophobic solutes. The solvation characteristics are primarily determined by the balance between the loss of energy due to hydrogen bond network disruption, cavity repulsion potential and offset of the same by attractive component of the solute-water interactions. Our studies with different system sizes show that the essential features of wetting and dewetting characteristics of narrow nanotubes for different diameter and interaction potentials are also present in

  14. Metal-enhanced fluorescence of carbon nanotubes.

    Science.gov (United States)

    Hong, Guosong; Tabakman, Scott M; Welsher, Kevin; Wang, Hailiang; Wang, Xinran; Dai, Hongjie

    2010-11-17

    The photoluminescence (PL) quantum yield of single-walled carbon nanotubes (SWNTs) is relatively low, with various quenching effects by metallic species reported in the literature. Here, we report the first case of metal enhanced fluorescence (MEF) of surfactant-coated carbon nanotubes on nanostructured gold substrates. The photoluminescence quantum yield of SWNTs is observed to be enhanced more than 10-fold. The dependence of fluorescence enhancement on metal-nanotube distance and on the surface plasmon resonance (SPR) of the gold substrate for various SWNT chiralities is measured to reveal the mechanism of enhancement. Surfactant-coated SWNTs in direct contact with metal exhibit strong MEF without quenching, suggesting a small quenching distance for SWNTs on the order of the van der Waals distance, beyond which the intrinsically fast nonradiative decay rate in nanotubes is little enhanced by metal. The metal enhanced fluorescence of SWNTs is attributed to radiative lifetime shortening through resonance coupling of SWNT emission to the reradiating dipolar plasmonic modes in the metal.

  15. Spectroscopy of Optical Excitations in Carbon Nanotubes

    Science.gov (United States)

    Ma, Yingzhong

    2006-03-01

    Understanding the optical spectra and electronic excited state dynamics of carbon naotubes is important both for fundamental research and a wide variety of potential applications. In this presentation, we will report the results of a systematic study on semiconducting single-walled carbon nanotubes (SWNTs) obtained by utilizing complementary femtosecond spectroscopic techniques, including fluorescence up-conversion, frequency-resolved transient absorption, and three-pulse photon echo peakshift (3PEPS) spectroscopy. Our efforts have focused on optically selective detection of the spectra and dynamics associated with structurally distinct semiconducting SWNT species. Using individual nanotube enriched micelle-dispersed SWNT preparations, in combination with resonant excitation and detection, has enabled us to independently access selected species, such as the (8,3), (6,5), (7,5), (11,0), (7,6) and (9,5) nanotubes. We will discuss the following topics: (1) the excitonic nature of the elementary excitation and its unambiguous identification from direct determination of the exciton binding energy for a selected semiconducting nanotube, the (8,3) tube; (2) the spectroscopic and dynamical signatures of exciton-exciton annihilation and its predominant role in governing ultrafast excited state relaxation; (3) the annihilation-concomitant exciton dissociation and the spectroscopic and dynamic features of the resulting electron-hole continuum; (4) timescales characterizing the ultrafast thermalization processes. In addition, we will demonstrate the power of 3PEPS spectroscopy to elucidate the spectral properties and dynamics of SWNTs. This work was supported by the NSF.

  16. Developing Carbon Nanotube Standards at NASA

    Science.gov (United States)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  17. Remote Joule heating by a carbon nanotube

    Science.gov (United States)

    Baloch, Kamal H.; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-05-01

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  18. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  19. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    Science.gov (United States)

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted.

  20. CARBON NANOTUBES: AN APPROACH TO NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. H. Alai et al.

    2012-01-01

    Full Text Available Carbon nanotubes are cylindrical carbon molecules have novel properties, making them potentially useful in many applications in nanotechnology, electronics, optics, and other fields of material science as well as potential uses in architectural fields. They have unique electronic, mechanical, optical and chemical properties that make them good candidates for a wide variety of applications, including drug transporters, new therapeutics, delivery systems and diagnostics. Their unique surface area, stiffness, strength and resilience have led to much excitement in the field of pharmacy. Nanotubes are categorized as single-walled nanotubes, multiple walled nanotubes. Various techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, chemical vapor deposition. They can pass through membranes, carrying therapeutic drugs, vaccines and nucleic acids deep into the cell to targets previously unreachable. Purification of the tubes can be divided into a couple of main techniques: oxidation, acid treatment, annealing, sonication, filtering and functionalization techniques. The main problem of insolubility in aqueous media has been solved by developing a synthetic protocol that allows highly water-soluble carbon NTs to be obtained. The modifications are done to improve efficiency of carbon nanotubes by formulating luminescent carbon nanotubes, ultrathin carbon nanoneedles, magnetically guided nanotubes. The application of carbon nanotube in tissue engineering, drug carrier release system, wound healing, in cancer treatment and as biosensor. Researchers have recently developed a new approach to Boron Neutron Capture Therapy in the treatment of cancer using substituted Carborane-Appended Water-Soluble single-wall carbon nanotubes.

  1. Van der Waals interaction between two crossed carbon nanotubes

    OpenAIRE

    Zhbanov, Alexander I.; Pogorelov, Evgeny G.; Chang, Yia-Chung

    2008-01-01

    The analytical expressions for the van der Waals potential energy and force between two crossed carbon nanotubes are presented. The Lennard-Jones potential for two carbon atoms and the method of the smeared out approximation suggested by L.A. Girifalco were used. The exact formula is expressed in terms of rational and elliptical functions. The potential and force for carbon nanotubes were calculated. The uniform potential curves for single- and multi- wall nanotubes were plotted. The equilibr...

  2. Raman spectroscopy on carbon nanotubes at high pressure

    OpenAIRE

    Loa, I.

    2003-01-01

    Raman spectroscopy has been the most extensively employed method to study carbon nanotubes at high pressures. This review covers reversible pressure-induced changes of the lattice dynamics and structure of single- and multi-wall carbon nanotubes as well as irreversible transformations induced by high pressures. The interplay of covalent and van-der-Waals bonding in single-wall nanotube bundles and a structural distortion near 2 GPa are discussed in detail. Attempts of transforming carbon nano...

  3. Varied morphology carbon nanotubes and method for their manufacture

    Science.gov (United States)

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  4. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  5. A statistical mechanics model of carbon nanotube macro-films

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Carbon nanotube macro-films are two-dimensional films with micrometer thickness and centimeter by centimeter in-plane dimension.These carbon nanotube macroscopic assemblies have attracted significant attention from the material and mechanics communities recently because they can be easily handled and tailored to meet specific engineering needs.This paper reports the experimental methods on the preparation and characterization of single-walled carbon nanotube macro-films,and a statistical mechanics model on ...

  6. Simulations of Electrophoretic RNA Transport Through Transmembrane Carbon Nanotubes

    OpenAIRE

    Zimmerli, Urs; Koumoutsakos, Petros

    2008-01-01

    The study of interactions between carbon nanotubes and cellular components, such as membranes and biomolecules, is fundamental for the rational design of nanodevices interfacing with biological systems. In this work, we use molecular dynamics simulations to study the electrophoretic transport of RNA through carbon nanotubes embedded in membranes. Decorated and naked carbon nanotubes are inserted into a dodecane membrane and a dimyristoylphosphatidylcholine lipid bilayer, and the system is sub...

