WorldWideScience

Sample records for carbon nanomaterial samples

  1. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A;

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro and...

  2. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples

    International Nuclear Information System (INIS)

    Due to their large specific surface area, the potential of nanoparticles to be highly reactive and to induce oxidative stress is particularly high. In addition, some types of nanoparticles contain transition metals as trace impurities which are known to generate reactive oxygen species (ROS) in biological systems. This study investigates the potential of two types of single-walled carbon nanotube samples, nanoparticulate carbon black and crocidolite asbestos to induce ROS in lung epithelial cells in vitro. Carbon nanotube and carbon black samples were used as produced, without further purification or processing, in order to best mimic occupational exposure by inhalation of airborne dust particles derived from carbon nanomaterial production. Intracellular ROS were measured following short-term exposure of primary bronchial epithelial cells (NHBE) and A549 alveolar epithelial carcinoma cells using the redox sensitive probe carboxydichlorofluorescin (carboxy-DCFDA). The oxidative potential of agglomerated nanomaterial samples was compared following dispersion in cell culture medium with and without foetal calf serum (FCS) supplement. In addition, samples were dispersed in dipalmitoylphosphatidylcholine (DPPC), the major component of lung surfactant. It could be illustrated that in vitro exposure of lung epithelial cells to carbon nanomaterial samples results only in moderate or low oxidative stress under the exposure conditions employed. However, cell responses are strongly dependent on the vehicle used for dispersion. Whereas the presence of DPPC increased intracellular ROS formation, FCS seemed to protect the cells from oxidative insult.

  3. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  4. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  5. Exoelectron Emission of a Carbon Nanomaterial

    Science.gov (United States)

    Kortov, V. S.; Slesarev, A. I.; Tkachev, A. G.

    2008-03-01

    The exoemission properties of a Taunite carbon nanomaterial consisting of nanosized multiwalled nanotubes and nanofibers were investigated by thermally stimulated exoelectron emission (TSEE). The TSEE spectra of the carbon nanomaterial differed from the spectra of pressed graphite. It was assumed that defect—adsorbate complexes were emission-active centers on the surface of the nanomaterial

  6. Carbon Nanomaterials: Efficacy and Safety for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Yasuo Tsutsumi

    2012-02-01

    Full Text Available Carbon nanomaterials, including fullerenes, carbon nanohorns, and carbon nanotubes, are increasingly being used in various fields owing to these materials’ unique, size-dependent functions and physicochemical properties. Recently, because of their high variability and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic molecules including peptide and nucleic acid cancer drugs. However, insufficient information is available regarding the safety of carbon nanomaterials for human health, even though such information is vital for the development of safe and effective nanomedicine technologies. In this review, we discuss currently available information regarding the safety of carbon nanomaterials in nanomedicine applications, including information obtained from our own studies; and we discuss types of carbon nanomaterials that demonstrate particular promise for safe nanomedicine technologies.

  7. Carbon Nanomaterials for Road Construction

    Directory of Open Access Journals (Sweden)

    Zaporotskova Irina Vladimirovna

    2015-05-01

    Full Text Available The requirement of developing and modernizing the roads in Russia and in the Volgograd region in particular, is based on need of expanding the directions of scientific research on road and transport complexes. They have to be aimed at the development of the theory of transport streams, traffic safety increase, and, first of all, at the application of original methods of road development and modernization, introduction of modern technologies and road-building materials.On the basis of the analysis of the plans for transportation sphere development in the Volgograd region assuming the need to apply the new technologies allowing to create qualitative paving, the authors propose the technology of creating a heavy-duty paving with the use of carbon nanomaterial. The knowledge on strengthening the characteristics of carbon nanotubes is a unique material for nanotechnology development which allowed to assume the analysis of general information about asphalt concrete. The analysis showed that carbon nanotubes can be used for improvement of operational characteristics of asphalt concrete, and it is possible to carry out additives of nanotubes in hot as well as in cold bitumen. The article contains the basic principles of creation of the new road material received by means of bitumen reinforcing by carbon nanotubes. The structures received by the offered technique binding on the basis of the bitumens modified by carbon nanomaterial can be used for coverings and bases on highways of all categories in all road and climatic zones of Russia. The technical result consists in increasing the durability and elasticity of the received asphalt covering, and also the increase of water resistance, heat resistance and frost resistance, the expansion of temperature range of its laying in the field of negative temperatures.

  8. Green chemistry of carbon nanomaterials.

    Science.gov (United States)

    Basiuk, Elena V; Basiuk, Vladimir A

    2014-01-01

    The global trend of looking for more ecologically friendly, "green" techniques manifested itself in the chemistry of carbon nanomaterials. The main principles of green chemistry emphasize how important it is to avoid the use, or at least to reduce the consumption, of organic solvents for a chemical process. And it is precisely this aspect that was systematically addressed and emphasized by our research group since the very beginning of our work on the chemistry of carbon nanomaterials in early 2000s. The present review focuses on the results obtained to date on solvent-free techniques for (mainly covalent) functionalization of fullerene C60, single-walled and multi-walled carbon nanotubes (SWNTs and MWNTs, respectively), as well as nanodiamonds (NDs). We designed a series of simple and fast functionalization protocols based on thermally activated reactions with chemical compounds stable and volatile at 150-200 degrees C under reduced pressure, when not only the reactions take place at a high rate, but also excess reagents are spontaneously removed from the functionalized material, thus making its purification unnecessary. The main two classes of reagents are organic amines and thiols, including bifunctional ones, which can be used in conjunction with different forms of nanocarbons. The resulting chemical processes comprise nucleophilic addition of amines and thiols to fullerene C60 and to defect sites of pristine MWNTs, as well as direct amidation of carboxylic groups of oxidized nanotubes (mainly SWNTs) and ND. In the case of bifunctional amines and thiols, reactions of the second functional group can give rise to cross-linking effects, or be employed for further derivatization steps. PMID:24730288

  9. Terahertz Dynamics in Carbon Nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2012-02-01

    This NSF Partnerships for International Research and Education (PIRE) project supports a unique interdisciplinary and international partnership investigating terahertz (THz) dynamics in nanostructures. The 0.1 to 10 THz frequency range of the electromagnetic spectrum is where electrical transport and optical transitions merge, offering exciting opportunities to study a variety of novel physical phenomena in condensed matter. By combining THz technology and nanotechnology, we can advance our understanding of THz physics while improving and developing THz devices. Specifically, this PIRE research explores THz dynamics of electrons in carbon nanomaterials, namely, nanotubes and graphene --- low-dimensional, sp^2-bonded carbon systems with unique finite-frequency properties. Japan and the U.S. are global leaders in both THz research and carbon research, and stimulating cooperation is critical to further advance THz science and to commercialize products developed in the lab. However, obstacles exist for international collaboration --- primarily linguistic and cultural barriers --- and this PIRE project aims to address these barriers through the integration of our research and education programs. Our strong educational portfolio endeavours to cultivate interest in nanotechnology amongst young U.S. undergraduate students and encourage them to pursue graduate study and academic research in the physical sciences, especially those from underrepresented groups. Our award-winning International Research Experience for Undergraduates Program, NanoJapan, provides structured research internships in Japanese university laboratories with Japanese mentors --- recognized as a model international education program for science and engineering students. The project builds the skill sets of nanoscience researchers and students by cultivating international and inter-cultural awareness, research expertise, and specific academic interests in nanotechnology. U.S. project partners include Rice

  10. Structure and multiscale mechanics of carbon nanomaterials

    CERN Document Server

    2016-01-01

    This book aims at providing a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.

