WorldWideScience

Sample records for carbon nanotube interactions

  1. Lithium interaction with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nalimova, V.A. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul`tet; Sklovsky, D.E. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul`tet; Bondarenko, G.N. [Topcheiv Institute of Petrochemical Synthesis, Leninsky Prospekt, 29, Moscow (Russian Federation); Alvergnat-Gaucher, H. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France); Bonnamy, S. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France); Beguin, F. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France)

    1997-05-01

    Lithium interaction with catalytic carbon nanotubes under high-pressure conditions was studied. A large amount of Li (2Li/C) reacted with the carbon nanotubes forming an intercalation compound (I{sub c}{proportional_to}4.1 A) which follows from X-ray diffraction and IR spectroscopy data. We cannot exclude also the possibility of insertion of a part of Li into the channel of the nanotubes. (orig.)

  2. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  3. Carbon NanotubesInteractions with Biological Systems

    OpenAIRE

    Reis, Joana; Capela-Silva, Fernando; Potes, José; Fonseca, Alexandra; Oliveira, Mónica; Kanagaraj, Subramani; Marques, António Torres

    2011-01-01

    his book chapter discusses the prospective biomedical applications of carbon nanotubes based materials, the impact of carbon nanotubes properties in the interaction with biological systems. Protein adsorption, impact on cell viability and cytokine production are explored. Potential respiratory and dermal toxicity are reviewed, as the difficulties on studying the biological response. In face of recent studies, special attention is drawn upon promising orthopaedic use.

  4. Interaction of pristine and functionalized carbon nanotubes with lipid membranes.

    Science.gov (United States)

    Baoukina, Svetlana; Monticelli, Luca; Tieleman, D Peter

    2013-10-10

    Carbon nanotubes are widely used in a growing number of applications. Their interactions with biological materials, cell membranes in particular, is of interest in applications including drug delivery and for understanding the toxicity of carbon nanotubes. We use extensive molecular dynamics simulations with the MARTINI model to study the interactions of model nanotubes of different thickness, length, and patterns of chemical modification with model membranes. In addition, we characterize the interactions of small bundles of carbon nanotubes with membrane models. Short pristine carbon nanotubes readily insert into membranes and adopt an orientation parallel to the plane of the membrane in the center of the membrane. Larger aggregates and functionalized nanotubes exhibit a range of possible interactions. The distribution and orientation of carbon nanotubes can be controlled by functionalizing the nanotubes. Free energy calculations provide thermodynamic insight into the preferred orientations of different nanotubes and quantify structural defects in the lipid matrix.

  5. Functionalized Carbon Nanotube-Polymer Composites and Interactions with Radiation

    Science.gov (United States)

    Barrera, Enrique V. (Inventor); Wilkins, Richard (Inventor); Shofner, Meisha (Inventor); Pulikkathara, Merlyn X. (Inventor); Vaidyanathan, Ranjii (Inventor)

    2014-01-01

    The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.

  6. Sorption interactions between ethylene glycol and carbon nanotubes

    Science.gov (United States)

    Butyrskaya, E. V.; Belyakova, N. V.; Nechaeva, L. S.; Shaposhnik, V. A.; Selemenev, V. F.

    2017-03-01

    The adsorption of ethylene glycol by carbon nanoparticles is studied. Carbon nanoparticles with the highest affinity to ethylene glycol are identified, and an adsorption isotherm is constructed. Based on quantum chemical calculations of the energies of interaction between the sorbate and nanotubes with (4,4) and (6,6) chirality, a change in mechanism is revealed upon the monomolecular adsorption of ethylene glycol on carbon nanotubes, and the adsorption isotherm is thus interpreted.

  7. Real-Time Observation of Cell and Carbon Nanotube Interactions

    Science.gov (United States)

    Chen, Michelle; Broman, Melanie; Mathews, Claire; McPherson, Eric

    2014-03-01

    Carbon nanotubes have been widely researched for disease diagnosis and drug delivery applications. However, its impact on biological systems is yet to be sufficiently understood. We studied optical imaging of Chinese hamster ovarian (CHO) cells exposed to various carbon nanotubes concentrations at various time points. The cell stress due to carbon nanotubes exposure is accessed via morphological changes of the CHO cells. Data showed that cell death increases with increasing carbon nanotube concentration and time exposure. To continuously view such changes of any one individual cell, we constructed an optically transparent miniaturized incubator that fits on a microscope stage. This specific incubator is able to maintain desirable temperature, humidity, and CO2 concentration to allow proper cell growth. Such incubator can be used to track real-time interactions of any cells and nanomaterials for future data collection.

  8. Strain-modified RKKY interaction in carbon nanotubes

    DEFF Research Database (Denmark)

    Gorman, P. D.; Duffy, J. M.; Power, Stephen R.

    2015-01-01

    For low-dimensionalmetallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously...... been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show...... that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon...

  9. Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes

    OpenAIRE

    Kane, Charlie; Balents, Leon; Fisher, Matthew

    1997-01-01

    We argue that long-range Coulomb forces convert an isolated (N,N) armchair carbon nanotube into a strongly-renormalized *Luttinger liquid*. At high temperatures, we find anomalous temperature dependences for the interaction and impurity contributions to the resistivity, and similar power-law dependences for the local tunneling density of states. At low temperatures, the nanotube exhibits spin-charge separation, visible as an extra energy scale in the discrete tunneling density of states (for ...

  10. Interaction of collagen with carbon nanotube: a molecular dynamics investigation.

    Science.gov (United States)

    Gopalakrishnan, R; Subramanian, V

    2011-02-01

    In variety of biological applications carbon nano materials interact with different biological macromolecules, such as proteins, carbohydrates and nucleic acids. In this study carbon nanotube (CNT) has been used as the model for carbon nanomaterials. Since, collagen is a large protein; model collagen like peptide (CPs) has been used to understand the interaction between CNT and collagen. Molecular dynamics (MD) simulation showed that the hydrophobic-hydrophobic interaction of the CNT-CPs play a crucial role in attracting the CPs towards the CNT. No structural aberrations occured in collagen upon interaction with CNT and hence CNT can be employed in the tissue engineering applications.

  11. Growth of Ag nanocrystals on multiwalled carbon nanotubes and Ag-carbon nanotube interaction

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The experimental investigations on the interaction between Ag-nanocrystal particles (Ag-NCPs) and carbon nanotubes (CNTs) in Ag-nanocrystal particles/carbon nanotubes (Ag-NCPs/CNTs) hybrid structures were reported. The growth of Ag-NCPs on multiwalled carbon nanotubes (MWCNTs) was carried out by thermal evaporation deposition. High-resolution transmission electron microscopy and X-ray diffraction analyses revealed that Ag-NCPs had the crystal lattice feature of face-centered cube (fcc). The growth of Ag-NCPs on MWCNTs induced the cross-section deformation of MWCNT. The experimental results also showed that the synthesized Ag-NCPs/CNTs hybrid structure appeared as quasi-one dimensional nanowires containing the Ag-NCP/CNT hetero-junction. There was local cross-section deformation on MWCNTs at the interface of hetero-junction. These results involve the important topic about fundamental and practical studies for structure of MNCPs on CNTs and also find clues to further research of Ag nanocrystal growing on MWCNTs and related Ag-CNT interaction.

  12. DLVO interactions of carbon nanotubes with isotropic planar surfaces.

    Science.gov (United States)

    Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael; Zigler, Kirk J

    2013-03-26

    Knowledge of the interaction between carbon nanotubes (CNTs) and planar surfaces is essential to optimizing CNT applications as well as reducing their environmental impact. In this work, the surface element integration (SEI) technique was coupled with the DLVO theory to determine the orientation-dependent interaction energy between a single-walled carbon nanotube (SWNT) and an infinite isotropic planar surface. For the first time, an analytical formula was developed to describe accurately the interaction between not only pristine but also surface-charged CNTs and planar surfaces with arbitrary rotational angles. Compared to other methods, the new analytical formulas were either more convenient or more accurate in describing the interaction between CNTs and planar surfaces, especially with respect to arbitrary angles. The results revealed the complex dependences of both force and torque between SWNTs and planar surfaces on the separation distances and rotational angles. With minor modifications, the analytical formulas derived for SWNTs can also be applied to multiwalled carbon nanotubes (MWNTs). The new analytical expressions presented in this work can be used as a robust tool to describe the DLVO interaction between CNTs and planar surfaces under various conditions and thus to assist in the design and application of CNT-based products.

  13. Electrodynamic and excitonic intertube interactions in semiconducting carbon nanotube aggregates.

    Science.gov (United States)

    Crochet, Jared J; Sau, Jay D; Duque, Juan G; Doorn, Stephen K; Cohen, Marvin L

    2011-04-26

    The optical properties of selectively aggregated, nearly single chirality single-wall carbon nanotubes were investigated by both continuous-wave and time-resolved spectroscopies. With reduced sample heterogeneities, we have resolved aggregation-dependent reductions of the excitation energy of the S(1) exciton and enhanced electron-hole pair absorption. Photoluminescence spectra revealed a spectral splitting of S(1) and simultaneous reductions of the emission efficiencies and nonradiative decay rates. The observed strong deviations from isolated tube behavior are accounted for by enhanced screening of the intratube Coulomb interactions, intertube exciton tunneling, and diffusion-driven exciton quenching. We also provide evidence that density gradient ultracentrifugation can be used to structurally sort single-wall carbon nanotubes by aggregate size as evident by a monotonic dependence of the aforementioned optical properties on buoyant density.

  14. Interactions between carbon nanotubes and bioactives: a drug delivery perspective.

    Science.gov (United States)

    Mehra, Neelesh Kumar; Palakurthi, Srinath

    2016-04-01

    Applications of carbon nanotubes (CNTs) in the biomedical arena have gained increased attention over the past decade. Surface engineering of CNTs by covalent and noncovalent modifications enables site-specific drug delivery and targeting. CNTs are available as single-, double-, triple-, and multiwalled carbon nanotubes (SWCNTs, DWCNTs, TWCNTs, and MWCNTs, respectively) and have unique physicochemical properties, including a high surface area, high loading efficiency, good biocompatibility, low toxicity, ultra lightweight, rich surface chemistry, non-immunogenicity, and photoluminescence. In this review, we highlight current understanding of the different types of physical and chemical interaction that occur between therapeutics and CNTs, and the potential application of the latter in drug delivery and imaging. Such understanding will aid exploration of the utility of multifunctional CNTs as pharmaceutical nanocarriers, and potential safety and toxicity issues.

  15. Van der Waals interaction between two crossed carbon nanotubes

    OpenAIRE

    Zhbanov, Alexander I.; Pogorelov, Evgeny G.; Chang, Yia-Chung

    2008-01-01

    The analytical expressions for the van der Waals potential energy and force between two crossed carbon nanotubes are presented. The Lennard-Jones potential for two carbon atoms and the method of the smeared out approximation suggested by L.A. Girifalco were used. The exact formula is expressed in terms of rational and elliptical functions. The potential and force for carbon nanotubes were calculated. The uniform potential curves for single- and multi- wall nanotubes were plotted. The equilibr...

  16. Van der Waals interaction between two crossed carbon nanotubes.

    Science.gov (United States)

    Zhbanov, Alexander I; Pogorelov, Evgeny G; Chang, Yia-Chung

    2010-10-26

    The analytical expressions for the van der Waals potential energy and force between two crossed carbon nanotubes are presented. The Lennard-Jones potential between pairs of carbon atoms and the smeared-out approximation suggested by L. A. Girifalco (J. Phys. Chem. 1992, 96, 858) were used. The exact formula is expressed in terms of rational and elliptical functions. The potential and force for carbon nanotubes were calculated. The uniform potential curves for single- and multiwall nanotubes were plotted. The equilibrium distance, maximal attractive force, and potential energy have been evaluated.

  17. Interaction of microwaves with carbon nanotubes to facilitate modification

    Science.gov (United States)

    Tour, James M. (Inventor); Dyke, Christopher A. (Inventor); Stephenson, Jason J. (Inventor); Yakobson, Boris I. (Inventor)

    2011-01-01

    The present invention is directed toward methods of crosslinking carbon nanotubes to each other using microwave radiation, articles of manufacture produced by such methods, compositions produced by such methods, and applications for such compositions and articles of manufacture. The present invention is also directed toward methods of radiatively modifying composites and/or blends comprising carbon nanotubes with microwaves, and to the compositions produced by such methods. In some embodiments, the modification comprises a crosslinking process, wherein the carbon nanotubes serve as a conduit for thermally and photolytically crosslinking the host matrix with microwave radiation.

  18. Interaction between alkyl radicals and single wall carbon nanotubes.

    Science.gov (United States)

    Denis, Pablo A

    2012-06-30

    The addition of primary, secondary, and tertiary alkyl radicals to single wall carbon nanotubes (SWCNTs) was studied by means of dispersion corrected density functional theory. The PBE, B97-D, M06-L, and M06-2X functionals were used. Consideration of Van der Waals interactions is essential to obtain accurate addition energies. In effect, the enthalpy changes at 298 K, for the addition of methyl, ethyl, isopropyl, and tert-butyl radicals onto a (5,5) SWCNT are: -25.7, -25.1, -22.4, and -16.6 kcal/mol, at the M06-2X level, respectively, whereas at PBE/6-31G* level they are significantly lower: -25.0, -19.0, -16.7, and -5.0 kcal/mol respectively. Although the binding energies are small, the attached alkyl radicals are expected to be stable because of the large desorption barriers. The importance of nonbonded interactions was more noticeable as we moved from primary to tertiary alkyl radicals. Indeed, for the tert-butyl radical, physisorption onto the (11,0) SWCNT is preferred rather than chemisorption. The bond dissociation energies determined for alkyl radicals and SWCNT follow the trend suggested by the consideration of radical stabilization energies. However, they are in disagreement with some degrees of functionalization observed in recent experiments. This discrepancy would stem from the fact that for some HiPco nanotubes, nonbonded interactions with alkyl radicals are stronger than covalent bonds.

  19. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C......-13 nuclei. Due to the valley and spin degrees of freedom, four bounded states exist for any given longitudinal mode in the quantum dot. At zero magnetic field, the spin-orbit coupling and the valley mixing split those four states into two Kramers doublets. The valley-mixing term for a given dot...... is determined by the intradot disorder; this leads to (i) states in the Kramers doublets belonging to different dots being different, and (ii) nonzero interdot tunneling amplitudes between states belonging to different doublets. We show that these amplitudes give rise to new avoided crossings, as a function...

  20. Size Selective Interaction of Single Wall Carbon Nanotubes with Collagen

    Science.gov (United States)

    Bhattacharyya, Sanjib; Salvetat, Jean-Paul; Roy, Debdulal; Saboungi, Marie-Louise

    2007-03-01

    One of the big challenges in using single-wall carbon nanotubes (SWNTs) in nanotube-electronics at the present time is to produce SWNT's of specific diameters. Unfortunately, it is almost impossible to achieve this by existing synthesis procedures. All these produce SWNT's with a mixture of diameters and chiralities and, therefore, different electrical properties such as semiconducting and metallic. Here, we propose a method of functionalization that selects SWNTs of a single specific diameter from a mixture of tubes. We have shown that denaturation of collagen type-I solution in the presence of sodium dodecyl sulphate (SDS) and SWNT's leads to wrapping of carbon nanotubes of a specific diameter by collagen peptides, which are soluble in water. Separation is achieved by centrifugation of the solution at 10,000 RPM and taking the supernatant, which is rich in nanotubes having one specific diameter.

  1. Van der Waals interaction between a microparticle and a single-wall carbon nanotube

    CERN Document Server

    Blagov, E V; Mostepanenko, V M

    2007-01-01

    The Lifshitz-type formulas describing the free energy and the force of the van der Waals interaction between an atom (molecule) and a single-wall carbon nanotube are obtained. The single-wall nanotube is considered as a cylindrical sheet carrying a two-dimensional free electron gas with appropriate boundary conditions on the electromagnetic field. The obtained formulas are used to calculate the van der Waals free energy and force between a hydrogen atom (molecule) and single-wall carbon nanotubes of different radia. Comparison studies of the van der Waals interaction of hydrogen atoms with single- and multi-wall carbon nanotubes show that depending on atom-nanotube separation distance the idealization of graphite dielectric permittivity is already applicable to nanotubes with only two or three walls.

  2. Carboxylated Capped Carbon Nanotubes Interacting with Nimesulide Molecules: Applied Electric Fields Effects

    Directory of Open Access Journals (Sweden)

    Vivian Machado de Menezes

    2015-01-01

    Full Text Available Interactions of carboxylated capped carbon nanotubes with nimesulide molecules under electric fields were investigated by ab initio simulations. Repulsive forces between the nimesulide molecules and the carboxyl group of the carbon nanotubes, except for the nimesulide radical configuration, were observed. To keep the original molecule in the pristine form, electric fields with different intensities were applied, where changes in the behavior of the interactions between the molecules were noticed. It was shown that the intensity of the interaction between the nimesulide and the hydrophilic carboxylated capped carbon nanotube can be modulated by the action of the external electric fields making promising systems for drug delivery applications.

  3. Non-covalent interactions between carbon nanotubes and conjugated polymers.

    Science.gov (United States)

    Tuncel, Dönüs

    2011-09-01

    Carbon nanotubes (CNTs) are interest to many different disciplines including chemistry, physics, biology, material science and engineering because of their unique properties and potential applications in various areas spanning from optoelectronics to biotechnology. However, one of the drawbacks associated with these materials is their insolubility which limits their wide accessibility for many applications. Various approaches have been adopted to circumvent this problem including modification of carbon nanotube surfaces by non-covalent and covalent attachments of solubilizing groups. Covalent approach modification may alter the intrinsic properties of carbon nanotubes and, in turn make them undesirable for many applications. On the other hand, a non-covalent approach helps to improve the solubility of CNTs while preserving their intrinsic properties. Among many non-covalent modifiers of CNTs, conjugated polymers are receiving increasing attention and highly appealing because of a number of reasons. To this end, the aim of this feature article is to review the recent results on the conjugated polymer-based non-covalent functionalization of CNTs with an emphasis on the effect of conjugated polymers in the dispersibility/solubility, optical, thermal and mechanical properties of carbon nanotubes as well as their usage in the purification and isolation of a specific single-walled nanotube from the mixture of the various tubes.

  4. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  5. Interaction of nucleic acids with carbon nanotubes and dendrimers.

    Science.gov (United States)

    Nandy, Bidisha; Santosh, Mogurampelly; Maiti, Prabal K

    2012-07-01

    Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid-CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.

  6. Interaction of nucleic acids with carbon nanotubes and dendrimers

    Indian Academy of Sciences (India)

    Bidisha Nandy; Mogurampelly Santosh; Prabal K Maiti

    2012-07-01

    Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid–CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.

  7. Van der Waals and Casimir interactions between atoms and carbon nanotubes

    OpenAIRE

    Klimchitskaya, G. L.(Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140, St. Petersburg, Russia); Blagov, E. V.; Mostepanenko, V. M.

    2008-01-01

    The van der Waals and Casimir interactions of a hydrogen atom (molecule) with a single-walled and a multiwalled carbon nanotubes are compared. It is shown that the macroscopic concept of graphite dielectric permittivity is already applicable for nanotubes with only two or three walls. The absorption of hydrogen atoms by a nanotube at separations below one nanometer is considered. The lateral force due to exchange repulsion moves the atom to a position above the cell center, where it is absorb...

  8. Filled and empty states of carbon nanotubes in water: Dependence on nanotube diameter, wall thickness and dispersion interactions

    Indian Academy of Sciences (India)

    Malay Rana; Amalendu Chandra

    2007-09-01

    We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube as a solute to investigate the filling and emptying of the nanotube and also the modifications of the density and hydrogen bond distributions of water inside and also in the vicinity of the outer surfaces of the nanotube. Our primary goal is to look at the effects of varying nanotube diameter, wall thickness and also solute-solvent interactions on the solvent structure in the confined region also near the outer surfaces of the solute. The thickness of the walls is varied by considering single and multi-walled nanotubes and the interaction potential is varied by tuning the attractive strength of the 12-6 pair interaction potential between a carbon atom of the nanotubes and a water molecule. The calculations are done for many different values of the tuning parameter ranging from fully Lennard-Jones to pure repulsive pair interactions. It is found that both the solvation characteristics and hydrogen bond distributions can depend rather strongly on the strength of the attractive part of the solute-water interaction potential. The thickness of the nanotube wall, however, is found to have only minor effects on the density profiles, hydrogen bond network and the wetting characteristics. This indicates that the long range electrostatic interactions between water molecules inside and on the outer side of the nanotube do not make any significant contribution to the overall solvation structure of these hydrophobic solutes. The solvation characteristics are primarily determined by the balance between the loss of energy due to hydrogen bond network disruption, cavity repulsion potential and offset of the same by attractive component of the solute-water interactions. Our studies with different system sizes show that the essential features of wetting and dewetting characteristics of narrow nanotubes for different diameter and interaction potentials are also present in

  9. Microscopic and Spectroscopic Investigation of Poly(3-hexylthiophene Interaction with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Maurizio De Crescenzi

    2011-08-01

    Full Text Available The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene (P3HT and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polymer matrix has been observed by atomic force microscopy and transmission electron microscopy. Then, the modification of P3HT optical properties due to nanotube inclusion has been evidenced with spectroscopic techniques like absorption and Raman spectroscopy. The study is completed with detailed nanoscale analysis by scanning probe techniques. The ordered self assembly of polymer adhering on the nanotube is unveiled by showing an example of helical wrapping of P3HT. Scanning tunneling spectroscopy study provides information on the electronic structure of nanotube-polymer assembly, revealing the charge transfer from P3HT to the nanotube.

  10. Nanomechanics of carbon nanotubes.

    Science.gov (United States)

    Kis, Andras; Zettl, Alex

    2008-05-13

    Some of the most important potential applications of carbon nanotubes are related to their mechanical properties. Stiff sp2 bonds result in a Young's modulus close to that of diamond, while the relatively weak van der Waals interaction between the graphitic shells acts as a form of lubrication. Previous characterization of the mechanical properties of nanotubes includes a rich variety of experiments involving mechanical deformation of nanotubes using scanning probe microscopes. These results have led to promising prototypes of nanoelectromechanical devices such as high-performance nanomotors, switches and oscillators based on carbon nanotubes.

  11. Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters

    Science.gov (United States)

    de Vega, Sandra; Cox, Joel D.; de Abajo, F. Javier García

    2016-08-01

    We study the potential of highly doped finite carbon nanotubes to serve as plasmonic elements that mediate the interaction between quantum emitters. Similar to graphene, nanotubes support intense plasmons that can be modulated by varying their level of electrical doping. These excitations exhibit large interaction with light and electron beams, as revealed upon examination of the corresponding light extinction cross-section and electron energy-loss spectra. We show that quantum emitters experience record-high Purcell factors, while they undergo strong mutual interaction mediated by their coupling to the tube plasmons. Our results show the potential of doped finite nanotubes as tunable plasmonic materials for quantum optics applications.

  12. Interference and Interaction in multi-wall carbon nanotubes

    Science.gov (United States)

    Schönenberger, C.; Bachtold, A.; Strunk, C.; Salvetat, J.-P.; Forró, L.

    We report equilibrium electric resistance R and tunneling spectroscopy (dI/dV)measurements obtained on single multi-wall nanotubes contacted by four metallic Au fingers from above. At low temperature quantum interference phenomena dominate the magnetoresistance. The phase-coherence (lφ)and elastic-scattering lengths (le)are deduced. Because le is of order of the circumference of the nanotubes, transport is quasi-ballistic. This result is supported by a dI/dV spectrum which is in good agreement with the density of states (DOS) due to the one-dimensional subbands expected for a perfect single-wall tube. As a function of temperature T the resistance increases on decreasing T and saturates at 1-10 Kfor all measured nanotubes. R(T) cannot be related to the energy-dependent DOS of graphene but is mainly caused by interaction and interference effects. On a relatively small voltage scale of the order 10 meV, a pseudogap is observed in dI/dV which agrees with Luttinger-liquid theories for nanotubes. Because we have used quantum diffusion based on Fermi-liquid as well as Luttinger-liquid theory in trying to understand our results, a large fraction of this paper is devoted to a careful discussion of all our results.

  13. Interference and interaction in multi-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Schoenenberger, C.; Bachtold, A.; Strunk, C. [Basel Univ. (Switzerland). Inst. fuer Physik; Salvetat, J.P.; Forro, L. [Institut de Genie Atomique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    1999-09-01

    We report equilibrium electric resistance R and tunneling spectroscopy (dI/dV)measurements obtained on single multi-wall nanotubes contacted by four metallic Au fingers from above. At low temperature quantum interference phenomena dominate the magnetoresistance. The phase-coherence (l{sub {phi}})and elastic-scattering lengths (l{sub e})are deduced. Because l{sub e} is of order of the circumference of the nanotubes, transport is quasi-ballistic. This result is supported by a dI/dV spectrum which is in good agreement with the density of states (DOS) due to the one-dimensional subbands expected for a perfect single-wall tube. As a function of temperature T the resistance increases on decreasing T and saturates at {approx}1-10 Kfor all measured nanotubes. R(T) cannot be related to the energy-dependent DOS of graphene but is mainly caused by interaction and interference effects. On a relatively small voltage scale of the order {approx}10 meV, a pseudogap is observed in dI/dV which agrees with Luttinger-liquid theories for nanotubes. Because we have used quantum diffusion based on Fermi-liquid as well as Luttinger-liquid theory in trying to understand our results, a large fraction of this paper is devoted to a careful discussion of all our results. (orig.) With 8 figs., 66 refs.

  14. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    Science.gov (United States)

    Castillo, John J.; Rozo, Ciro E.; Castillo-León, Jaime; Rindzevicius, Tomas; Svendsen, Winnie E.; Rozlosnik, Noemi; Boisen, Anja; Martínez, Fernando

    2013-03-01

    This Letter involved the preparation of a conjugate between single-walled carbon nanotubes and folic acid that was obtained without covalent chemical functionalization using a simple 'one pot' synthesis method. Subsequently, the conjugate was investigated by a computational hybrid method: our own N-layered Integrated Molecular Orbital and Molecular Mechanics (B3LYP(6-31G(d):UFF)). The results confirmed that the interaction occurred via hydrogen bonding between protons of the glutamic moiety from folic acid and π electrons from the carbon nanotubes. The single-walled carbon nanotube-folic acid conjugate presented herein is believed to lead the way to new potential applications as carbon nanotube-based drug delivery systems.

  15. Spectroscopic analysis of the intermolecular interactions of gamma cyclodextrin and carbon nanotubes

    Science.gov (United States)

    Chambers, Gordon; Carroll, Clodagh; Farrell, Garrett F.; Dalton, Alan B.; Cadek, Martin; McNamara, Mary; Cummins, E.; in het Panhuis, Marc; Byrne, Hugh J.

    2003-03-01

    The production of small diameter (0.7-1.2nm) and high purity single walled carbon nanotubes using a gas-phase catalytic approach has aroused considerable interest in the chemistry of this unique material. Most recently it has been proposed that tubes produced in this manner can be cut by simply grinding them in a soft organic material such as g-cyclodextrin. The results reported on such cutting techniques however concentrated upon microscopy thereby limiting the degree of information, which could be deduced about the type of interaction between the two materials. In this study electronic and vibrational spectroscopy as well as Differential Scanning Calorimetry has been performed upon a ground mixture of the aforementioned single walled carbon nanotubes and γ-Cyclodextrin. The mixture was prepared by grinding in a 30:1 ratio γ-cyclodextrin and single walled carbon nanotubes for approximately two hours with the drop-wise addition of ethanol (1ml) in the first 10 minutes. A similar ground mixture of g-Cyclodextrin and multi walled carbon nanotubes was also prepared to help asses the type and degree of interaction between the single walled carbon nanotubes and the γ-Cyclodextrin. Absorption spectroscopy showed changes to the electronic structure of both the single walled carbon nanotubes and the γ-Cyclodextrin, while evidence from Raman spectroscopy indicates that the cyclodextrins are absorbed via van der Waals forces along the length of the tube inducing a compressive strain. No such evidence for an interaction with multi walled carbon nanotubes was observed suggesting the possibility of a diameter selective interaction. Finally as a comparison a sample containing 5mg of tubes was refluxed in an aqueous solution of γ cyclodextrin (0.3M) for ~72 hour similar to early studies preformed on C60 and γ cyclodextrin

  16. Encapsulation of organic molecules in carbon nanotubes: role of the van der Waals interactions

    Science.gov (United States)

    Dappe, Y. J.

    2014-02-01

    Carbon nanotubes are fascinating nano-objects not only from a fundamental point of view but also with respect to their remarkable properties, holding great potential in new materials design. When combined with organic molecules, these properties can be enhanced or modulated in order to fulfil the demand in domains as diverse as molecular electronics, biomaterials or even construction engineering, to name a few. To adequately conceive these hybrid materials it is essential to fully appreciate the nature of molecule-carbon nanotube interactions. In this review, we will discuss some relevant fundamental and applied research done on encapsulated molecules in carbon nanotubes. We will particularly focus on the weak and van der Waals interactions which rule the molecule-tube coupling. Therefore a small state of the art on the theoretical methods used to describe these interactions is presented here. Then, we will discuss various applications of molecular encapsulation, where we will consider structural, magnetic, charge transfer and transport, and optical properties.

  17. Interactions and chemical transformations of coronene inside and outside carbon nanotubes.

    Science.gov (United States)

    Botka, Bea; Füstös, Melinda E; Tóháti, Hajnalka M; Németh, Katalin; Klupp, Gyöngyi; Szekrényes, Zsolt; Kocsis, Dorina; Utczás, Margita; Székely, Edit; Váczi, Tamás; Tarczay, György; Hackl, Rudi; Chamberlain, Thomas W; Khlobystov, Andrei N; Kamarás, Katalin

    2014-04-09

    By exposing flat and curved carbon surfaces to coronene, a variety of van der Waals hybrid heterostructures are prepared, including coronene encapsulated in carbon nanotubes, and coronene and dicoronylene adsorbed on nanotubes or graphite via π-π interactions. The structure of the final product is determined by the temperature of the experiment and the curvature of the carbon surface. While at temperatures below and close to the sublimation point of coronene, nanotubes with suitable diameters are filled with single coronene molecules, at higher temperatures additional dimerization and oligomerization of coronene occurs on the surface of carbon nanotubes. The fact that dicoronylene and possible higher oligomers are formed at lower temperatures than expected for vapor-phase polymerization indicates the active role of the carbon surface used primarily as template. Removal of adsorbed species from the nanotube surface is of utmost importance for reliable characterization of encapsulated molecules: it is demonstrated that the green fluorescence attributed previously to encapsulated coronene is instead caused by dicoronylene adsorbed on the surface which can be solubilized and removed using surfactants. After removing most of the adsorbed layer, a combination of Raman spectroscopy and transmission electron microscopy was employed to follow the transformation dynamics of coronene molecules inside nanotubes.

  18. Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube-polymer interactions.

    Science.gov (United States)

    Adeli, Mohsen; Soleyman, Rouhollah; Beiranvand, Zahra; Madani, Fahimeh

    2013-06-21

    Despite the great potential of carbon nanotubes (CNTs) in various areas of biomedicine, concerns regarding their carcinogenicity, inefficient dispersion in aqueous solutions and biological activity in vivo still remain. One important and feasible route to overcome these barriers is modification of CNTs with polymers, which are widely studied and play a vital role in biological and biomedical fields, especially in drug delivery. This comprehensive review focuses on the achievements of our and other groups in currently used methods to functionalize the surface of CNTs with polymers to produce anticancer drug delivery systems. We have intensively studied covalent and noncovalent interactions between CNTs and linear, dendritic and hyperbranched biocompatible polymers as well as biomacromolecules interactions which are very crucial to diminish the toxicity of CNTs via changing their conformations.

  19. Theoretical Studies of the Interaction of Excitons with Charged Impurities in Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Tayo, Benjamin O.

    A fundamental theory of the electronic and optical properties of semiconductors shows the importance of impurities, which are often unavoidable and can alter intrinsic properties of semiconductor materials substantially. While the subject of impurity doping is well understood in bulk semiconductors, the role and impact of doping in low dimensional materials like carbon nanotubes is still under investigation and there exists significant debate on the exact nature of electronic impurity levels in single-walled carbon nanotubes associated with adatoms. In this work, we address the role of impurities in single-walled carbon nanotubes. A simple model is developed for studying the interaction of bright (singlet) excitons in semiconducting single-wall nanotubes with charged impurities. The model reveals a red shift in the energy of excitonic states in the presence of an impurity, thus indicating binding of excitons in the impurity potential well. Signatures of several bound states were found in the absorption spectrum below the onset of excitonic optical transitions in the bare nanotube. The dependence of the binding energy on the model parameters, such as impurity charge and position, was determined and analytical fits were derived for a number of tubes of different diameter. The nanotube family splitting is seen in the diameter dependence, gradually decreasing with the diameter. By calculating the partial absorption coefficient for a small segment of nanotube the local nature of the wave function of the bound states was derived. Our studies provide useful insights into the role of the physical environment (here, a charged impurity atom) in the manipulation of the excited states of carbon nanotubes. We performed very detailed calculations of the electronic and optical properties of carbon nanotubes in the presence of an immobile impurity atom, thus going beyond previous many-body perturbation theory (MBPT) studies in which the carbon nanotubes were considered in vacuum

  20. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  1. Modeling the interaction Between Ethylene Diamine and Water Films on the Surface of a Carbon Nanotube

    Science.gov (United States)

    Jaffe, Richard L.; Walther, Jens H.; Zimmerli, Urs; Koumoutsakos, Petros

    2004-01-01

    It has been observed that a carbon nanotube (CNT) AFM tip coated with ethylene diamine (EDA) penetrates the liquid water-air interface more easily than an uncoated nanotube tip. The EDA coating remains intact through repeated cycles of dipping and removal. In order to understand the physical basis for this observation, we use ab initio quantum chemistry calculations to study the EDA-CNT-water interaction and to parameterize a force field describing this system. Molecular dynamics (MD) simulations are carried out for EDA-water mixtures and an EDA-coated carbon nanotube immmed in water. These simulations are similar to our earlier MD study that characterized the CNT-water interface. The attractive CNT-EDA and CNT-water interactions arise primarily from van der Waals forces, and the EDA-EDA, EDA-water and water-water interactions are mainly due to hydrogen bond formation. The binding energ of single EDA molecule to the nanotube is nearly three times larger than the corresponding value found for water (4.3 versus 1.5 kcal mol, respectively). The EDA molecules readily stick to and diffuse along the CNT surface. As a resulf mixing of the EDA and water films does not occur on the timescale of the MD simulations. The EDA film reduces the hydrophobicity of the nanotube surface and acts like a prototypical surfactant in stabilizing the suspension of carbon nanotubes in water. For this presentation, we use the MD simulations to determine how the presence of the carbon nanotube surface perturbs the properties of EDA-water mixtures.

  2. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Castillo-León, Jaime;

    2013-01-01

    This work involved the preparation of a conjugate between single-walled carbon nanotubes and folic acid that was obtained without covalent chemical functionalization using a simple “one pot” synthesis method. Subsequently, the conjugate was investigated by a computational hybrid method: our own N...... conjugate presented herein is believed to lead the way to new potential applications as carbon nanotube-based drug delivery systems.......This work involved the preparation of a conjugate between single-walled carbon nanotubes and folic acid that was obtained without covalent chemical functionalization using a simple “one pot” synthesis method. Subsequently, the conjugate was investigated by a computational hybrid method: our own...... Nlayered Integrated Molecular Orbital and Molecular Mechanics (B3LYP(6–31G(d):UFF)). The results confirmed that the interaction occurred via hydrogen bonding between protons of the glutamic moiety from folic acid and π electrons from the carbon nanotubes. The single-walled carbon nanotube-folic acid...

  3. Structural and chemical evolution of single-wall carbon nanotubes under atomic and molecular deuterium interaction

    NARCIS (Netherlands)

    Lisowski, W.; Keim, E.G.; Berg, van den A.H.J.; Smithers, M.A.

    2005-01-01

    The interaction of atomic (D) and molecular (D2) deuterium, as present in a (D + D2) gas mixture, with single-wall carbon nanotubes (SWNTs) has been studied by means of a combination of scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The SWNT samp

  4. [The interaction between nerve cells and carbon nanotube networks made by CVD process investigation].

    Science.gov (United States)

    Bobrinetskiĭ, I I; Seleznev, A S; Gaĭduchenko, I A; Fedorov, G E; Domantovskiĭ, A G; Presniakov, M Iu; Podcherniaeva, R Ia; Mikhaĭlova, G R; Suetina, I A

    2013-01-01

    In this research we investigate neuroblastoma cells cultivated on single-walled carbon nanotubes networks made by CVD method on silicon substrates. The complex analysis of grown cells made by atomic force, electron microscopy and Raman spectroscopy was carried out and the effect of nanotube growth process on proliferation factor was investigated. It is shown that despite of a weak decrease in proliferation, cell morphology remains unchanged and no physical or chemical interaction between carbon nanotubes and cells is observed. The results of the research can be used to investigate the interaction between conductive nanomaterials and cells for the development of neural replacement implants. Also they can be useful in bio-electronic interface investigation of signal propagation in neurons.