  7. Continuous Growth of Vertically Aligned Carbon Nanotubes Forests

    OpenAIRE

    Guzman de Villoria, Roberto; Wardle, Brian L.

    2011-01-01

    Vertically aligned carbon nanotubes are one of the most promising materials due their numerous applications in flexible electronic devices, biosensors and multifunctional aircraft materials, among others. However, the costly production of aligned carbon nanotubes, generally in a batch process, prevents their commercial use. For the first time, a controlled process to grow aligned carbon nanotubes in a continuous manner is presented. Uniform growth is achieved using 2D and 3D substrates. A sig...

  8. Nanoscale Continuum Modelling of Carbon Nanotubes by Polyhedral Finite Elements

    Directory of Open Access Journals (Sweden)

    Logah Perumal

    2016-01-01

    Full Text Available As the geometry of a cell of carbon nanotube is hexagonal, a new approach is presented in modelling of single-walled carbon nanotubes using polyhedral finite elements. Effect of varying length, diameter, and thickness of carbon nanotubes on Young’s modulus is studied. Both armchair and zigzag configurations are modelled and simulated in Mathematica. Results from current approach found good agreement with the other published data.

  9. A Carbon Nanotube Cable for a Space Elevator

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…

  10. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...

  11. Electrostatic sensing and electrochemistry with single carbon nanotubes

    NARCIS (Netherlands)

    Heller, I.

    2009-01-01

    This thesis describes the experimental study of devices based on single carbon nanotubes in the context of (bio)sensing in aqueous solutions. Carbon nanotubes are cylindrical molecules of sp2- carbon, about one nanometer in diameter and typically several micrometers long, which have semiconducting o

  12. Printed Carbon Nanotube Electronics and Sensor Systems.

    Science.gov (United States)

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications.

  13. Aerosol printed carbon nanotube strain sensor

    Science.gov (United States)

    Thompson, Bradley; Yoon, Hwan-Sik

    2012-04-01

    In recent years, printed electronics have received attention as a method to produce low-cost macro electronics on flexible substrates. In this regard, inkjet and aerosol printing have been the primary printing methods for producing passive electrical components, transistors, and a number of sensors. In this research, a custom aerosol printer was utilized to create a strain sensor capable of measuring static and dynamic strain. The proposed sensor was created by aerosol printing a multiwall carbon nanotube solution onto an aluminum beam covered with an insulating layer. After printing the carbon nanotube-based sensor, the sensor was tested under quasi-static and vibration strain conditions, and the results are presented. The results show that the printed sensor could potentially serve as an effective method for measuring dynamic strain of structural components.

  14. Advanced technology for functionalization of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Lingjie Meng; Chuanlong Fu; Qinghua Lu

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) has attracted considerable interest in the fields of physics, chemistry, material science and biology. The functionalized CNTs exhibit improved properties enabling facile fabrication of novel nanomaterials and nanodevices. Most of the functionalization approaches developed at present could be categorized into the covalent attachment of functional groups and the non-covalent adsorption of various functional molecules onto the surface of CNTs. This review highlights recent development and our work in functionalization of carbon nanotubes, leading to bio-compatible CNTs, fluorescent CNTs and transition metal func-tionalizcd CNTs. These novel methods possess advantages such as simplified technical procedures and reduced cost of novel nanoma-terials and nanodcvices fabrication.

  15. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  16. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    Science.gov (United States)

    Li, Jun; Meyyappan, M.

    2008-01-01

    , so that a large stimulation current could be applied at a micron-scale region without exhausting the redox ingredients. f) Carbon nanotube array is more compatible with the three-dimensional network of tissues. Particularly, a better electrical-neural interface can be formed. g) A carbon nanotube array inlaid in insulating materials with only the ends exposed is an extremely sensitive electro-analysis tool that can measure the local neurotransmitter signal at extremely high sensitivity and temporal resolution.

  17. Computation of powder diffraction patterns for carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Koloczek, J.; Burian, A

    2004-11-17

    An approach based on the Debye equations has been developed to compute the powder diffraction patterns of single-wall carbon nanotubes (CNs). A set of Cartesian coordinates of atoms which form nanotubes has been generated yielding interatomic distances. This leads to direct calculations of the kinematical diffraction profiles for nanotubes of arbitrary helicity and size.

  18. Excited State Dynamics in Carbon Nanotubes

    Science.gov (United States)

    Miyamoto, Yoshiyuki

    2004-03-01

    Carbon nanotube, one of the most promising materials for nano-technology, still suffers from its imperfection in crystalline structure that will make performance of nanotube behind theoretical limit. From the first-principles simulations, I propose efficient methods to overcome the imperfection. I show that photo-induced ion dynamics can (1) identify defects in nanotubes, (2) stabilize defected nanotubes, and (3) purify contaminated nanotubes. All of these methods can be alternative to conventional heat treatments and will be important techniques for realizing nanotube-devices. Ion dynamics under electronic excitation has been simulated with use of the computer code FPSEID (First-Principles Simulation tool for Electron Ion Dynamics) [1], which combines the time-dependent density functional method [2] to classical molecular dynamics. This very challenging approach is time-consuming but can automatically treat the level alternation of differently occupied states, and can observe initiation of non-adiabatic decay of excitation. The time-dependent Kohn-Sham equation has been solved by using the Suzuki-Trotter split operator method [3], which is a numerically stable method being suitable for plane wave basis, non-local pseudopotentials, and parallel computing. This work has been done in collaboration with Prof. Angel Rubio, Prof. David Tomanek, Dr. Savas Berber and Mina Yoon. Most of present calculations have been done by using the SX5 Vector-Parallel system in the NEC Fuchu-plant, and the Earth Simulator in Yokohama Japan. [1] O. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, B66 089901(E) (2001) [2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). [3] M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992).

  19. Carbon Nanotubes by CVD and Applications

    Science.gov (United States)

    Cassell, Alan; Delzeit, Lance; Nguyen, Cattien; Stevens, Ramsey; Han, Jie; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Carbon nanotube (CNT) exhibits extraordinary mechanical and unique electronic properties and offers significant potential for structural, sensor, and nanoelectronics applications. An overview of CNT, growth methods, properties and applications is provided. Single-wall, and multi-wall CNTs have been grown by chemical vapor deposition. Catalyst development and optimization has been accomplished using combinatorial optimization methods. CNT has also been grown from the tips of silicon cantilevers for use in atomic force microscopy.

  20. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  1. Torsional electromechanical systems based on carbon nanotubes.

    Science.gov (United States)

    Hall, A R; Paulson, S; Cui, T; Lu, J P; Qin, L-C; Washburn, S

    2012-11-01

    Carbon nanotubes (CNTs) are among the most highly studied nanomaterials due to their unique (and intertwined) mechanical and electrical properties. Recent advances in fabrication have allowed devices to be fabricated that are capable of applying a twisting force to individual CNTs while measuring mechanical and electrical response. Here, we review major results from this emerging field of study, revealing new properties of the material itself and opening possibilities for advances in future devices.

