WorldWideScience

Sample records for carbon nanotube field

  1. External electric field effect on electron transport in carbon nanotubes

    OpenAIRE

    2012-01-01

    Electronic transport properties of carbon nanotubes are studied theoretically in the presence of external electric field E(t) by using the Boltzmann's transport with constant relaxation time. An analytical expression for the current densities of the nanotubes are obtained. It is observed that the current density-electric field characteristics of the CNs exhibit total self-induced transparency and absolute negative conductivity

  2. Carbon nanotubes field effect transistors biosensors

    Directory of Open Access Journals (Sweden)

    M.P. Marco

    2012-03-01

    Full Text Available Carbon nanotube transistor arrays (CNTFETs wereused as biosensors to detect DNA hybridization andto recognize two anabolic steroids, stanozolol (Stzand methylboldenone (MB. Single strand DNA andantibodies specific for STz and MB were immobilizedon the carbon nanotubes (CNTs in situ in the deviceusing two different approaches: direct noncovalentbonding of antibodies to the devices and covalentlytrough a polymer previously attached to theCNTFETs. A new approach to ensure specificadsorption of the biomolecules to the nanotubeswas developed. The polymer poly(methylmethacrylate0.8-co-poly (ethyleneglycolmethacrylate0.8-co-N-succinimidyl methacrylate0.1was synthesized and bonded noncovalently to thenanotube. Aminated single-strand DNA or antibodiesspecific for Stz and MB were then attached covalentlyto the polymer. Statistically significant changes wereobserved in key transistor parameters for both DNAhybridization and steroids recognition. Regardingthe detection mechanism, in addition to chargetransfer, Schottky barrier, SB, modification, andscattering potential reported by other authors, anelectron/hole trapping mechanism leading tohysteresis modification has been determined. Thepresence of polymer seems to hinder the modulationof the electrode-CNT contact.

  3. Tunneling phenomena in carbon nanotube field-effect transistors

    OpenAIRE

    Knoch, Joachim; Appenzeller, Joerg

    2008-01-01

    In the present article we will discuss the electronic transport properties of carbon nanotube field-effect transistors (CNFETs). Three different device concepts will be studied in more detail: Schottky-barrier CNFETs with metallic source and drain contacts, conventional-type CNFETs with doped nanotube segments as source and drain electrodes and finally a new concept, the tunneling CNFET. As it turns out, tunneling phenomena play a prominent role in all three CNFET designs and determine their ...

  4. Simulation and fabrication of carbon nanotubes field emission pressure sensors

    International Nuclear Information System (INIS)

    A novel field emission pressure sensor has been achieved utilizing carbon nanotubes (CNTs) as the electron source. The sensor consists of the anode sensing film fabricated by wet etching process and multi-wall carbon nanotubes (MWNTs) cathode in the micro-vacuum chamber. MWNTs on the silicon substrate were grown by thermal CVD. The prototype pressure sensor has a measured sensitivity of about 0.17-0.77 nA/Pa (101-550 KPa). The work shows the potential use of CNTs-based field-emitter in microsensors, such as accelerometers and tactile sensors

  5. Mechanism of Carbon Nanotubes Aligning along Applied Electric Field

    Institute of Scientific and Technical Information of China (English)

    MA Shao-Jie; GUO Wan-Lin

    2008-01-01

    The mechanism of single-walled carbon nanotubes (SWCNTS)aligning in the direction of external electric field is studied by quantum mechanics calculations.The rotational torque on the carbon nanotubes is proportional to the difference between the longitudinal and transverse polarizabilities and varies with the angle of SWCNTs to the external electric field.The longitudinal polarizability increases with second power of length,while the transverse polarizability increases linearly with length.A zigzag SWCNT has larger longitudinal and transverse polarizabilities than an armchair SWCNT with the same diameter and the discrepancy becomes larger for longer tubes.

  6. Field Emission from Carbon Nanotube/Tin Composite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bo; ZHANG Ya-fei

    2009-01-01

    Powder metallurgy was used to fabricate carbon nanotube (CNT) field emission cathodes. CNTs and tin (Sn) powder were blended, compacted and sintered. After polishing and etching, CNTs were exposed and protruded from the metal surface. CNTs were embedded into the Sn matrix, which acted as stable field emitters. The J-E curves show excellent field emission properties, such as low turn-on field of 2.8 V/μm, high emission current density and good current stability.

  7. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  8. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  9. Memristive model of hysteretic field emission from carbon nanotube arrays

    OpenAIRE

    Gorodetskiy, D. V.; Guselnikov, A. V.; Kanygin, S. N. Shevchenko M. A.; Okotrub, A. V.; Pershin, Y. V.

    2016-01-01

    Some instances of electron field emitters are characterized by frequency-dependent hysteresis in their current-voltage characteristics. We argue that such emitters can be classified as memristive systems and introduce a general framework to describe their response. As a specific example of our approach, we consider field emission from a carbon nanotube array. Our experimental results demonstrate a low-field hysteresis, which is likely caused by an electrostatic alignment of some of the nanotu...

  10. Field emission properties of the graphenated carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudson.zanin@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Ceragioli, H.J.; Peterlevitz, A.C.; Baranauskas, Vitor [Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Marciano, F.R.; Lobo, A.O. [Laboratory of Biomedical Nanotechnology/Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, SP (Brazil)

    2015-01-01

    Graphical abstract: - Highlights: • Facile method to prepare graphenated carbon nanotubes (g-CNTs). • The electric field emission behaviour of g-CNTs was studied. • g-CNTs show better emission current stability than non-graphenated CNTs. - Abstract: Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  11. Field emission from non-uniform carbon nanotube arrays

    OpenAIRE

    Dall'Agnol, Fernando F; den Engelsen, Daniel

    2013-01-01

    Regular arrays of carbon nanotubes (CNTs) are frequently used in studies on field emission. However, non-uniformities are always present like dispersions in height, radius, and position. In this report, we describe the effect of these non-uniformities in the overall emission current by simulation. We show that non-uniform arrays can be modeled as a perfect array multiplied by a factor that is a function of the CNTs spacing.

  12. Contacting single bundles of carbon nanotubes with alternating electric fields

    OpenAIRE

    Krupke, R.; Hennrich, F.; Weber, H. B.; Beckmann, D.; Hampe, O.; Malik, S.; Kappes, M. M.; Löhneysen, H. v.

    2002-01-01

    Single bundles of carbon nanotubes have been selectively deposited from suspensions onto sub-micron electrodes with alternating electric fields. We explore the resulting contacts using several solvents and delineate the differences between Au and Ag as electrode materials. Alignment of the bundles between electrodes occurs at frequencies above 1 kHz. Control over the number of trapped bundles is achieved by choosing an electrode material which interacts strongly with the chemical functional g...

  13. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures.

    Science.gov (United States)

    Zanin, H; May, P W; Hamanaka, M H M O; Corat, E J

    2013-12-11

    A thin diamond-like carbon (DLC) film was deposited onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the CNTs to clump together to form a microstructured surface. Field-emission tests of this new composite material show the typical low threshold voltages for carbon nanotube structures (2 V μm(-1)) but with greatly increased emission current, better stability, and longer lifetime. PMID:24224845

  14. Activation-free printed carbon nanotube field emitters

    International Nuclear Information System (INIS)

    When a carbon nanotube paste is formulated based on highly functional hyperbranched polymers such as dipentaerythritol hexaacrylate, the volume shrinkage during thermal curing builds up internal stress that generates microcrack patterns on the printed surface. The nanotubes exposed in the cracks emit electrons successfully at such an extremely low electric field as 0.5 V μm-1, and reach 25.5 mA cm-2 of current density at 2 Vμm-1 from an optimized paste concerning mainly the size and spatial uniformity of the crack. In addition to the superior field emission properties with low manufacturing cost, this activation-free technology can provide a minimized nanohazard in the device fabrication process, compared to those conventional activation technologies developing serious nanoflakes by using destructive methods.

  15. Water-methanol separation with carbon nanotubes and electric fields

    Science.gov (United States)

    Winarto, Affa; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-07-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol.Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing

  16. Mechanism of field electron emission from carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-bing; DENG Shao-zhi; XU Ning-sheng

    2006-01-01

    Field electron emission (FE) is a quantum tunneling process in which electrons are injected from materials (usually metals) into a vacuum under the influence of an applied electric field.In order to obtain usable electron current,the conventional way is to increase the local field at the surface of an emitter.For a plane metal emitter with a typical work function of 5 eV,an applied field of over 1000V/μm is needed to obtain a significant current.The high working field (and/or the voltage between the electrodes)has been the bottleneck for many applications of the FE technique.Since the 1960s,enormous effort has been devoted to reduce the working macroscopic field (voltage).A widely adopted idea is to sharpen the emitters to get a large surface field enhancement.The materials of emitters should have good electronic conductivity,high melting points,good chemical inertness,and high mechanical stiffness.Carbon nanotubes (CNTs) are built with such needed properties.As a quasi-one-dimensional material,the CNT is expected to have a large surface field enhancement factor.The experiments have proved the excellent FE performance of CNTs.The turn-on field (the macroscopic field for obtaining a density of 10 μA/cm2 ) of CNT based emitters can be as low as 1 V/μm.However,this turn-on field is too good to be explained by conventional theory.There are other observations,such as the non-linear Fowler-Nordheim plot and multi-peaks field emission energy distribution spectra,indicating that the field enhancement is not the only story in the FE of CNTs.Since the discovery of CNTs,people have employed more serious quantum mechanical methods,including the electronic band theory,tight-binding theory,scattering theory and density function theory,to investigate FE of CNTs.A few theoretical models have been developed at the same time.The multi-walled carbon nanotubes (MWCNTs)should be assembled with a sharp metal needle of nano-scale radius,for which the FE mechanism is more or less clear

  17. Electric field effect in the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, E., E-mail: ericvpp@gmail.com; Briceño-Fuenmayor, H. [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Física de Fluidos y Plasma (Venezuela, Bolivarian Republic of); Arévalo, J. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of); Atencio, R. [Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (Venezuela, Bolivarian Republic of); Corredor, L. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of)

    2015-06-15

    The growth of carbon nanotubes (CNTs) under a controlled electric field in a chemical vapor deposition system is investigated. We evaluate the influence of this external field on the morphological and structural characteristics of CNTs. Scanning electron microscopy results display a large presence of carbonaceous material in the positive plate, which appear to be a consequence of the attraction of electric forces over the electronically unbalanced cracked carbon molecules in the heating zone. We also observe a growth behavior for CNTs, in which catalyst particles are localized either at the bottom or the upper part of the nanotube, depending on the intensity and direction of the electric field. A Raman analysis from all obtained carbon materials shows the presence of two peaks, corresponding to the D ∼ 1340 cm{sup −1} and G ∼ 1590 cm{sup −1} bands attributed to multiwall CNTs. The average diameter of the CNTs is in the range between 90 and 40 nm. These results provide experimental evidence for the dependence of the catalyst and subtract interaction on the growing mechanism, in which weak chemical or electronic interactions could stimulate a top-growing as the strongest base-growing process.

  18. Enhanced field emission from nano-graphite coated carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI Qintao; NI Zhichun; GONG Jinlong; ZHU Dezhang; ZHU Zhiyuan

    2007-01-01

    An effective method by low energy carbonhydrogen ion treatment to enhance field emission of the carbon nanotubes (CNTs) is demonstrated. Comparing with control, field emission (FE) currents of the CNTs by carbonhydrogen ion irradiation increased, and the turn-on field and the threshold field decreased significantly. The structure characteristic revealed by transmission electron microscopy demonstrates that CNTs are coated by nano-graphite particles after being treated with low energy carbonhydrogen ion and that there are large quantities of defects and grain boundaries in the coated layer. It is considered that the coating layer can decrease the effective surface work function of CNTs and correspondingly increase field emission. In addition, the defects, the grain boundaries and the C-H dipoles forming in the process of the low energy ions irradiation can effectively enhance the field emission.

  19. INFLUENCES OF DENSITY AND DIMENSION OF CARBON NANOTUBES ON THEIR FIELD EMISSION

    Institute of Scientific and Technical Information of China (English)

    Y.B. Zhu; W.L. Wang; C.G. Hu

    2003-01-01

    The influences of density and dimension of carbon nanotubes on their electron emission from arrays are studied. The tip electric field of nanotubes, electric field enhancement factor, and optimum nanotube density are expressed by analytic equations. The theoretical analyses show that the field enhancement factor is sensitive to nanotube density, and can be sharply improved at a specific and optimum density. Some experiments have demonstrated these. Owning to electrostatic screening effect, the length of carbon nanotubes has little effect on their emission. A uniformly-distributed carbon nanotube array model is set up, and applied to analysis of carbon nanotube arrays.The results obtained here are in good agreement with the experimental data.

  20. Growth of carbon nanotube field emitters on single strand carbon fiber: a linear electron source

    International Nuclear Information System (INIS)

    The multi-stage effect has been revisited through growing carbon nanotube field emitters on single strand carbon fiber with a thickness of 11 μm. A prepared linear electron source exhibits a turn-on field as low as 0.4 V μm-1 and an extremely high field enhancement factor of 19 300, when compared with those results from reference nanotube emitters grown on flat silicone wafer; 3.0 V μm-1 and 2500, respectively. In addition, we introduce a novel method to grow nanotubes uniformly around the circumference of carbon fibers by using direct resistive heating on the continuously feeding carbon threads. These results open up not only a new path for synthesizing nanocomposites, but also offer an excellent linear electron source for special applications such as backlight units for liquid crystal displays and multi-array x-ray sources.

  1. Potential of carbon nanotube field effect transistors for analogue circuits

    KAUST Repository

    Hayat, Khizar

    2013-05-11

    This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET\\'s potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.

  2. Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Chen, Miaoxiang Max; Mølhave, Kristian;

    2011-01-01

    Patterning carbon nanotubes into an array of pillars makes it possible to increase the electrical field strength applied across a separation column by more than one order of magnitude.......Patterning carbon nanotubes into an array of pillars makes it possible to increase the electrical field strength applied across a separation column by more than one order of magnitude....

  3. Analytical optimization for field emission of carbon nanotube array

    Institute of Scientific and Technical Information of China (English)

    WANG XinQing; LI Liang; CHEN Min; JIN HongXiao; JIN DingFeng; PENG Min; GE HongLiang

    2009-01-01

    To optimize field emission (FE) property of carbon nanotube (CNT) array on a planar cathode surface,the Fowler-Nordheim formula has been used to discuss the maximum of the emission current density with the floating sphere model in this paper. The emission current density is dominating as the ane-lytical Fowler-Nordheim function of the intertube distance, and the maximum of the emission current density is deduced and discussed. The results indicate that the intertube distance in CNT array criti-cally affects the field enhancement factor and the emission current density, whose maximum occurs at the intertube distance approximating a tenth of the tube height. Considering the emission current den-sity and the field enhancement factor, the FE can be optimized analytically when the intertube distance is about a tenth of the tube height.

  4. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  5. Microwave Spectroscopy of Carbon Nanotube Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Mina A. N.

    2010-10-01

    Full Text Available The quantum transport property of a carbon nanotube field effect transistor (CNTFET is investigated under the effect of microwave radiation and magnetic field. The photon-assisted tunneling probability is deduced by solving Dirac equation. Then the current is deduced according to Landauer-Buttiker formula. Oscillatory behavior of the current is observed which is due to the Coulomb blockade oscillations. It was found, also, that the peak heights of the dependence of the current on the parameters under study are strongly affected by the interplay between the tunneled electrons and the photon energy. This interplay affects on the sidebands resonance. The results obtained in the present paper are found to be in concordant with those in the literature, which confirms the correctness of the proposed model. This study is valuable for nanotechnology applications, e.g., photo-detector devices and solid state quantum computing systems and quantum information processes.

  6. Measurement of ionizing radiation using carbon nanotube field effect transistor

    International Nuclear Information System (INIS)

    Single-walled carbon nanotubes (SWNTs) are a new class of highly promising nanomaterials for future nano-electronics. Here, we present an initial investigation of the feasibility of using SWNT field effect transistors (SWNT-FETs) formed on silicon-oxide substrates and suspended FETs for radiation dosimetry applications. Electrical measurements and atomic force microscopy (AFM) revealed the intactness of SWNT-FET devices after exposure to over 1 Gy of 6 MV therapeutic x-rays. The sensitivity of SWNT-FET devices to x-ray irradiation is elucidated by real-time dose monitoring experiments and accumulated dose reading based on threshold voltage shift. SWNT-FET devices exhibit sensitivities to x-rays that are at least comparable to or orders of magnitude higher than commercial MOSFET (metal-oxide semiconductor field effect transistor) dosimeters and could find applications as miniature dosimeters for microbeam profiling and implantation. (note)

  7. Carbon nanotube quantum-dot under external magnetic field

    International Nuclear Information System (INIS)

    Full text: Carbon nanotube heterostructures are very interesting systems that may exhibit metallic-semiconducting properties depending upon the choice of the component tubes. In particular, quantum dots made of carbon tubes are shown to exhibit discrete and interface states[1] that may be modulated not only by changing the dot size, but also applying an external magnetic field and/or bias gate voltage. The mechanical stability of these modeled junctions composed of intercalated pentagon/heptagon pairs, disposed along the circumferential tube direction, is studied in the present work. Numerical Monte Carlo simulations are performed by using a Terso interatomic potential. The results show unambiguously that (12,0)/(6, 6)N/(12,0)[2] dots (N being the number of rings forming the dot) are stable structures, composed solely by metallic tubes. Local density of states are obtained via a single-band tight binding Hamiltonian and the conductance is calculated within the Landauer formalism. We also discuss how the electronic and transport properties change when an external magnetic field is applied along the axial direction of the dot. Besides, the shifting of the single-electron levels and metal-insulator transitions may be analysed including spin-B interaction (Zeeman effect). It should be noted that the electronic properties of this purely metallic carbon nanotube system may be controlled taking into account all these factors and interesting transport characteristics may be studied from these nanostructures. 1] C. G. Rocha, T. G. Dargam, and A. Latge, Phys. Rev. B 65, 165431 (2002). [2] L. Chico, W. Jaskolski, Mic. Jour. 35, 3 (2004).(author)

  8. Composite electrode of carbon nanotubes and vitreous carbon for electron field emission

    OpenAIRE

    Matsubara, EY; Rosolen, JM; Silva, SRP

    2008-01-01

    In this work, the electron field emission behaviour of electrodes formed by carbon nanotubes (CNTs) grown onto monolithic vitreous carbon (VCarbon) substrates with microcavities is presented. Scanning electron microscopy was used to characterize the microstructure of the films. Tungsten probes, stainless steel sphere, and phosphor electrodes were employed in the electron field emission study. The CNT/VCarbon composite represents a route to inexpensive excellent large area electron emission ca...

  9. Evaluations of carbon nanotube field emitters for electron microscopy

    International Nuclear Information System (INIS)

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I-V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6x109 A/m2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  10. A Two-Dimensional Extremely Short Optical Pulse in a System of Carbon Nanotubes in a Direct Current Electric Field

    Science.gov (United States)

    Belonenko, M. B.; Galkina, E. N.; Filimonova, Z. A.

    2016-03-01

    The effect of an external dc electric field on the two-dimensional extremely short optical pulse propagating in a zigzag carbon nanotube array was investigated. The electromagnetic field evolution in the investigated nanotube system is described by the Maxwell equations. Using numerical simulation, the interaction between the pulse electromagnetic field and the external electric field applied to the carbon nanotube array is analyzed.

  11. Dynamics of carbon nanotube alignment by electric fields

    International Nuclear Information System (INIS)

    The dynamics of multiwall carbon nanotube (MWCNT) alignment inside viscous media using electric fields is investigated. Electrical current measurements were performed in situ during the application of an electric field to liquid solutions of deionized water or dissolved polymer containing MWCNTs. The variation of electrical current over time was associated to the dynamics of the MWCNT network formation. The influence of the electric field magnitude and frequency on the MWCNT network formation was studied. MWCNT migration towards the negative electrode was observed when a direct current electric field was applied, whereas formation of an aligned MWCNT network was achieved for an alternating current electric field. The increase of the electric field frequency promotes a faster formation of an aligned MWCNT network and thinner MWCNT bundles. A higher viscosity of the liquid medium yields slower MWCNT alignment evidenced by a slower change of electrical current through the viscous system. An analytical model based on the dielectrophoresis-induced torque, which considers the viscosity of the medium, is also proposed to explain the dynamics of MWCNT alignment. Furthermore, aligned MWCNT/polysulfone solid composites were fabricated and electrically characterized. The solid composites presented anisotropic electrical conductivity, which was more evident for low MWCNT concentrations (0.1–0.2 wt%). (paper)

  12. Carbon nanotube based field emission X-ray sources

    Science.gov (United States)

    Cheng, Yuan

    This dissertation describes the development of field emission (FE) x-ray sources with a carbon-nanotube (CNT) cathode. Field emission x-rays have advantages over conventional x-rays by replacing the thermionic cathode with a cold cathode so that electrons are emitted at room temperature and emission is voltage controllable. CNTs are found to be excellent electron emitters with low threshold fields and high current density which makes them ideal for generate field emission x-rays. Macroscopic CNT cold cathodes are prepared and the parameters to tune their field emission properties are studied: structure and morphology of CNT cathodes, temperature as well as electronic work function of CNT. Macroscopic CNT cathodes with optimized performance are chosen to build a high-resolution x-ray imaging system. The system can readily generate x-ray radiation with continuous variation of temporal resolution up to nanoseconds and spatial resolution down to 10 micron. Its potential applications for dynamic x-ray imaging and micro-computed tomography are also demonstrated. The performance characteristics of this compact and versatile system are promising for non-destructive testing and for non-invasive small-animal imaging for biomedical research.

  13. Effect of a focusing electric field on the formation of arc generated carbon nanotubes

    Science.gov (United States)

    Karmakar, Soumen; Nagar, Harshada; Pasricha, R.; Seth, T.; Sathe, V. G.; Bhoraskar, S. V.; Das, A. K.

    2006-12-01

    The effect of a focusing electric field on the formation of carbon nanotubes in a direct current arc-plasma is investigated. The hard deposits on the surface of the cathode are the main products, rich in multi-walled carbon nanotubes. It is seen that the focusing electric field has a distinct influence on the yield, purity and morphology of the nanotubes. The yield of the carbon nanotubes under the 'focused field condition' has been found to be higher than that derived from the normal electrode configuration. It has been observed that the deposition of carbonaceous soot on the reactor wall is considerably reduced on application of the focusing electric field. Transmission electron microscopy has been used to determine the morphology of the nanotubes. In addition, Raman spectroscopy has helped in distinguishing the graphene-like structures from the disordered carbon networks and helped in analysing the morphology of the tubes. Thermal analysis gave a qualitative estimation of the relative yield of carbon nanotubes within the cathode deposits and their thermal stabilities. The crystalline nature of the samples has been confirmed by x-ray diffraction analysis. The results clearly indicate that the focusing electric field confines the positively charged carbon precursors within the cathode-anode space causing high relative yield and purity and has a distinct effect on controlling the inner diameter of the as-synthesized carbon nanotubes.

  14. Negative Differential Conductivity in Carbon Nanotubes in the Presence of an External Electric Field

    OpenAIRE

    Abukari, S. S.; Mensah, S. Y. Mensah N. G.; Adu, K. W.; Dompreh, K. A.; Twum, A. K.

    2011-01-01

    We study theoretically the electron transport properties in carbon nanotubes under the influence of an external electric field E(t) using Boltzmann's equation. The current-density equation is derived. Negative differential conductivity is predicted when {\\omega}{\\tau}

  15. Self aligned hysteresis free carbon nanotube field-effect transistors

    Science.gov (United States)

    Shlafman, M.; Tabachnik, T.; Shtempluk, O.; Razin, A.; Kochetkov, V.; Yaish, Y. E.

    2016-04-01

    Hysteresis phenomenon in the transfer characteristics of carbon nanotube field effect transistor (CNT FET) is being considered as the main obstacle for successful realization of electronic devices based on CNTs. In this study, we prepare four kinds of CNTFETs and explore their hysteretic behavior. Two kinds of devices comprise on-surface CNTs (type I) and suspended CNTs (type II) with thin insulating layer underneath and a single global gate which modulates the CNT conductance. The third and fourth types (types III and IV) consist of suspended CNT over a metallic local gate underneath, where for type IV the local gate was patterned self aligned with the source and drain electrodes. The first two types of devices, i.e., type I and II, exhibit substantial hysteresis which increases with scanning range and sweeping time. Under high vacuum conditions and moderate electric fields ( |E |>4 ×106 V /cm ), the hysteresis for on-surface devices cannot be eliminated, as opposed to suspended devices. Interestingly, type IV devices exhibit no hysteresis at all at ambient conditions, and from the different roles which the global and local gates play for the four types of devices, we could learn about the hysteresis mechanism of this system. We believe that these self aligned hysteresis free FETs will enable the realization of different electronic devices and sensors based on CNTs.

  16. Electrostatic Simulation of Charge Trapping in Carbon Nanotube Vertical Organic Field Effect Transistors

    Science.gov (United States)

    Crawford, Jennifer; Rinzler, Andrew; Hershfield, Selman

    The carbon nanotube vertical organic field effect transistor is a vertical sequence consisting of a gate electrode, gate dielectric, thin nanotube network source electrode, organic semiconducting channel and finally the drain electrode. The drain current is modulated by the gate voltage which varies a Schottky barrier between source and channel layers. Hysteresis in the current-voltage characteristic has been observed when a electret charge trapping layer is placed between the nanotube source and the gate dielectric. We provide a model for charge injection into a trapping layer placed in contact with the carbon nanotube film and solve self-consistently for the electrostatics and the occupancy of the traps. For a range of applied gate voltages the simulations demonstrate hysteresis of the carbon nanotubes' charge as a result of the electric field produced by the trapped charge. This affects the current by modulating the Schottky barrier. This work was supported by the NSF Grant DMR-1461019.

  17. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  18. DESIGN OF MODULO-6-COUNTER USING CARBON NANOTUBE FIELD EFFECT TRANSISTOR

    Directory of Open Access Journals (Sweden)

    V.Saravanan

    2012-11-01

    Full Text Available In many digital applications like digital clock, frequency divider circuit and nano applications etc., designing of low power modulo counters is highly desirable. Designing of such a counters using existing technology i.e., CMOS technology has the limitations in-terms of power consumption, device scaling limitations andfabrications difficulties in nanometre range. This paper proposes the new design technique for modulo counters using the carbon nanotube field effect transistor (CNTFET. Counter performance is analyzed interms of speed and power consumption. This paper also analyses carbon nanotube (CNT types, how the carbon nanotube is formed, and scaling limitations of the CMOS technology in nanometre range.

  19. Negative Quantum Capacitance of Carbon Nanotube Field-Effect Transistors

    OpenAIRE

    Latessa, L.; Pecchia, A.; Di Carlo, A.; P. Lugli

    2004-01-01

    Atomistic density functional theory (DFT) calculations of the capacitance between a metallic cylindric gate and a carbon nanotube (CNT) are reported. Results stressing the predominant effect of quantum capacitance in limiting or even enhancing screening properties of the CNT are shown. Other contributions to the quantum capacitance beyond the electronic density of state (DOS) are pointed out. Negative values of the quantum capacitance are obtained for low-density systems, which correspondingl...

  20. Carbon nanotubes field-effect transistor for rapid detection of DHA

    International Nuclear Information System (INIS)

    This paper presents the development of DNA sensor based on a network carbon nanotubes field effect transistor (CNTFETs) for Escherichia coli bacteria detection. The DNA sequences were immobilized on single-walled carbon nanotubes of transistor CNTFETs by using absorption. The hybridization of the DNA probe sequences and complementary DNA strands was detected by electrical conductance change from the electron doping by DNA hybridization directly on the carbon nanotubes leading to the change in the metal-CNTs barrier energy through the modulation of the electrode work function of carbon nanotubes field effect transistor. The results showed that the response time of DNA sensor was approximately 1 min and the sensitivity of DNA sensor was at 0.565 μA/nM; the detection limit of the sensor was about 1 pM of E. coli bacteria sample. (author)

  1. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.

    Science.gov (United States)

    Agarwal, Sanjay; Yamini Sarada, B; Kar, Kamal K

    2010-02-10

    Tungsten substrates were coated with an Ni or Ni-Co catalyst by the electroless dip coating technique. Various carbon nanotubes were synthesized by the catalytic chemical vapor deposition (CVD) method under different growth conditions. It was observed that Ni-and Ni-Co-coated tungsten substrates give very good growth of carbon nanotubes (CNT) in terms of yield, uniformity and alignment at a growth temperature of 600 degrees C. We fabricated a field-emission-based luminescent light bulb where a tungsten wire coated with carbon nanotubes served as a cathode. Results show lower threshold voltage, better emission stability and higher luminescence for CNT cathodes in comparison with uncoated tungsten cathodes. We found that aligned-coiled carbon nanotubes are superior to straight CNTs in terms of field emission characteristics and luminescence properties. PMID:20057034

  2. Applications of Carbon Nanotubes

    Science.gov (United States)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  3. Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis

    OpenAIRE

    Stokes, Paul; Khondaker, Saiful I.

    2007-01-01

    We present a simple and scalable technique for the fabrication of solution processed & local gated carbon nanotube field effect transistors (CNT-FETs). The approach is based on directed assembly of individual single wall carbon nanotube from dichloroethane via AC dielectrophoresis (DEP) onto pre-patterned source and drain electrodes with a local aluminum gate in the middle. Local-gated CNT-FET devices display superior performance compared to global back gate with on-off ratios 10^4 and maximu...

  4. Optical trapping of cold neutral atoms using a two-color evanescent light field around a carbon nanotube

    International Nuclear Information System (INIS)

    We suggest a new schema of trapping cold atoms using a two-color evanescent light field around a carbon nanotube. The two light fields circularly polarized sending through a carbon nanotube generates an evanescent wave around this nanotube. By evanescent effect, the wave decays away from the nanotube producing a set of trapping minima of the total potential in the transverse plane as a ring around the nanotube. This schema allows capture of atoms to a cylindrical shell around the nanotube. We consider some possible boundary conditions leading to the non-trivial bound state solution. Our result will be compared to some recent trapping models and our previous trapping models.

  5. Solution processed large area field effect transistors from dielectrophoreticly aligned arrays of carbon nanotubes

    OpenAIRE

    Stokes, Paul; Silbar, Eliot; Zayas, Yashira M.; Khondaker, Saiful I.

    2008-01-01

    We demonstrate solution processable large area field effect transistors (FETs) from aligned arrays of carbon nanotubes (CNTs). Commercially available, surfactant free CNTs suspended in aqueous solution were aligned between source and drain electrodes using ac dielectrophoresis technique. After removing the metallic nanotubes using electrical breakdown, the devices displayed p-type behavior with on-off ratios up to ~ 2X10^4. The measured field effect mobilities are as high as 123 cm2/Vs, which...

  6. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    Institute of Scientific and Technical Information of China (English)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with monovacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.

  7. Coupled mode space approach for the simulation of realistic carbon nanotube field-effect transistors

    OpenAIRE

    Fiori, Gianluca; Iannaccone, Giuseppe; Klimeck, Gerhard

    2007-01-01

    A coupled mode space approach within the nonequiibriurn Green's function formalism is presented, which allows to perform simulations of realistic carbon nanotube field-effect transistors (CNT-FETs) with no spatial symmetry. Computing :time is significantly reduced with respect to the real space ap)roach, since only few modes are needed in order to obtain accurate results. The advantage of the method increases with increasing nanotube diameter, and is a factor of 20 in computing time for a (25...

  8. Chirality Changes in Carbon Nanotubes Studied with Near-Field Raman Spectroscopy

    OpenAIRE

    Anderson, Neil; Hartschuh, Achim; Novotny, Lukas

    2007-01-01

    We report on the direct visualization of chirality changes in carbon nanotubes by mapping local changes in resonant RBM phonon frequencies with an optical resolution of 40 nm using near-field Raman spectroscopy. We observe the transition from semiconducting-to-metal and metal-to-metal chiralities at the single nanotube level. Our experimental findings, based on detecting changes in resonant RBM frequencies, are complemented by measuring changes in the G-band frequency and line shape. In addit...

  9. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes

    International Nuclear Information System (INIS)

    Individual carbon nanotube (CNT) field emission characteristics present a number of advantages for potential applications in electron microscopy and electron beam lithography. Mechanical and electrical reliability of individual CNT cathodes, however, remains a challenge and thus device integration of these cathodes has been limited. In this work, we present an investigation into the reliability issues concerning individual CNT field emission cathodes. We also introduce and analyze the reliability of a novel individual CNT cathode. The cathode structure is composed of a multi-walled carbon nanotube (MWNT) attached by Joule heating to a nickel-coated Si microstructure. The junction of the CNT and the Si microstructure is mechanically and electrically robust to withstand the strong electric field conditions that are typical for field emission devices. An optimal Ni film coating of 25 nm on the Si microstructure is required for mechanical and electrical stability. Experimental current-voltage data for the new cathode structure definitively demonstrates carbon nanotube field emission. Additionally, we demonstrate that our new nanofabrication method is capable of producing sophisticated cathode structures that were previously not realizable, such as one consisting of two parallel MWNTs, with highly controlled CNT lengths with 40 nm accuracy and nanotube-to-nanotube separations of less than 10 μm

  10. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ribaya, Bryan P; Leung, Joseph; Brown, Philip; Nguyen, Cattien V [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Rahman, Mahmud [Electron Devices Laboratory, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 (United States)], E-mail: Cattien.V.Nguyen@nasa.gov

    2008-05-07

    Individual carbon nanotube (CNT) field emission characteristics present a number of advantages for potential applications in electron microscopy and electron beam lithography. Mechanical and electrical reliability of individual CNT cathodes, however, remains a challenge and thus device integration of these cathodes has been limited. In this work, we present an investigation into the reliability issues concerning individual CNT field emission cathodes. We also introduce and analyze the reliability of a novel individual CNT cathode. The cathode structure is composed of a multi-walled carbon nanotube (MWNT) attached by Joule heating to a nickel-coated Si microstructure. The junction of the CNT and the Si microstructure is mechanically and electrically robust to withstand the strong electric field conditions that are typical for field emission devices. An optimal Ni film coating of 25 nm on the Si microstructure is required for mechanical and electrical stability. Experimental current-voltage data for the new cathode structure definitively demonstrates carbon nanotube field emission. Additionally, we demonstrate that our new nanofabrication method is capable of producing sophisticated cathode structures that were previously not realizable, such as one consisting of two parallel MWNTs, with highly controlled CNT lengths with 40 nm accuracy and nanotube-to-nanotube separations of less than 10 {mu}m.