  5. Geometric influence on Ruderman-Kittel-Kasuya-Yosida interactions in zigzag carbon nanotubes.

    Science.gov (United States)

    Bunder, J E; Hill, James M

    2012-04-21

    We derive an analytic description of the spin susceptibility in finite length zigzag carbon nanotubes (CNT) with chirality (n, 0). The spin susceptibility is proportional to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions which describes indirect carrier mediated exchange coupling between localized magnetic moments. We show that the strongest RKKY interactions are along the edges of the nanotube and in the thermodynamic limit at half filling with spin symmetry the shape of the susceptibility curve about the edge of the CNT can be determined solely by the lattice geometry represented by the parameter n and a parameter L which describes the nanotube length. We also show that the introduction of Zeeman splitting or doping may have no effect on the spin susceptibility, provided n is small. A detailed knowledge of magnetic interactions, such as RKKY interactions, in CNT is of vital importance to the development of nanotechnology applications.

  6. Effect of UV irradiation on the dynamics of oxygen and water interaction with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Anthony J [Virginia Tech, Blacksburg, VA; Ivanov, Ilia N [ORNL

    2016-01-01

    Carbon nanotube (CNT) films composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O2 and H2O vapor in the dark and under UV irradiation. Changes in the film conductivity and mass were measured in situ. We find that UV irradiation increases the resistive response of CNT films to O2 and H2O by more than an order of magnitude. In m-SWNT and MWNT films, UV irradiation changes the sign of the resistive response to O2 and H2O by generating free charge carriers. S-SWNTs show the largest UV-induced resistive response and exhibit weakening of van der Waals interactions with the QCM crystal when exposed to gas/vapor.

  7. The Toxicology of Carbon Nanotubes

    Science.gov (United States)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  8. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  9. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    Science.gov (United States)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  10. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    Science.gov (United States)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  11. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  12. Universal curves for the van der Waals interaction between single-walled carbon nanotubes.

    Science.gov (United States)

    Pogorelov, Evgeny G; Zhbanov, Alexander I; Chang, Yia-Chung; Yang, Sung

    2012-01-17

    We report very simple and accurate algebraic expressions for the van der Waals (VDW) potentials and the forces between two parallel and crossed carbon nanotubes. The Lennard-Jones potential for two carbon atoms and the method of the smeared-out approximation suggested by Girifalco were used. It is found that the interaction between parallel and crossed tubes is described by two universal curves for parallel and crossed configurations that do not depend on the van der Waals constants, the angle between tubes, and the surface density of atoms and their nature but only on the dimensionless distance. The explicit functions for equilibrium VDW distances, well depths, and maximal attractive forces have been given. These results may be used as a guide for the analysis of experimental data to investigate the interaction between nanotubes of various natures.

  13. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  14. Synthesis of carbon nanotubes.

    Science.gov (United States)

    Awasthi, Kalpana; Srivastava, Anchal; Srivastava, O N

    2005-10-01

    Carbon nanotubes play a fundamental role in the rapidly developing field of nanoscience and nanotechnology because of their unique properties and high potential for applications. In this article, the different synthesis methods of carbon nanotubes (both multi-walled and single-walled) are reviewed. From the industrial point of view, the chemical vapor deposition method has shown advantages over laser vaporization and electric arc discharge methods. This article also presents recent work in the controlled synthesis of carbon nanotubes with ordered architectures. Special carbon nanotube configurations, such as nanocoils, nanohorns, bamboo-shaped and carbon cylinder made up from carbon nanotubes are also discussed.

  15. Compressive characteristics of single walled carbon nanotube with water interactions investigated by using molecular dynamics simulation

    Science.gov (United States)

    Wong, C. H.; Vijayaraghavan, V.

    2014-01-01

    The elastic properties of single walled carbon nanotube (SWCNT) with surrounding water interactions are studied using molecular dynamics simulation technique. The compressive loading characteristic of carbon nanotubes (CNTs) in a fluidic medium such as water is critical for its role in determining the lifetime and stability of CNT based nano-fluidic devices. In this paper, we conducted a comprehensive analysis on the effect of geometry, chirality and density of encapsulated water on the elastic properties of SWCNT. Our studies show that defect density and distribution can strongly impact the compressive resistance of SWCNTs in water. Further studies were conducted on capped SWCNTs with varying densities of encapsulated water, which is necessary to understand the strength of CNT as a potential drug carrier. The results obtained from this paper will help determining the potential applications of CNTs in the field of nano-electromechanical systems (NEMS) such as nano-biological and nano-fluidic devices.

  16. Compressive characteristics of single walled carbon nanotube with water interactions investigated by using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: chwong@ntu.edu.sg; Vijayaraghavan, V.

    2014-01-24

    The elastic properties of single walled carbon nanotube (SWCNT) with surrounding water interactions are studied using molecular dynamics simulation technique. The compressive loading characteristic of carbon nanotubes (CNTs) in a fluidic medium such as water is critical for its role in determining the lifetime and stability of CNT based nano-fluidic devices. In this paper, we conducted a comprehensive analysis on the effect of geometry, chirality and density of encapsulated water on the elastic properties of SWCNT. Our studies show that defect density and distribution can strongly impact the compressive resistance of SWCNTs in water. Further studies were conducted on capped SWCNTs with varying densities of encapsulated water, which is necessary to understand the strength of CNT as a potential drug carrier. The results obtained from this paper will help determining the potential applications of CNTs in the field of nano-electromechanical systems (NEMS) such as nano-biological and nano-fluidic devices.

  17. Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

    Science.gov (United States)

    Palyi, Andras; Csiszar, Gabor

    2015-03-01

    Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.

  18. Interaction of removal Ethidium Bromide with Carbon Nanotube: Equilibrium and Isotherm studies

    OpenAIRE

    Moradi, Omid; Norouzi, Mehdi; Fakhri, Ali; Naddafi, Kazem

    2014-01-01

    Drinking water resources may be contaminated with Ethidium Bromide (EtBr) which is commonly used in molecular biology laboratories for DNA identification in electrophoresis. Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. In this study adsorption of Ethidium Bromide on single-walled carbon nanotubes (SWCNTs) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) surfaces have been investigated by UV–vi...

  19. INTER-LAYER INTERACTION IN DOUBLE-WALLED CARBON NANOTUBES EVIDENCED BY SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY

    DEFF Research Database (Denmark)

    Giusca, Cristina E; Tison, Yann; Silva, S. Ravi P.

    2008-01-01

    Scanning Tunneling Microscopy and Spectroscopy have been used in an attempt to elucidate the electronic structure of nanotube systems containing two constituent shells. Evidence for modified electronic structure due to the inter-layer interaction in double-walled carbon nanotubes is provided...... and the overall electronic structure for double-walled carbon nanotubes, is demonstrated by our experiments, showing that the effect the inner tube has on the overall electronic structure of double-walled nanotubes cannot be neglected, and is key to the opto-electronic properties of the system. We postulate...... that previous analysis of the opto-electronic properties on multiple-walled carbon nanotubes based purely on the outer layer chirality of the tube needs significant modification based on new understanding brought forth with our analysis....

  20. One-Dimensional Physics of Interacting Electrons and Phonons in Carbon Nanotubes

    Science.gov (United States)

    Deshpande, Vikram Vijay

    The one-dimensional (1D) world is quite different from its higher dimensional counterparts. For example, the electronic ground state in 1D is not a Fermi liquid as in most solids, due to the role of electron-electron interactions. Most commonly, electrons in 1D are described as a Luttinger liquid , where the low-energy excitations are decoupled bosonic charge and spin waves. Carbon nanotubes are clean 1D systems which have been shown to behave like a Luttinger liquid at high electron density. However, at low electron density and in the absence of disorder, the ground state is predicted to be a 1D Wigner crystal---an electron solid dominated by long-range Coulomb interaction. Moreover, short-range interaction mediated by the atomic lattice (umklapp scattering) is predicted to transform a nominal 1D metal into a Mott insulator. In this thesis, we develop techniques to make extremely clean nanotube single-electron transistors. We study them in the few-electron/hole regime using Coulomb blockade spectroscopy in a magnetic field. In semiconducting nanotubes, we map out the antiferromagnetic exchange coupling as a function of carrier number and find excellent agreement to a Wigner crystal model. In nominally metallic nanotubes, we observe a universal energy gap in addition to the single-particle bandgap, implying that nanotubes are never metallic. The magnitude, radius dependence and low-energy neutral excitations of this additional gap indicate a Mott insulating origin. Further, we use simultaneous electrical and Raman spectroscopy measurements to study the phonons scattered by an electric current. At high bias, suspended nanotubes show striking negative differential conductance, attributed to non-equilibrium phonons. We directly observe such "hot" phonon populations in the Raman response and also report preferential electron coupling to one of two optical phonon modes. In addition, using spatially-resolved Raman spectroscopy, we obtain a wealth of local information

  1. A theoretical study on the interaction of amphetamine and single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hafizi, Hamid [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafi Chermahini, Alireza, E-mail: anajafi@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mohammadnezhad, Gholamhossein [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Teimouri, Abbas [Chemistry Department, Payame Noor University (PNU), Tehran 19395-4697 (Iran, Islamic Republic of)

    2015-02-28

    Graphical abstract: - Highlights: • Interaction energy between several armchair CNTs and amphetamine is investigated. • The adsorption of amphetamine molecule is observed to be exothermic and physical in nature. • HOMO–LUMO for pure CNTs, amphetamine and their corresponded complexes are studied. • Density of states (DOS) near the Fermi level is calculated and presented. - Abstract: The adsorption of 1-phenyl-2-aminopropane (amphetamine) on the (4,4), (5,5), (6,6), and (7,7) single-walled carbon nanotubes (SWCNTs) has been theoretically investigated. The molecule has been located in different modes including parallel, perpendicular, and oblique on the outer surface of carbon nanotubes. The physisorption of amphetamine onto SWCNT sidewall is thermodynamically favored; as a consequence, it modulates the electronic properties of pristine nanotube in the vicinity of Fermi region. The adsorption energies for the parallel and oblique modes found in the range of −1.13 to −1.88 and −1.27 to −2.01 kcal/mol, respectively. Projected density of states (PDOS) and frontier orbital analysis in the vicinity of Fermi level region suggest the electronic states to be contributed from SWCNT rather than amphetamine molecule.

  2. The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets.

    Science.gov (United States)

    De Paoli, Silvia H; Diduch, Lukas L; Tegegn, Tseday Z; Orecna, Martina; Strader, Michael B; Karnaukhova, Elena; Bonevich, John E; Holada, Karel; Simak, Jan

    2014-08-01

    Carbon nanotubes (CNT) are one of the most promising nanomaterials for use in medicine. The blood biocompatibility of CNT is a critical safety issue. In the bloodstream, proteins bind to CNT through non-covalent interactions to form a protein corona, thereby largely defining the biological properties of the CNT. Here, we characterize the interactions of carboxylated-multiwalled carbon nanotubes (CNTCOOH) with common human proteins and investigate the effect of the different protein coronas on the interaction of CNTCOOH with human blood platelets (PLT). Molecular modeling and different photophysical techniques were employed to characterize the binding of albumin (HSA), fibrinogen (FBG), γ-globulins (IgG) and histone H1 (H1) on CNTCOOH. We found that the identity of protein forming the corona greatly affects the outcome of CNTCOOH's interaction with blood PLT. Bare CNTCOOH-induced PLT aggregation and the release of platelet membrane microparticles (PMP). HSA corona attenuated the PLT aggregating activity of CNTCOOH, while FBG caused the agglomeration of CNTCOOH nanomaterial, thereby diminishing the effect of CNTCOOH on PLT. In contrast, the IgG corona caused PLT fragmentation, and the H1 corona induced a strong PLT aggregation, thus potentiating the release of PMP.

  3. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam;

    2014-01-01

    efficient, user-friendly and systematic studies based on our earlier experience. In this work, multi-walled carbon nanotubes (MWCNTs) from Showa Denko® and the corresponding acid modified products were explored. The adsorption at low concentration was found to follow a Langmuir isotherm. Adsorption......The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more....... The results will contribute to optimize electrode preparation with novel nano-carbon catalyst supports and durable catalyst for low temperature (LT) PEMFCs....

  4. Detection of Sugar-Lectin Interactions by Multivalent Dendritic Sugar Functionalized Single-Walled Carbon Nanotubes

    CERN Document Server

    Vasu, K S; Bagul, R S; Jayaraman, N; Sood, A K; 10.1063/1.4739793

    2012-01-01

    We show that single walled carbon nanotubes (SWNT) decorated with sugar functionalized poly (propyl ether imine) (PETIM) dendrimer is a very sensitive platform to quantitatively detect carbohydrate recognizing proteins, namely, lectins. The changes in electrical conductivity of SWNT in field effect transistor device due to carbohydrate - protein interactions form the basis of present study. The mannose sugar attached PETIM dendrimers undergo charge - transfer interactions with the SWNT. The changes in the conductance of the dendritic sugar functionalized SWNT after addition of lectins in varying concentrations were found to follow the Langmuir type isotherm, giving the concanavalin A (Con A) - mannose affinity constant to be 8.5 x 106 M-1. The increase in the device conductance observed after adding 10 nM of Con A is same as after adding 20 \\muM of a non - specific lectin peanut agglutinin, showing the high specificity of the Con A - mannose interactions. The specificity of sugar-lectin interactions was chara...

  5. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.

    Science.gov (United States)

    Pérez-Hernández, Guillermo; Schmidt, Burkhard

    2013-04-14

    Effective Lennard-Jones models for the water-carbon interaction are derived from existing high-level ab initio calculations of water adsorbed on graphene models. The resulting potential energy well (εCO + 2εCH ≈ 1 kJ mol(-1)) is deeper than most of the previously used values in the literature on water in carbon nanotubes (CNTs). Moreover, a substantial anisotropy of the water-carbon interaction (εCO ≈ 2εCH) is obtained, which is neglected in most of the literature. We systematically investigate the effect of this anisotropy on structure and dynamics of TIP5P water confined in narrow, single-walled CNTs by means of molecular dynamics simulations for T = 300 K. While for isotropic models water usually forms one-dimensional, ordered chains inside (6,6) CNTs, we find frequent chain ruptures in simulations with medium to strongly anisotropic potentials. Here, the water molecules tend to form denser clusters displaying a liquid-like behaviour, allowing for self-diffusion along the CNT axis, in contrast to all previous simulations employing spherical (εCH = 0) interaction models. For (7,7) CNTs we observe structures close to trigonal, helical ice nanotubes which exhibit a non-monotonous dependence on the anisotropy of the water-carbon interaction. Both for vanishing and for large values of εCH we find increased fluctuations leading to a more liquid-like behaviour, with enhanced axial diffusion. In contrast, structure and dynamics of water inside (8,8) CNTs are found to be almost independent of the anisotropy of the underlying potential, which is attributed to the higher stability of the non-helical fivefold water prisms. We predict this situation to also prevail for larger CNTs, as the influence of the water-water interaction dominates over that of the water-carbon interaction.

  6. Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M. D. H., E-mail: dhbeg@yahoo.com; Moshiul Alam, A. K. M., E-mail: akmmalam@gmail.com; Yunus, R. M. [Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering (Malaysia); Mina, M. F. [Bangladesh University of Engineering and Technology, Department of Physics (Bangladesh)

    2015-01-15

    Efforts are being given to the development of well-dispersed nanoparticle-reinforced polymer nanocomposites in order to tailor the material properties. In this perspective, well dispersion of multi-walled carbon nanotubes (MWCNTs) in unsaturated polyester resin (UPR) was prepared using pre-dispersed MWCNTs in tetrahydrofuran solvent with ultrasonication method. Then the well-dispersed MWCNTs reinforced UPR nanocomposites were fabricated through solvent evaporation. Fourier-transform infrared spectroscopy indicates a good interaction between matrix and MWCNTs. This along with homogeneous dispersion of nanotubes in matrix has been confirmed by the field emission scanning electron microscopy. At low shear rate, the value of viscosity of UPR is 8,593 mPa s and that of pre-dispersed MWCNT–UPR suspension is 43,491 mPa s, showing implicitly a good dispersion of nanotubes. A notable improvement in the crystallinity of UPR from 14 to 21 % after MWCNTs inclusion was observed by X-ray diffractometry. The mechanical properties, such as tensile strength, tensile modulus, impact strength, and elongation-at-break, of nanocomposite were found to be increased to 22, 20, 28, and 87 %, respectively. The estimated melting enthalpy per gram for composites as analyzed by differential scanning calorimetry is higher than that of UPR. The onset temperature of thermal decomposition in the nanocomposites as monitored by thermogravimetric analysis is found higher than that of UPR. Correlations among MWCNTs dispersion, nucleation, fracture morphology, and various properties were measured and reported.

  7. Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by inter-wall van der Waals interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xue; Zhou, Wu-Xing, E-mail: wuxingzhou@hnu.edu.cn; Chen, Xue-Kun; Liu, Yue-Yang; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2016-05-06

    The thermal transport properties of multi-walled carbon nanotubes (MWCNTs) were investigated by using non-equilibrium molecular dynamics simulation. The results show that the thermal conductivity of MWCNTs decreases significantly comparing to that of single-walled carbon nanotubes (SWCNTs) due to the inter-wall van der Waals interactions. The more interesting is a fact that the thermal conductance of MWCNTs is significantly greater than the thermal conductance summation of each SWCNTs. This is because the thermal conductance of a carbon nanotube protected by an outer tube is much larger than that of one that is not protected. Moreover, we also studied the thermal flux distribution of MWCNTs, and found that the outer tube plays a dominant role in heat energy transfer. - Highlights: • Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by inter-wall interactions. • The thermal conductivity of the inner tube is increased significantly due to protected by outer tube. • The outer tube plays a dominant role in heat energy transfer in multi-walled carbon nanotube.

  8. Peel test of spinnable carbon nanotube webs

    Science.gov (United States)

    Khandoker, Noman; Hawkins, Stephen C.; Ibrahim, Raafat; Huynh, Chi P.

    2014-06-01

    This paper presents results of peel tests with spinnable carbon nanotube webs. Peel tests were performed to study the effect of orientation angles on interface energies between nanotubes. In absence of any binding agent the interface energy represents the Van Der Waals energies between the interacting nanotubes. Therefore, the effect of the orientations on Van Der Waals energies between carbon nanotubes is obtained through the peel test. It is shown that the energy for crossed nanotubes at 90° angle is lower than the energy for parallel nanotubes at 0° angle. This experimental observation was validated by hypothetical theoretical calculations.

  9. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lili [China Pharmaceutical University, Nanjing 210009 (China); The Nursing College of Pingdingshan University, Pingdingshan 467000 (China); Lin, Rui [Yancheng Health Vocational and Technical College, Yancheng 224005 (China); He, Hua, E-mail: dochehua@163.com [China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Sun, Meiling, E-mail: sml-nir@sohu.com [China Pharmaceutical University, Nanjing 210009 (China); Jiang, Li; Gao, Mengmeng [China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    The aim of this work was to investigate the detailed interaction between BSA and amidated single walled carbon nanotubes (e-SWNTs) in vitro. Ethylenediamine (EDA) was successfully linked on the surface of single-walled carbon nanotubes (SWNTs) via acylation to improve their dispersion and to introduce active groups. Bovine serum albumin (BSA) was selected as the template protein to inspect the interaction of e-SWNTs with protein. Decreases in fluorescence intensity of BSA induced by e-SWNTs demonstrated the occurrence of interaction between BSA and e-SWNTs. Quenching parameters and different absorption spectra for e-SWNTs–BSA show that the quenching effect of e-SWNTs was static quenching. Hydrophobic force had a leading contribution to the binding roles of BSA on e-SWNTs, which was confirmed by positive enthalpy change and entropy change. The interference of Na{sup +} with the quenching effect of e-SWNTs authenticated that electrostatic force existed in the interactive process simultaneously. The hydrophobicity of amino acid residues markedly increased with the addition of e-SWNTs viewed from UV spectra of BSA. The content of α-helix structure in BSA decreased by 6.8% due to the addition of e-SWNTs, indicating that e-SWNTs have an effect on the secondary conformation of BSA. -- Highlights: • The interaction between e-SWNTs and BSA was investigated by multiple spectroscopic methods. • Quenching mechanism was static quenching. • Changes in structure of BSA were inspected by synchronous fluorescence, UV–vis and CD spectrum.

  10. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  11. Differential conductance of armchair single-wall carbon nanotubes due to presence of electron-phonon interaction

    Science.gov (United States)

    Tajik, Fatemeh; Namiranian, Afshin

    2016-10-01

    We have theoretically investigated the first correction to conductance of armchair single wall carbon nanotubes (SWCNTs) with finite length, embedded between two electrodes, due to the presence of electron-transversal phonon interaction. The perturbative scheme has been used with finite length real space nearest neighbors tight binding method. Both radial breathing and tangential modes are investigated separately. It is found that not only the conductance correction crucially depends on source-drain voltage but also it strongly depends on the length and diameter of SWCNT. So, this work opens up opportunities to control the electrical conductance of SWCNT and increases yield of micro or nanodevices based on carbon nanotube.

  12. Improving the affinity of silicon surface for biosensor application: The interaction between multiwall carbon nanotube (MWCNT) and chitosan (CS)

    Science.gov (United States)

    Vijayakumaran, Thivina; Hashim, U.; Ruslinda, A. Rahim; Arshad, M. K.; Veeradasan, P.; Nordin, N. K. S.

    2017-03-01

    Previous study show the preparation, characterization and physical properties of carbon nanotube (CNT) and chitosan (CS). Multi-Wall CNT (MWCNT) and chitosan is utilized on the silicon surface in this studies. Functionalized of Multi Wall Carbon Nanotubes (MWCNTs) were demonstrated using the nitric acid (HNO3) oxidation technique to remove impurities. In this studies, the interaction between CS-MWCNT was investigated and explained according to the UV-VIS result. The range of the wavelength obtained from the UV-Vis data is 200-700nm. The hybrid form of CS-MWCNT proves to be more promising as a surface for biosensing application.

  13. Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by inter-wall van der Waals interactions

    Science.gov (United States)

    Zhang, Xue; Zhou, Wu-Xing; Chen, Xue-Kun; Liu, Yue-Yang; Chen, Ke-Qiu

    2016-05-01

    The thermal transport properties of multi-walled carbon nanotubes (MWCNTs) were investigated by using non-equilibrium molecular dynamics simulation. The results show that the thermal conductivity of MWCNTs decreases significantly comparing to that of single-walled carbon nanotubes (SWCNTs) due to the inter-wall van der Waals interactions. The more interesting is a fact that the thermal conductance of MWCNTs is significantly greater than the thermal conductance summation of each SWCNTs. This is because the thermal conductance of a carbon nanotube protected by an outer tube is much larger than that of one that is not protected. Moreover, we also studied the thermal flux distribution of MWCNTs, and found that the outer tube plays a dominant role in heat energy transfer.

  14. Host-guest interactions in azafullerene (C59N)-single-wall carbon nanotube (SWCNT) peapod hybrid structures.

    Science.gov (United States)

    Iizumi, Yoko; Okazaki, Toshiya; Liu, Zheng; Suenaga, Kazu; Nakanishi, Takeshi; Iijima, Sumio; Rotas, Georgios; Tagmatarchis, Nikos

    2010-02-28

    The effect of azafullerene encapsulation on the electronic states of single-wall carbon nanotubes (SWCNTs) is investigated; UV-vis-NIR absorption and photoluminescence spectroscopy shows that the interaction between SWCNTs and the encapsulated azafullerenes is originated from the weak intermolecular forces, which suggests a lack of strong doping effect such as electron transfer between them.

  15. Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Novoa, Leidy V.

    2013-01-01

    We here present amethod to form a noncovalent conjugate of single-walled carbon nanotubes and folic acid aimed to interact with cells over-expressing folate receptors. The bonding was obtained without covalent chemical functionalization using a simple, rapid “one pot” synthesis method. The zeta p...

  16. Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures.

    Science.gov (United States)

    Huang, Shu; Yee, Wu Aik; Tjiu, Wuiwui Chauhari; Liu, Ye; Kotaki, Masaya; Boey, Yin Chiang Freddy; Ma, Jan; Liu, Tianxi; Lu, Xuehong

    2008-12-02

    Polyvinylidene difluoride (PVDF) solutions containing a very low concentration of single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) of similar surface chemistry, respectively, were electrospun, and the nanofibers formed were collected using a modified rotating disk collector. The polymorphic behavior and crystal orientation of the nanofibers were studied using wide-angle X-ray diffraction and infrared spectroscopy, while the nanotube alignment and interfacial interactions in the nanofibers were probed by transmission electron microscopy and Raman spectroscopy. It is shown that the interfacial interaction between the SWCNTs and PVDF and the extensional force experienced by the nanofibers in the electrospinning and collection processes can work synergistically to induce highly oriented beta-form crystallites extensively. In contrast, the MWCNTs could not be well aligned along the nanofiber axis, which leads to a lower degree of crystal orientation.

  17. Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin.

    Science.gov (United States)

    Macwan, Isaac G; Zhao, Zihe; Sobh, Omar T; Mukerji, Ishita; Dharmadhikari, Bhushan; Patra, Prabir K

    2016-01-01

    Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner domains predominantly consist of α-helices, the outer domains are primarily beta sheets with D3. In flagellum, the outermost sub-domain is the only one that is exposed to the native environment. This study focuses on the interactions of the residues of D3 of an R-type flagellin with 5nm long chiral (5,15) and arm-chair (12,12) single-walled carbon nanotubes (SWNT) using molecular dynamics simulation. It presents the interactive forces between the SWNT and the residues of D3 from the perspectives of size and chirality of the SWNT. It is found that the metallic (arm-chair) SWNT interacts the most with glycine and threonine residues through van der Waals and hydrophobic interactions, whereas the semiconducting (chiral) SWNT interacts largely with the area of protein devoid of glycine by van der Waals, hydrophobic interactions, and hydrogen bonding. This indicates a crucial role that glycine plays in distinguishing metallic from semiconducting SWNTs.

  18. Radial Corrugations of Multi-Walled Carbon Nanotubes Driven by Inter-Wall Nonbonding Interactions.

    Science.gov (United States)

    Huang, Xu; Liang, Wentao; Zhang, Sulin

    2011-12-01

    We perform large-scale quasi-continuum simulations to determine the stable cross-sectional configurations of free-standing multi-walled carbon nanotubes (MWCNTs). We show that at an inter-wall spacing larger than the equilibrium distance set by the inter-wall van der Waals (vdW) interactions, the initial circular cross-sections of the MWCNTs are transformed into symmetric polygonal shapes or asymmetric water-drop-like shapes. Our simulations also show that removing several innermost walls causes even more drastic cross-sectional polygonization of the MWCNTs. The predicted cross-sectional configurations agree with prior experimental observations. We attribute the radial corrugations to the compressive stresses induced by the excessive inter-wall vdW energy release of the MWCNTs. The stable cross-sectional configurations provide fundamental guidance to the design of single MWCNT-based devices and shed lights on the mechanical control of electrical properties.

  19. Electronic interactions between "pea" and "pod": the case of oligothiophenes encapsulated in carbon nanotubes.

    Science.gov (United States)

    Gao, Jia; Blondeau, Pascal; Salice, Patrizio; Menna, Enzo; Bártová, Barbora; Hébert, Cécile; Leschner, Jens; Kaiser, Ute; Milko, Matus; Ambrosch-Draxl, Claudia; Loi, Maria Antonietta

    2011-07-04

    One of the most challenging strategies to achieve tunable nanophotonic devices is to build robust nanohybrids with variable emission in the visible spectral range, while keeping the merits of pristine single-walled carbon nanotubes (SWNTs). This goal is realized by filling SWNTs ("pods") with a series of oligothiophene molecules ("peas"). The physical properties of these peapods are depicted by using aberration-corrected high-resolution transmission electron microscopy, Raman spectroscopy, and other optical methods including steady-state and time-resolved measurements. Visible photoluminescence with quantum yields up to 30% is observed for all the hybrids. The underlying electronic structure is investigated by density functional theory calculations for a series of peapods with different molecular lengths and tube diameters, which demonstrate that van der Waals interactions are the bonding mechanism between the encapsulated molecule and the tube.

  20. Radial Corrugations of Multi-Walled Carbon Nanotubes Driven by Inter-Wall Nonbonding Interactions

    Directory of Open Access Journals (Sweden)

    Huang Xu

    2011-01-01

    Full Text Available Abstract We perform large-scale quasi-continuum simulations to determine the stable cross-sectional configurations of free-standing multi-walled carbon nanotubes (MWCNTs. We show that at an inter-wall spacing larger than the equilibrium distance set by the inter-wall van der Waals (vdW interactions, the initial circular cross-sections of the MWCNTs are transformed into symmetric polygonal shapes or asymmetric water-drop-like shapes. Our simulations also show that removing several innermost walls causes even more drastic cross-sectional polygonization of the MWCNTs. The predicted cross-sectional configurations agree with prior experimental observations. We attribute the radial corrugations to the compressive stresses induced by the excessive inter-wall vdW energy release of the MWCNTs. The stable cross-sectional configurations provide fundamental guidance to the design of single MWCNT-based devices and shed lights on the mechanical control of electrical properties.

  1. Using the carbon nanotube (CNT)/CNT interaction to obtain hybrid conductive nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.; Silva, A.; Bretas, R., E-mail: joaopaulofsbrasil@hotmail.com, E-mail: bretas@ufscar.br [Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luís, Km 235, PO Box 676, São Carlos, SP, 13565-905 (Brazil)

    2015-05-22

    Carbon nanotubes (CNTs) combine unique physical, electrical, chemical, thermal and mechanical properties with a huge surface area that qualify them to a broad range of applications. These potential applications, however, are often limited due to the strong inter-tubes van der Waals interactions, which results in poor dispersion in polymeric matrixes or solvents in general. Thus, the goal of this work was to use this limitation as an advantage, to produce novel conductive hybrid nanostructures, which consist of nonwoven Nylon 6 (PA6) mats of electrospun nanofibers with a large amount of multiwall carbon nanotubes (MWCNT) strongly attached and adsorbed on the nanofibers´ surfaces. To produce such structures, the MWCNT were previously functionalized with carboxylic groups and subsequently incorporated in the nanofibers by two subsequent steps: i) preparation of nonwoven mats of PA6/MWCNT by electrospinning and ii) treatment of the mats in an aqueous dispersion of MWCNT/Triton X–100. Analyses of UV-visible light showed that carboxylic groups were actually inserted in the MWCNT. Thermogravimetric analyzes (TGA) showed that the amount of adsorbed MWCNT on the fibers´ surfaces at the end of the procedure was approximately 12 times higher than after the first step. Micrographs obtained by scanning electron microscopy (SEM) confirmed this result and electrical conductivities measurements of the MWCNT/PA6, after the treatment in the aqueous solution, showed that these structures had conductivity of 10-2 S/m. It was concluded that the adhesion of CNTs at the surface of the nanofibers occurred due a combination of two types of bonding: hydrogen bonds between the carboxylic groups of the functionalized CNT and the PA6 and van der Waals interactions between the CNTs.

  2. Using the carbon nanotube (CNT)/CNT interaction to obtain hybrid conductive nanostructures

    Science.gov (United States)

    Santos, J.; Silva, A.; Bretas, R.

    2015-05-01

    Carbon nanotubes (CNTs) combine unique physical, electrical, chemical, thermal and mechanical properties with a huge surface area that qualify them to a broad range of applications. These potential applications, however, are often limited due to the strong inter-tubes van der Waals interactions, which results in poor dispersion in polymeric matrixes or solvents in general. Thus, the goal of this work was to use this limitation as an advantage, to produce novel conductive hybrid nanostructures, which consist of nonwoven Nylon 6 (PA6) mats of electrospun nanofibers with a large amount of multiwall carbon nanotubes (MWCNT) strongly attached and adsorbed on the nanofiberś surfaces. To produce such structures, the MWCNT were previously functionalized with carboxylic groups and subsequently incorporated in the nanofibers by two subsequent steps: i) preparation of nonwoven mats of PA6/MWCNT by electrospinning and ii) treatment of the mats in an aqueous dispersion of MWCNT/Triton X-100. Analyses of UV-visible light showed that carboxylic groups were actually inserted in the MWCNT. Thermogravimetric analyzes (TGA) showed that the amount of adsorbed MWCNT on the fiberś surfaces at the end of the procedure was approximately 12 times higher than after the first step. Micrographs obtained by scanning electron microscopy (SEM) confirmed this result and electrical conductivities measurements of the MWCNT/PA6, after the treatment in the aqueous solution, showed that these structures had conductivity of 10-2 S/m. It was concluded that the adhesion of CNTs at the surface of the nanofibers occurred due a combination of two types of bonding: hydrogen bonds between the carboxylic groups of the functionalized CNT and the PA6 and van der Waals interactions between the CNTs.

  3. Interaction of cholesterol with carbon nanotubes: A density functional theory study

    Science.gov (United States)

    Ciani, Anthony J.; Gupta, Bikash C.; Batra, Inder P.

    2008-07-01

    Carbon nanotubes (CNT) are being presented as medical devices at an increasing rate. To date, they have been suggested as targets for the thermal ablation of cancers, as delivery systems for pharmaceuticals, and as bio-sensors. A common thread amongst these applications is that CNTs are used as a delivery vector for some pharmaceutical into the body. We consider here the possibility that CNTs might be used as a device to trap and remove chemicals, particularly cholesterol, from a living organism. We have performed ab-initio calculations to determine how cholesterol might interact with CNTs placed inside the body. We have found that cholesterol exhibits no particular affinity for or effect on a bare CNT; however, its binding energy can be increased by functionalizing the CNT with a Ca adatom. We found that a Ca adatom on the wall of a CNT increases the binding energy of cholesterol to a CNT by around 1.5 eV, regardless of the nanotube's diameter. The presence of the cholesterol does not affect the band structure of the CNT, but the Ca atom does have an effect near the Fermi level. This indicates that a CNT based detector could function by detecting the alteration to the electronic structure caused by the induced adsorption of an adatom in the trinary system of CNT + cholesterol + adatom.

  4. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    Science.gov (United States)

    Muckley, Eric S.; Nelson, Anthony J.; Jacobs, Christopher B.; Ivanov, Ilia N.

    2016-04-01

    Interaction between ultraviolet (UV) light and carbon nanotube (CNT) networks plays a central role in gas adsorption, sensor sensitivity, and stability of CNT-based electronic devices. To determine the effect of UV light on sorption kinetics and resistive gas/vapor response of different CNT networks, films of semiconducting single-wall nanotubes (s-SWNTs), metallic single-wall nanotubes, and multiwall nanotubes were exposed to O2 and H2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O2 and H2O, whereas resistance of s-SWNT networks decreases. UV irradiation decreases the resistance of metallic nanotube networks in the presence of O2 and H2O and increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. s-SWNT networks show evidence of delamination from the gold-plated quartz crystal microbalance crystal, possibly due to preferential adsorption of O2 and H2O on gold. UV irradiation increases the sensitivity of all CNT networks to O2 and H2O by an order of magnitude, which demonstrates the importance of UV light for enhancing response and lowering detection limits in CNT-based gas/vapor sensors.

  5. The effect of intertube van der Waals interaction on the stability of pristine and functionalized carbon nanotubes under compression.

    Science.gov (United States)

    Kuang, Y D; Shi, S Q; Chan, P K L; Chen, C Y

    2010-03-26

    This paper investigates the effect of intertube van der Waals interaction on the stability of pristine and covalently functionalized carbon nanotubes under axial compression, using molecular mechanics simulations. After regulating the number of inner layers of the armchair four-walled (5, 5)@(10, 10)@(15, 15)@(20, 20) and zigzag four-walled (6, 0)@(15, 0)@(24, 0)@(33, 0) carbon nanotubes, the critical buckling strains of the corresponding tubes are calculated. The results show that each of the three inner layers in the functionalized armchair nanotube noticeably contributes to the stability of the outermost tube, and together increase the critical strain amplitude by 155%. However, the three inner layers in the corresponding pristine nanotube, taken together, increase the critical strain of the outermost tube by only 23%. In addition, for both the pristine and functionalized zigzag nanotubes, only the (24, 0) layer, among the three inner layers, contributes to the critical strain of the corresponding outermost tube, by 11% and 29%, respectively. The underlying mechanism of the enhanced stability related to nanotube chirality and functionalization is analyzed in detail.

  6. ONIOM studies of interaction between single-walled carbon nanotube and gallates derivatives as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nosrat Madadi Mahani

    2017-01-01

    Full Text Available Objective(s: The novel 7-hydroxycoumarinyl gallates derivatives are detected in many pharmaceutical compounds like anticancer and antimicrobial agents. Whereas carbon nanotubes (CNTs have been discussed for nanomedicine applications and in particular as drug delivery systems. The capability of armchair (5, 5 SWCNT -based drug delivery system in the therapy of anticancer has been investigated by quantum mechanics/molecular mechanics method.Materials and Methods: Theoretical investigation of the interaction between armchair (5, 5 SWCNT with gallates derivatives has been fulfilled by quantum mechanics/molecular mechanics (QM/MM method by ONIOM2 (DFT: UFF using the program of GAUSSIAN 03 suite.Results: The results derived from this study, demonstrate  that armchair (5, 5 SWCNT has weak interaction that these interactions contain Vander Waals interactions and indicated clearly that these systems have relatively low durability and so armchair (5, 5 SWCNT is appropriate drug delivery that have been investigated for anti-cancer drug.Conclusion: Analysis of ONIOM2 calculations and the interaction energies of the armchair (5, 5 SWCNT and gallates derivatives represented that this carrier can be utilized to improve the biological and anti-cancer activity of gallates derivatives.

  7. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    Science.gov (United States)

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment.

  8. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  9. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering.