  11. About aerogels based on carbon nanomaterials

    Directory of Open Access Journals (Sweden)

    Fail Sultanov

    2014-12-01

    Full Text Available In this review a current trends in development and application of carbon nanomaterials and derivatives based on them are presented. Aerogels based on graphene and other carbon nanomaterials present a class of novel ultralight materials in which a liquid phase is completely substituted by gaseous. In its turn graphene based aerogel was named as the lightest material, thus the record of aerographite, which has retained for a long time was beaten. Aerogels are characterized by low density, high surface area and high index of hydrophobicity. In addition, depending on its application, aerogels based on carbon nanomaterials can be electrically conductive and magnetic, while retaining the flexibility of its 3D structure. Impressive properties of novel material – aerogels causes a huge interest of scientists in order to find their application in various fields, ranging from environment problems to medicine and electronics.

  12. Assembly of ordered carbon shells on semiconducting nanomaterials

    Science.gov (United States)

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  13. Investigations into polymer and carbon nanomaterial separations

    Science.gov (United States)

    Owens, Cherie Nicole

    utilize as novel UTLC substrates. Additionally, aligned electrospun UTLC (AE-UTLC) substrates were developed to compare to the randomly oriented electrospun (E-UTLC) devices. The PHB plates were compared to commercially available substrates for the separation of biological samples: nucleotides and steroids. The electrospun substrates show lower band broadening and higher reproducibility in a smaller development distance than commercially available TLC plates, conserving both resources and time. The AE-UTLC plates provided further enhancement of reproducibility and development time compared to E-UTLC plates. Thus, the P3HB E-UTLC phases are an excellent sustainable option for TLC as they are biodegradable and perform better than commercial phases. A third topic of interest is the study of ordered carbon nanomaterials. The typical amorphous carbon used as a stationary phase in Hypercarb ® is known to consist of basal- and edge-plane oriented sites. This heterogeneity of the stationary phase can lead to peak broadening that may be improved by using homogeneous carbon throughout. Amorphous, basal-plane, and edge-plane carbons were produced in-house through membrane template synthesis. Amorphous, basal-plane, and edge-plane carbons were then used separately as chromatographic phases in capillary electrochomatography (CEC). Differences in chromatographic performance between these species were assessed by modeling retention data for test solutes to determine Linear Solvation Energy Relationships (LSER). The LSER study for the three carbon phases indicates that the main difference is in the polarizability, and hydrogen bonding character of the surface leading to unique solute interactions. These results highlight the possible usefulness of using these phases independently.

  14. Influence of carbon nanomaterials on the properties of paint coatings

    Science.gov (United States)

    Zhdanok, S. A.; Krauklis, A. V.; Borisevich, K. O.; Prokopchuk, N. P.; Nikolaichik, A. V.; Stanovoi, P. G.

    2011-11-01

    The conditions for obtaining carbon nanomaterials with the use of a low-temperature plasma are described. The product obtained was analyzed using the electron microscopy and a laser diffraction particle-size analyzer. The influence of the carbon nanomaterials on the physicochemical properties of paint coatings, their adhesion, impact and bending strengths, hardness, and protection characteristics was investigated.

  15. Carbon nanomaterial based electrochemical sensors for biogenic amines

    International Nuclear Information System (INIS)

    This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references. (author)

  16. Enzyme-catalyzed degradation of carbon nanomaterials

    Science.gov (United States)

    Kotchey, Gregg P.

    Carbon nanotubes and graphene, the nanoscale sp 2 allotropes of carbon, have garnered widespread attention as a result of their remarkable electrical, mechanical, and optical properties and the promise of new technologies that harness these properties. Consequently, these carbon nanomaterials (CNMs) have been employed for diverse applications such as electronics, sensors, composite materials, energy conversion devices, and nanomedicine. The manufacture and eventual disposal of these products may result in the release of CNMs into the environment and subsequent exposure to humans, animals, and vegetation. Given the possible pro-inflammatory and toxic effects of CNMs, much attention has been focused on the distribution, toxicity, and persistence of CNMs both in living systems and the environment. This dissertation will guide the reader though recent studies aimed at elucidating fundamental insight into the persistence of CNMs such as carbon nanotubes (CNTs) and graphene derivatives (i.e., graphene oxide and reduced graphene oxide). In particular, in-testtube oxidation/degradation of CNMs catalyzed by peroxidase enzymes will be examined, and the current understanding of the mechanisms underlying these processes will be discussed. Finally, an outlook of the current field including in vitro and in vivo biodegradation experiments, which have benefits in terms of human health and environmental safety, and future directions that could have implications for nanomedical applications such as imaging and drug delivery will be presented. Armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation/biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. For example, in nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. Also, the incorporation of CNMs with defect sites in consumer

  17. Carbon Nanomaterials in Agriculture: A Critical Review.

    Science.gov (United States)

    Mukherjee, Arnab; Majumdar, Sanghamitra; Servin, Alia D; Pagano, Luca; Dhankher, Om Parkash; White, Jason C

    2016-01-01

    There has been great interest in the use of carbon nano-materials (CNMs) in agriculture. However, the existing literature reveals mixed effects from CNM exposure on plants, ranging from enhanced crop yield to acute cytotoxicity and genetic alteration. These seemingly inconsistent research-outcomes, taken with the current technological limitations for in situ CNM detection, present significant hurdles to the wide scale use of CNMs in agriculture. The objective of this review is to evaluate the current literature, including studies with both positive and negative effects of different CNMs (e.g., carbon nano-tubes, fullerenes, carbon nanoparticles, and carbon nano-horns, among others) on terrestrial plants and associated soil-dwelling microbes. The effects of CNMs on the uptake of various co-contaminants will also be discussed. Last, we highlight critical knowledge gaps, including the need for more soil-based investigations under environmentally relevant conditions. In addition, efforts need to be focused on better understanding of the underlying mechanism of CNM-plant interactions. PMID:26941751

  18. CARBON NANOMATERIALS IN AGRICULTURE: A CRITICAL REVIEW

    Directory of Open Access Journals (Sweden)

    Arnab eMukherjee

    2016-02-01

    Full Text Available AbstractThere has been great interest in the use of carbon nano-materials (CNMs in agriculture. However, the existing literature reveals mixed effects from CNM exposure on plants, ranging from enhanced crop yield to acute cytotoxicity and genetic alteration. These seemingly inconsistent research-outcomes, taken with the current technological limitations for in situ CNM detection, present significant hurdles to the wide scale use of CNMs in agriculture. The objective of this review is to evaluate the current literature, including studies with both positive and negative effects of different CNMs (e.g., carbon nano-tubes, fullerenes, carbon nanoparticles, and carbon nano-horns, among others on terrestrial plants and associated soil-dwelling microbes. The effects of CNMs on the uptake of various co-contaminants will also be discussed. Last, we highlight critical knowledge gaps, including the need for more soil-based investigations under environmentally relevant conditions. In addition, efforts need to be focused on better understanding of the underlying mechanism of CNM-plant interactions.

  19. Carbon Nanomaterials in Agriculture: A Critical Review

    Science.gov (United States)

    Mukherjee, Arnab; Majumdar, Sanghamitra; Servin, Alia D.; Pagano, Luca; Dhankher, Om Parkash; White, Jason C.

    2016-01-01

    There has been great interest in the use of carbon nano-materials (CNMs) in agriculture. However, the existing literature reveals mixed effects from CNM exposure on plants, ranging from enhanced crop yield to acute cytotoxicity and genetic alteration. These seemingly inconsistent research-outcomes, taken with the current technological limitations for in situ CNM detection, present significant hurdles to the wide scale use of CNMs in agriculture. The objective of this review is to evaluate the current literature, including studies with both positive and negative effects of different CNMs (e.g., carbon nano-tubes, fullerenes, carbon nanoparticles, and carbon nano-horns, among others) on terrestrial plants and associated soil-dwelling microbes. The effects of CNMs on the uptake of various co-contaminants will also be discussed. Last, we highlight critical knowledge gaps, including the need for more soil-based investigations under environmentally relevant conditions. In addition, efforts need to be focused on better understanding of the underlying mechanism of CNM-plant interactions. PMID:26941751

  20. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective

    Science.gov (United States)

    Baldrighi, Michele; Trusel, Massimo; Tonini, Raffaella; Giordani, Silvia

    2016-01-01

    Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues. PMID:27375413

  1. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  2. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    OpenAIRE

    Lata Govada; Hannah S. Leese; Emmanuel Saridakis; Sean Kassen; Benny Chain; Sahir Khurshid; Robert Menzel; Sheng Hu; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-01-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted m...