  11. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    International Nuclear Information System (INIS)

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed

  12. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  13. Anomalous electrostatic potential properties in carbon nanotube thin films under a weak external electric field

    OpenAIRE

    Ishiyama, U; Cuong, Nguyen Thanh; Okada, Susumu

    2016-01-01

    Using density functional theory, we studied the electronic properties of carbon nanotube (CNT) thin films under an electric field. The carrier accumulation due to the electric field depends strongly on the CNT species forming the thin films. Under a low electron concentration, the injected electrons are distributed throughout the CNTs, leading to an unusual electric field between CNTs, the direction of which is opposite to that of the applied field. This unusual field response of CNT thin fil...

  14. Field-effect ion-transport devices with carbon nanotube channels: schematics and simulations

    International Nuclear Information System (INIS)

    We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  15. Field-effect ion-transport devices with carbon nanotube channels: schematics and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Yul; Kang, Jeong Won; Byun, Ki Ryang; Kang, Eu Seok; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Kim, Young Min [Chung-Cheong University, Cheongwon (Korea, Republic of)

    2004-08-15

    We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  16. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    Directory of Open Access Journals (Sweden)

    Yuning Sun

    2014-07-01

    Full Text Available The carbon nanotube (CNT field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm2. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  17. Analytic solution of charge density of single wall carbon nanotube in conditions of field electron emission

    OpenAIRE

    Li, Zhibing; Wang, Weiliang

    2006-01-01

    We derived the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external field parallel to the tube axis.

  18. Plasma excitations in a single-walled carbon nanotube with an external transverse magnetic field

    Indian Academy of Sciences (India)

    K A Vijayalakshmi; T P Nafeesa Baby

    2013-02-01

    The effect of different uniform transverse external magnetic fields in plasma frequency when propagated parallel to the surface of the single-walled metallic carbon nanotubes is studied. The classical electrodynamics as well as Maxwell’s equations are used in the calculations. Equations are developed for both short- and long-wavelength limits and the variations are studied graphically.

  19. Simulation of Carbon Nanotubes and Resonant Excitation of their Mechanical Vibrations by Electromagnetic Field for Nanoradio Applications.

    OpenAIRE

    Barkaline, Viatcheslav; Abramov, Igor; Belogurov, Eugene; Chashynski, Aliaksandr; Labunov, Vladimir; Pletezhov, Alexander; Shukevich, Yaroslav

    2012-01-01

    Hierarchical approach to simulation of carbon nanotube properties is discussed. Results of finite element method (FEM) simulation of resonant excitation of the vibrations of carbon nanotubes and their bundles by microwave electromagnetic fields due to ponderomotive forces are presented and discussed from the viewpoint of nanoradio design.

  20. Modelling of Chirality-Dependent Current-Voltage Characteristics of Carbon-Nanotube Field-Effect Transistors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; WANG Yan; YU Zhi-Ping

    2006-01-01

    @@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.

  1. A carbon nanotube field emission cathode with high current density and long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Colon, Xiomara; Zhou, Otto [Curriculum in Applied Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Geng Huaizhi; Gao Bo [Xintek, Incorporated, 7020 Kit Creek Road, Research Triangle Park, NC (United States); An Lei; Cao Guohua [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2009-08-12

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. However, problems including short lifetime at high current density, instability under high voltage, poor emission uniformity, and pixel-to-pixel inconsistency are still major obstacles for device applications. We developed an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The cathodes have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. The application of this CNT electron source for high-resolution x-ray imaging is demonstrated.

  2. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leifeng, E-mail: chlf@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); He, Hong; Yu, Hua; Cao, Yiqi [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Lei, Da, E-mail: leida126@126.com [Ordos College of Inner Mongolia University, Inner Mongolia University, Ordos 017000 (China); Menggen, QiQiGe [Ordos College of Inner Mongolia University, Inner Mongolia University, Ordos 017000 (China); Wu, Chaoxing; Hu, Liqin [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350002 (China)

    2014-10-15

    The graphene (GP) and multi-walled carbon nanotubes (MCNTs) hybrid nanostructure emitter was constructed by a larger scale electrophoretic deposition (EPD) method. The field emission (FE) performance of the hybrid emitter is greatly improved compared with that of only GP or MCNTs emitter. The low turn-on electric field (EF), the low threshold EF and the reliability FE properties are obtained from the hybrid emitter. The better FE properties result from the improved electrical properties. For further enhancement FE of hybrids, Ag Nanoparticles (NPs) were decorated on the hybrids and FE characteristics were also studied. These studies indicate that we can use the hybrid nanostructure to improve conductivity and contact resistance, which results in enhancement of the FE properties.

  3. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  4. Stationary scanning x-ray source based on carbon nanotube field emitters

    Science.gov (United States)

    Yang, Guang; Zhang, Jian; Cheng, Yuan; Gao, Bo; Qiu, Qi; Lee, Yueh; Lu, Jianping; Zhou, Otto

    2006-03-01

    Carbon nanotube is an ideal field emitter thanks to its large aspect ratio and small diameter. Based on its field emission property, we have developed a stationary scanning x-ray source, which can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis.

  5. Fast phase transition of water molecules in a defective carbon nanotube under an electric field

    Science.gov (United States)

    Meng, Xianwen; Huang, Jiping

    2016-02-01

    We utilize molecular dynamics simulations to study the effect of an electric field on the permeation of water molecules through a defective single-walled carbon nanotube (DSWCNT). Compared with a perfect single-walled carbon nanotube (PSWCNT), the behaviors of water molecules respond more quickly under the same electric field in a DSWCNT. Wet-dry phase transition of water molecules occurs when the electric field reaches 0.32 V/nm, which is much lower than the case of the PSWCNT. Besides, the critical electric field is affected by the number of defects. These results pave a way for designing fast wet-dry transition devices and provide a new insight into water permeation through a defective nanochannel.

  6. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    International Nuclear Information System (INIS)

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred  °C

  7. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    Energy Technology Data Exchange (ETDEWEB)

    Cahay, M.; Zhu, W. [Spintronics and Vacuum Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Fairchild, S. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433 (United States); Murray, P. T.; Back, T. C. [Research Institute, University of Dayton, Dayton, Ohio 45469-0170 (United States); Center of Excellence for Thin Film Research and Surface Engineering, University of Dayton, Dayton, Ohio 45469-0170 (United States); Gruen, G. J. [Research Institute, University of Dayton, Dayton, Ohio 45469-0170 (United States)

    2016-01-18

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred  °C.

  8. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    OpenAIRE

    Wang, Sigen; Calderon, Xiomara; Peng, Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-01-01

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5×10)...

  9. Electrical conductivity of single-wall carbon nanotube films in strong electric field

    OpenAIRE

    Seliuta, D; Subačius, L; Kašalynas, I; Shuba, M.; Paddubskaya, A.

    2013-01-01

    (Received 6 March 2013; accepted 26 April 2013; published online 14 May 2013) Carrier transport features in single-wall carbon nanotube (SWCNT) films under strong electric fields (up to 105 V/cm) are presented. Application of electrical pulses of nanosecond duration allowed to minimize Joule heating and resolve intrinsic nonlinearities with the electric field. Investigations within a wide range of temperatures—4.2–300 K—indicated that carrier localization as well as tunneling t...

  10. Non-collinear spin-orbit magnetic fields in a carbon nanotube double quantum dot

    OpenAIRE

    Hels, Morten Canth; Braunecker, Bernd; Grove-Rasmussen, Kasper; Nygård, Jesper

    2016-01-01

    We demonstrate experimentally that non-collinear intrinsic spin-orbit magnetic fields can be realized in a curved carbon nanotube two-segment device. Each segment, analyzed in the quantum dot regime, shows near four-fold degenerate shell structure allowing for identification of the spin-orbit coupling and the angle between the two segments. Furthermore, we determine the four unique spin directions of the quantum states for specific shells and magnetic fields. This class of quantum dot systems...

  11. Plumbing carbon nanotubes

    Science.gov (United States)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  12. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Ashok Srivastava; Yao Xu; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  13. Dynamic characteristics of multi-walled carbon nanotubes under a transverse magnetic field

    Indian Academy of Sciences (India)

    S Li; H J Xie; X Wang

    2011-02-01

    This paper reports the results of an investigation into the effect of transverse magnetic fields on dynamic characteristics of multi-walled carbon nanotubes (MWNTs). Couple dynamic equations of MWNTs subjected to a transverse magnetic field are derived and solved by considering the Lorentz magnetic forces induced by a transverse magnetic field exerted on MWCNTs. Results show that the transverse magnetic field exerted on MWNTs makes the lowest frequency of the MWNTs nonlinearly decrease and the highest frequency, changeless. When the strength of applied transverse magnetic fields is larger than a given value the two walls of MWNTs appear in the radial and axial coaxial vibration phenomena.

  14. Evaluation of Aromatic Boronic Acids as Ligands for Measuring Diabetes Markers on Carbon Nanotube Field-Effect Transistors

    OpenAIRE

    Steingrimur Stefansson; Lára A. Stefansson; Suk-won Chung; Kevin Ko; Hena H. Kwon; Saeyoung Nate Ahn

    2012-01-01

    Biomolecular detections performed on carbon nanotube field-effect transistors (CNT-FETs) frequently use reactive pyrenes as an anchor to tether bioactive ligands to the hydrophobic nanotubes. In this paper, we explore the possibility of directly using bioactive aromatic compounds themselves as CNT-FET ligands. This would be an efficient way to functionalize CNT-FETs since many aromatic compounds bind avidly to nanotubes, and it would also ensure that ligand-binding molecules would be brought ...

  15. Distinguishing Field Effects from Charge Effects in the Optoelectronic Properties of Carbon Nanotube Films

    International Nuclear Information System (INIS)

    We have used charge-induced absorption to quantify the influence of injected charges on electro absorption measurements in single-wall carbon nanotube films. The interpretations of experimental measurements of X processes in nanotubes are simplified by taking into account the change in electron-electron interactions upon charge injection. Electro absorption spectra that are properly corrected for charge-induced effects show remarkable agreement with a simple Stark shift of the exciton transitions with no notable second-derivative contributions. Thus, distinguishing electric field effects from carrier density effects allows for a more rigorous calculation of exciton polarizability from electro absorption measurements, even in heterogeneous films. PACS: 78.67.Ch Nanotubes: optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures.

  16. A simple drain current model for Schottky-barrier carbon nanotube field effect transistors

    International Nuclear Information System (INIS)

    We report on a new computational model to efficiently simulate carbon nanotube-based field effect transistors (CNT-FET). In the model, a central region is formed by a semiconducting nanotube that acts as the conducting channel, surrounded by a thin oxide layer and a metal gate electrode. At both ends of the semiconducting channel, two semi-infinite metallic reservoirs act as source and drain contacts. The current-voltage characteristics are computed using the Landauer formalism, including the effect of the Schottky barrier physics. The main operational regimes of the CNT-FET are described, including thermionic and tunnel current components, capturing ambipolar conduction, multichannel ballistic transport and electrostatics dominated by the nanotube capacitance. The calculations are successfully compared to results given by more sophisticated methods based on non-equilibrium Green's function formalism (NEGF)

  17. Fast water channeling across carbon nanotubes in far infrared terahertz electric fields

    Science.gov (United States)

    Zhang, Qi-Lin; Yang, Rong-Yao; Jiang, Wei-Zhou; Huang, Zi-Qian

    2016-01-01

    Using molecular dynamics simulations, we investigate systematically the water permeation properties across single-walled carbon nanotubes (SWCNT) in the presence of the terahertz electric field (TEF). With the TEF normal to the nanotube, the fracture of the hydrogen bonds results in the giant peak of net fluxes across the SWCNT with a three-fold enhancement centered around 14 THz. The phenomenon is attributed to the resonant mechanisms, characterized by librational, rotational, and rotation-induced responses of in-tube polar water molecules to the TEF. For the TEF along the symmetry axis of the nanotube, the vortical modes for resonances and consequently the enhancement of net fluxes are greatly suppressed by the alignment of polar water along the symmetry axis, which characterizes the quasi one-dimensional feature of the SWCNT nicely. The resonances of water molecules in the TEF can have potential applications in the high-flux device designs used for various purposes.Using molecular dynamics simulations, we investigate systematically the water permeation properties across single-walled carbon nanotubes (SWCNT) in the presence of the terahertz electric field (TEF). With the TEF normal to the nanotube, the fracture of the hydrogen bonds results in the giant peak of net fluxes across the SWCNT with a three-fold enhancement centered around 14 THz. The phenomenon is attributed to the resonant mechanisms, characterized by librational, rotational, and rotation-induced responses of in-tube polar water molecules to the TEF. For the TEF along the symmetry axis of the nanotube, the vortical modes for resonances and consequently the enhancement of net fluxes are greatly suppressed by the alignment of polar water along the symmetry axis, which characterizes the quasi one-dimensional feature of the SWCNT nicely. The resonances of water molecules in the TEF can have potential applications in the high-flux device designs used for various purposes. Electronic supplementary

  18. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhixian [ORNL; Eres, Gyula [ORNL; Jin, Rongying [ORNL; Subedi, Alaska P [ORNL; Mandrus, David [ORNL; Kim, Eugene [ORNL

    2009-01-01

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  19. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zhixian [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Eres, Gyula; Jin Rongying; Subedi, Alaska; Mandrus, David [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, Eugene H [Department of Physics, University of Windsor, Windsor, ON, N9B 3P4 (Canada)], E-mail: zxzhou@wayne.edu

    2009-02-25

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  20. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    International Nuclear Information System (INIS)

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  1. Field-ion microscopy observation of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    张兆祥; 张耿民; 杜民; 金新喜; 侯士敏; 孙建平; 顾镇南; 赵兴钰; 刘惟敏; 吴锦雷; 薛增泉

    2002-01-01

    Field-ion microscopy (FIM), a tool for surface analysis with atomic resolution, has been employed to observethe end structure of single-walled carbon nanotubes (SWCNTs). FIM images revealed the existence of open SWCNTends. Amorphous carbon atoms were also observed to occur around SWCNTs and traditional field evaporation failedto remove them. Heat treatment was found to be efficacious in altering the end structures of SWCNT bundles. Carbonand oxygen atoms released from heated tungsten filament are believed to be responsible for the decoration imposed onthe SWCNT ends.

  2. DFT modelling of bulk-modulated carbon nanotube field-effect transistors

    OpenAIRE

    Latessa, L.; Pecchia, A.; Di Carlo, A.

    2005-01-01

    We report density-functional theory (DFT), atomistic simulations of the non-equilibrium transport properties of carbon nanotube (CNT) field-effect transistors (FETs). Results have been obtained within a self-consistent approach based on the non-equilibrium Green's functions (NEGF) scheme. Our attention has been focused on a new kind of devices, the so called bulk-modulated CNTFETs. Recent experimental realizations \\cite{Chen,Lin_condMat} have shown that such devices can exhibit excellent perf...

  3. Temperature Dependence of Electrical Characteristics of Carbon Nanotube Field-Effect Transistors: A Quantum Simulation Study

    OpenAIRE

    Ali Naderi; S. Mohammad Noorbakhsh; Hossein Elahipanah

    2012-01-01

    By developing a two-dimensional (2D) full quantum simulation, the attributes of carbon nanotube field-effect transistors (CNTFETs) in different temperatures have been comprehensively investigated. Simulations have been performed by employing the self-consistent solution of 2D Poisson-Schrödinger equations within the nonequilibrium Green's function (NEGF) formalism. Principal characteristics of CNTFETs such as current capability, drain conductance, transconductance, and subthreshold swing (SS)...

  4. Determination of the electrostatic lever arm of carbon nanotube field effect transistors using Kelvin Force Microscopy

    OpenAIRE

    Brunel, David; Deresmes, Dominique; Melin, Thierry

    2009-01-01

    We use Kelvin Force Microscopy (KFM) to study the electrostatic properties of single-walled Carbon Nanotube Field Effect Transistor devices (CNTFETs) with backgate geometry at room temperature. We show that KFM maps recorded as a function of the device backgate polarization enable a complete phenomenological determination of the averaging effects associated with the KFM probe side capacitances, and thus, to obtain KFM measurements with quantitative character. The value of the electrostatic le...

  5. Characterization of X-ray charge neutralizer using carbon-nanotube field emitter

    Science.gov (United States)

    Okawaki, Shuhei; Abo, Satoshi; Wakaya, Fujio; Yamashita, Hayato; Abe, Masayuki; Takai, Mikio

    2016-06-01

    An X-ray charge neutralizer using a screen-printed carbon-nanotube field emitter is demonstrated to show the possibility of a large-area flat-panel charge neutralizer, although the device dimensions in the present work are not very large. The X-ray yields and spectra are characterized to estimate the ion generation rate as one of the figures of merit of neutralizers. Charge neutralization characteristics are measured and show good performance.

  6. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

    International Nuclear Information System (INIS)

    Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C2H2 and H2 at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/μm and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

  7. Numerical Modeling of the I-V Characteristics of Carbon Nanotube Field Effect Transistors

    OpenAIRE

    Marulanda, Jose Mauricio; Srivastava, Ashok

    2010-01-01

    Previous works in carbon nanotubes describing a relationship between the gate voltage and the carbon nanotube potential have made possible the implementation of a current equation, which can be solved numerically using any mathematical software, in order to find the current voltage characteristic for any given CNT-FET. The results presented provide designers with useful mathematical relations describing the properties of conductivity of carbon nanotubes and their response in circuit applicati...

  8. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    OpenAIRE

    Ram Pavani; Kodithyala Vinay

    2011-01-01

    Carbon nanotubes (CNTs) are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Funct...

  9. Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis

    International Nuclear Information System (INIS)

    We present a simple and scalable technique for the fabrication of solution processed and local-gated carbon nanotube field effect transistors (CNT-FETs). The approach is based on the directed assembly of individual single-walled carbon nanotubes from dichloroethane via AC dielectrophoresis (DEP) onto pre-patterned source and drain electrodes with a local aluminum gate in the middle. Local-gated CNT-FET devices display superior performance compared to a global back gate with on-off ratios >104 and maximum subthreshold swings of 170 mV/dec. The local bottom-gated DEP-assembled CNT-FETs will facilitate large-scale fabrication of complementary metal-oxide-semiconductor (CMOS) compatible nanoelectronic devices

  10. Field emission from optimized structure of carbon nanotube field emitter array

    Science.gov (United States)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-04-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  11. Effect of an intersection of carbon nanotubes on the carrier accumulation under an external electric field

    Science.gov (United States)

    Kochi, Taketo; Okada, Susumu

    2016-08-01

    We studied the electronic structure of semiconducting carbon nanotube (CNT) thin films, in which CNTs intersect each other, under an external electric field, using first-principles total-energy calculations within the framework of the density functional theory. Our calculations show that the distribution of accumulated carriers strongly depends on the CNT species, their mutual arrangement with respect to the electrode, and carrier concentrations. Under particular conditions, an induced electric field between the CNTs is opposite to the applied field. We also showed that the quantum capacitance of the CNT thin films depends on the arrangement of the CNTs relative to the electrode.

  12. Optimization of Magnetic Field-Assisted Synthesis of Carbon Nanotubes for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Grzegorz Raniszewski

    2014-10-01

    Full Text Available One of the most effective ways of synthesizing carbon nanotubes is the arc discharge method. This paper describes a system supported by a magnetic field which can be generated by an external coil. An electric arc between two electrodes is stabilized by the magnetic field following mass flux stabilization from the anode to the cathode. In this work four constructions are compared. Different configurations of cathode and coils are calculated and presented. Exemplary results are discussed. The paper describes attempts of magnetic field optimization for different configurations of electrodes.

  13. Stationary scanning x-ray source based on carbon nanotube field emitters

    International Nuclear Information System (INIS)

    We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup

  14. Field emission properties of carbon nanotubes in a stretchable polydimethylsiloxane matrix

    International Nuclear Information System (INIS)

    The stretchable conducting films are fabricated by screen-printing method combined with polydimethylsiloxane (PDMS) infiltration. This film is a hybrid composite film formed by embedding carbon nanotubes in a PDMS matrix. The sheet resistance is measured with the tensile strain, and the film maintains electric conductivity at the strain up to 55%. The composite film is used as cathode to measure the field emission properties under varying stretching conditions, which is sensitive to the strain. Through the images of field emission scanning electron microscope, the formed pinholes on the surface are found to be contributed to the change in field emission performance.

  15. Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes.

    Science.gov (United States)

    Su, Yanjie; Zhang, Yaozhong; Wei, Hao; Zhang, Liling; Zhao, Jiang; Yang, Zhi; Zhang, Yafei

    2012-03-01

    We report a facile and scalable approach to synthesize single-walled carbon nanotubes (SWNTs) with selected diameter distribution by applying a magnetic field perpendicular to the electric field in the arc plasma region. It is found that this magnetic field-induced diameter-selectivity strategy enables the control of the SWNTs with different diameter distributions in different regions, and the diameter-selective efficiency could be enhanced by modifying the direction of magnetic field. Our results indicate that the motions of the catalysts with different particle sizes, positive carbon ions and electrons are significantly influenced by the magnetic field and electromagnetic force, resulting in the different nucleation and growth processes of SWNTs due to the collective interactions between the magnetic field and arc plasma. This approach would enable a viable route towards the synthesis of SWNTs with desired diameter through the tuning of arc parameters in the arc discharge process. PMID:22301844

  16. Parallel and orthogonal E-field alignment of single-walled carbon nanotubes by ac dielectrophoresis

    International Nuclear Information System (INIS)

    We designed planar electrodes, for dielectrophoretic manipulation of single-walled carbon nanotubes (SWNTs), built as metal-oxide-semiconductor nanogap capacitors with common substrate and oxide thicknesses of 17 and 150 nm. Such design generates high electric fields (109 V m-1) and also the fringing field is curved due to the conducting substrate, unlike fields generated by conventionally used planar electrodes. Scanning electron microscopy images showed SWNTs aligned parallel and perpendicular to the electrodes. Raman spectroscopic mapping was used to produce separate images of the metallic (m-SWNT) and semiconducting (s-SWNT) nanotube density distributions. As expected, parallel alignment of the m-SWNTs with the E-field was found; however, also a perpendicular alignment of s-SWNTs was observed. Such orthogonal alignment of s-SWNTs is a rare observation and has not been experimentally reported before in detail with Raman images. Due to the unique electrode design, we were able to obtain substantial separation of m-SWNTs and s-SWNTs. Numerical modeling of the electric field factor of the dielectrophoresis force was done, and it matched perfectly with the experimental results. The orthogonal alignment of s-SWNTs results from comparable values of parallel and perpendicular polarizability to the nanotube axis.

  17. Carbon nanotubes decorating methods

    OpenAIRE

    A.D. Dobrzańska-Danikiewicz; D. Łukowiec; D. Cichock; W. Wolany

    2013-01-01

    Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studie...

  18. Functionalization of Carbon Nanotubes

    OpenAIRE

    Abraham, Jürgen

    2005-01-01

    Carbon nanotubes have an enormous potential due to their outstanding electronic, optical, and mechanical properties. However, any technological application is still hindered due to problems regarding the processibility of the pristine carbon nanotubes. In the past few years, it has been shown that the chemical modification of the carbon nanotubes is an inevitable step prior to their application. The first part of this work (chapter 3.1) was focused on the purification of pristine laser ablati...

  19. Influence of Zn ion implantation on structures and field emission properties of multi-walled carbon nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The structures and field emission properties of multi-walled carbon nanotube arrays implanted with Zn+ by MEVVA ion implanter have been investigated.The results revealed that Zn+implantation induced structural damage and that the top of carbon nanotubes with multi-layered graphite structure were transformed into carbon nanowires with amorphous structure.Meanwhile,C:Zn solid solution was synthesized after Zn+ implantation.The turn-on field and threshold field were 0.80 and 1.31 V/μm,respectively for original multi-walled carbon nanotube arrays and were reduced to 0.66 and 1.04 V/μm due to the synthesis of C and Zn composite,in which the work function was reduced after low doses of Zn+implantation.It is indicated that low doses of Zn+implantation can improve field emission performance of multi-walled carbon nanotube arrays.Otherwise,high doses of Zn+implantation can reduce field emission properties of multi-walled carbon nanotube arrays,because radiation damage reduces the electric field enhancement factor.

  20. Carbon nanotubes with atomic impurities on boron nitride sheets under applied electric fields

    OpenAIRE

    Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun

    2013-01-01

    We perform first-principles calculations to investigate the structural and electronic properties of metal-doped (10, 0) carbon nanotubes (CNTs) on a single hexagonal boron nitride (hBN) sheet in the presence of an external electric field. We consider K, Cl and Ni atoms as dopants to study the dependence of the electronic properties of the CNT on doping polarity and concentration. The electric field strength is varied from -0.2 V/\\AA to +0.2 V/\\AA to explore the effects of an external electric...

  1. Using hydrocarbon as a carbon source for synthesis of carbon nanotube by electric field induced needle-pulsed plasma

    International Nuclear Information System (INIS)

    In this work different hydrocarbons are used as the carbon source, in the production of carbon nanotubes (CNTs) and nano onions. An electric field induced needle pulse arc-discharge reactor is used. The influence of starting carbon on the synthesis of CNTs is investigated. The production efficiency is compared for Acetone, Isopropanol and Naphthalene as simple hydrocarbons. The hydrocarbons are preheated and then pretreated by electric field before being exposed to plasma. The hydrocarbon vapor is injected into plasma through a graphite spout in the cathode assembly. The pulsed plasma takes place between two graphite rods while a strong electric field has been already established alongside the electrodes. The pulse width is 0.3 μs. Mechanism of precursor decomposition is discussed by describing three forms of energy that are utilized to disintegrate the precursor molecules: thermal energy, electric field and kinetic energy of plasma. Molecular polarity of a hydrocarbon is one of the reasons for choosing carbon raw material as a precursor in an electric field induced low power pulsed-plasma. The results show that in order to obtain high quality carbon nanotubes, Acetone is preferred to Isopropanol and Naphthalene. Scanning probe microscopy techniques are used to investigate the products. - Highlights: • We synthesized CNTs (carbon nano tubes) by needle pulsed plasma. • We use different hydrocarbons as carbon source in the production of CNTs. • We investigated the influence of starting carbon on the synthesis of CNTs. • Thermal energy, electric field and kinetic energy are used to break carbon bonds. • Polar hydrocarbon molecules are more efficient than nonpolar ones in production

  2. Field emission properties of carbon nanotube cathodes produced using composite plating

    International Nuclear Information System (INIS)

    Field emission properties of carbon nanotube field emission cathodes (CNT-FECs) produced using composite plating are studied. The experiment uses a CNT suspension and electroless Ni plating bath to carry out composite plating. The CNTs were first purified by an acid solution, dispersed in a Ni electrobath, and finally co-deposited with Ni on glass substrates to synthesize electrically conductive films. Field emission scanning electron microscopy and Raman spectroscopy results show that the field emission characteristics and graphitic properties of CNT-FECs depend on the pH value of the electrobath. Experiments show that the optimum electrobath pH value is 5.4, achieving a field emission current density of 1.0 mA/cm2 at an applied electric field of 1.5 V/μm. The proposed CNT-FECs possess good field emission characteristics and have potential for backlight unit application in liquid crystal displays.

  3. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  4. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy.

    Science.gov (United States)

    Anderson, Neil; Hartschuh, Achim; Novotny, Lukas

    2007-03-01

    We report on the direct visualization of chirality changes in carbon nanotubes by mapping local changes in resonant RBM phonon frequencies with an optical resolution of 40 nm using near-field Raman spectroscopy. We observe the transition from semiconducting-to-metal and metal-to-metal chiralities at the single nanotube level. Our experimental findings, based on detecting changes in resonant RBM frequencies, are complemented by measuring changes in the G-band frequency and line shape. In addition, we observe increased Raman scattering due to local defects associated with the structural transition. From our results, we determine the spatial extent of the transition region to be Ltrans approximately 40-100 nm. PMID:17324000

  5. Teslaphoresis of Carbon Nanotubes.

    Science.gov (United States)

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  6. Densification effects of the carbon nanotube pillar array on field-emission properties

    Science.gov (United States)

    Wang, Kuang-Yu; Chou, Chia-Hsin; Liao, Chan-Yu; Li, Yu-Ren; Cheng, Huang-Chung

    2016-06-01

    In this study, a simple densification method for carbon nanotube (CNT) pillars is proposed to achieve high-performance field emission characteristics and stable emission. Through capillary force during solution evaporation, the CNT density in each pillar can be increased by about six times without causing damage to the crystallinity of CNTs. The densified CNT pillars exhibit lower series resistance, sharper pillars, better contacts, higher thermal conductivity, and better mechanical stiffness than as-grown ones. Therefore, the threshold field of the field emitter with such CNT pillars of 50 µm height can be reduced to 1.98 V/µm, as compared with 2.2 V/µm for the undensified ones. Moreover, the fluctuation of field-emission current decreases from 15.5 to 9.4% after the stress tests at a field of 2 V/µm for 1800 s. These findings imply that the densified CNT pillars are promising for the field-emission applications.

  7. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    Science.gov (United States)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  8. Amp\\`ere-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    CERN Document Server

    Mihalcea, D; Hartzell, J; Panuganti, H; Boucher, S M; Murokh, A; Piot, P; Thangaraj, J C T

    2015-01-01

    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.

  9. Transparent Conductive Coating Based on Carbon Nanotubes Using Electric Field Deposition Method

    International Nuclear Information System (INIS)

    The transparent conductive coating based on carbon nanotubes (CNTs) had been fabricated using the electric field deposition method. The scanning electron microscope (SEM) results show a quite uniform CNTs on Corning glass substrates. Moreover the X-ray Diffraction (XRD) results shows the peak at around 25 deg. which proves the existence of CNT materials. The CNT thin films obtained with different deposition times have different transmittance coefficients at wavelength of 550 nm. I-V measurement results shows higher sheet resistance value which relates with bigger transmittance coefficients and vice versa.

  10. Dynamic response of carbon nanotube field-effect transistors analyzed by S-parameters measurement

    International Nuclear Information System (INIS)

    Carbon nanotube field-effect transistors (CN-FET) with a metallic back gate have been fabricated. By assembling a number of CNs in parallel, driving currents in the mA range have been obtained. The dynamic response of the CN-FETs has been investigated through S-parameters measurements. A current gain (|H 21|2) cut-off frequency (f t) of 8 GHz, and a maximum stable gain (MSG) value of 10 dB at 1 GHz have been obtained. The extraction of an equivalent circuit is proposed

  11. Dynamic response of carbon nanotube field-effect transistors analyzed by S-parameters measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bethoux, J.-M. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France); Happy, H. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France)]. E-mail: henri.happy@iemn.univ-lille1.fr; Dambrine, G. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France); Derycke, V. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France); Goffman, M. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France); Bourgoin, J.-P. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France)

    2006-12-15

    Carbon nanotube field-effect transistors (CN-FET) with a metallic back gate have been fabricated. By assembling a number of CNs in parallel, driving currents in the mA range have been obtained. The dynamic response of the CN-FETs has been investigated through S-parameters measurements. A current gain (|H {sub 21}|{sup 2}) cut-off frequency (f {sub t}) of 8 GHz, and a maximum stable gain (MSG) value of 10 dB at 1 GHz have been obtained. The extraction of an equivalent circuit is proposed.

  12. Coherent field emission from a multi-walled carbon nanotube with two open-ended branches

    International Nuclear Information System (INIS)

    Interference fringes are obtained in a field-emission microscopy (FEM) study of a multi-walled carbon nanotube (MWCNT) with two open-ended branches. The FEM pattern, which is composed of three parallel streaks, can be interpreted by using classical Young's double-slit interference with the ends of the two MWCNT branches treated as two secondary sources of the electron wave. The origin of the coherency of the electron beams from the two branches is discussed on the basis of the quantitative analysis of the FEM pattern. The result suggests a new approach to obtaining a coherent electron source. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Performances of carbon nanotube field effect transistors with altered channel length

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The influence of channel length on the performances of carbon nanotube field effect transistors(CNT-FETs) has been studied.Buffered oxide etching was used to remove approximately a 60 nm layer from the original 100 nm silicon dioxide layer,to thin the dielectric layer of the back gate.Channel length of the CNT-FETs was changed along with the etching process.The dependence of drain-source current on gate voltage was measured to analyze the performance of the CNT-FETs,including the transconductance,carrier mobility,current ON/OFF ratio,etc.The results indicate that the devices still keep good quality.

  14. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    Science.gov (United States)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2012-05-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.