    Science.gov (United States)

    Tonelli, Fernanda M P; Santos, Anderson K; Gomes, Katia N; Lorençon, Eudes; Guatimosim, Silvia; Ladeira, Luiz O; Resende, Rodrigo R

    2012-01-01

    In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites. Carbon nanotube composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering.

  10. Inkjet Printing of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryan P. Tortorich

    2013-07-01

    Full Text Available In an attempt to give a brief introduction to carbon nanotube inkjet printing, this review paper discusses the issues that come along with preparing and printing carbon nanotube ink. Carbon nanotube inkjet printing is relatively new, but it has great potential for broad applications in flexible and printable electronics, transparent electrodes, electronic sensors, and so on due to its low cost and the extraordinary properties of carbon nanotubes. In addition to the formulation of carbon nanotube ink and its printing technologies, recent progress and achievements of carbon nanotube inkjet printing are reviewed in detail with brief discussion on the future outlook of the technology.

  11. Interaction of collagen triple-helix with carbon nanotubes: Geometric property of rod-like molecules.

    Science.gov (United States)

    Kuboki, Yoshinori; Terada, Michiko; Kitagawa, Yoshimasa; Abe, Shigeaki; Uo, Motohiro; Watari, Fumio

    2009-01-01

    The interactions between carbon nanotubes and important biomolecules, above all collagen molecules, have not been studied in detail. This situation is partly due to the fact that CNT are solid entities, while most of the biomolecules can be prepared in solution. We used turbidity as a means of evaluating the interaction between CNT and collagen molecules. To a stable suspension of CNT (10 ppm in 0.1% Triton), collagen solution was added to obtain a final concentration of 25 ppm. The degree of aggregation was evaluated by measuring the turbidity of the suspension at 660 nm. It was found that native collagen induced distinct aggregation with CNT, while denaturation of this protein at 60 degrees C for 1 hr deprived the molecules of their ability to aggregate with CNT. Also other globular molecules, albumin and lysozyme, did not induce aggregation of CNT. These results indicate that the rigid rod-like structure of the native collagen triple helix is essential for interaction with CNT to cause aggregation. The mechanisms are considered to be dependent upon geometric properties of rod-like collagen molecules. The findings in this paper will open a new avenue to clarify the detailed mechanism of the interaction between collagen molecules and CNT.

  12. Defect-Defect Interaction in Single-Walled Carbon Nanotubes Under Torsional Loading

    Science.gov (United States)

    Huq, Abul M. A.; Bhuiyan, Abuhanif K.; Liao, Kin; Goh, Kheng Lim

    This paper presents an analysis of interactions between a pair of Stone-Wales (SW) defects in a single-walled carbon nanotube (SWCNT) that has been subjected to an external torque. Defect pairs, representing the different combinations of SW defect of A (SW-A) and B (SW-B) modes, were incorporated in SWCNT models of different chirality and diameter and solved using molecular mechanics. Defect-defect interaction was investigated by evaluating the C-C steric interactions in the defect that possesses the highest potential energy, E, as a function of inter-defect distance, D. This study reveals that the deformation of the C-C bond is attributed to bond stretching and bending. In the SW-B defects, there is an additional contributor arising from the dihedral angular deformation. The magnitude of E depends on the type of defect but the profile of the E versus D curve depends on the orientation of the defects. The largest indifference length, D0, beyond which two defects cease to interact, is approximately 30 Å. When the angular displacement of the tube increases two-fold, E increases, but the profile of the E versus D curve is not affected. The sense of rotation affects the magnitude of E but not the profile of the E versus D curve.

  13. Multiscale Simulations of Carbon Nanotubes and Liquids

    Science.gov (United States)

    Koumoutsakos, Petros

    2005-11-01

    We present molecular dynamics and hybrid continuum/atomistic simulations of carbon nanotubes in liquid environments with an emphasis on aqueous solutions. We emphasize computational issues such as interaction potentials and coupling techniques and their influence on the simulated physics. We present results from simulations of water flows inside and outside doped and pure carbon nanotubes and discuss their implications for experimental studies.

  14. Static and dynamic wetting measurements of single carbon nanotubes.

    Science.gov (United States)

    Barber, Asa H; Cohen, Sidney R; Wagner, H Daniel

    2004-05-07

    Individual carbon nanotubes were immersed and removed from various organic liquids using atomic force microscopy. The carbon nanotube-liquid interactions could be monitored in situ, and accurate measurements of the contact angle between liquids and the nanotube surface were made. These wetting data were used to produce Owens and Wendt plots giving the dispersive and polar components of the nanotube surface.

  15. Fluorescence Spectrometry of the Interaction of Multi-Walled Carbon Nanotubes with Catalase

    Science.gov (United States)

    Fan, Y.; Li, Y.; Cai, H.; Li, J.; Miao, J.; Fu, D.; Yang, Q.

    2014-11-01

    The interaction of multi-walled carbon nanotubes (MWCNTs) with catalase is investigated using fluorescence and circular dichroism spectroscopic techniques. The results of the fluorescence experiments suggest that MWCNTs quench the intrinsic fluorescence of catalase via a static quenching mechanism. The circular dichroism spectral results reveal the unfolding of catalase with a significant decrease in the α-helix content in the presence of MWCNTs, which indicates that the conformation of catalase is changed in the binding process, thereby remarkably decreasing its activity. The binding constants and the number of binding sites of the MWCNT to the catalase are calculated at different temperatures. The thermodynamic parameters, such as the changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), are calculated using thermodynamic equations. The fact that all negative values of ΔG, ΔH, and ΔS are obtained suggests that the interaction of the MWCNTs with catalase is spontaneous, and that hydrogen bonding and van der Waals interactions play an important role in the binding process.

  16. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    Science.gov (United States)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  17. Dynamic evolution of interacting carbon nanotubes suspended in a fluid using a dielectrophoretic framework

    Science.gov (United States)

    Oliva-Avilés, A. I.; Zozulya, V. V.; Gamboa, F.; Avilés, F.

    2016-09-01

    A theoretical investigation of the dynamic response of interacting carbon nanotubes (CNTs) dispersed in a liquid medium under alternating current electric fields is presented. The proposed modeling strategy is based on the dielectrophoretic theory and classical electrodynamics of rigid bodies, and considers the coupled rotation-translation motion of interacting CNTs represented as electrical dipoles. Based on experimental evidence, the parameters which are expected to cause a major contribution to the CNTs' motion are investigated for different initial configurations of CNTs. It is predicted that high electric field frequencies, long CNTs, high values of electrical permittivity and conductivity of the CNTs immersed in solvents of high polarity promote faster equilibrium conditions, achieved by CNT tip-to-tip contact and alignment along the electric field direction. For the majority of the scenarios, CNT alignment along the field direction is predicted as the first event, followed by the translation of aligned CNTs until the tip-to-tip contact condition is reached. For systems with interacting CNTs with different lengths, equilibrium of the shorter CNT is achieved faster. Predictions also show that the initial rotation angles and initial location of CNTs have a paramount influence on the evolution of the system towards the equilibrium configuration.

  18. Polymer Self-assembly on Carbon Nanotubes

    Science.gov (United States)

    Giulianini, Michele; Motta, Nunzio

    This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV-Vis and Raman), we show how the polymer's higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT π-π stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

  19. A theoretical study on the interaction of amphetamine and single-walled carbon nanotubes

    Science.gov (United States)

    Hafizi, Hamid; Najafi Chermahini, Alireza; Mohammadnezhad, Gholamhossein; Teimouri, Abbas

    2015-02-01

    The adsorption of 1-phenyl-2-aminopropane (amphetamine) on the (4,4), (5,5), (6,6), and (7,7) single-walled carbon nanotubes (SWCNTs) has been theoretically investigated. The molecule has been located in different modes including parallel, perpendicular, and oblique on the outer surface of carbon nanotubes. The physisorption of amphetamine onto SWCNT sidewall is thermodynamically favored; as a consequence, it modulates the electronic properties of pristine nanotube in the vicinity of Fermi region. The adsorption energies for the parallel and oblique modes found in the range of -1.13 to -1.88 and -1.27 to -2.01 kcal/mol, respectively. Projected density of states (PDOS) and frontier orbital analysis in the vicinity of Fermi level region suggest the electronic states to be contributed from SWCNT rather than amphetamine molecule.

  20. Electronic Interactions between "Pea" and "Pod" : The Case of Oligothiophenes Encapsulated in Carbon Nanotubes

    NARCIS (Netherlands)

    Gao, Jia; Blondeau, Pascal; Salice, Patrizio; Menna, Enzo; Bartova, Barbora; Hebert, Cecile; Leschner, Jens; Kaiser, Ute; Milko, Matus; Ambrosch-Draxl, Claudia; Loi, Maria Antonietta

    2011-01-01

    One of the most challenging strategies to achieve tunable nanophotonic devices is to build robust nanohybrids with variable emission in the visible spectral range, while keeping the merits of pristine single-walled carbon nanotubes (SWNTs). This goal is realized by filling SWNTs ("pods") with a seri

  1. Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2013-01-01

    Full Text Available Carbon nanotubes (CNTs are allotropes of carbon with a nanostructure that can have a length-to-diameter ratio greater than 1,000,000. Techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, and chemical vapor deposition. Developments in the past few years have illustrated the potentially revolutionizing impact of nanomaterials, especially in biomedical imaging, drug delivery, biosensing, and the design of functional nanocomposites. Methods to effectively interface proteins with nanomaterials for realizing these applications continue to evolve. The high surface-to-volume ratio offered by nanoparticles resulted in the concentration of the immobilized entity being considerably higher than that afforded by other materials. There has also been an increasing interest in understanding the influence of nanomaterials on the structure and function of proteins. Various immobilization methods have been developed, and in particular, specific attachment of enzymes on carbon nanotubes has been an important focus of attention. With the growing attention paid to cascade enzymatic reaction, it is possible that multienzyme coimmobilization would be one of the next goals in the future. In this paper, we focus on advances in methodology for enzyme immobilization on carbon nanotubes.

  2. Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields

    NARCIS (Netherlands)

    Jhang, S.H.; Marganska, M.; Skourski, Y.; Preusche, D.; Witkamp, B.; Grifoni, M.; Van der Zant, H.; Wosnitza, J.; Strunk, C.

    2010-01-01

    The magnetoconductance of an open carbon nanotube (CNT)-quantum wire was measured in pulsed magnetic fields. At low temperatures, we find a peculiar split magnetoconductance peak close to the chargeneutrality point. Our analysis of the data reveals that this splitting is intimately connected to the

  3. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Tonelli FM

    2012-08-01

    Full Text Available Fernanda MP Tonelli,1 Anderson K Santos,1 Katia N Gomes,2 Eudes Lorençon,2 Silvia Guatimosim,3 Luiz O Ladeira,2 Rodrigo R Resende11Cell Signaling and Nanobiotechnology Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil; 2Nanomaterials Laboratory, Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil; 3Intracellular Cardiomiocyte Signaling Laboratory, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, BrazilAbstract: In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites. Carbon nanotube composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering.Keywords: carbon nanotubes, tissue engineering, extracellular matrix proteins, collagen, hyaluronic acid, stem cells

  4. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  5. Spectral mixing formulations for van der Waals-London dispersion interactions between multicomponent carbon nanotubes.

    Science.gov (United States)

    Rajter, Rick; French, Roger H; Podgornik, Rudi; Ching, W Y; Parsegian, V Adrian

    2008-09-01

    Recognition of spatially varying optical properties is a necessity when studying the van der Waals-London dispersion (vdW-Ld) interactions of carbon nanotubes (CNTs) that have surfactant coatings, tubes within tubes, andor substantial core sizes. The ideal way to address these radially dependent optical properties would be to have an analytical add-a-layer solution in cylindrical coordinates similar to the one readily available for the plane-plane geometry. However, such a formulation does not exist nor does it appear trivial to be obtained exactly. The best and most pragmatic alternative for end-users is to take the optical spectra of the many components and to use a spectral mixing formulation so as to create effective solid-cylinder spectra for use in the far-limit regime. The near-limit regime at "contact" is dominated by the optical properties of the outermost layer, and thus no spectral mixing is required. Specifically we use a combination of a parallel capacitor in the axial direction and the Bruggeman effective medium in the radial direction. We then analyze the impact of using this mixing formulation upon the effective vdW-Ld spectra and the resulting Hamaker coefficients for small and large diameter single walled CNTs (SWCNTs) in both the near- and far-limit regions. We also test the spectra of a [16,0,s+7,0,s] multiwalled CNT (MWCNT) with an effective MWCNT spectrum created by mixing its [16,0,s] and [7,0,s] SWCNT components to demonstrate nonlinear coupling effects that exist between neighboring layers. Although this paper is primarily on nanotubes, the strategies, implementation, and analysis presented are applicable and likely necessary to any system where one needs to resolve spatially varying optical properties in a particular Lifshitz formulation.

  6. Compositing polyetherimide with polyfluorene wrapped carbon nanotubes for enhanced interfacial interaction and conductivity

    KAUST Repository

    Chen, Ye

    2014-06-25

    A novel approach to chemically functionalize multiwalled carbon nanotubes (MWCNTs) for making superior polyetherimide (PEI) nanocomposites with polyfluorene polymer is presented. In this approach, MWCNTs are non-covalently functionalized with poly(9,9-dioctyfluorenyl-2,7-diyl) (PFO) through π-π stacking as confirmed by UV-vis, fluorescence, and Raman spectra. Atomic force microscopy as well as scanning and transmission electron microscopy shows the PFO coated MWCNTs, which provides excellent dispersion of the latter in both solvent and PEI matrix. The strong interaction of PFO with PEI chains, as evidenced from fluorescence spectra, supports the good adhesion of dispersed MWCNTs to PEI leading to stronger interfacial interactions. As a result, the addition of as little as 0.25 wt % of modified MWCNTs to PEI matrix can strongly improve the mechanical properties of the composite (increase of 46% in storage modulus). Increasing the amount of MWCNTs to 2.0 wt % (0.5 wt % PFO loading) affords a great increase of 119% in storage modulus. Furthermore, a sharp decrease of 12 orders of magnitude in volume resistivity of PEI composite is obtained with only 0.5 wt % of PFO modified MWCNT. © 2014 American Chemical Society.

  7. Carbon nanotube junctions and devices

    NARCIS (Netherlands)

    Postma, H.W.Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconduct

  8. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect

    OpenAIRE

    Jiang, Jin-Wu; Wang, Jian-Sheng

    2011-01-01

    The electron-phonon interaction (EPI) effect in single-walled carbon nanotube is investigated by the nonequilibrium Green's function approach within the Born approximation. Special attention is paid to the EPI induced Joule heating phenomenon and the thermoelectric properties in both metallic armchair (10, 10) tube and semiconductor zigzag (10, 0) tube. For Joule heat in the metallic (10, 10) tube, the theoretical results for the breakdown bias voltage is quite comparable with the experimenta...

  9. Carbon nanotubes for supercapacitor.

    Science.gov (United States)

    Pan, Hui; Li, Jianyi; Feng, Yuanping

    2010-01-05

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  10. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  11. Interactions of carbon nanotubes and gold nanoparticles: the effects of solvent dielectric constant and temperature on controlled assembly of superstructures.

    Science.gov (United States)

    Rance, G A; Khlobystov, A N

    2014-05-28

    The effects of solvent dielectric constant and temperature on the non-covalent interactions between gold nanoparticles and carbon nanotubes have been explored. Our experiments have shown that fewer nanoparticles are adsorbed onto nanotubes in high dielectric assembly environments. This has been correlated with an increase in the differential capacitance of nanoparticles relative to the bulk solvent resulting in more local charge on nanoparticles and thus heightened repulsive electrostatic interactions in higher polarity organic solvents. Furthermore, our temperature-dependent measurements have demonstrated for the first time that (i) the apparent activation barrier to adsorption of nanoparticles on nanotubes of Ea = 9.6 kJ mol(-1) lies clearly within the range expected for non-covalent interactions and (ii) the adsorption of nanoparticles onto nanotubes is reversible and may represent an equilibrium process sensitive to temperature according to Le Chatelier's principle. Thus, we further demonstrate that modulation of non-covalent interactions can be harnessed for the precision derivatisation of nanocarbons with noble metals.

  12. Chromatography of carbon nanotubes separated albumin from other serum proteins: a method for direct analysis of their interactions.

    Science.gov (United States)

    Kuboki, Yoshinori; Koshikawa, Takamitu; Takita, Hiroko; Fujisawa, Ryuichi; Lee, Min-ho; Abe, Shigeaki; Akasaka, Tsukasa; Uo, Motohiro; Watari, Fumio; Sammons, Rachel

    2010-08-01

    Chromatography technology was employed to clarify the mechanism of interaction between multi-wall carbon nanotubes (MWCNT) and proteins. A column (16x100 mm) was packed with purified MWCNT, and various proteins were eluted with phosphate buffered saline (PBS) with and without gradient systems. It was found that albumin in bovine serum was eluted immediately from the column without any adsorption to MWCNT. Conversely, the non-albumin proteins, including a protein of 85 kDa molecular mass and a group of proteins with molecular masses higher than 115 kDa, exhibited considerably high affinity towards MWCNT. A sample of pure bovine serum albumin was also eluted immediately from the column, while lysozyme did not elute as a peak with PBS, but eluted with 0.6 M NaCl. Fundamentally, carbon nanotubes are devoid of any electrical charge. Therefore, other forces including the hydrogen bonds, hydrophilic interactions, and van der Waals forces were most probably responsible for the differential elution behaviors. In conclusion, this chromatographic method provided a simple and direct analysis of the interactions between carbon nanotubes and the various proteins.

  13. Under the lens: carbon nanotube and protein interaction at the nanoscale.

    Science.gov (United States)

    Marchesan, S; Prato, M

    2015-03-14

    The combination of the very different chemical natures of carbon nanotubes (CNTs) and proteins gives rise to systems with unprecedented performance, thanks to a rich pool of very diverse chemical, electronic, catalytic and biological properties. Here we review recent advances in the field, including innovative and imaginative aspects from a nanoscale point of view. The tubular nature of CNTs allows for internal protein encapsulation, and also for their external coating by protein cages, affording bottom-up ordering of molecules in hierarchical structures. To achieve such complex systems it is imperative to master the intermolecular forces between CNTs and proteins, including geometry effects (e.g. CNT diameter and curvature) and how they translate into changes in the local environment (e.g. water entropy). The type of interaction between proteins and CNTs has important consequences for the preservation of their structure and, in turn, function. This key aspect cannot be neglected during the design of their conjugation, be it covalent, non-covalent, or based on a combination of both methods. The review concludes with a brief discussion of the very many applications intended for CNT-protein systems that go across various fields of science, from industrial biocatalysis to nanomedicine, from innovative materials to biotechnological tools in molecular biology research.

  14. A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies.

    Science.gov (United States)

    Xu, Zhijun; Yang, Xiaoning; Yang, Zhen

    2010-03-10

    Here we report a larger-scale atomic-level molecular dynamics (MD) simulation for the self-assembly of sodium dodecyl sulfate (SDS) surfactant on single-walled carbon nanotube (SWNT) surfaces and the interaction between supramolecular SDS/SWNT aggregates. We make an effort to address several important problems in regard to carbon nanotube dispersion/separation. At first, the simulation provides comprehensive direct evidence for SDS self-assembly structures on carbon nanotube surfaces, which can help to clarify the relevant debate over the exact adsorption structure. We also, for the first time, simulated the potential of mean force (PMF) between two SWNTs embedded in SDS surfactant micelles. A novel unified PMF approach has been applied to reveal various cooperative interactions between the SDS/SWNT aggregates, which is different from the previous electrostatic repulsion explanation. The unique role of sodium ions revealed here provides a new microscopic understanding of the recent experiments in the electrolyte tuning of the interfacial forces on the selective fractionation of SDS surrounding SWNTs.

  15. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  16. Carbon nanotubes for microelectronics?

    Science.gov (United States)

    Graham, Andrew P; Duesberg, Georg S; Seidel, Robert V; Liebau, Maik; Unger, Eugen; Pamler, Werner; Kreupl, Franz; Hoenlein, Wolfgang

    2005-04-01

    Despite all prophecies of its end, silicon-based microelectronics still follows Moore's Law and continues to develop rapidly. However, the inherent physical limits will eventually be reached. Carbon nanotubes offer the potential for further miniaturization as long as it is possible to selectively deposit them with defined properties.

  17. Interaction of removal Ethidium Bromide with Carbon Nanotube: Equilibrium and Isotherm studies.

    Science.gov (United States)

    Moradi, Omid; Norouzi, Mehdi; Fakhri, Ali; Naddafi, Kazem

    2014-01-08

    Drinking water resources may be contaminated with Ethidium Bromide (EtBr) which is commonly used in molecular biology laboratories for DNA identification in electrophoresis. Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. In this study adsorption of Ethidium Bromide on single-walled carbon nanotubes (SWCNTs) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) surfaces have been investigated by UV-vis spectrophotometer. The effect of contact time, initial concentration and temperature were investigated. The adsorbents exhibits high efficiency for EtBr adsorption and equilibrium can be achieved in 6 and 3 min for SWCNTs and SWCNT-COOH, respectively. The effect of temperature on adsorption of EtBr by toward adsorbents shows the process in this research has been endothermic. The results showed that the equilibrium data were well described by the Langmuir isotherm model, with a maximum adsorption capacity of 0.770 and 0.830 mg/g for SWCNTs and SWCNT-COOH, respectively. The adsorption of EtBr on SWCNT-COOH is more than SWCNTs surfaces. A comparison of kinetic models was evaluated for the pseudo first-order, pseudo second-order models. Pseudo second-order was found to agree well with the experimental data.

  18. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells.

    Directory of Open Access Journals (Sweden)

    Niklas Burblies

    Full Text Available Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs, either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes.

  19. Nitrogen doping in carbon nanotubes.

    Science.gov (United States)

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  20. Dispersion C3 coefficients for the alkali-metal atoms interacting with a graphene layer and with a carbon nanotube

    CERN Document Server

    Arora, Bindiya; Sahoo, B K

    2013-01-01

    We evaluate separation dependent van der Waal dispersion ($C_3$) coefficients for the interactions of the Li, Na, K and Rb alkali atoms with a graphene layer and with a single walled carbon nanotube (CNT) using the hydrodynamic and Dirac models. The results from both the models are evaluated using accurate values of the dynamic polarizabilities of the above atoms. Accountability of these accurate values of dynamical polarizabilities of the alkali atoms in determination of the above $C_3$ coefficients are accentuated by comparing them with the coefficients evaluated using the dynamic dipole polarizabilities estimated from the single oscillator approximation which are typically employed in the earlier calculations. For practical description of the atom-surface interaction potentials the radial dependent $C_3$ coefficients are given for a wide range of separation distances between the ground states of the considered atoms and the wall surfaces and also for different values of nanotube radii. The coefficients for...

  1. INTERACTION-MEDIATED GROWTH OF CARBON NANOTUBES ON ACICULAR SILICA-COATED α-Fe CATALYST BY CHEMICAL VAPOR DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    Qixiang Wang; Guoqing Ning; Fei Wei; Guohua Luo

    2003-01-01

    Multi-walled carbon nanotubes (MWNTs) with 20 nm outer diameter were prepared by chemical vapor deposition of ethylene using ultrafine surface-modified acicular α-Fe catalyst particles. The growth mechanism of MWNTs on the larger catalyst particles are attributed to the interaction between the Fe nanoparticles with the surface-modified silica layer. This interaction-mediated growth mechanism is illustrated by studying the electronic, atomic and crystal properties of surface-modified catalysts and MWNTs products by characterization with X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), thermal gravimetric analysis (TGA) and Raman spectra.

  2. Epitaxial Approaches to Carbon Nanotube Organization

    Science.gov (United States)

    Ismach, Ariel

    nanotube and the anisotropic interaction between the stepped surface and the nanotube. We characterized the nanotubes by SEM, AFM, HRTEM, EFM and transport measurements. In addition, the nanotubes were characterized by Raman spectroscopy (in collaboration with scientists from MIT, UFMG-Brazil and Rochester University). This research showed for the first time the organization of nanotubes into well-defined structures including straight, wavy, kinked, crossbar architectures, serpentines and coils. Furthermore, epitaxial carbon nanotubes show very good conductances and low density of structural defects. All these results make the 'nanotube epitaxy' approach very promising for the study, organization and integration of one-dimensional materials into functional nanosystems.

  3. Biomacromolecule interactions and sensor engineering with single-walled carbon nanotubes

    Science.gov (United States)

    Gong, Xun

    The many unique properties of single-walled carbon nanotubes (SWCNT) have led interest in their research for a range of potential applications. It is well known that DNA molecules readily wrap around SWCNTs to create water soluble, and biocompatible hybrids (DNA-SWCNT). In concert with many recent studies into DNA molecules and custom materials design, the door is open for SWCNT engineering for biomedical applications. In recent years, SWCNT conjugates have been explored for a variety of applications from scaffolds, to drug delivery, to sensors and beyond. However, despite the amount of early enthusiasm and research, there currently is a limited number of SWCNT-based technologies in the commercial and medical realm. Major factors that contribute to this phenomenon include the heterogeneity of the material and subsequently the complexity of their properties especially in the biological context. The focus of this thesis is to begin addressing the latter for DNA-SWCNT on several fronts of the iterative process of biomaterials design including: material properties, sensor engineering, and cellular interactions. Despite the amount of research on applications of DNA-SWCNT, there is much contention on their exact surface organization. Through multiple complementary techniques and the development of novel analytical methods, a model of DNA-SWCNT surface structure was proposed. Next, DNA-SWCNT endocytosis was imaged. Pharmacological and genetic methods were used to study both the kinetics and mechanism of DNA-SWCNT cellular uptake. Once inside the cell, we took advantage of DNA-SWCNT properties and spatial locations of endosomes to create a sensor system that detects intracellular analyte concentrations with both spatial and temporal resolution. As current study of intracellular signaling often involve the study of time and population averaged cellular changes, this new tool to study single cell responses with spatial resolution can significantly improve our basic

  4. Carbon Nanotube Purification and Functionalization

    Science.gov (United States)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  5. Interactions of carbon nanotubes in a nematic liquid crystal. I. Theory

    Science.gov (United States)

    Galerne, Yves

    2016-04-01

    Elongated and rodlike objects such as carbon nanotubes (CNTs) are studied when immersed in a nematic liquid crystal. Their interaction energy in a uniform nematic field depends on their orientation relative to the director n , and its minimum determines if they stabilize parallel or perpendicular to n . Using free energy calculations, we deduce the orientation at equilibrium that they choose in a uniform director field n or when they are in contact with a splay-bend disclination line. Naturally, the CNT orientations also depend on the anchoring conditions at their surface. Essentially, three types of anchorings are considered, planar, homeotropic, and Janus anchorings in the cases of weak and strong anchoring strengths. In the presence of a splay-bend disclination line, they are attracted toward it and ultimately, they get out of the colloidal dispersion to stick on it. Their orientation relative to the line is found to be parallel or perpendicular to it, again depending on the anchoring conditions. When a sufficient number of particles are deposited on a disclination line, we finally obtain a micro- or nanonecklace in the shape of a thin thread or of a bottle brush, according to the CNTs being oriented parallel or perpendicular to the disclination line, respectively. The system exhibits a rich versatility even if up to now the weak anchorings appear to be difficult to control. As discussed in the associated experimental paper, these necklaces could be a step toward interesting applications for realizing nanowires self-connected in three dimensions to predesignated electrodes. This method could provide a way to increase the number of transistors that may be connected together on a small volume.

  6. Production of carbon nanotubes

    Science.gov (United States)

    Journet, C.; Bernier, P.

    Carbon nanostructures such as single-walled and multi-walled nanotubes (SWNTs and MWNTs) or graphitic polyhedral nanoparticles can be produced using various methods. Most of them are based on the sublimation of carbon under an inert atmosphere, such as the electric arc discharge process, the laser ablation method, or the solar technique. But chemical methods can also be used to synthesize these kinds of carbon materials: the catalytic decomposition of hydrocarbons, the production by electrolysis, the heat treatment of a polymer, the low temperature solid pyrolysis, or the in situ catalysis.

  7. Enzymatic degradation of multiwalled carbon nanotubes.

    Science.gov (United States)

    Zhao, Yong; Allen, Brett L; Star, Alexander

    2011-09-01

    Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes.

  8. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  9. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  10. Carbon Nanotube Thermoelectric Coolers

    Science.gov (United States)

    2015-02-06

    conductance. Inside thecentral section of the carbon nanotube, we obtained an impressive Peltier cooling 57 K down from the liquid nitrogentemperature. 15... trapped charges or dipoles) that occur either at the interface between the CNT and the gate dielectric (interface defects) or at some position within... liquid nitrogen temperature 77T  K up to hot 134 8T  K, or decreases from 77T  K down to about cold 20 6T  K, thus evidencing a strong

  11. Carbon nanotube biosensors

    OpenAIRE

    Tîlmaciu, Carmen-Mihaela; Morris, May C

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we pr...

  12. Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and Photovoltaics

    KAUST Repository

    Ezzeddine, Alaa

    2015-10-01

    Ever since their discovery, Carbon nanotubes (CNTs) have been renowned to be potential candidates for a variety of applications. Nevertheless, the difficulties accompanied with their dispersion and poor solubility in various solvents have hindered CNTs potential applications. As a result, studies have been developed to address the dispersion problem. The solution is in modifying the surfaces of the nanotubes covalently or non-covalently with a desired dispersant. Various materials have been employed for this purpose out of which polymers are the most common. Non-covalent functionalization of CNTs via polymer wrapping represents an attractive method to obtain a stable and homogenous CNTs dispersion. This method is able to change the surface properties of the nanotubes without destroying their intrinsic structure and preserving their properties. This thesis explores and studies the surface modification and solublization of pristine single and multiwalled carbon nanotubes via a simple solution mixing technique through non-covalent interactions of CNTs with various anionic and cationic conjugated polyelectrolytes (CPEs). The work includes studying the interaction of various poly(phenylene ethynylene) electrolytes with MWCNTs and an imidazolium functionalized poly(3-hexylthiophene) with SWCNTs. Our work here focuses on the noncovalent modifications of carbon nanotubes using novel CPEs in order to use these resulting CPE/CNT complexes in various applications. Upon modifying the CNTs with the CPEs, the resulting CPE/CNT complex has been proven to be easily dispersed in various organic and aqueous solution with excellent homogeneity and stability for several months. This complex was then used as a nanofiller and was dispersed in another polymer matrix (poly(methyl methacrylate), PMMA). The PMMA/CPE/CNT composite materials were cast or electrospun depending on their desired application. The presence of the CPE modified CNTs in the polymer matrix has been proven to enhance

  13. Electron-phonon interaction and excited states relaxation in carbon nanotubes

    Science.gov (United States)

    Perebeinos, Vasili

    2008-03-01

    We will discuss the role of electron-phonon interaction on excited states relaxation and phonon spectra in carbon nanotubes (CNTs). The electron-phonon interaction leads to the polaronic effects of the charge carriers, but it also renormalizes the energy and the lifetime of phonons. We present a theoretical model that predicts the changes induced in the phonon modes of CNTs as a function of the charge carrier doping, i.e. position of the Fermi level. In agreement with the predictions, our experiments show sharpening and blue shifts of the G-phonons of metallic CNTs, but only blue shifts for semiconducting CNTs, making the Raman scattering a useful probe of local doping of CNTs [1]. The non-equilibrium dynamics of charge carriers under external electric field is determined by the electron-phonon scattering. The hot carriers under unipolar transport conditions can be produced, leading to the strong impact excitation and light emission, which intensity is determined by electric field, phonon scattering, and impact excitation cross section [2, 3]. In the reverse process of photoconductivity, light is absorbed creating excited states. We will discuss electronic relaxation of high energy excited states leading to the free carriers, contributing to the photoconductivity, and phonon relaxation, leading to the bound excitons [4]. The later can contribute to the photocurrent only after ionization by the external field [5]. Finally, we will discuss the role of phonons in the long puzzling question regarding the nature of the dominant decay channel of the low energy excited states and the potential of optoelectronic applications of CNTs. [1] J.C. Tsang, M. Freitag, V. Perebeinos, J. Liu, and Ph. Avouris, Nature Nanotechnology 2, 725 (2007); [2] J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, Ph. Avouris, Science 310, 1171 (2005); [3] V. Perebeinos and Ph. Avouris, Phys. Rev. B. 74, 121410(R), (2006); [4] T. Hertel, V. Perebeinos, J. Crochet, K. Arnold, M. Kappes

  14. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  15. Carbon Nanotubes Based Quantum Devices

    Science.gov (United States)

    Lu, Jian-Ping

    1999-01-01

    This document represents the final report for the NASA cooperative agreement which studied the application of carbon nanotubes. The accomplishments are reviewed: (1) Wrote a review article on carbon nanotubes and its potentials for applications in nanoscale quantum devices. (2) Extensive studies on the effects of structure deformation on nanotube electronic structure and energy band gaps. (3) Calculated the vibrational spectrum of nanotube rope and the effect of pressure. and (4) Investigate the properties of Li intercalated nanotube ropes and explore their potential for energy storage materials and battery applications. These studies have lead to four publications and seven abstracts in international conferences.

  16. Interaction of electromagnetic radiation in the 20-200 GHz frequency range with arrays of carbon nanotubes with ferromagnetic nanoparticles.

    Science.gov (United States)

    Atdayev, Agylych; Danilyuk, Alexander L; Prischepa, Serghej L

    2015-01-01

    The interaction of electromagnetic radiation with a magnetic nanocomposite based on carbon nanotubes (CNT) is considered within the model of distributed random nanoparticles with a core-shell morphology. The approach is based on a system composed of a CNT conducting resistive matrix, ferromagnetic inductive nanoparticles and the capacitive interface between the CNT matrix and the nanoparticles, which form resonance resistive-inductive-capacitive circuits. It is shown that the influence of the resonant circuits leads to the emergence of specific resonances, namely peaks and valleys in the frequency dependence of the permeability of the nanocomposite, and in the frequency dependence of the reflection and transmission of electromagnetic radiation.

  17. Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes

    CERN Document Server

    Blagov, E V; Mostepanenko, V M

    2005-01-01

    The Lifshitz theory of the van der Waals force is extended for the case of an atom (molecule) interacting with a plane surface of an uniaxial crystal or with a long solid cylinder or cylindrical shell made of isotropic material or uniaxial crystal. For a microparticle near a semispace or flat plate made of an uniaxial crystal the exact expressions for the free energy of the van der Waals and Casimir-Polder interaction are presented. An approximate expression for the free energy of microparticle- cylinder interaction is obtained which becomes precise for microparticle-cylinder separations much smaller than cylinder radius. The obtained expressions are used to investigate the van der Waals interaction between hydrogen atoms (molecules) and graphite plates or multiwall carbon nanotubes. To accomplish this the behavior of graphite dielectric permittivities along the imaginary frequency axis is found using the optical data for the complex refractive index of graphite for the ordinary and extraordinary rays. It is ...

  18. Single walled carbon nanotubes functionalized with hydrides as potential hydrogen storage media: A survey of intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Surya, V.J.; Iyakutti, K. [School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu (India); Venkataramanan, N.S.; Mizuseki, H.; Kawazoe, Y. [Institute for Materials Research, Tohoku University, Katahira Aoba-ku, Sendai (Japan)

    2011-09-15

    In this paper, we have analyzed the intermolecular interactions between H{sub 2} and single walled carbon nanotube (SWCNT)-hydride complexes and project their capability as a practicable hydrogen storage medium (HSM). In this respect, we have investigated the type of interactions namely van der Waals, electrostatic, and orbital interactions to understand the molecular hydrogen binding affinity of various systems. We found that the charge transfer effects coupled with induced electrostatic interactions are responsible for synergetic action of SWCNT and hydrides on adsorption of H{sub 2} molecules at ambient conditions. Also we have calculated the thermodynamically usable capacity of hydrogen in all the systems. This study enables one to identify and design potential hydrogen storage materials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Carbon nanotube Archimedes screws.

    Science.gov (United States)

    Oroszlány, László; Zólyomi, Viktor; Lambert, Colin J

    2010-12-28

    Recently, nanomechanical devices composed of a long stationary inner carbon nanotube and a shorter, slowly rotating outer tube have been fabricated. In this paper, we study the possibility of using such devices as nanoscale transducers of motion into electricity. When the outer tube is chiral, we show that such devices act like quantum Archimedes screws, which utilize mechanical energy to pump electrons between reservoirs. We calculate the pumped charge from one end of the inner tube to the other, driven by the rotation of a chiral outer nanotube. We show that the pumped charge can be greater than one electron per 360° rotation, and consequently, such a device operating with a rotational frequency of 10 MHz, for example, would deliver a current of ≈1 pAmp.

  20. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube

    Science.gov (United States)

    Rajesh, Chinagandham; Majumder, Chiranjib; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2009-03-01

    In this study we have investigated the interaction of phenylalanine (Phe), histidine (His), tyrosine (Tyr), and tryptophan (Tryp) molecules with graphene and single walled carbon nanotubes (CNTs) with an aim to understand the effect of curvature on the non-covalent interaction. The calculations are performed using density functional theory and the Møller-Plesset second-order perturbation theory (MP2) within linear combination of atomic orbitals-molecular orbital (LCAO-MO) approach. Using these methods, the equilibrium configurations of these complexes were found to be very similar, i.e., the aromatic rings of the amino acids prefer to orient in parallel with respect to the plane of the substrates, which bears the signature of weak π-π interactions. The binding strength follows the trend: Hisnanotube structure but they differ in terms of the absolute magnitude. For the nanotube, the binding strength of these molecules is found to be weaker than the graphene sheet. To get an insight about the nature of these interactions, we have calculated the polarizability of the aromatic motifs of the amino acids. Remarkably, we find excellent correlation between the polarizability and the strength of the interaction; the higher the polarizability, greater is the binding strength. Moreover, we have analyzed the electronic densities of state spectrum before and after adsorption of the amino acid moieties. The results reveal that the Fermi level of the free CNT is red-shifted by the adsorption of the amino acids and the degree of shift is consistent with the trend in polarizability of these molecules.