  3. Bio-inspired flow sensors using carbon nanomaterials

    Science.gov (United States)

    Berg, Erin; Darge, Abenazer; Philen, Michael

    2014-04-01

    Fish utilize neuromasts to help them detect changes in water flow, which is essential for swimming, tracking prey, and performing synchronized swimming maneuvers. The neuromasts contain a staircase of hair cells that perform this task by transforming mechanical stimulation from the flowing water to electrical impulses that ultimately are transported to the brain. Inspired by the physical structure of the hairs, flow sensors are fabricated using carbonaceous nanomaterials partially embedded in a polydimethylsiloxan (PDMS) polymer substrate, which leaves part of the nanomaterial exposed to the fluid flow. This is an effective means of sensor fabrication that prevents the carbon nanomaterial from being washed away by the flowing liquid. Different carbon materials such as long and short single walled carbon nanotubes, carbon nanohorns, peapods, and multi walled carbon nanotubes are investigated in this research. All sensors from these carbon materials performed well when fabricated using this method. Future focus of this research is to maximize electrical response by implementing different techniques, aimed at improving hydrophilicity by introducing a functional group such as siloxane (SiOH) to the sensing surface and increasing the surface area in contact between the electrodes and the sensing surface.

  4. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene

    Directory of Open Access Journals (Sweden)

    William I. Milne

    2012-05-01

    Full Text Available There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area.

  5. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene.

    Science.gov (United States)

    Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J; Xie, Huaqing; Moussy, Francis; Milne, William I

    2012-01-01

    There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628

  6. Multi-functional carbon nanomaterials: Tailoring morphology for multidisciplinary applications

    Energy Technology Data Exchange (ETDEWEB)

    Dervishi, Enkeleda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-14

    Carbon based nanomaterials are being developed to have many new properties and applications. Graphene, is a mono-layer 2D atomic thick structure formed from hexagons of carbon atoms bound together by sp^2hybrid bonds. A carbon nanotube (CNT) can be viewed as a sheet of graphene rolled up into a cylinder, usually 1-2 nanometers in diameter and a few microns thick. A few applications of graphene and carbon nanotubes include the development of Nanoelectronics, nanocomposite materials, Hydrogen storage and Li⁺ battery, etc.

  7. Modification of conductive polyaniline with carbon nanomaterials

    Science.gov (United States)

    Sedaghat, Sajjad; Alavijeh, Mahdi Soleimani

    2014-08-01

    The synthesis of polyaniline/single-wall nanotube, polyaniline/multi-wall nanotube and polyaniline/single-wall nanotube/graphen nanosheets nanocomposites by in situ polymerization are reported in this study. The substrates were treated with a mixture of concentrated sulfuric acid and concentrated nitric acid before usage to functionalize with carboxylic and hydroxyl groups. Aniline monomers are adsorbed and polymerized on the surface of these fillers. Structural analysis using scanning electron microscopy showed that nanomaterials dispersed into polymer matrix and made tubular structures with diameters several tens to hundreds nanometers depending on the polyaniline content. These nanocomposites can be used for production of excellent electrode materials applications in high-performance supercapacitors.

  8. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules.

    Science.gov (United States)

    Tiwari, Jitendra N; Vij, Varun; Kemp, K Christian; Kim, Kwang S

    2016-01-26

    The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field. PMID:26579616

  9. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    Science.gov (United States)

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  10. Nanomaterials

    CERN Document Server

    Vollath, Dieter

    2013-01-01

    This full-colored introduction to nanomaterials and nanotechnology in particular addresses the needs of engineers who need to know the special phenomena and potentials, without getting bogged down in the scientific detail of the physics and chemistry involved. Based on the author's own courses, this textbook shows how to produce nanomaterials and use them in engineering applications for novel products. Following an introduction, the text goes on to treat synthesis, characterization techniques, thermal, optical, magnetic and electronic properties, processing and, finally, emerging applications. A sound overview of the "nano world" from an application-oriented perspective.

  11. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    Science.gov (United States)

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-02-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions.

  12. FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part I: TYPES OF CNs

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2012-05-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. The synthesis techniques are used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional CNs (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls.

  13. Carbon Nanomaterials: Applications in Physico-chemical Systemsand Biosystems

    Directory of Open Access Journals (Sweden)

    Maheshwar Sharon

    2008-07-01

    Full Text Available In the present article, various forms of carbon and carbon nanomaterials (CNMs and a new approach to classify them on the basis of sp2-sp3 configuration are presented. Utilising the concept of junction formation (like p:n junction a concept is developed to explain the special reactivity of nanosized carbon materials. Geometric consideration of chiral and achiral symmetry of single-walled carbon nanotubes is presented which is also responsible for manifesting special propertiesof carbon nanotubes. A brief introduction to various common synthesis techniques of CNMs is given. These is increased chemical and biological activities have resulted in many engineer ednanoparticles, which are being designed for specific purposes, including diagnostic or the rapeuticmedical uses and environmental remediation.Defence Science Journal, 2008, 58(4, pp.460-485, DOI:http://dx.doi.org/10.14429/dsj.58.1668

  14. Phase conversion in silicon and carbon nanomaterials at extreme pressure

    Science.gov (United States)

    Crane, Matthew; Smith, Bennett; Abramson, Evan; Pauzauskie, Peter

    The high pressures and temperatures accessible in laser-heated diamond anvil cells (LH-DAC) have produced fundamental insights by identifying metastable states with extraordinary properties. However, the actual conditions necessary to access a metastable state depend on the kinetics of phase transformation. The explosion of research in nanomaterials has generated interest in exploring how phase transformations occur in materials with high radii of curvature, and how we can leverage these effects. We present work investigating phase transformations in Si- and C-based nanomaterials with high radii of curvature. We have loaded a LH-DAC with Si nanowires (NWs) and examined the phase at a range of pressures to discover a recoverable phase transition to a wurtzite crystal structure. For C materials, we have synthesized a pyrolyzed carbon aerogel, an amorphous carbon sol gel with size features of ~10 nm and incredibly low density and thermal conductivity (~10-2 W/m-K). We investigate spatial resolution of heating under pressure and the effect of temperature on resulting material electronic structure. Finally, we model heating with Mie theory to provide insights into the phase transformations of nanomaterials.

  15. Experimental investigation of interactions between proteins and carbon nanomaterials

    Science.gov (United States)

    Sengupta, Bishwambhar

    The global market for nanomaterials based products is forecasted to reach $1 trillion per annum per annum for 2015. Engineered nanomaterials (ENMs) exhibit unique physicochemical properties with potential to impact diverse aspects of society through applications in electronics, renewable energy, and medicine. While the research and proposed applications of ENMs continue to grow rapidly, the health and safety of ENMs still remains a major concern to the public as well as to policy makers and funding agencies. It is now widely accepted that focused efforts are needed for identifying the list of physicochemical descriptors of ENM before they can be evaluated for nanotoxicity and biological response. This task is surprisingly challenging, as many physicochemical properties of ENMs are closely inter related and cannot be varied independently (e.g. increasing the size of an ENM can introduce additional defects). For example, varying toxic response may ensue due to different methods of nanomaterial preparation, dissimilar impurities and defects. Furthermore, the inadvertent coating of proteins on ENM surface in any biological milieu results in the formation of the so-called "protein/bio-corona" which can in turn alter the fate of ENMs and their biological response. Carbon nanomaterials (CNMs) such as carbon nanotubes, graphene, and graphene oxide are widely used ENMs. It is now known that defects in CNMs play an important role not only in materials properties but also in the determination of how materials interact at the nano-bio interface. In this regard, this work investigates the influence of defect-induced hydrophilicity on the bio-corona formation using micro Raman, photoluminescence, infrared spectroscopy, electrochemistry, and molecular dynamics simulations. Our results show that the interaction of proteins (albumin and fibrinogen) with CNMs is strongly influenced by charge transfer between them, inducing protein unfolding which enhances conformational entropy and