  15. Improving the field-emission properties of carbon nanotubes by magnetically controlled nickel-electroplating treatment

    Institute of Scientific and Technical Information of China (English)

    Zheng Long-Wu; Hu Li-Qin; Xiao Xiao-Jing; Yang Fan; Lin He; Guo Tai-Liang

    2011-01-01

    A novel magnetically controlled Ni-plating method has been developed to improve the field-emission properties of carbon nanotubes (CNTs).The effect of the magnetic field and Ni-electroplating on CNT field-emission properties was investigated,and the results are demonstrated using scanning electron microscopy,J-E and the duration test.After treatment,the turn-on electric field declines from 1.55 to 0.91 V/μm at an emission current density of 100 μA/cm2,and the emission current density increases from 0.011 to 0.34 mA/cm2 at an electric field of 1.0 V/μm.Both the brightness and uniformity of the CNT emission performance are improved after treatment.

  16. Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes.

    Science.gov (United States)

    Uda, T; Yoshida, M; Ishii, A; Kato, Y K

    2016-04-13

    Electrical activation of optical transitions to parity-forbidden dark excitonic states in individual carbon nanotubes is reported. We examine electric-field effects on various excitonic states by simultaneously measuring photocurrent and photoluminescence. As the applied field increases, we observe an emergence of new absorption peaks in the excitation spectra. From the diameter dependence of the energy separation between the new peaks and the ground state of E11 excitons, we attribute the peaks to the dark excited states which became optically active due to the applied field. Field-induced exciton dissociation can explain the photocurrent threshold field, and the edge of the E11 continuum states has been identified by extrapolating to zero threshold. PMID:26999284

  17. Carbon-Nanotube-Based Normally-on-Driving Under-Gate field Emission Display Panel

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xue-fei; YIN Han-chun; WANG Bao-ping

    2006-01-01

    A carbon-nanotube-based normally-on-driving under-gate field emission display (FED) panel and its operation principle are presented.In this panel,field emission electrons are extracted directly from the cathode by the high anode voltage.The image is realized by modulating the voltage of under-gate,whose value is less than the cathode voltage,to stop the cathode producing field emission electrons.The electric field inside the emission region is calculated by the finite element method.The emission property of the cathode is also studied by numerical calculation method.The results indicate that a uniform and large emission area can be obtained in this new under-gate FED panel.This study provides powerful theoretic support for the feasibility of this new kind of under-gate FED panel.

  18. Influence of contact height on the performance of vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2013-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been experimentally demonstrated (J. Li et al., Carbon, 2012, 50, 4628-4632). The source and drain contact heights in vertical CNTFETs could be much higher than in flat CNTFETs if the fabrication process is not optimized. To understand the impact of contact height on transistor performance, we use a semi-classical method to calculate the characteristics of CNTFETs with different contact heights. The results show that the drain current decreases with increasing contact height and saturates at a value governed by the thickness of the oxide. The current reduction caused by the increased contact height becomes more significant when the gate oxide is thicker. The higher the drain voltage, the larger the current reduction. It becomes even worse when the band gap of the carbon nanotube is larger. The current can differ by a factor of more than five between the CNTEFTs with low and high contact heights when the oxide thickness is 50 nm. In addition, the influence of the contact height is limited by the channel length. The contact height plays a minor role when the channel length is less than 100 nm. © 2013 The Royal Society of Chemistry.

  19. Impact of Scaling Gate Insulator Thickness on the Performance of Carbon Nanotube Field Effect Transistors (CNTFETs

    Directory of Open Access Journals (Sweden)

    Devi Dass

    2013-05-01

    Full Text Available As scaling down Si MOSFET devices degrade device performance in terms of short channel effects. Carbon nanotube field effect transistor (CNTFET is one of the novel nanoelectronics devices that overcome those MOSFET limitations. The carbon nanotube field effect transistors (CNTFETs have been explored and proposed to be the promising candidate for the next generation of integrated circuit (IC devices. To explore the role of CNTFETs in future integrated circuits, it is important to evaluate their performance. However, to do that we need a model that can accurately describe the behavior of the CNTFETs so that the design and evaluation of circuits using these devices can be made. In this paper, we have investigated the effect of scaling gate insulator thickness on the device performance of cylindrical shaped ballistic CNTFET in terms of transfer characteristics, output characteristics, average velocity, gm/Id ratio, mobile charge, quantum capacitance/insulator capacitance, drive current (Ion, Ion / Ioff ratio, transconductance, and output conductance. We concluded that the device metrics such as Ion, Ion / Ioff ratio, transconductance, and output conductance increases with the decrease in gate insulator thickness. Also, we concluded that the gate insulator thickness reduction causes subthreshold slope close to the theoretical limit of 60 mV/decade and DIBL close to zero at room temperature.

  20. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinzhuo; Ou-Yang, Wei, E-mail: ouyangwei@phy.ecnu.edu.cn; Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Xu, Peng; Wang, Miao [Department of Physics, Zhejiang University, 38 ZheDa Road, Hangzhou 310027 (China); Li, Jun [Department of Electronic Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201804 (China)

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  1. Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters

    Science.gov (United States)

    Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun

    2016-07-01

    We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.

  2. Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.

    Science.gov (United States)

    Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-Guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun

    2016-07-01

    We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices. PMID:27233004

  3. ULTRAHIGH MAGNETIC FIELD OPTICAL STUDY OF SINGLE-WALLED CARBON NANOTUBES FILM

    Directory of Open Access Journals (Sweden)

    Mukhtar Effendi

    2012-02-01

    Full Text Available Excitons in Single-Walled Carbon Nanotubes (SWNTs have emerged as an ideal candidate for exploring one-dimensional (1-D exciton physics. Exciton states which dominate optical properties of SWNTs even at room temperature, are not clarify yet. The optical absorption spectra of aligned SWNTs films under ultra high magnetic fields up to 190 T are examined to investigate this issue. Shifting and splitting of the absorption peaks due to Aharonov-Bohm effect was observed clearly above 80 T in the configuration where the magnetic fields were applied in parallel to the alignment of SWNTs. The lowest singlet exciton state has been determined through the analysis of energy splitting of excitons by the application of magnetic fields.   Keywords: blue shift, optically active, optically inactive, red shift, single-turn coil system

  4. High brightness field emission from printed carbon nanotubes in an S-band microwave gun

    Science.gov (United States)

    Wang, Qilong; Li, Xiangkun; Di, Yusong; Yu, Cairu; Zhang, Xiaobing; Li, Ming; Lei, Wei

    2016-02-01

    Printed carbon nanotubes (CNTs) were applied as cold cathode and placed into an S-band microwave gun operating at 2856 MHz with the pulse duration of 2.8 μs. High brightness field emission was demonstrated and the current density achieves the value more than 4.2 A/cm2. The emittance of field emission beam is calculated to be nearly 21 μm based on the beam profile of emission electrons monitored via yttrium aluminum garnet screen. The infrared image of printed CNTs confirms that the emitters in the center contributed more electrons and the heat generated during the large current density field emission. The results in the paper imply that randomly distributed printed CNTs have the potential to be applied as the high brightness electron sources for free electron lasers.

  5. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  6. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    International Nuclear Information System (INIS)

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  7. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  8. Carbon nanotube macroelectronics

    Science.gov (United States)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  9. Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon

    KAUST Repository

    Li, Jingqi

    2014-07-01

    A vertical carbon nanotube field-effect transistor (CNTFET) based on silicon (Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube (SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage (Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.

  10. Field emission from multi-walled carbon nanotubes and its application to electron tubes

    Science.gov (United States)

    Saito, Y.; Hamaguchi, K.; Uemura, S.; Uchida, K.; Tasaka, Y.; Ikazaki, F.; Yumura, M.; Kasuya, A.; Nishina, Y.

    Field emission from closed and open-ended multi-walled nanotubes (MWNTs) was studied by field-emission microscopy. As an application of nanotube field emitters, we manufactured lighting elements with the structure of a triode-type vacuum tube by replacing the conventional thermionic cathodes with the MWNT field emitters. Stable electron emission, adequate luminance and long life of the tubes have been demonstrated.

  11. Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Prasantha R. Mudimela

    2012-01-01

    Full Text Available Single-walled carbon nanotube network field effect transistors were fabricated and studied as humidity sensors. Sensing responses were altered by changing the gate voltage. At the open channel state (negative gate voltage, humidity pulse resulted in the decrease of the source-drain current, and, vice versa, the increase in the source-drain current was observed at the positive gate voltage. This effect was explained by the electron-donating nature of water molecules. The operation speed and signal intensity was found to be dependent on the gate voltage polarity. The positive or negative change in current with humidity pulse at zero-gate voltage was found to depend on the previous state of the gate electrode (positive or negative voltage, respectively. Those characteristics were explained by the charge traps in the gate dielectric altering the effective gate voltage, which influenced the operation of field effect transistor.

  12. Performance analysis of junctionless carbon nanotube field effect transistors using NEGF formalism

    Science.gov (United States)

    Barbastegan, Saber; Shahhoseini, Ali

    2016-04-01

    This paper presents the simulation study of a junctionless carbon nanotube field effect transistor (JL-CNTFET) and a comparison is made with the conventional CNTFET using the atomistic scale simulation, within the non-equilibrium Green’s function (NEGF) formalism. In order to have a comprehensive analysis, both analog and digital parameters of the device are studied. Results have shown that JL-CNTFET with respect to C-CNTFET shows slightly higher ION/IOFF ratio about two times larger than that of C-CNTFET, smaller electric field along channel more than three order of magnitude and reduced tunneling current about 100 times. In addition, the investigation of analog properties of both devices has exhibited that junctionless structure has a transconductance about two times and an intrinsic gain of 15 dB larger than C-CNTFET in same bias condition which makes JL-CNTFET a promising candidate for low voltage analog applications.

  13. Field-effect transistors with multiple channels constructed by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    CHEN; Changxin; ZHANG; Yafei

    2005-01-01

    Single-wall carbon nanotubes (SWNTs) pre-decorated with functional molecules are directly aligned in the AC electric field, which makes SWNTs parallelly bridge the source and drain electrodes and act as the multiple conduction channels of the field-effect transistor (FET). The method avoids the mutual tanglement of SWNTs and makes them align between the source and drain electrodes abreast and dispersedly. It is indicated that aligning SWNTs in the high-volatility solvents can decrease the contaminant around the electrodes and has a function to purify the raw SWNTs. The obtained multi-channel FET not only takes on a high transconductance, but also holds the good reliability and stability.

  14. Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor.

    Science.gov (United States)

    Fu, Wangyang; Xu, Zhi; Bai, Xuedong; Gu, Changzhi; Wang, Enge

    2009-03-01

    We demonstrate the intrinsic memory function of ferroelectric field-effect transistors (FeFETs) based on an integration of individual single-walled carbon nanotubes (SWCNTs) and epitaxial ferroelectric films. In contrast to the previously reported "charge-storage" CNT-FET memories, whose operations are haunted by a lack of control over the "charge traps", the present CNT-FeFETs exhibit a well-defined memory hysteresis loop induced by the reversible remnant polarization of the ferroelectric films. Large memory windows approximately 4 V, data retention time up to 1 week, and ultralow power consumption (energy per bit) of femto-joule, are highlighted in this report. Further simulations and experimental results show that the memory device is valid under operation voltage less than 1 V due to an electric-field enhancement effect induced by the ultrathin SWCNTs. PMID:19206218

  15. Building a backlight unit with lateral gate structure based on carbon nanotube field emitters

    International Nuclear Information System (INIS)

    This paper describes the fabrication of a backlight unit for liquid crystal display based on printed carbon nanotube field emitters with lateral gate and additional mesh structures. The device architecture has been optimized through field emission characterization and supporting numerical simulation. The emission current depends strongly on the cathode-gate gap, mesh position, and mesh bias. Direct observation of luminous images on a phosphor screen reveals that the electron beams undergo a noticeable shrinkage along the lateral direction with increasing anode bias, which is in good agreement with the simulation results. We suggest and demonstrate a modified structure equipped with double emitter edges leading to ∼20% improved phosphor efficiency (34.4 lm W-1) and luminance (9600 cd m-2), compared to those from a single edge structure.

  16. Conducting carbonized polyaniline nanotubes

    Science.gov (United States)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  17. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  18. FLUIDIZATION OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    Fei Wei; Cang Huang; Yao Wang

    2005-01-01

    Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.

  19. Carbon nanotubes: Fibrillar pharmacology

    Science.gov (United States)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  20. Enhanced Field-Emission Performance from Carbon Nanotube Emitters on Nickel Foam Cathodes

    Science.gov (United States)

    Song, Meng; Xu, Peng; Han, Lijing; Yi, Lan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wang, Xiumin; Wu, Huizhen; Zhao, Pei; Song, Yenan; Wang, Miao

    2016-04-01

    We present a three-dimensionally configured cathode with enhanced field-emission performance formed by combining carbon nanotube (CNT) emitters with a nickel foam (NiF) substrate via a conventional screen-printing technique. The CNT/NiF cathode has low turn-on electric field of 0.53 V μm-1 (with current density of 10 μA cm-2) and threshold electric field of 0.87 V μm-1 (with current density of 0.1 mA cm-2), and a very high field enhancement factor of 1.4 × 104. The porous structure of the NiF substrate can greatly improve the field-emission properties due to its large specific surface area that can accommodate more CNTs and increase the emitter density, as well as its high electrical and thermal conductivities that facilitate current transition and heat dissipation in the cathode. Most importantly, the local electric field was also enhanced by the multistage effect resulting from the rough metal surface, which furthermore leads to a high field enhancement factor. We believe that this improved field-emission performance makes such cathodes promising candidates for use in various field-emission applications.

  1. Single-Walled Carbon Nanotube Networked Field-Effect Transistors Functionalized with Thiolated Heme for NO2 Sensing

    International Nuclear Information System (INIS)

    The gas sensing properties of the single-walled carbon nanotube networked field-effect transistors for NO2 are investigated. After the modification of the gold contact electrodes of the carbon nanotube transistors with the thiolated heme, the NO2 sensing results indicate that the sensing sensitivity of the modified transistors is enhanced greatly and the sensing limit can reach below 100ppb. It is also proposed that the mechanism of the sensitivity enhancement for NO2 detection mainly results from the modulation of the Schottky energy barrier at the Au/CNTs junction upon thiolated heme facilitated NO2 adsorption. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Effect of graphitic order on field emission stability of carbon nanotubes

    International Nuclear Information System (INIS)

    We observed current density (J) dependent degradation in field emission current from multiwalled carbon nanotubes (MWCNTs). These degradations are recoverable and can be explained by emission current-induced dislocations along the MWCNTs. MWCNTs grown by thermal chemical vapour deposition (CVD) can emit stable current continuously for at least 1200 min with upper current density limits of ∼0.5 mA cm-2. In contrast, this upper limit is-2 for nanotubes grown by plasma-enhanced CVD (PECVD), although higher J is possible with relatively shorter stability duration. High-resolution transmission electron microscopy and Raman spectroscopy indicate higher graphitic order of the thermal CVD grown MWCNTs as compared to PECVD grown MWCNTs. Our study suggests that graphitic order affects their upper performance limits of long-term emission stability, although the effects from adsorbates cannot be completely ignored. These results indicate that field emission cannot be considered as an ideal quantum tunnelling process. The effect of electron transport along CNTs before electron tunnelling must be considered

  3. Excellent Field Emission Properties of Short Conical Carbon Nanotubes Prepared by Microwave Plasma Enhanced CVD Process

    Directory of Open Access Journals (Sweden)

    Vankar Vasant

    2007-01-01

    Full Text Available AbstractRandomly oriented short and low density conical carbon nanotubes (CNTs were prepared on Si substrates by tubular microwave plasma enhanced chemical vapor deposition process at relatively low temperature (350–550 °C by judiciously controlling the microwave power and growth time in C2H2 + NH3gas composition and Fe catalyst. Both length as well as density of the CNTs increased with increasing microwave power. CNTs consisted of regular conical compartments stacked in such a way that their outer diameter remained constant. Majority of the nanotubes had a sharp conical tip (5–20 nm while its other side was either open or had a cone/pear-shaped catalyst particle. The CNTs were highly crystalline and had many open edges on the outer surface, particularly near the joints of the two compartments. These films showed excellent field emission characteristics. The best emission was observed for a medium density film with the lowest turn-on and threshold fields of 1.0 and 2.10 V/μm, respectively. It is suggested that not only CNT tip but open edges on the body also act as active emission sites in the randomly oriented geometry of such periodic structures.

  4. Effect of Substrate Morphology on Growth and Field Emission Properties of Carbon Nanotube Films

    Directory of Open Access Journals (Sweden)

    Kumar Vikram

    2008-01-01

    Full Text Available AbstractCarbon nanotube (CNT films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i mirror polished, (ii catalyst patterned, (iii mechanically polished having pits of varying size and shape, and (iv electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and structural characteristics of the films were investigated by scanning and transmission electron microscopes, respectively. CNT films of different morphology such as vertically aligned, randomly oriented flowers, or honey-comb like, depending on the morphology of the Si substrates, were obtained. CNTs had sharp tip and bamboo-like internal structure irrespective of growth morphology of the films. Comparative field emission measurements showed that patterned CNT films and that with randomly oriented morphology had superior emission characteristics with threshold field as low as ~2.0 V/μm. The defective (bamboo-structure structures of CNTs have been suggested for the enhanced emission performance of randomly oriented nanotube samples.

  5. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  6. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  7. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    Science.gov (United States)

    Tan, Michael Loong Peng; Lentaris, Georgios; Amaratunga Aj, Gehan

    2012-01-01

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. PMID:22901374

  8. A glass-sealed field emission x-ray tube based on carbon nanotube emitter for medical imaging

    Science.gov (United States)

    Yeo, Seung Jun; Jeong, Jaeik; Ahn, Jeung Sun; Park, Hunkuk; Kwak, Junghwan; Noh, Eunkyong; Paik, Sanghyun; Kim, Seung Hoon; Ryu, Jehwang

    2016-04-01

    We report the design and fabrication of a carbon nanotube based a glass-sealed field emission x-ray tube without vacuum pump. The x-ray tube consists of four electrodes with anode, focuser, gate, and cathode electrode. The shape of cathode is rectangular for isotropic focal spot size at anode target. The obtained x-ray images show clearly micrometer scale.

  9. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  10. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ∼1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  11. Improved field emission properties of carbon nanotube cathodes by nickel electroplating and corrosion

    Science.gov (United States)

    Xiaojing, Xiao; Yun, Ye; Longwu, Zheng; Tailiang, Guo

    2012-05-01

    Carbon nanotube (CNT) cathodes prepared by electrophoretic deposition were treated by a combination of nickel electroplating and cathode corrosion technologies. The characteristics of the samples were measured by scanning electron microscopy, energy dispersive X-ray spectroscopy, J-E and F—N plots. After the treatment, the CNT cathodes showed improved field emission properties such as turn-on field, threshold electric field, current density, stability and luminescence uniformity. Concretely, the turn-on field decreased from 0.95 to 0.45 V/μm at an emission current density of 1 mA/cm2, and the threshold electric field decreased from 0.99 to 0.46 V/μm at a current density of 3 mA/cm2. The maximum current density was up to 7 mA/cm2 at a field of 0.48 V/μm. In addition, the current density of the CNT cathodes fluctuated at around 0.7 mA/cm2 for 20 h, with an initial current density 0.75 mA/cm2. The improvement in field emission properties was found to be due to the exposure of more CNT tips, the wider gaps among the CNTs and the infiltration of nickel particles.

  12. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    Science.gov (United States)

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  13. Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters

    International Nuclear Information System (INIS)

    In the conventional carbon nanotube backlight units (CNT-BLUs), light passes through the phosphor-coated anode glass plate, which thus faces closely the thin film transistor (TFT) backplate of a liquid crystal display panel. This configuration makes heat dissipation structurally difficult because light emission and heat generation occur simultaneously at the anode. We propose a novel configuration of a CNT-BLU where the cathode rather than the anode faces the TFT backplate by turning it upside down. In this design, light passes through the transparent cathode glass plate while heating occurs at the anode. We demonstrated a novel design of CNT-BLU by fabricating transparent single-walled CNT field emitters on the cathode and by coating a reflecting metal layer on the anode. This study hopefully provides a clue to solve the anode-heating problem which would be inevitably confronted for high-luminance and large-area CNT-BLUs.

  14. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    Science.gov (United States)

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-01

    We demonstrate that a nonperturbative framework for the treatment of the excitations of single-walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. We test this theory explicitly on the data reported by Dukovic et al. [Nano Lett. 5, 2314 (2005), 10.1021/nl0518122] and Sfeir et al. [Phys. Rev. B 82, 195424 (2010), 10.1103/PhysRevB.82.195424] and so demonstrate the method works over a wide range of reported excitonic spectra.

  15. Suspended single-walled carbon-nanotube field-effect transistor for gas sensing application

    Science.gov (United States)

    Wada, Yukiko; Fujita, Yoshihiro; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2015-06-01

    We investigate the pressure dependence of transfer characteristics of suspended single-walled carbon-nanotube field-effect transistors. We find that the gate bias around the charge neutral point with low drain current is appropriate for gas sensing application, while the high gate bias condition with high drain current that induces Joule heating in the suspended region for the desorption of the adsorbed molecules is preferable for the vacuum gauge application based on the heat exchange surrounding gas molecules, where the temperature at the suspended channel is investigated based on the simple one-dimensional heat transport model. We also revealed that the pressure dependence of the channel conductance at the gate bias around the charge neutral point can be explained by the Langmuir isotherm.

  16. Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts

    International Nuclear Information System (INIS)

    In this study, a model of a Schottky-barrier carbon nanotube field-effect transistor (CNT-FET), with ferromagnetic contacts, has been developed. The emphasis is put on analysis of current-voltage characteristics as well as shot (and thermal) noise. The method is based on the tight-binding model and the non-equilibrium Green's function technique. The calculations show that, at room temperature, the shot noise of the CNT-FET is Poissonian in the sub-threshold region, whereas in elevated gate and drain/source voltage regions the Fano factor gets strongly reduced. Moreover, transport properties strongly depend on relative magnetization orientations in the source and drain contacts. In particular, one observes quite a large tunnel magnetoresistance, whose absolute value may exceed 50%

  17. Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics

    Directory of Open Access Journals (Sweden)

    K.G.S. Dilrukshi

    2015-07-01

    Full Text Available A thorough understanding on the mechanical properties of carbon nanotube (CNT is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO and adaptive intermolecular reactive bond order (AIREBO potential functions were considered in this regard. Young’s modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.

  18. Characteristic Features of Stone-Wales Defects in Single-Walled Carbon Nanotube; Adsorption, Dispersion, and Field Emission

    Directory of Open Access Journals (Sweden)

    Seungkwang Roh

    2010-01-01

    Full Text Available Adsorption behaviors of dodecanethiol (C12H25SH molecules are investigated on the surface of single-walled carbon nanotubes (SWCNTs with vibrational and X-ray photoelectron spectrometers. The active adsorption sites are proved as Stone-Wales (SW defects (5–7 ring defects. The SW defect-removed SWCNTs formed by reacting nanotubes with allyl acrylate molecules are compared with pristine SWCNTs in dispersion and field emission. The former shows higher dispersion and field emission than the latter.

  19. Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube

    International Nuclear Information System (INIS)

    We observe the capture and field ionization of individual atoms near the side wall of a single suspended nanotube. Extremely large cross sections for ionization from an atomic beam are observed at modest voltages due to the nanotube's small radius and extended length. The effects of the field strength on both the atomic capture and the ionization process are clearly distinguished in the data, as are prompt and delayed ionizations related to the locations at which they occur. Efficient and sensitive neutral atom detectors can be based on the nanotube capture and wall ionization processes.

  20. Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube

    CERN Document Server

    Goodsell, Anne; Golovchenko, J A; Hau, Lene Vestergaard; 10.1103/PhysRevLett.104.133002

    2010-01-01

    We observe the capture and field ionization of individual atoms near the side wall of a single suspended nanotube. Extremely large cross sections for ionization from an atomic beam are observed at modest voltages due to the nanotube's small radius and extended length. The effects of the field strength on both the atomic capture and the ionization process are clearly distinguished in the data, as are prompt and delayed ionizations related to the locations at which they occur. Efficient and sensitive neutral atom detectors can be based on the nanotube capture and wall ionization processes.

  1. Water structures inside and outside single-walled carbon nanotubes under perpendicular electric field

    Institute of Scientific and Technical Information of China (English)

    Zhen XU; Guo-hui HU; Zhi-liang WANG; Zhe-wei ZHOU

    2014-01-01

    The structures of water inside and outside (6,6), (8,8), and (10,10) single-walled carbon nanotubes (SWCNTs) under an electric field perpendicular to the tube axis are investigated by molecular dynamics simulations. The results show that dipole reorientation induced by electric field plays a significant role on the structures of confined water inside and outside SWCNTs. Inside SWCNTs, the average water occupancy and the average number of hydrogen bonds (H-bonds) per water molecule decrease as the electric intensity increases. Because the field intensity is sufficiently strong, the initial water structures inside the SWCNTs are destroyed, and the isolated water clusters are found. Outside SWCNTs, the azimuthal distributions of the density and the average number of H-bonds per water molecule around the solid walls become more and more asymmetric as the electric intensity increases. The percentages of water molecules involved in 0-5 H-bonds for all the three types of SWCNTs under different field intensities are displayed. The results show that those water molecules involved with most H-bonds are the most important to hold the original structures. When the electric field direction is parallel with the original preferred orientation, the density and the H-bond connections in water will be increased; when the electric field direction is perpendicular to the original preferred orientation, the density and the H-bond connections in water will be decreased.

  2. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    International Nuclear Information System (INIS)

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å−1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale. (paper)

  3. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2015-03-01

    Full Text Available Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs can potentially act like “lighting rods” or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs, the effective pulse amplitude was reduced to 50 V/cm (main field/15 V/cm (alignment field at the optimized pulse frequency (5 Hz of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  4. Near-field radiation between graphene-covered carbon nanotube arrays

    International Nuclear Information System (INIS)

    It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches

  5. Carbon nanotubes decorating methods

    Directory of Open Access Journals (Sweden)

    A.D. Dobrzańska-Danikiewicz

    2013-06-01

    Full Text Available Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studies carried out with the HRTEM and SEM techniques have confirmed differences in morphology, homogeneity and density of depositing platinum nanoparticles on the surface of carbon nanotubes and its structure.Research limitations/implications: The studies conducted pertained to the process of decorating carbon nanotubes with platinum nanoparticles. Further works are planned aimed at extending the application scope of the newly developed methodology to include the methods of nanotubes decorating with the nanoparticles of other precious metals (mainly palladium and rhodium.Practical implications: CNTs-NPs (Carbon NanoTube-NanoParticles composites can be used as the active elements of sensors featuring high sensitivity, fast action, high selectivity and accuracy, in particular in medicine as cholesterol and glucoses sensors; in the automotive industry for the precision monitoring of working parameters in individual engine components; in environmental conservation to examine CO2, NOx, and CH4 concentrations and for checking leak-tightness and detecting hazardous substances in household and industrial gas installations.Originality/value: The comprehensive characterisation of the methods employed for fabricating nanocomposites consisting of carbon nanotubes deposited with Pt, Pd, Rh, Au, Ag nanoparticles with special consideration to the colloidal process.

  6. Functional Materials based on Carbon Nanotubes

    OpenAIRE

    Jung, Adrian Thomas

    2007-01-01

    Carbon nanotubes, no matter if they are single-walled or multi-walled, are an integral component in the vastly growing field of nanotechnology. Since their discovery by TEM and the invention of numerous large-scale production techniques, nanotubes are close to making their way into industrial products. Although many properties and modification processes are still under intensive research, the first real-market applications for carbon nanotubes have already been presented. However, if function...

  7. Post-treatment method for improving field emission from carbon nanotubes/nanofibers

    Institute of Scientific and Technical Information of China (English)

    GUO Ping-sheng; SUN Zhuo; ZHENG Zhi-hao

    2006-01-01

    A novel post-treatment method is reported for improving the field emission characteristics of screen-printed carbon nanotubes/nanofibers (CNTs/CNFs) cathodes.After the treatment at the temperature of 500℃ in H2 and C2H2 gas for 20 minutes,the CNTs/CNFs cathodes exhibit much better field emission properties than those untreated.The emission current increases from 0.02 mA/cm2 to 0.5 mA/cm2 at 3.9 V/μm with a decrease in the turn-on field from 2.4 V to 1.8 V ,and the emission site density is increased by almost four orders in magnitude.The enhanced field emission of treated CNTs/CNFs cathodes is attributed to the appearance of a large number of exposed CNTs/CNFs caused by heat treatment.This surface morphology is very favorable for the electron field emission.

  8. Carbon nanotube field emitters on KOVAR substrate modified by random pattern

    International Nuclear Information System (INIS)

    We investigated the field emission characteristics of patterned carbon nanotubes (CNTs) on KOVAR substrates with different surface morphologies. The substrate with a micro-sized random pattern was fabricated through chemical wet etching, whereas the substrate with a nano-sized random pattern was formed by surface roughening process of polymer and chemical wet etching. The field emission characteristics of these substrates were the compared with those of non-treated substrates. It was clearly revealed that the field emission characteristics of CNTs were influenced by the surface morphology of the cathode substrate. When the surface of cathode was modified by random pattern, the modified substrate provided a large surface area and a wider print area. Also, the modified surface morphology of the cathode provided strong adhesion between the CNT paste and the cathode. Particularly, the substrate with the nano-sized random pattern showed that the turn-on field value decreases and the field enhancement factor value improves as compared with non-treated substrate

  9. Characterisation of carbon nanotube pastes for field emission using their sheet resistances

    Science.gov (United States)

    Floweri, Octia; Kim, Jihan; Seo, Yongho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Carbon nanotube (CNT) pastes for field emitters were fabricated by varying the milling speed, CNT amount and glass frit (GF) powder size. The CNTs remained agglomerated at lower milling speeds while they were damaged and shortened at higher speeds. Increasing the amount of CNTs improved the field emission properties, but excessive CNTs led to increased removal of the CNT paste with surface activation because of lower cohesion strength. Small GF particles were incorporated to provide a flat surface to the CNT paste, which improved its field emission uniformity and lifespan. The dispersion, density and milling damage characteristics of CNTs in the pastes were assessed by their sheet resistances under the assumption of equal printed thicknesses. Tape activation reduced the thickness of the CNT pastes by different amounts that depended on the cohesion strength of the paste. This reduction caused the sheet resistance to increase. For all cases in this study, the field emission properties of the CNT pastes were closely related to their sheet resistances, suggesting that sheet resistance could be used as a figure-of-merit for the evaluation of CNT pastes for field emission applications.

  10. Single-WalledCarbon Nanotube Networked Field-Effect Transistors Functionalized with Thiolated Heme for NO2 Sensing

    Institute of Scientific and Technical Information of China (English)

    魏昂; 李维维; 汪静霞; 龙庆; 王钊; 熊莉; 董晓臣; 黄维

    2011-01-01

    The gas sensing properties of the single-walled carbon nanotube networked field-effect transistors for NO2 are investigated. After the modification of the gold contact electrodes of the carbon nanotube transistors with the thiolated heme, the NO2 sensing results indicate that the sensing sensitivity of the modified transistors is enhanced greatly and the sensing limit can reach below Woppb. It is also proposed that the mechanism of the sensitivity enhancement for NO2 detection mainly results from the modulation of the Schottky energy barrier at the Au/CNTs junction upon thiolated heme facilitated NO2 adsorption.%The gas sensing properties of the single-walled carbon nanotube networked field-effect transistors for NO2 are investigated.After the modification of the gold contact electrodes of the carbon nanotube transistors with the thiolated heme,the NO2 sensing results indicate that the sensing sensitivity of the modified transistors is enhanced greatly and the sensing limit can reach below 100ppb.It is also proposed that the mechanism of the sensitivity enhancement for NO2 detection mainly results from the modulation of the Schottky energy barrier at the Au/CNTs junction upon thiolated heme facilitated NO2 adsorption.

  11. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  12. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ram Pavani

    2011-07-01

    Full Text Available Carbon nanotubes (CNTs are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Functionalized carbon nanotubes can also act as vaccine delivery systems.Carbon nanotubes (CNTs are considered to be one of the innovative resources in nanotechnology with possible use in wide range of biomedical applications viz. cancer treatment, bioengineering, cardiac autonomic regulation, platelet activation and tissue regeneration. The effect of CNTs on cells and tissues are extremely important for their use in various complex biological systems. With the increasing interest shown by the nanotechnology research community in this field, it is expected that plenty of applications of CNTs will be explored in future.

  13. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2015-12-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  14. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  15. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  16. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  17. Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field

    Science.gov (United States)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-07-01

    The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ≪ v or ωτ ≪ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ≪ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.