  1. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  2. Sorting carbon nanotubes for electronics.

    Science.gov (United States)

    Martel, Richard

    2008-11-25

    Because of their unique structure and composition, single-wall carbon nanotubes (SWNTs) are at the interface between molecules and crystalline solids. They also present properties that are ideal for making lightweight, inexpensive, and flexible electronics. The raw material is composed of a heterogeneous mixture of SWNTs that differ in helicity and diameter and, therefore, requires purification and separation. In a series of groundbreaking experiments, a robust process serving this purpose was developed based on SWNTs encapsulated in surfactants and water. Ultracentrifugation in a density gradient combined with surfactant mixtures provided buoyant density differences, enabling enrichment for both diameter and electronic properties. A new paper in this issue explores further the process through the hydrodynamic properties of SWNT-surfactant complexes. The study reveals that we have just begun to uncover the dynamics and properties of nanotube-surfactant interactions and highlights the potential that could be gained from a better understanding of their chemistry. The time scale of integration of carbon nanotubes into electronics applications remains unclear, but the recent developments in sorting out SWNTs paves the way for improving on the properties of network-based SWNTs.

  3. Carbon Nanotubes and Modern Nanoagriculture

    KAUST Repository

    Bayoumi, Maged Fouad

    2015-01-27

    Since their discovery, carbon nanotubes have been prominent members of the nanomaterial family. Owing to their extraordinary physical, chemical, and mechanical properties, carbon nanotubes have been proven to be a useful tool in the field of plant science. They were frequently perceived to bring about valuable biotechnological and agricultural applications that still remain beyond experimental realization. An increasing number of studies have demonstrated the ability of carbon nanotubes to traverse different plant cell barriers. These studies, also, assessed the toxicity and environmental impacts of these nanomaterials. The knowledge provided by these studies is of practical and fundamental importance for diverse applications including intracellular labeling and imaging, genetic transformation, and for enhancing our knowledge of plant cell biology. Although different types of nanoparticles have been found to activate physiological processes in plants, carbon nanotubes received particular interest. Following addition to germination medium, carbon nanotubes enhanced root growth and elongation of some plants such as onion, cucumber and rye-grass. They, also, modulated the expression of some genes that are essential for cell division and plant development. In addition, multi-walled carbon nanotubes were evidenced to penetrate thick seed coats, stimulate germination, and to enhance growth of young tomato seedlings. Multi-walled carbon nanotubes can penetrate deeply into the root system and further distribute into the leaves and the fruits. In recent studies, carbon nanotubes were reported to be chemically entrapped into the structure of plant tracheary elements. This should activate studies in the fields of plant defense and wood engineering. Although, all of these effects on plant physiology and plant developmental biology have not been fully understood, the valuable findings promises more research activity in the near future toward complete scientific understanding of

  4. Interaction of hydrogen molecules on Ni-doped single-walled carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    Ni Mei-Yan; Wang Xian-Long; Zeng Zhi

    2009-01-01

    Adsorption of hydrogen molecules on an Ni-doped (8,0) single-walled carbon nanotube (SWNT) is investigated by using first-principles density functional calculations. The result shows that a single Ni atom adsorbed on the bridge site of the tube could cannot dissociate the H2, however it can chemisorb three H2 at most, with the average binding energy per H2 suitable for the hydrogen storage at the room temperature. More H2 would physisorb around an Ni atom weakly. As for the SWNT with an Ni dimer adsorbed, we find that when the H2approaches the Ni-Ni bond, it dissociates without overcoming any barrier and makes bonds with Ni atom.

  5. Electromagnetic Wave Interactions with 2D Arrays of Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Taha A. Elwi

    2011-01-01

    Full Text Available We report, for the first time, the scattering, absorption, and reflection characteristics of 2D arrays of finite-length, armchair, single-walled carbon nanotubes (SWNTs in the visible frequency regime. The analysis is based on the Finite-Element-Method formulation of Maxwell's equations and a 3D quantum electrical conductivity function. Three geometrical models have been considered: solid cylinder, hollow cylinder, and honeycomb. We demonstrate that classical electromagnetic theory is sufficient to evaluate the scattering and absorption cross sections of SWNTs, which revealed excellent agreement against measurements without the need to invoke the effective impedance boundary conditions. The solid and hollow cylindrical models fail to provide accurate results, when both scattering and absorption are considered. Finally, it is shown that reflection and transmission characteristics of both individual and arrays of SWNTs, which are essential for solar cell applications, are strongly influenced by the length and the phenomenological parameters of the SWNT.

  6. INTERACTION MODELS FOR EFFECTIVE THERMAL AND ELECTRIC CONDUCTIVITIES OF CARBON NANOTUBE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Fei Deng; Quanshui Zheng

    2009-01-01

    The present article provides supplementary information of previous works of ana-lytic models for predicting conductivity enhancements of carbon nanotube composites. The mod-els, though fairly simple, are able to take account of the effects of conductivity anisotropy, non-straightness, and aspect ratio of the CNT additives on the conductivity enhancement of the com-posite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities.

  7. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  8. Carbon Nanotubes for Space Applications

    Science.gov (United States)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  9. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  10. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  11. Carbon Nanotube-Based Synthetic Gecko Tapes

    Science.gov (United States)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  12. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  13. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  14. Phytotoxicity of carbon nanotubes in soybean as determined by interactions with micronutrients

    Science.gov (United States)

    Zaytseva, Olga; Wang, Zhengrui; Neumann, Günter

    2017-02-01

    Carbon nanomaterials released into the environment exert extremely variable effects on living organisms. In this study, we used soybean ( Glycine max) to investigate early responses to seed exposure to multi-walled carbon nanotubes (MWCNTs, outer diameter 20-70 nm, inner diameter 5-10 nm, length of >2 μm). Soybean seeds were imbibed with deionised water (control) or MWCNT suspension (1000 mg L-1) and were analysed for MWCNT contamination using light microscopy. The seedlings vitality status was evaluated by staining with triphenyltetrazolium chloride and measurement of oxidative stress indicators in the root tissue. Micronutrient (Zn, Mn, Cu) availability in different seedling organs was assessed and the effects of antioxidants, and micronutrient supplementation was investigated. Oxidative stress induction by MWCNTs was detectable in radicle tips, coincided with MWCNTs accumulation and was reverted by external application of proline as antioxidant and micronutrients (Zn, Cu, Mn) as cofactors for various enzymes involved in oxidative stress defence. Accordingly, SOD activity increased after Zn supplementation. During germination, the MWCNT treatments reduced Zn translocation from the cotyledons to the seedling and MWCNTs exhibited adsorption potential for Zn and Cu, which may be involved in internal micronutrients immobilisation. This study demonstrates for the first time that MWCNT phytotoxicity is linked with oxidative stress-related disturbances of micronutrient homeostasis.

  15. Atomic transportation via carbon nanotubes.

    Science.gov (United States)

    Wang, Quan

    2009-01-01

    The transportation of helium atoms in a single-walled carbon nanotube is reported via molecular dynamics simulations. The efficiency of the atomic transportation is found to be dependent on the type of the applied loading and the loading rate as well as the temperature in the process. Simulations show the transportation is a result of the van der Waals force between the nanotube and the helium atoms through a kink propagation initiated in the nanotube.

  16. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation

    Science.gov (United States)

    Kagan, Valerian E.; Konduru, Nagarjun V.; Feng, Weihong; Allen, Brett L.; Conroy, Jennifer; Volkov, Yuri; Vlasova, Irina I.; Belikova, Natalia A.; Yanamala, Naveena; Kapralov, Alexander; Tyurina, Yulia Y.; Shi, Jingwen; Kisin, Elena R.; Murray, Ashley R.; Franks, Jonathan; Stolz, Donna; Gou, Pingping; Klein-Seetharaman, Judith; Fadeel, Bengt; Star, Alexander; Shvedova, Anna A.

    2010-05-01

    We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.

  17. Method for synthesizing carbon nanotubes

    Science.gov (United States)

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  18. Simulations of Electrophoretic RNA Transport Through Transmembrane Carbon Nanotubes

    OpenAIRE

    Zimmerli, Urs; Koumoutsakos, Petros

    2008-01-01

    The study of interactions between carbon nanotubes and cellular components, such as membranes and biomolecules, is fundamental for the rational design of nanodevices interfacing with biological systems. In this work, we use molecular dynamics simulations to study the electrophoretic transport of RNA through carbon nanotubes embedded in membranes. Decorated and naked carbon nanotubes are inserted into a dodecane membrane and a dimyristoylphosphatidylcholine lipid bilayer, and the system is sub...

  19. Carbon nanotubes: engineering biomedical applications.

    Science.gov (United States)

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges.

  20. A review on protein functionalized carbon nanotubes.

    Science.gov (United States)

    Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra

    2015-12-18

    Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.

  1. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    DEFF Research Database (Denmark)

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei;

    2014-01-01

    It is crucial to accurately describe the interaction between the surface functionality and the supported metal catalyst because it directly determines the activity and selectivity of a catalytic reaction. It is, however, challenging with a metal-carbon catalytic system owing to the ultrafine feat...

  2. Van der Waals interactions of parallel and concentric nanotubes

    OpenAIRE

    Schroder, Elsebeth; Hyldgaard, Per

    2003-01-01

    For sparse materials like graphitic systems and carbon nanotubes the standard density functional theory (DFT) faces significant problems because it cannot accurately describe the van der Waals interactions that are essential to the carbon-nanostructure materials behavior. While standard implementations of DFT can describe the strong chemical binding within an isolated, single-walled carbon nanotube, a new and extended DFT implementation is needed to describe the binding between nanotubes. We ...

  3. Fast Disinfection of Escherichia coli Bacteria Using Carbon Nanotubes Interaction with Microwave Radiation.

    Science.gov (United States)

    Al-Hakami, Samer M; Khalil, Amjad B; Laoui, Tahar; Atieh, Muataz Ali

    2013-01-01

    Water disinfection has attracted the attention of scientists worldwide due to water scarcity. The most significant challenges are determining how to achieve proper disinfection without producing harmful byproducts obtained usually using conventional chemical disinfectants and developing new point-of-use methods for the removal and inactivation of waterborne pathogens. The removal of contaminants and reuse of the treated water would provide significant reductions in cost, time, liabilities, and labour to the industry and result in improved environmental stewardship. The present study demonstrates a new approach for the removal of Escherichia coli (E. coli) from water using as-produced and modified/functionalized carbon nanotubes (CNTs) with 1-octadecanol groups (C18) under the effect of microwave irradiation. Scanning/transmission electron microscopy, thermogravimetric analysis, and FTIR spectroscopy were used to characterise the morphological/structural and thermal properties of CNTs. The 1-octadecanol (C18) functional group was attached to the surface of CNTs via Fischer esterification. The produced CNTs were tested for their efficiency in destroying the pathogenic bacteria (E. coli) in water with and without the effect of microwave radiation. A low removal rate (3-5%) of (E. coli) bacteria was obtained when CNTs alone were used, indicating that CNTs did not cause bacterial cellular death. When combined with microwave radiation, the unmodified CNTs were able to remove up to 98% of bacteria from water, while a higher removal of bacteria (up to 100%) was achieved when CNTs-C18 was used under the same conditions.

  4. Synergistic interactions between silver decorated graphene and carbon nanotubes yield flexible composites to attenuate electromagnetic radiation

    Science.gov (United States)

    Patangrao Pawar, Shital; Kumar, Sachin; Jain, Shubham; Gandi, Mounika; Chatterjee, Kaushik; Bose, Suryasarathi

    2017-01-01

    The need of today’s highly integrated electronic devices, especially working in the GHz frequencies, is to protect them from unwanted interference from neighbouring devices. Hence, lightweight, flexible, easy to process microwave absorbers were designed here by dispersing conductive multiwall carbon nanotubes (MWNTs) and silver nanoparticles decorated onto two-dimensional graphene sheets (rGO@Ag) in poly(ɛ-caprolactone) (PCL). In this study, we have shown how dielectric losses can be tuned in the nanocomposites by rGO@Ag nano-hybrid; an essential criterion for energy dissipation within a material resulting in effective shielding of the incoming electromagnetic (EM) radiation. Herein, the conducting pathway for nomadic charge transfer in the PCL matrix was established by MWNTs and the attenuation was tuned by multiple scattering due to the large specific surface area of rGO@Ag. The latter was possible because of the fine dispersion state of the Ag nanoparticles which otherwise often agglomerate if mixed separately. The effect of individual nanoparticles on microwave attenuation was systematically assessed here. It was observed that this strategy resulted in strikingly enhanced microwave attenuation in PCL nanocomposites in contrast to addition of individual particles. For instance, PCL nanocomposites containing both MWNTs and rGO@Ag manifested in a SET of -37 dB and, interestingly, at arelatively smaller fraction. The SE shown by this particular composite makes it a potential candidate for many commercial applications as reflected by its exceptional absorption capability (91.3%).

  5. Ab Initio Density Functional Theory Investigation of the Interaction between Carbon Nanotubes and Water Molecules during Water Desalination Process

    Directory of Open Access Journals (Sweden)

    Loay A. Elalfy

    2013-01-01

    Full Text Available Density functional theory calculations using B3LYP/3-21G level of theory have been implemented on 6 carbon nanotubes (CNTs structures (3 zigzag and 3 armchair CNTs to study the energetics of the reverse osmosis during water desalination process. Calculations of the band gap, interaction energy, highest occupied molecular orbital, lowest unoccupied molecular orbital, electronegativity, hardness, and pressure of the system are discussed. The calculations showed that the water molecule that exists inside the CNT is about 2-3 Å away from its wall. The calculations have proven that the zigzag CNTs are more efficient for reverse osmosis water desalination process than armchair CNTs as the reverse osmosis process requires pressure of approximately 200 MPa for armchair CNTs, which is consistent with the values used in molecular dynamics simulations, while that needed when using zigzag CNTs was in the order of 60 MPa.

  6. Horizontally-aligned carbon nanotubes arrays and their interactions with liquid crystal molecules: Physical characteristics and display applications

    Directory of Open Access Journals (Sweden)

    Frédérick Roussel

    2012-03-01

    Full Text Available We report on the physical characteristics of horizonthally-grown Single-Walled Carbon Nanotubes (h-al-SWNT arrays and their potential use as transparent and conducting alignment layer for liquid crystals display devices. Microscopy (SEM and AFM, spectroscopic (Raman and electrical investigations demonstrate the strong anisotropy of h-al-SWNT arrays. Optical measurements show that h-al-SWNTs are efficient alignment layers for Liquid Crystal (LC molecules allowing the fabrication of optical wave plates. Interactions between h-al-SWNT arrays and LC molecules are also investigated evidencing the weak azimuthal anchoring energy at the interface, which, in turn, leads to LC devices with a high pretilt angle. The electro-optical reponses of h-al-SWNT/LC cells demonstrate that h-al-SWNT arrays are efficient nanostructured electrodes with potential use for the combined replacement of Indium Tin Oxyde and polymeric alignment layers in conventional displays.

  7. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  8. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  9. Carbon nanotube biconvex microcavities

    Science.gov (United States)

    Butt, Haider; Yetisen, Ali K.; Ahmed, Rajib; Yun, Seok Hyun; Dai, Qing

    2015-03-01

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2-3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  10. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  11. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individua...

  12. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  13. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  14. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  15. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  16. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  17. Self-assembly of single-walled carbon nanotubes into multiwalled carbon nanotubes in water: molecular dynamics simulations.

    Science.gov (United States)

    Zou, Jian; Ji, Baohua; Feng, Xi-Qiao; Gao, Huajian

    2006-03-01

    We report discoveries from a series of molecular dynamics simulations that single-walled carbon nanotubes, with different diameters, lengths, and chiralities, can coaxially self-assemble into multiwalled carbon nanotubes in water via spontaneous insertion of smaller tubes into larger ones. The assembly process is tube-size-dependent, and the driving force is primarily the intertube van der Waals interactions. The simulations also suggest that a multiwalled carbon nanotube may be separated into single-walled carbon nanotubes under appropriate solvent conditions. This study suggests possible bottom-up self-assembly routes for the fabrication of novel nanodevices and systems.

  18. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  19. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  20. Properties of Carbon Nanotubes

    Science.gov (United States)

    Masood, Samina; Bullmore, Daniel; Duran, Michael; Jacobs, Michael

    2012-10-01

    Different synthesizing methods are used to create various nanostructures of carbon; we are mainly interested in single and multi-wall carbon nanotubes, (SWCNTs) and (MWCNTs) respectively. The properties of these tubes are related to their synthetic methods, chirality, and diameter. The extremely sturdy structure of CNTs, with their distinct thermal and electromagnetic properties, suggests a tremendous use of these tubes in electronics and medicines. Here, we analyze various physical properties of SWCNTs with a special emphasis on electromagnetic and chemical properties. By examining their electrical properties, we demonstrate the viability of discrete CNT based components. After considering the advantages of using CNTs over microstructures, we make a case for the advancement and development of nanostructures based electronics. As for current CNT applications, it's hard to overlook their use and functionality in the development of cancer treatment. Whether the tubes are involved in chemotherapeutic drug delivery, molecular imaging and targeting, or photodynamic therapy, we show that the remarkable properties of SWCNTs can be used in advantageous ways by many different industries.

  1. Carbon nanotube computer.

    Science.gov (United States)

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  2. Carbon Nanotube Purification

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)

    2005-01-01

    A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.

  3. Image potential and stopping force in the interaction of fast ions with carbon nanotubes: The extended two-fluid hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Karbunar, L., E-mail: ziloot@verat.net [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Borka, D., E-mail: dusborka@vin.bg.ac.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Radović, I., E-mail: iradovic@vin.bg.ac.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2016-01-01

    Highlights: • We study the interaction of protons with carbon nanotubes under channeling conditions. • We use the linearized, 2D, two-fluid extended hydrodynamic model. • We analyze the influence of the angular mode for different types of nanotubes. • The image potential and stopping are calculated inside and outside the nanotube. • The angular and spatial distributions of channeled protons are computed. - Abstract: We study the interaction of charged particles with a (6, 4) single-walled carbon nanotube (SWNT) under channeling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping.

  4. Carbon nanotube oscillators for applications as nanothermometers

    Science.gov (United States)

    Rahmat, Fainida; Thamwattana, Ngamta; Hill, James M.

    2010-10-01

    Nanostructures such as carbon nanotubes have a broad range of potential applications such as nanomotors, nano-oscillators and electromechanical nanothermometers, and a proper understanding of the molecular interaction between nanostructures is fundamentally important for these applications. In this paper, we determine the molecular interaction potential of interacting carbon nanotubes for two configurations. The first is a shuttle configuration involving a short outer tube sliding on a fixed inner tube, and the second involves a telescopic configuration for which an inner tube moves both in the region between two outer tubes and through the tubes themselves. For the first configuration we examine two cases of semi-infinite and finite inner carbon nanotubes. We employ the continuum approximation and the 6-12 Lennard-Jones potential for non-bonded molecules to determine the molecular interaction potential and the resulting van der Waals force, and we evaluate the resulting surface integrals numerically. We also investigate the acceptance condition and suction energy for the first configuration. Our results show that for the shuttle configuration with a semi-infinite inner tube, the suction energy is maximum when the difference between the outer and inner tubes radii is approximately 3.4 Å, which is the ideal inter-wall spacing between graphene sheets. For the finite inner tube, the potential energy is dependent on both the inner and outer tube lengths as well as on the inter-wall spacing. In terms of the oscillating frequency, the critical issue is the length of the moving outer tube, and the shorter the length, the higher the frequency. Further, for the telescopic configuration with two semi-infinite outer nanotubes of different radii, we find that the interaction energy also depends on the difference of the tube radii. For two outer nanotubes of equal radii we observe that the shorter the distance between the two outer nanotubes, the higher the magnitude of the

  5. Conformational changes of fibrinogen in dispersed carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Park SJ

    2012-08-01

    Full Text Available Sung Jean Park,1 Dongwoo Khang21College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea; 2School of Nano and Advanced Materials Science Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South KoreaAbstract: The conformational changes of plasma protein structures in response to carbon nanotubes are critical for determining the nanotoxicity and blood coagulation effects of carbon nanotubes. In this study, we identified that the functional intensity of carboxyl groups on carbon nanotubes, which correspond to the water dispersity or hydrophilicity of carbon nanotubes, can induce conformational changes in the fibrinogen domains. Also, elevation of carbon nanotube density can alter the secondary structures (ie, helices and beta sheets of fibrinogen. Furthermore, fibrinogen that had been in contact with the nanoparticle material demonstrated a different pattern of heat denaturation compared with free fibrinogen as a result of a variation in hydrophilicity and concentration of carbon nanotubes. Considering the importance of interactions between carbon nanotubes and plasma proteins in the drug delivery system, this study elucidated the correlation between nanoscale physiochemical material properties of carbon nanotubes and associated structural changes in fibrinogen.Keywords: carbon nanotubes, fibrinogen, nanotoxicity, conformational change, denaturation

  6. Effects of coulomb repulsion on conductivity of heterojunction carbon nanotube quantum dots with spin-orbital coupling and interacting leads

    Science.gov (United States)

    Ogloblya, O. V.; Kuznietsova, H. M.; Strzhemechny, Y. M.

    2017-01-01

    We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.

  7. Amino acid analogues bind to carbon nanotube via π-π interactions: Comparison of molecular mechanical and quantum mechanical calculations

    Science.gov (United States)

    Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong

    2012-01-01

    Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.

  8. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  9. van der Waals forces and confinement in carbon nanopores: Interaction between CH4, COOH, NH3, OH, SH and single-walled carbon nanotubes

    Science.gov (United States)

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng

    2016-05-01

    Interactions between CH4, COOH, NH3, OH, SH and armchair (n, n) (n = 4, 7, 14) and zigzag (n, 0) (n = 7, 12, 25) single-walled carbon nanotubes (SWCNTs) have been systematically investigated within the framework of dispersion-corrected density functional theory (DFT-D2). Endohedral and exohedral molecular adsorption on SWCNT walls is energetically unfavorable or weak, despite the use of C6 /r6 pairwise London-dispersion corrections. The effects of pore size and chirality on the molecule/SWCNTs interaction were also assessed. Chemisorption of COOH, NH3, OH and SH at SWCNT edge sites was examined using a H-capped (7, 0) SWCNT fragment and its impact on electrophilic, nucleophilic and radical attacks was predicted by means of Fukui functions.

  10. Functionalized carbon nanotubes: biomedical applications.

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.

  11. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  12. Interactions of carbon nanotubes in a nematic liquid crystal. II. Experiment

    Science.gov (United States)

    Agha, Hakam; Galerne, Yves

    2016-04-01

    Multiwall carbon nanotube (CNT) colloids with different anchoring conditions are dispersed in pentyl-cyanobiphenyl (5CB), a thermotropic liquid crystal (LC) that exhibits a room-temperature nematic phase. The experiments make use of CNTs treated for strong planar, homeotropic, or Janus anchorings. Observations with a polarizing microscope show that the CNTs placed in a uniform nematic field stabilize parallel or perpendicular to n depending on their anchoring conditions. In the presence of a splay-bend disclination line, they are first attracted toward it and ultimately, they get trapped on it. Their orientation relative to the line is then found to be parallel or perpendicular to it, again depending on the anchoring conditions. When a sufficient number of particles are deposited on a disclination line, they form a micro- or nanonecklace in the shape of a thin thread or of a bottle brush, with the CNTs being oriented parallel or perpendicular to the disclination line according to the anchoring treatment. The system exhibits a rich versatility, even if until now the weak anchorings appear to be difficult to control. In a next step, the necklaces may be glued by means of pyrrole electropolymerization. In this manner, we realize a true materialization of the disclination lines, and we obtain nanowires capable of conducting the electricity in the place of the initial disclinations that just worked as templates. The advantage of the method is that it finally provides nanowires that are automatically connected to predesignated three-dimensional (3D) electrodes. Such a 3D nanowiring could have important applications, as it could allow one to develop electronic circuits in the third dimension. They could thus help with increasing the transistor density per surface unit, although downsizing of integrated circuits will soon be limited to atomic sizes or so. In other words, the predicted limitation to Moore's law could be avoided. For the moment, the nanowires that we obtain

  13. Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity

    Science.gov (United States)

    Arda, Mustafa; Aydogdu, Metin

    2016-03-01

    Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.

  14. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  15. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  16. Formation of Coaxial Nanocables with Amplified Supramolecular Chirality through an Interaction between Carbon Nanotubes and a Chiral π-Gelator.

    Science.gov (United States)

    Vedhanarayanan, Balaraman; Nair, Vishnu S; Nair, Vijayakumar C; Ajayaghosh, Ayyappanpillai

    2016-08-22

    In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π-gelator (MC-OPV) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10(-4)  m, MC-OPV did not exhibit a CD signal; however, the addition of 0-0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High-resolution TEM analysis and solid-state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical-cable formation has not been reported previously.

  17. Preparation of array of long carbon nanotubes and fibers therefrom

    Science.gov (United States)

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  18. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  19. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  20. Interactions of carbon nanotubes with the nitromethane-water mixture governing selective adsorption of energetic molecules from aqueous solution.

    Science.gov (United States)

    Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2015-03-14

    The structure and dynamics of the nitromethane-water (NM-WT) binary mixture surrounding single walled carbon nanotubes (SWNTs) have been investigated by molecular dynamics simulations. The simulation trajectories show that the NM molecules can be selectively adsorbed both outside the surface and inside the cavity of SWNTs mainly dominated by van der Waals attractions because SWNTs have a higher binding affinity for NM than WT. The binding energies of SWNTs with NM and WT obtained from electronic structure calculations at the M06-2X/6-31+G* level are 15.31 and 5.51 kcal mol(-1), respectively. Compared with the SWNT exterior, the selective adsorption of NM is preferentially occurred in the SWNT interior due to the hydrophobic interactions and the dipole-dipole interactions, which induces the decrease of the hydrogen-bond number of NM with WT and ordered structures of NM with preferred intermolecular orientation in the SWNT cavity. Furthermore, the selective adsorption dynamics of NM from the aqueous solution is regardless of the chirality and radius of SWNTs. The SWNT radius plays a negligible role in the mass density distributions of NM outside the SWNTs, while the mass density of NM in the SWNT interior decreases gradually as the SWNT radius increases. The structural arrangements and intermolecular orientations of NM in the SWNT cavity are greatly dependent on the SWNT radius due to the size effect.

  1. Spectroscopic studies of porphyrin functionalized multiwalled carbon nanotubes and their interaction with TiO2 nanoparticles surface

    Science.gov (United States)

    Zannotti, Marco; Giovannetti, Rita; D'Amato, Chiara Anna; Rommozzi, Elena

    2016-01-01

    UV-vis and fluorescence investigations about the non-covalent interaction, in ethanolic solutions, of multi-wall carbon nanotube (MWCNT) with Coproporphyrin-I, and its Cu(II) and Zn(II) complexes (MCPIs) have been reported. Evidence of binding between MWCNTs and porphyrins was discovered from spectral adsorption decrease with respect to free porphyrins and by the exhibition of photoluminescence quenching with respect to free porphyrins demonstrating that MWCNT@MCPIs are potential donor-acceptor complexes. Equilibrium and kinetic aspects in the interactions with monolayer transparent TiO2 thin films with the obtained MWCNT@MCPIs are clarified showing their effective adsorption by porphyrin links on the TiO2 monolayer support, with respect to not only MWCNTs, according to the Langmuir model and with pseudo-first-order kinetics. Morphological description of the adsorption of MWCNT@MCPIs on TiO2 with scanning electron microscopy has been reported. The obtained experimental evidences describe therefore MWCNT@MCPIs as potential sensitizers in the DSSC (Dye-Sensitized Solar Cell) applications.

  2. New perspectives on van der Waals-London interactions of materials. From planar interfaces to carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rajter, R F [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Room 13-5034, Cambridge MA 02139 (United States); French, R H [DuPont Co. Central Research, Exp. Sta. E400-5207, Wilmington DE, 19880-0400 (United States)], E-mail: rickrajter@alum.mit.edu, E-mail: roger.h.french@usa.dupont.com

    2008-01-15

    The drive towards nanoscale assembly necessitates an accurate understanding of all the fundamental forces present in a given system to ensure the greatest chance of success. The van der Waals - London dispersion (vdW-Ld) interaction is the universal, long range, interaction that is present in all materials systems. However, scientists and engineers often either ignore or crudely approximate the vdW-Ld interactions because the calculations often appear impractical due to the 1) lack of the required full spectra optical properties and 2) lack of the proper geometrical formulation to give meaningful results. These two barriers are being actively eliminated by the introduction of robust ab initiocodes that can calculate anisotropic full spectral optical properties and by proper extensions to the Lifshitz vdW-Ld formulation that take into account anisotropic spectral optical properties as well as novel geometries. These new capabilities are of broad utility, especially in the biological community, because of the difficulty in experimental determination of full spectral optical properties of nanoscale, liquid phase biomolecules. Here we compare 3 levels of complexity of vdW-Ld interactions (optically isotropic planar, optically anisotropic planar, and optically anisotropic solid cylinder) as well as calculate and compare a variety of Hamaker coefficients relevant to these systems. For the latter two, more complex, cases, we use the ab initiooptical properties of single wall carbon nanotubes (SWCNTs). Our results show the effects of strong optical anisotropy upon the overall vdW-Ld interaction strength as well as the presence of strong dispersion-driven torques in both anisotropic cases, which can play a role in CNT alignment with other CNTs and also preferred CNT alignment directions with optically anisotropic substrates.

  3. Computational Nanomechanics of Carbon Nanotubes and Composites

    Science.gov (United States)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  4. Hydrodynamic properties of carbon nanotubes.

    Science.gov (United States)

    Walther, J H; Werder, T; Jaffe, R L; Koumoutsakos, P

    2004-06-01

    We study water flowing past an array of single walled carbon nanotubes using nonequilibrium molecular dynamics simulations. For carbon nanotubes mounted with a tube spacing of 16.4 x 16.4 nm and diameters of 1.25 and 2.50 nm, respectively, we find drag coefficients in reasonable agreement with the macroscopic, Stokes-Oseen solution. The slip length is -0.11 nm for the 1.25 nm carbon nanotube, and 0.49 for the 2.50 nm tube for a flow speed of 50 m/s, respectively, and 0.28 nm for the 2.50 nm tube at 200 m/s. A slanted flow configuration with a stream- and spanwise velocity component of 100 ms(-1) recovers the two-dimensional results, but exhibits a significant 88 nm slip along the axis of the tube. These results indicate that slip depends on the particular flow configuration.

  5. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  6. On the Nanoindentation of the Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Petre P. Teodorescu

    2010-01-01

    Full Text Available A new inverse approach is proposed in this paper, which combines elements of nonlocal theory and molecular mechanics, based on the experimental results available in the nanoindentation literature. The effect of the inlayer van der Waals atomistic interactions for carbon nanotubes with multiple walls (MWCNT is included by means of the Brenner-Tersoff potential and experimental results. The neighboring walls of MWCNT are coupled through van der Waals interactions, and the shell buckling would initiate in the outermost shell, when nanotubes are short. The nanoindentation technique is simulated for the axially compressed of individual nanotubes, in order to evaluate the load-unloaded-displacement, the curve critical buckling and the appropriate values for local Lamé constants.

  7. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    Science.gov (United States)

    Martinez, D. S. T.; Alves, O. L.; Barbieri, E.

    2013-04-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  8. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  9. Direct observation of spin-injection in tyrosinate-functionalized single-wall carbon nanotubes

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Ampoumogli, Asem; Gournis, Dimitrios; Georgakilas, Vasilios; Jankovic, Lubos; Christoforidis, Konstantinos C.; Deligiannakis, Yiannis; Mavrandonakis, Andreas; Froudakis, George E.; Maccallini, Enrico; Rudolf, Petra; Mateo-Alonso, Aurelio; Prato, Maurizio

    2014-01-01

    In this work, we report on the interaction of a tyrosinate radical with single wall carbon nanotubes (CNT). The tyrosinate radical was formed from tyrosine (ester) by Fenton's reagent and, reacted in situ with carbon nanotubes resulting in novel tyrosinated carbon nanotube derivatives. The covalent

  10. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  11. Photothermal effects of immunologically modified carbon nanotubes

    Science.gov (United States)

    Griswold, Ryan T.; Henderson, Brock; Goddard, Jessica; Tan, Yongqiang; Hode, Tomas; Liu, Hong; Nordquist, Robert E.; Chen, Wei R.

    2013-02-01

    Carbon nanotubes have a great potential in the biomedical applications. To use carbon nanotubes in the treatment of cancer, we synthesized an immunologically modified single-walled carbon nanotube (SWNT) using a novel immunomodifier, glycated chitosan (GC), as an effective surfactant for SWNT. This new composition SWNT-GC was stable due to the strong non-covalent binding between SWNT and GC. The structure of SWNT-GC is presented in this report. The photothermal effect of SWNT-GC was investigated under irradiation of a near-infrared laser. SWNT-GC retained the optical properties of SWNT and the immunological properties of GC. Specifically, the SWNT-GC could selectively absorb a 980-nm light and induce desirable thermal effects in tissue culture and in animals. It could also induce tumor cell destruction, controlled by the laser settings and the doses of SWNT and GC. Laser+SWNT-GC treatment could also induce strong expression of heat shock proteins on the surface of tumor cells. This immunologically modified carbon nanotube could be used for selective photothermal interactions in noninvasive tumor treatment.

  12. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes

    OpenAIRE

    Huang, Yuan-Pin; Lin, I-Jou; Chen, Chih-Chen; Hsu, Yi-Chiang; Chang, Chi-Chang; Lee, Mon-Juan

    2013-01-01

    Carbon nanotubes are capable of penetrating the cell membrane and are widely considered as potential carriers for gene or drug delivery. Because the C-C and C=C bonds in carbon nanotubes are nonpolar, functionalization is required for carbon nanotubes to interact with genes or drugs as well as to improve their biocompatibility. In this study, polyethylenimine (PEI)-functionalized single-wall (PEI-NH-SWNTs) and multiwall carbon nanotubes (PEI-NH-MWNTs) were produced by direct amination method....

  13. Non-covalent bonding interaction of surfactants with functionalized carbon nanotubes in proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Sayeed, M Abu; Kim, Young Ho; Park, Younjin; Gopalan, A I; Lee, Kwang-Pill; Choi, Sang-June

    2013-11-01

    Dispersion of functionalized multiwalled carbon nanotubes (MWCNTs) in proton exchange membranes (PEMs) was conducted via non-covalent bonding between benzene rings of various surfactants and functionalized MWCNTs. In the solution casting method, dispersion of functionalized MWCNTs in PEMs such as Nafion membranes is a critical issue. In this study, 1 wt.% pristine MWCNTs (p-MWCNTs) and oxidized MWCNTs (ox-MWCNTs) were reinforced in Nafion membranes by adding 0.1-0.5 wt.% of a surfactant such as benzalkonium chloride (BKC) as a cationic surfactant with a benzene ring, Tween-80 as a nonanionic surfactant without a benzene ring, sodium dodecylsulfonate (SDS) as an anionic surfactant without a benzene ring, or sodium dodecylben-zenesulfonate (SDBS) as an anionic surfactant with a benzene ring and their effects on the dispersion of nanocomposites were then observed. Among these surfactants, those with benzene rings such as BKC and SDBS produced enhanced dispersion via non-covalent bonding interaction between CNTs and surfactants. Specifically, the surfactants were adsorbed onto the surface of functionalized MWCNTs, where they prevented re-aggregation of MWCNTs in the nanocomposites. Furthermore, the prepared CNTs reinforced nanocomposite membranes showed reduced methanol uptake values while the ion exchange capacity values were maintained. The enhanced properties, including thermal property of the CNTs reinforced PEMs with surfactants, could be applicable to fuel cell applications.

  14. Scattering of terahertz radiation from oriented carbon nanotube films

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Jepsen, Peter Uhd; Schroeder, Nicholas;

    2009-01-01

    Session title: IThC-THz Interactions with Condensed Matter. We report on the use of terahertz time-domain spectroscopy to measure scattering from multi-walled carbon nanotubes aligned normal to the film plane. Measurements indicate scattering from the nanotubes is significantly stronger than...

  15. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  16. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two....... In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli...

  17. Toward Distinct Element Method Simulations of Carbon Nanotube Systems

    Science.gov (United States)

    Akatyeva, Evgeniya; Anderson, Tyler; Nikiforov, Ilia; Potyondy, David; Ballarini, Roberto; Dumitrica, Traian

    2011-03-01

    We propose distinct element method modeling of carbon nanotube systems. The atomic-level description of an individual nanotube is coarse-grained into a chain of spherical elements that interact by parallel bonds located at their contacts. The spherical elements can lump multiple translational unit cells of the carbon nanotube and have both translational and rotational degrees of freedom. The discrete long ranged interaction between nanotubes is included in a van der Waals contact of nonmechanical nature that acts simultaneously with the parallel bonds. The created mesoscopic model is put into service by simulating a realistic carbon nanotube ring. The ring morphology arises from the energy balance stored in both parallel and van der Waals bonds. We thank NSF CAREER under Grant No. CMMI-0747684, NSF under Grant No. CMMI 0800896.