  16. Carbon nanomaterials in silica aerogel matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Christopher E [Los Alamos National Laboratory; Chavez, Manuel E [Los Alamos National Laboratory; Duque, Juan G [Los Alamos National Laboratory; Gupta, Gautam [Los Alamos National Laboratory; Doorn, Stephen K [Los Alamos National Laboratory; Dattelbaum, Andrew M [Los Alamos National Laboratory; Obrey, Kimberly A D [Los Alamos National Laboratory

    2010-01-01

    Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWCNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWCNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWCNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

  17. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Wang, Jing; Liu, Qian; Liang, Yong; Jiang, Guibin

    2016-04-01

    Carbon nanomaterials have attracted great interest over past decades owing to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this article, we review recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry (LDI MS). Various types of carbon nanomaterials, including fullerenes, carbon nanotubes, graphene, carbon nanodots, nanodiamond, nanofibers, nanohorns, and their derivative forms, are involved. The applications of these materials as new matrices or probes in matrix-assisted or surface-enhanced laser desorption/ionization mass spectrometry (MALDI or SELDI MS) are discussed. Finally, we summarize current challenges and give our perspectives on the future of applications of carbon nanomaterials in LDI MS. Graphical Abstract Carbon nanomaterials (e.g., fullerenes, carbon nanotubes, graphene, nanodiamond, etc.) can be used as novel matrices or probes in MALDI or SELDI MS. PMID:26753968

  18. Fabrication and Cytocompatibility of In Situ Crosslinked Carbon Nanomaterial Films

    Science.gov (United States)

    Patel, Sunny C.; Lalwani, Gaurav; Grover, Kartikey; Qin, Yi-Xian; Sitharaman, Balaji

    2015-05-01

    Assembly of carbon nanomaterials into two-dimensional (2D) coatings and films that harness their unique physiochemical properties may lead to high impact energy capture/storage, sensors, and biomedical applications. For potential biomedical applications, the suitability of current techniques such as chemical vapor deposition, spray and dip coating, and vacuum filtration, employed to fabricate macroscopic 2D all carbon coatings or films still requires thorough examination. Each of these methods presents challenges with regards to scalability, suitability for a large variety of substrates, mechanical stability of coatings or films, or biocompatibility. Herein we report a coating process that allow for rapid, in situ chemical crosslinking of multi-walled carbon nanotubes (MWCNTs) into macroscopic all carbon coatings. The resultant coatings were found to be continuous, electrically conductive, significantly more robust, and cytocompatible to human adipose derived stem cells. The results lay groundwork for 3D layer-on-layer nanomaterial assemblies (including various forms of graphene) and also opens avenues to further explore the potential of MWCNT films as a novel class of nano-fibrous mats for tissue engineering and regenerative medicine.

  19. Carbon Nanomaterials and DNA: from Molecular Recognition to Applications.

    Science.gov (United States)

    Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-15

    DNA is polymorphic. Increasing evidence has indicated that many biologically important processes are related to DNA's conformational transition and assembly states. In particular, noncanonical DNA structures, such as the right-handed A-form, the left-handed Z-form, the triplex, the G-quadruplex, the i-motif, and so forth, have been specific targets for the diagnosis and therapy of human diseases. Meanwhile, they have been widely used in the construction of smart DNA nanomaterials and nanoarchitectures. As rising stars in materials science, the family of carbon nanomaterials (CNMs), including two-dimensional graphene, one-dimensional carbon nanotubes (CNTs), and zero-dimensional graphene or carbon quantum dots (GQDs or CQDs), interact with DNA and are able to regulate the conformational transitions of DNA. The interaction of DNA with CNMs not only opens new opportunities for specific molecular recognition, but it also expands the promising applications of CNMs from materials science to biotechnology and biomedicine. In this Account, we focus on our contributions to the field of interactions between CNMs and DNA in which we have explored their promising applications in nanodevices, sensing, materials synthesis, and biomedicine. For one-dimensional CNTs, two-dimensional graphene, and zero-dimensional GQDs and CQDs, the basic principles, binding modes, and applications of the interactions between CNMs and DNA are reviewed. We aim to give prominence to the important status of CNMs in the field of molecular recognition for DNA. First, we summarized our discovery of the interactions between single-walled carbon nanotubes (SWNTs) with duplex, triplex, and human telomeric i-motif DNA and their interesting applications. For example, SWNTs are the first chemical agents that can selectively stabilize human telomeric i-motif DNA and induce its formation under physiological conditions. On the basis of this principle, two types of nanodevices were designed. One was used for

  20. Biological and ecological responses to carbon-based nanomaterials

    Science.gov (United States)

    Ratnikova, Tatsiana A.

    This dissertation examines the biological and ecological responses to carbon nanoparticles, a major class of nanomaterials which have been mass produced and extensively studied for their rich physical properties and commercial values. Chapter I of this dissertation offers a comprehensive review on the structures, properties, applications, and implications of carbon nanomaterials, especially related to the perspectives of biological and ecosystems. Given that there are many types of carbon nanomaterials available, this chapter is focused on three major types of carbon-based nanomaterials only, namely, fullerenes, single walled and multi-walled carbon nanotubes. On the whole organism level, specifically, Chapter II presents a first study on the fate of fullerenes and multiwalled carbon nanotubes in rice plants, which was facilitated by the self assembly of these nanomaterials with NOM. The aspects of fullerene uptake, translocation, biodistribution, and generational transfer in the plants were examined and quantified using bright field and electron microscopy, FT-Raman, and FTIR spectroscopy. The uptake and transport of fullerene in the plant vascular system were attributed to water transpiration, convection, capillary force, and the fullerene concentration gradient from the roots to the leaves of the plants. On the cellular level, Chapter III documents the differential uptake of hydrophilic C60(OH)20 vs. amphiphilic C70-NOM complex in Allium cepa plant cells and HT-29 colon carcinoma cells. This study was conducted using a plant cell viability assay, and complemented by bright field, fluorescence and electron microscopy imaging. In particular, C60(OH)20 and C70-NOM showed contrasting uptake in both the plant and mammalian cells, due to their significant differences in physicochemistry and the presence of an extra hydrophobic plant cell wall in the plant cells. Consequently, C60(OH)20 was found to induce toxicity in Allium cepa cells but not in HT-29 cells, while C70

  1. Highly energetic compositions based on functionalized carbon nanomaterials.

    Science.gov (United States)

    Yan, Qi-Long; Gozin, Michael; Zhao, Feng-Qi; Cohen, Adva; Pang, Si-Ping

    2016-02-25

    In recent years, research in the field of carbon nanomaterials (CNMs), such as fullerenes, expanded graphite (EG), carbon nanotubes (CNTs), graphene, and graphene oxide (GO), has been widely used in energy storage, electronics, catalysts, and biomaterials, as well as medical applications. Regarding energy storage, one of the most important research directions is the development of CNMs as carriers of energetic components by coating or encapsulation, thus forming safer advanced nanostructures with better performances. Moreover, some CNMs can also be functionalized to become energetic additives. This review article covers updated preparation methods for the aforementioned CNMs, with a more specific orientation towards the use of these nanomaterials in energetic compositions. The effects of these functionalized CNMs on thermal decomposition, ignition, combustion and the reactivity properties of energetic compositions are significant and are discussed in detail. It has been shown that the use of functionalized CNMs in energetic compositions greatly improves their combustion performances, thermal stability and sensitivity. In particular, functionalized fullerenes, CNTs and GO are the most appropriate candidate components in nanothermites, solid propellants and gas generators, due to their superior catalytic properties as well as facile preparation methods. PMID:26880518