  2. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang; Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  3. Octagonal Defects at Carbon Nanotube Junctions

    Science.gov (United States)

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  4. Air Brush Fabricated Carbon Nanotube Supercapacitor Electrodes

    Science.gov (United States)

    2010-09-01

    dispersant is not contributing to the capacitance. The electrochemical, cyclic voltametry , measurements were made using a Keithley 4200 Semiconductor...reference electrode. The cyclic voltamogram (CV) was performed in potential ranges of anywhere between –0.9–0.5 V at scan rates ranging from 1–100 mV...Symbols, Acronyms, and Abbreviations AL aluminum CNT carbon nanotube Cu copper CV cyclic voltamogram ESEM environmental scanning electron microscope

  5. Nanoparticle Decoration of Carbon Nanotubes by Sputtering

    Science.gov (United States)

    2013-02-01

    on metal morphology, as does diffusion activation energy. Comparison of the metal– graphene interfa- cial energy to the surface energy of the metal...Nanotechnology 2009;20:375501–11. [17] O. Yaglioglu, Thesis . Massachusetts Institute of Technology, Department of Mechanical Engineering; 2007. [18] Venables...25] Osswald S, Flahaut E, Ye H, Gogotsi Y. Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation . Chem Phys Lett

  6. Thermophoresis of water droplets inside carbon nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2016-01-01

    Carbon Nanotubes(CNTs) offer unique possibilities as fluid conduits with applications ranging from lab on a chip devices to encapsulation media for drug delivery. CNTs feature high mechanical strength, chemical and thermalstability and biocompatibility therefore they are promising candidates...... for nanodevice fabrication. Thermal gradients have been proposed as mechanism to drive particles, fullerenes and droplets inside CNTs. Here, by conducting Molecular Dynamics (MD) simulations, we study thermophoresis of water droplets inside CNTs. We systematically change the size of the droplets, the axial...

  7. Defect-induced loading of Pt nanoparticles on carbon nanotubes

    Science.gov (United States)

    Kim, Sung Jin; Park, Yong Jin; Ra, Eun Ju; Kim, Ki Kang; An, Kay Hyeok; Lee, Young Hee; Choi, Jae Young; Park, Chan Ho; Doo, Seok Kwang; Park, Min Ho; Yang, Cheol Woong

    2007-01-01

    Carbon nanotubes-supported Pt nanoparticles were loaded using a microwave oven on the defective carbon nanotubes generated by an additional oxidant during acid treatment. The authors' Raman spectra and x-ray diffraction analysis demonstrated that defects created during oxidation and microwave treatment acted as nucleation seeds for Pt adsorption. The generated Pt nanoparticles had the size distributions of 2-3nm and were uniformly distributed on the defects of carbon nanotubes. The authors' density functional calculations showed that the adsorption of Pt atom on the vacancy of nanotube was significantly stronger by s-p hybridization with carbon atoms near the defect site.

  8. Role of carbon nanotubes in electroanalytical chemistry: a review.

    Science.gov (United States)

    Agüí, Lourdes; Yáñez-Sedeño, Paloma; Pingarrón, José M

    2008-08-01

    This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.

  9. Carbon nanotubes from synthesis to in vivo biomedical applications.

    Science.gov (United States)

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future.

  10. Conformational changes of fibrinogen in dispersed carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Park SJ

    2012-08-01

    Full Text Available Sung Jean Park,1 Dongwoo Khang21College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea; 2School of Nano and Advanced Materials Science Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South KoreaAbstract: The conformational changes of plasma protein structures in response to carbon nanotubes are critical for determining the nanotoxicity and blood coagulation effects of carbon nanotubes. In this study, we identified that the functional intensity of carboxyl groups on carbon nanotubes, which correspond to the water dispersity or hydrophilicity of carbon nanotubes, can induce conformational changes in the fibrinogen domains. Also, elevation of carbon nanotube density can alter the secondary structures (ie, helices and beta sheets of fibrinogen. Furthermore, fibrinogen that had been in contact with the nanoparticle material demonstrated a different pattern of heat denaturation compared with free fibrinogen as a result of a variation in hydrophilicity and concentration of carbon nanotubes. Considering the importance of interactions between carbon nanotubes and plasma proteins in the drug delivery system, this study elucidated the correlation between nanoscale physiochemical material properties of carbon nanotubes and associated structural changes in fibrinogen.Keywords: carbon nanotubes, fibrinogen, nanotoxicity, conformational change, denaturation

  11. Development of matrix photoreceivers based on carbon nanotubes array

    Science.gov (United States)

    Blagov, E. V.; Gerasimenko, A. Y.; Dudin, A. A.; Ichkitidze, L. P.; Kitsyuk, E. P.; Orlov, A. P.; Pavlov, A. A.; Polokhin, A. A.; Shaman, Yu. P.

    2016-04-01

    The technology of production of matrix photoreceivers based on carbon nanotubes (CNTs) consisting of 16 sensitive elements was developed. Working wavelength range, performance and sensitivity were studied.

  12. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  13. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  14. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  15. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

    Science.gov (United States)

    Fabbro, Alessandra; Sucapane, Antonietta; Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.

  16. A carbon nanotube based ammonia sensor on cotton textile

    Science.gov (United States)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  17. Carbon Nanotubes:from Nanoscale Building Blocks to Macrostructures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Carbon nanotubes (CNTs) have fascinating properties.In order to use these novel one-dimensional structures for applications such as in nano-electronic,nano-mechanical and electrochemical energy storage device and as structural elements in various composites,the structure of nanotubes needs to be tailored and various architectures and macroscale assembles have to be configured using nanotube building blocks.Nanotube macrostructures are macroscopically organized groups of CNTs,which are expecte...

  18. Electronic transport properties of metallic single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    曹觉先; 颜晓红; 肖杨; 丁建文

    2003-01-01

    We have calculated the differential conductance of metallic carbon nanotubes by the scatter matrix method. It is found that the differential conductance of metallic nanotube-based devices oscillates as a function of the bias voltage between the two leads and the gate voltage. Oscillation period T is directly proportional to the reciprocal of nanotube length. In addition, we found that electronic transport properties are sensitive to variation of the length of the nanotube.

  19. Carbon nanotubes linked with pitavastatin: synthesis and characterisation.

    Science.gov (United States)

    Borowiak-Palen, E; Skupin, P; Kruszynska, M; Sobotta, L; Mielcarek, J

    2011-04-01

    The paper presents a study on functionalisation of multi-walled carbon nanotubes in the area of lattice defects and an attempt to bind the nanotubes with pitavastatin. Carbon nanotubes were synthesised by alcohol-chemical vapour deposition in the presence of the catalyst Fe-Co/MgO. The nanotubes were purified and the product was subjected to chemical functionalisation. Functional groups were introduced in the reaction of the purified nanotubes with thionyl chloride to obtain acidic chlorides linked to pitavastatin. The properties and structure of the nanotubes were analysed by FT-IR and Raman spectroscopies, transmission electron microscopy and liquid chromatography coupled with mass spectrometry. Photochemical stability of pitavastatin linked with carbon nanotubes has been found to be increased.