  18. Functionalization of vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Eloise Van Hooijdonk

    2013-02-01

    Full Text Available This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs. The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  19. Octagonal Defects at Carbon Nanotube Junctions

    Science.gov (United States)

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  20. From carbon nanotubes to carbon atomic chains

    Science.gov (United States)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  1. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  2. Oscillatory characteristics of carbon nanotubes inside carbon nanotube bundles

    Science.gov (United States)

    Ansari, R.; Alipour, A.; Sadeghi, F.

    2012-12-01

    This article presents a comprehensive study on the mechanics of carbon nanotubes (CNTs) oscillating in CNT bundles. Using the continuum approximation along with Lennard-Jones (LJ) potential function, new semi-analytical expressions in terms of double integrals are presented to evaluate van der Waals (vdW) potential energy and interaction force upon which the equation of motion is directly solved. The obtained potential expression enables one to arrive at a new semi-analytical formula for the exact evaluation of oscillation frequency. Also, an algebraic frequency formula is extracted on the basis of the simplifying assumption of constant vdW force. Based on the present expressions, a thorough study on various aspects of operating frequencies under different system parameters is given, which permits fresh insight into the problem. The strong dependence of oscillation frequency on system parameters, such as the extrusion distance and initial velocity of the core as initial conditions for the motion is indicated. Interestingly, a specific initial velocity is found at which the oscillation frequency is independent of the core length. In addition, a relation between this specific initial velocity and the escape velocity is disclosed.

  3. Pulsed laser deposition of carbon nanotube and polystyrene-carbon nanotube composite thin films

    Science.gov (United States)

    Stramel, A. A.; Gupta, M. C.; Lee, H. R.; Yu, J.; Edwards, W. C.

    2010-12-01

    In this work, we report on the fabrication of carbon nanotube thin films via pulsed laser deposition using a pulsed, diode pumped, Tm:Ho:LuLF laser with 2 μm wavelength. The thin films were deposited on silicon substrates using pure carbon nanotube targets and polystyrene-carbon nanotube composite targets. Raman spectra, scanning electron micrographs, and transmission electron micrographs show that carbon nanotubes are present in the deposited thin films, and that the pulsed laser deposition process causes minimal degradation to the quality of the nanotubes when using pure carbon nanotube targets.

  4. Bloch oscillations in carbon nanotubes.

    Science.gov (United States)

    Jódar, Esther; Pérez-Garrido, Antonio; Rojas, Fernando

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case.

  5. Bloch oscillations in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jodar, Esther; Perez-Garrido, Antonio [Departamento Fisica Aplicada, Antiguo Hospital de Marina Campus Muralla del Mar, UPCT, Cartagena 30202 Murcia (Spain); Rojas, Fernando [Centro de Nanociencias y Nanotecnologia-UNAM, Apartado Postal 356, Ensenada, Baja California 22800 (Mexico)], E-mail: ejodar@upct.es

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case. (fast track communication)

  6. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.

    2015-01-01

    modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two....... In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli...

  7. Adsorption of Gases on Carbon Nanotubes

    Science.gov (United States)

    Mbaye, Mamadou Thiao

    2014-01-01

    This research focus in studying the interaction between various classical and quantum gases with novel carbon nanostructures, mainly carbon nanotubes (CNTs). Since their discovery by the Japanese physicist Sumio Iijima [1] carbon nanotubes have, experimentally and theoretically, been subjected to many scientific investigation. Studies of adsorption on CNTs are particularly directed toward their better usage in gas storage, gas separation, catalyst, drug delivery, and water purification. We explore the adsorption of different gases entrapped in a single, double, or multi-bundles of CNTs using computer simulations. The first system we investigate consists of Ar and Kr films adsorbed on zigzag or armchair nanotubes. Our simulations revealed that Kr atoms on intermediate size zigzag NTs undergo two phase transitions: A liquid-vapor (L→V), and liquid-commensurate (L→CS) with a fractional coverage of one Kr atoms adsorbed for every four carbon atoms. For Ar on zigzag and armchair NTs, the only transition observed is a L→V. In the second problem, we explore the adsorption of CO2 molecules in a nanotube bundle and calculate the isosteric heat of adsorption of the entrapped molecules within the groove. We observed that the lower the temperature, the higher the isosteric of adsorption. Last, we investigate the adsorption of hydrogen, Helium, and Neon gases on the groove site of two parallel nanotubes. At low temperature, the transverse motion on the plane perpendicular to the tubes' axis is frozen out and as a consequence, the heat capacity is reduced to 1/2. At high temperature, the atoms gain more degree of freedom and as a consequence the heat capacity is 5/2.

  8. DFT Modelling of Tripeptides (Lysine-Tryptophan-Lysine Interacting with Single Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Navaratnarajah Kuganathan

    2010-01-01

    Full Text Available Model calculations are performed to predict the nature of interaction between SWNT and a tripeptide (Lys-Trp-Lys and to calculate the binding energies and charge transfer between these two species using density functional theory. DFT calculations indicate that the interaction is of a non covalent nature. Minimal charge transfer is observed between SWNT and Lys-Trp-Lys.

  9. Carbon Nanotube Flexible and Stretchable Electronics

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  10. Carbon Nanotube Flexible and Stretchable Electronics.

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-12-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  11. Printed Carbon Nanotube Electronics and Sensor Systems.

    Science.gov (United States)

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications.

  12. Carbon Nanotubes for Space Photovoltaic Applications

    Science.gov (United States)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  13. Vibrational characteristics of carbon nanotubes as nanomechanical resonators.

    Science.gov (United States)

    Kwon, Y W; Manthena, C; Oh, J J; Srivastava, D

    2005-05-01

    Using eigenvalue analysis of mass and stiffness matrices directly computed from atomistic simulations, natural frequencies and mode shapes of various carbon nanotubes are studied. The stiffness matrix was developed from the Tersoff-Brenner potential for carbon-carbon interactions. The computed frequencies of the radial breathing modes of a variety of armchair (n, n) nanotubes agree well with results obtained by others using different techniques. In addition, the study reveals diverse mode shapes such as accordion-like axial modes, lateral bending modes, torsional modes, axial shear modes, and radial breathing modes for a variety of single-wall, multi-wall, and bamboo-type carbon nanotubes. The effects of different constraints on the carbon nanotube ends on the computed frequencies and mode shapes have been investigated for possible applications in vibration sensors or electromechanical resonators.

  14. Pressure-Induced Interlinking of Carbon Nanotubes

    OpenAIRE

    Yildirim, T.; Gulseren, O.; Kilic, C.; Ciraci, S.

    2000-01-01

    We predict new forms of carbon consisting of one and two dimensional networks of interlinked single wall carbon nanotubes, some of which are energetically more stable than van der Waals packing of the nanotubes on a hexagonal lattice. These interlinked nanotubes are further transformed with higher applied external pressures to more dense and complicated stable structures, in which curvature-induced carbon sp$^{3}$ re-hybridizations are formed. We also discuss the energetics of the bond format...

  15. Different Technical Applications of Carbon Nanotubes

    OpenAIRE

    Abdalla, S; Al-Marzouki, F.; Ahmed A. Al-Ghamdi; Abdel-Daiem, A.

    2015-01-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc....

  16. Faster and Smaller with Carbon Nanotubes?

    OpenAIRE

    Seidel, Robert V.; Graham, Andrew P.; Duesberg, Georg S.; Liebau, Maik; Unger, Eugen; Kreupl, Franz; Hoenlein, Wolfgang

    2004-01-01

    Carbon Nanotubes seem to be one of the most promising candidates for nanoelectronic devices beyond presumable scaling limits of silicon and compound semiconductors and independent from lithographic limitations. Discovered only about a decade ago, there has been a tremendous advance in the field of carbon nanotubes. Their exciting properties, especially with respect to electronic applications, and their fabrication methods will be discussed. A variety of Carbon Nanotube...

  17. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    Science.gov (United States)

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  18. Carbon Nanotubes and Related Structures

    Directory of Open Access Journals (Sweden)

    Kingsuk Mukhopadhyay

    2008-07-01

    Full Text Available Carbon nanotubes have attracted the fancy of many scientists world wide. The small dimensions,strength, and the remarkable physical properties of these structures make them a unique material with a whole range of promising applications. In this review, the structural aspects, the advantages and disadvantages of different for their procedures synthesis, the qualitative and quantitative estimation of carbon nanotubes by different analytical techniques, the present status on their applications as well as the current challenges faced in the application field, national, in particular DRDO, DMSRDE status, and interest in this field, have been discussed.Defence Science Journal, 2008, 58(4, pp.437-450, DOI:http://dx.doi.org/10.14429/dsj.58.1666

  19. Ballistic Fracturing of Carbon Nanotubes.

    Science.gov (United States)

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  20. Carbon Nanotubes: Molecular Electronic Components

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  1. Torsional Carbon Nanotube Artificial Muscles

    Science.gov (United States)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  2. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  3. Carbon nanotubes in tissue engineering.

    Science.gov (United States)

    Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2014-01-01

    As a result of their peculiar features, carbon nanotubes (CNTs) are emerging in many areas of nanotechnology applications. CNT-based technology has been increasingly proposed for biomedical applications, to develop biomolecule nanocarriers, bionanosensors and smart material for tissue engineering purposes. In the following chapter this latter application will be explored, describing why CNTs can be considered an ideal material able to support and boost the growth and the proliferation of many kinds of tissues.

  4. A Thermal Model for Carbon Nanotube Interconnects

    Science.gov (United States)

    Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay

    2013-01-01

    In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.

  5. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2014-01-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  6. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... are known. The parameters of the liquid surface model and its potential applications are discussed. The model has been suggested for open end and capped nanotubes. The influence of the catalytic nanoparticle, atop which nanotubes grow, on the nanotube stability is also discussed. The suggested model gives...

  7. Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

    Directory of Open Access Journals (Sweden)

    Dorota Matyszewska

    2016-04-01

    Full Text Available In this work the interactions of an anticancer drug daunorubicin (DNR with model thiolipid layers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE were investigated using Langmuir technique. The results obtained for a free drug were compared with the results recorded for DNR attached to SWCNTs as potential drug carrier. Langmuir studies of mixed DPPTE–SWCNTs-DNR monolayers showed that even at the highest investigated content of the nanotubes in the monolayer, the changes in the properties of DPPTE model membranes were not as significant as in case of the incorporation of a free drug, which resulted in a significant increase in the area per molecule and fluidization of the thiolipid layer. The presence of SWCNTs-DNR in the DPPTE monolayer at the air–water interface did not change the organization of the lipid molecules to such extent as the free drug, which may be explained by different types of interactions playing crucial role in these two types of systems. In the case of the interactions of free DNR the electrostatic attraction between positively charged drug and negatively charged DPPTE monolayer play the most important role, while in the case of SWCNTs-DNR adducts the hydrophobic interactions between nanotubes and acyl chains of the lipid seem to be prevailing. Electrochemical studies performed for supported model membranes containing the drug delivered in the two investigated forms revealed that the surface concentration of the drug-nanotube adduct in supported monolayers is comparable to the reported surface concentration of the free DNR incorporated into DPPTE monolayers on gold electrodes. Therefore, it may be concluded that the application of carbon nanotubes as potential DNR carrier allows for the incorporation of comparable amount of the drug into model membranes with simultaneous decrease in the negative changes in the membrane structure and organization, which is an important aspect in terms of side effects of

  8. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  9. LDRD final report on carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, P.A.; Rand, P.B.

    1997-04-01

    Carbon nanotubes and their composites were examined using computational and experimental techniques in order to modify the mechanical and electrical properties of resins. Single walled nanotubes were the focus of the first year effort; however, sufficient quantities of high purity single walled nanotubes could not be obtained for mechanical property investigations. The unusually high electrical conductivity of composites loaded with <1% of multiwalled nanotubes is useful, and is the focus of continuing, externally funded, research.

  10. Engineering carbon nanotubes and nanotube circuits using electrical breakdown.

    Science.gov (United States)

    Collins, P G; Arnold, M S; Avouris, P

    2001-04-27

    Carbon nanotubes display either metallic or semiconducting properties. Both large, multiwalled nanotubes (MWNTs), with many concentric carbon shells, and bundles or "ropes" of aligned single-walled nanotubes (SWNTs), are complex composite conductors that incorporate many weakly coupled nanotubes that each have a different electronic structure. Here we demonstrate a simple and reliable method for selectively removing single carbon shells from MWNTs and SWNT ropes to tailor the properties of these composite nanotubes. We can remove shells of MWNTs stepwise and individually characterize the different shells. By choosing among the shells, we can convert a MWNT into either a metallic or a semiconducting conductor, as well as directly address the issue of multiple-shell transport. With SWNT ropes, similar selectivity allows us to generate entire arrays of nanoscale field-effect transistors based solely on the fraction of semiconducting SWNTs.

  11. Effect of temperature on deformation of carbon nanotube under compression

    Institute of Scientific and Technical Information of China (English)

    王宇; 倪向贵; 王秀喜; 吴恒安

    2003-01-01

    The mechanical behaviour of carbon nanotubes is one of the basic research fields on the nanotube composites and nano machinery.Molecular dynamics is an effective way for investigating the behaviour of nano structure.The compression deformation of carbon nanotubes(CNTs)under different temperature is simulated,by using the Tersoff-Brenner potential to describe the interactions in CNTs.The results show that thermal fluctuations may induce the strained CNT to overcome the local energy barrier and develop the plastic deformation.

  12. Dielectrophoretic manipulation of fluorescing single-walled carbon nanotubes.

    Science.gov (United States)

    Mureau, Natacha; Mendoza, Ernest; Silva, S Ravi P

    2007-05-01

    We investigate the behavior of fluorescing single-walled carbon nanotubes (SWCNTs) under dielectrophoretic conditions and demonstrate their collection with fluorescence microscopy. SWCNTs are dispersed in water with the aid of a nonionic surfactant, Triton X-100, and labeled through noncovalent binding with the dye 3,3'-dihexyloxacarbocyanine iodide (diOC(6)). The chromophore's affinity to the SWCNTs is due to pi-stacking interactions. Carbon nanotube (CNT) localization is clearly identified on the fluorescence images, showing that the nanotubes concentrate between the electrodes and align along the electric field lines.

  13. Thermal property of regioregular poly(3-hexylthiophene)/nanotube composites using modified single-walled carbon nanotubes via ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, A R [College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203 (United States); Huang, M [College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203 (United States); Bakhru, H [College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203 (United States); Chipara, M [Department of Physics and Geology, University of Texas Pan American, Edinburg, TX 78541-2999 (United States); Ryu, C Y [Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Ajayan, P M [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, Troy and Rensselaer Nanotechnology Center, NY 12180 (United States)

    2006-12-28

    The effects of radiation-induced modifications on the thermal stability and phase transition behaviour of composites made of 1% pristine or ion irradiated single-walled carbon nanotubes (SWNTs) and poly(3-hexylthiophene) (P3HT) are reported. Thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), Raman spectroscopy and electron spin resonance (ESR) were used to investigate the radiation-induced functionalization of carbon nanotubes and to assess the effect of ionizing radiation on the adhesion between macromolecular polymer and carbon nanotubes. Irradiation was used to introduce defects in a controlled way solely within pristine nanotubes before composite synthesis. The addition of irradiated SWNTs to a polymer matrix was found to enhance thermo-oxidative stability and phase transition behaviour. Further, ESR studies demonstrate the electronic interaction through charge transfer between filler and matrix. These results could have immense applications in nanotube composite processing. Based on the experimental data, a model for the interaction between polymeric chains and carbon nanotubes is proposed.

  14. The interaction of single walled carbon nanotube (SWCNT with phospholipids membrane: in point view of solvent effect

    Directory of Open Access Journals (Sweden)

    Akbar Elsagh

    2015-03-01

    Full Text Available In this research, we have studied the structural properties of phospholipids, surrounding single-walled carbon nanotube (SWCNT, by using ab-inition and molecular dynamics simulation. Carbon nanotubes (SWCNTs are very common in medical research and are being highly studied in the fields of biosensing methods for disease treatment and efficient drug delivery and health monitoring. The transportation of SWCNT through the cell membrane widely investigated because of many advantages. Because of the differences among force fields, the energy of a molecule calculated using two different force fields will not be the same. In this study difference in force field illustrated by comparing the energy of calculated by using force fields, MM+, Amber and OPLS. The quantum Mechanics (QM calculations were carried out with the GAUSSIAN 09 program based on density functional theory (DFT at B1LYP/6-31G* level. In our recent study the electronic structure of open-end of SWCNT and transportation of SWCNT through the phospholipids in skin cell membrane have been discussed for both vacuum and solvent media.

  15. Plasticity and Kinky Chemistry of Carbon Nanotubes

    Science.gov (United States)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  16. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also...... the potential of distinguishing between nanotubes of different electrical properties, which is very important for the optimisation of the properties of the carbon nanotube sensors. Various cantilever and planar structures were designed, fabricated and tested both with multi-walled and single-walled carbon...

  17. Interaction of carbon nanotubes and diamonds under hot-filament chemical vapor deposition conditions

    Science.gov (United States)

    Shankar, Nagraj

    A composite of CNTs and diamond can be expected to have unique mechanical, electrical and thermal properties due to the synergetic combination of the excellent properties of these two allotropes of carbon. The composite may find applications in various fields that require a combination of good mechanical, thermal, electrical and optical properties such as, wear-resistant coatings, thermal management of integrated chips (ICs), and field emission devices. This research is devoted to the experimental studies of phase stability of diamond and CNTs under chemical vapor deposition conditions to investigate the possibility of combining these materials to produce a hybrid composite. Growth of the hybrid material is investigated by starting with a pre-existing film of CNTs and subsequently growing diamond on it. The diamond growth phase space is systematically scanned to determine optimal conditions where diamond nucleates on the CNT without destroying it. Various techniques including SEM, TEM, and Micro Raman spectroscopy are used to characterize the hybrid material. A selective window where the diamond directly nucleates on the CNT without destroying the underlying CNT network is identified. Based on the material characterization, a growth mechanism based on etching of CNT at the defective sites to produce sp3 dangling bonds onto which diamond nucleates is proposed. Though a hybrid material is synthesized, the nucleation density of diamond on the CNTs is low and highly non-homogenous. Improvements to the CNT dispersion in the hybrid material are investigated in order to produce a homogenous material with predictable CNT loading fractions and to probe the low nucleation density of diamond on the CNT. The effect of several dispersion techniques and solvents on CNT surface homogeneity is studied using SEM, and a novel, vacuum drying based approach using CNT/dichlorobenzene dispersions is suggested. SEM and Raman analysis of the early stage nucleation are used to develop a

  18. Interaction between carbon nanotubes and mammalian cells: characterization by flow cytometry and application

    Energy Technology Data Exchange (ETDEWEB)

    Cai Dong; Blair, Derek; Dufort, Fay J; Gumina, Maria R; Chiles, Thomas C [Department of Biology, Boston College, Chestnut Hill, MA 02467 (United States); Huang Zhongping; Canahan, D [NanoLab, Incorporated, Newton, MA 02458 (United States); Hong, George [Bioprocess Division, Millipore Corporation, 80 Ashby Road, Bedford, MA 01730 (United States); Wagner, Dean [Naval Health Research Center, Detachment Environmental Health Effects Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); Kempa, K; Ren, Z F [Department of Physics, Boston College, Chestnut Hill, MA 02467 (United States)], E-mail: caid@bc.edu

    2008-08-27

    We show herein that CNT-cell complexes are formed in the presence of a magnetic field. The complexes were analyzed by flow cytometry as a quantitative method for monitoring the physical interactions between CNTs and cells. We observed an increase in side scattering signals, where the amplitude was proportional to the amount of CNTs that are associated with cells. Even after the formation of CNT-cell complexes, cell viability was not significantly decreased. The association between CNTs and cells was strong enough to be used for manipulating the complexes and thereby conducting cell separation with magnetic force. In addition, the CNT-cell complexes were also utilized to facilitate electroporation. We observed a time constant from CNT-cell complexes but not from cells alone, indicating a high level of pore formation in cell membranes. Experimentally, we achieved the expression of enhanced green fluorescence protein by using a low electroporation voltage after the formation of CNT-cell complexes. These results suggest that higher transfection efficiency, lower electroporation voltage, and miniaturized setup dimension of electroporation may be accomplished through the CNT strategy outlined herein.

  19. A possible formation mechanism of double-walled and multi-walled carbon nanotube: a molecular dynamics study

    Science.gov (United States)

    Han, Dianrong; Luo, Chenglin; Dai, Yafei; Zhu, Xingfeng

    2016-09-01

    Molecular dynamics simulations based on an empirical potential were performed to study the interaction of graphene nanoribbons and the single-walled carbon nanotubes. The results indicated that a piece of graphene nanoribbon can form a tube structure inside or outside single-walled carbon nanotubes spontaneously under certain condition. Based on this kind of spontaneous phenomenon, we proposed a new possible formation mechanism of double walled carbon nanotube and multi-walled carbon nanotube, and suggested the possibility of controlling the structure of double-walled carbon nanotube and/or multi-walled carbon nanotube.

  20. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  1. A Tunable Carbon Nanotube Oscillator

    Science.gov (United States)

    Sazonova, Vera

    2005-03-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. Carbon nanotubes (NT) are perhaps the ultimate material for realizing a NEMS device as they are the stiffest material known, have low density, ultrasmall cross sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus is able to sense its own motion. Here, we report the electrical actuation and detection of the guitar-string oscillation modes of doubly-clamped NT oscillators. We observed resonance frequencies in the 5MHz to 150MHz range with quality factors in the 50 to 100 range. We showed that the resonance frequencies can be widely tuned by a gate voltage. We also report on the temperature dependence of the quality factor and present a discussion of possible loss mechanisms.

  2. Funcionalização de nanotubos de Carbono Functionalization of carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Antônio Gomes de Souza Filho

    2007-01-01

    Full Text Available Carbon nanotubes are very stable systems having considerable chemical inertness due to the strong covalent bonds of the carbon atoms on the nanotube surface. Many applications of carbon nanotubes require their chemical modification in order to tune/control their physico-chemical properties. One way of achieving this control is carrying out functionalization processes where atoms and molecules interact (covalent or non-covalent with the nanotubes. We review some of the progress that has been made in chemical functionalization of carbon nanotubes. Emphasis is given to chemical strategies, the most used techniques, and applications.

  3. Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes.

    Science.gov (United States)

    Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas

    2016-08-05

    This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc.

  4. Micromechanics of carbon nanotube turfs

    Science.gov (United States)

    Torabi, Hamid

    Complex structures consisting of intertwined, nominally vertical carbon nanotubes (CNTs) are called turfs. Unique electrical, thermal, optical, and permeability properties of these turfs have attracted growing attention during the past decade, and have rendered them as appropriate candidates for applications such as contact thermal switches. These properties are controlled by the details of the turf microstructures. Due to the application of the turfs in different fields, they are subjected to different loading conditions. Deformation changes the microstructure of a CNT turf, which results in change of effective properties. Many researchers have recently studied the collective mechanical behavior of CNT turfs to compression loading, as this behavior determines their performance. However, their complex and intertwined structure must be investigated in more details to find the relation between their deformation and their underlying morphology. Under uniform compression experiments, CNT turfs exhibit irreversible collective buckling of a layer preceded by reorientation of CNT segments. Experimentally observed independence of the buckling stress and the buckling wavelength on the turf width suggests the existence of an intrinsic material length. To investigate the relationship the macroscopic material properties and the statistical parameters describing the nano-scale geometry of the turf (tortuosity, density and connectivity) we develop a nano-scale computational model, based on the representation of CNT segments as elastica finite elements with van der Waals interactions. The virtual turfs are generated by means of a constrained random walk algorithm and subsequent relaxation. The resulting computational model is robust and is capable of modeling the collective behavior of CNTs. We first establish the dependence of statistical parameters on the computational parameters used for turf generation, then establish relationships between post-buckling stress, initial

  5. Hydrogen Storage in Carbon Nanotubes

    Science.gov (United States)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  6. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  7. Suspended carbon nanotubes coupled to superconducting circuits

    NARCIS (Netherlands)

    Schneider, B.H.

    2014-01-01

    Carbon nanotubes are unique candidates to study quantum mechanical properties of a nanomechanical resonator. However to access this quantum regime, present detectors are not yet sensitive enough. In this thesis we couple a carbon nanotube CNT mechanical resonator to a superconducting circuit which i

  8. Control of multiple excited image states around segmented carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Knörzer, J., E-mail: johannes.knoerzer@physnet.uni-hamburg.de; Fey, C., E-mail: christian.fey@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761 (Germany); Sadeghpour, H. R. [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Schmelcher, P. [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761 (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761 (Germany)

    2015-11-28

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.

  9. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  10. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  11. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  12. Theoretical study of interaction between Tacrine and finite-length Al-doped Carbon and Boron nitride Nanotubes: A Semiempirical drug delivery study in thermodynamic view

    Directory of Open Access Journals (Sweden)

    Nasrin Zeighami

    2014-12-01

    Full Text Available In order to extend our previous theoretical calculations that dealt with the thermochemistry of doping the single walled boron nitride nano tubes, BNNTs, and carbon nanotubes ,CNTs, with alminium atoms [1], we have used the AM 1, PM 3, and PM 6 semiempirical methods to investigate the interaction of the tacrine molecule (a drug for the treatment of Alzheimer's disease with the side-walls of aluminum doped boron nitride and carbon nano tubes in thermodynamic views.At first, the frequency calculations were carried out to confirm the stability of the involved structures. In addition, the theoretical thermodynamic study of tacrine adsorption onto the considered nanotubes was performed and the thermodynamic functions such as enthalpy changes, entropy changes and Gibbs free energy changes of the adsorption process were evaluated at different temperatures. Our results suggest the aluminum doped boron nitride nano tubes and alminium doped carbon nano tubes may be considered as the proper carries for the drug delivery of tacrine.

  13. Growing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yoshinori Ando

    2004-10-01

    Full Text Available The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the subsequent discovery of ‘carbon nanotubes’ (CNTs, the elongated fullerene added a new dimension to the knowledge of technology2;. Today, ‘nanotechnology’ is a hot topic attracting scientists, industrialists, journalists, governments, and even the general public. Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc. at that length scale. CNTs are supposed to be a key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

  14. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  15. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  16. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  17. Impact response by a foamlike forest of coiled carbon nanotubes

    Science.gov (United States)

    Daraio, Chiara; Nesterenko, Vitali F.; Jin, Sungho; Wang, Wei; Rao, Apparao M.

    2006-09-01

    We studied the dynamic response of a foamlike forest of coiled carbon nanotubes under high strain rate deformation using a simple drop-ball test. The method is based on measuring the dynamic force between the ball and the foam on the substrate during the stages of penetration and restitution. The analysis of the forest's morphology after impact has shown no trace of plastic deformation and a full recovery of the foamlike layer of coiled carbon nanotubes under various impact velocities. The contact force exhibits a strongly nonlinear dependence on displacement and appears fundamentally different from the response of a forest of straight carbon nanotubes, and from the Hertzian type of plane-sphere interaction. "Brittle" fracture of the foamlike layer is observed after repeated high velocity impacts. Such layers of coiled nanotubes may be used as a strongly nonlinear spring in discrete systems for monitoring their dynamic behavior and as a nanostructure for localized microimpact protection.

  18. GUIDED CIRCUMFERENTIAL WAVES IN DOUBLE-WALLED CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A model of guided circumferential waves propagating in double-walled carbon nanotubes is built by the theory of wave propagation in continuum mechanics, while the van der Waals force between the inner and outer nanotube has been taken into account in the model. The dispersion curves of the guided circumferential wave propagation are studied, and some dispersion characteristics are illustrated by comparing with those of single-walled carbon nanotubes. It is found that in double-walled carbon nanotubes, the guided circumferential waves will propagate in more dispersive ways. More interactions between neighboring wave modes may take place. In particular, it has been found that a couple of wave modes may disappear at a certain frequency and that, while a couple of wave modes disappear, another new couple of wave modes are excited at the same wave number.

  19. Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites

    Indian Academy of Sciences (India)

    Smrutisikha Bal

    2010-02-01

    Carbon nanotube based epoxy composites have been fabricated at room temperature and refrigeration process using sonication principle. Flexural moduli, electrical conductivity, glass transition temperature of epoxy resin as well as nanocomposite samples have been determined. Distribution behaviour of carbon nanotubes in the epoxy matrix was examined through scanning electron microscopy. Composite samples showed better properties than resin samples due to strengthening effect of the filled nanotubes. Refrigerated nanocomposites obtained increasing mechanical property because of better dispersion due to low temperature settlement of polymers. Improvement of electrical conductivity was due to the fact that aggregated phases form a conductive three-dimensional network throughout the whole sample. The increasing glass transition temperature was indicative of restricting movement of polymer chains that ascribe strong interaction presented between carbon nanotubes and epoxy chains that was again supplemented by Raman study and SEM.

  20. Carbon nanotube and conducting polymer composites for supercapacitors

    Institute of Scientific and Technical Information of China (English)

    Chuang Peng; Shengwen Zhang; Daniel Jewell; George Z. Chen

    2008-01-01

    Composites of carbon nanotubes and conducting polymers can be prepared via chemical synthesis, electrochemical deposition on pre-formed carbon nanotube electrodes, or by electrochemical co-deposition. The composites combine the large pseudocapacitance of the conducting polymers with the fast charging/discharging double-layer capacitance and excellent mechanical properties of the carbon nanotubes. The electrochemically co-deposited composites are the most homogeneous and show an unusual interaction between thepolymer and nanotubes, giving rise to a strengthened electron delocalisation and conjugation along the polymer chains. As a result they exhibit excellent electrochemical charge storage properties and fast charge/discharge switching, making them promising electrode mate-rials for high power supercapacitors.

  1. Purification of carbon nanotube by wet oxidation; Shisshiki sanka ni yoru carbon nanotube no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan)

    1997-07-10

    In order to efficiently recover carbon nanotubes, the purification method by wet oxidation with orthoperiodic acid and perchloric acid is investigated. The reactivity of the carbonaceous material toward the acids depends on the type of carbon. Carbon nanotubes are selectively recovered under the mild oxidation conditions. The degree of purification depends on the concentration of orthoperiodic acid. It is suggested that wet oxidation is an effective method for purification of carbon nanotubes. 17 refs., 6 figs.

  2. Octagonal Defects at Carbon Nanotube Junctions

    Directory of Open Access Journals (Sweden)

    W. Jaskólski

    2013-01-01

    Full Text Available We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF. The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system.

  3. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  4. Metallic Carbon Nanotubes and Ag Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  5. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    Science.gov (United States)

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...used the resulting enhanced control to investigate a nano- tube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams...This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum

  6. Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin

    Directory of Open Access Journals (Sweden)

    Yoxkin Estévez-Martínez

    2013-01-01

    Full Text Available Keratin, obtained from chicken feathers, was grafted on the surface of commercially available carbon nanotubes. The original procedure developed allows a covalent interaction between some specific chemical groups characteristic of the keratin, with some functional groups introduced on purpose on the surface of the nanotubes, as revealed by infrared and Raman spectroscopies, which also allowed to determine structural changes introduced during the process, such as crystallinity, which lead to changes in other properties, as well.

  7. Surface Modification of Multiwall Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl-methacrylate) Composites

    KAUST Repository

    Ezzeddine, Alaa

    2015-05-22

    This research investigates the modification and dispersion and of pristine multiwalled carbon nanotubes (MWCNTs) through a simple solution mixing technique based on noncovalent interactions between poly(phenylene ethynylene) based conjugated polyelectrolytes functionalized with cationic imidazolium solubilizing groups (PIM-2 and PIM-4) and MWCNTs. Spectroscopic studies demonstrated the ability of PIMs to strongly interact with and efficiently disperse MWCNTs in different solvents mainly due to π-interactions between the PIMs and MWCNTs. Transmission electron microscopy and atomic force microscopy revealed the coating of the polyelectrolytes on the walls of the nanotubes. Scanning electron microscopy (SEM) studies confirm the homogenous dispersion of PIM modified MWCNTs in poly(methyl methacrylate) (PMMA) matrix. The addition of 1 wt% PIM modified MWCNTs to the matrix has led to a significant decrease in DC resistivity of the composite (13 orders of magnitude). The increase in electrical conductivity and the improvement in thermal and mechanical properties of the membranes containing the PIM modified MWCNTs is ascribed to the formation of MWCNTs networks and cross-linking sites that provided channels for the electrons to move in throughout the matrix and reinforced the interface between MWCNTs and PMMA.

  8. Strong and tunable mode coupling in carbon nanotube resonators

    NARCIS (Netherlands)

    Castellanos Gomez, A.; Meerwaldt, H.B.; Ventra, W.J.; Van der Zant, H.S.J.; Steele, G.A.

    2012-01-01

    The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be

  9. Selective intercalation of polymers in carbon nanotubes.

    Science.gov (United States)

    Bazilevsky, Alexander V; Sun, Kexia; Yarin, Alexander L; Megaridis, Constantine M

    2007-07-03

    A room-temperature, open-air method is devised to selectively intercalate relatively low-molecular-weight polymers (approximately 10-100 kDa) from dilute, volatile solutions into open-end, as-grown, wettable carbon nanotubes with 50-100 nm diameters. The method relies on a novel self-sustained diffusion mechanism driving polymers from dilute volatile solutions into carbon nanotubes and concentrating them there. Relatively low-molecular-weight polymers, such as poly(ethylene oxide) (PEO, 600 kDa) and poly(caprolactone) (PCL, 80 kDa), were encapsulated in graphitic nanotubes as confirmed by transmission electron microscopy, which revealed morphologies characteristic of mixtures in nanoconfinements affected by intermolecular forces. Whereas relatively small, flexible polymer molecules can conform to enter these nanotubes, larger macromolecules (approximately 1000 kDa) remain outside. The selective nature of this process is useful for filling nanotubes with polymers and could also be valuable in capping nanotubes.

  10. SYNTHESIS OF CARBON NANOTUBES FOR ACETYLENE DETECTION

    Directory of Open Access Journals (Sweden)

    M.Y. FAIZAH

    2008-04-01

    Full Text Available A gas sensor, utilizing carbon nanotubes (CNTs in a pellet form for acetylene detection has been developed. This research was carried out to investigate the absorption effect of acetylene (C2H2 towards the change of resistance of carbon nanotubes pellet as sensor signal. Source Measurement Unit (SMU was used to study the gas sensing behaviour of resistance based sensors employing carbon nanotubes pellet as the active sensing element. Studies revealed that the absorption of acetylene into the carbon nanotubes pellet resulting in increase in pellet resistance. The changes are attributed to p-type conductivity in semiconducting carbon nanotubes. Carbon nanotubes used in this research was synthesized by means of Floating Catalyst Chemical Vapor Deposition (FC-CVD method. Benzene was used as a hydrocarbon source while ferrocene as a source of catalyst with Hydrogen and Argon as carrier and purge gas respectively. From the research, it was shown that carbon nanotubes show high sensitivity towards acetylene. The highest sensitivity recorded was 1.21, 1.16 and 17.86 for S1, S2 and S3 respectively. It is expected that many applications of CNT-based sensors will be explored in future as the interest of the nanotechnology research in this field increases.

  11. A Tester for Carbon Nanotube Mode Lockers

    Science.gov (United States)

    Song, Yong-Won; Yamashita, Shinji

    2007-05-01

    We propose and demonstrate a tester for laser pulsating operation of carbon nanotubes employing a circulator with the extra degree of freedom of the second port to access diversified nanotube samples. The nanotubes are deposited onto the end facet of a dummy optical fiber by spray method that guarantees simple sample loading along with the minimized perturbation of optimized laser cavity condition. Resultant optical spectra, autocorrelation traces and pulse train of the laser outputs with qualified samples are presented.

  12. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna.

    Science.gov (United States)

    Böhmler, Miriam; Hartmann, Nicolai; Georgi, Carsten; Hennrich, Frank; Green, Alexander A; Hersam, Mark C; Hartschuh, Achim

    2010-08-02

    We observe the angular radiation pattern of single carbon nanotubes' photoluminescence in the back focal plane of a microscope objective and show that the emitting nanotube can be described by a single in-plane point dipole. The near-field interaction between a nanotube and an optical antenna modifies the radiation pattern that is now dominated by the antenna characteristics. We quantify the antenna induced excitation and radiation enhancement and show that the radiative rate enhancement is connected to a directional redistribution of the emission.

  13. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  14. Molecular mechanics methods for individual carbon nanotubes and nanotube assemblies

    Science.gov (United States)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2015-04-01

    Since many years, carbon nanotubes (CNTs) have been considered for a wide range of applications due to their outstanding mechanical properties. CNTs are tubular structures, showing a graphene like hexagonal lattice. Our interest in the calculation of the mechanical properties is motivated by several applications which demand the knowledge of the material behavior. One application in which the knowledge of the material behavior is vital is the CNT based fiber. Due to the excellent stiffness and strength of the individual CNTs, these fibers are expected to be a promising successor for state of the art carbon fibers. However, the mechanical properties of the fibers fall back behind the properties of individual CNTs. It is assumed that this gap in the properties is a result of the van-der-Waals interactions of the individual CNTs within the fiber. In order to understand the mechanical behavior of the fibers we apply a molecular mechanics approach. The mechanical properties of the individual CNTs are investigated by using a modified structural molecular mechanics approach. This is done by calculating the properties of a truss-beam element framework representing the CNT with the help of a chemical force field. Furthermore, we also investigate the interactions of CNTs arranged in basic CNT assemblies, mimicking the ones in a simple CNT fiber. We consider the van-der-Waals interactions in the structure and calculate the potential surface of the CNT assemblies.