  2. Carbon nanomaterials as counter electrodes for dye solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aitola, K.

    2012-05-15

    The dye solar cell (DSC) is an interesting emerging technology for photovoltaic conversion of solar electromagnetic energy to electrical energy. The DSC is based mainly on cheap starting materials and it can be manufactured by roll-to-roll deposition techniques on flexible substrates, which is considered as one option for cost-effective large-scale solar cell production. The most expensive component of the DSC is the transparent conductive oxide glass substrate, and considerable cost reductions can be achieved by changing it to e.g. a plastic substrate. Plastic substrates are very flexible, lightweight and transparent. The state of the art DSC catalyst is thermally deposited or sputtered platinum, but platinum is a rare and expensive metal. Carbon, on the other hand, is widely available and some of its nanomaterials conduct electricity and are catalytic toward the DSC counter electrode (CE) reduction reaction. In this work, carbon nanomaterials and their composites were studied as the DSC CE active material. The materials were random network single-walled carbon nanotube (SWCNT) film on glass and plastic substrate, vertically aligned multiwalled carbon nanotube 'forest' film on steel and quartz substrate and carbon nanoparticle composite film on indium tin oxidepolyethylene terephthalate (ITO-PET) substrate. After comparison of the materials, the SWCNT network film on PET was chosen as the main CE type of this study, since it offers superior conductivity, transparency and flexibility over the other carbon-based CEs, it is also the thinnest and contains only one active material component. When a 30 % transparent SWCNT network film on PET was tested as a DSC CE, it was found out that such a film is not catalytic and conductive enough for a full 1 sun illumination DSC device, but the film could be suitable for a indoor illumination level application. The catalytic properties of a 10 % transparent SWCNT film were improved by depositing conductive PEDOT

  3. Carbon nanomaterials as counter electrodes for dye solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aitola, K.

    2012-07-01

    The dye solar cell (DSC) is an interesting emerging technology for photovoltaic conversion of solar electromagnetic energy to electrical energy. The DSC is based mainly on cheap starting materials and it can be manufactured by roll-to-roll deposition techniques on flexible substrates, which is considered as one option for cost-effective large-scale solar cell production. The most expensive component of the DSC is the transparent conductive oxide glass substrate, and considerable cost reductions can be achieved by changing it to e.g. a plastic substrate. Plastic substrates are very flexible, lightweight and transparent. The state of the art DSC catalyst is thermally deposited or sputtered platinum, but platinum is a rare and expensive metal. Carbon, on the other hand, is widely available and some of its nanomaterials conduct electricity and are catalytic toward the DSC counter electrode (CE) reduction reaction. In this work, carbon nanomaterials and their composites were studied as the DSC CE active material. The materials were random network single-walled carbon nanotube (SWCNT) film on glass and plastic substrate, vertically aligned multiwalled carbon nanotube 'forest' film on steel and quartz substrate and carbon nanoparticle composite film on indium tin oxidepolyethylene terephthalate (ITO-PET) substrate. After comparison of the materials, the SWCNT network film on PET was chosen as the main CE type of this study, since it offers superior conductivity, transparency and flexibility over the other carbon-based CEs, it is also the thinnest and contains only one active material component. When a 30 % transparent SWCNT network film on PET was tested as a DSC CE, it was found out that such a film is not catalytic and conductive enough for a full 1 sun illumination DSC device, but the film could be suitable for a indoor illumination level application. The catalytic properties of a 10 % transparent SWCNT film were improved by depositing conductive PEDOT

  4. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    Science.gov (United States)

    Wang, J.; Zhu, Z.; Bortolini, C.; Hoffmann, S. V.; Amari, A.; Zhang, H. X.; Liu, L.; Dong, M. D.

    2016-07-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials.

  5. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2013-02-01

    Carbon-based nanomaterials—single-wall carbon nanotubes (SWCNTs) and graphene, in particular—have emerged in the last decade as novel low-dimensional systems with extraordinary properties. Because they are direct-bandgap systems, SWCNTs are one of the leading candidates to unify electronic and optical functions in nanoscale circuitry; their diameter-dependent bandgaps can be utilized for multi-wavelength devices. Graphene's ultrahigh carrier mobilities are promising for high-frequency electronic devices, while, at the same time, it is predicted to have ideal properties for terahertz generation and detection due to its unique zero-gap, zero-mass band structure. There have been a large number of basic optical studies on these materials, but most of them were performed in the weak-excitation, quasi-equilibrium regime. In order to probe and assess their performance characteristics as optoelectronic materials under device-operating conditions, it is crucial to strongly drive them and examine their optical properties in highly non-equilibrium situations and with ultrashot time resolution. In this section, the reader will find the latest results in this rapidly growing field of research. We have assembled contributions from some of the leading experts in ultrafast and nonlinear optical spectroscopy of carbon-based nanomaterials. Specific topics featured include: thermalization, cooling, and recombination dynamics of photo-generated carriers; stimulated emission, gain, and amplification; ultrafast photoluminescence; coherent phonon dynamics; exciton-phonon and exciton-plasmon interactions; exciton-exciton annihilation and Auger processes; spontaneous and stimulated emission of terahertz radiation; four-wave mixing and harmonic generation; ultrafast photocurrents; the AC Stark and Franz-Keldysh effects; and non-perturbative light-mater coupling. We would like to express our sincere thanks to those who contributed their latest results to this special section, and the

  6. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    OpenAIRE

    Bal-Ram Adhikari; Maduraiveeran Govindhan; Aicheng Chen

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based el...

  7. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials

    Science.gov (United States)

    Zhang, Xiaoyan; Hou, Lili; Samorì, Paolo

    2016-04-01

    Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation.

  8. FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part II: GRAPHENE

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2012-05-01

    Full Text Available As was presented in the first part of this review paper, lately, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. In this part of the paper are presented the synthesis techniques used to produce the two-dimensional carbon nanomaterials (including graphene, and also the most important properties and potential applications of graphene.

  9. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

    Directory of Open Access Journals (Sweden)

    Toma Susi

    2015-01-01

    Full Text Available X-ray photoelectron spectroscopy (XPS is one of the best tools for studying the chemical modification of surfaces, and in particular the distribution and bonding of heteroatom dopants in carbon nanomaterials such as graphene and carbon nanotubes. Although these materials have superb intrinsic properties, these often need to be modified in a controlled way for specific applications. Towards this aim, the most studied dopants are neighbors to carbon in the periodic table, nitrogen and boron, with phosphorus starting to emerge as an interesting new alternative. Hundreds of studies have used XPS for analyzing the concentration and bonding of dopants in various materials. Although the majority of works has concentrated on nitrogen, important work is still ongoing to identify its precise atomic bonding configurations. In general, care should be taken in the preparation of a suitable sample, consideration of the intrinsic photoemission response of the material in question, and the appropriate spectral analysis. If this is not the case, incorrect conclusions can easily be drawn, especially in the assignment of measured binding energies into specific atomic configurations. Starting from the characteristics of pristine materials, this review provides a practical guide for interpreting X-ray photoelectron spectra of doped graphitic carbon nanomaterials, and a reference for their binding energies that are vital for compositional analysis via XPS.

  10. Hydrogen Storage in Boron Nitride and Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Takeo Oku

    2014-12-01

    Full Text Available Boron nitride (BN nanomaterials were synthesized from LaB6 and Pd/boron powder, and the hydrogen storage was investigated by differential thermogravimetric analysis, which showed possibility of hydrogen storage of 1–3 wt%. The hydrogen gas storage in BN and carbon (C clusters was also investigated by molecular orbital calculations, which indicated possible hydrogen storage of 6.5 and 4.9 wt%, respectively. Chemisorption calculation was also carried out for B24N24 cluster with changing endohedral elements in BN cluster to compare the bonding energy at nitrogen and boron, which showed that Li is a suitable element for hydrogenation to the BN cluster. The BN cluster materials would store H2 molecule easier than carbon fullerene materials, and its stability for high temperature would be good. Molecular dynamics calculations showed that a H2 molecule remains stable in a C60 cage at 298 K and 0.1 MPa, and that pressures over 5 MPa are needed to store H2 molecules in the C60 cage.