  20. Fluid flow in carbon nanotubes and nanopipes

    Science.gov (United States)

    Whitby, M.; Quirke, N.

    2007-02-01

    Nanoscale carbon tubes and pipes can be readily fabricated using self-assembly techniques and they have useful electrical, optical and mechanical properties. The transport of liquids along their central pores is now of considerable interest both for testing classical theories of fluid flow at the nanoscale and for potential nanofluidic device applications. In this review we consider evidence for novel fluid flow in carbon nanotubes and pipes that approaches frictionless transport. Methods for controlling such flow and for creating functional device architectures are described and possible applications are discussed.

  1. Terahertz Response of Carbon Nanotubes and Graphene

    Science.gov (United States)

    Kawano, Yukio

    2015-12-01

    The terahertz (THz) research field is expected to serve as a new platform for studying low-energy excitation in solids and higher-order structures in large molecules, and for realizing applications in medicine, agriculture, security, and high-capacity communications. The THz frequency region, however, is located between the electronic and photonic bands, hampering the development of basic components like detectors and sources. This article presents an overview of basic background information about THz waves and THz detector applications and describes the THz response of carbon-based low-dimensional systems, such as single carbon nanotubes (CNT), CNT-array films, and graphene.

  2. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Jarillo-Herrero, P.D.

    2005-01-01

    Electronic transport through nanostructures can be very different from trans- port in macroscopic conductors, especially at low temperatures. Carbon na- notubes are tiny cylinders made of carbon atoms. Their remarkable electronic and mechanical properties, together with their small size (a few nm in

  3. Self-assembly of single-walled carbon nanotubes into multiwalled carbon nanotubes in water: molecular dynamics simulations.

    Science.gov (United States)

    Zou, Jian; Ji, Baohua; Feng, Xi-Qiao; Gao, Huajian

    2006-03-01

    We report discoveries from a series of molecular dynamics simulations that single-walled carbon nanotubes, with different diameters, lengths, and chiralities, can coaxially self-assemble into multiwalled carbon nanotubes in water via spontaneous insertion of smaller tubes into larger ones. The assembly process is tube-size-dependent, and the driving force is primarily the intertube van der Waals interactions. The simulations also suggest that a multiwalled carbon nanotube may be separated into single-walled carbon nanotubes under appropriate solvent conditions. This study suggests possible bottom-up self-assembly routes for the fabrication of novel nanodevices and systems.

  4. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  5. Nanotube substituted source/drain regions for carbon nanotube transistors for VLSI circuits.

    Science.gov (United States)

    Dutta, Shibesh; Shankar, Balakrishnan

    2011-12-01

    Aggressive scaling of silicon technology over the years has pushed CMOS devices to their fundamental limits. Pioneering works on carbon nanotube during the last decade possessing exceptional electrical properties have provided an intriguing solution for high performance integrated circuits. So far, at best, carbon nanotubes have been considered only for the channel, with metal electrodes being used for source/drain. Here, alternative schemes of 'All-Nanotube' transistor are presented where even the transistor components are derived from carbon nanotubes which hold the promise for smaller, faster, denser and more power efficient electronics.

  6. Carbon nanotube-based functional materials for optical limiting.

    Science.gov (United States)

    Chen, Yu; Lin, Ying; Liu, Ying; Doyle, James; He, Nan; Zhuang, Xiaodong; Bai, Jinrui; Blau, Werner J

    2007-01-01

    Optical limiting is an important application of nonlinear optics, useful for the protection of human eyes, optical elements, and optical sensors from intense laser pulses. An optical limiter is such a device that strongly attenuates high intensity light and potentially damaging light such as focused laser beams, whilst allowing for the high transmission of ambient light. Optical limiting properties of carbon nanotube suspensions, solubilized carbon nanotubes, small molecules doped carbon nanotubes and polymer/carbon nanotube composites have been reviewed. The optical limiting responses of carbon nanotube suspensions are shown to be dominated by nonlinear scattering as a result of thermally induced solvent-bubble formation and sublimation of the nanotubes, while the solubilized carbon nanotubes optically limit through nonlinear absorption mechanism and exhibit significant solution-concentration-dependent optical limiting responses. In the former case the optical limiting results are independent of nanotube concentrations at the same linear transmittance as that of the solubilized systems. Many efforts have been invested into the research of polymer/carbon nanotube composites in an attempt to allow for the fabrication of films required for the use of nanotubes in a real optical limiting application. The higher carbon nanotube content samples block the incident light more effectively at higher incident energy densities or intensities. The optical limiting mechanism of these composite materials is quite complicated. Besides nonlinear scattering contribution to the optical limiting, there may also be other contributions e.g., nonlinear absorption, nonlinear refraction, electronic absorption and others to the optical limiting. Further improvements in the optical limiting efficiency of the composites and in the dispersion and alignment properties of carbon nanotubes in the polymer matrix could be realized by variation of both nanostructured guest and polymer host, and by

  7. Oscillation of carbon molecules inside carbon nanotube bundles

    Science.gov (United States)

    Thamwattana, Ngamta; Cox, Barry J.; Hill, James M.

    2009-04-01

    In this paper, we investigate the mechanics of a nanoscaled gigahertz oscillator comprising a carbon molecule oscillating within the centre of a uniform concentric ring or bundle of carbon nanotubes. Two kinds of oscillating molecules are considered, which are a carbon nanotube and a C60 fullerene. Using the Lennard-Jones potential and the continuum approach, we obtain a relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as the optimum bundle size which gives rise to the maximum oscillatory frequency for both the nanotube-bundle and the C60-bundle oscillators. While previous studies in this area have been undertaken through molecular dynamics simulations, this paper emphasizes the use of applied mathematical modelling techniques, which provides considerable insight into the underlying mechanisms of the nanoscaled oscillators. The paper presents a synopsis of the major results derived in detail by the present authors (Cox et al 2007 Proc. R. Soc. A 464 691-710 and Cox et al 2007 J. Phys. A: Math. Theor. 40 13197-208).

  8. Chaotic region of elastically restrained single-walled carbon nanotube

    Science.gov (United States)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen; Zou, Hailin; Wei, Bingqing

    2017-02-01

    The occurrence of chaos in the transverse oscillation of the carbon nanotube in all of the precise micro-nano mechanical systems has a strong impact on the stability and the precision of the micro-nano systems, the conditions of which are related with the boundary restraints of the carbon nanotube. To generalize some transverse oscillation problems of the carbon nanotube studied in current references, the elastic restraints at both ends of the single-walled carbon nanotube are considered by means of rotational and translational springs to investigate the effects of the boundary restraints on the chaotic properties of the carbon nanotube in this paper. Based on the generalized multi-symplectic theory, both the generalized multi-symplectic formulations for the governing equation describing the transverse oscillation of the single-walled carbon nanotube subjected to the transverse load and the constraint equations resulting from the elastic restraints are presented firstly. Then, the structure-preserving scheme with discrete constraint equations is constructed to simulate the transverse oscillation process of the carbon nanotube. Finally, the chaotic region of the carbon nanotube is captured, and the oscillations of the two extreme cases (including simply supported and cantilever) are investigated in the numerical investigations. From the numerical results, it can be concluded that the relative bending stiffness coefficient and the absolute bending stiffness coefficients at both ends of the carbon nanotube are two important factors that affect the chaotic region of the carbon nanotube, which provides guidance on the design and manufacture of precise micro-nano mechanical systems. In addition, the different routes to the chaos of the carbon nanotube in two extreme cases are revealed.