  18. Optimization of field emission properties of carbon nanotubes by Taguchi method

    International Nuclear Information System (INIS)

    It is the purpose of this study to evaluate the field emission property of carbon nanotubes (CNTs) prepared by microwave plasma-enhanced chemical vapor deposition (MPCVD) method. Nickel layer of 5 nm in thickness on 20-nm thickness titanium nitride film was transformed into discrete islands after hydrogen plasma pretreatment. CNTs were then grown up on Ni-coated areas by MPCVD. Through the practice of Taguchi method, superior CNT films with very low emission onset electric field, about 0.7 V/μm (at J = 10 μA/cm2), are attained without post-deposition treatment. It is found that microwave power has the most important influence on the field emission characteristics of CNT films. The increase of methane flow ratio will downgrade the degree of graphitization of CNT and thus its field emission characteristics. Scanning electron microscope and transmission electron microscopy (TEM) observation and energy dispersive X-ray spectrometer analysis reveal that CNT growth by MPCVD is based on tip-growth mechanism. TEM micrographs validate the hollow, bamboo-like structure of the multi-walled CNTs

  19. Field emission characteristics of carbon nanotubes post-treated with high-density Ar plasma

    International Nuclear Information System (INIS)

    The field emission characteristics of carbon nanotubes (CNTs) grown by thermal chemical vapor deposition (CVD) and subsequently surface treated by high-density Ar plasma in an inductively coupled plasma reactive ion etching (ICP-RIE) with the various plasma powers were measured. Results indicate that, after treated by Ar plasma with power between 250 and 500 W, the emission current density of the CNTs is enhanced by nearly two orders of magnitude (increased from 0.65 to 48 mA/cm2) as compared to that of the as-grown ones. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to investigate the structural features relevant to the modified field emission properties of CNTs. The SEM images of CNTs subjected to a 500 W Ar plasma treatment exhibit obvious damages to the CNTs. Nevertheless, the turn-on fields decreased from 3.6 to 2.2 V/μm, indicating a remarkable field emission enhancement. Our results further suggest that the primary effect of Ar plasma treatment might be to modify the geometrical structures of the local emission region in CNTs. In any case, the Ar plasma treatment appears to be an efficient method to enhance the site density for electron emission and, hence markedly improving the electric characteristics of the CNTs.

  20. Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array

    Science.gov (United States)

    Fedoseeva, Yu. V.; Bulusheva, L. G.; Okotrub, A. V.; Kanygin, M. A.; Gorodetskiy, D. V.; Asanov, I. P.; Vyalikh, D. V.; Puzyr, A. P.; Bondar, V. S.

    2015-03-01

    Detonation nanodiamonds (NDs) were deposited on the surface of aligned carbon nanotubes (CNTs) by immersing a CNT array in an aqueous suspension of NDs in dimethylsulfoxide (DMSO). The structure and electronic state of the obtained CNT-ND hybrid material were studied using optical and electron microscopy and Infrared, Raman, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. A non-covalent interaction between NDs and CNT and preservation of vertical orientation of CNTs in the hybrid were revealed. We showed that current-voltage characteristics of the CNT-ND cathode are changed depending on the applied field; below ~3 V/µm they are similar to those of the initial CNT array and at the higher field they are close to the ND behavior. Involvement of the NDs in field emission process resulted in blue luminescence of the hybrid surface at an electric field higher than 3.5 V/µm. Photoluminescence measurements showed that the NDs emit blue-green light, while blue luminescence prevails in the CNT-ND hybrid. The quenching of green luminescence was attributed to a partial removal of oxygen-containing groups from the ND surface as the result of the hybrid synthesis.

  1. Electrical properties and memory effects of field-effect transistors from networks of single- and double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    We study field-effect transistors made of single- and double-walled carbon nanotube networks for applications as memory devices. The transfer characteristics of the transistors exhibit a reproducible hysteresis which enables their use as nano-sized memory cells with operations faster than 10 ms, endurance longer than 10+4 cycles and charge retention of a few hours in air. We propose water enhanced charge trapping at the SiO2/air interface close to the nanotubes as the dominant mechanism for charge storage. We show that charge storage can be improved by limiting exposure of the device to air.

  2. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  3. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  4. Physical and Electrical Characteristics of Carbon Nanotube Network Field-Effect Transistors Synthesized by Alcohol Catalytic Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Chin-Lung Cheng

    2011-01-01

    Full Text Available Carbon nanotubes (CNTs have been explored in nanoelectronics to realize desirable device performances. Thus, carbon nanotube network field-effect transistors (CNTNFETs have been developed directly by means of alcohol catalytic chemical vapor deposition (ACCVD method using Co-Mo catalysts in this work. Various treated temperatures, growth time, and Co/Mo catalysts were employed to explore various surface morphologies of carbon nanotube networks (CNTNs formed on the SiO2/n-type Si(100 stacked substrate. Experimental results show that most semiconducting single-walled carbon nanotube networks with 5–7 nm in diameter and low disorder-induced mode (D-band were grown. A bipolar property of CNTNFETs synthesized by ACCVD and using HfO2 as top-gate dielectric was demonstrated. Various electrical characteristics, including drain current versus drain voltage (Id-Vd, drain current versus gate voltage (Id-Vg, mobility, subthreshold slope (SS, and transconductance (Gm, were obtained.

  5. Analytic Solution of Charge Density of Single Wall Carbon Nanotube under Conditions of Field Electron Emission

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Bing; WANG Wei-Liang

    2006-01-01

    We derive the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external Geld parallel to the tube axis.

  6. Fully Automated Field-Deployable Bioaerosol Monitoring System Using Carbon Nanotube-Based Biosensors.

    Science.gov (United States)

    Kim, Junhyup; Jin, Joon-Hyung; Kim, Hyun Soo; Song, Wonbin; Shin, Su-Kyoung; Yi, Hana; Jang, Dae-Ho; Shin, Sehyun; Lee, Byung Yang

    2016-05-17

    Much progress has been made in the field of automated monitoring systems of airborne pathogens. However, they still lack the robustness and stability necessary for field deployment. Here, we demonstrate a bioaerosol automonitoring instrument (BAMI) specifically designed for the in situ capturing and continuous monitoring of airborne fungal particles. This was possible by developing highly sensitive and selective fungi sensors based on two-channel carbon nanotube field-effect transistors (CNT-FETs), followed by integration with a bioaerosol sampler, a Peltier cooler for receptor lifetime enhancement, and a pumping assembly for fluidic control. These four main components collectively cooperated with each other to enable the real-time monitoring of fungi. The two-channel CNT-FETs can detect two different fungal species simultaneously. The Peltier cooler effectively lowers the working temperature of the sensor device, resulting in extended sensor lifetime and receptor stability. The system performance was verified in both laboratory conditions and real residential areas. The system response was in accordance with reported fungal species distribution in the environment. Our system is versatile enough that it can be easily modified for the monitoring of other airborne pathogens. We expect that our system will expedite the development of hand-held and portable systems for airborne bioaerosol monitoring. PMID:27070239

  7. Low-Field Emission from Iron Oxide-Filled Carbon Nanotube Arrays

    Institute of Scientific and Technical Information of China (English)

    CHAI Yang; YU Li-Gang; WANG Ming-Sheng; ZHANG Qi-Feng; WU Jin-Lei

    2005-01-01

    @@ Arrays of multi-walled carbon nanotubes (MWCNTs) filled with iron oxide have been fabricated by a one-step route based on the pyrolysis of ferrocene under a well-chosen synthesis condition.The MWCNT arrays were observed with a scanning electron microscope, with which an energy dispersive x-ray spectrum (EDXS) was also acquired, and they are analysed by x-ray diffraction.Furthermore, individual MWCNTs were studied by using selected area electron diffraction (SAED) and the EDXS in a transmission electron microscopy observation.All the observation and analysis confirmed that the MWCNTs were filled with iron oxide.Field emission from these arrays of iron oxide-filled MWCNTs was measured and the turn-on field was determined to range from 0.83-1.01 V/μm, appearing to be much lower than those of arrays of pure MWCNTs and arrays of nitrogen-doped MWCNTs fabricated in similar ways.The possible reasons of the observed low-field emission are discussed.

  8. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation.

    Science.gov (United States)

    Reis, Wieland G; Weitz, R Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-01-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (10(5)) and field-effect mobilities (17 cm(2)/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production. PMID:27188435

  9. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.

    Science.gov (United States)

    Melzer, K; Bhatt, V Deep; Jaworska, E; Mittermeier, R; Maksymiuk, K; Michalska, A; Lugli, P

    2016-10-15

    In the fields of clinical diagnostics and point-of-care diagnosis as well as food and environmental monitoring there is a high demand for reliable high-throughput, rapid and highly sensitive assays for a simultaneous detection of several analytes in complex and low-volume samples. Sensor platforms based on solution-processable electrolyte-gated carbon nanotube field-effect transistors (CNT-FETs) are a simple and cost-effective alternative for conventional assays. In this work we demonstrate a selective as well as direct detection of the products of an enzyme-substrate interaction, here the for metabolic processes important urea-urease system, with sensors based on spray-coated CNT-FETs. The selective and direct detection is achieved by immobilizing the enzyme urease via certain surface functionalization techniques on the sensor surface and further modifying the active interfaces with polymeric ion-selective membranes as well as pH-sensitive layers. Thereby, we can avoid the generally applied approach for a field-effect based detection of enzyme reactions via detecting changes in the pH value due to an on-going enzymatic reaction and directly detect selectively the products of the enzymatic conversion. Thus, we can realize a buffering-capacity independent monitoring of changes in the substrate concentration. PMID:27140308

  10. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  11. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  12. Carbon nanotube junctions and devices

    OpenAIRE

    Postma, H. W. Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconducting behaviour. Due to their small diameter, electronic motion is directed in the length direction of the nanotube, making them ideal systems to study e.g. one-dimensional transport phenomena. First...

  13. Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field

    International Nuclear Information System (INIS)

    Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form

  14. Strain on field effect transistors with single–walled–carbon nanotube network on flexible substrate

    International Nuclear Information System (INIS)

    We have systematically analyzed the effect of strain on the electrical properties of flexible field effect transistors with a single-walled carbon nanotube (SWCNT) network on a polyethersulfone substrate. The strain was applied and estimated at the microscopic scale (<1 μm) by using scanning electron microscope (SEM) equipped with indigenously designed special bending jig. Interestingly, the strain estimated at the microscopic scale was found to be significantly different from the strain calculated at the macroscopic scale (centimeter-scale), by a factor of up to 4. Further in-depth analysis using SEM indicated that the significant difference in strain, obtained from two different measurement scales (microscale and macroscale), could be attributed to the formation of cracks and tears in the SWCNT network, or at the junction of SWCNT network and electrode during the strain process. Due to this irreversible morphological change, the electrical properties, such as on current level and field effect mobility, lowered by 14.3% and 4.6%, respectively

  15. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Conclusions: Monte Carlo simulations demonstrate

  16. Transport Through Carbon Nanotube Wires

    Science.gov (United States)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  17. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    Science.gov (United States)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  18. Carbon nanotubes: synthesis and functionalization

    OpenAIRE

    Andrews, Robert

    2007-01-01

    This thesis focuses on two of the major challenges of carbon nanotube (CNT) research: understanding the growth mechanism of nanotubes by chemical vapour deposition (CVD) and the positioning of nanotubes on surfaces. The mechanism of growth of single–walled nanotubes (SWNTs) has been studied in two ways. Firstly, a novel iron nanoparticle catalyst for the production of single–walled nanotubes was developed. CVD conditions were established that produced high quality tubes. These optimised C...

  19. Simulation of Phonon-Assisted Band-to Band Tunneling in Carbon Nanotube Field-Effect Transistors

    OpenAIRE

    Koswatta, Siyuranga O.; Lundstrom, Mark S.; Anantram, M. P.; Nikonov, Dmitri E.

    2005-01-01

    Electronic transport in a carbon nanotube (CNT) metal-oxide-semiconductor field effect transistor (MOSFET) is simulated using the non-equilibrium Green's functions method with the account of electron-phonon scattering. For MOSFETs, ambipolar conduction is explained via phonon-assisted band-to-band (Landau-Zener) tunneling. In comparison to the ballistic case, we show that the phonon scattering shifts the onset of ambipolar conduction to more positive gate voltage (thereby increasing the off c...

  20. Exciton Mobility and Localized Defects in Single Carbon Nanotubes Studied with Tip-Enhanced Near-Field Optical Microscopy

    OpenAIRE

    Georgi, Carsten

    2011-01-01

    In this work, single-walled carbon nanotubes (SWNTs) have been studied using tip-enhanced near-field optical microscopy (TENOM). This technique provides a sub-diffraction spatial resolution of 15 nm on the basis of strong local signal enhancement, which allows for nanoscale imaging of the photoluminescence (PL) intensity and energy along single semiconducting SWNTs. Thereby, the mobility of excitons and their interaction with defects and spatial exciton energy variations can be directly vi...

  1. Polarity tuning of single-walled carbon nanotube by dipole field of ferroelectric polymer for thermoelectric conversion

    Science.gov (United States)

    Horike, Shohei; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Saito, Takeshi; Ishida, Kenji

    2016-08-01

    The tuning of the Seebeck coefficient of a single-walled carbon nanotube (SWCNT) film was achieved by using the dipole field of a ferroelectric polymer. The Seebeck coefficient was positive under an up-poling dipole field, but negative under a down-poling dipole field, whereas the control remained positive. This tunable behavior can be explained by selective carrier injection and accumulation, which was confirmed by the temperature dependence of electrical conductivity. Connecting p- and n-type SWCNT films tuned by dipole fields to create a π module resulted in a significant improvement in output voltage owing to the temperature difference between the two.

  2. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  3. Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ahmad Ehteshamul Islam

    2013-09-01

    Full Text Available Excellent electrical performance and extreme sensitivity to chemical species in semiconducting Single-Walled Carbon NanoTubes (s-SWCNTs motivated the study of using them to replace silicon as a next generation field effect transistor (FET for electronic, optoelectronic, and biological applications. In addition, use of SWCNTs in the recently studied flexible electronics appears more promising because of SWCNTs’ inherent flexibility and superior electrical performance over silicon-based materials. All these applications require SWCNT-FETs to have a wafer-scale uniform and reliable performance over time to a level that is at least comparable with the currently used silicon-based nanoscale FETs. Due to similarity in device configuration and its operation, SWCNT-FET inherits most of the variability and reliability concerns of silicon-based FETs, namely the ones originating from line edge roughness, metal work-function variation, oxide defects, etc. Additional challenges arise from the lack of chirality control in as-grown and post-processed SWCNTs and also from the presence of unstable hydroxyl (–OH groups near the interface of SWCNT and dielectric. In this review article, we discuss these variability and reliability origins in SWCNT-FETs. Proposed solutions for mitigating each of these sources are presented and a future perspective is provided in general, which are required for commercial use of SWCNT-FETs in future nanoelectronic applications.

  4. Advantages of flattened electrode in bottom contact single-walled carbon nanotube field-effect transistor

    International Nuclear Information System (INIS)

    We fabricated single-walled carbon nanotube (SWNT) field-effect transistor (FET) devices on flattened electrodes, in which there are no height difference between metal electrodes and the substrate. SWNT-FET fabricated using bottom contact technique have some advantages, such that the SWNTs are free from electron irradiation, have direct contact with the desired metal electrodes, and can be functionalized before or after deposition. However, the SWNTs can be bent at the contact point with the metal electrodes leading to a different electrical characteristic of the devices. The number of SWNT direct junctions in short channel length devices is drastically increased by the use of flattened electrodes due to strong attractive interaction between SWNT and the substrate. The flattened electrodes show a better balance between their hole and electron mobility compared to that of the non-flattened electrodes, that is, ambipolar FET characteristic. It is considered that bending of the SWNTs in the non-flattened electrode devices results in a higher Schottky barrier for the electrons.

  5. Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Md. Abdul, E-mail: abdulnpl@gmail.com; Dutta, Jiten Ch. [Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 (India)

    2014-08-04

    We have reported fabrication and characterization of polyaniline (PANI)/zinc oxide (ZnO) membrane-based junctionless carbon nanotube field effect transistor deposited on indium tin oxide glass plate for the detection of cholesterol (0.5–22.2 mM). Cholesterol oxidase (ChOx) has been immobilized on the PANI/ZnO membrane by physical adsorption technique. Electrical response has been recorded using digital multimeter (Agilent 3458A) in the presence of phosphate buffer saline of 50 mM, pH 7.0, and 0.9% NaCl contained in a glass pot. The results of response studies for cholesterol reveal linearity as 0.5–16.6 mM and improved sensitivity of 60 mV/decade in good agreement with Nernstian limit ∼59.2 mV/decade. The life time of this sensor has been found up to 5 months and response time of 1 s. The limit of detection with regression coefficient (r) ∼ 0.998 and Michaelis-Menten constant (K{sub m}) were found to be ∼0.25 and 1.4 mM, respectively, indicating high affinity of ChOx to cholesterol. The results obtained in this work show negligible interference with glucose and urea.

  6. Diameter dependence of 1/f noise in carbon nanotube field effect transistors using noise spectroscopy

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) have many interesting properties for nano devices such as high sensitive sensors or noise enhanced nonlinear devices. A field effect transistor (FET) structure is one of the key features for these applications, and the control of noise in FETs is important for the actual operation of the application. Several origins of noise have been proposed, and defects and/or surface adsorption of molecules seem to be dominant for the 1/f type noise in CNTs. To study the origins of noise, the diameter dependence of noise properties was studied. We analyzed the noise properties in CNTs using noise spectroscopy with different fabrication parameters or ambient environments. We observed the crossover of noise properties in CNTs, which involved transition between different origins of noise depending on their diameter. Additionally, noise spectroscopy was used to observe such crossover between air and vacuum environments. We can control noise intensity using the gate voltage, and noise properties can be controlled by the fabrication parameters. These phenomena are useful for the stochastic operation of CNT-FETs.

  7. Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection

    International Nuclear Information System (INIS)

    We have reported fabrication and characterization of polyaniline (PANI)/zinc oxide (ZnO) membrane-based junctionless carbon nanotube field effect transistor deposited on indium tin oxide glass plate for the detection of cholesterol (0.5–22.2 mM). Cholesterol oxidase (ChOx) has been immobilized on the PANI/ZnO membrane by physical adsorption technique. Electrical response has been recorded using digital multimeter (Agilent 3458A) in the presence of phosphate buffer saline of 50 mM, pH 7.0, and 0.9% NaCl contained in a glass pot. The results of response studies for cholesterol reveal linearity as 0.5–16.6 mM and improved sensitivity of 60 mV/decade in good agreement with Nernstian limit ∼59.2 mV/decade. The life time of this sensor has been found up to 5 months and response time of 1 s. The limit of detection with regression coefficient (r) ∼ 0.998 and Michaelis-Menten constant (Km) were found to be ∼0.25 and 1.4 mM, respectively, indicating high affinity of ChOx to cholesterol. The results obtained in this work show negligible interference with glucose and urea

  8. Multiplexing radiography based on carbon nanotube field emission X-ray technology

    Science.gov (United States)

    Zhang, J.; Yang, G.; Lee, Y.; Chang, S.; Lu, J. P.; Zhou, O.

    2007-03-01

    State-of-the-art tomographic imaging technique is based upon of simple serial imaging scheme. The tomographic scanners collect the projection images sequentially in the time domain, by a step-and-shoot process using a single-pixel x-ray source. The inefficient serial data collection scheme severely limits the data collection speed, which is critical for imaging of objects in rapid motion such as for diagnosis of cardiovascular diseases, CT fluoroscopy, and airport luggage inspection. Further improvement of the speed demands an increasingly high x-ray peak workload and gantry rotation speed, both of which have approached the engineering limits. Multiplexing technique, which has been widely adopted in communication devices and in certain analytical instruments, holds the promise to significantly increase the data throughput. It however, has not been applied to x-ray radiography, mainly due to limitations of the current x-ray source technology. Here we report a method for frequency multiplexing radiography (FMR) based on the frequency multiplexing principle and the carbon nanotube field emission x-ray technology. We show the feasibility of multiplexing radiography that enables simultaneous collection of multiple projection images. It has the potential to significantly increase the imaging speed for tomographic imaging without compromising the imaging quality.

  9. Solution-Processed Carbon Nanotube and Chemically Synthesized Graphene Nanoribbon Field Effect Transistors.

    OpenAIRE

    Bennett, Patrick B.

    2014-01-01

    Carbon nanotubes (CNTs) possess great potential as high performance semiconducting channels due to their one-dimensional nature, extremely high mobility, and their demonstrated ability to transport electrons ballistically in transistors. However, the presence of metallic CNTs in CNT films and arrays represents a major impediment towards large-scale integration. Methods of solution purification have demonstrated partial success in metallic CNT removal, although their effects on device perfor...

  10. Carbon nanotubes materials and their application to guarantee safety from exposure to electromagnetic fields

    International Nuclear Information System (INIS)

    Multi-walled carbon nanotubes (MWCNTs)-filled epoxy composites and poly(methyl methacrylate) (PMMA) coatings were prepared by mechanical grinding with the use of a planetary ball mill. Electromagnetic interference shielding effectiveness, electromagnetic absorption and reflection properties of the materials were investigated. With MWCNTs loadings higher than 20 wt%, epoxy/MWCNTs composites and PMMA/MWCNTs coatings also exhibited the full capability of shielding from more than 99% electromagnetic radiation at the 100 MHz–14 GHz frequency range. (paper)

  11. Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation

    International Nuclear Information System (INIS)

    The effect of high-energy proton irradiation on the physical properties of carbon nanotubes (CNTs) was investigated. The focus of the study was on the electrical properties of single-walled carbon nanotube (SWNT) network devices exposed to proton beams. Field-effect transistors (FETs) of network type were fabricated using SWNTs and were then irradiated by high-energy proton beams of 10-35 MeV with a fluence of 4 x 1010-4 x 1012 cm-2 that are comparable to the aerospace radiation environment. The electrical properties of both metallic and semiconducting CNT network FET devices underwent no significant change after the high-energy proton irradiation, indicating that the CNT network devices are very tolerant in proton beams. Raman spectra confirm the proton-radiation hardness of CNT network FET devices. The radiation hardness of CNT network FET devices promises therefore the potential usefulness of CNT-based electronics for future space application

  12. Quantum transport in carbon nanotubes

    Science.gov (United States)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  13. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    Science.gov (United States)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  14. High Critical Field Superconductivity in FeSe0.1 Te0.9 Coated Carbon Nanotubes

    Science.gov (United States)

    Wang, Haiyan; Cornell, Nicholas; Huang, Jijie; Salamon, Myron; Zakhidov, Anvar; Anvar Zakhidov; Haiyan Wang Team; Utd; Tamu Afosr Team

    2015-03-01

    Thin films of FeSe0.1Te0.9, grown on SrTi03, have been shown to possess an increased critical temperature, field, and current relative to both bulk samples of FeSe0.1Te0.9 and thin films of the related compound FeSe0.5Te0.5. Empirical measurement of FeSe0.1Te0.9 thin films reveal a zero temperature Hc2(0) ~ 45T. Carbon nanotubes are a promising lightweight flexible material for superconducting applications and have proven a robust substrate when conformally coated by superconducting MgB2. Thin film coatings of FeSe0.1Te0.9 have been deposited via pulsed laser deposition on dry- drawn multiwall carbon nanotube sheets drawn from CVD grown forests. While true zero resistance isn't achieved due to inter-connectivity issues or junction effects in multiwall CNT case, clear superconducting transitions with R reaching zero can be seen on other single wall CNT, and non-oriented carbon nanotube substrates. Properties of these superconducting FeSe0.1Te0.9@SWCNT thin films are discussed.

  15. Simulation of diode characteristics of carbon nanotube field-effect transistors with symmetric source and drain contacts

    KAUST Repository

    Li, Jingqi

    2011-09-01

    The diode characteristics of carbon nanotube field-effect transistors (CNTFETs) with symmetric source and drain contacts have been experimentally found at zero gate voltage (Li J. et al., Appl. Phys. Lett., 92 (2008) 133111). We calculate this characteristic using a semiclassical method based on Schottky barrier transistor mechanism. The influences of metal work function, the diameter of the carbon nanotubes and the dielectric thickness on the rectification behavior have been studied. The calculation results show that the metal with a higher work function results in a better diode characteristics for a p-type CNTFET. For single-walled carbon nanotubes (SWNTs) with different band gaps, both forward current and reverse current increase with decreasing band gap, but the ratio of forward current to reverse current decreases with decreasing band gap. This result is well consistent with the experimental observations reported previously. The simulation of the dielectric thickness effect indicates that the thinner the dielectric layer, the better the rectification behavior. The CNTFETs without a bottom gate could not show the diode characteristics, which is consistent with the reported experimental observation. © 2011 Europhysics Letters Association.

  16. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  17. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  18. Carbon nanotube IR detectors (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  19. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  20. The influence of organophilic clay on field electron emission uniformity and lifetime of screen printed carbon nanotube film

    International Nuclear Information System (INIS)

    The effect of adding clay, modified by a silane coupling agent, into the carbon nanotube (CNT) paste on the field electron emission and a lifetime of screen printed CNT film was studied. The composition of organophilic clay and CNTs was characterized by a combination of X-ray diffraction, and scanning electron microscopy. The incorporation of clay improved the dispersivity, adhesiveness, and conductive networking of paste, therewith enhancing the field emission's uniformity and stability. The improvement of this gas barrier on the CNT film by clay loading prevents emission degradation.

  1. Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Vales-Pinzón, C., E-mail: cvales@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-Unidad Mérida, Antigua carretera a Progreso km 6, A.P. 73, Cordemex, Mérida Yucatán 97310 (Mexico); Alvarado-Gil, J.J. [Applied Physics Department, CINVESTAV-Unidad Mérida, Antigua carretera a Progreso km 6, A.P. 73, Cordemex, Mérida Yucatán 97310 (Mexico); Medina-Esquivel, R. [Facultad de Ingeniería-UADY, Av. Industrias no Contaminantes por Periférico Norte, A.P. 150, Cordemex, Mérida, Yucatán (Mexico); Martínez-Torres, P. [Department of Mechanical Engineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521 (United States)

    2014-11-15

    Magneto-optic phenomena in ferrofluids have been shown to be related to the formation of chain structures, due to the arrangement of the ferromagnetic particles, induced by an applied magnetic field. In this work, the effects on transmission of polarized light due to anisotropic effects induced by an external magnetic field in ferrofluids with carbon nanotubes are studied. The time response of the system presents two well defined stages, in the first one, which is very short, the fluid behaves as a polarizer. In contrast in the second stage, the effects of light transmission dominate. In this stage the transmitted light intensity grows with time and after a long time reaches a constant stable value. It is shown that these phenomena depend on the carbon nanotubes concentration as well as on the strength of the applied magnetic field. Using a simple model that considers a chain-like structure formation, it is possible to determine the rate of agglomeration of the formed structures and the attenuation coefficient of the transmitted light. The formation of nanostructures leads to variation in the transmitted light, depending on the polarization of the incident light. These magnetic nanostructures can find numerous applications in nanotechnology, optical devices and medicine. - Highlights: • Carbon nanotubes in ferrofluids favor the formation of chain-like structures. • In the presence of a magnetic field ferrofluids loaded with CNT behaves as a polarizer. • Transmitted light increases when samples are under a magnetic field then stabilizes. • Attenuation time for transmitted light and agglomeration parameters were studied.

  2. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  3. Electrical Transport in Carbon Nanotubes and Graphene

    OpenAIRE

    Liu, Gang

    2010-01-01

    This thesis summarizes our work in the past few years in the field of transport studies of carbon nanotubes and graphene. The first half of the thesis focuses on carbon nanotube (CNT) Josephson junctions (JJ) formed by coupling CNTs to superconducting electrodes. They exhibited Fabry Perot resonance patterns, enhanced differential conductance peaks, multiple Andreev reflection peaks, gate-tunable supercurrent transistor behaviors, hysteretic current-voltage line shape and "superconductor-insu...

  4. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  5. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  6. Influence of viscosity of the medium on the disposition of carbon nanotubes anisotropic structures formation induced by electric field

    International Nuclear Information System (INIS)

    To obtain carbon nanotubes (CNT)-polymer composites with anisotropic physical properties an electric field application can be used. This investigation considers factors of CNT anisotropic distribution formation induced by electric field and consideration is supported with experimental results where some factors were varied. In the article an influence of magnitude and type of electric field and time of processing by electric field on CNT anisotropic structures formation in polymer mediums of different viscosities (oil, epoxy resins) is investigated. The aim of this work was to examine the CNT structuration process induced by electric field in viscous mediums and to find out the most optimal conditions of preparation of polymer/carbon composite materials (CM) with specified distribution of carbon filler induced by electric field. Scoping on polymer/carbon CM structuration was conducted by optical microscopy method. It was found that the main factors during CNT network formation are the type and viscosity of polymer binder and applied electric field parameters. It was observed that for high viscous polymer CNT network formation is unfeasible even at high applied electric field strength. But also for low viscous medium at relatively low electric field strength the CNT network formation is complicated too. And it was seen from optical observation that a type of the polymer variation causes different response of network form under the same experimental conditions. These distinctions are considered in the article

  7. Influence of growth time on field emission properties from carbon nanotubes deposited on arrayed nanoporous silicon pillars

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Hao Haoshan [Department of Mathematical and Physical Sciences, Henan Institute of Engineering, Zhengzhou 451191 (China); Wang Yusheng; Xu Lei; Zhang Tianjie [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China)

    2011-05-15

    We investigated the influence of growth time on field emission properties of multi-walled carbon nanotubes deposited on silicon nanoporous pillar array (MWCNTs/Si-NPA), which were fabricated by thermal chemical vapour deposition at 800 deg. C for 5, 15 and 25 min respectively, to better understand the origins of good field emission properties. The results showed that the MWCNTs/Si-NPA grown for 15 min had the highest field emission efficiency of the three types of samples. Morphologies of the products were examined by field-emission scanning electron microscope, and the excellent field emission performance was attributed not only to the formation of a nest array of multi-walled carbon nanotubes, which would largely reduce the electrostatic shielding among the emitters and resulted in a great enhancement factor, but also to the medium MWCNTs density films, there was an ideal compromise between the emitter density and the intertube distance, which also could effectively avoid electrostatic shielding effects, along with a high emitter density.

  8. Analysing one isolated single walled carbon nanotube in the near-field domain with selective nanovolume Raman spectroscopy.

    Science.gov (United States)

    Atalay, Han; Lefrant, Serge

    2004-09-01

    In this paper, we describe a new method to the selective nanovolume analysing of one isolated single walled carbon nanotube (SWNT). This concept is based on actually available imaging micro-spectrometry systems for working in near-field domain combined with a stigmatic solid immersion lens. This combination of different analytical methods, and modified and configured equipment entitles us to expand the functionality toward a three-dimensional (3D) nanovolume Raman mapping and photoluminescence intensity with a possible discrimination in polarization, as well as photoluminescence decaytime constant mapping with their unique combination. Subsequently, selective spectra can be acquired from the same location on the samples. By spectrally selecting a SWNT, we registered the spatial distribution of the emitted photons in x, y, z vectors to determine the position of a SWNT in the near-field domain. For the SWNTs that are localized with an accuracy better than 18 nm in the x, y and unity throughput. This near-field capability is applied to resolve local variations unambiguously in the Raman spectrum along one single SWNT. Finally, in this paper, we report what we believe to be the first evidence of Raman mapping and 3D real optical imaging of carbon nanotubes with near-field resolution. PMID:15570957

  9. Ampère-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D. [Northern Illinois U.; Faillace, L. [RadiaBeam Tech.; Hartzell, J. [RadiaBeam Tech.; Panuganti, H. [Northern Illinois U.; Boucher, S. M. [RadiaBeam Tech.; Murokh, A. [RadiaBeam Tech.; Piot, P. [Fermilab; Thangaraj, J. C.T. [Fermilab

    2014-12-01

    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.

  10. Energy Efficient Full Adder Cell Design with Using Carbon Nanotube Field Effect Transistors in 32 Nanometer Technology

    Directory of Open Access Journals (Sweden)

    Ali Ghorbani

    2014-11-01

    Full Text Available Full Adder is one of the critical parts of logical and arithmetic units. So, presenting a low power full adder cell reduces the power consumption of the entire circuit. Also, using Nano-scale transistors, because of their unique characteristics will save energy consumption and decrease the chip area. In this paper we presented a low power full adder cell by using carbon nanotube field effect transistors (CNTFETs. Simulation results were carried out using HSPICE based on the CNTFET model in 32 nanometer technology in Different values of temperature and VDD.

  11. A comparative study of field emission properties of carbon nanotube films prepared by vacuum filtration and screen-printing

    International Nuclear Information System (INIS)

    A comprehensive comparative study of electron field emission properties of carbon nanotube (CNT) films prepared by vacuum filtration and screen-printing was carried out. Field emission performance of vacuum filtered CNT films with different filtered CNT suspension volumes was systematically studied, and the optimum electron emission was obtained with a low turn on field of ∼0.93 V/μm (at 1 μA/cm2) and a high field enhancement factor β of ∼9720. Comparing with screen-printed CNT films, vacuum filtered CNT films showed better electron emission performance, longer lifetime, and greater adhesive strength to substrates. This work reveals a potential use of vacuum filtered CNT films as field emission cathodes.

  12. The effect of surface treatments on the field emission characteristics of patterned carbon nanotubes on KOVAR substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keunsoo; Lee, Yang Doo; Kang, Byung Hyun; Dong, Ki-Young; Baek, Jinho; Fai, Vincent Lau Chun [Korea University, Display and Nanosystem Laboratory, College of Engineering (Korea, Republic of); Kim, Won-Seok [Electronic Materials Research Group, Hyosung Corporation, R and D Business Laboratory (Korea, Republic of); Yang, Cheol-Min [Korea Institute of Science and Technology, Institute of Advanced Composite Materials (Korea, Republic of); Ju, Byeong-Kwon, E-mail: bkju@korea.ac.kr [Korea University, Display and Nanosystem Laboratory, College of Engineering (Korea, Republic of)

    2012-07-15

    The field emission characteristics of patterned carbon nanotubes (CNTs) the average diameter of which is 16 nm cathodes on substrates with different surface treatments were investigated. The surface treatments of the substrate were performed by nickel electroless plating and palladium coating, which is an activation procedure of electroless plating. CNTs were patterned on the surface-treated substrate with radius of 200 {mu}m through conventional photolithography process. Two deposition methods, electrophoresis deposition and spray deposition, were used to investigate the effects of deposition methods on field emission characteristics of the cathodes. It was revealed that the two deposition methods showed similar turn-on field trends, which means that the different surface morphologies of the substrates have more influence on the field emission characteristics than the different deposition methods performed in this study. Through the surface treatments, the roughness of the surface increased and cathodes with a high roughness factor showed better field emission characteristics compared to non-treated ones.