  11. Superior piezoelectric composite films: taking advantage of carbon nanomaterials

    International Nuclear Information System (INIS)

    Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ∼200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications. (paper)

  12. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    Science.gov (United States)

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  13. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill, E-mail: jventon@virginia.edu

    2015-08-05

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed.

  14. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    International Nuclear Information System (INIS)

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed

  15. Characterization of Carbon Onion Nanomaterials for Environmental Remediation

    Science.gov (United States)

    The unique properties of carbonaceous nanomaterials, including small particle size, high surface area, and manipulatable surface chemistry, provide high potential for their application to environmental remediation. While research has devoted to develop nanotechnology for environm...

  16. Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Lalwani, Gaurav; Patel, Sunny C; Sitharaman, Balaji

    2016-06-01

    Carbon nanomaterials such as carbon nanotubes and graphene have gained significant interest in the fields of materials science, electronics and biomedicine due to their interesting physiochemical properties. Typically these carbon nanomaterials have been dispersed in polymeric matrices at low concentrations to improve the functional properties of nanocomposites employed as two-dimensional (2D) substrates or three-dimensional (3D) porous scaffolds for tissue engineering applications. There has been a growing interest in the assembly of these nanomaterials into 2D and 3D architectures without the use of polymeric matrices, surfactants or binders. In this article, we review recent advances in the development of 2D or 3D all-carbon assemblies using carbon nanotubes or graphene as nanoscale building-block biomaterials for tissue engineering and regenerative medicine applications. PMID:27126776

  17. Structural Characterization of Carbon Nanomaterial Film In Situ Synthesized on Various Bulk Metals

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanofiber films were prepared via a simple chemical vapor deposition (CVD method on various bulk metal substrates including bulk 316 L stainless steel, pure cobalt, and pure nickel treated by surface mechanical attrition treatment (SMAT. The microstructures of the carbon nanomaterial film were studied by SEM, TEM, XRD, and Raman spectroscopy. In this paper, bulk metallic materials treated by SMAT served as substrates as well as catalysts for carbon nanomaterial film formation. The results indicate that the carbon nanofiber films are formed concerning the catalytic effects of the refined metallic particles during CVD on the surface of SMAT-treated bulk metal substrates. However, distinguished morphologies of carbon nanomaterial film are displayed in the case of the diverse bulk metal substrates.

  18. Synthesis of Multiwalled Carbon Nanotubes-Titania Nanomaterial for Desulfurization of Model Fuel

    OpenAIRE

    Saleh, Tawfik A.; Mohammad N. Siddiqui; Abdulrahman A. Al-Arfaj

    2014-01-01

    This work reported on the development of novel nanomaterials of multiwalled carbon nanotubes doped with titania (CNT/TiO2) for the adsorptive desulfurization of model fuel oils. Various analytical techniques such as field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of the nanomaterials. The initial results indicated the effectiveness of the prepared CNT/TiO2 nan...

  19. Copper-cerium oxides supported on carbon nanomaterial for preferential oxidation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    高美怡; 江楠; 赵宇宏; 徐长进; 苏海全; 曾尚红

    2016-01-01

    The CuxO-CeO2/Fe@CNSs, CuxO-CeO2/MWCNTs-Co and CuxO-CeO2/MWCNTs-Ni catalysts were prepared by the im-pregnation method and characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffrac-tion, H2-temperature programmed reduction and N2 adsorption-desorption techniques. It was found that the Fe nanoparticles were encapsulated into the multi-layered carbon nanospheres (CNSs). However, the multi-wall carbon nanotubes (MWCNTS) were generated on the Co/Al2O3 and Ni/Al2O3 precursor. The addition of carbon nanomaterial as supports could improve structural properties and low-temperature activity of the CuO-CeO2 catalyst, and save the used amount of metal catalysts in the temperature range with high selectivity for CO oxidation. The copper-cerium oxides supported on carbon nanomaterial had good resistence to H2O and CO2.

  20. Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials

    NARCIS (Netherlands)

    Pavlidis, Ioannis V.; Vorhaben, Torge; Tsoufis, Theodoros; Rudolf, Petra; Bornscheuer, Uwe T.; Gournis, Dimitrios; Stamatis, Haralambos

    2012-01-01

    In this study we report the use of functionalized carbon-based nanomaterials, such as amine-functionalized graphene oxide (GO) and multi-walled carbon nanotubes (CNTs), as effective immobilization supports for various lipases and esterases of industrial interest. Structural and biochemical character

  1. Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials.

    Science.gov (United States)

    Jian, Muqiang; Xie, Huanhuan; Wang, Qi; Xia, Kailun; Yin, Zhe; Zhang, Mingyu; Deng, Ningqin; Wang, Luning; Ren, Tianling; Zhang, Yingying

    2016-07-21

    The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of nanomaterials under conventional OMs with the aid of volatile nanoparticles (NPs), which can be deposited and removed in a controlled manner. The NPs deposited on the surface of nanomaterials render strong light scattering to enable the nanomaterials to become optically visible. For example, this approach enables the observation of individual carbon nanotubes (CNTs) with OMs at low magnification or even with the naked eye. Both supported CNTs on various substrates and suspended CNTs can be observed with this approach. Most importantly, the NPs can be completely removed through moderate heat treatment or laser irradiation, avoiding potential influence on the properties or subsequent applications of nanomaterials. Furthermore, we systematically investigate the deposition of various volatile NPs (up to 14 kinds) for the optical observation of nanomaterials. We also demonstrated the application of this approach on other nanomaterials, including nanowires and graphene. We showed that this approach is facile, controllable, non-destructive, and contamination-free, indicating wide potential applications. PMID:27350415

  2. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials

    Science.gov (United States)

    Zhang, Xiaoyan; Hou, Lili; Samorì, Paolo

    2016-01-01

    Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation. PMID:27067387

  3. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    Science.gov (United States)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  4. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.

    Science.gov (United States)

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  5. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  6. Novel pot-shaped carbon nanomaterial synthesized in a submarine-style substrate heating CVD method

    OpenAIRE

    Yokoi, Hiroyuki; Hatakeyama, Kazuto; Taniguchi, Takaaki; Koinuma, Michio; Hara, Masahiro; Matsumoto, Yasumichi; ヨコイ, ヒロユキ; ハタケヤマ, カズト; タニグチ, タカアキ; コイヌマ, ミチオ; ハラ, マサヒロ; マツモト, ヤスミチ; 横井, 裕之; 畠山, 一翔; 谷口, 貴章

    2016-01-01

    We have developed a new synthesis method that includes a chemical vapor deposition process in a chamber settled in organic liquid, and applied its nonequilibrium reaction field to the development of novel carbon nanomaterials. In the synthesis at 1110-1120 K, using graphene oxide as a catalyst support, iron acetate and cobalt acetate as catalyst precursors, and 2-propanol as a carbon source as well as the organic liquid, we succeeded to create carbon nanofiber composed of novel pot-shaped uni...

  7. Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes

    OpenAIRE

    Somnhot, Parina

    2012-01-01

    Lithium-ion batteries possess high energy and power densities, making them ideal candidates for energy storage requirements in various military applications. Commercially produced lithium-ion battery anodes are commonly graphitic carbon-based. However, graphitic carbons are limited in surface area and possess slow intercalation kinetics. The energy and power density demands of future technologies require improved lithium-ion battery performance. Carbon nanomaterials, such as carbide-derived c...