  15. Interaction of H2 with a Double-Walled Armchair Nanotube by First-Principles Calculations

    NARCIS (Netherlands)

    Costanzo, F.; Ensing, B.; Scipioni, R.; Ancilotto, F.; Silvestrelli, P.L.

    2014-01-01

    We have studied, by first-principles methods, the interaction of molecular hydrogen with a double-walled (2,10) carbon nanotube (DWCNT). This combination of the smallest possible diameter for the inner nanotube with a significantly larger outer tube allows for substantial space between the nanotube

  16. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  17. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  18. Ordered phases of cesium in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-10-15

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  19. Microcapsule carbon nanotube devices for therapeutic applications

    Science.gov (United States)

    Kulamarva, Arun; Raja, Pavan M. V.; Bhathena, Jasmine; Chen, Hongmei; Talapatra, Saikat; Ajayan, Pulickel M.; Nalamasu, Omkaram; Prakash, Satya

    2009-01-01

    Carbon nanotubes are a new class of nanomaterials that have immense potential in the field of biomedicine. Their ability to carry large quantities of therapeutic molecules makes them prime candidates for providing targeted delivery of therapeutics for use in various diseases. However, their utility is limited due to the problems faced during their delivery to target sites. This article for the first time describes the design of a novel microcapsule carbon nanotube targeted delivery device. This device has potential in the targeted delivery of carbon nanotubes in suitable membranes along with their cargo, safely and effectively to the target loci.

  20. A Theoretical Study of the Interactions of In+ and In+3 with a Stone-Wales Defect Single-Walled Carbon Nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Simeon, T; Balasubramanian, K; Leszczynski, J

    2008-10-02

    Experimental techniques [1] have demonstrated the controllable, reversible and mass transport exchange of indium nanocrystals along surfaces of multi-walled carbon nanotubes (MWCNTs). In particular, at certain sites robust nucleation occurs suggesting preferred locations for controlled manipulation. We believe these site locations represent structural defects, like rehybridization, incomplete bonding and topological defects within the carbon network. Although minute, these defects can drastically modify the electrical, chemical and mechanical properties of CNTs. This study was devoted to understand the role of structural defects, specifically a Stone-Wales (SW) defect in the surface transport and interaction properties of the In{sup +1} and In{sup +3} for both the singlet and triplet state. The effects of CNT surface curvature on In+1 and In{sup +3} is also studied and compared to graphite. Geometries of complexes were optimized at the B3LYP level. The standard 6-31G(d) basis set was used for carbon and hydrogen atoms while an effective core potential (ECP) was used for indium. All calculations were performed using the Gaussian 03 suite of programs. The computed Mulliken charges and HOMOLUMO gap energies, interactions and interaction energy (corrected by the basis set superposition error) of the systems have been studied and will be discussed. Figure 1 represents the comparison of the molecular electrostatic potential maps for (a) In{sup +} and (b) In{sup +3} with a SW defect CNT.

  1. Highly oriented carbon nanotube papers made of aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ding; Song Pengcheng; Liu Changhong; Wu Wei; Fan Shoushan [Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, Beijing 100084 (China)], E-mail: chliu@tsinghua.edu.cn

    2008-02-20

    Paper-like carbon nanotube (CNT) materials have many important applications such as in catalysts, in filtration, actuators, capacitor or battery electrodes, and so on. Up to now, the most popular way of preparing buckypapers has involved the procedures of dispersion and filtration of a suspension of CNTs. In this work, we present a simple and effective macroscopic manipulation of aligned CNT arrays called 'domino pushing' in the preparation of the aligned thick buckypapers with large areas. This simple method can efficiently ensure that most of the CNTs are well aligned tightly in the buckypaper. The initial measurements indicate that these buckypapers have better performance on thermal and electrical conductance. These buckypapers with controllable structure also have many potential applications, including supercapacitor electrodes.

  2. Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes.

    Science.gov (United States)

    Zimmerli, Urs; Koumoutsakos, Petros

    2008-04-01

    The study of interactions between carbon nanotubes and cellular components, such as membranes and biomolecules, is fundamental for the rational design of nanodevices interfacing with biological systems. In this work, we use molecular dynamics simulations to study the electrophoretic transport of RNA through carbon nanotubes embedded in membranes. Decorated and naked carbon nanotubes are inserted into a dodecane membrane and a dimyristoylphosphatidylcholine lipid bilayer, and the system is subjected to electrostatic potential differences. The transport properties of this artificial pore are determined by the structural modifications of the membrane in the vicinity of the nanotube openings and they are quantified by the nonuniform electrostatic potential maps at the entrance and inside the nanotube. The pore is used to transport electrophoretically a short RNA segment and we find that the speed of translocation exhibits an exponential dependence on the applied potential differences. The RNA is transported while undergoing a repeated stacking and unstacking process, affected by steric interactions with the membrane headgroups and by hydrophobic interaction with the walls of the nanotube. The RNA is structurally reorganized inside the nanotube, with its backbone solvated by water molecules near the axis of the tube and its bases aligned with the nanotube walls. Upon exiting the pore, the RNA interacts with the membrane headgroups and remains attached to the dodecane membrane while it is expelled into the solvent in the case of the lipid bilayer. The results of the simulations detail processes of molecular transport into cellular compartments through manufactured nanopores and they are discussed in the context of applications in biotechnology and nanomedicine.

  3. The electrical conduction variation in stained carbon nanotubes

    Science.gov (United States)

    Sun, Shih-Jye; Wei Fan, Jun; Lin, Chung-Yi

    2012-01-01

    Carbon nanotubes become stained from coupling with foreign molecules, especially from adsorbing gas molecules. The charge exchange, which is due to the orbital hybridization, occurred in the stained carbon nanotube induces electrical dipoles that consequently vary the electrical conduction of the nanotube. We propose a microscopic model to evaluate the electrical current variation produced by the induced electrical dipoles in a stained zigzag carbon nanotube. It is found that stronger orbital hybridization strengths and larger orbital energy differences between the carbon nanotube and the gas molecules help increasing the induced electrical dipole moment. Compared with the stain-free carbon nanotube, the induced electrical dipoles suppress the current in the nanotube. In the carbon nanotubes with induced dipoles the current increases as a result of increasing orbital energy dispersion via stronger hybridization couplings. In particular, at a fixed hybridization coupling, the current increases with the bond length for the donor-carbon nanotube but reversely for the acceptor-carbon nanotube.

  4. Methods for preparation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rakov, Eduard G [D.I. Mendeleev Russian University of Chemical Technology, Moscow (Russian Federation)

    2000-01-31

    The most important methods of synthesis and purification of carbon nanotubes, a new form of material, are described. The prospects for increasing the scale of preparation processes and for more extensive application of nanotubes are evaluated. The bibliography includes 282 references.

  5. Carbon nanotubes for RF and microwaves

    OpenAIRE

    Burke, P. J.; Yu, Z; Rutherglen, C.

    2005-01-01

    In this invited overview paper we provide a brief up-to-date summary of the potential applications of carbon nanotubes for RF and microwave devices and systems. We focus in particular on the use of nanotubes as ultra-high speed interconnects in integrated circuits.

  6. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties...

  7. Carbon Nanotubes for Human Space Flight

    Science.gov (United States)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  8. The Adsorption Properties of Bacillus atrophaeus Spore on Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    P. Cortes

    2010-01-01

    Full Text Available An equilibrium study of Bacillus atrophaeus (B.a spores on functionalized Single-Wall Carbon Nanotubes (SWCNTs has been performed in order to characterize the adsorption properties of the spores/nanotubes complex. The carbon nanotubes here investigated were subjected to a two-step purification and functionalization treatment in order to introduce chemical groups on their basal planes. The inclusion of carboxyl functional groups on the nanotubes was corroborated by Raman and infrared spectroscopy. These carboxyl groups appear to enhance the nanotube-B.a. interaction by reacting with the proteinaceous pili appendages present on the spore surface. The adsorption data demonstrate that bacillus spores diffuse faster on functionalized carbon nanotubes than on as-received and purified nanomaterials. Transmission Electron Microscopy also shows that the chemically treated nanotubes resulted in a swollen nano-network which seems to further enhance the bacillus adsorption due to a more extensive spore-nanotube contact area.

  9. Reinforcement of Epoxies Using Single Walled Carbon Nanotubes

    Science.gov (United States)

    Krishnamoorti, Ramanan; Sharma, Jitendra; Chatterjee, Tirtha

    2008-03-01

    The reinforcement of bisphenol-A and bisphenol-F epoxies using single walled carbon nanotubes has been approached experimentally by understanding the nature of interactions between the matrices and nanotubes. Unassisted dispersions of single walled carbon nanotubes in epoxies were studied by a combination of radiation scattering (elastic small angle scattering and inelastic scattering), DSC based glass transition determination, melt rheology and solid-state mechanical testing in order to understand and correlate changes in local and global dynamics to the tailoring of composite mechanical properties. Significant changes in the glass transition temperature of the matrix can successfully account for changes in the viscoelastic properties of the epoxy dispersions for concentrations below the percolation threshold, while above the percolation threshold the network superstructure formed by the nanotubes controls the viscoelastic properties.

  10. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  11. Carbon Nanotubes as Resonators for RF Spectrum Analyzers

    Science.gov (United States)

    Hunt, Brian; Noca, Flavio; Hoenk, Michael

    2003-01-01

    Electromechanical resonators of a proposed type would comprise single carbon nanotubes suspended between electrodes (see Figure 1). Depending on the nanotube length, diameter, and tension, these devices will resonate at frequencies in a range from megahertz through gigahertz. Like the carbon-nanotube resonators described in the preceding article, these devices will exhibit high quality factors (Q values), will be compatible with integration with electronic circuits, and, unlike similar devices made from silicone and silicone carbide, will have tunable resonant frequencies as high as several GHz. An efficient electromechanical transduction method for the carbon nanotube resonators is provided by the previously observed variation of carbon nanotube length with charge injection. It was found that injection of electrons or holes, respectively, lengthens or shortens carbon nanotubes, by amounts of the order of a percent at bias levels of a few volts. The charge-dependent length change also enables a simple and direct means of tuning the resonant frequency by varying the DC bias and hence the tension along the tube, much like tuning a guitar string. In its basic form, the invention is a tunable high-Q resonator based on a suspended carbon nanotube bridge with attached electrodes (see Figure 1). An applied DC bias controls the tension and thus the frequency of resonance. If one were to superimpose a radio-frequency (RF) bias on the DC bias, then the resulting rapid variation in tension or length would set the tube into vibration. If, on the other hand, the carbon nanotube were to be set into vibration by interaction between an incident RF electric field and electric charges in the nanotube, then the vibration would give rise to an RF signal output that is proportional to the RF amplitude at the resonance frequency. Because the transduction mechanism is extremely sensitive and the active volume is only a few nanometers in diameter, this device is not well suited for use as

  12. Microfabricated electroactive carbon nanotube actuators

    Science.gov (United States)

    Ahluwalia, Arti; Baughman, Ray H.; De Rossi, Danilo; Mazzoldi, Alberto; Tesconi, Mario; Tognetti, Alessandro; Vozzi, Giovanni

    2001-07-01

    A variety of microfabrication techniques have been developed at the University of Pisa. They are based either on pressure or piston actuated microsyringes or modified ink-jet printers. This work present the results of a study aimed at fabricating carbon nanotube (NT) actuators using micro-syringes. In order to prevent the nanotubes from aggregating into clumps, they were enclosed in a partially cross-linked polyvinylalcohol - polyallylamine matrix. After sonication the solution remained homogenously dispersed for about 40 minutes, which was sufficient time for deposition. Small strips of NT, about 5 mm across and 15 mm long were deposited. Following deposition, the films were baked at 80 degree(s)C and their thickness, impedance and mechanical resistance measured. The results indicate that 50 minutes of baking time is sufficient to give a constant resistivity of 1.12 x 10-2 (Omega) m per layer similar to a typical semiconductor, and each layer has a thickness of about 6 micrometers .

  13. Flightweight Carbon Nanotube Magnet Technology

    Science.gov (United States)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  14. Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Badamshina, E R; Gafurova, M P; Estrin, Yakov I [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The results of studies, mainly published in recent years, on modification of carbon nanotubes and design of composites with these nanotubes for the manufacture of new-generation materials are generalized and analyzed. The methods of modification of the nanotubes by low- and high-molecular compounds and methods of polymer modification by carbon nanotubes are considered. Data on the properties of modified nanotubes are presented. The current and potential applications of materials based on the nanotubes are indicated.

  15. Purification of Carbon Nanotubes: Alternative Methods

    Science.gov (United States)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  16. Deconvoluting hepatic processing of carbon nanotubes

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  17. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    Science.gov (United States)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  18. Carbon Nanotube Tape Vibrating Gyroscope

    Science.gov (United States)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  19. Aligned carbon nanotubes for nanoelectronics

    Science.gov (United States)

    Choi, Won Bong; Bae, Eunju; Kang, Donghun; Chae, Soodoo; Cheong, Byung-ho; Ko, Ju-hye; Lee, Eungmin; Park, Wanjun

    2004-10-01

    We discuss the central issues to be addressed for realizing carbon nanotube (CNT) nanoelectronics. We focus on selective growth, electron energy bandgap engineering and device integration. We have introduced a nanotemplate to control the selective growth, length and diameter of CNTs. Vertically aligned CNTs are synthesized for developing a vertical CNT-field effect transistor (FET). The ohmic contact of the CNT/metal interface is formed by rapid thermal annealing. Diameter control, synthesis of Y-shaped CNTs and surface modification of CNTs open up the possibility for energy bandgap modulation. The concepts of an ultra-high density transistor based on the vertical-CNT array and a nonvolatile memory based on the top gate structure with an oxide-nitride-oxide charge trap are also presented. We suggest that the deposited memory film can be used for the quantum dot storage due to the localized electric field created by a nano scale CNT-electron channel.

  20. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  1. Carbon nanotube polymer composition and devices

    Science.gov (United States)

    Liu, Gao; Johnson, Stephen; Kerr, John B.; Minor, Andrew M.; Mao, Samuel S.

    2011-06-14

    A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.

  2. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  3. A Thermal Model for Carbon Nanotube Interconnects

    Directory of Open Access Journals (Sweden)

    Clay Mayberry

    2013-04-01

    Full Text Available In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.

  4. Fabrication of porous carbon nanotube network.

    Science.gov (United States)

    Su, Jun-Wei; Fu, Shu-Juan; Gwo, Shangjr; Lin, Kuan-Jiuh; Lin, Kuna-Jiuh

    2008-11-21

    We used the spin-coating method combined with ultrasonic atomization as a continuous, one-step process to generate a two-dimensional honeycomb network that was constructed from pure multi-walled carbon nanotubes.

  5. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  6. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  7. A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chong Luo

    2015-01-01

    Full Text Available The fuel cell has the nature of high energy conversion efficiency and low pollutant emission. Carbon nanotubes used for fuel cells can decrease the needs of noble metals which are used for catalyst and improve the performance of fuel cells. The application of carbon nanotubes in fuel cells is summarized and discussed. The following aspects are described in this paper: the method used to reduce the platinum, the effect of carbon nanotubes on the fuel cell, improving the performance of fuel cell catalysts, the interaction between catalyst and carbon nanotube support, and the synthetic conditions of carbon nanotube supported catalyst. We summarize some of the results of previous studies and raise expectations for the microscopic state study of carbon nanotubes in the future.

  8. The importance of chain connectivity in the formation of non-covalent interactions between polymers and single-walled carbon nanotubes and its impact on dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Dadmun, Mark D [ORNL; Driva, Paraskevi [ORNL; Ivanov, Ilia N [ORNL; Geohegan, David B [ORNL; Linton, Dias [ORNL; Feigerle, Charles S [ORNL

    2010-01-01

    In this study we investigate the formation of non-covalent electron donor acceptor (EDA) interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites of SWNTs and three sets of polymer matrices with varying composition of electron donating 2-(dimethylamino)ethyl methacrylate (DMAEMA) or electron accepting acrylonitrile (AN) and cyanostyrene (CNSt) were prepared, quantitatively characterized by optical microscopy and Raman spectroscopy (Raman mapping, Raman D* peak shifts) and qualitatively compared through thick film composite visualization. The experimental data show that copolymers with 30 mol% DMAEMA, 45 mol% AN, 23 mol% CNSt and polyacrylonitrile homopolymer have the highest extent of intermolecular interaction, which translates to an optimum SWNT spatial dispersion among the series. These results are found to correlate very well with the intermolecular interaction energies obtained from quantum density functional theory calculations. Both experimental and computational results also illustrate that chain connectivity is critical in controlling the accessibility of the functional groups to form intermolecular interactions. This means that an adequate distance between interacting functional groups on a polymer chain is needed in order to allow efficient intermolecular contact. Thus, controlling the amount of electron donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.

  9. The importance of chain connectivity in the formation of non-covalent interactions between polymers and single-walled carbon nanotubes and its impact on dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Dias [ORNL; Driva, Paraskevi [ORNL; Ivanov, Ilia N [ORNL; Geohegan, David B [ORNL; Feigerle, Charles S [ORNL; Dadmun, Mark D [ORNL

    2010-05-01

    In this study we investigate the formation of non-covalent electron donor acceptor (EDA) interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites of SWNTs and three sets of polymer matrices with varying composition of electron donating 2-(dimethylamino)ethyl methacrylate (DMAEMA) or electron accepting acrylonitrile (AN) and cyanostyrene (CNSt) were prepared, quantitatively characterized by optical microscopy and Raman spectroscopy (Raman mapping, Raman D* peak shifts) and qualitatively compared through thick film composite visualization. The experimental data show that copolymers with 30 mol% DMAEMA, 45 mol% AN, 23 mol% CNSt and polyacrylonitrile homopolymer have the highest extent of intermolecular interaction, which translates to an optimum SWNT spatial dispersion among the series. These results are found to correlate very well with the intermolecular interaction energies obtained from quantum density functional theory calculations. Both experimental and computational results also illustrate that chain connectivity is critical in controlling the accessibility of the functional groups to form intermolecular interactions. This means that an adequate distance between interacting functional groups on a polymer chain is needed in order to allow efficient intermolecular contact. Thus, controlling the amount of electron donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.

  10. Effect of electrostatic interaction on the methylene blue and methyl orange adsorption by the pristine and functionalized carbon nanotubes

    Science.gov (United States)

    Robati, D.; Bagheriyan, S.; Rajabi, M.; Moradi, O.; Peyghan, A. Ahmadi

    2016-09-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with cysteamine groups by several percentage of mass as adsorbents, then kinetics adsorption capacity was investigated for methylene blue (MB) and methyl orange (MO) as anionic and cationic dyes adsorbate molecules, respectively. The effect of temperature (from 283 to 303 K), contact time and initial concentration of the MB and MO dyes in a solution (10 to 40 ppm) was considered. The optimal contact time was found to be about 60 min. Some kinetics model such as pseudo-first-order, pseudo-second-order, intra-particle diffusion and the Elovich were tested. The adsorptions of MB dye on the pristine and functionalized MWCNT surfaces were found to be the intra-particle diffusion and the pseudo-second-order kinetic model, respectively and for adsorption of MO dye by the pristine and low functionalized MWCNTs and highly functionalized tubes, found to be the pseudo-second-order and intra-particle diffusion kinetic model, respectively, based on the chi-square statistic (X2) and also high correlation coefficient (R2) values.

  11. Interactions of carbon nanotubes and fullerenes with the immune system of the skin and the possible implications related to cutaneous nanotoxicity

    Directory of Open Access Journals (Sweden)

    Ana Luiza Castro Fernandes

    2013-11-01

    Full Text Available The understanding of the interaction of carbon nanotubes and fullerenes with the constituents of the skin, especially the skin immune unit, is relevant to the determina-tion of toxicological endpoints. A systematic review was done focused on such aspects. Considerable part of the found references concentrated in cytotoxicity and skin per-meation. On a smaller scale, there are articles on immunomodulation and activation of immune cells and other elements. Few of the found studies deal specifically with cutaneous immune response, limiting the related knowledge. The findings suggest that nanomaterials studied may be involved in skin problems such irritant contact dermatitis, anaphylactoid reactions, urticaria, angioedema, and raised the need for performing additional studies to confirm the findings. The standardization of the description and testing of nanomaterials characteristics used in experiments can facilitate comparison of results.

  12. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  13. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2016-12-13

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  14. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2016-11-15

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  15. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2016-10-25

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  16. [Hygienic evaluation of multilayer carbon nanotubes].

    Science.gov (United States)

    Haliullin, T O; Zalyalov, R R; Shvedova, A A; Tkachov, A G

    2015-01-01

    The authors demonstrate that traditional methods evaluating work conditions on contemporary innovative enterprises producing nanomaterials assess these conditions as harmless and safe. At the same time, special investigation methods enable to reveal new hazards for workers' health: the study results prove that workers engaged into multilayer carbon nanotubes production are exposed to multilayer carbon nanotubes aerosols in concentrations exceeding internationally acceptable levels of 1 μg/ml (NIOSH)--that can harm the workers' health.

  17. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  18. Carbon nanotubes field effect transistors biosensors

    OpenAIRE

    Martínez, M.T.; Tseng, Y. C.; Ormategui, N.; Loinaz, I.; Eritja Casadellà, Ramón; Salvador, Juan Pablo; Marco, María Pilar; Bokor, J.

    2012-01-01

    [EN] Carbon nanotube transistor arrays (CNTFETs) were used as biosensors to detect NA hybridization and to recognize two anabolic steroids, stanozolol (Stz) and methylboldenone (MB). Single strand DNA and antibodies specific for STz and MB were immobilized on the carbon nanotubes (CNTs) in situ in the device using two different approaches: direct noncovalent bonding of antibodies to the devices and covalently trough a polymer previously attached to the CNTFETs. A new approach to ensure specif...

  19. Comparison of noncovalent interactions of zigzag and armchair carbon nanotubes with heterocyclic and aromatic compounds: Imidazole and benzene, imidazophenazines, and tetracene

    Science.gov (United States)

    Zarudnev, Eugene S.; Stepanian, Stepan G.; Adamowicz, Ludwik; Leontiev, Victor S.; Karachevtsev, Victor A.

    2017-02-01

    We study non-covalent functionalization of SWCNT by linear heterocyclic compounds such as imidazophenazine (F1) and its derivatives (F2-F4). MP2 and DFT/M05-2X quantum-chemical methods are used to determine the structures and the interaction energies of complexes formed by F1-F4 with the zigzag(10,10) and armchair(6,6) nanotubes. The calculations show that for small diameter nanotubes the binding energies with zigzag nanotubes are stronger than with armchair nanotubes. But above the diameter of 1.4 nm the interaction energies for the armchair nanotubes become larger than for the zigzag nanotubes. Experimental measurements demonstrates that the ratio of the integral intensity of the resonance Raman bands assigned to the RBM modes of semiconducting nanotubes to the integral intensity of the metallic nanotubes increases for supernatant of SWCNT:F4 (1,2,3-triazole-[4,5-d]-phenazine) hybrids solved in 1-Methyl-2-pyrrolidone as compared to this ratio in sediment samples. It demonstrates that the linear heterocyclic compounds can be used for separating SWCNTs with different electron-conduction types.

  20. Filling of carbon nanotubes and nanofibres

    Directory of Open Access Journals (Sweden)

    Reece D. Gately

    2015-02-01

    Full Text Available The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications.

  1. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  2. Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials.

    Science.gov (United States)

    Voge, Christopher M; Johns, Jeremy; Raghavan, Mekhala; Morris, Michael D; Stegemann, Jan P

    2013-01-01

    Composites of extracellular matrix proteins reinforced with carbon nanotubes have the potential to be used as conductive biopolymers in a variety of biomaterial applications. In this study, the effect of functionalization and polymer wrapping on the dispersion of multiwalled carbon nanotubes (MWCNT) in aqueous media was examined. Carboxylated MWCNT were wrapped in either Pluronic(®) F127 or gelatin. Raman spectroscopy and X-ray photoelectron spectroscopy showed that covalent functionalization of the pristine nanotubes disrupted the carbon lattice and added carboxyl groups. Polymer and gelatin wrapping resulted in increased surface adsorbed oxygen and nitrogen, respectively. Wrapping also markedly increased the stability of MWCNT suspensions in water as measured by settling time and zeta potential, with Pluronic(®)-wrapped nanotubes showing the greatest effect. Treated MWCNT were used to make 3D collagen-fibrin-MWCNT composite materials. Carboxylated MWCNT resulted in a decrease in construct impedance by an order of magnitude, and wrapping with Pluronic(®) resulted in a further order of magnitude decrease. Functionalization and wrapping also were associated with maintenance of fibroblast function within protein-MWCNT materials. These data show that increased dispersion of nanotubes in protein-MWCNT composites leads to higher conductivity and improved cytocompatibility. Understanding how nanotubes interact with biological systems is important in enabling the development of new biomedical technologies.

  3. A cell nanoinjector based on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xing; Kis, Andras; Zettl, Alex; Bertozzi, Carolyn R.

    2007-01-30

    Technologies for introducing molecules into living cells are vital for probing the physical properties and biochemical interactions that govern the cell's behavior. Here we report the development of a nanoscale cell injection system-termed the nanoinjector-that uses carbon nanotubes to deliver cargo into cells. A single multi-walled carbon nanotube attached to an atomic force microscope tip was functionalized with cargo via a disulfide-based linker. Penetration of cell membranes with this 'nanoneedle', followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. The capability of the nanoinjector was demonstrated by injection of protein-coated quantum dots into live human cells. Single-particle tracking was employed to characterize the diffusion dynamics of injected quantum dots in the cytosol. This new technique causes no discernible membrane or cell damage, and can deliver a discrete number of molecules to the cell's interior without the requirement of a carrier solvent.

  4. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  5. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.

    Science.gov (United States)

    Iliafar, Sara; Mittal, Jeetain; Vezenov, Dmitri; Jagota, Anand

    2014-09-17

    We used single molecule force spectroscopy to measure the force required to remove single-stranded DNA (ssDNA) homopolymers from single-walled carbon nanotubes (SWCNTs) deposited on methyl-terminated self-assembled monolayers (SAMs). The peeling forces obtained from these experiments are bimodal in distribution. The cluster of low forces corresponds to peeling from the SAM surface, while the cluster of high forces corresponds to peeling from the SWCNTs. Using a simple equilibrium model of the single molecule peeling process, we calculated the free energy of binding per nucleotide. We found that the free energy of ssDNA binding to hydrophobic SAMs decreases as poly(A) > poly(G) ≈ poly(T) > poly(C) (16.9 ± 0.1; 9.7 ± 0.1; 9.5 ± 0.1; 8.7 ± 0.1 kBT, per nucleotide). The free energy of ssDNA binding to SWCNT adsorbed on this SAM also decreases in the same order poly(A) > poly(G) > poly(T) > poly(C), but its magnitude is significantly greater than that of DNA-SAM binding energy (38.1 ± 0.2; 33.9 ± 0.1; 23.3 ± 0.1; 17.1 ± 0.1 kBT, per nucleotide). An unexpected finding is that binding strength of ssDNA to the curved SWCNTs is much greater than to flat graphite, which also has a different ranking (poly(T) > poly(A) > poly(G) ≥ poly(C); 11.3 ± 0.8, 9.9 ± 0.5, 8.3 ± 0.2, and 7.5 ± 0.8 kBT, respectively, per nucleotide). Replica-exchange molecular dynamics simulations show that ssDNA binds preferentially to the curved SWCNT surface, leading us to conclude that the differences in ssDNA binding between graphite and nanotubes arise from the spontaneous curvature of ssDNA.

  6. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  7. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  8. Carbon nanotubes/laser ablation gold nanoparticles composites

    Energy Technology Data Exchange (ETDEWEB)

    Lascialfari, Luisa [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy); Marsili, Paolo [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Caporali, Stefano [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy); Muniz-Miranda, Maurizio [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Margheri, Giancarlo [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Serafini, Andrea; Brandi, Alberto [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Cicchi, Stefano, E-mail: stefano.cicchi@unifi.it [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy)

    2014-10-31

    The production of nanohybrids formed by oxidized multiwalled carbon nanotubes (MWCNTs) and nanoparticles, produced by pulsed laser ablation in liquids process, is described. The use of linkers, obtained by transformation of pyrene-1-butanol, is mandatory to generate an efficient and stable interaction between the two components. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis showed the obtainment of the efficient coverage of the MWCNTs by nanoparticles composed by metal gold and, partially, by oxides. - Highlights: • Laser ablation is a used for the production of gold nanoparticle colloids • An efficient decoration of carbon nanotubes with nanoparticles is obtained through the use of a linker • This method allows an efficient and tunable preparation of carbon nanotube hybrids.

  9. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  10. The point-defect of carbon nanotubes anchoring Au nanoparticles

    DEFF Research Database (Denmark)

    Lv, Y. A.; Cui, Y. H.; Li, X. N.

    2010-01-01

    The understanding of the interaction between Au and carbon nanotubes (CNTs) is very important since Au/CNTs composites have wide applications in many fields. In this study, we investigated the dispersion of Au nanoparticles on the CNTs by transmission electron microscopy and the bonding mechanism...... of states, charge transfer and frontier molecular orbitals. (C) 2010 Elsevier B.V. All rights reserved....

  11. Fast readout of carbon nanotube mechanical resonators

    Science.gov (United States)

    Meerwaldt, Harold; Singh, Vibhor; Schneider, Ben; Schouten, Raymond; van der Zant, Herre; Steele, Gary

    2013-03-01

    We perform fast readout measurements of carbon nanotube mechanical resonators. Using an electronic mixing scheme, we can detect the amplitude of the mechanical motion with an intermediate frequency (IF) of 46 MHz and a timeconstant of 1 us, up to 5 orders of magnitude faster than before. Previous measurements suffered from a low bandwidth due to the combination of the high resistance of the carbon nanotube and a large stray capacitance. We have increased the bandwidth significantly by using a high-impedance, close-proximity HEMT amplifier. The increased bandwidth should allow us to observe the nanotube's thermal motion and its transient response, approaching the regime of real-time detection of the carbon nanotube's mechanical motion.

  12. Manipulation and cutting of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanomanipulation plays an important role in nanofabrication, it is also a technology necessary in exploring the secrets of nanoworld, and it thus beco mesa start point to research future nanomachine. In this study, manipulation and cutting of carbon nanotubes have been conducted in order to examine whether we can move a nanocomponent from one site to another by using the tip of atomic fo rce microscope (AFM). The technique may also be valuable for providing the const ructive materials of nanofabrication. While exploring the method for manipulatin g and cutting of nanotubes, some new phenomena have been observed during the process. Results show that carbon nanotubes present a feature of deformation combin ing bending and distortion when subjected to large mechanical forces exerted by the tip of AFM. In special cases, long carbon nanotubes can be cut into two part s, by which we can remove the part where crystal lattice is flawed, and therefor e a perfect nanocomponent can be obtained.

  13. Theoretical study on the carbon nanotube used ashard x—radiation source

    Institute of Scientific and Technical Information of China (English)

    LuJing-Han; QinXi-Jun

    1998-01-01

    Calculations and analyses are made on the interaction between the carbon nanotube and the incident positron of high energy.The results obtained show that it is possible to use carbon nanotube as hard X-radiation source with high intensity and good monochromaticity.

  14. Two-dimensional Few-circle Optical Pulses in the Inhomogeneous Environment of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M.B. Belonenko

    2015-12-01

    Full Text Available We consider the task about few-circle optical pulses dynamics (light bullets in the inhomogeneous environment of carbon nanotubes. Electromagnetic field of pulse describes classically, on basis of Maxwell equation, and carbon nanotubes give dispersion law for electrons, which interacting with pulse. We show that light bullets propagate stably.

  15. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  16. Polyvinylchloride-Single-Walled Carbon Nanotube Composites: Thermal and Spectroscopic Properties

    Directory of Open Access Journals (Sweden)

    Mircea Chipara

    2012-01-01

    Full Text Available Nanocomposites of single-walled carbon nanotubes dispersed within polyvinylchloride have been obtained by using the solution path. High-power sonication was utilized to achieve a good dispersion of carbon nanotubes. Thermogravimetric analysis revealed that during the synthesis, processing, or thermal analysis of these nanocomposites the released chlorine is functionalizing the single-walled carbon nanotubes. The loading of polyvinylchloride by single-walled carbon nanotubes increases the glass transition temperature of the polymeric matrix, demonstrating the interactions between macromolecular chains and filler. Wide Angle X-Ray Scattering data suggested a drop of the crystallite size and of the degree of crystallinity as the concentration of single-walled carbon nanotubes is increased. The in situ chlorination and amorphization of nanotube during the synthesis (sonication step is confirmed by Raman spectroscopy.

  17. Hydrogen isotherms in palladium loaded carbon nanotubes and activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M. T.; Anson, A.; Lafuente, E.; Urriolabeitia, E.; Navarro, R.; Benito, A. M.; Maser, W. K.

    2005-07-01

    Session 5a In order to increase the hydrogen sorption capacity of carbon materials, a sample of single-wall carbon nanotubes (SWNTs) and the activated carbon MAXSORB have been loaded with palladium nanoparticles. While carbon materials adsorb hydrogen due to physical interactions, palladium can capture hydrogen into the bulk structure or chemically react to form hydrides. Experiental SWNTs have been synthesized in an electric arc reactor, using Ni and Y as catalysts in a 660 mbar He atmosphere. MAXSORB is a commercial activated carbon obtained from petroleum coke through a chemical treatment with KOH. Palladium has been deposited over the carbon support by means of a reflux method in a solution of an organometallic complex. Different samples have been prepared depending on the weight ratio (Carbon material / Pd) in the original reactants. The effectiveness of the deposition method has been examined by means of X-ray diffraction (XRD), induction coupled plasma spectrometry (ICPS) and transmission electron microscopy (TEM). The volumetric system Autosorb-1 from Quantachrome Instruments has been used to obtain the nitrogen adsorption isotherms at 77 K for all the materials. The hydrogen isotherms at 77 K and room temperature and up to 800 torr have also been obtained in the Autosorb-1. The BET specific surface area and the micropore volume have been calculated from the nitrogen adsorption data. High pressure hydrogen isotherms up to 90 bar have been carried out at room temperature in a VTI system provided with a Rubotherm microbalance. (Author)

  18. 75 FR 56880 - Multi-Walled Carbon Nanotubes and Single-Walled Carbon Nanotubes; Significant New Use Rules

    Science.gov (United States)

    2010-09-17

    ... structural characteristics entitled ``Material Characterization of Carbon Nanotubes for Molecular Identity... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AB27 Multi-Walled Carbon Nanotubes and Single-Walled Carbon...). The two chemical substances are identified generically as multi-walled carbon nanotubes (MWCNT) (PMN...

  19. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes.

    Science.gov (United States)

    Mouchet, Florence; Landois, Perine; Puech, Pascal; Pinelli, Eric; Flahaut, Emmanuel; Gauthier, Laury

    2010-08-01

    The potential impact of industrial multiwalled carbon nanotubes (MWNTs) was investigated under normalized laboratory conditions according to the International Standard micronucleus assay ISO 21427-1 for 12 days of half-static exposure to 0.1, 1, 10 and 50 mg/l of MWNTs in water. Three different end points were carried out for 12 days of exposure: mortality, growth inhibition and micronuclei induction in erythrocytes of the circulating blood of larvae. Raman spectroscopy analysis was used to study the presence of carbon nanotubes in the biological samples. Considering the high diversity of carbon nanotubes according to their different characteristics, MWNTs were analyzed in Xenopus larvae, comparatively to double-walled carbon nanotubes used in a previous study in similar conditions. Growth inhibition in larvae exposed to 50 mg/l of MWNTs was evidenced; however, no genetoxicity (micronucleus assay) was noticed, at any concentration. Carbon nanotube localization in the larvae leads to different possible hypothesis of mechanisms explaining toxicity in Xenopus.

  20. Optimization of Carbon Nanotubes for Nitrogen Gas Adsorption

    Directory of Open Access Journals (Sweden)

    Fereydoun Ashrafi

    2010-09-01

    Full Text Available Carbon nano-tubes are one of the most significant achievements of nano-technology with important applications in the design of electronic nano-devices. The study of their properties is therefore important. Here the density functional theory (DFT of electron and the Hartree-Fock (HF method are utilized to study the adsorption of nitrogen molecules on the surface of (4, 4 and (5, 0 carbon nano-tubes. The electronic structure, single point and dipole moment of both nitrogen and carbon nuclei are thoroughly studied. The computational results, which includes, indicate that rich adsorption patterns may result from the interaction of nitrogen with the carbon nano tubes sometimes C-N bounds are formed via breaking C-C bounds and sometimes a carbon atom in the nano-tube is replaced with a nitrogen atom. Sometimes nitrogen atoms are attracted to a C-C bound. In summary, the optimized adsorption rates are calculated. Gaussian 98 software has been used to carry out quantum chemistry calculations. Keywords: Density functional theory, Hartree-Fock, carbon nano tube, Gaussian 98 software. Carbon nanotubes (CNTs are one of the most significant achievements of nano-technology because of his important applications in the design of electronic nano-devices. The study of their properties is therefore important. In this investigation the Density Functional Theory (DFT of electron and the Hartree-Fock (HF method are utilized to study the adsorption of nitrogen molecules on the surface of (4, 4 and (5, 0 carbon nanotubes. The electronic structure, single point and dipole moment of both nitrogen and carbon nuclei are thoroughly studied. The computational results, which includes, indicate that rich adsorption patterns m ay result from the interaction of nitrogen with the carbon nanotubes. Sometimes C-N bounds are formed via breaking C-C bounds and sometimes a carbon atom in the nanotube is replaced by a nitrogen atom. Sometimes nitrogen atoms are attracted to a C-C bound

  1. A carbon nanotube wall membrane for water treatment.

    Science.gov (United States)

    Lee, Byeongho; Baek, Youngbin; Lee, Minwoo; Jeong, Dae Hong; Lee, Hong H; Yoon, Jeyong; Kim, Yong Hyup

    2015-05-14

    Various forms of carbon nanotubes have been utilized in water treatment applications. The unique characteristics of carbon nanotubes, however, have not been fully exploited for such applications. Here we exploit the characteristics and corresponding attributes of carbon nanotubes to develop a millimetre-thick ultrafiltration membrane that can provide a water permeability that approaches 30,000 l m(-2) h(-1) bar(-1), compared with the best water permeability of 2,400 l m(-2) h(-1) bar(-1) reported for carbon nanotube membranes. The developed membrane consists only of vertically aligned carbon nanotube walls that provide 6-nm-wide inner pores and 7-nm-wide outer pores that form between the walls of the carbon nanotubes when the carbon nanotube forest is densified. The experimental results reveal that the permeance increases as the pore size decreases. The carbon nanotube walls of the membrane are observed to impede bacterial adhesion and resist biofilm formation.