  9. Massive radius-dependent flow slippage in carbon nanotubes

    Science.gov (United States)

    Siria, Alessandro; Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Bocquet, Lydéric

    2016-11-01

    Nanofluidics is the frontier where the continuum picture of fluid mechanics confronts the atomic nature of matter. Recent reports indicate that carbon nanotubes exhibit exceptional water transport properties due to nearly frictionless interfaces and this has stimulated interest in nanotube-based membranes for desalination, nano-filtration, and energy harvesting. However, the fundamental mechanisms of water transport inside nanotubes and at water-carbon interfaces remain controversial, as existing theories fail to provide a satisfying explanation for the limited experimental results. We report a study of water jets emerging from single nanotubes made of carbon and boron-nitride materials. Our experiments reveal extensive and radius-dependent surface slippage in carbon nanotubes (CNT). In stark contrast, boron-nitride nanotubes (BNNT), which are crystallographically similar to CNTs but electronically different, exhibit no slippage. This shows that slippage originates in subtle atomic-scale details of the solid-liquid interface. ERC StG - NanoSOFT.

  10. Mechanical and Electrical Properties of Organogels with Multiwall Carbon Nanotubes

    Science.gov (United States)

    Moniruzzaman, Mohammad; Winey, Karen

    2008-03-01

    Organogels are fascinating thermally reversible viscoelastic materials that are comprised of an organic liquid and low concentrations (typically organogel/carbon nanotube composites using 12-hydroxystearic acid (HSA) as the gelator molecule and pristine and carboxylated multi-wall carbon nanotubes as the nanofillers and 1,2-dichlorobenzene as the organic solvent. We have achieved significant improvements in the mechanical and electrical properties of organogels by incorporating these carbon nanotubes. For example, the linear viscoelastic regime of the HSA organogel, an indicator of the strength of the gel, extends by a factor of 4 with the incorporation of 0.2 wt% of the carboxylated nanotubes. Also, the carbon nanotubes (specially the pristine tubes) improve the electrical conductivity of the organogels, e.g. six orders of magnitude enhancement in electrical conductivity with 0.2 wt% of pristine tubes. Differential scanning calorimetry experiments indicate that the nanotubes do not affect the thermoreversibility of the organogels.

  11. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction

    Science.gov (United States)

    Jin, Zhiping; Nie, Huagui; Yang, Zhi; Zhang, Jing; Liu, Zheng; Xu, Xiangju; Huang, Shaoming

    2012-09-01

    The ongoing search for new non-precious-metal catalysts (NPMCs) with excellent electrocatalytic performance to replace Pt-based catalysts has been viewed as an important strategy to promote the development of fuel cells. Recent studies have proven that carbon materials doped with atoms which have a relatively small atomic size (e.g. N, B, P or S), have also shown pronounced catalytic activity. Herein, we demonstrate the successful fabrication of CNT/graphene doped with Se atoms, which has a relatively large atomic size, by a simple, economical, and scalable approach. The electrocatalytic performance of the resulting Se-doped CNT-graphene catalyst exhibits excellent catalytic activity, long-term stability, and a high methanol tolerance compared to commercial Pt/C catalysts. Our results confirmed that combining CNTs with graphene is an effective strategy to synergistically improve ORR activity. More importantly, it is also suggested that the development of graphite materials doped with Se or other heteroatoms of large size will open up a new route to obtain ideal NPMCs with realistic value for fuel cell applications.The ongoing search for new non-precious-metal catalysts (NPMCs) with excellent electrocatalytic performance to replace Pt-based catalysts has been viewed as an important strategy to promote the development of fuel cells. Recent studies have proven that carbon materials doped with atoms which have a relatively small atomic size (e.g. N, B, P or S), have also shown pronounced catalytic activity. Herein, we demonstrate the successful fabrication of CNT/graphene doped with Se atoms, which has a relatively large atomic size, by a simple, economical, and scalable approach. The electrocatalytic performance of the resulting Se-doped CNT-graphene catalyst exhibits excellent catalytic activity, long-term stability, and a high methanol tolerance compared to commercial Pt/C catalysts. Our results confirmed that combining CNTs with graphene is an effective strategy to

  12. Preparation of array of long carbon nanotubes and fibers therefrom

    Science.gov (United States)

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  13. Controlling growth of aligned carbon nanotubes from porous silicon templates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fabricating well-aligned carbon nanotubes, especially, on a silicon substrate is very important for their applications. In this paper, an aligned carbon nanotube array has been prepared by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) templates. High-magnification transmission electron microscopy images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of carbon nanotubes and the diameters of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.

  14. The effect of carbon nanotubes on chiral chemical reactions

    Science.gov (United States)

    Rance, Graham A.; Miners, Scott A.; Chamberlain, Thomas W.; Khlobystov, Andrei N.

    2013-02-01

    The intrinsic helicity of carbon nanotubes influences the formation of chiral molecules in chemical reactions. A racemic mixture of P and M enantiomers of nanotubes affects the enantiomeric excess of the products of the autocatalytic Soai reaction proportional to the amount of nanotubes added in the reaction mixture. An intermediate complex formed between the nanotube and the organometallic reagent is essential and explains the observed correlation between the enantiomeric distribution of products and the curvature of the carbon nanostructure. This Letter establishes a key mechanism for harnessing the helicity of nanoscale carbon surfaces for preparative organic reactions.

  15. Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube

    Science.gov (United States)

    Miao, Tingting; Shi, Shaoyi; Yan, Shen; Ma, Weigang; Zhang, Xing; Takahashi, Koji; Ikuta, Tatsuya

    2016-09-01

    Carbon nanotube-based organic composites and carbon nanotube networks are important flexible and lightweight thermoelectric materials. Characterization of the thermoelectric performance of individual carbon nanotubes is of vital importance for exploring the coupling mechanism between carbon nanotubes and organic composites, and proposing further improvement measures. The thermoelectric performance of an individual multiwalled carbon nanotube with a diameter of 66 nm has been comprehensively studied by applying our T-type method from 260 K to 420 K, using the same measurement configuration. The figure of merit increases from 4.84 × 10-8 to 1.32 × 10-6 on increasing the temperature, which is smaller than previous experimental results on carbon nanotube samples. The thermal conductivity increases from 706 W m-1 K-1 at 260 K to 769.3 W m-1 K-1 at 320 K, and then stays nearly constant until 420 K. The phonons dominate the thermal transport. The electrical conductivity exhibits thermally activated carrier generation and transport with an energy barrier of 194.5 meV. The Seebeck coefficient is in the range of 29.4-41.0 μV K-1 and tends to decrease with temperature.