  8. A viable way to tailor carbon nanomaterials by irradiation-induced transformations

    International Nuclear Information System (INIS)

    Since the discovery of carbon nanotubes (CNT), transmission electron microscopy (TEM) has been the most important tool in their investigation. It is possible to use electron irradiation in a TEM to construct a single-walled carbon nanotube (SWCNT) from an amorphous carbon film. Here we show that such a synthesis method creates a large number of carbon ad-atoms, which after some critical amount of radiation act to restore the system by reconstructing the carbon film. The behavior of the ad-atoms can be controlled by adjusting the current density in the microscope, suggesting that carbon nanomaterials can be tailored by electron irradiation

  9. Synthesis of Multiwalled Carbon Nanotubes-Titania Nanomaterial for Desulfurization of Model Fuel

    Directory of Open Access Journals (Sweden)

    Tawfik A. Saleh

    2014-01-01

    Full Text Available This work reported on the development of novel nanomaterials of multiwalled carbon nanotubes doped with titania (CNT/TiO2 for the adsorptive desulfurization of model fuel oils. Various analytical techniques such as field emission scanning electron microscope (FESEM, energy dispersive X-ray spectroscopy (EDX, and Fourier transform infrared spectroscopy (FTIR were used for the characterization of the nanomaterials. The initial results indicated the effectiveness of the prepared CNT/TiO2 nanomaterials in removing sulfur compounds from model fuel oil. The adsorption of DBT, BT, and thiophene from model fuel onto the derived sorbents was performed using batch mode system. These CNT/TiO2 nanomaterials initially afforded approximately 45% removal of DBT, 55% BT, and more than 65% thiophene compounds from model fuels. The CNT/TiO2 nanomaterials provided an excellent activity towards interaction with organosulfur compounds. More experiments are underway to optimize the parameters for the adsorptive desulfurization processes. We believe that these nanomaterials as adsorbents will find useful applications in petroleum industry because of their operational simplicity, high efficiency, and high capacity.

  10. Carbon Nanomaterial Produced by Microwave Exfoliation of Graphite Oxide

    Directory of Open Access Journals (Sweden)

    Shulga Y.M.

    2013-09-01

    Full Text Available Carbon-based graphene-like material was obtained through microwave stimulated exfoliation of graph-ite oxide (GO. Properties of this material were investigated by multiple techniques including element analysis, X-ray photoelectron spectroscopy (XPS, mass-spectroscopy, infrared (IR and Raman spectrosco-py, scanning electron microscopy (SEM and broadband dielectric spectroscopy. Specific surface area and volume of microwave exfoliated graphite oxide (MEGO reached 600 m2/g and 6 cm3/g, respectively. It is shown that during such explosive reduction process the sample emits CO2, CO and H2O and, in some cases, SO2 gases. The resulting reduced material exhibits IR spectra similar to that of graphite and a dc-conductivity of 0.12 S/cm. It is also shown that prolonged storage in ambient conditions leads to elevated oxygen content and decrease of specific surface area of the samples.

  11. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  12. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    Science.gov (United States)

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  13. High temperature phase change materials based on inorganic salts and carbon nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong; Zhang, Tao; Zeng, Liang; Zhou, Cunyu [Tongji Univ., Shanghai (China). School of Materials Science and Engineering

    2010-07-01

    High temperature phase change material is useful for solar thermal power generation, industrial process heat and waste heat recovery. In this paper, inorganic salts and carbon nanomaterials, such as expanded graphite (EG) carbon nanotube and graphene, are used to prepare high temperature phase change material. Inorganic salt/EG/7carbon nanotube/Graphene composites as phase change materials are prepared by aqueous solution method. The influence of EG, carbon nanotube and graphene on the termal conductivity of composites is studied by MDSC. Results show that expanded graphite, carbon nanotube and graphene can significantly increase the thermal conductivity of high temperature phase change materials. (orig.)

  14. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles

    OpenAIRE

    Drašler, Barbara; Pajnič, Manca; Šuštar, Vid; Štukelj, Roman; Kononenko, Veno; Šimundić, Metka; Hägerstrand, Henry; Kralj-Iglič, Veronika; Makovec, Darko; Drobne, Damjana; Krek, Judita Lea

    2016-01-01

    Background We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: t...

  15. Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials

    Science.gov (United States)

    Jian, Muqiang; Xie, Huanhuan; Wang, Qi; Xia, Kailun; Yin, Zhe; Zhang, Mingyu; Deng, Ningqin; Wang, Luning; Ren, Tianling; Zhang, Yingying

    2016-07-01

    The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of nanomaterials under conventional OMs with the aid of volatile nanoparticles (NPs), which can be deposited and removed in a controlled manner. The NPs deposited on the surface of nanomaterials render strong light scattering to enable the nanomaterials to become optically visible. For example, this approach enables the observation of individual carbon nanotubes (CNTs) with OMs at low magnification or even with the naked eye. Both supported CNTs on various substrates and suspended CNTs can be observed with this approach. Most importantly, the NPs can be completely removed through moderate heat treatment or laser irradiation, avoiding potential influence on the properties or subsequent applications of nanomaterials. Furthermore, we systematically investigate the deposition of various volatile NPs (up to 14 kinds) for the optical observation of nanomaterials. We also demonstrated the application of this approach on other nanomaterials, including nanowires and graphene. We showed that this approach is facile, controllable, non-destructive, and contamination-free, indicating wide potential applications.The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of

  16. Synthesis of the Carbon Nanomaterials Based on Renewable Bioresources

    Directory of Open Access Journals (Sweden)

    N.A. Chan

    2014-07-01

    Full Text Available The effectiveness and feasibility of producing nanoscale carbon materials from renewable bioresources were shown as an example marsh mass. The mechanisms of synthesis of amorphous organic carbon from sphagnum moss species modified by a liquid peat phase of humic nature are discussed. A fundamentally new way of producing carbon nanotubes by mechanical activation of amorphous organic carbon is described.

  17. Nanomechanical IR Spectroscopy for the fast analysis of picogram samples of engineered nanomaterials

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Ek, Pramod Kumar; Andresen, Thomas Lars;

    2014-01-01

    The proliferation of engineered nanomaterials (ENMs), e.g. in nanomedicine, demands for novel sensitive techniques allowing for the analysis of minute samples. We present nanoelectromechanical system-based IR spectroscopy (NEMS-IR) of picograms of polymeric micelles. The micelles are nebulized with......, compared to 2 days for analysis by ATR-FT-IR. NEMS-IR constitutes a promising technique for the fast analysis of ENMs....

  18. Chains of carbon atoms: A vision or a new nanomaterial?

    Directory of Open Access Journals (Sweden)

    Florian Banhart

    2015-02-01

    Full Text Available Linear strings of sp1-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp2-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed.

  19. MALDI matrices for biomolecular analysis based on functionalized carbon nanomaterials.

    Science.gov (United States)

    Ugarov, Michael V; Egan, T; Khabashesku, Dmitry V; Schultz, J Albert; Peng, Haiqing; Khabashesku, Valery N; Furutani, Hiroshi; Prather, Kimberley S; Wang, H-W J; Jackson, S N; Woods, Amina S

    2004-11-15

    When used in small molar ratios of matrix to analyte, derivatized fullerenes and single wall nanotubes are shown to be efficient matrices for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The mixing of an acidic functionalized fullerene with a solution of bioanalyte, depositing a dried droplet, and irradiating with a pulsed nitrogen laser yields protonated or cationized molecular ions. Derivatized fullerenes could offer several advantages over conventional MALDI matrices: a high analyte ionization efficiency, a small molar ratios (less than 1) of matrix/analyte, and a broader optical absorption spectrum, which should obviate specific wavelength lasers for MALDI acquisitions. The major disadvantage to the use of fullerenes is the isobaric interference between matrix and analyte ions; however, it is overcome by using MALDI-ion mobility time-of-flight (IM-oTOF) mass spectrometry to preseparate carbon cluster ions from bioanalyte ions prior to TOF mass analysis. However, an alternative to the dried droplet preparation of fullerene MALDI samples is the aerosolization of matrix-analyte solutions (or slurries) followed by impacting the aerosol onto a stainless surface. We also demonstrate that the fullerene matrices can be used to acquire spectra from rat brain tissue. PMID:15538798