  13. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shahsavar, Amin [Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Salimpour, Mohammad Reza; Saghafian, Mohsen [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Shafii, M. B. [Sharif University of Technology, Tehran(Iran, Islamic Republic of)

    2016-02-15

    The present work examines experimentally the effect of magnetic field on the viscosity and thermal conductivity of a hybrid nanofluid containing tetramethylammonium hydroxide (TMAH) coated Fe{sub 3}O{sub 4} nanoparticles and Gum arabic (GA) coated carbon nanotubes (CNTs). The hybrid nanofluid was prepared by using ultrasonic dispersion method. Magnetic field was created by a pair of spaced apart magnet plates. The effect of temperature on the time variation of thermal conductivity under applied magnetic field was also investigated. According to the results of this study, viscosity of the hybrid nanofluid increases with the strength of magnetic field, while it decreases with the increase of temperature. Additionally, it is found that the hybrid nanofluid behaves as a shear thinning fluid at low shear rates while it exhibits Newtonian behavior at high shear rates. Furthermore, results show that when an external magnetic field is applied to the studied magnetic nanofluids, the thermal conductivity experiences a peak.

  14. Local Field Effects in the Energy Transfer between a Chromophore and a Carbon Nanotube : a Single Nano-compound Investigation.

    OpenAIRE

    Roquelet, Cyrielle; Vialla, Fabien; Diederichs, Carole; Roussignol, Philippe; Delalande, Claude; Deleporte, Emmanuelle; Lauret, Jean-Sébastien; Voisin, Christophe

    2012-01-01

    Energy transfer in non-covalently bound porphyrin / carbon nanotube compounds is investigated at the single nano-compound scale. Excitation spectroscopy of the luminescence of the nanotube shows two resonances arising from intrinsic excitation of the nanotube and from energy transfer from the porphyrin. Polarization diagrams show that both resonances are highly anisotropic with a preferred direction along the tube axis. The energy transfer is thus strongly anisotropic despite the almost isotr...

  15. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  16. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    Science.gov (United States)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  17. Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field

    Science.gov (United States)

    Vales-Pinzón, C.; Alvarado-Gil, J. J.; Medina-Esquivel, R.; Martínez-Torres, P.

    2014-11-01

    Magneto-optic phenomena in ferrofluids have been shown to be related to the formation of chain structures, due to the arrangement of the ferromagnetic particles, induced by an applied magnetic field. In this work, the effects on transmission of polarized light due to anisotropic effects induced by an external magnetic field in ferrofluids with carbon nanotubes are studied. The time response of the system presents two well defined stages, in the first one, which is very short, the fluid behaves as a polarizer. In contrast in the second stage, the effects of light transmission dominate. In this stage the transmitted light intensity grows with time and after a long time reaches a constant stable value. It is shown that these phenomena depend on the carbon nanotubes concentration as well as on the strength of the applied magnetic field. Using a simple model that considers a chain-like structure formation, it is possible to determine the rate of agglomeration of the formed structures and the attenuation coefficient of the transmitted light. The formation of nanostructures leads to variation in the transmitted light, depending on the polarization of the incident light. These magnetic nanostructures can find numerous applications in nanotechnology, optical devices and medicine.

  18. Thionyl chloride assisted functionalization of amorphous carbon nanotubes: A better field emitter and stable nanofluid with better thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S.K.; Jha, A. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film & Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700 032 (India); School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India)

    2015-06-15

    Highlights: • Thionyl chloride assisted functionalization of amorphous carbon nanotubes (a-CNTs). • Improved dispersion enhanced thermal conductivity of engine oil. • Again f-a-CNTs showed enhanced field emission property compared to pure a-CNTs. - Abstract: Amorphous carbon nanotubes (a-CNTs) were synthesized at low temperature in open atmosphere and further functionalized by treating them in thionyl chloride added stearic acid-dichloro methane solution. The as prepared functionalized a-CNTs (f-a-CNTs) were characterized by Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission and scanning electron microscopy. The nanofluid was prepared by dispersing f-a-CNTs in engine oil using ultrasonic treatment. The effective thermal conductivity of as prepared nanofluid was investigated at different loading (volume fraction of f-a-CNTs). Obtained experimental data of thermal conductivity were compared with the predicted values, calculated using existing theoretical models. Stability of the nanofluid was tested by means of zeta potential measurement to optimize the loading. The as prepared f-a-CNTs sample also showed improved field emission result as compared to pristine a-CNTs. Dependence of field emission behavior on inter electrode distance was investigated too.

  19. Carbon nanotube cathode with capping carbon nanosheet

    Science.gov (United States)

    Li, Xin; Zhao, Dengchao; Pang, Kaige; Pang, Junchao; Liu, Weihua; Liu, Hongzhong; Wang, Xiaoli

    2013-10-01

    Here, we report a vertically aligned carbon nanotube (VACNT) film capped with a few layer of carbon nanosheet (FLCN) synthesized by chemical vapor deposition using a carbon source from iron phthalocyanine pyrolysis. The square resistance of the VACNT film is significantly reduced from 1500 Ω/□ to 300 Ω/□ when it is capped with carbon nanosheet. The VACNT capped with carbon nanosheet was transferred to an ITO glass substrate in an inverted configuration so that the carbon nanosheet served as a flexible transparent electrode at the bottom and the VACNT roots served as emission tips. Because all of the VACNTs start growing from a flat silicon substrate, the VACNT roots are very neat and uniform in height. A field emission test of the carbon nanosheet-capped VACNT film proved that the CNT roots show better uniformity in field emission and the carbon nanosheet cap could also potentially serve as a flexible transparent electrode, which is highly desired in photo-assisted field emission.

  20. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  1. Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process

    International Nuclear Information System (INIS)

    Nitrogen-doped carbon nanotube (CNT) films have been synthesized by simple microwave plasma enhanced chemical vapor deposition technique. The morphology and structures were investigated by scanning electron microscopy and high resolution transmission electron microscopy. Morphology of the films was found to be greatly affected by the nature of the substrates. Vertically aligned CNTs were observed on mirror polished Si substrates. On the other hand, randomly oriented flower like morphology of CNTs was found on mechanically polished ones. All the CNTs were found to have bamboo structure with very sharp tips. These films showed very good field emission characteristics with threshold field in the range of 2.65-3.55 V/μm. CNT film with flower like morphology showed lower threshold field as compared to vertically aligned structures. Open graphite edges on the side surface of the bamboo-shaped CNT are suggested to enhance the field emission characteristics which may act as additional emission sites

  2. Field emission from carbon nanotube and tetrapod-like ZnO compound cathode fabricated by spin-coating method

    International Nuclear Information System (INIS)

    We present a study of the field emission properties of a mixture of multi-wall carbon nanotubes (MWCNTs) and tetrapod-like zinc oxide nanostructures (ZTPNs). A spin-coating process instead of screen-printing was used to fabricate the cathode; this prevented largely the destruction of the slim needles of ZTPNs by mechanical rubbing. The protruding needles of ZTPNs in the paste are largely responsible for the field emission, while the CNTs have been added to improve the conductivity of cathode. Ultra low turn-on field at 0.6 V/μm and threshold field at 1.5 V/μm were obtained; moreover, the emission uniformity improved substantially compared to unmixed samples of ZTPN.

  3. Preparation of isolated carbon nanotubes

    International Nuclear Information System (INIS)

    Full text: Carbon nanotubes are of great interest for a large range of applications from physical chemistry, solid state physics to molecular quantum optics. We propose the preparation of molecular beams of isolated carbon nanotubes for future matter wave experiments, as well as for applications in the material sciences and spectroscopy. Carbon nanotubes may be particularly interesting for quantum experiments because of their low ionization threshold, high mechanical stability and high polarizability. This is expected to facilitate the cooling, coherent manipulation and efficient detection of such molecular beams. For this purpose we are investigating different methods of solvation, isolation and shortening of carbon nanotubes from commercial bundles. Length and diameter distributions are recorded by SPM whereas the unbundling of the tubes is determined by absorption spectroscopy. Established methods from physical chemistry, such as laser desorption are currently being modified and studied as potential tools for generating beams of nanotubes in the mass range of around 50.000-100.000 amu. (author)

  4. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  5. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  6. Magnetoresistance of Multiwalled Carbon Nanotube Yarns

    Institute of Scientific and Technical Information of China (English)

    SHENG Lei-Mei; GAO Wei; CAO Shi-Xun; ZHANG Jin-Cang

    2008-01-01

    We measure zero-field resistivity and magnetoresistance of multiwalled carbon nanotube yarns (CNTYs). The CNTYs are drawn from superaligned multiwalled carbon nanotube arrays synthesized by the low-pressure chemical vapour deposition method. The zero-field resistivity shows a logarithmic decrease from 2 K to 300 K. In the presence of a magnetic field applied perpendicular to the yarn axis, a pronounced negative magnetoresistance is observed. A magnetoresistance ratio of 22% is obtained. These behaviours can be explained by the weak localization effect.

  7. Development of field-emission electron gun from carbon nanotubes (2)

    International Nuclear Information System (INIS)

    We have been developing a high brightness electron gun utilizing carbon nanotube (CNT) cathode since 2001. Recently we succeeded to achieve a realistic-size cold cathode which could stand comparison with current densities of dispenser cathodes conventionally used in accelerators all over the world. The anode current was obtained to 0.48 A from the CNT-cathode of 2.6 mm diameter, which current density reduced from the anode current was about 9.1 A/cm2 under a condition of 128 kV-DC acceleration voltage in pulse operations of 50 pps using about 8 ns pulses. The emission current was very stable in the long-term-period operation for about 3 weeks under about 10-6 Pa vacuum pressure. (author)

  8. Field and temperature dependent electron transport properties of random network single walled and multi walled carbon nanotubes

    International Nuclear Information System (INIS)

    Field and temperature dependent electron transport properties of random network single walled carbon nanotubes (SWCNTs) and multi walled carbon nanotubes (MWCNTs) were investigated and compared. The electrical characterizations of drop casted CNT samples were done by two probe measurements by varying temperatures from 80 K to 300 K in the field region 1–400 V cm−1. The charge transport mechanisms at low (<3.5 V) and high (>3.5 V) fields were analyzed from measured I–V characteristic curves at various temperatures (<300 K) with respect to applied field. At low field, the ohmic behavior was observed and at high field the charge transport appears to be Poole–Frenkel type in both types of CNTs network. Electron–electron and electron–phonon scatterings in the localized defect states dominate in SWCNTs, whereas in MWCNTs the delocalization of charge carriers as well as the scattering centers is responsible due to the presence of inner shells. Because of the different nature of chirality in random network, the SWCNTs displayed lower conduction when compared to MWCNTs. The variation in Poole–Frenkel co-efficient (β) (SWCNTs-0.193 × 10−22; MWCNTs-0.089 07 × 10−22 J V1/2 cm−1/2), activation energy (SWCNTs-90 meV; MWCNTs-60 meV for field of 7 V1/2 cm−1/2) and trap energy levels (SWCNTs-109 meV; MWCNTs-37 meV) are discussed for both SWCNTs and MWCNTs. (paper)

  9. Growth of aligned single-walled carbon nanotubes under ac electric fields through floating catalyst chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Dou Xin-Yuan; Luo Shu-Dong; Zhang Zeng-Xing; Liu Dong-Fang; Wang Jian-Xiong; Gao Yan; Zhou Wei-Ya; Wang Gang; Zhou Zhen-Ping; Tan Ping-Heng; Zhou Jian-Jun; Song Li; Sun Lian-Feng; Jiang Peng; Liu Li-Feng; Zhao Xiao-Wei

    2005-01-01

    Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280℃). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.

  10. CARBON NANOTUBES: AN APPROACH TO NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. H. Alai et al.

    2012-01-01

    Full Text Available Carbon nanotubes are cylindrical carbon molecules have novel properties, making them potentially useful in many applications in nanotechnology, electronics, optics, and other fields of material science as well as potential uses in architectural fields. They have unique electronic, mechanical, optical and chemical properties that make them good candidates for a wide variety of applications, including drug transporters, new therapeutics, delivery systems and diagnostics. Their unique surface area, stiffness, strength and resilience have led to much excitement in the field of pharmacy. Nanotubes are categorized as single-walled nanotubes, multiple walled nanotubes. Various techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, chemical vapor deposition. They can pass through membranes, carrying therapeutic drugs, vaccines and nucleic acids deep into the cell to targets previously unreachable. Purification of the tubes can be divided into a couple of main techniques: oxidation, acid treatment, annealing, sonication, filtering and functionalization techniques. The main problem of insolubility in aqueous media has been solved by developing a synthetic protocol that allows highly water-soluble carbon NTs to be obtained. The modifications are done to improve efficiency of carbon nanotubes by formulating luminescent carbon nanotubes, ultrathin carbon nanoneedles, magnetically guided nanotubes. The application of carbon nanotube in tissue engineering, drug carrier release system, wound healing, in cancer treatment and as biosensor. Researchers have recently developed a new approach to Boron Neutron Capture Therapy in the treatment of cancer using substituted Carborane-Appended Water-Soluble single-wall carbon nanotubes.

  11. The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z [Department of Electrical Engineering, Alabama A and M University, Normal, AL 35726 (United States); Camino, F E [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: zhigang.xiao@aamu.edu

    2009-04-01

    Sb{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 2}Se semiconductor materials were used as the source and drain contact materials in the fabrication of carbon nanotube field-effect transistors (CNTFETs). Ultra-purified single-walled carbon nanotubes (SWCNTs) were ultrasonically dispersed in N-methyl pyrrolidone solvent. Dielectrophoresis was used to deposit and align SWCNTs for fabrication of CNTFETs. The Sb{sub 2}Te{sub 3}- and Bi{sub 2}Te{sub 2}Se-based CNTFETs demonstrate p-type metal-oxide-silicon-like I-V curves with high on/off drain-source current ratio at large drain-source voltages and good saturation of drain-source current with increasing drain-source voltage. The fabrication process developed is novel and has general meaning, and could be used for the fabrication of SWCNT-based integrated devices and systems with semiconductor contact materials.

  12. Torsional Electromechanics of Carbon Nanotubes

    Science.gov (United States)

    Joselevich, Ernesto; Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.

    2007-03-01

    Carbon nanotubes are known to be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multi-walled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different subbands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Our experiments indicate that carbon nanotubes could be used as self-sensing torsional springs for nanoelectromechanical systems (NEMS). [1] E. Joselevich, Twisting nanotubes: From torsion to chirality, ChemPhysChem 2006, 7, 1405. [2] T. Cohen-Karni, L. Segev, O. Srur-Lavi, S. R. Cohen, E. Joselevich, Torsional electromechanical quantum oscillations in carbon nanotubes, Nature Nanotechnology, 2006, 1, 36.

  13. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    International Nuclear Information System (INIS)

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm−2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices. (paper)

  14. A multi-scale model for mobile and localized electroluminescence in carbon nanotube field-effect transistors

    International Nuclear Information System (INIS)

    A multi-scale model is presented that captures the experimentally observed behaviour of electroluminescence (EL) in carbon nanotube field-effect transistors (CNFETs) under ambipolar bias conditions, namely variations in mobile EL intensity, localized EL at a contact, and localized EL at a charge defect. A full, quantum mechanical approach is used to describe tunnelling and thermionic emission at the contacts, and the drift-diffusion equations, with a field-dependent mobility, are used for transport in the long devices (CN length ≥10 μm). We find that contact-localized EL is only present when the height of the Schottky barrier at the ends of the CN favours the injection of one type of carrier. Charge defects on the CN surface also lead to localized EL, which is present only under certain bias conditions

  15. Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

    Directory of Open Access Journals (Sweden)

    Hari Krishna Salila Vijayalal Mohan

    2014-11-01

    Full Text Available A single-walled carbon nanotube (SWCNT in a field-effect transistor (FET configuration provides an ideal electronic path for label-free detection of nucleic acid hybridization. The simultaneous influence of more than one response mechanism in hybridization detection causes a variation in electrical parameters such as conductance, transconductance, threshold voltage and hysteresis gap. The channel length (L dependence of each of these parameters necessitates the need to include them when interpreting the effect of L on the response to hybridization. Using the definitions of intrinsic effective mobility (µe and device field-effect mobility (µf, two new parameters were defined to interpret the effect of L on the FET response to hybridization. Our results indicate that FETs with ≈300 µm long SWCNT exhibited the most appreciable response to hybridization, which complied with the variation trend in response to the newly defined parameters.

  16. Carbon nanotube optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  17. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  18. Different Technical Applications of Carbon Nanotubes

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, Ahmed A.; Abdel-Daiem, A.

    2015-09-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  19. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  20. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  1. Carbon nanotubes for coherent spintronics

    Directory of Open Access Journals (Sweden)

    F. Kuemmeth

    2010-03-01

    Full Text Available Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications.

  2. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance and...

  3. Automated circuit fabrication and direct characterization of carbon nanotube vibrations.

    Science.gov (United States)

    Zeevi, G; Shlafman, M; Tabachnik, T; Rogachevsky, Z; Rechnitz, S; Goldshtein, I; Shlafman, S; Gordon, N; Alchanati, G; Itzhak, M; Moshe, Y; Hajaj, E M; Nir, H; Milyutin, Y; Izraeli, T Y; Razin, A; Shtempluck, O; Kotchtakov, V; Yaish, Y E

    2016-01-01

    Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion. PMID:27396506

  4. Connecting carbon nanotubes using Sn.

    Science.gov (United States)

    Mittal, Jagjiwan; Lin, Kwang Lung

    2013-08-01

    Process of Sn coating on mutiwalled carbon nanotubes (MWCNT) and formation of interconnections among nanotubes are studied using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX). Surface oxidation of nanotubes during heating with HNO3 prior to the SnCl2 treatment and the bonding between functional groups and Sn are found to be responsible for the coating and its stability. Open nanotubes are filled as well as coated during tin chloride treatment. Coating and filling are converted into the coatings on the inner as well as outer walls of the nanotubes during reduction with H2/N2. EDX studies show the formation of intermetallic compounds e.g., Cu6Sn5 and Cu3Sn at the joints between nanotubes. Formation of intermetallic compounds is supposed to be responsible for providing the required strength for bending and twisting of nanotubes joining of nanotubes. Paper presents a detailed mechanism of coating and filling processes, and interconnections among nanotubes. PMID:23882800

  5. Design and characterization of a multi-beam micro-CT scanner based on carbon nanotube field emission x-ray technology

    Science.gov (United States)

    Peng, Rui

    In this dissertation, I will present the results for my Ph.D. research for the past five years. My project mainly focuses on advanced imaging applications with a multi-beam x-ray source array based on carbon nanotube field emission technology. In the past few years, research in carbon nanotubes gradually changed from the raw material science to its application. Field emission x-ray application is one of the hottest research areas for carbon nanotube. Compared to traditional thermionic x-ray sources, the carbon nanotube field emission x-ray source has some natural advantages over traditional thermionic x-ray sources such as instantaneous x-ray generation, programmability and miniaturization. For the past few years, the research and development of carbon nanotube field emission x-ray has shifted from single x-ray beam applications to spatially distributed multi-beam x-ray sources. Previously in Zhou group, we have already built a gated micro-CT system with single beam micro-focus x-ray tube for higher spatial and temporal resolution as required in live animal imaging and a multi-beam tomosynthesis system targeting for faster and more stable breast imaging. Now my project mainly focused on the design, characterization and optimization of a multi-beam micro-CT imaging system. With the increase of gantry rotation speed approaching the mechanical limit, it is getting more and more difficult to further speed up the CT scanning. My new system promises a potential solution for the problem, and it serves as a great test platform for truly stationary micro-CT geometry. The potential capabilities it showed during the characterization and imaging measurements was promising. The dissertation is composed of five chapters. In Chapter 1, I will generally review the physics principles of x-ray generation and interaction with matter. Then the discovery of carbon nanotube and its great potential to serve as an excellent field emission electron source will be introduced in the second

  6. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    International Nuclear Information System (INIS)

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits

  7. Gigahertz frequency flexible carbon nanotube transistors

    Science.gov (United States)

    Chimot, N.; Derycke, V.; Goffman, M. F.; Bourgoin, J. P.; Happy, H.; Dambrine, G.

    2007-10-01

    We investigate the high frequency performances of flexible field-effect transistors based on carbon nanotubes. A large density of mostly aligned carbon nanotubes deposited on a flexible substrate by dielectrophoresis serves as the channel. The transistors display a constant transconductance up to at least 6GHz and a current gain cutoff frequency (fT) as high as 1GHz at VDS=-700mV. Bending tests show that the devices can withstand a high degree of flexion characterized by a constant transconductance for radius of curvature as small as 3.3mm.

  8. Effectively Improved Field Emission Properties of Multiwalled Carbon Nanotubes/Graphenes Composite Field Emitter by Covering on the Si Pyramidal Structure

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong;

    2015-01-01

    The composite nanostructure emitter of multiwalled carbon nanotubes and graphenes was deposited on pyramidal silicon substrate by the simple larger scale electrophoretic deposition process. The field emission (FE) properties of the composite/pyramidal Si device were greatly improved compared with...... that of the composite/plain Si. The low turn-ON electric field, the low threshold electric field, and the larger enhancement factor were obtained using the pyramidal structure. The better FE performances of the composite/pyramidal Si were a combined effect of the field enhancement from the composite...... emitter and the pyramidal Si structure. The numerical simulation of the electric field distribution on composite/pyramidal cathode was used to illuminate the improved FE properties by using the pyramidal substrate. These studies indicate that constructing composite/pyramidal structure is one of the...

  9. The effect of Ar neutral beam treatment of screen-printed carbon nanotubes for enhanced field emission

    International Nuclear Information System (INIS)

    This study examined the effectiveness of an Ar neutral beam as a surface treatment for improving the field emission properties of screen-printed carbon nanotubes (CNTs). A short period of the neutral beam treatment on tape-activated CNTs enhanced the emission properties of the CNTs, showing a decrease in the turn-on field and an increase in the number of emission sites. The neutral beam treatment appeared to render the CNT surfaces more actively by exposing more CNTs from the CNT paste without cutting or kinking the already exposed long CNT emitters. The treated CNTs emitted more electrons than the CNTs treated using other methods. When the field emission properties were measured after the neutral beam treatment, the turn-on field decreased from 1.65 to 0.60 V/μm and the emission field at 1 mA/cm2 decreased from 3.10 to 2.41 V/μm. After the neutral beam treatment for 10 s, there was an improvement in the stability of the emission current at a constant electric field. It is expected that the neutral beam treatment introduced in this study will provide an easy way of improving the emission intensity and stability of screen-printed CNT emitters

  10. Scalable dielectrophoresis of single walled carbon nanotubes

    Science.gov (United States)

    Fitzhugh, William A.

    Single Walled Carbon Nanotubes (SWNTs) have attracted much attention as a candidate material for future nano-scale 'beyond silicon' devices. However industrial scale operations have been impeded by difficulties in separating the metallic and semiconducting species. This paper addresses the use of highly inhomogeneous alternating electric fields, dielectrophoresis, to isolate SWNT species in scaled systems. Both numerical and experimental methods will be discussed.

  11. Chiral Anomaly in Toroidal Carbon Nanotubes

    OpenAIRE

    Sasaki, K.

    2001-01-01

    It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in toroidal carbon nanotubes on a planar geometry with varying magnetic field. We show that the chiral anomaly is closely connected with the persistent current in a one-dimensional metallic ring.

  12. Effect of increased crystallinity of single-walled carbon nanotubes used as field emitters on their electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shimoi, Norihiro, E-mail: shimoi@mail.kankyo.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-12-07

    Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.

  13. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end

  14. Effect of increased crystallinity of single-walled carbon nanotubes used as field emitters on their electrical properties

    International Nuclear Information System (INIS)

    Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future

  15. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ummethala, Raghunandan; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Wenger, Daniela; Tedde, Sandro F. [Siemens Healthcare GmbH, Technology Centre, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria)

    2016-01-28

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  16. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  17. High yield assembly and electron transport investigation of semiconducting-rich local-gated single-walled carbon nanotube field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kormondy, Kristy J; Stokes, Paul; Khondaker, Saiful I, E-mail: saiful@ucf.edu [Nanoscience Technology Center and Department of Physics, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826 (United States)

    2011-10-14

    We report the fabrication and electron transport investigation of individual local-gated single-walled carbon nanotube field effect transistors (SWNT-FET) with high yield using a semiconducting-rich carbon nanotube solution. The individual semiconducting nanotubes were assembled at the selected position of the circuit via dielectrophoresis. Detailed electron transport investigations on 70 devices show that 99% display good FET behavior, with an average threshold voltage of 1 V, subthreshold swing as low as 140 mV/dec, and on/off current ratio as high as 8 x 10{sup 5}. The high yield directed assembly of local-gated SWNT-FET will facilitate large scale fabrication of CMOS (complementary metal-oxide-semiconductor) compatible nanoelectronic devices.

  18. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the...

  19. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  20. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    Science.gov (United States)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  1. Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chang, Hsin-Yueh; Chang, Hsuan-Chen [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shih, Yi-Ting; Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Ciou, Chen-Hong [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Yi-Ling [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-03-15

    Highlights: • We have successfully designed the honeycomb patterns on glass substrate by photolithography technique. • Honeycomb-VACNTs were synthesized successfully onto glass substrate by using thermal CVD and covered different Ti films on VACNTs by e-beam evaporation. • After coating the Ti films, the current density reached 7 mA/cm{sup 2} when the electric field was 2.5 V/μm. • The fluorescence of VACNTs with Ti 15 nm films exhibits the high brightness screen and emission uniformity. -- Abstract: Carbon nanotubes (CNTs) were grown successfully onto a glass substrate using thermal chemical vapor deposition (TCVD) with C{sub 2}H{sub 2} gas at 700 °C. The synthesized CNTs exhibited good crystallinity and a vertically aligned morphology. The vertically aligned CNTs (VACNTs) were patterned with a honeycomb configuration using photolithography and characterized using field emission (FE) applications. Owing to the electric field concentration, the FE current density of VACNTs with honeycomb configuration was higher than that of the un-patterned VACNTs. Ti was coated onto the VACNT surface utilizing the relatively lower work function property to enhance the FE current density. The FE current density reached up to 7.0 mA/cm{sup 2} at an applied electric field of 2.5 V/μm. A fluorescent screen was monitored to demonstrate uniform FE VACNTs with a honeycomb configuration. The designed field emitter provided an admirable example for FE applications.

  2. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving.

    Science.gov (United States)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units. PMID:27335235

  3. Kondo physics in carbon nanotubes

    OpenAIRE

    Nygard, Jesper; Cobden, David Henry; Lindelof, Poul Erik

    2000-01-01

    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo ph...

  4. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  5. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  6. Role of negatively charged ions in plasma on the growth and field emission properties of spherical carbon nanotube tip

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, Aarti; Walia, Ritu; Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, Sector-22, Rohini, Delhi-110086 (India)

    2012-01-15

    The role of negatively charged ions in plasma on growth (without catalyst) and field emission properties of spherical carbon nanotube (CNT) tip has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, negatively and positively charged ions, neutral atoms, and the energy balance of various species has been developed. Numerical calculations of the spherical CNT tip radius for different relative density of negatively charged ions {epsilon}{sub r}(=n{sub SF{sub 6{sup -}}}/n{sub C{sup +}}, where n{sub SF{sub 6{sup -}}} and n{sub C}{sup +} are the equilibrium densities of sulphur hexafluoride and carbon ions, respectively) have been carried out for the typical glow discharge plasma parameters. It is found that the spherical CNT tip radius decreases with {epsilon}{sub r} and hence the field emission of electrons from the spherical CNT tip increases. Some of our theoretical results are in accordance with the existing experimental observations.

  7. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  8. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  9. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  10. A study of junction effect transistors and their roles in carbon nanotube field emission cathodes in compact pulsed power applications

    Science.gov (United States)

    Shui, Qiong

    This thesis is focusing on a study of junction effect transistors (JFETs) in compact pulsed power applications. Pulsed power usually requires switches with high hold-off voltage, high current, low forward voltage drop, and fast switching speed. 4H-SiC, with a bandgap of 3.26 eV (The bandgap of Si is 1.12eV) and other physical and electrical superior properties, has gained much attention in high power, high temperature and high frequency applications. One topic of this thesis is to evaluate if 4H-SiC JFETs have a potential to replace gas phase switches to make pulsed power system compact and portable. Some other pulsed power applications require cathodes of providing stable, uniform, high electron-beam current. So the other topic of this research is to evaluate if Si JFET-controlled carbon nanotube field emitter cold cathode will provide the necessary e-beam source. In the topic of "4H-SiC JFETs", it focuses on the design and simulation of a novel 4H-SiC normally-off VJFET with high breakdown voltage using the 2-D simulator ATLAS. To ensure realistic simulations, we utilized reasonable physical models and the established parameters as the input into these models. The influence of key design parameters were investigated which would extend pulsed power limitations. After optimizing the key design parameters, with a 50-mum drift region, the predicted breakdown voltage for the VJFET is above 8kV at a leakage current of 1x10-5A/cm2 . The specific on-state resistance is 35 mO·cm 2 at VGS = 2.7 V, and the switching speed is several ns. The simulation results suggest that the 4H-SiC VJFET is a potential candidate for improving switching performance in repetitive pulsed power applications. To evaluate the 4H-SiC VJFETs in pulsed power circuits, we extracted some circuit model parameters from the simulated I-V curves. Those parameters are necessary for circuit simulation program such as SPICE. This method could be used as a test bench without fabricating the devices to

  11. Carbon Nanotube-based Cold Cathode for High Power MicrowaveVacuum Electronic Devices: A Potential Field Emitter

    Directory of Open Access Journals (Sweden)

    P. Verma

    2008-09-01

    Full Text Available Carbon nanotubes (CNTs can be grown in the form of small, sharp spikes capable of carrying very highcurrent densities which suggest great potential application of CNTs as cold cathode in high power microwavevacuum device applications. These cold cathode vacuum microwave devices are expected to be ideally suitedfor air-borne and space applications. This paper  reports the initial efforts made in the development of coldcathode using PECVD grown vertically-aligned matrix of CNTs with uniform height and optimum tip densityon silicon substrate. The high aspect ratio (of the order of 10,000 and novel electrical, mechanical, and thermalproperties of the CNT are found to be very attractive characteristics for emission of large and stable currentdensities at reasonably low field. The field emission current voltage characteristics of a typical cathode gaveemission current density in excess of 35 mA/cm2 at reasonably low field. The emission current in most of thesamples is found to be stable over long period of time but is greatly effected by the vacuum condition duringmeasurement. The initial measured data suggests great promise for achieving high current densities at practicalelectric fields.Defence Science Journal, 2008, 58(5, pp.650-654, DOI:http://dx.doi.org/10.14429/dsj.58.1688

  12. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Rajkumar; Ghosh, S., E-mail: santanu1@physics.iitd.ac.in [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi-16 (India); Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Gordan, O. D.; Zahn, D. R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Jha, M.; Ganguli, A. K. [Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-16 (India); Schmidt, H. [Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Schulze, S. [Solid Surfaces Analysis, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Schmidt, O. G. [Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2014-03-07

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB{sub 6}) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB{sub 6}-coated CNT film when compared to pristine CeB{sub 6} film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB{sub 6} nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB{sub 6} nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB{sub 6} films. The enhanced FE properties of the CeB{sub 6} coated CNT films are correlated to the microstructure of the films.

  13. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    International Nuclear Information System (INIS)

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB6) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB6-coated CNT film when compared to pristine CeB6 film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB6 nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB6 nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB6 films. The enhanced FE properties of the CeB6 coated CNT films are correlated to the microstructure of the films

  14. Development of tomographic imaging systems using carbon-nanotube-based field-emission x-ray sources

    Science.gov (United States)

    Zhang, Jian

    2005-11-01

    Conventional thermionic x-ray sources use hot filament cathodes to generate electrons for x-ray production. The thermionic technology has several inherent limitations such as high operating temperature, slow response time, and difficulty for miniaturization. On the other hand, field emission provides an alternative to generate electrons without all these limitations. The concept of field emission x-ray source has been proposed and tested in the early 1970s. Unfortunately all of the early field emission x-ray systems failed due primarily to the limitations on the electron field emitters. Carbon nanotubes (CNT) have recently emerged as a promising class of electron emissive materials and field emission x-ray source based on CNTs are expected to have significantly improved properties. We have recently developed a CNT-based field emission micro-focus x-ray source. It shows stable tube current under high operating voltage, extraordinary dynamic imaging capability, and excellent potential for miniaturization. All of these new features make it very attractive for various potential industrial and medical applications. In order to demonstrate its applications, two sets of x-ray imaging systems using this field emission x-ray source were constructed in our lab. One is a micro-computed tomographic (micro-CT) imaging system using a single field emission x-ray source for dynamic radiographic and tomographic imaging applications. It shows great potential for the future development of dynamic micro-CT scanner. The other one is a multi-beam field emission x-ray source with multiple addressable focal spots which can provide scanning x-ray beams without mechanical movement. It can lead to fast data acquisition rates for future tomographic imaging systems with a simplified experimental set-up.