  2. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  3. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  4. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  5. Carbon Nanotube Reinforced Polymers for Radiation Shielding Applications

    Science.gov (United States)

    Thibeault, S. (Technical Monitor); Vaidyanathan, Ranji

    2004-01-01

    This viewgraph presentation provides information on the use of Extrusion Freeform Fabrication (EEF) for the fabrication of carbon nanotubes. The presentation addresses TGA analysis, Raman spectroscopy, radiation tests, and mechanical properties of the carbon nanotubes.

  6. Physical Removal of Metallic Carbon Nanotubes from Nanotube Network Devices Using a Thermal and Fluidic Process

    OpenAIRE

    Ford, Alexandra C.; Shaughnessy, Michael; Wong, Bryan M.; Kane, Alexander A.; Kuznetsov, Oleksandr V.; Krafcik, Karen L.; Billups, W. E.; Hauge, Robert H.; Léonard, François

    2013-01-01

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is ...

  7. WIMP detection and slow ion dynamics in carbon nanotube arrays

    OpenAIRE

    Cavoto, G.; Cirillo, E. N. M.; Cocina, F.; Ferretti, J.; Polosa, A. D.

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy lo...

  8. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  9. Carbon Nanotube-Based Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Park, H G; Bakajin, O; Noy, A; Huser, T; Eaglesham, D

    2004-04-06

    A membrane of multiwalled carbon nanotubes embedded in a silicon nitride matrix was fabricated for use in studying fluid mechanics on the nanometer scale. Characterization by fluorescent tracer diffusion and scanning electron microscopy suggests that the membrane is void-free near the silicon substrate on which it rests, implying that the hollow core of the nanotube is the only conduction path for molecular transport. Assuming Knudsen diffusion through this nanotube membrane, a maximum helium transport rate (for a pressure drop of 1 atm) of 0.25 cc/sec is predicted. Helium flow measurements of a nanoporous silicon nitride membrane, fabricated by sacrificial removal of carbon, give a flow rate greater than 1x10{sup -6} cc/sec. For viscous, laminar flow conditions, water is estimated to flow across the nanotube membrane (under a 1 atm pressure drop) at up to 2.8x10{sup -5} cc/sec (1.7 {micro}L/min).

  10. Functionalized carbon nanotubes for potential medicinal applications.

    Science.gov (United States)

    Zhang, Yi; Bai, Yuhong; Yan, Bing

    2010-06-01

    Functionalized carbon nanotubes display unique properties that enable a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity. High aspect ratio, unique optical property and the likeness as small molecule make carbon nanotubes an unusual allotrope of element carbon. After functionalization, carbon nanotubes display potentials for a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity.

  11. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  12. Microtribology of aqueous carbon nanotube dispersions

    KAUST Repository

    Kristiansen, Kai De Lange

    2011-09-23

    The tribological behavior of carbon nanotubes (CNTs) in aqueous humic acid (HA) solutions was studied using a surface forces apparatus (SFA) and shows promising lubricant additive properties. Adding CNTs to the solution changes the friction forces between two mica surfaces from "adhesion controlled" to "load controlled" friction. The coefficient of friction with either single-walled (SW) or multi-walled (MW) CNT dispersions is in the range 0.30-0.55 and is independent of the load and sliding velocity. More importantly, lateral sliding promotes a redistribution or accumulation, rather than squeezing out, of nanotubes between the surfaces. This accumulation reduced the adhesion between the surfaces (which generally causes wear/damage of the surfaces), and no wear or damage was observed during continuous shearing experiments that lasted several hours even under high loads (pressures â∼10 MPa). The frictional properties can be understood in terms of the Cobblestone Model where the friction force is related to the fraction of the adhesion energy dissipated during impacts of the nanoparticles. We also develop a simple generic model based on the van der Waals interactions between particles and surfaces to determine the relation between the dimensions of nanoparticles and their tribological properties when used as additives in oil- or water-based lubricants. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  14. Localized Excitons in Carbon Nanotubes.

    Science.gov (United States)

    Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei

    2015-03-01

    It has been historically known that unintentional defects in carbon nanotubes (CNTs) may fully quench the fluorescence. However, some dopants may enhance the fluorescence by one order of magnitude thus turning the CNTs, which are excellent light absorbers, in good emitters. We have correlated the experimentally observed photoluminescence spectra to the electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the lowest bright exciton peak. Our simulations suggest an association of these peaks with deep trap states tied to different specific chemical adducts. While the wave functions of excitons in undoped CNTs are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with the experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from scattering of acoustic phonons on localized excitons. Our work lays the foundation to utilize doping as a generalized route for wave function engineering and direct control of carrier dynamics in SWCNTs toward enhanced light emission properties for photonic applications.

  15. Thermal Transport in Carbon Nanotubes

    Science.gov (United States)

    Christman, Jeremy; Moore, Andrew; Khatun, Mahfuza

    2011-10-01

    Recent advances in nanostructure technology have made it possible to create small devices at the nanoscale. Carbon nanotubes (CNT's) are among the most exciting building blocks of nanotechnology. Their versatility and extremely desirable properties for electronic and other devices have driven intense research and development efforts in recent years. A review of electrical and thermal conduction of the structures will be presented. The theoretical investigation is mainly based on molecular dynamics. Green Kubo relation is used for the study of thermal conductivity. Results include kinetic energy, potential energy, heat flux autocorrelation function, and heat conduction of various CNT structures. Most of the computation and simulation has been conducted on the Beowulf cluster at Ball State University. Various software packages and tools such as Visual Molecular Dynamics (VMD), Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), and NanoHUB, the open online resource at Purdue University have been used for the research. The work has been supported by the Indiana Academy of Science Research Fund, 2010-2011.

  16. Different Technical Applications of Carbon Nanotubes.

    Science.gov (United States)

    Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A

    2015-12-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  17. Different Technical Applications of Carbon Nanotubes

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, Ahmed A.; Abdel-Daiem, A.

    2015-09-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  18. Edge effects in finite elongated carbon nanotubes

    CERN Document Server

    Hod, O; Scuseria, G E; Hod, Oded; Peralta, Juan E.; Scuseria, Gustavo E.

    2006-01-01

    The importance of finite-size effects for the electronic structure of long zigzag and armchair carbon nanotubes is studied. We analyze the electronic structure of capped (6,6), (8,0), and (9,0) single walled carbon nanotubes as a function of their length up to 60 nm, using a divide and conquer density functional theory approach. For the metallic nanotubes studied, most of the physical features appearing in the density of states of an infinite carbon nanotube are recovered at a length of 40 nm. The (8,0) semi-conducting nanotube studied exhibits pronounced edge effects within the energy gap that scale as the inverse of the length of the nanotube. As a result, the energy gap reduces from the value of ~1 eV calculated for the periodic system to a value of ~0.25 eV calculated for a capped 62 nm long CNT. These edge effects are expected to become negligible only at tube lengths exceeding 6 micrometers. Our results indicate that careful tailoring of the nature of the system and its capping units should be applied w...

  19. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  20. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  1. Effects of single-walled carbon nanotubes on lysozyme gelation.

    Science.gov (United States)

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology.

  2. Deposition of the platinum crystals on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new technique and the affecting factors for depositing platinum on the carbon nanotubes were investigated. The results show that the deposited platinum crystals in the atmosphere of hydrogen or nitrogen have a small size and a homogeneous distribution on the surface of the carbon nanotubes. The pretreatment would decrease the platinum particles on the carbon nanotubes significantly.

  3. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  4. Large spin-orbit coupling in carbon nanotubes

    Science.gov (United States)

    Steele, G. A.; Pei, F.; Laird, E. A.; Jol, J. M.; Meerwaldt, H. B.; Kouwenhoven, L. P.

    2013-03-01

    It has recently been recognised that the strong spin-orbit interaction present in solids can lead to new phenomena, such as materials with non-trivial topological order. Although the atomic spin-orbit coupling in carbon is weak, the spin-orbit coupling in carbon nanotubes can be significant due to their curved surface. Previous works have reported spin-orbit couplings in reasonable agreement with theory, and this coupling strength has formed the basis of a large number of theoretical proposals. Here we report a spin-orbit coupling in three carbon nanotube devices that is an order of magnitude larger than previously measured. We find a zero-field spin splitting of up to 3.4 meV, corresponding to a built-in effective magnetic field of 29 T aligned along the nanotube axis. Although the origin of the large spin-orbit coupling is not explained by existing theories, its strength is promising for applications of the spin-orbit interaction in carbon nanotubes devices.

  5. Large spin-orbit coupling in carbon nanotubes.

    Science.gov (United States)

    Steele, G A; Pei, F; Laird, E A; Jol, J M; Meerwaldt, H B; Kouwenhoven, L P

    2013-01-01

    It has recently been recognised that the strong spin-orbit interaction present in solids can lead to new phenomena, such as materials with non-trivial topological order. Although the atomic spin-orbit coupling in carbon is weak, the spin-orbit coupling in carbon nanotubes can be significant due to their curved surface. Previous works have reported spin-orbit couplings in reasonable agreement with theory, and this coupling strength has formed the basis of a large number of theoretical proposals. Here we report a spin-orbit coupling in three carbon nanotube devices that is an order of magnitude larger than previously measured. We find a zero-field spin splitting of up to 3.4 meV, corresponding to a built-in effective magnetic field of 29 T aligned along the nanotube axis. Although the origin of the large spin-orbit coupling is not explained by existing theories, its strength is promising for applications of the spin-orbit interaction in carbon nanotubes devices.

  6. Graphene-carbon nanotube hybrid materials and use as electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  7. Carbon nanotube suspensions, dispersions, & composites

    Science.gov (United States)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  8. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  9. Carbon nanotubes in neuroregeneration and repair.

    Science.gov (United States)

    Fabbro, Alessandra; Prato, Maurizio; Ballerini, Laura

    2013-12-01

    In the last decade, we have experienced an increasing interest and an improved understanding of the application of nanotechnology to the nervous system. The aim of such studies is that of developing future strategies for tissue repair to promote functional recovery after brain damage. In this framework, carbon nanotube based technologies are emerging as particularly innovative tools due to the outstanding physical properties of these nanomaterials together with their recently documented ability to interface neuronal circuits, synapses and membranes. This review will discuss the state of the art in carbon nanotube technology applied to the development of devices able to drive nerve tissue repair; we will highlight the most exciting findings addressing the impact of carbon nanotubes in nerve tissue engineering, focusing in particular on neuronal differentiation, growth and network reconstruction.

  10. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  11. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  12. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  13. Carbon Nanotubes Synthesis Through Gamma Radiation

    Science.gov (United States)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  14. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  15. Laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  16. Carbon nanotubes for in vivo cancer nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The latest progress of using carbon nanotubes(CNTs) for in vivo cancer nanotechnology is reviewed.CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications.In vivo behaviors and toxicology studies of CNTs are summarized,suggesting no significant toxicity of well functionalized CNTs to the treated mice.Owing to their unique chemical and physical properties,CNTs,especially single-walled carbon nanotubes(SWNTs),have been widely used for various modalities of in vivo cancer treatment and imaging.Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.

  17. Piezoresistive effect in carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The piezoresistive effect of the pristine carbon nanotube (CNT) films has been studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition. The piezoresistive effect in the pristine CNT films was studied by a three-point bending test. The gauge factor for the pristine CNT films under 500 microstrains was found to be at least 65 at room temperature, and increased with temperature, exceeding that of polycrystalline silicon (30) at 35℃. The origin of the piezoresistivity in CNT films may be ascribed to a pressure-induced change in the band gap and the defects.

  18. Nanoscale atomic waveguides with suspended carbon nanotubes

    CERN Document Server

    Peano, V; Kasper, A; Egger, R

    2005-01-01

    We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows to overcome the problem of fragmentation of the atom cloud. Adding a second nanowire allows to create a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime.

  19. Carbon nanotube based transparent conductive thin films.

    Science.gov (United States)

    Yu, X; Rajamani, R; Stelson, K A; Cui, T

    2006-07-01

    Carbon nanotube (CNT) based optically transparent and electrically conductive thin films are fabricated on plastic substrates in this study. Single-walled carbon nanotubes (SWNTs) are chemically treated with a mixture of concentrated sulfuric acid and nitric acid before being dispersed in aqueous surfactant-contained solutions. SWNT thin films are prepared from the stable SWNT solutions using wet coating techniques. The 100 nm thick SWNT thin film exhibits a surface resistivity of 6 kohms/square nanometer with an average transmittance of 88% on the visible light range, which is three times better than the films prepared from the high purity as-received SWNTs.

  20. A tunable carbon nanotube electromechanical oscillator

    Science.gov (United States)

    Sazonova, Vera; Yaish, Yuval; Üstünel, Hande; Roundy, David; Arias, Tomás A.; McEuen, Paul L.

    2004-09-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection, radio-frequency signal processing, and as a model system for exploring quantum phenomena in macroscopic systems. Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made. Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.

  1. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle

    Science.gov (United States)

    Gajbhiye, Sachin O.; Singh, S. P.

    2016-05-01

    Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff-Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6-12 potential function. The equivalent nonlinear material model of carbon-carbon bond is used to model it based on its force-deflection relation. Newmark's algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

  2. Shear Flow Induced Alignment of Carbon Nanotubes in Natural Rubber

    Directory of Open Access Journals (Sweden)

    Yan He

    2015-01-01

    Full Text Available A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.

  3. Carbon nanotubes as tips for atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    国立秋; 徐宗伟; 赵铁强; 赵清亮; 张飞虎; 董申

    2004-01-01

    Ordinary AFM probes' characters prevent the AFM' s application in various scopes. Carbon nanotubes represent ideal AFM probe materials for their higher aspect ratio, larger Young' s modulus, unique chemical structure, and well-defined electronic property. Carbon nanotube AFM probes are obtained by using a new method of attaching carbon nanotubes to the end of ordinary AFM probes, and are then used for doing AFM experiments. These experiments indicated that carbon nanotube probes have higher elastic deformation, higher resolution and higher durability. And it was also found that carbon nanotube probes can accurately reflect the morphology of deep narrow gaps, while ordinary probes can not reflect.

  4. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application

    Science.gov (United States)

    Abdalla, Ahmed M.; Sahu, Rakesh P.; Wallar, Cameron J.; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K.

    2017-02-01

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g-1 and an areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm-2.

  5. Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Dhiman, Rajnish;

    2015-01-01

    A non-covalent functionalization for multi-walled carbon nanotubes has been used as an alternative to the damaging acid treatment. Platinum nanoparticles with similar particle size distribution have been deposited on the surface modified multi-walled carbon nanotubes. The interaction between...... platinum nanoparticles and multi-walled carbon nanotubes functionalized with 1-pyrenecarboxylic acid is studied and its electrochemical stability investigated. This study reveals the existence of a platinum-support interaction and leads to three main conclusions. First, the addition of 1-pyrenecarboxylic......-term stability by as much as 20%. Third, post-mortem microscopy analysis showed a surprising effect. During the electrochemical stability investigations concerned with carbon corrosion it was found that the multi-walled carbon nanotubes were undergoing severe structural change, transforming finally into carbon...

  6. Controlled growth and assembly of single-walled carbon nanotubes for nanoelectronics

    Science.gov (United States)

    Omrane, Badr

    Carbon nanotubes are promising candidates for enhancing electronic devices in the future at the nanoscale level. Their integration into today's electronics has however been challenging due to the difficulties in controlling their orientation, location, chirality and diameter during formation. This thesis investigates and develops new techniques for the controlled growth and assembly of carbon nanotubes as a way to address some of these challenges. Colloidal lithography using nanospheres of 450 nm in diameter, acting as a shadow mask during metal evaporation, has been used to pattern thin films of single-walled carbon nanotube multilayer catalysts on Si and Si/SiO2 substrates. Large areas of periodic hexagonal catalyst islands were formed and chemical vapor deposition resulted in aligned single-walled carbon nanotubes on Si substrates within the hexagonal array of catalyst islands. On silicon dioxide, single-walled carbon nanotubes connecting the hexagonal catalyst islands were observed. To help explain these observations, a growth model based on experimental data has been used. Electrostatic interaction, van der Waals interaction and gas flow appear to be the main forces contributing to single-walled carbon nanotube alignment on Si/SiO2. Although the alignment of single-walled carbon nanotubes on Si substrates is still not fully understood, it may be due to a combination of the above factors, in addition to silicide-nanotube interaction. Atomic force microscopy and Raman spectroscopy of the post-growth samples show single-walled carbon nanotubes of 1-2 nm in diameter. Based on the atomic force microscopy data and Raman spectra, a mixture of individual and bundles of metallic and semiconducting nanotubes were inferred to be present. A novel technique based on direct nanowriting of carbon nanotube catalysts in liquid form has also been developed. The reliability of this method to produce nanoscale catalyst geometries in a highly controlled manner, as required for

  7. Flexible microdevices based on carbon nanotubes

    Science.gov (United States)

    Allen, Ashante'; Cannon, Andrew; Lee, Jungchul; King, William P.; Graham, Samuel

    2006-12-01

    This work reports the fabrication and testing of flexible carbon nanotube microdevices made using hot embossing material transfer. Both micro-plasma and photodetector devices were made using as-grown unpurified multi-wall carbon nanotubes printed on PMMA substrates. Optical detectors were fabricated by attaching metal wires and monitoring the resistance as a function of light exposure. The electrical resistance of the nanotubes showed a strong sensitivity to light exposure which was also enhanced by heating the devices. While such processes in MWCNTs are not fully understood, the addition of thermal energy is believed to generate additional free charge carriers in the nanotubes. The plasma-generating microdevices consisted of a thin layer of thermoplastic polymer having the CNT electrode on one side and a metal electrode on the reverse side. The devices were electrically tested under atmospheric conditions with 0.01-1 kV ac and at 2.5 kHz, with the plasma igniting near 0.7 kV. The fabrication of these flexible organic devices demonstrates the ability to pattern useful carbon nanotube microdevices in low-cost thermoplastic polymers.

  8. Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes.

    Science.gov (United States)

    Sawaya, Shintaro; Arie, Takayuki; Akita, Seiji

    2011-04-22

    This study investigated the mechanical properties of vibrating cantilevered multiwall carbon nanotubes in terms of energy loss in a vibrating nanotube. Young's moduli of the nanotubes show a clear dependence of the perfection of the sp(2) carbon network, as determined from Raman spectroscopy. The energy loss corresponding to the inverse of the quality factor increases with increasing tube diameter, although the nanotube maintains high mechanical strength around 0.5 TPa. This fact implies that the vibration energy is dissipated mainly not by defects, but by van der Waals interactions between walls.

  9. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    Science.gov (United States)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  10. Carbon nanotubes as optical biomedical sensors.

    Science.gov (United States)

    Kruss, Sebastian; Hilmer, Andrew J; Zhang, Jingqing; Reuel, Nigel F; Mu, Bin; Strano, Michael S

    2013-12-01

    Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.

  11. Improved Method of Purifying Carbon Nanotubes

    Science.gov (United States)

    Delzeit, Lance D.

    2004-01-01

    An improved method of removing the residues of fabrication from carbon nanotubes has been invented. These residues comprise amorphous carbon and metal particles that are produced during the growth process. Prior methods of removing the residues include a variety of processes that involved the use of halogens, oxygen, or air in both thermal and plasma processes. Each of the prior methods entails one or more disadvantages, including non-selectivity (removal or damage of nanotubes in addition to removal of the residues), the need to dispose of toxic wastes, and/or processing times as long as 24 hours or more. In contrast, the process described here does not include the use of toxic chemicals, the generation of toxic wastes, causes little or no damage to the carbon nanotubes, and involves processing times of less than 1 hour. In the improved method, purification is accomplished by flowing water vapor through the reaction chamber at elevated temperatures and ambient pressures. The impurities are converted to gaseous waste products by the selective hydrogenation and hydroxylation by the water in a reaction chamber. This process could be performed either immediately after growth or in a post-growth purification process. The water used needs to be substantially free of oxygen and can be obtained by a repeated freeze-pump-thaw process. The presence of oxygen will non-selectively attach the carbon nanotubes in addition to the amorphous carbon.

  12. Carbon nanotubes for thermal interface materials in microelectronic packaging

    Science.gov (United States)

    Lin, Wei

    , an in situ functionalization process has for the first time been demonstrated. The in situ functionalization renders the vertically aligned carbon nanotubes a proper chemical reactivity for forming chemical bonding with other substrate materials such as gold and silicon. 2. An ultrafast microwave annealing process has been developed to reduce the defect density in vertically aligned carbon nanotubes. Raman and thermogravimetric analyses have shown a distinct defect reduction in the CNTs annealed in microwave for 3 min. Fibers spun from the as-annealed CNTs, in comparison with those from the pristine CNTs, show increases of ˜35% and ˜65%, respectively, in tensile strength (˜0.8 GPa) and modulus (˜90 GPa) during tensile testing; an ˜20% improvement in electrical conductivity (˜80000 S m-1) was also reported. The mechanism of the microwave response of CNTs was discussed. Such a microwave annealing process has been extended to the preparation of reduced graphene oxide. 3. Based on the fundamental understanding of interfacial thermal transport and surface chemistry of metals and carbon nanotubes, two major transfer/assembling processes have been developed: molecular bonding and metal bonding. Effective improvement of the interfacial thermal transport has been achieved by the interfacial bonding. 4. The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films was measured by a laser flash technique, and shown to be ˜30 mm2 s-1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT film and the individual CNTs are ˜27 and ˜540 W m-1 K-1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube-tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing

  13. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  14. Are carbon nanotubes a natural solution? Applications in biology and medicine.

    Science.gov (United States)

    Heister, Elena; Brunner, Eric W; Dieckmann, Gregg R; Jurewicz, Izabela; Dalton, Alan B

    2013-03-01

    Carbon nanotubes and materials based on carbon nanotubes have many perceived applications in the field of biomedicine. Several highly promising examples have been highlighted in the literature, ranging from their use as growth substrates or tissue scaffolds to acting as intracellular transporters for various therapeutic and diagnostic agents. In addition, carbon nanotubes have a strong optical absorption in the near-infrared region (in which tissue is transparent), which enables their use for biological imaging applications and photothermal ablation of tumors. Although these advances are potentially game-changing, excitement must be tempered somewhat as several bottlenecks exist. Carbon nanotube-based technologies ultimately have to compete with and out-perform existing technologies in terms of performance and price. Moreover, issues have been highlighted relating to toxicity, which presents an obstacle for the transition from preclinical to clinical use. Although many studies have suggested that well-functionalized carbon nanotubes appear to be safe to the treated animals, mainly rodents, long-term toxicity issues remains to be elucidated. In this report, we systematically highlight some of the most promising biomedical application areas of carbon nanotubes and review the interaction of carbon nanotubes with cultured cells and living organisms with a particular focus on in vivo biodistribution and potential adverse health effects. To conclude, future challenges and prospects of carbon nanotubes for biomedical applications will be addressed.

  15. Noncovalent interaction of carbon nanostructures.

    Science.gov (United States)

    Umadevi, Deivasigamani; Panigrahi, Swati; Sastry, Garikapati Narahari

    2014-08-19

    The potential application of carbon nanomaterials in biology and medicine increases the necessity to understand the nature of their interactions with living organisms and the environment. The primary forces of interaction at the nano-bio interface are mostly noncovalent in nature. Quantifying such interactions and identifying various factors that influence such interactions is a question of outstanding fundamental interest in academia and industry. In this Account, we have summarized our recent studies in understanding the noncovalent interactions of carbon nanostructures (CNSs), which were obtained by employing first-principles calculations on various model systems representing carbon nanotubes (CNTs) and graphene. Bestowed with an extended sp(2) carbon network, which is a common feature in all of these nanostructures, they exhibit π-π interactions with aromatic molecules (benzene, naphthalene, nucleobases, amino acids), cation-π type of interactions with metal ions, anion-π interactions with anions, and other XH···π type of interactions with various small molecules (H2O, NH3, CH4, H2, etc.). CNTs are wrapped-up forms of two-dimensional graphene, and hence, it is interesting to compare the binding abilities of these two allotropes that differ in their curvature. The chirality and curvature of CNSs appear to play a major role in determining the structural, energetic, and functional properties. Flat graphene shows stronger noncovalent interactions than the curved nanotubes toward various substrates. Understanding the interactions of CNSs with organic molecules and biomolecules has gained a great deal of research interest because of their potential applications in various fields. Aromatic hydrocarbons show a strong propensity to interact with CNSs via the π-π mode of interaction rather than CH···π interaction. As DNA sequencing appears to be one of the most important potential applications of carbon nanomaterials, the study of CNS

  16. Carbon nanotube proximity influences rice DNA

    Science.gov (United States)

    Katti, Dinesh R.; Sharma, Anurag; Pradhan, Shashindra Man; Katti, Kalpana S.

    2015-07-01

    The uptake of carbon nanotubes (CNT) influences the output of plants, potentially through interactions between the DNA and CNTs. However, little is known about the changes in the plant DNA due to CNT proximity. We report changes in rice plant DNA in the proximity of single walled CNT (SWCNT) using molecular dynamics simulations. The DNA experiences breaking and forming of hydrogen bonds due to unzipping of Watson-Crick (WC) nucleobase pairs and wrapping onto SWCNT. The number of hydrogen bonds between water and DNA nucleobases decreases due to the presence of SWCNT. A higher number of guanine-cytosine (Gua-Cyt) WC hydrogen bonds break as compared to adenine-thymine (Ade-Thy), which suggests that Gua and Cyt bases play a dominant role in DNA-SWCNT interactions. We also find that changes to non-WC nucleobase pairs and van der Waals attractive interactions between WC nucleobase pairs and SWCNT cause significant changes in the conformation of the DNA.

  17. FIB-SEM imaging of carbon nanotubes in mouse lung tissue

    DEFF Research Database (Denmark)

    Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun

    2014-01-01

    Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome...

  18. The Adsorption Properties of Bacillus atrophaeus Spores on Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    P. Cortes

    2009-01-01

    Full Text Available An adsorption equilibrium and a kinetic study of Bacillus atrophaeus on Single-Wall Carbon Nanotubes (SWCNTs were here performed to provide the basis for developing biosensor devices for detecting threatening micro-organisms in water supply systems. B. atrophaeus spores and carbon nanotubes were subjected to a batch adsorption process to document their equilibria and kinetics. Here, commercial nanotubes were either studied as received or were acid-purified before adsorption experiments. The Bacillus spores appear to show higher affinity towards the purified nanotubes than to the as-received nanomaterial. The effective diffusivity of the spores onto the purified nanotubes was found to be approximately 30 percent higher than onto the as-received nanotubes. It seems that the removal of amorphous carbon from the as-received nanotubes through a purification process yielded an intimate nantoubes-spore interaction as revealed by transmission electron microscopy. Freundlich model successfully correlated the adsorption equilibrium data for the nanotubes-spore interaction. Transmission electron micrographs showed extensive contact between the Bacillus and the purified nanotubes, but the association appeared less intimate between the spores and the as-received nanotubes.

  19. Interactions of multiwalled carbon nanotubes with algal cells: quantification of association, visualization of uptake, and measurement of alterations in the composition of cells.

    Science.gov (United States)

    Rhiem, Stefan; Riding, Matthew J; Baumgartner, Werner; Martin, Francis L; Semple, Kirk T; Jones, Kevin C; Schäffer, Andreas; Maes, Hanna M

    2015-01-01

    Carbon nanotubes (CNTs) are considered promising materials in nanotechnology. We quantified CNT accumulation by the alga Desmodesmus subspicatus. Cells were exposed to radiolabeled CNTs ((14)C-CNTs;1 mg/L) to determine uptake and association, as well as elimination and dissociation in clear media.Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was used to detect effects of CNTs on algae. CNT-cell interactions were visualized by electron microscopy and related to alterations in their cell composition. A concentration factor of 5000 L/kg dry weight was calculated. Most of the material agglomerated around the cells, but single tubes were detected in the cytoplasm. Computational analyses of the ATR-FTIR data showed that CNT treated algae differed from controls at all sampling times.CNT exposure changed the biochemical composition of cells. The fact that CNTs are bioavailable for algae and that they influence the cell composition is important with regard to environmental risk assessment of this nanomaterial.

  20. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    Institute of Scientific and Technical Information of China (English)

    夏丹; 袁喆; 李家明

    2002-01-01

    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  1. Pressure-driven opening of carbon nanotubes

    Science.gov (United States)

    Chaban, Vitaly V.; Prezhdo, Oleg V.

    2016-03-01

    The closing and opening of carbon nanotubes (CNTs) is essential for their applications in nanoscale chemistry and biology. We report reactive molecular dynamics simulations of CNT opening triggered by internal pressure of encapsulated gas molecules. Confined argon generates 4000 bars of pressure inside capped CNT and lowers the opening temperature by 200 K. Chemical interactions greatly enhance the efficiency of CNT opening: fluorine-filled CNTs open by fluorination of carbon bonds at temperature and pressure that are 700 K and 1000 bar lower than for argon-filled CNTs. Moreover, pressure induced CNT opening by confined gases leaves the CNT cylinders intact and removes only the fullerene caps, while the empty CNT decomposes completely. In practice, the increase in pressure can be achieved by near-infrared light, which penetrates through water and biological tissues and is absorbed by CNTs, resulting in rapid local heating. Spanning over a thousand of bars and Kelvin, the reactive and non-reactive scenarios of CNT opening represent extreme cases and allow for a broad experimental control over properties of the CNT interior and release conditions of the confined species. The detailed insights into the thermodynamic conditions and chemical mechanisms of the pressure-induced CNT opening provide practical guidelines for the development of novel nanoreactors, catalysts, photo-catalysts, imaging labels and drug delivery vehicles.

  2. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.

  3. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders;

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  4. In-line manufacture of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  5. Biodistribution of Carbon Nanotubes in Animal Models

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; Møller, Peter; Clausen, Per Axel

    2016-01-01

    The many physical and chemical properties of carbon nanotubes (CNT) make it one of the most commercially attractive materials in the era of nanotechnology. Here, we review the recent publications on in vivo biodistribution of pristine and functionalized forms of single-walled and multi-walled CNT...

  6. Conductance of AFM Deformed Carbon Nanotubes

    Science.gov (United States)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  7. Multiwall carbon nanotubes reinforced epoxy nanocomposites

    Science.gov (United States)

    Chen, Wei

    The emergence of carbon nanotubes (CNTs) has led to myriad possibilities for structural polymer composites with superior specific modulus, strength, and toughness. While the research activities in carbon nanotube reinforced polymer composites (NRPs) have made enormous progress towards fabricating next-generation advanced structural materials with added thermal, optical, and electrical advantages, questions concerning the filler dispersion, interface, and CNT alignment in these composites remain partially addressed. In this dissertation, the key technical challenges related to the synthesis, processing, and reinforcing mechanics governing the effective mechanical properties of NRPs were introduced and reviewed in the first two chapters. Subsequently, issues on the dispersion, interface control, hierarchical structure, and multi-functionality of NRPs were addressed based on functionalized multi-walled carbon nanotube reinforced DGEBA epoxy systems (NREs). In chapter 3, NREs with enhanced flexural properties were discussed in the context of improved dispersion and in-situ formation of covalent bonds at the interface. In chapter 4, NREs with controlled interface and tailored thermomechanical properties were demonstrated through the judicious choice of surface functionality and resin chemistry. In chapter 5, processing-condition-induced CNT organization in hierarchical epoxy nanocomposites was analyzed. In Chapter 6, possibilities were explored for multi-functional NREs for underwater acoustic structural applications. Finally, the findings of this dissertation were concluded and future research was proposed for ordered carbon nanotube array reinforced nanocomposites in the last chapter. Four journal publications resulted from this work are listed in Appendix.

  8. Spatially resolved spectroscopy on carbon nanotubes

    NARCIS (Netherlands)

    Janssen, J.W.

    2001-01-01

    Carbon nanotubes are small cylindrical molecules with a typical diameter of 1 nm and lengths of up to micrometers. These intriguing molecules exhibit, depending on the exact atomic structure, either semiconducting or metallic behavior. This makes them ideal candidates for possible future molecular e

  9. Chemistry of Carbon Nanotubes for Everyone

    Science.gov (United States)

    Basu-Dutt, Sharmistha; Minus, Marilyn L.; Jain, Rahul; Nepal, Dhriti; Kumar, Satish

    2012-01-01

    Carbon nanotubes (CNTs) have the extraordinary potential to change our lives by improving existing products and enabling new ones. Current and future research and industrial workforce professionals are very likely to encounter some aspects of nanotechnology including CNT science and technology in their education or profession. The simple structure…

  10. Single electron-ics with carbon nanotubes

    NARCIS (Netherlands)

    Götz, G.T.J.

    2010-01-01

    We experimentally investigate Quantum Dots, formed in Carbon Nanotubes. The first part of this thesis deals with charge sensing on such quantum dots. The charge sensor is a metallic Single-electron-transistor, sensitive to the charge of a single electron on the quantum dot. We use this technique for

  11. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  12. A New Resistance Formulation for Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2008-01-01

    Full Text Available A new resistance formulation for carbon nanotubes is suggested using fractal approach. The new formulation is also valid for other nonmetal conductors including nerve fibers, conductive polymers, and molecular wires. Our theoretical prediction agrees well with experimental observation.

  13. A new mechanism for carbon nanotube evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Key discoveries on the growth mechanism of carbon nanotubes(CNTs) have recently been achieved by CAS researcher ZHU Zhenping and his research group at the State Key Laboratory of Coal Conversion,the Institute of Coal Chemistry of CAS, funded by the National Natural Science Foundation of China and the CAS Bairen Program.

  14. Making junctions between carbon nanotubes using an ion beam

    CERN Document Server

    Krasheninnikov, A V; Keinonen, J; Banhart, F

    2003-01-01

    Making use of empirical potential molecular dynamics, we study ion bombardment of crossed single-walled carbon nanotubes as a tool to join the nanotubes. We demonstrate that ion irradiation should result in welding of crossed nanotubes, both suspended and deposited on substrates. We further predict optimum ion doses and energies for ion-mediated nanotube welding which may potentially be used for developing complicated networks of joined nanotubes.

  15. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  16. Intrinsic phonon properties of double-walled carbon nanotubes

    Science.gov (United States)

    Tran, H. N.; Levshov, D. I.; Nguyen, V. C.; Paillet, M.; Arenal, R.; Than, X. T.; Zahab, A. A.; Yuzyuk, Y. I.; Phan, N. M.; Sauvajol, J.-L.; Michel, T.

    2017-03-01

    Double-walled carbon nanotubes (DWNT) are made of two concentric and weakly van der Waals coupled single-walled carbon nanotubes (SWNT). DWNTs are the simplest systems for studying the mechanical and electronic interactions between concentric carbon layers. In this paper we review recent results concerning the intrinsic features of phonons of DWNTs obtained from Raman experiments performed on index-identified DWNTs. The effect of the interlayer distance on the strength of the mechanical and electronic coupling between the layers, and thus on the frequencies of the Raman-active modes, namely the radial breathing-like modes (RBLMs) and G-modes, are evidenced and discussed. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  17. Optical Properties of Single-Wall Carbon Nanotube Films Deposited on Si/SiO2 Wafers

    OpenAIRE

    Soetedjo, Hariyadi; Mora, Maria F.; Garcia, Carlos D.

    2010-01-01

    The paper describes a set of simple experiments performed to develop an optical model to describe Si/SiO2 substrates coated with two transparent films of carbon nanotubes. The final goal is to use such optical model to investigate the interaction of proteins with carbon nanotubes. Experiments were performed to assess light reflection as a function of the wavelength or angle of incidence using two substrates (same material, different amounts) composed of oxidized carbon nanotubes. The experime...

  18. Nickel clusters embedded in carbon nanotubes as high performance magnets

    Science.gov (United States)

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-10-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization.

  19. The structure and dynamics of water inside armchair carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Yan; Lu Hang-Jun

    2007-01-01

    In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs)can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water-water interaction and water-CNT interaction are also studied in this paper.

  20. Strong and tunable mode coupling in carbon nanotube resonators

    Science.gov (United States)

    Castellanos-Gomez, Andres; Meerwaldt, Harold B.; Venstra, Warner J.; van der Zant, Herre S. J.; Steele, Gary A.