  16. Carbon Nanotubes Synthesis via Arc Discharge with a Yttria Catalyst

    OpenAIRE

    M. I. Mohammad; Ahmed A. Moosa; J.H. Potgieter; Mustafa K. Ismael

    2013-01-01

    A facile method is proposed to use a computer controlled Arc discharge gap between graphite electrodes together with an yttria-nickel catalyst to synthesize carbon nanotubes under an Ar-H2 gases mixture atmosphere by applying different DC currents and pressure. This produces carbon nanotubes with decreased diameters and increased length. XRD evidence indicated a shift toward higher crystallinity nanotubes. Yields of the CNTs after purification were also enhanced.

  17. Site-selective radiation damage of collapsed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H. [Department of Physics, 104 Davey Lab, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Chopra, N.G.; Cohen, M.L.; Zettl, A. [Department of Physics, University of California at Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Radmilovic, V. [Department of Physical Metallurgy, University of Belgrade Karnegijeva 4, P.O. Box 494, Belgrade, 11001 (Yugoslavia)

    1998-10-01

    Carbon nanotubes can flatten into collapsed tubes with bulbs along either edge. The strong anisotropy in the graphitic radiation damage threshold both explains the rapid destruction of face-on flattened nanotubes and can be exploited to selectively modify the structure of edge-on flattened nanotubes, thereby creating one-dimensional sp{sup 2} carbon with noncontinuous transverse boundary conditions. {copyright} {ital 1998 American Institute of Physics.}

  18. Storage of hydrogen in floating catalytic carbon nanotubes after graphitizing

    Institute of Scientific and Technical Information of China (English)

    朱宏伟; 李雪松; 慈立杰; 徐才录; 毛宗强; 梁吉; 吴德海

    2002-01-01

    Hydrogen storage under moderate pressure (~10 Mpa) and ambient temperature (~25℃) in multi-walled carbon nanotubes (MWNTs) prepared by the floating catalyst method is investigated. The capacity of hydrogen adsorption is evaluated based on both the nanotubes diameter and morphology. Indirect evidence indicates that hydrogen adsorption not only occurs on tube surface and interiors, but also in tube interlayers. The results show that the floating catalytic carbon nanotubes might be a candidate hydrogen storage material for fuel cell electric vehicles.

  19. Carbon nanotube growth by PECVD: a review

    Energy Technology Data Exchange (ETDEWEB)

    Meyyappan, M; Delzeit, Lance; Cassell, Alan; Hash, David [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2003-05-01

    Carbon nanotubes (CNTs), due to their unique electronic and extraordinary mechanical properties, have been receiving much attention for a wide variety of applications. Recently, plasma enhanced chemical vapour deposition (PECVD) has emerged as a key growth technique to produce vertically-aligned nanotubes. This paper reviews various plasma sources currently used in CNT growth, catalyst preparation and growth results. Since the technology is in its early stages, there is a general lack of understanding of growth mechanisms, the role of the plasma itself, and the identity of key species responsible for growth. This review is aimed at the low temperature plasma research community that has successfully addressed such issues, through plasma and surface diagnostics and modelling, in semiconductor processing and diamond thin film growth.

  20. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  1. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  2. Very short functionalized carbon nanotubes for membrane applications

    NARCIS (Netherlands)

    Fonseca, A.; Reijerkerk, S.R.; Potreck, J.; Nijmeijer, D.C.; Mekhalif, Z.; Delhalle, J.

    2010-01-01

    The cutting and functionalization of carbon nanotubes is described, applying a single-step ball-mill based process. Very short carbon nanotubes bearing primary amine functions were produced, characterized and incorporated in polymeric membranes. The gas separation performance of the composite membra

  3. Apparatus for the laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin

    2010-02-16

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  4. Carbon Nanotubes as Active Components for Gas Sensors

    OpenAIRE

    Wei-De Zhang; Wen-Hui Zhang

    2009-01-01

    The unique structure of carbon nanotubes endows them with fantastic physical and chemical characteristics. Carbon nanotubes have been widely studied due to their potential applications in many fields including conductive and high-strength composites, energy storage and energy conversion devices, sensors, field emission displays and radiation...

  5. Compositions and methods for cancer treatment using targeted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Jr., Roger G.; Resasco, Daniel E.; Neves, Luis Filipe Ferreira

    2016-11-29

    Compositions for detecting and/or destroying cancer tumors and/or cancer cells via photodynamic therapy are disclosed, as well as methods of use thereof. The compositions comprise a linking protein or peptide attached to or otherwise physically associated with a carbon nanotube to form a targeted protein-carbon nanotube complex.

  6. Re-grown aligned carbon nanotubes with improved field emission.

    Science.gov (United States)

    Lim, Xiaodai; Zhu, Yanwu; Varghese, Binni; Gao, Xingyu; Wee, Andrew Thye Shen; Sow, Chorng-Haur

    2012-01-01

    In this work, a simple technique to improve the field emission property of multi-walled carbon nanotubes is presented. Re-grown multi-walled carbon nanotubes are grown on the same substrates after the as-grown multi-walled carbon nanotubes are transferred to other substrates using polydimethylsiloxane as intermediation. For the duration of the synthesis of the re-grown multi-walled carbon nanotubes, similar synthesis parameters used in growing the as-grown multi-walled carbon nanotubes are utilized. As a form of possible application, field emission studies show -2.6 times improvement in field enhancement factor and more uniform emission for the re-grown multi-walled carbon nanotubes. In addition, the turn-on field is reduced from 2.85 V/microm to 1.40 V/microm. Such significant improvements are attributed to new emission sites comprising of sharp carbonaceous impurities encompassing both tip and upper portion of the multi-walled carbon nanotubes. As such, this technique presents a viable route for the production of multi-walled carbon nanotubes with better field emission quality.

  7. A New Application of Carbon Nanotubes Constructing Biosensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon nanotubes used for constructing biosensor was described for the first time. Single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups were used to immobilize glucose oxidase forming a glucose biosensor. The biosensor response can be determined by amperometric method at a low applied potential (0.40 V).

  8. Catalytic systems of cumene oxidation based on multiwalled carbon nanotubes

    Science.gov (United States)

    Kobotaeva, N. S.; Skorokhodova, T. S.; Ryabova, N. V.

    2015-03-01

    Catalytic systems for cumene oxidation were prepared on the basis of silver-activated carbon nanotubes. Silver lies on the surface of the carbon nanotubes in the nanocrystalline state and has a size of 15-20 nm. The use of the obtained catalytic systems in cumene oxidation with molecular oxygen allowed a considerable decrease in the oxidation temperature and an increase in selectivity.