  15. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  16. The study of explosive emission from carbon nanotubes

    International Nuclear Information System (INIS)

    The carbon nanotubes (CNT) found applications for high density current electron emitters. The main interest for forming of high current electron beams using CNT is high concentration of electrical field on the nanotubes and high value of yield by electrons for field emission. The experimental results for time processes of forming cathode plasma and extraction of electron beam are presented in the report

  17. Solution-Processed Carbon Nanotube and Chemically Synthesized Graphene Nanoribbon Field Effect Transistors

    Science.gov (United States)

    Bennett, Patrick Bryce

    Carbon nanotubes (CNTs) possess great potential as high performance semiconducting channels due to their one-dimensional nature, extremely high mobility, and their demonstrated ability to transport electrons ballistically in transistors. However, the presence of metallic CNTs in CNT films and arrays represents a major impediment towards large-scale integration. Methods of solution purification have demonstrated partial success in metallic CNT removal, although their effects on device performance are unknown. While this problem may be solvable, new synthesis techniques have recently resulted in the creation of high-density films of graphene nanoribbons (GNRs) with atomically smooth edges, uniform widths, and uniform band structure. These may ultimately supplant CNTs in device applications due to their theoretically similar, but uniform electronic properties. This work aims to study the effects of purification of semiconducting CNTs in thin film transistors (TFTs) and to develop methods to increase device performance when metallic CNTs are present. Devices consisting of large networks of CNTs as well as short channel, single CNT devices are characterized to determine the effects of solution processing on CNTs themselves. Short channel, bottom-up GNR devices are fabricated to compare their performance to CNT transistors. The first half of this dissertation describes the methods of integrating CNTs from various sources into transistors. Growth and transfer are described, as well as methods of creating aqueous suspensions for solution processing. Development of novel surfactant materials based on biomimetic polymers used to suspend CNTs in solution are reported and characterized. Methods of deposition out of solution and onto insulating substrates are covered. Device fabrication from start to finish is detailed, with the subtleties of processing required to produce sub 10-nm channel length devices explained. The second half reports devices produced via these techniques

  18. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  19. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field

    Science.gov (United States)

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-06-01

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m

  20. Gears Based on Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  1. Carbon Nanotube Electron Emitter for X-ray Imaging

    Directory of Open Access Journals (Sweden)

    Jung Su Kang

    2012-11-01

    Full Text Available The carbon nanotube field emitter array was grown on silicon substrate through a resist-assisted patterning (RAP process. The shape of the carbon nanotube array is elliptical with 2.0 × 0.5 mm2 for an isotropic focal spot size at anode target. The field emission properties with triode electrodes show a gate turn-on field of 3 V/µm at an anode emission current of 0.1 mA. The author demonstrated the X-ray source with triode electrode structure utilizing the carbon nanotube emitter, and the transmitted X-ray image was of high resolution.

  2. Carbon Nanotube Electron Emitter for X-ray Imaging

    OpenAIRE

    Jung Su Kang; Je Hwang Ryu; Kyu Chang Park

    2012-01-01

    The carbon nanotube field emitter array was grown on silicon substrate through a resist-assisted patterning (RAP) process. The shape of the carbon nanotube array is elliptical with 2.0 × 0.5 mm2 for an isotropic focal spot size at anode target. The field emission properties with triode electrodes show a gate turn-on field of 3 V/µm at an anode emission current of 0.1 mA. The author demonstrated the X-ray source with triode electrode structure utilizing the carbon nanotube em...

  3. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  4. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters

    Science.gov (United States)

    Nguyen, Duc Dung; Tai, Nyan-Hwa; Chen, Szu-Ying; Chueh, Yu-Lun

    2012-01-01

    We report a versatile synthetic process based on rapid heating and cooling chemical vapor deposition for the growth of carbon nanotube (CNT)-graphene hybrid materials where the thickness of graphene and density of CNTs are properly controlled. Graphene films are demonstrated as an efficient barrier layer for preventing poisoning of iron nanoparticles, which catalyze the growth of CNTs on copper substrates. Based on this method, the opto-electronic and field emission properties of graphene integrated with CNTs can be remarkably tailored. A graphene film exhibits a sheet resistance of 2.15 kΩ sq-1 with a transmittance of 85.6% (at 550 nm), while a CNT-graphene hybrid film shows an improved sheet resistance of 420 Ω sq-1 with an optical transmittance of 72.9%. Moreover, CNT-graphene films are demonstrated as effective electron field emitters with low turn-on and threshold electric fields of 2.9 and 3.3 V μm-1, respectively. The development of CNT-graphene films with a wide range of tunable properties presented in this study shows promising applications in flexible opto-electronic, energy, and sensor devices.

  5. Nanosecond pulse electrical fields used in conjunction with multi-wall carbon nanotubes as a potential tumor treatment

    International Nuclear Information System (INIS)

    The objectives of this communication were to fabricate pure samples of multi-walled carbon nanotubes (MWCNTs) and to determine their toxicity in tumor cell lines. MWCNTs were dispersed in a concentration of the surfactant T80 that was minimally toxic. Cell-type variation in toxicity to MWCNTs was observed but was not significantly different to unexposed controls. Additionally, we investigated the increased cell killing of the pancreatic cancer cell line PANC1 when exposed to ultrashort (nanosecond) pulsed electrical fields (nsPEF) in the presence of MWCNTs as a potential form of cancer therapy. We hypothesized that the unique electronic properties of MWCNTs disrupt cell function, leading to cell death, when cells are exposed to nsPEF. We observed a 2.3-fold reduction in cell survival in cells pulsed in the presence of MWCNTs compared to pulsed controls. This study demonstrates that ultrashort pulse electrical field applications have enhanced killing effects when cells are previously grown in the presence of MWCNTs, suggesting that the electrical properties of MWCNTs play a vital role in this process and is suggestive of a synergistic interaction between these nanomaterials and electrical fields. (communication)

  6. Effect of a concave grid mesh in a carbon nanotube-based field emission X-ray source

    International Nuclear Information System (INIS)

    Highlights: • Successful design using a concave grid mesh for the focusing electron. • Much better X-ray image due to the concave grid mesh. • Higher anode current efficiency using the concave grid mesh versus a flat grid mesh. - Abstract: This study introduces a simple approach to improve the X-ray image quality produced by the carbon nanotube (CNT) field emitter X-ray source by altering the geometrical shape of the grid mesh from the conventional flat shape to a concave one in a typical triode structure. The concave shape of the grid electrode increases the effective number of the grid cells in the mesh, which exerted an electric field in the direction of the emitted electrons, thereby increasing the emission current reaching the anode. Furthermore, the curved mesh (concave grid mesh), which was responsible for the extraction of electrons from the field emitter, exhibited a focusing effect on the electron beam trajectory thereby, reducing the focal spot size impinging on the anode and resulted in a better spatial resolution of the X-ray images produced

  7. Field emission properties of carbon nanotube arrays on the thickness-controlled flexible substrate by the pattern transfer process.

    Science.gov (United States)

    Chang, Chia-Tsung; Juan, Chuan-Ping; Lin, Yi-Chan; Li, Yu-Ren; Tsai, Wan-Lin; Yang, Po-Yu; Lee, I-Che; Cheng, Huang-Chung

    2012-07-01

    A technigal with the polydimethylsiloxane (PDMS) solution infiltrated into the SiOx-coated CNTAs has been utilized to directly transfer the CNTAs away from the silicon substrate. The oxide coating layer was utilized to protect the morpholgy of as-grown patterned vertical aligmed carbon nanotube (CNTs) arrays. The high density plasma reactive ions etching (HDP-RIE) system was used to make the CNTs emerge from the surface of the flexible substrate and modify the crystallines of CNTs. After the protecting oxide was HDP-RIE-processed for 8 min, the emission current properties were enhanced to be 1.03 V/microm and 1.43 V/microm, respectively, for the turn-on field and the threshold field, as compared with 1.25 V/microm and 1.59 V/microm for the as-grown CNTs, accordingly. The Field Emission (FE) enhancement after dry etching could be attributed to the open-ended structures and better crystalline. PMID:22966646

  8. Synthesis of carbon nanotubes using screen-printing catalyst and its application for a field emission device

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Wang-Ta; Su, Shui-Hsiang; Wu, Cheng-Yu; Yokoyama, Meiso [Department of Electronic Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu Township, Kaohsiung County 840 (China)

    2010-04-15

    Iron nitrate (Fe(NO{sub 3}){sub 3}.9H{sub 2}O) catalyst is screen-printed over silicon substrates and efficiently utilized to catalyze the synthesis of carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD). The concentration of iron nitrate influences the particle size distribution of the Fe catalyst, which determines the morphology of the obtained CNT arrays. H{sub 2} is introduced in varying concentrations in a CH{sub 4}/N{sub 2} mixed gas during the synthesis of the CNTs, from which CNTs with uniform diameter distribution are grown. A field emission device that employs CNTs as emitters exhibits a current density of 9 mA/cm{sup 2} at an electrical field of 1.2 V/{mu}m. This work demonstrates the potential to synthesize CNTs using a screen-printed catalyst, which is a requirement for field emitter application at a large size. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons.

    Science.gov (United States)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10(-6) Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system. PMID:23376878

  10. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    International Nuclear Information System (INIS)

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10−6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system. (paper)

  11. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    Science.gov (United States)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  12. Study of Carbon Nanotube-Substrate Interaction

    OpenAIRE

    Soares, Jaqueline S.; Ado Jorio

    2012-01-01

    Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the ...

  13. Epoxide composite materials with carbon nanotubes

    International Nuclear Information System (INIS)

    Methods of formation and physical properties of epoxide composite materials reinforced with carbon nanotubes are considered. An analogy is made between the relaxation properties of carbon nanotubes and macromolecules. The concentration dependences of the electrical conductivity of the epoxy polymers filled with single-walled and multi-walled carbon nanotubes are discussed. Modern views on the mechanism of reinforcement of polymers with nanotubes are outlined. The bibliography includes 143 references.

  14. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  15. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  16. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  17. Thermoelectric power in ultrathin films, quantum wires and carbon nanotubes under classically large magnetic field: Simplified theory and relative comparison

    International Nuclear Information System (INIS)

    We study the thermoelectric power under classically large magnetic field (TPM) in ultrathin films (UFs), quantum wires (QWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined III-V compounds form the special cases of our generalized analysis. The TPM has also been studied for quantum confined II-VI, stressed materials, bismuth and carbon nanotubes (CNs) on the basis of respective dispersion relations. It is found taking quantum confined CdGeAs2, InAs, InSb, CdS, stressed n-InSb and Bi that the TPM increases with increasing film thickness and decreasing electron statistics exhibiting quantized nature for all types of quantum confinement. The TPM in CNs exhibits oscillatory dependence with increasing carrier concentration and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of the TPM for non-degenerate materials having parabolic energy bands, leading to the compatibility test.

  18. Contact and channel resistances of ballistic and non-ballistic carbon-nanotube field-effect transistors

    Science.gov (United States)

    Park, Jong-Myeon; Hong, Shin-Nam

    2016-01-01

    Recently, many research has been conducted on the carbon-nanotube field-effect transistors (CNFETs) in expectation that the CNFETs could replace metal-oxide-semiconductor field-effect transistors (MOSFETs) in the sub-10-nm era. In consideration of both ballistic conduction and nonballistic conduction, including elastic scattering, optical phonon scattering, and acoustic phonon scattering, this paper presents the simulated dependence of the coaxially-gated single-walled semiconducting CNFET characteristics on the contact and the channel lengths. When the contact length was longer than 100 nm, the CNFETs showed a constant minimal value of the contact resistance. In this case, the saturated drain current was higher than that of CNFETs with a shorter contact length. When the channel was longer than 600 nm, the channel resistance was significantly increased due to acoustic phonon scattering. When the channel was shorter than 200 - 250 nm with optical scattering, acoustic scattering or all three scattering mechanisms taken into account, the contact resistance began to become larger than channel resistance.

  19. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  20. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149. ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  1. Thermoelectrics: Carbon nanotubes get high

    Science.gov (United States)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  2. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    Directory of Open Access Journals (Sweden)

    Giuseppe Cirillo

    2014-01-01

    Full Text Available The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior. The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review.

  3. A Three-dimensional simulation study of the performance of Carbon Nanotube Field Effect Transistors with doped reservoirs and realistic geometry

    OpenAIRE

    Fiori, G.; Iannaccone, G.; Klimeck, G.

    2005-01-01

    In this work, we simulate the expected device performance and the scaling perspectives of Carbon nanotube Field Effect Transistors (CNT-FETs), with doped source and drain extensions. The simulations are based on the self-consistent solution of the 3D Poisson-Schroedinger equation with open boundary conditions, within the Non-Equilibrium Green's Function formalism, where arbitrary gate geometry and device architecture can be considered. The investigation of short channel effects for different ...

  4. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  5. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna

    OpenAIRE

    Böhmler, Miriam; Hartmann, Nicolai; Georgi, Carsten; Hennrich, Frank; Green, Alexander A.; Hersam, Mark C.; Hartschuh, Achim

    2010-01-01

    We observe the angular radiation pattern of single carbon nanotubes' photoluminescence in the back focal plane of a microscope objective and show that the emitting nanotube can be described by a single in-plane point dipole. The near-field interaction between a nanotube and an optical antenna modifies the radiation pattern that is now dominated by the antenna characteristics. We quantify the antenna induced excitation and radiation enhancement and show that the radiative rate enhancement is c...

  6. Simulation of the Two-Dimensional Gasdynamic, Temperature, and Concentration Fields in an Injection Reactor of Chemical Vapor Deposition for Synthesis of Carbon Nanotube Arrays

    Science.gov (United States)

    Futko, S. I.; Chornyi, A. D.; Shulitskii, B. G.; Labunov, V. A.

    2016-01-01

    The two-dimensional axisymmetric gasdynamic, concentration, and heat fields arising in an injection reactor of chemical vapor deposition in the process of synthesis of arrays of carbon nanotubes in it from hydrocarbons and organometallic compounds were numerically simulated for the purpose of investigating the features of these fields. It was established that, even in the case of laminar flow of a gas mixture over the surface of a substrate positioned in this reactor, in it there arise vortices introducing a significant heterogeneity into the gas flow. The influence of changes in the gasdynamic and temperature fields in the indicated reactor on the characteristics of an array of carbon nanotubes grown on the surface of the substrate was analyzed. Parametric calculations of the dependences of the velocity of the gas flow, the gas temperature, and the concentration of reagents in the reactor on the hydrocarbon flow rate, the temperature of the process, and the length of the injection needle have been performed. These calculations have shown that the regimes of heating and mixing of reagents in an injection reactor of chemical vapor deposition correspond to those of an ideal-mixing reactor. The results obtained can be used for determining the conditions necessary for the growth of homogeneous arrays of carbon nanotubes with a high rate on the surface of a substrate in a reactor of chemical vapor deposition.

  7. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  8. Carbon nanotubes and graphene in analytical sciences

    International Nuclear Information System (INIS)

    Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6 years in (bio)analytical chemistry in general, and in biosensing in particular. (author)

  9. A voltage-controlled chaotic oscillator based on carbon nanotube field-effect transistor for low-power embedded systems

    International Nuclear Information System (INIS)

    This paper presents a compact and low-power-based discrete-time chaotic oscillator based on a carbon nanotube field-effect transistor implemented using Wong and Deng's well-known model. The chaotic circuit is composed of a nonlinear circuit that creates an adjustable chaos map, two sample and hold cells for capture and delay functions, and a voltage shifter that works as a buffer and adjusts the output voltage for feedback. The operation of the chaotic circuit is verified with the SPICE software package, which uses a supply voltage of 0.9 V at a frequency of 20 kHz. The time series, frequency spectra, transitions in phase space, sensitivity with the initial condition diagrams, and bifurcation phenomena are presented. The main advantage of this circuit is that its chaotic signal can be generated while dissipating approximately 7.8 μW of power, making it suitable for embedded systems where many chaos-signal generators are required on a single chip. (interdisciplinary physics and related areas of science and technology)

  10. Sdc-Cntfet Stepwise Doping Channel Design in Carbon Nanotube Field Effect Transistors for Improving Short Channel Effects Immunity

    Science.gov (United States)

    Jamalabadi, Zahra; Keshavarzi, Parviz; Naderi, Ali

    2014-01-01

    A novel carbon nanotube field-effect transistor with stepwise doping profile channel (SDC-CNTFET) is introduced for short-channel effects (SCEs) improvement. In SDC-CNTFET, the channel is divided into five sections of equal length. Impurity concentration was reduced from 0.8 nm-1 to zero from the source side to the drain side of the channel, with stepwise profile. The devices have been simulated by the self-consistent solution of two-dimensional (2D) Poisson-Schrödinger equations, within the nonequilibrium Green's function (NEGF) formalism. We demonstrate that the proposed structure for CNTFETs shows considerable improvement in device performance focusing on leakage current and ON-OFF current ratio. In addition, the investigation of SCEs for the proposed structure shows the improved drain-induced barrier lowering (DIBL) and subthreshold swing (SS). Moreover, we will prove that the proposed structure has acceptable performance at different values of channel impurity concentration in terms of delay and power-delay product (PDP). All these investigations introduce SDC-CNTFET as a more reliable device structure in short-channel regime.

  11. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    Science.gov (United States)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  12. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  13. Carbon nanotube assisted water self-diffusion across lipid membranes in the absence and presence of electric fields

    OpenAIRE

    MacElroy, Don James; Garate, Jose-Antonio; Niall J. English

    2009-01-01

    Abstract Water self-diffusion has been investigated by molecular dynamics (MD) simulation through armchair single walled carbon nanotubes (SWCNTs) implanted in 1-palmytoil-2-oleoyl-sn-glycero-3-Phosphatidylcholine (POPC) membrane patches. Four systems were investigated, each containing one of (5,5), (6,6), (8,8) and (11,11) CNTs oriented normal to the membrane. The CHARMM 27 potential was used, in conjunction with TIP3P water, with particle-mesh Ewald electrostatics. Equilibrium an...

  14. Carbon Nanotube-based Cold Cathode for High Power MicrowaveVacuum Electronic Devices: A Potential Field Emitter

    OpenAIRE

    Verma, P.; S Gautam; Pal, S.; Kumar, P.; Chaturvedi, P; J.S.B.S. Rawat; P. K. Chaudhary; Dr. Harsh; Basu, P K; P. K. Bhatanagar

    2008-01-01

    Carbon nanotubes (CNTs) can be grown in the form of small, sharp spikes capable of carrying very highcurrent densities which suggest great potential application of CNTs as cold cathode in high power microwavevacuum device applications. These cold cathode vacuum microwave devices are expected to be ideally suitedfor air-borne and space applications. This paper  reports the initial efforts made in the development of coldcathode using PECVD grown vertically-aligned matrix of CNTs with uniform he...

  15. Carbon Nanotubes as Active Components for Gas Sensors

    Directory of Open Access Journals (Sweden)

    Wei-De Zhang

    2009-01-01

    Full Text Available The unique structure of carbon nanotubes endows them with fantastic physical and chemical characteristics. Carbon nanotubes have been widely studied due to their potential applications in many fields including conductive and high-strength composites, energy storage and energy conversion devices, sensors, field emission displays and radiation sources, hydrogen storage media, and nanometer-sized semiconductor devices, probes, and quantum wires. Some of these applications have been realized in products, while others show great potentials. The development of carbon nanotubes-based sensors has attracted intensive interest in the last several years because of their excellent sensing properties such as high selectivity and prompt response. Carbon nanotube-based gas sensors are summarized in this paper. Sensors based on single-walled, multiwalled, and well-aligned carbon nanotubes arrays are introduced. Modification of carbon nanotubes with functional groups, metals, oxides, polymers, or doping carbon nanotubes with other elements to enhance the response and selectivity of the sensors is also discussed.

  16. Roping and wrapping carbon nanotubes

    Science.gov (United States)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  17. High frequency carbon nanotube devices

    Science.gov (United States)

    Goffman, M. F.; Chimot, N.; Mile, E.; Monteverde, M. C.; Bourgoin, J.-P.; Derycke, V.

    2008-08-01

    We investigate high frequency electrical and mechanical performances of carbon nanotube based devices. Using configurations with multiple single-wall nanotubes in parallel, we show that HF nanotube transistors with intrinsic cut-off frequencies as high as 30 GHz can be obtained on rigid substrates. Adapting our process to plastic substrates, we also obtained highly flexible HF transistors showing constant transconductances up to at least 6 GHz, as-measured cut-off frequencies as high as 1 GHz (5-8 GHz after de-embedding) and stable DC performances upon bending. We probed electromechanical properties of individual suspended carbon multiwall nanotubes by using a modified AFM. DC deflection measurements on different devices are in agreement with a continuum model prediction and consistent with a Young's modulus of 0.4 TPa. Preliminary HF measurements on a doubly clamped device showed a resonant frequency of 200MHz consistent with a Young's modulus of 0.43 TPa. This implies that built-in mechanical stress in the case of MWNTs is negligeable.

  18. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    Science.gov (United States)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  19. Diffusion through Carbon Nanotube Semipermeable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bakajin, O

    2006-02-13

    The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization

  20. Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Jose R. Jr. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos (Brazil); Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich (Germany); Baecker, Matthias; Poghossian, Arshak; Schoening, Michael J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich (Germany); Zucolotto, Valtencir; Oliveira, Osvaldo N. Jr. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos (Brazil)

    2010-04-15

    The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO{sub 2}-Ta{sub 2}O{sub 5} chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (ConCap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Characterization methods of carbon nanotubes: a review

    International Nuclear Information System (INIS)

    Carbon nanotubes due to their specific atomic structure have interesting chemical and physical properties according to those of graphite and diamond. This review covers the characterization methods of carbon nanotubes which are most employed today. The structure of carbon nanotubes is first briefly summarized followed by a description of the characterization methods such as STM, TEM, neutron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, infrared and Raman spectroscopy. The most interesting features are indexed for each technique

  2. Structure and properties of carbon nanotubes

    OpenAIRE

    MEYER, Jannik

    2006-01-01

    The properties of nanoscopic objects depend critically on the position of each atom, since finite-size and quantization effects play an important role. For carbon nanotubes, the electronic, mechanical, and vibrational properties vary significantly depending on their structure. For example, a carbon nanotube can be metallic or semiconducting with varying band-gaps depending on its lattice structure. Yet, most investigations on individual carbon nanotubes are carried out on objects with unknown...

  3. Plasmon-assisted photoluminescence enhancement of single-walled carbon nanotubes on metal surfaces

    OpenAIRE

    Sakashita, Takerou; Miyauchi, Yuhei; Matsuda, Kazunari; Kanemitsu, Yoshihiko

    2010-01-01

    We demonstrated photoluminescence (PL) enhancement in single carbon nanotubes using localized surface plasmons. Single nanotube spectroscopy revealed triple the PL intensity enhancement for carbon nanotubes on rough Au surfaces as on fused silica surfaces. The PL enhancement depends on the excitation wavelength and distance between the carbon nanotubes and the Au surface. The degree of PL enhancement is determined by the electric field enhancement from the localized surface plasmon and the en...

  4. Advanced technology for functionalization of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Lingjie Meng; Chuanlong Fu; Qinghua Lu

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) has attracted considerable interest in the fields of physics, chemistry, material science and biology. The functionalized CNTs exhibit improved properties enabling facile fabrication of novel nanomaterials and nanodevices. Most of the functionalization approaches developed at present could be categorized into the covalent attachment of functional groups and the non-covalent adsorption of various functional molecules onto the surface of CNTs. This review highlights recent development and our work in functionalization of carbon nanotubes, leading to bio-compatible CNTs, fluorescent CNTs and transition metal func-tionalizcd CNTs. These novel methods possess advantages such as simplified technical procedures and reduced cost of novel nanoma-terials and nanodcvices fabrication.

  5. Carbon Nanotube Flexible and Stretchable Electronics

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  6. Photonics based on carbon nanotubes

    OpenAIRE

    Gu, Qingyuan; Gicquel-Guézo, Maud; Loualiche, Slimane; Pouliquen, Julie Le; Batte, Thomas; Folliot, Hervé; Dehaese, Olivier; Grillot, Frederic; Battie, Yann; Loiseau, Annick; Liang, Baolai; Huffaker, Diana

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the effi...

  7. Photoluminescence Study of Carbon Nanotubes

    OpenAIRE

    Han, H. X.; Li, G. H.; Ge, W. K.; Wang, Z. P.; Xu, Z. Y.; Xie, S. S.; Chang, B H; Sun, L. F.; Wang, B S; G. Xu; Su, Z.B.

    2000-01-01

    ultiwalled carbon nanotubes, prepared by both electric arc discharge and chemical vapor deposition methods, show a strong visible light emission in photoluminescence experiments. All the samples employed in the experiments exhibit nearly same super-linear intensity dependence of the emission bands on the excitation intensity, and negligible temperature dependence of the central position and the line shapes of the emission bands. Based upon theoretical analysis of the electronic band structure...

  8. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  9. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  10. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  11. Direct integration of carbon nanotubes in Si microstructures

    International Nuclear Information System (INIS)

    In this paper we present a low-cost, room-temperature process for integrating carbon nanotubes on Si microsystems. The process uses localized resistive heating by controlling current through suspended microbridges, to provide local temperatures high enough for CVD growth of carbon nanotubes. Locally grown carbon nanotubes make electrical connections through guidance by electric fields, thus eventually making circuits. The process is scalable to a wafer level batch process. Furthermore, it is controlled electrically, thus enabling automated control. Direct integration of carbon nanotubes in microstructures has great promise for nano-functional devices, such as ultrasensitive chemical sensors. Initial measurements demonstrate the Si–carbon nanotube–Si circuit's potential as a NH3 sensor. (paper)

  12. Cell mobility after endocytosis of carbon nanotubes

    Science.gov (United States)

    Pirbhai, Massooma; Flores, Thomas; Jedlicka, Sabrina; Rotkin, Slava

    2013-03-01

    Directed cell movement plays a crucial role in cellular behaviors such as neuronal cell division, cell migration, and cell differentiation. There is evidence in preclinical in vivo studies that small fields have successfully been used to enhance regrowth of damages spinal cord axons but with a small success rate. Fortunately, the evolution of functional biomaterials and nanotechnology may provide promising solutions for enhancing the application of electric fields in guiding neuron migration and neurogenesis within the central nervous system. In this work, we studied how endocytosis and subsequent retention of carbon nanotubes affects the mobility of cells under the influence of an electric field, including the directed cell movement.

  13. Molecular dynamics simulation of the water transportation through a carbon nanotube. The effect of electric field

    Science.gov (United States)

    Ghadamgahi, Maryam; Ajloo, Davood

    2015-11-01

    In this study, we have investigated how to control the net flux of water molecules transported through a CNT using an orthogonal and axial electric field. The flow of water molecules through CNT decrease as the orthogonal electric field strength ( E) increased from 1 to 3 V nm-1. When E increases over 3 V nm-1, the flow of water molecules through the CNT was turned off and zero water flow was observed. Both the number of water molecules in tube and free energy values was influenced by water flow. A reverse behavior was observed in the case of axial electric field by constantly maintaining electric field direction in the direction of the water flow. Increase of water flow with E of axial electric field was revealed and it can be concluded that water permeation through CNT is much sensitive to the axial electric field strength than the orthogonal electric field.

  14. Terahertz response of carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    The terahertz (THz) research field is expected to serve as a new platform for studying low-energy excitation in solids and higher-order structures in large molecules, and for realizing applications in medicine, agriculture, security, and high-capacity communications. The THz frequency region, however, is located between the electronic and photonic bands, hampering the development of basic components like detectors and sources. This article presents an overview of basic background information about THz waves and THz detector applications and describes the THz response of carbon-based low-dimensional systems, such as single carbon nanotubes (CNT), CNT-array films, and graphene. (author)

  15. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  16. Conductive hydrophobic hybrid textiles modified with carbon nanotubes

    Science.gov (United States)

    Kowalczyk, D.; Brzeziński, S.; Makowski, T.; Fortuniak, W.

    2015-12-01

    The paper presents the results of modifying and testing modern hybrid polyester-cotton woven fabrics with deposited multi-wall carbon nanotubes and imparted hydrophobicity. The effect of the carbon nanotubes deposited on these fabrics on their conductive properties and hydrophobicity has been assessed. The electro-conductive and hydrophobic composite fabrics obtained in this way, being light, elastic and resistant to mechanical effects, make it possible to be widely used in various industrial fields.

  17. Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    OpenAIRE

    Guo, Jing; Datta, Supriyo; Lundstrom, Mark; Anantam, M. P.

    2003-01-01

    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we describe an effort underway to develop a comprehensive capability for multiscale simulation of carbon nanotube electronics. We focus in this paper on one element of that hierarchy, the simulation of ballistic CNTFETs by self-consistently solving the Poisson and Schrodinger equations using the non-equilibrium Gr...

  18. Carbon Nanotubes as Electrodes for Dielectrophoresis of DNA

    OpenAIRE

    Tuukkanen, Sampo; Toppari, J. Jussi; Kuzyk, Anton; Hirviniemi, Lasse; Hytonen, Vesa P.; Ihalainen, Teemu; Torma, Paivi

    2006-01-01

    Dielectrophoresis can potentially be used as an efficient trapping tool in the fabrication of molecular devices. For nanoscale objects, however, the Brownian motion poses a challenge. We show that the use of carbon nanotube electrodes makes it possible to apply relatively low trapping voltages and still achieve high enough field gradients for trapping nanoscale objects, e.g., single molecules. We compare the efficiency and other characteristics of dielectrophoresis between carbon nanotube ele...

  19. Carbon nanotube atomic force microscopy probes

    Science.gov (United States)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  20. Characteristics of Transmission-type Microfocus X-ray Tube based-on Carbon Nanotube Field Emitter

    International Nuclear Information System (INIS)

    A high resolution microfocus x-ray source is widely applied to noninvasive detection for industrial demands, material science and engineering, and to diagnostic study of microbiology and micro-tomography. Carbon nanotube (CNT) is regarded as an excellent electron emitter, which outperforms conventional electron sources in point of brightness. It has been suggested that CNT is used as an electron source of a high resolution x-ray tube according to their low threshold field with atomically sharp geometry, chemically robust structure, and electric conductivity. Several researchers have reported miniaturized x-ray tube based on diode structure and micro x-ray radiography and computed tomography systems using triode types with precise emission control and electrostatic focusing. Especially, a microfocus x-ray source of 30 μm resolution has been demonstrated recently using an elliptical CNT cathode and asymmetrical Eingel lens. However, to increase the spatial resolution of x-ray source, a smaller CNT emitter is desired. Electron focusing optics must be corrected to reduce aberrations. A thin wire tip end can provide a micro-area of CNT substrate, and a magnetic lens and transmission x-ray target are proper to reduce the lens aberration and a focal length. Until now, CNT based microfocus x-ray source with less than 10 um resolution has not been shown. Here we report a microfocus x-ray source with 4.7 μm x-ray focal spot consisted of a conical CNT tip, a single solenoid lens, and a transmission type x-ray target. A magnified x-ray image larger than 230 times was resolved with advantage of microfocused focal spot and transmission x-ray target

  1. Hysteresis phenomenon of the field emission from carbon nanotube/polymer nanocomposite

    Science.gov (United States)

    Filippov, S. V.; Popov, E. O.; Kolosko, A. G.; Romanov, P. A.

    2015-11-01

    Using the high voltage scanning method and the technique of multichannel recording and processing of field emission (FE) characteristics in real time mode we found out some subtle effects on current voltage characteristics (IVC) of the multi-tip field emitters. We observed the direct and reverse hysteresis simultaneously in the same field emission experiment. Dependence of the form of IVC hysteresis on time of high voltage scanning was observed.

  2. Heteronuclear carbon nanotubes: applications to study carbon nanotube growth

    International Nuclear Information System (INIS)

    Full text: Synthesis of heteronuclear carbon nanotubes and their application for a variety of studies is presented. SWCNTs peapods encapsulating highly 13C enriched fullerenes and double wall carbon nanotubes (DWCNTs) based on the peapods were prepared. Raman studies indicate that the inner tubes are highly 13C enriched with no carbon exchange between the two walls during the synthesis. The material enables the straightforward identification of the inner and outer tube vibrational spectra. An inhomogeneous broadening, assigned to the random distribution of 12C and 13C nuclei is observed and is explained by ab initio vibrational analysis. The growth of inner tubes from organic solvents was proven by the use of 13C labeled organic materials such as toluene. The simultaneous encapsulation of fullerenes with the solvents was found crucial as these prevent the solvents from evaporating during the high temperature synthesis of the inner tubes. Nuclear magnetic resonance on the peapods and DWCNTs with highly 13C enriched fullerenes or inner walls proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases. The NMR experiment on the DWCNTs yield direct information on the electronic properties of small diameter SWCNTs. The significantly different chemical shift of the inner tubes is related to a curvature effect. Relaxation data on the inner tubes shows a deviation from a Fermi-liquid behavior. (author)

  3. Energy Efficient Full Adder Cell Design with Using Carbon Nanotube Field Effect Transistors in 32 Nanometer Technology

    OpenAIRE

    Ali Ghorbani; Ghazaleh Ghorbani

    2014-01-01

    Full Adder is one of the critical parts of logical and arithmetic units. So, presenting a low power fu ll adder cell reduces the power consumption of the entire ci rcuit. Also, using Nano-scale transistors, because of their unique characteristics will save energy consu mption and decrease the chip area. In this paper we presented a low power full adder cell by using carb on nanotube field effect transistors (CNTFETs). ...