    2012-07-01

    The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be tuned with the gate voltage, allowing both mode-softening and mode-stiffening behaviors. This is in striking contrast to tension-induced mode coupling in strings where the coupling parameter is positive and gives rise to a stiffening of the mode. The strength of the mode coupling in carbon nanotubes in the Coulomb-blockade regime is observed to be 6 orders of magnitude larger than the mechanical-mode coupling in micromechanical resonators.

  1. Pure carbon nanoscale devices: Nanotube heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Chico, L.; Crespi, V.H.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States)]|[Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)

    1996-02-01

    Introduction of pentagon-heptagon pair defects into the hexagonal network of a single carbon nanotube can change the helicity of the tube and alter its electronic structure. Using a tight-binding method to calculate the electronic structure of such systems we show that they behave as nanoscale metal/semiconductor or semiconductor/semiconductor junctions. These junctions could be the building blocks of nanoscale electronic devices made entirely of carbon. {copyright} {ital 1996 The American Physical Society.}

  2. Exploring the Immunotoxicity of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yu Yanmei

    2008-01-01

    Full Text Available Abstract Mass production of carbon nanotubes (CNTs and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation.

  3. Preparation of double-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; WEI Jinquan; CI Lijie; WU Dehai

    2004-01-01

    Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200℃; the catalyst vapor temperature is 80℃; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.

  4. Advanced materials based on carbon nanotube arrays, yarns and papers

    Science.gov (United States)

    Bradford, Phlip David

    Carbon nanotubes have hundreds of potential applications but require innovative processing techniques to manipulate the microscopic carbon dust into useful devices and products. This thesis describes efforts to process carbon nanotubes (CNTs) using novel methods with the goals of: (1) improving the properties of energy absorbing and composite carbon nanotube materials and (2) increasing understanding of fundamental structure-property relationships within these materials. Millimeter long CNTs, in the form of arrays, yarns and papers, were used to produce energy absorbing foams and high volume fraction CNT composites. Vertically aligned CNT arrays were grown on silicon substrates using chemical vapor deposition (CVD) of ethylene gas over iron nano-particles. The low density, millimeter thick arrays were tested under compression as energy absorbing foams. With additional CVD processing steps, it was possible to tune the compressive properties of the arrays. After the longest treatment, the compressive strength of the arrays was increased by a factor of 35 with a density increase of only six fold, while also imparting recovery from compression to the array. Microscopy revealed that the post-synthesis CVD treatment increased the number of CNT walls through an epitaxial type radial growth on the surface of the as-grown tubes. The increase in tube radius and mutual support between nanotubes explained the increases in compressive strength while an increase in nanotube roughness was proposed as the morphological change responsible for recovery in the array. Carbon nanotube yarns were used as the raw material for macroscopic textile preforms with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. In prior tensile tests, composites produced from the 3-D braids exhibited unusual mechanical behavior effects. The proposed physical hypotheses explained those effects by molecular level interactions and

  5. Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds

    OpenAIRE

    2015-01-01

    This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s10853-015-9340-2 The electrochemical interaction between graphite and molten salts to produce carbon nanostructures is reviewed. It is demonstrated that, depending on the conditions, it is possible to electrochemically convert graphite in molten salts to either carbon nanoparticles and nanotubes, metal filled carbon nanoparticles and nanotubes, graphene or nanodiamonds. The...

  6. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  7. Synthesis, characterisation and applications of coiled carbon nanotubes.

    Science.gov (United States)

    Hanus, Monica J; Harris, Andrew T

    2010-04-01

    Coiled carbon nanotubes are helical carbon structures formed when heptagonal and pentagonal rings are inserted into the hexagonal backbone of a 'straight' nanotube. Coiled carbon nanotubes have been reported with both regular and irregular helical structures. In this work the structure, growth mechanism(s), synthesis, properties and potential applications of coiled carbon nanotubes are reviewed. Published data suggests that coiled carbon nanotube synthesis occurs due to nonuniform extrusion of carbon from a catalyst surface. To date, coiled carbon nanotubes have been synthesised using catalyst modification techniques including: (i) the addition of S or P containing compounds during synthesis; (ii) the use of binary or ternary metal catalysts; (iii) the use of microwaves to create a local temperature gradient around individual catalyst particles and; (iv) the use of pH control during catalyst preparation. In most instances coiled carbon nanotubes are produced as a by-product; high yield and/or large-scale synthesis of coiled carbon nanotubes remains problematic. The qualitative analysis of coiled carbon nanotubes is currently hindered by the absence of specific characterisation data in the literature, e.g., oxidation profiles measured by thermogravimetric analysis and Raman spectra of pure coiled carbon nanotube samples.

  8. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent-covalent functionalization of single wall carbon nanotubes: a study of their selective interactions with lectins and with live cells

    Science.gov (United States)

    Pernía Leal, M.; Assali, M.; Cid, J. J.; Valdivia, V.; Franco, J. M.; Fernández, I.; Pozo, D.; Khiar, N.

    2015-11-01

    To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of the dynamic hybrids obtained by non-covalent functionalizations. In the present work, we examined the molecular basis of an original strategy that combines the advantages of both functionalizations without their main drawbacks. The hierarchical self-assembly of diacetylenic-based neoglycolipids into highly organized and compacted rings around the nanotubes, followed by photopolymerization leads to the formation of nanotubes covered with glyconanorings with a shish kebab-type topology exposing the carbohydrate ligands to the water phase in a multivalent fashion. The glyconanotubes obtained are fully functional, and able to establish specific interactions with their cognate receptors. In fact, by taking advantage of this selective binding, an easy method to sense lectins as a working model of toxin detection was developed based on a simple analysis of TEM images. Remarkably, different experimental settings to assess cell membrane integrity, cell growth kinetics and cell cycle demonstrated the cellular biocompatibility of the sugar-coated carbon nanotubes compared to pristine single-walled carbon nanotubes.To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of

  9. Smart Cellulose Fibers Coated with Carbon Nanotube Networks

    OpenAIRE

    Haisong Qi; Jianwen Liu; Edith Mäder

    2014-01-01

    Smart multi-walled carbon nanotube (MWCNT)-coated cellulose fibers with a unique sensing ability were manufactured by a simple dip coating process. The formation of electrically-conducting MWCNT networks on cellulose mono- and multi-filament fiber surfaces was confirmed by electrical resistance measurements and visualized by scanning electron microscopy. The interaction between MWCNT networks and cellulose fiber was investigated by Raman spectroscopy. The piezoresistivity of these fibers fo...

  10. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene

    OpenAIRE

    Kshitij C. Jha; Zhuonan Liu; Hema Vijwani; Mallikarjuna Nadagouda; Mukhopadhyay, Sharmila M.; Mesfin Tsige

    2016-01-01

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), th...

  11. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake

    OpenAIRE

    Miralles, Pola; Johnson, Errin; Tamara L. Church; Harris, Andrew T.

    2012-01-01

    Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l−1 CNTs, and root elongation was enhanced in alfalfa and wh...

  12. Scanning gate microscopy of ultra clean carbon nanotube quantum dots

    OpenAIRE

    Xue, Jiamin; Dhall, Rohan; Cronin, Stephen B.; LeRoy, Brian J.

    2015-01-01

    We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can b...

  13. Electrostatic gating in carbon nanotube aptasensors

    Science.gov (United States)

    Zheng, Han Yue; Alsager, Omar A.; Zhu, Bicheng; Travas-Sejdic, Jadranka; Hodgkiss, Justin M.; Plank, Natalie O. V.

    2016-07-01

    Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10 picomolar. The signal was shown to arise from a specific aptamer-target interaction that stabilises a G-quadruplex structure, bringing high negative charge density near the CNT channel. Electrostatic gating is established via the specificity and the sign of the current response, and by observing its suppression when higher ionic strength decreases the Debye length at the CNT-water interface. Sensitivity towards potassium and selectivity against other ions is demonstrated in both resistive mode and real time transistor mode measurements. The effective device architecture presented, along with the identification of clear response signatures, should inform the development of new electronic biosensors using the growing library of aptamer receptors.Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10

  14. Field-effect transistors assembled from functionalized carbon nanotubes

    OpenAIRE

    Klinke, Christian; Hannon, James B.; Afzali, Ali; Avouris, Phaedon

    2006-01-01

    We have fabricated field effect transistors from carbon nanotubes using a novel selective placement scheme. We use carbon nanotubes that are covalently bound to molecules containing hydroxamic acid functionality. The functionalized nanotubes bind strongly to basic metal oxide surfaces, but not to silicon dioxide. Upon annealing, the functionalization is removed, restoring the electronic properties of the nanotubes. The devices we have fabricated show excellent electrical characteristics.

  15. Porous carbon nanotubes: Molecular absorption, transport, and separation

    Science.gov (United States)

    Yzeiri, Irena; Patra, Niladri; Král, Petr

    2014-03-01

    We use classical molecular dynamics simulations to study nanofluidic properties of porous carbon nanotubes. We show that saturated water vapor condenses on the porous nanotubes, can be absorbed by them and transported in their interior. When these nanotubes are charged and placed in ionic solutions, they can selectively absorb ions in their interior and transport them. Porous carbon nanotubes can also be used as selective molecular sieves, as illustrated on a room temperature separation of benzene and ethanol.

  16. Carbon nanotubes on a spider silk scaffold

    Science.gov (United States)

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-09-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

  17. Localization in single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrer, M.S.; Cohen, M.L.; Zettl, A.; Crespi, V.H.

    1998-08-15

    We demonstrate that in low temperature semiconductor-like regions the electrical resistance of single-walled carbon nanotube mats is highly nonlinear with a temperature-dependent threshold field for the onset of nonohmic conduction. The modest applied electric field completely suppresses the upturn in resistance and recovers metallic behavior over the entire temperature range 2.2K < T < 300K. The transport data indicate low-temperature localization of charge carriers arise from disorder on the nanotube bundles themselves and not from granularity caused by weak interbundle connections. The temperature-independent localization radius a is determined to be approximately 330 nm.

  18. A new method of preparing single-walled carbon nanotubes

    OpenAIRE

    Vivekchang, SRC; Govindaraj, A.

    2003-01-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized single-walled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spect...

  19. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    OpenAIRE

    Giuseppe Cirillo; Silke Hampel; Umile Gianfranco Spizzirri; Ortensia Ilaria Parisi; Nevio Picci; Francesca Iemma

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites i...

  20. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    S R C Vivekchand; A Govindaraj

    2003-10-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

  1. Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection

    Science.gov (United States)

    2009-02-01

    Carbon Nanotube Functionalization /Doping Polyvinylpyrrolidone (PVP) A) p-Doping C) Polymer Wrapping Model B) n-Doping Polyethyleneimine ( PEI ) SWCNT Paint...fluorine-containing) groups functions as the barrier layer Multilayer Smart Carbon Nanotube Coating Insoluble polymer layer top coating -PMMA Substrate...Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection Zafar Iqbal Department of Chemistry and Environmental Science New

  2. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  3. Purification of Carbon Nanotubes by Proton Irradiation

    Science.gov (United States)

    Kim, Euikwoun; Lee, Jeonggil; Lee, Younman; Jeon, Jaekyun; Kim, Jae-Yong; Kim, Jeongha; Shin, Kwanwoo; Youn, Sang-Pil; Kim, Kyeryung

    2007-10-01

    Carbon nanotubes (CNTs) exhibit variety of superior physical properties including well-defined nanodimensional structure, high electrical and thermal conductivity, and good mechanical stability against external irradiations. Further, a large specific surface area per unit weight suggests that carbon nanotubes could be excellent candidates for gas storage, purification, and separation. However, the practical application of CNTs is limited mainly due to the metallic impurities that were used as a catalyst during the fabrication process. Here, we irradiated CNTs by using high energy proton beams (35.7 MeV at the Bragg Peak). Interestingly, metallic impurities such as Fe, Ni, Co and chunk of amorphous carbon that were attached on the surface of CNTs were completely removed after the irradiation. The mechanism of such the purification process is not understood. The possible speculation will be demonstrated combined with the changes of physical properties including the appearance of the magnetism after the irradiation.

  4. Mechanical properties of functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z Q; Liu, B; Chen, Y L; Hwang, K C [FML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Jiang, H [Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287 (United States); Huang, Y [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208 (United States)], E-mail: liubin@tsinghua.edu.cn, E-mail: y-huang@northwestern.edu

    2008-10-01

    Carbon nanotubes (CNTs) used to reinforce polymer matrix composites are functionalized to form covalent bonds with the polymer in order to enhance the CNT/polymer interfaces. These bonds destroy the perfect atomic structures of a CNT and degrade its mechanical properties. We use atomistic simulations to study the effect of hydrogenization on the mechanical properties of single-wall carbon nanotubes. The elastic modulus of CNTs gradually decreases with the increasing functionalization (percentage of C-H bonds). However, both the strength and ductility drop sharply at a small percentage of functionalization, reflecting their sensitivity to C-H bonds. The cluster C-H bonds forming two rings leads to a significant reduction in the strength and ductility. The effect of carbonization has essentially the same effect as hydrogenization.

  5. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  6. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  7. DFT study on the covalent adsorption of drug carvedilol onto COOH functionalized carbon nanotubes

    Directory of Open Access Journals (Sweden)

    M. Rahbar

    2015-09-01

    Full Text Available In this work, using quantum mechanics, the interaction of drug carvedilol with (5, 5 COOH functionalized single wall carbon nanotubes (SWNT have been studied. All of the calculations have been performed using a hybrid density functional method (B3LYP in gas and solution phases. Two possible modes of covalent interaction of carvedilol onto COOH functionalized SWNT were investigated. Quantum molecular descriptors and frontier orbital analysis in the drug-nanotube systems were studied. It was found that bonding of carvedilol to COOH functionalized carbon nanotubes through hydroxyl group is stronger than amino group.

  8. Carbon Micronymphaea: Graphene on Vertically Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Jong Won Choi

    2013-01-01

    Full Text Available This paper describes the morphology of carbon nanomaterials such as carbon nanotube (CNT, graphene, and their hybrid structure under various operating conditions during a one-step synthesis via plasma-enhanced chemical vapor deposition (PECVD. We focus on the synthetic aspects of carbon hybrid material composed of heteroepitaxially grown graphene on top of a vertical array of carbon nanotubes, called carbon micronymphaea. We characterize the structural features of this unique nanocomposite by uses of electron microscopy and micro-Raman spectroscopy. We observe carbon nanofibers, poorly aligned and well-aligned vertical arrays of CNT sequentially as the growth temperature increases, while we always discover the carbon hybrids, called carbon micronymphaea, at specific cooling rate of 15°C/s, which is optimal for the carbon precipitation from the Ni nanoparticles in this study. We expect one-pot synthesized graphene-on-nanotube hybrid structure poses great potential for applications that demand ultrahigh surface-to-volume ratios with intact graphitic nature and directional electronic and thermal transports.

  9. Multifunctional Carbon Nanotube Fiber Composites

    Science.gov (United States)

    2007-11-02

    coagulant. The second process (patent pending) is novel in that it directly results polymer-free nanotube fibers without using a super acid spinning...chemical and electrochemical stability, hydrophobicity and viscosity . The generic structure, chemical name and abbreviations for the most common ions...modification procedure involved the electrochemical infiltration of small amounts of the polypyrrole/p-toluene sulphonate (PPy/PTS) conducting polymer

  10. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.

    Science.gov (United States)

    Singh, Prabhpreet; Toma, Francesca Maria; Kumar, Jitendra; Venkatesh, V; Raya, Jesus; Prato, Maurizio; Verma, Sandeep; Bianco, Alberto

    2011-06-06

    Single-walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid-state NMR spectroscopy. The uracil-functionalized SWCNTs are able to self-assemble into regular nanorings with a diameter of 50-70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil-uracil base-pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.

  11. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  12. Coherent phonons in carbon nanotubes and graphene

    Science.gov (United States)

    Kim, J.-H.; Nugraha, A. R. T.; Booshehri, L. G.; Hároz, E. H.; Sato, K.; Sanders, G. D.; Yee, K.-J.; Lim, Y.-S.; Stanton, C. J.; Saito, R.; Kono, J.

    2013-02-01

    We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite specific-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n + m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.

  13. Potential of carbon nanotubes in algal biotechnology.

    Science.gov (United States)

    Lambreva, Maya Dimova; Lavecchia, Teresa; Tyystjärvi, Esa; Antal, Taras Kornelievich; Orlanducci, Silvia; Margonelli, Andrea; Rea, Giuseppina

    2015-09-01

    A critical mass of knowledge is emerging on the interactions between plant cells and engineered nanomaterials, revealing the potential of plant nanobiotechnology to promote and support novel solutions for the development of a competitive bioeconomy. This knowledge can foster the adoption of new methodological strategies to empower the large-scale production of biomass from commercially important microalgae. The present review focuses on the potential of carbon nanotubes (CNTs) to enhance photosynthetic performance of microalgae by (i) widening the spectral region available for the energy conversion reactions and (ii) increasing the tolerance of microalgae towards unfavourable conditions occurring in mass production. To this end, current understanding on the mechanisms of uptake and localization of CNTs in plant cells is discussed. The available ecotoxicological data were used in an attempt to assess the feasibility of CNT-based applications in algal biotechnology, by critically correlating the experimental conditions with the observed adverse effects. Furthermore, main structural and physicochemical properties of single- and multi-walled CNTs and common approaches for the functionalization and characterization of CNTs in biological environment are presented. Here, we explore the potential that nanotechnology can offer to enhance functions of algae, paving the way for a more efficient use of photosynthetic algal systems in the sustainable production of energy, biomass and high-value compounds.

  14. Metal-enhanced fluorescence of carbon nanotubes.

    Science.gov (United States)

    Hong, Guosong; Tabakman, Scott M; Welsher, Kevin; Wang, Hailiang; Wang, Xinran; Dai, Hongjie

    2010-11-17

    The photoluminescence (PL) quantum yield of single-walled carbon nanotubes (SWNTs) is relatively low, with various quenching effects by metallic species reported in the literature. Here, we report the first case of metal enhanced fluorescence (MEF) of surfactant-coated carbon nanotubes on nanostructured gold substrates. The photoluminescence quantum yield of SWNTs is observed to be enhanced more than 10-fold. The dependence of fluorescence enhancement on metal-nanotube distance and on the surface plasmon resonance (SPR) of the gold substrate for various SWNT chiralities is measured to reveal the mechanism of enhancement. Surfactant-coated SWNTs in direct contact with metal exhibit strong MEF without quenching, suggesting a small quenching distance for SWNTs on the order of the van der Waals distance, beyond which the intrinsically fast nonradiative decay rate in nanotubes is little enhanced by metal. The metal enhanced fluorescence of SWNTs is attributed to radiative lifetime shortening through resonance coupling of SWNT emission to the reradiating dipolar plasmonic modes in the metal.

  15. Spectroscopy of Optical Excitations in Carbon Nanotubes

    Science.gov (United States)

    Ma, Yingzhong

    2006-03-01

    Understanding the optical spectra and electronic excited state dynamics of carbon naotubes is important both for fundamental research and a wide variety of potential applications. In this presentation, we will report the results of a systematic study on semiconducting single-walled carbon nanotubes (SWNTs) obtained by utilizing complementary femtosecond spectroscopic techniques, including fluorescence up-conversion, frequency-resolved transient absorption, and three-pulse photon echo peakshift (3PEPS) spectroscopy. Our efforts have focused on optically selective detection of the spectra and dynamics associated with structurally distinct semiconducting SWNT species. Using individual nanotube enriched micelle-dispersed SWNT preparations, in combination with resonant excitation and detection, has enabled us to independently access selected species, such as the (8,3), (6,5), (7,5), (11,0), (7,6) and (9,5) nanotubes. We will discuss the following topics: (1) the excitonic nature of the elementary excitation and its unambiguous identification from direct determination of the exciton binding energy for a selected semiconducting nanotube, the (8,3) tube; (2) the spectroscopic and dynamical signatures of exciton-exciton annihilation and its predominant role in governing ultrafast excited state relaxation; (3) the annihilation-concomitant exciton dissociation and the spectroscopic and dynamic features of the resulting electron-hole continuum; (4) timescales characterizing the ultrafast thermalization processes. In addition, we will demonstrate the power of 3PEPS spectroscopy to elucidate the spectral properties and dynamics of SWNTs. This work was supported by the NSF.

  16. Developing Carbon Nanotube Standards at NASA

    Science.gov (United States)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  17. Remote Joule heating by a carbon nanotube

    Science.gov (United States)

    Baloch, Kamal H.; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-05-01

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  18. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  19. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    Science.gov (United States)

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted.

  20. CARBON NANOTUBES: AN APPROACH TO NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. H. Alai et al.

    2012-01-01

    Full Text Available Carbon nanotubes are cylindrical carbon molecules have novel properties, making them potentially useful in many applications in nanotechnology, electronics, optics, and other fields of material science as well as potential uses in architectural fields. They have unique electronic, mechanical, optical and chemical properties that make them good candidates for a wide variety of applications, including drug transporters, new therapeutics, delivery systems and diagnostics. Their unique surface area, stiffness, strength and resilience have led to much excitement in the field of pharmacy. Nanotubes are categorized as single-walled nanotubes, multiple walled nanotubes. Various techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, chemical vapor deposition. They can pass through membranes, carrying therapeutic drugs, vaccines and nucleic acids deep into the cell to targets previously unreachable. Purification of the tubes can be divided into a couple of main techniques: oxidation, acid treatment, annealing, sonication, filtering and functionalization techniques. The main problem of insolubility in aqueous media has been solved by developing a synthetic protocol that allows highly water-soluble carbon NTs to be obtained. The modifications are done to improve efficiency of carbon nanotubes by formulating luminescent carbon nanotubes, ultrathin carbon nanoneedles, magnetically guided nanotubes. The application of carbon nanotube in tissue engineering, drug carrier release system, wound healing, in cancer treatment and as biosensor. Researchers have recently developed a new approach to Boron Neutron Capture Therapy in the treatment of cancer using substituted Carborane-Appended Water-Soluble single-wall carbon nanotubes.

  1. Continuum simulations of water flow in carbon nanotube membranes

    DEFF Research Database (Denmark)

    Popadić, A.; Walther, Jens Honore; Koumoutsakos, P-

    2014-01-01

    We propose the use of the Navier–Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretizations of the Navier–Stokes equations are combined with slip lengths extracted from molecular dynamics (MD) simulati......We propose the use of the Navier–Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretizations of the Navier–Stokes equations are combined with slip lengths extracted from molecular dynamics (MD...... that flows at nanoscale channels can be described by continuum solvers with proper boundary conditions that reflect the molecular interactions of the liquid with the walls of the nanochannel....

  2. Carbon nanotubes: are they dispersed or dissolved in liquids?

    Directory of Open Access Journals (Sweden)

    Premkumar Thathan

    2011-01-01

    Full Text Available Abstract Carbon nanotubes (CNTs constitute a novel class of nanomaterials with remarkable applications in diverse domains. However, the main intrincsic problem of CNTs is their insolubility or very poor solubility in most of the common solvents. The basic key question here is: are carbon nanotubes dissolved or dispersed in liquids, specifically in water? When analyzing the scientific research articles published in various leading journals, we found that many researchers confused between "dispersion" and "solubilization" and use the terms interchangeably, particularly when stating the interaction of CNTs with liquids. In this article, we address this fundamental issue to give basic insight specifically to the researchers who are working with CNTs as well asgenerally to scientists who deal with nano-related research domains.

  3. Carbon nanotube quantum dots as highly sensitive THz spectrometers

    Science.gov (United States)

    Rinzan, Mohamed; Jenkins, Greg; Drew, Dennis; Shafranjuk, Serhii; Barbara, Paola

    2012-02-01

    We show that carbon nanotube quantum dots (CNT-Dots) coupled to antennas are extremely sensitive, broad-band, terahertz quantum detectors. Their response is due to photon-assisted single-electron tunneling (PASET)[1], but cannot be fully understood with orthodox PASET models[2]. We consider intra-dot excitations and non-equilibrium cooling to explain the anomalous response. REFERENCES: [1] Y. Kawano, S. Toyokawa, T. Uchida and K. Ishibashi, THz photon assisted tunneling in carbon-nanotube quantum dots, Journal of Applied Physics 103, 034307 (2008). [2] P. K. Tien and J. P. Gordon, Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films, Phys. Rev. 129, 647 (1963).

  4. A highly viscous imidazolium ionic liquid inside carbon nanotubes.

    Science.gov (United States)

    Ohba, Tomonori; Chaban, Vitaly V

    2014-06-12

    We report a combined experimental (X-ray diffraction) and theoretical (molecular dynamics, hybrid density functional theory) study of 1-ethyl-3-methylimidazolium chloride, [C2C1MIM][Cl], inside carbon nanotubes (CNTs). We show that despite its huge viscosity [C2C1MIM][Cl] readily penetrates into 1-3 nm wide CNTs at slightly elevated temperatures (323-363 K). Molecular simulations were used to assign atom-atom peaks. Experimental and simulated structures of RTIL inside CNT and in bulk phase are in good agreement. We emphasize a special role of the CNT-chloride interactions in the successful adsorption of [C2C1MIM][Cl] on the inner sidewalls of 1-3 nm carbon nanotubes.

  5. Carbon nanotubes: are they dispersed or dissolved in liquids?

    Science.gov (United States)

    Geckeler, Kurt Ernst; Premkumar, Thathan

    2011-12-01

    Carbon nanotubes (CNTs) constitute a novel class of nanomaterials with remarkable applications in diverse domains. However, the main intrincsic problem of CNTs is their insolubility or very poor solubility in most of the common solvents. The basic key question here is: are carbon nanotubes dissolved or dispersed in liquids, specifically in water? When analyzing the scientific research articles published in various leading journals, we found that many researchers confused between "dispersion" and "solubilization" and use the terms interchangeably, particularly when stating the interaction of CNTs with liquids. In this article, we address this fundamental issue to give basic insight specifically to the researchers who are working with CNTs as well asgenerally to scientists who deal with nano-related research domains.

  6. A Highly Viscous Imidazolium Ionic Liquid inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Ohba, T.; Chaban, Vitaly V.

    2014-01-01

    We report a combined experimental (X-ray diffraction) and theoretical (molecular dynamics, hybrid density functional theory) study of 1-ethyl-3-methylimidazolium chloride, [C2C1MIM][Cl], inside carbon nanotubes (CNTs). We show that despite its huge viscosity [C2C1MIM][Cl] readily penetrates into 1......-3 nm wide CNTs at slightly elevated temperatures (323-363 K). Molecular simulations were used to assign atom-atom peaks. Experimental and simulated structures of RTIL inside CNT and in bulk phase are in good agreement. We emphasize a special role of the CNT-chloride interactions in the successful...... adsorption of [C2C1MIM][Cl] on the inner sidewalls of 1-3 nm carbon nanotubes....

  7. The Application of Carbon Nanotubes in Magnetic Fluid Hyperthermia

    Directory of Open Access Journals (Sweden)

    Grzegorz Raniszewski

    2015-01-01

    Full Text Available The aim of this paper is to present the results of the investigation into the applications of carbon nanotubes with ferromagnetic nanoparticles as nanoheaters for targeted thermal ablation of cancer cells. Relevant nanoparticles’ characteristics were exploited in terms of their functionality for biomedical applications and their magnetic properties were examined to determine heat generation efficiency induced by the exposure of the particles to an alternating magnetic field. The influence of the electromagnetic field on the human body tissues was assessed, providing quantitative measures of the interaction. The behavior of a liquid containing magnetic particles, during the exposure to the alternating magnetic field, was verified. As for the application for the ferromagnetic carbon nanotubes, the authors investigated temperature distribution in human liver tumor together with Arrhenius tissue damage model and the thermal dose concept.

  8. A piggyback ride for transition metals: encapsulation of exohedral metallofullerenes in carbon nanotubes.

    Science.gov (United States)

    Chamberlain, Thomas W; Champness, Neil R; Schröder, Martin; Khlobystov, Andrei N

    2011-01-10

    We have developed a method that enables the efficient insertion of transition-metal atoms and their small clusters into carbon nanotubes. As a model system, Os complexes attached to the exterior of fullerene C60 (exohedral metallofullerenes) were shown to be dragged into the nanotube spontaneously and irreversibly due to strong van der Waals interactions, specific to fullerenes and carbon nanotubes. The size of the metal-containing groups attached to C60 was shown to be critical for successful insertion, as functional groups too bulky to enter the nanotube were stripped off the fullerene during the encapsulation process. Once inside the nanotube, Os atoms catalyse polymerisation and decomposition of fullerene cages, which is related to a much higher catalytic activity of metal atoms situated on the surface of the fullerene cage, as compared to metal atoms in endohedral fullerenes, such as M@C82. Thus, exohedral metallofullerenes show promise for applications in catalysis in carbon “nano” test tubes.

  9. Flow-driven voltage generation in carbon nanotubes

    Indian Academy of Sciences (India)

    A K Sood; S Ghosh; Anindya Das

    2005-10-01

    The flow of various liquids and gases over single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response generated by the flow of liquids is found to be logarithmic in the flow speed over a wide range. In contrast, voltage generated by the flow of gas is quadratically dependent on the gas flow velocity. It was found that the underlying physics for the generation of electrical signals by liquids and gases are different. For the liquid, the Coulombic interaction between the ions in the liquid and the charge carriers in the nanotube plays a key role while electrical signal generation due to gas flow is due to an interplay of Bernoulli's principle and Seebeck effect. Unlike the liquid case which is specific to the nanotubes, the gas flow effect can be seen for a variety of solids ranging from single and multi-walled carbon nanotubes, graphite and doped semiconductors.

  10. Carbon nanotube-ceramic nanocomposites: Synthesis and characterization

    Science.gov (United States)

    Clark, Michael David

    Ceramic materials are widely used in modern society for a variety of applications including fuel cell electrolytes, bio-medical implants, and jet turbines. However, ceramics are inherently brittle making them excellent candidates for mechanical reinforcement. In this work, the feasibility of dispersing multi-walled carbon nanotubes into a silicon carbide matrix for mechanical property enhancement is explored. Prior to dispersing, nanotubes were purified using an optimized, three step methodology that incorporates oxidative treatment, acid sonication, and thermal annealing rendering near-superhydrophobic behavior in synthesized thin films. Alkyl functionalized nanotube dispersability was characterized in various solvents. Dispersability was contingent on fostering polar interactions between the functionalized nanotubes and solvent despite the purely dispersive nature of the aliphatic chains. Interpretation of these results yielded values of 45.6 +/- 1.2, 0.78 +/- 0.04, and 2 4 +/- 0.9 mJ/m2 for the Lifshitz-van der Waals, electron acceptor and electron donor surface energy components respectively. Aqueous nanotube dispersions were prepared using a number of surfactants to examine surfactant concentration and pH effects on nanotube dispersability. Increasing surfactant concentrations resulted in a solubility plateau, which was independent of the surfactant's critical micelle concentration. Deviations from neutral pH demonstrated negligible influence on non-ionic surfactant adsorption while, ionic surfactants showed substantial pH dependent behavior. These results were explained in the context of nanotube surface ionization and Debye length variation. Successful MWNT dispersion into a silicon carbide based matrix is reported by in-situ ceramic formation using two routes; sol-gel chemistry and pre-ceramic polymeric precursor workup. For the former, nanotube dispersion was assisted by PluronicRTM surfactants. Pyrolytic treatment and consolidation of formed powders

  11. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.

    Science.gov (United States)

    Martinelli, Valentina; Cellot, Giada; Toma, Francesca Maria; Long, Carlin S; Caldwell, John H; Zentilin, Lorena; Giacca, Mauro; Turco, Antonio; Prato, Maurizio; Ballerini, Laura; Mestroni, Luisa

    2013-07-23

    Myocardial tissue engineering currently represents one of the most realistic strategies for cardiac repair. We have recently discovered the ability of carbon nanotube scaffolds to promote cell division and maturation in cardiomyocytes. Here, we test the hypothesis that carbon nanotube scaffolds promote cardiomyocyte growth and maturation by altering the gene expression program, implementing the cell electrophysiological properties and improving networking and maturation of functional syncytia. In our study, we combine microscopy, biological and electrophysiological methodologies, and calcium imaging, to verify whether neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes acquire a physiologically more mature phenotype compared to control (gelatin). We show that the carbon nanotube substrate stimulates the induction of a gene expression profile characteristic of terminal differentiation and physiological growth, with a 2-fold increase of α-myosin heavy chain (P carbon nanotubes appear to exert a protective effect against the pathologic stimulus of phenylephrine. Finally, cardiomyocytes on carbon nanotubes demonstrate a more mature electrophysiological phenotype of syncytia and intracellular calcium signaling. Thus, carbon nanotubes interacting with cardiomyocytes have the ability to promote physiological growth and functional maturation. These properties are unique in the current vexing field of tissue engineering, and offer unprecedented perspectives in the development of innovative therapies for cardiac repair.

  12. Magnetic studies of polystyrene/iron-filled multi-wall carbon nanotube composite films

    Science.gov (United States)

    Makarova, T. L.; Zakharchuk, I.; Geydt, P.; Lahderanta, E.; Komlev, A. A.; Zyrianova, A. A.; Kanygin, M. A.; Sedelnikova, O. V.; Suslyaev, V. I.; Bulusheva, L. G.; Okotrub, A. V.

    2016-10-01

    Polystyrene/iron-filled multi-wall carbon nanotube composite films were prepared by solution processing, forge-rolling and stretching methods. Elongated iron carbide nanoparticles formed because of catalytic growth are situated inside the hollow cavity of the nanotubes. Magnetic susceptibility measurements as well as records of isothermal hysteresis loops performed in three perpendicular directions of magnetic field confirmed that the nanotubes have a preferential alignment in the matrix. Strong diamagnetic anisotropy in the composites emerges not only from the MWCNTs but also from the polystyrene matrix. The polymer sticks to the honeycomb lattice through the interaction of the π-orbitals of the phenyl ring and those of the carbon nanotube, contributing to anisotropic diamagnetic response. The contribution of iron nanoparticles to overall magnetic response strongly depends on nanotube concentration in the composite as well as on matrix-filler non-covalent stacking, which influences magnetic interparticle interactions.

  13. Raman spectroscopy on carbon nanotubes at high pressure

    OpenAIRE

    Loa, I.

    2003-01-01

    Raman spectroscopy has been the most extensively employed method to study carbon nanotubes at high pressures. This review covers reversible pressure-induced changes of the lattice dynamics and structure of single- and multi-wall carbon nanotubes as well as irreversible transformations induced by high pressures. The interplay of covalent and van-der-Waals bonding in single-wall nanotube bundles and a structural distortion near 2 GPa are discussed in detail. Attempts of transforming carbon nano...

  14. Varied morphology carbon nanotubes and method for their manufacture

    Science.gov (United States)

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  15. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  16. A statistical mechanics model of carbon nanotube macro-films

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Carbon nanotube macro-films are two-dimensional films with micrometer thickness and centimeter by centimeter in-plane dimension.These carbon nanotube macroscopic assemblies have attracted significant attention from the material and mechanics communities recently because they can be easily handled and tailored to meet specific engineering needs.This paper reports the experimental methods on the preparation and characterization of single-walled carbon nanotube macro-films,and a statistical mechanics model on ...

  17. Continuous Growth of Vertically Aligned Carbon Nanotubes Forests

    OpenAIRE

    Guzman de Villoria, Roberto; Wardle, Brian L.

    2011-01-01

    Vertically aligned carbon nanotubes are one of the most promising materials due their numerous applications in flexible electronic devices, biosensors and multifunctional aircraft materials, among others. However, the costly production of aligned carbon nanotubes, generally in a batch process, prevents their commercial use. For the first time, a controlled process to grow aligned carbon nanotubes in a continuous manner is presented. Uniform growth is achieved using 2D and 3D substrates. A sig...

  18. Nanoscale Continuum Modelling of Carbon Nanotubes by Polyhedral Finite Elements

    Directory of Open Access Journals (Sweden)

    Logah Perumal

    2016-01-01

    Full Text Available As the geometry of a cell of carbon nanotube is hexagonal, a new approach is presented in modelling of single-walled carbon nanotubes using polyhedral finite elements. Effect of varying length, diameter, and thickness of carbon nanotubes on Young’s modulus is studied. Both armchair and zigzag configurations are modelled and simulated in Mathematica. Results from current approach found good agreement with the other published data.

  19. Can hydrogen be stored inside carbon nanotubes under pressure in gigapascal range?

    OpenAIRE

    Zhang, X. H.; Gong, X. G.; Z. F. Liu

    2006-01-01

    By using a newly fitted multi-parameter potential to describe the van der Waals interaction between carbon and molecular hydrogen, we study the hydrogen storage inside carbon nanotubes (CNT's) under pressure in gigapascal range. Comparing with the results of graphite, we find that the shape change of the nanotubes (the curvature effect) provides a different storage mechanism for hydrogen. The negative free energy change for hydrogen storage inside CNT's makes it possible to use CNT's as the n...

  20. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes

    OpenAIRE

    Heister, E; Neves, V.; Lamprecht, C.; Silva, SRP; Coley, HM; Mcfadden, J.

    2012-01-01

    We have designed a drug delivery system for the anti-cancer drugs doxorubicin and mitoxantrone based on carbon nanotubes, which is stable under biological conditions, allows for sustained release, and promotes selectivity through an active targeting scheme. Carbon nanotubes are particularly promising for this area of application due to their high surface area, allowing for high drug loading, and their unique interaction with cellular membranes. We have taken a systematic approach to PEG conju...