  9. Properties of Single-Wall Carbon Nanotubes with Finite Lengths

    Institute of Scientific and Technical Information of China (English)

    HU Di-Li; PAN Bi-Cai

    2001-01-01

    Carbon nanotubes with finite lengths should be natural components of future "nano devices". Based on orthogonal tight-binding molecular dynamics simulations, we report on our study of formation energies, optimal geometrical structures and active sites of carbon nanotubes with finite lengths. This should be useful to understand the properties of such natural components.

  10. Nitrogen doped carbon nanotubes : synthesis, characterization and catalysis

    NARCIS (Netherlands)

    van Dommele, S.

    2008-01-01

    Nitrogen containing Carbon Nanotubes (NCNT) have altered physical- and chemical properties with respect to polarity, conductivity and reactivity as compared to conventional carbon nanotubes (CNT) and have potential for use in electronic applications or catalysis. In this thesis the incorporation of

  11. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    Science.gov (United States)

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  12. Identification of nitrogen dopants in single-walled carbon nanotubes by scanning tunneling microscopy.

    Science.gov (United States)

    Tison, Yann; Lin, Hong; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Henrard, Luc; Zheng, Bing; Susi, Toma; Kauppinen, Esko I; Ducastelle, François; Loiseau, Annick

    2013-08-27

    Using scanning tunnelling microscopy and spectroscopy, we investigated the atomic and electronic structure of nitrogen-doped single walled carbon nanotubes synthesized by chemical vapor deposition. The insertion of nitrogen in the carbon lattice induces several types of point defects involving different atomic configurations. Spectroscopic measurements on semiconducting nanotubes reveal that these local structures can induce either extended shallow levels or more localized deep levels. In a metallic tube, a single doping site associated with a donor state was observed in the gap at an energy close to that of the first van Hove singularity. Density functional theory calculations reveal that this feature corresponds to a substitutional nitrogen atom in the carbon network.

  13. Carbon Nanotube Field Emission Arrays

    Science.gov (United States)

    2011-06-01

    together in hexagons and pentagons forming a sphere like a soccer ball. Fullerenes of all sizes are single molecules, which is uniquely different from the...10] Bhushan, B. Springer Handbook of Nanotechnology. Springer - Verlag. 2007 [11] Pierson, H. Handbook of Carbon, Graphite, Diamond and Fullerenes

  14. Massive radius-dependent flow slippage in carbon nanotubes

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  15. Massive radius-dependent flow slippage in carbon nanotubes.

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-08

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  16. ELECTROCHEMICAL INVESTIGATION ON CARBON NANOTUBE FILM WITH DIFFERENT PRETREATMENTS

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; Y. Ma; W. Zhu

    2003-01-01

    Wide potential windows were found at carbon nanotube film electrodes in neutral solutions after being treated with nitric acid and mixed acid. Electrochemical reversibility was investigated at carbon nanotube films with different pretreatments for ferri/ferrocyanide and quinone /hydroquinone. Carbon nanotube film electrodes presented quasi-reversible electrochemical behavior for both electrolytes. In the range of scan rate, carbon nanotube film electrodes treated with acids showed heterogeneous electron-transfer properties, which was mainly controlled by its electron state density on the surface of the film. On the whole, the carbon nanotube electrode with nitric acid treatment presented the best electrochemical behaviors, so we chose it as an analytical electrode to determine the trace compound in dilute solution. The results demonstrated that this new electrode material exhibits superior performance characteristics for the detection of azide anion.

  17. An improved fabrication method for carbon nanotube probe

    Institute of Scientific and Technical Information of China (English)

    XU Zong-wei; GUO Li-qiu; DONG Shen; ZHAO Qing-liang

    2008-01-01

    An improved arc discharge method is developed to fabricate the carbon nanotube probe.In this method,the silicon probe and the carbon nanotube were manipulated under an optical microscope.When the silicon probe and the carbon nanotube were very close,30-60 V dc or ac was applied between them,and the carbon nanotube was divided and attached to the end of the silicon probe.Comparing with the arc discharge method,the new method need not coat the silicon probe with metal in advance,which Can greatly reduce the fabrication difficulty and cost.The fabricated carbon nanotube probe exhibits the good property of hish aspect ratio and can reflect the true topography more accurately than the silicon probe.

  18. The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system.

    Science.gov (United States)

    Im, Ji S; Bai, Byong Ch; Lee, Young-Seak

    2010-02-01

    An electro-sensitive transdermal drug delivery system was prepared by the electrospinning method to control drug release. A semi-interpenetrating polymer network was prepared as the matrix with polyethylene oxide and pentaerythritol triacrylate polymers. Multi-walled carbon nanotubes were used as an additive to increase the electrical sensitivity. The release experiment was carried out under different electric voltage conditions. Carbon nanotubes were observed in the middle of the electrospun fibers by SEM and TEM. The amount of released drug was effectively increased with higher applied electric voltages. These results were attributed to the excellent electrical conductivity of the carbon additive. The suggested mechanism of drug release involves polyethylene oxide of the semi-interpenetrating polymer network being dissolved under the effects of carbon nanotubes, thereby releasing the drug. The effects of the electro-sensitive transdermal drug delivery system were enhanced by the carbon nanotubes.

  19. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  20. Genotoxicity and carcinogenicity risk of carbon nanotubes.

    Science.gov (United States)

    Toyokuni, Shinya

    2013-12-01

    Novel materials are often commercialized without a complete assessment of the risks they pose to human health because such assessments are costly and time-consuming; additionally, sometimes the methodology needed for such an assessment does not exist. Carbon nanotubes have the potential for widespread application in engineering, materials science and medicine. However, due to the needle-like shape and high durability of multiwalled carbon nanotubes (MWCNTs), concerns have been raised that they may induce asbestos-like pathogenicity when inhaled. Indeed, experiments in rodents supported this hypothesis. Notably, the genetic alterations in MWCNT-induced rat malignant mesothelioma were similar to those induced by asbestos. Single-walled CNTs (SWCNTs) cause mitotic disturbances in cultured cells, but thus far, there has been no report that SWCNTs are carcinogenic. This review summarizes the recent noteworthy publications on the genotoxicity and carcinogenicity of CNTs and explains the possible molecular mechanisms responsible for this carcinogenicity. The nanoscale size and needle-like rigid structure of CNTs appear to be associated with their pathogenicity in mammalian cells, where carbon atoms are major components in the backbone of many biomolecules. Publishing adverse events associated with novel materials is critically important for alerting people exposed to such materials. CNTs still have a bright future with superb economic and medical merits. However, appropriate regulation of the production, distribution and secondary manufacturing processes is required, at least to protect the workers.

  1. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Carbon nanotubes reinforced composites for biomedical applications.

    Science.gov (United States)

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  3. Carbon nanotubes: present and future commercial applications.