  4. Nanoengineering of carbon nanotubes for nanotools

    International Nuclear Information System (INIS)

    We have developed a well controlled method for manipulating carbon nanotubes. The first crucial process involved is to prepare a nanotube array, named a nanotube cartridge. We have discovered ac electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge. The nanotubes used were multiwalled and prepared by an arc discharge with a relatively high gas temperature. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope (SEM). Using this method, we have developed nanotube tips and nanotube tweezers that operate in a scanning probe microscope (SPM). The nanotube probes have been applied for the observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have demonstrated their motion in an SEM and have operated to carry nanomaterials in a SPM. We have also developed the electron ablation of a nanotube to adjust its length and the sharpening of a multiwall nanotube to have its inner layer with or without an end cap at the tip. For the sharpening process, the free end of a nanotube protruding from the cartridge was attached to a metal-coated Si tip and a voltage was applied to the nanotube. When a high voltage was used in the saturation current regime, the current decreased stepwise in the temporal variation, indicating the sequential destruction of individual nanotube layers. The nanotube was finally cut at the middle of the nanotube bridge, and its tip was sharpened to have an inner layer with an opened end. Moving up the cartridge before cutting enables us to extract the inner layer with an end cap. It is evidenced that the maximum current in each layer during the stepwise decrease depends on its circumference, and the force for extracting the inner layer with ∼5-nm diameter is ∼4-nN

  5. Draw out Carbon Nanotube from Liquid Carbon

    OpenAIRE

    ZHANG, SHUANG; Hoshi, Takeo; Fujiwara, Takeo

    2006-01-01

    Carbon nanotube (CNT) is expected for much more important and broader applications in the future, because of its amazing electrical and mechanical properties. However, today, the prospect is detained by the fact that the growth of CNTs cannot be well controlled. In particular, controlling the chirality of CNTs seems formidable to any existing growth method. In addition, a systematic method for a designed interconnected network has not been established yet, which is focused particularly in nan...

  6. Electronic structure and field emission properties of nitrogen doped graphene nano-flakes (GNFs:N) and carbon nanotubes (CNTs:N)

    Science.gov (United States)

    Ray, Sekhar C.; Pong, W. F.; Papakonstantinou, P.

    2016-09-01

    Substitution of hetero-atom doping is a promising route to modulate the outstanding material properties of carbon nanotubes and graphene for customized applications. Nitrogen-doping has been introduced to ensure tunable work-function, enhanced n-type carrier concentration, diminished surface energy, and manageable polarization. Along with the promising assessment of N-doping effects, research on the N-doped carbon based composite structures is emerging for the synergistic integration with various functional materials. Nitrogen undoped/doped graphene nano-flakes (GNFs/GNFs:N) and multiwall carbon nano-tubes (MWCNTs/MWCNTs:N) are used for comparative study of their electronic/bonding structure along with their defects state. X-ray absorption near edge structure (XANES) spectroscopy shows that the GNFs:N produce mainly pyridine like structure; whereas MWCNTs:N shows graphitic nitrogen atoms are attached with the carbon lattice. The ID/IG ratio obtained from Raman spectroscopy shows that the defects is higher in MWCNTs:N than GNFs:N. The electron field emission result shows that the turn on electric field is lower (higher electron emission current) in case of MWCNTs:N than GNFs:N and are good agreement with XANES and the results obtained from Raman spectra.

  7. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  8. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  9. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  10. Fluorescence labeling of carbon nanotubes and visualization of a nanotube-protein hybrid under fluorescence microscope.

    Science.gov (United States)

    Yoshimura, Shige H; Khan, Shahbaz; Maruyama, Hiroyuki; Nakayama, Yoshikazu; Takeyasu, Kunio

    2011-04-11

    Biological applications of carbon nanotubes have been hampered by the inability to visualize them using conventional optical microscope, which is the most common tool for the observation and measurement of biological processes. Recently, a number of fluorescence labeling methods for biomolecules and various fluorescence probes have been developed and widely utilized in biological fields. Therefore, labeling carbon nanotubes with such fluorophores under physiological conditions will be highly useful in their biological applications. In this Article, we present a method to fluorescently label nanotubes by combining a detergent and a fluorophore commonly used in biological experiments. Fluorophores carrying an amino group (Texas Red hydrazide or BODIPY FL-hydrazide) were covalently attached to the hydroxyl groups of Tween 20 using carbonyldiimidazole. Fluorescence microscopy demonstrated that nanotubes were efficiently solubilized and labeled by this fluorescently labeled detergent. By using this technique, we also demonstrated multicolor fluorescence imaging of a nanotube-protein hybrid. PMID:21395219

  11. Dielectrophoretic assembly of carbon nanotube devices

    OpenAIRE

    Dimaki, Maria; BØGGILD, Peter

    2004-01-01

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane. The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an ele...

  12. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  13. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  14. Effect of temperature on deformation of carbon nanotube under compression

    Institute of Scientific and Technical Information of China (English)

    王宇; 倪向贵; 王秀喜; 吴恒安

    2003-01-01

    The mechanical behaviour of carbon nanotubes is one of the basic research fields on the nanotube composites and nano machinery.Molecular dynamics is an effective way for investigating the behaviour of nano structure.The compression deformation of carbon nanotubes(CNTs)under different temperature is simulated,by using the Tersoff-Brenner potential to describe the interactions in CNTs.The results show that thermal fluctuations may induce the strained CNT to overcome the local energy barrier and develop the plastic deformation.

  15. Electrochemical potential at the interface between carbon nanotubes and electrolyte

    Institute of Scientific and Technical Information of China (English)

    LU Jian-wei; WANG Wan-lu; WU Zi-hua; WANG Yong-tian

    2004-01-01

    The dependences of electrochemical potential at the interface between carbon nanotubes and electrolyte upon temperature and electrolyte concentration are studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition with Si as the substrate. Four substances were tested: NaCl solution, KCl solution, water and alcohol. It is found that for NaCl and KCl solutions, at the interface, there is a large electrochemical potential which increases with temperature and is larger for an electrolyte of higher concentration. There is a significant field effect of carbon nanotubes with electrolyte as the gate,and the effect depends on the ionizability of the electrolyte. Such physicochemical property invests carbon nanotube a potential application in nanoelectronics.

  16. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sung Hun, E-mail: harin74@gmail.com, E-mail: jhl@snu.ac.kr, E-mail: jrogers@illinois.edu; Shin, Jongmin; Cho, In-Tak; Lee, Jong-Ho, E-mail: harin74@gmail.com, E-mail: jhl@snu.ac.kr, E-mail: jrogers@illinois.edu [Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Sang Youn [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Display R and D Center, Samsung Display Co., Yongin-city, Gyeongki-do 446–711 (Korea, Republic of); Lee, Dong Joon; Lee, Chi Hwan; Rogers, John A., E-mail: harin74@gmail.com, E-mail: jhl@snu.ac.kr, E-mail: jrogers@illinois.edu [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-07-07

    This paper presents materials, device designs, and physical/electrical characteristics of a form of nanotube electronics that is physically transient, in the sense that all constituent elements dissolve and/or disperse upon immersion into water. Studies of contact effects illustrate the ability to use water soluble metals such as magnesium for source/drain contacts in nanotube based field effect transistors. High mobilities and on/off ratios in transistors that use molybdenum, silicon nitride, and silicon oxide enable full swing characteristics for inverters at low voltages (∼5 V) and with high gains (∼30). Dissolution/disintegration tests of such systems on water soluble sheets of polyvinyl alcohol demonstrate physical transience within 30 min.

  17. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  18. How fast does water flow in carbon nanotubes?

    DEFF Research Database (Denmark)

    Kannam, Sridhar; Todd, Billy; Hansen, Jesper Schmidt;

    2013-01-01

    The purpose of this paper is threefold. First, we review the existing literature on flow rates of water in carbon nanotubes. Data for the slip length which characterizes the flow rate are scattered over 5 orders of magnitude for nanotubes of diameter 0.81–10 nm. Second, we precisely compute the...... slip length using equilibrium molecular dynamics (EMD) simulations, from which the interfacial friction between water and carbon nanotubes can be found, and also via external field driven non-equilibrium molecular dynamics simulations (NEMD). We discuss some of the issues in simulation studies which...... and reliably extrapolate the results for the slip length to values of the field corresponding to experimentally accessible pressure gradients. Finally, we comment on several issues concerning water flow rates in carbon nanotubes which may lead to some future research directions in this area....

  19. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  20. Carbon nanotubes composites for microwave applications

    OpenAIRE

    Herrero Fernández, Diego

    2015-01-01

    Carbon nanotubes have become a focus of study due to the great applications you can have and its excellent properties. In this thesis the compounds formed by a host and a percentage of carbon nanotubes are modelled. The models used are the Debye model, the Maxwell Garnett model and McLachlan model. These models have been implemented in ...

  1. Carbon nanotube flow sensor device and method

    OpenAIRE

    Sood, Ajay Kumar; Ghosh, Shankar

    2004-01-01

    A method and device for measuring the flow of a liquid utilizes at least one carbon nanotube. More particularly, the velocity of a liquid along the direction of the flow is measured as a function of them current/voltage generated in at least one carbon nanotube due to the flow of the liquid along its surface.

  2. Single-Walled Carbon Nanotubes for Flexible Electronics and Sensors

    Institute of Scientific and Technical Information of China (English)

    Xiuyun SUN; Yugang SUN

    2008-01-01

    This article reviews the use of electronic quality single-walled carbon nanotubes grown via chemical vapor deposition (CVD) approaches at high temperatures as building blocks for fabricating flexible field-effect devices, such as thin-film transistors (TFTs) and chemical sensors. Dry transfer printing technique is developed for forming films of CVD nanotubes on low-temperature plastic substrates. Examples of TFTs with the use of nanotubes and thin dielectrics and hydrogen sensors with the use of nanotubes decorated with palladium nanoparticles are discussed in detail to demonstrate the promising potentiality of single-walled carbon nanotubes for building high performance flexible devices, which can find applications where traditional devices on rigid substrates are not suitable.

  3. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  4. Conducting carbonized polyaniline nanotubes

    Czech Academy of Sciences Publication Activity Database

    Mentus, S.; Ciric-Marjanovic, G.; Trchová, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Roč. 20, č. 24 (2009), 245601/1-245601/10. ISSN 0957-4484 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymers * polyaniline * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.137, year: 2009

  5. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Hadsell, Mike, E-mail: mhadsell@stanford.edu; Cao, Guohua; Zhang, Jian; Burk, Laurel; Schreiber, Torsten; Lu, Jianping; Zhou, Otto [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Schreiber, Eric; Chang, Sha [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-06-15

    Purpose: Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system. Methods: The microbeam dose distribution was generated by our CNT micro-CT scanner (100μm focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams. Results: Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300μm (calculated value was 290 μm). Also, during the multiple beam simulation, a peak to valley dose ratio of ∼10 was found when the phantom translation distance was roughly 4x the beam width

  6. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  7. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  8. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  9. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are...... an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  10. Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy

    Science.gov (United States)

    Probst, Camille

    A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe

  11. Growing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yoshinori Ando

    2004-10-01

    Full Text Available The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the subsequent discovery of ‘carbon nanotubes’ (CNTs, the elongated fullerene added a new dimension to the knowledge of technology2;. Today, ‘nanotechnology’ is a hot topic attracting scientists, industrialists, journalists, governments, and even the general public. Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc. at that length scale. CNTs are supposed to be a key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

  12. Studies of DNA-carbon nanotube interactions

    Science.gov (United States)

    Hughes, Mary Elizabeth

    2008-10-01

    Recently a new biomaterial consisting of a DNA-wrapped single-walled carbon nanotube, and known as a DNA/SWNT, has been discovered. The possible applications of this hybrid are varied and range from genomic sequencing to nanoscale electronics to molecular delivery. The realization of these potential applications requires more knowledge about the microscopic properties of this material. In this thesis, I present studies of: the orientation of nucleobases on the nanotube sidewall; the sequence and length dependence of the DNA-nanotube interaction; and solution conditions to manipulate the DNA/SWNT hybrid. The measurement of the UV optical absorbance of DNA/SWNT and the nucleotide absorbance from DNA/SWNT provide the first experimental confirmation that DNA binds to nanotubes through pi-stacking. Because the hypochromic absorbance typical of pi-stacked structures are expected to occur primarily for DNA dipole transitions that lie along the axis of the optically anisotropic SWNTs, the absorbance changes following binding of DNA to the nanotubes reveals the preferred orientation assumed by each of the four bound nucleotides with respect to the nanotube's long axis. The first observations of pronounced sequence- and length-dependent variations in the binding between ssDNA and SWNTs in aqueous solution are presented. These observations rely on the discovery that there exists a range of DNA lengths able to hybridize with SWNTs that can nevertheless be dissociated at temperatures below the boiling point of water. Quantitative results comparing the isochronal dissociation temperatures and binding energies of DNA/SWNT composed of differing DNA sequences and lengths are given. These results indicate variability and complexity in the binding mechanism responsible for the stability of the hybrid system that transcends simple models based on the sum of independent base-nanotube interactions. Binding energies between a DNA base and nanotube (0.05 to 0.09 eV per base) are similar

  13. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  14. Interaction of high-power nanosecond electric pulses with an array of carbon nanotubes

    International Nuclear Information System (INIS)

    A nonlinear current induced in carbon nanotubes with metallic conductivity and in graphene nanoribbons by an alternating electric field with a subnanosecond width of the leading edge in the presence of a static electric field has been theoretically studied. The parameters of the static electric field for simple carbon nanotubes coincide with the parameters of nanosecond electric pulses

  15. Energy Efficient Full Adder Cell Design with Using Carbon Nanotube Field Effect Transistors in 32 Nanometer Technology

    Directory of Open Access Journals (Sweden)

    Ali Ghorbani

    2013-08-01

    Full Text Available Full Adder is one of the critical parts of logical and arithmetic units. So, presenting a low power fu ll adder cell reduces the power consumption of the entire ci rcuit. Also, using Nano-scale transistors, because of their unique characteristics will save energy consu mption and decrease the chip area. In this paper we presented a low power full adder cell by using carb on nanotube field effect transistors (CNTFETs. Simulation results were carried out using HSPICE ba sed on the CNTFET model in 32 nanometer technology in Different values of temperature and V DD

  16. Electroluminescent Polymers and Carbon Nanotubes for Flat Panel Displays

    Institute of Scientific and Technical Information of China (English)

    Liming Dai; Limin Dong; Mei Gao; Shaoming Huang; Oddvar Johansen; Albert W.H.Mau,Zoran Vasic; Berthold Winkler; Yongyuang Yang

    2000-01-01

    polymeric light-emitting diodes(LEDs) with sufficient brightness. efficiencies, low driving voltages, and various interesting features have been reported. The relatively short device lifetime, however, still remains as a major problem to be solved before any commercial applications will be realized. In this regard,carbon nanotubes have recently been proposed as more robust electron field emitters for flat panel displays. We have synthesised large arrays of vertically aligned carbon nanotubes, from which micropatterns of the aligned nanotubes suitable for flat panel displays were fabricated on various substrates. In this paper, we summarise our work on the synthesis and microfabrication of electroluminescent polymers and carbon nanotubes for flat panel displays with reference to other complementary work as appropriate.

  17. The Optical Excitation of Zigzag Carbon Nanotubes with Photons Guided in Nanofibers

    CERN Document Server

    Broadfoot, S; Jaksch, D

    2011-01-01

    We consider the excitation of electrons in semiconducting carbon nanotubes by photons from the evanescent field created by a subwavelength-diameter optical fiber. The strongly changing evanescent field of such nanofibers requires dropping the dipole approximation. We show that this leads to novel effects, especially a high dependence of the photon absorption on the relative orientation and geometry of the nanotube-nanofiber setup in the optical and near infrared domain. In particular, we calculate photon absorption probabilities for a straight nanotube and nanofiber depending on their relative angle. Nanotubes orthogonal to the fiber are found to perform much better than parallel nanotubes when they are short. As the nanotube gets longer the absorption of parallel nanotubes is found to exceed the orthogonal nanotubes and approach 100% for extremely long nanotubes. In addition, we show that if the nanotube is wrapped around the fiber in an appropriate way the absorption is enhanced. We find that optical and ne...

  18. Drain Voltage Scaling in Carbon Nanotube Transistors

    OpenAIRE

    Radosavljevic, M.; Heinze, S.; Tersoff, J.; Avouris, Ph.

    2003-01-01

    While decreasing the oxide thickness in carbon nanotube field-effect transistors (CNFETs) improves the turn-on behavior, we demonstrate that this also requires scaling the range of the drain voltage. This scaling is needed to avoid an exponential increase in Off-current with drain voltage, due to modulation of the Schottky barriers at both the source and drain contact. We illustrate this with results for bottom-gated ambipolar CNFETs with oxides of 2 and 5 nm, and give an explicit scaling rul...

  19. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Carbon nanotube alignment driven rapid actuations

    International Nuclear Information System (INIS)

    Suspended micro-beams made from aligned carbon nanotubes and parylene deflect reversibly in an ac field and the deflection rate is three orders of magnitude greater than those for existing devices. The direction of beam deflection is determined by the area moment of inertia and the actuation mechanism involves rapid accumulation of charges at tube surfaces, the creation of Coulomb repulsive forces between tubes, beam dilation and the formation of compressive stresses at beam ends. Tube alignment plays a crucial role in the first step as is verified by experimental data and calculation. (paper)

  1. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  2. Charge-tunable insertion process of carbon nanotubes into DNA nanotubes.

    Science.gov (United States)

    Liang, Lijun; Zhang, Zhisen; Kong, Zhe; Liu, Yong; Shen, Jia-Wei; Li, Debing; Wang, Qi

    2016-05-01

    Control over interactions with biomolecules holds the key of the applications of carbon nanotubes (CNTs) in biotechnology. Here we report a molecule dynamics study on the encapsulation process of different charged CNTs into DNA nanotubes. Our results demonstrated that insertion process of CNTs into DNA nanotubes are charge-tunable. The positive charged CNTs could spontaneously encapsulate and confined in the hollow of DNA nanotubes under the combination of electrostatic and vdW interaction in our ns scale simulation. The conformation of DNA nanotubes is very stable even after the insertion of CNTs. For pristine CNTs, it could not entirely encapsulated by DNA nanotubes in simulation scale in this study. The encapsulation time of pristine CNTs into DNA nanotubes was estimated about 21.9s based on the potential of mean force along the reaction coordination of encapsulation process of CNTs into DNA nanotubes. In addition, the encapsulation process was also affected by the diameter of CNTs. These findings highlight the charge-tunable self-assembly process of nanomaterials and biomolecules. Our study suggests that the encapsulated CNTs-DNA nanotubes could be used as building blocks for constructing organic-inorganic hybrid materials and has the potential applications in the field of biosensor, drug delivery system and biomaterials etc. PMID:27017425

  3. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels;

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties of...... nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  4. Plasma and laser kinetics and field emission from carbon nanotube fibers for an Advanced Noble Gas Laser (ANGL)

    Science.gov (United States)

    Moran, Paul J.; Lockwood, Nathaniel P.; Lange, Matthew A.; Hostutler, David A.; Guild, Eric M.; Guy, Matthew R.; McCord, John E.; Pitz, Greg A.

    2016-03-01

    A metastable argon laser operating at 912 nm has been demonstrated by optically pumping with a pulsed titanium sapphire laser to investigate the temporal dynamics of an Advanced Noble Gas Laser (ANGL). Metastable argon concentrations on the order of 1011 cm-3 were maintained with the use of a radio frequency (RF) capacitively coupled discharge. The end-pumped laser produced output powers under 2 mW of average power with pulse lengths on the order of 100 ns. A comparison between empirical results and a four level laser model using longitudinally average pump and inter-cavity intensities is made. An alternative, highly-efficient method of argon metastable production for ANGL was explored using carbon nanotube (CNT) fibers.

  5. Dragging Human Mesenchymal Stem Cells with the Aid of Supramolecular Assemblies of Single-Walled Carbon Nanotubes, Molecular Magnets, and Peptides in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Ana Cláudia C. de Paula

    2015-01-01

    Full Text Available Human adipose-derived stem cells (hASCs are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT, molecular magnets (lawsone-Co-phenanthroline, and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA. The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy.

  6. Ballistic transport and electrostatics in metallic carbon nanotubes

    OpenAIRE

    Svizhenko, A.; Anantram, M. P.; Govindan, T. R.

    2005-01-01

    We calculate the current and electrostatic potential drop in metallic carbon nanotube wires self-consistently, by solving the Green's function and electrostatics equations in the ballistic case. About one tenth of the applied voltage drops across the bulk of a nanowire, independent of the lengths considered here. The remaining nine tenths of the bias drops near the contacts, thereby creating a non linear potential drop. The scaling of the electric field at the center of the nanotube with leng...

  7. Novel fabrication of silica nanotubes using multi-walled carbon nanotubes as template

    Indian Academy of Sciences (India)

    Zhi-Hua Yin; Xiang Liu; Zhong-Xing Su

    2010-08-01

    Silica nanotubes were synthesized using multi-walled carbon nanotubes (MWCNTs) as template. The as-obtained samples were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE–SEM) and photoluminescent (PL) spectroscopy. The results indicate that the thickness of the outer walls is about 10 nm and the inner diameter is completely dependent on the size of MWCNTs. The as-fabricated silica nanotubes emit a strong violet light under excitation of 250 nm.

  8. X-ray generation using carbon nanotubes

    Science.gov (United States)

    Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.

    2015-01-01

    Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.

  9. Carbon nanotube fiber spun from wetted ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  10. Carbon Nanotube Paper-Based Electroanalytical Devices

    OpenAIRE

    Youngmi Koo; Vesselin N. Shanov; Yeoheung Yun

    2016-01-01

    Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The de...

  11. Ordered phases of cesium in carbon nanotubes

    International Nuclear Information System (INIS)

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  12. Ordered phases of cesium in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-10-15

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  13. Charge Screening Effect in Metallic Carbon Nanotubes

    OpenAIRE

    Sasaki, K

    2001-01-01

    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.

  14. Defect-Free Carbon Nanotube Coils.

    Science.gov (United States)

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  15. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna.

    Science.gov (United States)

    Böhmler, Miriam; Hartmann, Nicolai; Georgi, Carsten; Hennrich, Frank; Green, Alexander A; Hersam, Mark C; Hartschuh, Achim

    2010-08-01

    We observe the angular radiation pattern of single carbon nanotubes' photoluminescence in the back focal plane of a microscope objective and show that the emitting nanotube can be described by a single in-plane point dipole. The near-field interaction between a nanotube and an optical antenna modifies the radiation pattern that is now dominated by the antenna characteristics. We quantify the antenna induced excitation and radiation enhancement and show that the radiative rate enhancement is connected to a directional redistribution of the emission. PMID:20721031

  16. Control of multiple excited Rydberg states around segmented carbon nanotubes

    Science.gov (United States)

    Schmelcher, Peter; Sadeghpour, Hossein; Knoerzer, Johannes; Fey, Christian

    2016-05-01

    Electronic image Rydberg states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored long-range interacting quantum systems.

  17. Control of multiple excited image states around segmented carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Knörzer, J., E-mail: johannes.knoerzer@physnet.uni-hamburg.de; Fey, C., E-mail: christian.fey@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761 (Germany); Sadeghpour, H. R. [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Schmelcher, P. [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761 (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761 (Germany)

    2015-11-28

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.

  18. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  19. Preparation of Nickel-Copper Bilayers Coated on Single-Walled Carbon Nanotubes

    OpenAIRE

    Zhong Zheng; Shan Zhao; Shijie Dong; Lianjie Li; Anchun Xiao; Sinian Li

    2015-01-01

    Due to oxidizability of copper coating on carbon nanotubes, the interfacial bond strength between copper coating and its matrix is weak, which leads to the reduction of the macroscopic properties of copper matrix composite. The electroless coating technics was applied to prepare nickel-copper bilayers coated on single-walled carbon nanotubes. The coated single-walled carbon nanotubes were characterized through transmission electron microscope spectroscopy, field-emission electron microscope s...

  20. Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy

    OpenAIRE

    Xue, Yongqiang; Datta, Supriyo

    1999-01-01

    At any metal-carbon nanotube interface there is charge transfer and the induced interfacial field determines the position of the carbon nanotube band structure relative to the metal Fermi-level. In the case of a single-wall carbon nanotube (SWNT) supported on a gold substrate, we show that the charge transfers induce a local electrostatic potential perturbation which gives rise to the observed Fermi-level shift in scanning tunneling spectroscopy (STS) measurements. We also discuss the relevan...

  1. Electrical Insulation Of Carbon Nanotube Separation Columns For Microchip Electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Chen, Miaoxiang Max; Mølhave, Kristian;

    2011-01-01

    Carbon nanotubes (CNT) have been grown in microfluidic glass channels for chemical analysis based on electrokinetic separations. A limitation of CNTs for this type of application is their high conductivity, which prevent them from being used for electroosmotic pumping with electrical field...... regions in order to significantly lower the conductivity of the carbon nanotube layer. By this approach, the electrical field strength that can be sustained by the column is increased from around 100 V/cm to more than 2 kV/cm. This is more than one order of magnitude higher than previous reports [1-3]....

  2. Functionalization of carbon nanotubes with silver clusters

    Science.gov (United States)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-09-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  3. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  4. Deconvoluting hepatic processing of carbon nanotubes

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  5. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  6. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  7. Calculating Young's modulus for a carbon nanotube

    Science.gov (United States)

    Alzubi, Feras; Cosby, Ronald

    2008-10-01

    Young's modulus for an armchair single-wall carbon nanotube was calculated using an atomistic approach and density functional theory (DFT). Atomic forces and total energies for strained carbon nanotube segments were computed using Atomistix's Virtual NanoLab (VNL) and ToolKit (ATK) software. For a maximum strain of one percent, elastic moduli were calculated using both force-strain and energy-strain data. The average values found for Young's modulus were in the range 1.2 to 3.9 TPa depending on the cross-sectional area taken for the carbon nanotube, consideration of Poisson's ratio, and the calculation method used. Three possible choices of cross-sectional area for the carbon nanotube are discussed and parameter and convergence tests for the DFT computations are described.

  8. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  9. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  10. Synthesis and field emission properties of carbon nanotubes grown in ethanol flame based on a photoresist-assisted catalyst annealing process

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) have been grown directly on a Si substrate without a diffusion barrier in ethanol diffusion flame using Ni as the catalyst after a photoresist-assisted catalyst annealing process. The growth mechanism of as-synthesized CNTs is confirmed by scanning electron microscopy, high resolution transmission-electron microscopy and energy-dispersive spectroscopy. The photoresist is the key for the formation of active catalyst particles during annealing process, which then result in the growth of CNTs. The catalyst annealing temperature has been found to affect the morphologies and field electron emission properties of CNTs significantly. The field emission properties of as-grown CNTs are investigated with a diode structure and the obtained CNTs exhibit enhanced characteristics. This technique will be applicable to a low-cost fabrication process of electron-emitter arrays.

  11. Intense green emission of ZnS:Cu, Al phosphor obtained by using diode structure of carbon nano-tubes field emission display

    International Nuclear Information System (INIS)

    ZnS:Cu, Al phosphor is prepared by conventional solid-state reaction and is confirmed as an efficient phosphor for field emission display (FED). Broad photoluminescence (PL) band centered at 528 nm is obtained from the phosphor. The ZnS:Cu, Al and carbon nano-tubes (CNTs) are screen-printed on indium tin oxide (ITO) substrate to prepare the anode and the cathode plates of FED, respectively. The luminous performance is studied by using a diode structure and is controllable by adjusting space distance between the anode and cathode plate as well as thickness of phosphor-layer on the anode plate. The optimized luminance is around 6231 cd m-2 when using a 0.25 mm spacer and applying an electric field of 6 V μm-1

  12. Electromechanical instability in suspended carbon nanotubes

    OpenAIRE

    Jonsson, L. M.; Gorelik, L. Y.; Shekhter, R. I.; Jonson, M.

    2005-01-01

    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system.

  13. Crosstalk analysis of carbon nanotube bundle interconnects

    OpenAIRE

    Zhang, Kailiang; Tian, Bo; Zhu, Xiaosong; WANG, FANG; Wei, Jun

    2012-01-01

    Carbon nanotube (CNT) has been considered as an ideal interconnect material for replacing copper for future nanoscale IC technology due to its outstanding current carrying capability, thermal conductivity, and mechanical robustness. In this paper, crosstalk problems for single-walled carbon nanotube (SWCNT) bundle interconnects are investigated; the interconnect parameters for SWCNT bundle are calculated first, and then the equivalent circuit has been developed to perform the crosstalk analys...

  14. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  15. ALUMINUM FOIL REINFORCED BY CARBON NANOTUBES

    OpenAIRE

    A. V. Alekseev; PREDTECHENSKIY M.R.

    2016-01-01

    In our research, the method of manufacturing an Al-carbon nanotube (CNT) composite by hot pressing and cold rolling was attempted. The addition of one percent of multi-walled carbon nanotubes synthesized by OCSiAl provides a significant increase in the ultimate tensile strength of aluminum. The tensile strength of the obtained composite material is at the tensile strength level of medium-strength aluminum alloys.

  16. Crystal orbital study on the double walls made of nanotubes encapsulated inside zigzag carbon nanotubes

    International Nuclear Information System (INIS)

    The structure stabilities and electronic properties are investigated by using ab initio self-consistent-field crystal orbital method based on density functional theory for the one-dimensional (1D) double-wall nanotubes made of n-gon SiO2 nanotubes encapsulated inside zigzag carbon nanotubes. It is found that formation of the combined systems is energetically favorable when the distance between the two constituents is around the Van der Waals scope. The obtained band structures show that all the combined systems are semiconductors with nonzero energy gaps. The frontier energy bands (the highest occupied band and the lowest unoccupied band) of double-wall nanotubes are mainly derived from the corresponding carbon nanotubes. The mobilities of charge carriers are calculated to be within the range of 102–104 cm2 V−1 s−1 for the hybrid double-wall nanotubes. Young’s moduli are also calculated for the combined systems. For the comparison, geometrical and electronic properties of n-gon SiO2 nanotubes are also calculated and discussed. - Graphical abstract: Structures and band structures of the optimum 1D Double walls nanotubes. The optimized structures are 3-gon SiO2@(15,0), 5-gon SiO2@(17,0), 6-gon SiO2@(18,0) and 7-gon SiO2@(19,0). - Highlights: • The structure and electronic properties of the 1D n-gon SiO2@(m,0)s are studied using SCF-CO method. • The encapsulation of 1D n-gon SiO2 tubes inside zigzag carbon nanotubes can be energetically favorable. • The 1D n-gon SiO2@(m,0)s are all semiconductors. • The mobility of charge carriers and Young’s moduli are calculated

  17. A contribution from dielectric analysis to the study of the formation of multi-wall carbon nanotubes percolated networks in epoxy resin under an electric field

    International Nuclear Information System (INIS)

    The formation of percolation networks in epoxy matrix nanocomposites reinforced with multi-wall carbon nanotubes (MWNT) during the curing process, at different MWNT contents, was studied by using a parallel plate cell subjected to a 300 V/cm AC electric field at 1 kHz. The percolation was verified by the electrical current output measured during and after the resin curing. The behavior of electric dipoles was characterized by impedance spectroscopy and followed the Debye first order dispersion model, by which an average relaxation time of 6.0 × 10−4 s and a cut-off frequency of 1.7 kHz were experimentally found. By applying the theory of percolation, a critical probability, pc, equal to 0.038 vol% and an exponent of conductivity of 2.0 were found. Both aligned and random samples showed dipole relaxation times typical of interfacial and/or charge-hopping polarization, while the permittivity exhibited an exponential decrease with frequency. This behavior can be related to the increased ability to trap electrical charges due to the formation of the carbon nanotubes network. Optical and electron microscopies confirm the theoretical prediction that the application of an electric field during cure helps the process of MWNT debundling in epoxy resin. - Highlights: • We report the formation of percolating networks of MWNTs under AC electric field. • MWNT/epoxy dielectric properties were measured by impedance spectroscopy. • Lower percolation thresholds were obtained for composites with aligned CNTs. • Application of AC electric field helps the debundling of CNTs. • CNT/Epoxy with percolated networks presents interfacial and hopping polarizations

  18. Transport theory of carbon nanotube Y junctions

    International Nuclear Information System (INIS)

    We describe a generalization of Landauer-Buettiker theory for networks of interacting metallic carbon nanotubes. We start with symmetric starlike junctions and then extend our approach to asymmetric systems. While the symmetric case is solved in closed form, the asymmetric situation is treated by a mixture of perturbative and non-perturbative methods. For N > 2 repulsively interacting nanotubes, the only stable fixed point of the symmetric system corresponds to an isolated node. Detailed results for both symmetric and asymmetric systems are shown for N = 3, corresponding to carbon nanotube Y junctions

  19. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  20. Effect of O2+, H2++ O2+, and N2++ O2+ ion-beam irradiation on the field emission properties of carbon nanotubes

    International Nuclear Information System (INIS)

    The effect of O2+, H2++ O2+, and N2++ O2+ ion-beam irradiation of carbon nanotubes (CNTs) films on the chemical and electronic properties of the material is reported. The CNTs were grown by the chemical vapor deposition technique (CVD) on silicon TiN coated substrates previously decorated with Ni particles. The Ni decoration and TiN coating were successively deposited by ion-beam assisted deposition (IBAD) and afterwards the nanotubes were grown. The whole deposition procedure was performed in situ as well as the study of the effect of ion-beam irradiation on the CNTs by x-ray photoelectron spectroscopy (XPS). Raman scattering, field-effect emission gun scanning electron microscopy (FEG-SEM), and field emission (FE) measurements were performed ex situ. The experimental data show that: (a) the presence of either H2+ or N2+ ions in the irradiation beam determines the oxygen concentration remaining in the samples as well as the studied structural characteristics; (b) due to the experimental conditions used in the study, no morphological changes have been observed after irradiation of the CNTs; (c) the FE experiments indicate that the electron emission from the CNTs follows the Fowler-Nordheim model, and it is dependent on the oxygen concentration remaining in the samples; and (d) in association with FE results, the XPS data suggest that the formation of terminal quinone groups decreases the CNTs work function of the material.