    Science.gov (United States)

    De Volder, Michael F L; Tawfick, Sameh H; Baughman, Ray H; Hart, A John

    2013-02-01

    Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

  4. Carbon nanotubes for ultrafast fibre lasers

    Directory of Open Access Journals (Sweden)

    Chernysheva Maria

    2016-06-01

    Full Text Available Carbon nanotubes (CNTs possess both remarkable optical properties and high potential for integration in various photonic devices. We overview, here, recent progress in CNT applications in fibre optics putting particular emphasis on fibre lasers. We discuss fabrication and characterisation of different CNTs, development of CNT-based saturable absorbers (CNT-SA, their integration and operation in fibre laser cavities putting emphasis on state-of-the-art fibre lasers, mode locked using CNT-SA. We discuss new design concepts of high-performance ultrafast operation fibre lasers covering ytterbium (Yb, bismuth (Bi, erbium (Er, thulium (Tm and holmium (Ho-doped fibre lasers.

  5. Carbon nanotubes for ultrafast fibre lasers

    Science.gov (United States)

    Chernysheva, Maria; Rozhin, Aleksey; Fedotov, Yuri; Mou, Chengbo; Arif, Raz; Kobtsev, Sergey M.; Dianov, Evgeny M.; Turitsyn, Sergei K.

    2017-01-01

    Carbon nanotubes (CNTs) possess both remarkable optical properties and high potential for integration in various photonic devices. We overview, here, recent progress in CNT applications in fibre optics putting particular emphasis on fibre lasers. We discuss fabrication and characterisation of different CNTs, development of CNT-based saturable absorbers (CNT-SA), their integration and operation in fibre laser cavities putting emphasis on state-of-the-art fibre lasers, mode locked using CNT-SA. We discuss new design concepts of high-performance ultrafast operation fibre lasers covering ytterbium (Yb), bismuth (Bi), erbium (Er), thulium (Tm) and holmium (Ho)-doped fibre lasers.

  6. Increased Alignment in Carbon Nanotube Growth

    Science.gov (United States)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  7. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  8. Carbon nanotubes: controlled growth and application

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2013-01-01

    Full Text Available Notable progress has been made on the synthesis, properties and uses of carbon nanotubes (CNTs in the past two decades. However, the controlled growth of single-wall CNTs (SWCNTs with predefined and uniform structures remains a big challenge, and making full use of CNTs in applications still requires great effort. In this article, our strategies and recent progress on the controlled synthesis of SWCNTs by chemical vapor deposition are reviewed, and the applications of CNTs in lithium-ion batteries, transparent conductive films, and as connectors of metal atomic chains are discussed. Finally, future prospects for CNTs are considered.

  9. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites, their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  10. Octagonal Defects at Carbon Nanotube Junctions

    Directory of Open Access Journals (Sweden)

    W. Jaskólski

    2013-01-01

    Full Text Available We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF. The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system.

  11. Solidification of gold nanoparticles in carbon nanotubes.

    Science.gov (United States)

    Arcidiacono, S; Walther, J H; Poulikakos, D; Passerone, D; Koumoutsakos, P

    2005-03-18

    The structure and the solidification of gold nanoparticles in a carbon nanotube are investigated using molecular dynamics simulations. The simulations indicate that the predicted solidification temperature of the enclosed particle is lower than its bulk counterpart, but higher than that observed for clusters placed in vacuum. A comparison with a phenomenological model indicates that, in the considered range of tube radii (R(CNT)) of 0.5 < R(CNT) < 1.6 nm, the solidification temperature depends mainly on the length of the particle with a minor dependence on R(CNT).

  12. Carbon Nanotube Integration with a CMOS Process

    OpenAIRE

    Perez, Maximiliano S.; Betiana Lerner; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Pedro M. Julian; Pablo S. Mandolesi; Fabian A. Buffa; Alfredo Boselli; Alberto Lamagna

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new rout...

  13. Carbon nanotube integration with a CMOS process.

    Science.gov (United States)

    Perez, Maximiliano S; Lerner, Betiana; Resasco, Daniel E; Pareja Obregon, Pablo D; Julian, Pedro M; Mandolesi, Pablo S; Buffa, Fabian A; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture.

  14. Carbon Nanotube Integration with a CMOS Process

    Directory of Open Access Journals (Sweden)

    Maximiliano S. Perez

    2010-04-01

    Full Text Available This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture.

  15. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  16. Carbohydrate functionalized carbon nanotubes and their applications.

    Science.gov (United States)

    Gorityala, Bala Kishan; Ma, Jimei; Wang, Xin; Chen, Peng; Liu, Xue-Wei

    2010-08-01

    Carbon nanotubes (CNTs) have attracted tremendous attention in biomedical applications due to their molecular size and unique properties. This tutorial review summarizes the strategies to functionalize CNTs with bioactive carbohydrates, which improve their solubility, biocompatibility and biofunctionalities while preserving their desired properties. In addition, studies on the usage of carbohydrate functionalized CNTs to detect bacteria, to bind to specific lectins, to deliver glycomimetic drug molecules into cells and to probe cellular activities as biosensors are reviewed. Improvement in biocompatibility and introduction of bio-functionalities by integration of carbohydrate with CNTs are paving the way to glyconanotechnology and may provide new tools for glycobiological studies.

  17. Carbon Nanotube Array for Infrared Detection

    Science.gov (United States)

    2011-09-28

    mechanical strength, and infrared absorption efficiency are also important. [7] In these regards, thin membranes of carbon nanotubes have much to offer...Kimball, J. Carlson, D. Ziegler , G. E. Fernandes, Z. Liu, J. H. Kim, and J. Xu, “Coupled, large-format gold nanowire arrays for nanorectenna energy...Phys. Lett. 95, 231113 (2009). 10. R. Osgood III, J.B. Carlson, B.R. Kimball, D.P. Ziegler , J.R. Welch, L.E. Belton, G. Fernandes, Z. Liu, J.M. Xu

  18. Cell mobility after endocytosis of carbon nanotubes

    Science.gov (United States)

    Pirbhai, Massooma; Flores, Thomas; Jedlicka, Sabrina; Rotkin, Slava

    2013-03-01

    Directed cell movement plays a crucial role in cellular behaviors such as neuronal cell division, cell migration, and cell differentiation. There is evidence in preclinical in vivo studies that small fields have successfully been used to enhance regrowth of damages spinal cord axons but with a small success rate. Fortunately, the evolution of functional biomaterials and nanotechnology may provide promising solutions for enhancing the application of electric fields in guiding neuron migration and neurogenesis within the central nervous system. In this work, we studied how endocytosis and subsequent retention of carbon nanotubes affects the mobility of cells under the influence of an electric field, including the directed cell movement.

  19. Coating Carbon Nanotubes with Europium Oxide

    Institute of Scientific and Technical Information of China (English)

    Hui Qun CAO; Guang Yan HONG; Jing Hui YAN; Ji Lin ZHANG; Gui Xia LIU

    2003-01-01

    Carbon nanotubes (CNTS) coating with europium oxide by a simple method is reported in this letter for the first time. The CNTS were refluxed in a solution of nitric acid containing europium nitrate, and the pH value was subsequently ajusted with ammonia solution. At last, the mixture was filtered and annealed. The TEM micrograph showed that the CNTS were covered with a uniform thin layer with thickness of about 15 nm. The XRD results revealed that the CNTS were coated with europium oxide.

  20. Carbon Nanotube Integration with a CMOS Process

    Science.gov (United States)

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330