  1. Processing and properties of carbon nanotubes reinforced aluminum composites

    International Nuclear Information System (INIS)

    Carbon nanotubes reinforced aluminum matrix composites were fabricated by isostatic pressing followed hot extrusion techniques. Differential scanning calorimetric, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy has been carried out to examine the reaction condition of nanotubes and aluminum, and to analyze the composites structure. The effects of nanotubes content on mechanical properties of composites were investigated. Experimental results showed that nanotubes are homogeneously distributed in the composites. Some nanotubes act as bridges across cracks, others are pulled-out on fracture surfaces of composites. However, nanotubes react with aluminum and form Al4C3 phases when the temperature is above 656.3 deg. C. The nanotubes content affects significantly mechanical properties of composites. Meanwhile, the 1.0 wt.% nanotube/2024Al composite is found to exhibit the highest tensile strength and Young's modulus. The maximal increments of tensile strength and Young's modulus of the composite, compared with the 2024Al matrix, are 35.7% and 41.3%, respectively

  2. ANALYSIS OF MATERIAL MECHANICAL PROPERTIES FOR SINGLE-WALLED CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    Fu Yiming; Xu Xiaoxian

    2005-01-01

    Abstract The carbon-carbon bond between two nearest-neighboring atoms is modeled as a beam and the single-walled carbon nanotubes are treated as the space frame structures in order to analyze the mechanical properties of carbon nanotubes. Based on the theory of TersoffBrenner force field, the energy relationships between the carbon-carbon bond and the beam model are obtained, and the stiffness parameters of the beam are determined. By applying the present model, the Young's moduli of the single-walled carbon nanotubes with different tube diameters are determined. And the present results are compared with available data.

  3. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    OpenAIRE

    Deepak, FL; Govindaraj, A.; Rao, CNR

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives ...

  4. Preparation of Nickel-Copper Bilayers Coated on Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zhong Zheng

    2015-01-01

    Full Text Available Due to oxidizability of copper coating on carbon nanotubes, the interfacial bond strength between copper coating and its matrix is weak, which leads to the reduction of the macroscopic properties of copper matrix composite. The electroless coating technics was applied to prepare nickel-copper bilayers coated on single-walled carbon nanotubes. The coated single-walled carbon nanotubes were characterized through transmission electron microscope spectroscopy, field-emission electron microscope spectroscopy, X-ray diffractometry, and thermogravimetric analysis. The results demonstrated that the nickel-copper bilayers coated on single-walled carbon nanotubes possessed higher purity of unoxidized copper fine-grains than copper monolayers.

  5. Manipulation and cutting of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanomanipulation plays an important role in nanofabrication, it is also a technology necessary in exploring the secrets of nanoworld, and it thus beco mesa start point to research future nanomachine. In this study, manipulation and cutting of carbon nanotubes have been conducted in order to examine whether we can move a nanocomponent from one site to another by using the tip of atomic fo rce microscope (AFM). The technique may also be valuable for providing the const ructive materials of nanofabrication. While exploring the method for manipulatin g and cutting of nanotubes, some new phenomena have been observed during the process. Results show that carbon nanotubes present a feature of deformation combin ing bending and distortion when subjected to large mechanical forces exerted by the tip of AFM. In special cases, long carbon nanotubes can be cut into two part s, by which we can remove the part where crystal lattice is flawed, and therefor e a perfect nanocomponent can be obtained.

  6. Fabrication of nylon-6/carbon nanotube composites

    Science.gov (United States)

    Xu, C.; Jia, Z.; Wu, D.; Han, Q.; Meek, T.

    2006-05-01

    A new technique to fabricate nylon-6/carbon nanotube (PA6/CNT) composites is presented. The method involves a pretreatment of carbon nanotubes synthesized by catalytic pyrolysis of hydrocarbon and an improved in-situ process for mixing nanotubes with the nylon 6 matrix. A good bond between carbon nanotubes and the nylon-6 matrix is obtained. Mechanical property measurements indicate that the tensile strength of PA6/CNT composites is improved significantly while the toughness and elongation are somewhat compromised. Scanning electron microscopy (SEM) analysis of the fractured tensile specimens reveals cracking initiated at the wrapping of the CNTs PA6 layer/PA6 matrix interface rather than at the PA6/CNT interface.

  7. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  8. Insight into the Broad Field of Polymer Nanocomposites: From Carbon Nanotubes to Clay Nanoplatelets, via Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cristina Stefanescu

    2009-11-01

    Full Text Available Highly ordered polymer nanocomposites are complex materials that display a rich morphological behavior owing to variations in composition, structure, and properties on a nanometer length scale. Metal-polymer nanocomposite materials are becoming more popular for applications requiring low cost, high metal surface areas. Catalytic systems seem to be the most prevalent application for a wide range of metals used in polymer nanocomposites, particularly for metals like Pt, Ni, Co, and Au, with known catalytic activities. On the other hand, among the most frequently utilized techniques to prepare polymer/CNT and/or polymer/clay nanocomposites are approaches like melt mixing, solution casting, electrospinning and solid-state shear pulverization. Additionally, some of the current and potential applications of polymer/CNT and/or polymer/clay nanocomposites include photovoltaic devices, optical switches, electromagnetic interference (EMI shielding, aerospace and automotive materials, packaging, adhesives and coatings. This extensive review covers a broad range of articles, typically from high impact-factor journals, on most of the polymer-nanocomposites known to date: polymer/carbon nanotubes, polymer/metal nanospheres, and polymer/clay nanoplatelets composites. The various types of nanocomposites are described form the preparation stages to performance and applications. Comparisons of the various types of nanocomposites are conducted and conclusions are formulated.

  9. Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles

    Science.gov (United States)

    Kim, Il Tae; Nunnery, Grady; Jacob, Karl; Schwartz, Justin; Liu, Xiaotao; Tannenbaum, Rina

    2011-03-01

    We describe a novel, facile method for the synthesis of magnetic carbon nanotubes (m-CNTs) decorated with monodisperse γ - Fe 2 O3 magnetic (maghemite) nanoparticles and their aligned feature in a magnetic field. The tethering of the nanoparticles was achieved by the initial activation of the surface of the CNTs with carboxylic acid groups, followed by the attachment of the γ - Fe 2 O3 nanoparticles via a modified sol-gel process. Sodium dodecylbenzene sulfonate (NaDDBS) was introduced into the suspension to prevent the formation of an iron oxide 3D network. Various characterization methods were used to confirm the formation of well-defined maghemite nanoparticles. The tethered nanoparticles imparted magnetic characteristics to the CNTs, which became superparamagnetic. The m-CNTs were oriented parallel to the direction of a magnetic field. This has the potential of enhancing various properties, e.g. mechanical and electrical properties, in composite materials.

  10. Carbon linear chains inside multiwalled nanotubes

    Science.gov (United States)

    Cazzanelli, E.; Caputi, L.; Castriota, M.; Cupolillo, A.; Giallombardo, C.; Papagno, L.

    2007-09-01

    Multiwalled carbon nanotubes have been deposited on graphite cathodes by using an arc discharge technique in He atmosphere, with the insertion of a catalytic Ni-Cr mixture as well as without catalysers. The topography of such deposition has been investigated by SEM, while a parallel micro-Raman study has revealed, in particular regions of the deposited cathodes, strong bands in the range 1780-1860 cm -1, assignable to linear carbon chains inside the nanotubes. The variation of intensity, frequency and bandwidth of such bands has been investigated, in relation with the spectral characters of the host multiwalled carbon nanotube. In the cathode deposited without catalyst a quite ordered configuration of multiwalled carbon nanotubes is obtained in the central zone, while the maximum concentration of linear carbon chains is found in a ring shaped zone just inside the border. In sample obtained with catalyst the deposited multiwalled carbon nanotubes appear always more disordered, and a remarkable concentration of carbon chains appears in some zones, with a more casual distribution.

  11. Principles for structure analysis of carbon nanotubes by HRTEM

    International Nuclear Information System (INIS)

    An efficient algorithm is derived for generating all possible seamless carbon nanotube structure models. This makes use of multijugate helical lattices, a concept borrowed from some biological structures. Principles for helicity and structure analysis of carbon nanotubes using high-resolution electron microscopy and image processing techniques are then developed. Applicability is tested on experimentally obtained images. The limitations of this approach are examined. Provided the tubules contain less than three to five layers the individual component layer helicities and the order of assembly may be obtained from the high-resolution many-beam bright - and dark-field image reconstructions. 16 refs., 11 figs

  12. Covalent functionalization of multi-walled carbon nanotubes by lipase

    International Nuclear Information System (INIS)

    Lipase from Candida rugosa was covalently anchored onto acid-treated multi-walled carbon nanotubes (MWNTs) through a self-catalytic mechanism. A variety of characterization techniques including FTIR, Raman spectroscopy, and XPS were employed to demonstrate the formation of the ester linkage between lipase and MWNTs. The MWNTs-lipase biocomposites showed significantly increased solubility in some common-used organic solvents, such as THF, DMF and chloroform. This study may offer a novel and facile route for covalent modification of carbon nanotubes, and expand the potential utilization of both lipases and MWNTs in the fields of biocatalyst and biosensor

  13. Modeling of carbon nanotubes and carbon nanotube-polymer composites

    Science.gov (United States)

    Pal, G.; Kumar, S.

    2016-01-01

    In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.

  14. The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor

    International Nuclear Information System (INIS)

    We produced local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin films on a carbon nanotube field-effect transistor (CN-FET) channel by atomic force microscopy (AFM). The drain current versus gate voltage (Id-Vg) curves measured after forming the local polarized domains showed a shift in the threshold voltages. We also found that the amount of the shifts in the threshold voltages gradually decreased during the measurement of this characteristic over 100 h after forming the polarized domains. The mechanisms of the shifts in the threshold voltages and their decreasing behaviour were explained in terms of the excessive charges that were induced upon the formation of the polarized domains

  15. The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Taichi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Miyato, Yuji [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Kobayashi, Kei [Innovative Collaboration Centre, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan); Ishida, Kenji [Department of Chemical Science and Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Matsushige, Kazumi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Yamada, Hirofumi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan)

    2008-01-23

    We produced local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin films on a carbon nanotube field-effect transistor (CN-FET) channel by atomic force microscopy (AFM). The drain current versus gate voltage (I{sub d}-V{sub g}) curves measured after forming the local polarized domains showed a shift in the threshold voltages. We also found that the amount of the shifts in the threshold voltages gradually decreased during the measurement of this characteristic over 100 h after forming the polarized domains. The mechanisms of the shifts in the threshold voltages and their decreasing behaviour were explained in terms of the excessive charges that were induced upon the formation of the polarized domains.

  16. The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor.

    Science.gov (United States)

    Nishio, Taichi; Miyato, Yuji; Kobayashi, Kei; Ishida, Kenji; Matsushige, Kazumi; Yamada, Hirofumi

    2008-01-23

    We produced local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin films on a carbon nanotube field-effect transistor (CN-FET) channel by atomic force microscopy (AFM). The drain current versus gate voltage (I(d)-V(g)) curves measured after forming the local polarized domains showed a shift in the threshold voltages. We also found that the amount of the shifts in the threshold voltages gradually decreased during the measurement of this characteristic over 100 h after forming the polarized domains. The mechanisms of the shifts in the threshold voltages and their decreasing behaviour were explained in terms of the excessive charges that were induced upon the formation of the polarized domains. PMID:21817562

  17. The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit

    International Nuclear Information System (INIS)

    We report on the fabrication of a carbon nanotube field emission backlight unit (CNT-BLU) and its application for liquid crystal displays (LCD). The CNT-BLU was operated with locally controllable luminance and impulse-type scanning. The local luminance control, which is based on a very small block size of 1 cm2, consisted of local dimming and local brightening. This resulted in the contrast ratio of the LCD-TV to be as high as 300 000:1. A fast response time of ∼5.7 ms was also achieved from the LCD-TV lit by CNT-BLU, originating from the impulse-type scanning. In addition, the CNT-BLU showed long-term emission stability and high luminance uniformity

  18. Is vacuum annealing converts p-type single wall carbon nanotube field effect transistor (in air to n-type (in vacuum is universially true (?

    Directory of Open Access Journals (Sweden)

    Prakash R. Somani

    2009-05-01

    Full Text Available Our study on nickel silicide and gold contacted single-wall-carbon-nanotube field effect transistors (SWCN-FETs is in sharp contrast to earlier published reports of type conversion in SWCN-FETs (from p- to n- when cycled between air and vacuum, and indicates that (1 band gap of SWCN (2 the extent to which Fermi level of the metal contact gets shifted due to adsorption/desorption of oxygen and (3 relative position of the Fermi level of the metal contact with respect to the top of the valance band of SWCN (in an oxygen-free environment are some of the important factors that governs such phenomena.

  19. Carbon Nanotube and Graphene Nanoelectromechanical Systems

    Science.gov (United States)

    Aleman, Benjamin Jose

    One-dimensional and two-dimensional forms of carbon are composed of sp 2-hybridized carbon atoms arranged in a regular hexagonal, honeycomb lattice. The two-dimensional form, called graphene, is a single atomic layer of hexagonally-bonded carbon atoms. The one-dimensional form, known as a carbon nanotube, can be conceptualized as a rectangular piece of graphene wrapped into a seamless, high-aspect-ratio cylinder or tube. This dissertation addresses the physics and applied physics of these one and two-dimensional carbon allotropes in nanoelectromechanical systems (NEMS). First, we give a theoretical background on the electrodynamics and mechanics of carbon nanotube NEMS. We then describe basic experimental techniques, such as electron and scanning probe microscopy, that we then use to probe static and dynamic mechanical and electronic behavior of the carbon nanotube NEMS. For example, we observe and control non-linear beam bending and single-electron quantum tunneling effects in carbon nanotube resonators. We then describe parametric amplification, self-oscillation behavior, and dynamic, non-linear effects in carbon nanotube mechanical resonators. We also report a novel approach to fabricate carbon nanotube atomic force microscopy (AFM) probes, and show that they can lead to exceptional lateral resolution enhancement in AFM when imaging both hard and soft (biological) materials. Finally, we describe novel fabrication techniques for large-area, suspended graphene membranes, and utilize these membranes as TEM-transparent, AFM-compatible, NEMS resonators. Laser-driven mechanical vibrations of the graphene resonators are detected by optical interferometry and several vibration harmonics are observed. A degeneracy splitting is observed in the vibrational modes of square-geometry resonators. We then attribute the observed degeneracy splitting to local mass inhomogeneities and membrane defects, and find good overall agreement with the developed theoretical model.

  20. Low-frequency noise in individual carbon nanotube field-effect transistors with top, side and back gate configurations: effect of gamma irradiation

    International Nuclear Information System (INIS)

    We report on the influence of low gamma irradiation (104 Gy) on the noise properties of individual carbon nanotube (CNT) field-effect transistors (FETs) with different gate configurations and two different dielectric layers, SiO2 and Al2O3. Before treatment, strong generation–recombination (GR) noise components are observed. These data are used to identify several charge traps related to dielectric layers of the FETs by determining their activation energy. Investigation of samples with a single SiO2 dielectric layer as well as with two dielectric layers allows us to separate traps for each of the two dielectric layers. We reveal that each charge trap level observed in the side gate operation splits into two levels in top gate operation due to a different potential profile along the CNT channel. After gamma irradiation, only reduced flicker noise is registered in the noise spectra, which indicates a decrease of the number of charge traps. The mobility, which is estimated to be larger than 2 × 104 cm2 V−1 s−1 at room temperature, decreases only slightly after radiation treatment, demonstrating high radiation hardness of the CNTs. Finally, we study the influence of Schottky barriers at the metal–nanotube interface on the transport properties of FETs, analyzing the behavior of the flicker noise component. (paper)

  1. Quantitative optical imaging of single-walled carbon nanotubes

    Science.gov (United States)

    Herman, Lihong H.

    The development and application of optical imaging tools and probing techniques have been the subject of exciting research. These tools and techniques allow for non-invasive, simple sample preparation and relatively fast measurement of electronic and optical properties. They also provided crucial information on optoelectronic device application and development. As the field of nanostructure research emerged, they were modified and employed to understand various properties of these structures at the diffraction limit of light. Carbon nanotubes, up to hundreds of micrometers long and several nanometers thin, are perfect for testing and demonstrating newly-developed optical measurement platforms for individual nanostructures, due to their heterogeneous nature. By employing two quantitative imaging techniques, wide-field on-chip Rayleigh scattering spectroscopy and spatial modulation confocal absorption microscopy, we investigate the optical properties of single-walled carbon nanotubes. These techniques allow us to obtain the Rayleigh scattering intensity, absolute absorption cross section, spatial resolution, and spectral information of single-walled carbon nanotubes. By probing the optical resonance of hundreds of single-walled carbon nanotubes in a single measurement, the first technique utilizes Rayleigh scattering mechanism to obtain the chirality of carbon nanotubes. The second technique, by using high numerical aperture oil immersion objective lenses, we measure the absolute absorption cross section of a single-walled carbon nanotube. Combining all the quantitative values obtained from these techniques, we observe various interesting and recently discovered physical behaviors, such as long range optical coupling and universal optical conductivity on resonance, and demonstrate the possibility of accurate quantitative absorption measurement for individual structures at nanometer scale.

  2. Design and simulation of a carbon nanotube electron source

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Radlička, Tomáš; Krátký, Stanislav

    Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014. s. 62. ISBN 978-80-87441-11-4. [International Conference on Charged Parrticle Optics /9./. 31.08.2014-05.09.2014, Brno] Institutional support: RVO:68081731 Keywords : field emission * carbon nanotube s * Monte-Carlo simulation s * finite element method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Simulation of transport and 1/f noise in carbon nanotube films

    International Nuclear Information System (INIS)

    In this paper we present a simulator for electrical properties of carbon nanotube film field-effect transistors. The simulator, based on carbon nanotube physics uses Landauer formalism and Poisson equation. The total film is described as an electrical network. A modified nodal analysis provides DC and noise characteristics. These simulations are in good agreement with experimental results.

  4. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  5. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  6. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  7. Thermal conductivity and thermal rectification in unzipped carbon nanotubes

    International Nuclear Information System (INIS)

    We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.

  8. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  9. Conception et Modélisation des Dispositifs de Biocaptage à Base de Nanotubes de Carbone

    OpenAIRE

    Roman, C.

    2006-01-01

    ISBN : 2-84813-086-5 At only fifteen years after their discovery by Sumio Iijima, carbon nanotubes can be considered as one of the support pylons of nanotechnology. The seamless geometry and one-dimensional nature confers to carbon nanotubes exceptional structural, mechanical, electronic and optical properties. Accordingly, nanotubes are expected to pervade key applications such as field emission displays, energy storage, structural composites, nanoelectronics, sensors and actuators, etc.T...

  10. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  11. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    , microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis of......The use of nanomaterials in separation science has increased rapidly in the last decade. The reason for this is to take advantage of the unique properties of these materials, such as a very high surface-to-volume ratio and favourable sorbent behaviour. Carbon nanostructures, such as carbon...... nanotubes are very interesting for integration in especially microfluidic devices, because they can readily be grown on planar substrates by means of chemical vapour deposition. In this way the cumbersome process of packing of the stationary phase in the finished microfluidic channels is avoided and the CNT...

  12. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  13. Agglomeration defects on irradiated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steini Moura, Cassio [Faculty of Physics, Pontificia Universidade Catolica do Rio Grande do Sul, 90619-900, Porto Alegre, RS (Brazil); Balzaretti, Naira Maria; Amaral, Livio [Institute of Physics, Universidade Federal do Rio Grande do Sul, C.P.: 15051, 91501-070, Porto Alegre, RS (Brazil); Gribel Lacerda, Rodrigo; Pimenta, Marcos A. [Universidade Federal de Minas Gerais, C.P.: 702, 31270-901, Belo Horizonte, MG (Brazil)

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  14. Agglomeration defects on irradiated carbon nanotubes

    International Nuclear Information System (INIS)

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  15. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nanometre-sized quasi-unidimensional tubular structures (carbon nanotubes), as well as broad prospects for the use of nanomaterials based on them initiated numerous studies in the search for, and design of, nanotubular structures based in other compounds. Some properties and the main methods for the synthesis of non-carbon nanotubes are considered. Studies on the simulation of the electronic structures of these unique objects are analysed. Results of experimental and theoretical studies along these lines are discussed. The bibliography includes 328 references.

  16. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nano-sized quasi-unidimensional tubular structures (carbon nanotubes) and the broad prospects for the use of nanomaterials based on them have initiated numerous studies on the search and design of nanotubular structures of other substances. Some properties and the main methods of synthesis of non-carbon nanotubes based in particular, on boron compounds molybdenum, tungsten, niobium chalcogenides and vanadium oxides are considered. The works on the simulation of the electronic structures of these unique objects are analysed. The results of experimental and theoretical studies along these lines are discussed

  17. Effect of aligned carbon nanotubes on electrical conductivity behaviour in polycarbonate matrix

    Indian Academy of Sciences (India)

    M M Larijani; E J Khamse; Z Asadollahi; M Asadi

    2012-06-01

    This article reports effects of alignment of embedded carbon nanotubes in a polycarbonate polymer matrix under magnetic, direct and alternating current electric fields on the electrical properties of the resulting nanocomposites. Composites consisting of different quantities of carbon nanotubes in a polycarbonate matrix have been prepared using a solution casting technique. The effects of field strength and nanotube concentration on the resulted network structure and conductivity of the composites were studied by in situ optical microscopy, transmission electron microscopy and four-point probe technique. The results showed that the composites prepared in the presence of field had better conductivity than those of as-prepared composites. It was also concluded that the application of alternating current electric field and magnetic field in this system led to the formation of relatively continuing networks while direct current electric field only prevented agglomeration of the carbon nanotubes in the polycarbonate matrix and created relatively uniform distribution of nanotubes in the matrix.

  18. Immobilization of enzymes onto carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prlainović Nevena Ž.

    2011-01-01

    Full Text Available The discovery of carbon nanotubes (CNTs has opened a new door in nanotechnology. With their high surface area, unique electronic, thermal and mechanical properties, CNTs have been widely used as carriers for protein immobilization. In fact, carbon nanotubes present ideal support system without diffusional limitations, and also have the possibility of surface covalent functionalization. It is usually the oxidation process that introduces carboxylic acid groups. Enzymes and other proteins could be adsorbed or covalently attached onto carbon nanotubes. Adsorption of enzyme is a very simple and inexpensive immobilization method and there are no chemical changes of the protein. It has also been found that this technique does not alter structure and unique properties of nanotubes. However, a major problem in process designing is relatively low stability of immobilized protein and desorption from the carrier. On the other hand, while covalent immobilization provides durable attachment the oxidation process can reduce mechanical and electronic properties of carbon nanotubes. It can also affect the active site of enzyme and cause the loss of enzyme activity. Bioimmobilization studies have showed that there are strong interactions between carbon nanotubes surface and protein. The retention of enzyme structure and activity is critical for their application and it is of fundamental interest to understand the nature of these interactions. Atomic force microscopy (AFM, transmission electron microscopy (TEM, scanning electron microscopy (SEM and circular dichroism (CD spectroscopy provide an insight into the structural changes that occur during the immobilization. The aim of this paper is to summarize progress of protein immobilization onto carbon nanotubes.

  19. Multiscale simulation of carbon nanotube transistors

    OpenAIRE

    Maneux, Cristell; Roche, Stephan

    2013-01-01

    In recent years, the understanding and accurate simulation of carbon nanotube-based transistors has become very challenging. Conventional simulation tools of microelectronics are necessary to predict the performance and use of nanotube transistors and circuits, but the models need to be refined to properly describe the full complexity of such novel type of devices at the nanoscale. Indeed, many issues such as contact resistance, low dimensional electrostatics and screening effects, demand for...

  20. Efficiently Dispersing Carbon Nanotubes in Polyphenylene Sulfide

    OpenAIRE

    Sommer, Kevin M; Pipes, R. Byron

    2013-01-01

    Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolat...

  1. Optical trapping of carbon nanotubes and graphene

    OpenAIRE

    Vasi, S.; M. A. Monaca; Donato, M. G.; Bonaccorso, F.; Privitera, G; Trushkevych, O.; G. Calogero; Fazio, B.; Irrera, A.; M.A. Iati'; Saija, R.; Denti, P.; F. Borghese; Jones, P H; Ferrari, A. C.

    2011-01-01

    We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fuctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double ...

  2. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  3. Localized Excitons in Carbon Nanotubes.

    Science.gov (United States)

    Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei

    2015-03-01

    It has been historically known that unintentional defects in carbon nanotubes (CNTs) may fully quench the fluorescence. However, some dopants may enhance the fluorescence by one order of magnitude thus turning the CNTs, which are excellent light absorbers, in good emitters. We have correlated the experimentally observed photoluminescence spectra to the electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the lowest bright exciton peak. Our simulations suggest an association of these peaks with deep trap states tied to different specific chemical adducts. While the wave functions of excitons in undoped CNTs are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with the experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from scattering of acoustic phonons on localized excitons. Our work lays the foundation to utilize doping as a generalized route for wave function engineering and direct control of carrier dynamics in SWCNTs toward enhanced light emission properties for photonic applications.

  4. Does water dope carbon nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Robert A.; Payne, Michael C. [Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge (United Kingdom); Mostofi, Arash A. [Department of Materials and Department of Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  5. Carbon nanotube fiber terahertz polarizer

    Science.gov (United States)

    Zubair, Ahmed; Tsentalovich, Dmitri E.; Young, Colin C.; Heimbeck, Martin S.; Everitt, Henry O.; Pasquali, Matteo; Kono, Junichiro

    2016-04-01

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ˜-30 dB with a low insertion loss (fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  6. Carbon Nanotube Areas - Printed on Textile and Paper Substrates

    OpenAIRE

    Hubler, Arved C.; Lothar Kroll; Holg Elsner; Nora Wetzold; Thomas Fischer

    2011-01-01

    Mass printing processes are the key technology to produce mass products to the point of one-disposable. Carbon nanotube (CNT) based structures were prepared by flexographic printing using multi-walled carbon nanotube (MWCNT) dispersions in water. The carbon nanotubes were applied to a textile substrate made of polyester and polyamide microfilaments and to both-side coated paper to produce electrically conductive layers that can be used, for example, as heating elements. Carbon nanotube layers...

  7. Carbon nanotube chemistry and assembly for electronic devices

    Science.gov (United States)

    Derycke, Vincent; Auvray, Stéphane; Borghetti, Julien; Chung, Chia-Ling; Lefèvre, Roland; Lopez-Bezanilla, Alejandro; Nguyen, Khoa; Robert, Gaël; Schmidt, Gregory; Anghel, Costin; Chimot, Nicolas; Lyonnais, Sébastien; Streiff, Stéphane; Campidelli, Stéphane; Chenevier, Pascale; Filoramo, Arianna; Goffman, Marcelo F.; Goux-Capes, Laurence; Latil, Sylvain; Blase, Xavier; Triozon, François; Roche, Stephan; Bourgoin, Jean-Philippe

    2009-05-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties; (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes (this route being particularly relevant for gas- and bio-sensors, opto-electronic devices and energy sources); and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we review our recent results concerning nanotube chemistry and assembly and their use to develop electronic devices. In particular, we present carbon nanotube field effect transistors and their chemical optimization, high frequency nanotube transistors, nanotube-based opto-electronic devices with memory capabilities and nanotube-based nano-electromechanical systems (NEMS). The impact of chemical functionalization on the electronic properties of CNTs is analyzed on the basis of theoretical calculations. To cite this article: V. Derycke et al., C. R. Physique 10 (2009).

  8. Carbon nanotubes and graphene towards soft electronics

    Science.gov (United States)

    Chae, Sang Hoon; Lee, Young Hee

    2014-04-01

    Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.

  9. Gas Composition Sensing Using Carbon Nanotube Arrays

    Science.gov (United States)

    Li, Jing; Meyyappan, Meyya

    2012-01-01

    This innovation is a lightweight, small sensor for inert gases that consumes a relatively small amount of power and provides measurements that are as accurate as conventional approaches. The sensing approach is based on generating an electrical discharge and measuring the specific gas breakdown voltage associated with each gas present in a sample. An array of carbon nanotubes (CNTs) in a substrate is connected to a variable-pulse voltage source. The CNT tips are spaced appropriately from the second electrode maintained at a constant voltage. A sequence of voltage pulses is applied and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of the current-voltage characteristics. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas. The CNTs in the gas sensor have a sharp (low radius of curvature) tip; they are preferably multi-wall carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs), to generate high-strength electrical fields adjacent to the tips for breakdown of the gas components with lower voltage application and generation of high current. The sensor system can provide a high-sensitivity, low-power-consumption tool that is very specific for identification of one or more gas components. The sensor can be multiplexed to measure current from multiple CNT arrays for simultaneous detection of several gas components.

  10. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  11. Deposition of the platinum crystals on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new technique and the affecting factors for depositing platinum on the carbon nanotubes were investigated. The results show that the deposited platinum crystals in the atmosphere of hydrogen or nitrogen have a small size and a homogeneous distribution on the surface of the carbon nanotubes. The pretreatment would decrease the platinum particles on the carbon nanotubes significantly.

  12. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  13. A comparative study of nitrogen plasma effect on field emission characteristics of single wall carbon nanotubes synthesized by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-12-01

    Vertically aligned single wall carbon nanotubes (SWCNTs) with large scale control of diameter, length and alignment have successfully been grown by plasma enhanced chemical vapor deposition (PECVD) system. The nickel (Ni) as catalyst deposited on silicon (Si) substrate was used to grow the SWCNTs. Field emission (FE) characteristics of the as grown SWCNTs were measured using indigenously designed setup in which a diode is configured in such a way that by applying negative voltage on the copper plate (cathode) with respect to stainless steel anode plate, current density can be recorded. To measure the FE characteristics, SWCNTs film pasted on the copper plate with silver epoxy was used as electron emitter source. The effective area of anode was ∼78.5 mm2 for field emission measurements. The emission measurements were carried out under high vacuum pressure of the order of 10-6 Torr to minimize the electron scattering and degradation of the emitters. The distance between anode and cathode was kept 500 μm (constant) during entire field emission studies. The grown SWCNTs are excellent field emitters, having emission current density higher than 25 mA/cm2 at turn-on field 1.3 V/μm. In order to enhance the field emission characteristics, the as grown SWCNTs have been treated under nitrogen (N2) plasma for 5 min and again field emission characteristics have been measured. The N2 plasma treated SWCNTs show a good enhancement in the field emission properties with emission current density 81.5 mA/cm2 at turn on field 1.2 V/μm. The as-grown and N2 plasma treated SWCNTs were also characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), Raman spectrometer, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS).

  14. Carbon nanotube suspensions, dispersions, & composites

    Science.gov (United States)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  15. Investigation of electrical transport in hydrogenated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Highly disordered multiwalled carbon nanotubes of large outer diameter (∼60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.

  16. Integrating Carbon Nanotubes into Microfluidic Chip for Separating Biochemical Compounds

    OpenAIRE

    Chen, Miaoxiang Max; Mogensen, Klaus Bo; BØGGILD, Peter; Kutter, Jörg Peter

    2012-01-01

    We present a new type of device to separate biochemical compounds wherein carbon nanotubes (CNTs) are integrated as chromatographic stationary phase. The CNTs were directly grown on the bottom of microfluidic channels on Si/SiO2 substrates by chemical vapor deposition (CVD). Acetylene was used as carbon source and Ni was employed as catalyst. For electrokinetic separations, higher electrical field strength is usually required; therefore, the CNTs were constructed in pillar-array-form by patte...

  17. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    Science.gov (United States)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse. PMID:25725890

  18. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix

    Science.gov (United States)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  19. Geometric and electronic structure of carbon nanotube networks: 'super'-carbon nanotubes

    Science.gov (United States)

    Coluci, V. R.; Galvão, D. S.; Jorio, A.

    2006-02-01

    Structures of the so-called super-carbon nanotubes are proposed. These structures are built from single walled carbon nanotubes connected by Y-like junctions forming a 'super'-sheet that is then rolled into a seamless cylinder. Such a procedure can be repeated several times, generating a fractal structure. This procedure is not limited to carbon nanotubes, and can be easily modified for application to other systems. Tight binding total energy and density of states calculations showed that the 'super'-sheets and tubes are stable and predicted to present metallic and semiconducting behaviour.

  20. Modified Multiwall Carbon Nanotubes with Nanolumps for Nanocomposite Reinforcement

    Science.gov (United States)

    Wen, J. G.; Lao, J. Y.; Li, W. Z.; Ren, Z. F.; Department Of Physics Team

    2002-03-01

    The quality of the bonding between a polymer matrix and carbon nanotubes is critical in the development of carbon nanotube reinforced polymer composites. In this paper, we modified multiwall carbon nanotubes by growing boron carbide (a covalent bonding compound) nanolumps on carbon nanotubes to enhance load transfer from matrix to carbon nanotubes. Experimental results demonstrated that boron carbide nanolumps with the required morphology were formed on multiwall carbon nanotubes by a solid state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. We also found that inner layers of multiwall carbon nanotubes are bonded to boron carbide nanolumps probably through covalent bonding. Therefore, these multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal nano-scale reinforcement to improve load transfer between carbon nanotubes and the polymer matrix. For comparison, other nanolumps such as crystalline MgO, amorphous B2O3 are also grown on nanotubes.