  20. Influence of electrical stress on printed polymer resistors filled with carbon nanomaterials

    Science.gov (United States)

    Słoma, Marcin; Jakubowska, Małgorzata; Szałatkiewicz, Jakub

    2013-10-01

    Superior electrical properties of carbon nanotubes were utilized by the authors in the fabrication of printed resistors. In common applications such as electrodes or sensors, only basic electrical and mechanical properties are investigated, leaving aside other key parameters related to the stability and reliability of particular elements. In this paper we present experimental results on the properties of printed resistive layers. One of the most important issues is their stability under high currents creating excessive thermal stresses. In order to investigate such behavior, a high direct current stress test was performed along with the observation of temperature distribution that allowed us to gain a fundamental insight into the electrical behavior at such operating conditions. These experiments allowed us to observe parametric failure or catastrophic damage that occurred under excessive supply parameters. Electrical parameters of all investigated samples remained stable after applying currents inducing an increase in temperature up to 130 °C and 200 °C. For selected samples, catastrophic failure was observed at the current values inducing temperature above 220 °C and 300 °C but in all cases the failure was related to the damage of PET or alumina substrate. Additional experiments were carried out with short high voltage pulse stresses. Printed resistors filled with nanomaterials sustained similar voltage levels (up to 750 V) without changing their parameters, while commonly used graphite filled polymer resistors changed their resistance value.

  1. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    International Nuclear Information System (INIS)

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme–nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme–nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  2. Carbon Nanomaterials for Detection, Assessment and Purification of Oil and Natural Gas

    Science.gov (United States)

    Hwang, Chih-Chau

    This thesis studies several carbon nanomaterials. Their synthesis and characterization are studied as well as their potential applications to the oil industry. The carbon nanomaterials studied here include mesoporous carbon (CMK-3), sulfur- or nitrogen-doped porous carbon (SPC or NPC), and commercial carbon black (CB). Through appropriate functionalization, these carbon nanomaterials exhibit unique properties and their performances in detection, assessment as well as purification of oil and natural gas are studied and demonstrated. First, it was shown that amine-modified CMK-3 composites, polyethylenimine-CMK-3 (PEI-CMK-3) and polyvinylamine-CMK-3 (PVA-CMK-3) can be synthesized through in situ polymerization of amine species within the channels of the CMK-3. The synthesis process results in the entrapped amine polymers interpenetrating the composite frameworks of the CMK-3, improving the CO2 capture performance and recycle stability. CO2 uptake by the synthesized composites was determined using a gravimetric method at 30°C and 1 atm; the 39% PEI-CMK-3 composite had ˜12 wt% (3.1 mmol/g) CO2 uptake capacity and the 37% PVA-CMK-3 composite had ˜13 wt% (3.5 mmol/g) CO 2 uptake capacity. A desorption temperature of 75°C was sufficient for regeneration. The CO2 uptake was the same when using 10% CO 2 in a 90% CH4, C2H6 and C3H 8 mixture, underscoring this composite's efficacy for CO 2 sequestration from natural gas. Secondly, nucleophilic porous carbons (SPC and NPC) were synthesized from simple and inexpensive carbon-sulfur and carbon-nitrogen precursors. A strong sorbate-sorbent interaction between CO2 and nucleophilic centers in the porous carbon was established using spectroscopic and heat of sorption data. Raman spectroscopy supports the assertion that the nucleophilic centers react with the CO2 to produce carbonate anions that further cause polymerization in the porous carbon channels to form poly(CO2) under much lower pressure than previously reported for such

  3. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes

    Science.gov (United States)

    YanEqual Contribution, Liang; Zhao, Feng; Li, Shoujian; Hu, Zhongbo; Zhao, Yuliang

    2011-02-01

    The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.

  4. Preparation and characterization of nanomaterials based on bifacial carbon nanotubes and iron oxides: Application in catalysis

    Directory of Open Access Journals (Sweden)

    Zafour-Hadj-Ziane A.

    2013-09-01

    Full Text Available The application of magnetic particles technology for the development of new nanomaterials has received considerable attention in recent years. In this context, the objective of this study is firstly, to prepare new catalytic materials that gather the strong adsorption capacities of carbon nanotubes and magnetic properties of iron, it concerns nanocomposites based on a mixture of carbon nanotubes in a very small amounts and iron oxide. Secondly we want to appear their capacities in catalytic oxidation reactions of phenol. Synthesis under the optimal conditions was carried out at different pH. And the characterization of this new nanomaterial reveals a good specific surface area BET, the identification of carbon nanotubes within the matrix was performed by infrared spectroscopy and transmission electron microscopy. The use of this new material as a catalytic support in catalytic oxidation reactions of phenol indicates the high selectivity of this latter and a yield better than this obtained with iron oxide supported by activated carbon. The good catalyst regeneration of the new catalysis and the improvement in their properties are the interesting parameters for the new type nanomaterials.

  5. Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    OpenAIRE

    Perepelytsina, Olena M.; Yakymchuk, Olena M.; Sydorenko, Mychailo V; Bakalinska, Olga N.; Bloisi, Francesco; Vicari, Luciano Rosario Maria

    2016-01-01

    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were...

  6. Metal-filled carbon nanotubes as a novel class of photothermal nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Rossella, Francesco; Bellani, Vittorio [Dipartimento di Fisica ' ' A. Volta' ' and CNISM, Universita degli Studi di Pavia, Via Bassi 6, 27100 Pavia (Italy); Soldano, Caterina [Dipartimento di Chimica e Fisica, Universita degli Studi di Brescia, Via Valotti 9, 25121 Brescia (Italy); Tommasini, Matteo [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' ' G. Natta' ' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2012-05-08

    Metal-filled carbon nanotubes represent a novel class of photothermal nanomaterials: when illuminated by visible light they exhibit a strong enhancement of the temperature at the metal sites, due to the enhanced plasmonic light absorption at the metal surface, which behaves as a heat radiator. Potential applications include nanomedicine, heat-assisted magnetic recording, and light-activated thermal gradient-driven devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Microstructural analysis of carbon nanomaterials produced from pyrolysis/combustion of Styrene-Butadiene-Rubber (SBR)

    OpenAIRE

    Joner Oliveira Alves; Chuanwei Zhuo; Yiannis Angelo Levendis; Jorge Alberto Soares Tenório

    2011-01-01

    Styrene-Butadiene-Rubber (SBR) is a synthetic rubber copolymer used to fabricate several products. This study aims to demonstrate the use of SBR as feedstock for carbon nanomaterials (nanofibers and nanotubes) growth, and therefore to establish a novel process for destination of waste products containing SBR. A three stage electrically heated flow reactor was used. Small pellets of rubber were pyrolyzed at a temperature of 1000 ºC. The pyrolyzates were mixed with oxygen-containing gases and w...

  8. Metal matrix composites reinforced with SiC long fibers and carbon nanomaterials produced by electrodeposition

    OpenAIRE

    Abdul Karim, Muhammad Ramzan

    2015-01-01

    The research work of this PhD thesis was done on the study, production and characterization of two types of metal matrix composites: 1) fiber reinforced metal matrix composites and, 2) carbon nanomaterials reinforced metal matrix composites. In fiber reinforced metal matrix composites, a metal or an alloy is reinforced with continuous or discontinuous fibers in order to improve the specific strength and stiffness at high temperatures. For example superalloys are the typical materials for the ...

  9. Optical emission spectroscopy of carbon arc for nanomaterial synthesis

    Science.gov (United States)

    Vekselman, Vladislav; Stratton, Brentley; Raitses, Yevgeny

    2015-11-01

    Arc plasma assisted synthesis of carbon nanostructures is one of the most efficient and simple production methods. In spite of a long time use of this method in materials science research and industrial applications, the role of the plasma in nucleation and growth of nanostructures is not well understood. This is due to complexity of physico-chemical processes governing the plasma nanosynthesis. The objective of this work is to characterize the atmospheric pressure arc plasma used for synthesis of various carbon nanostructures. Optical emission spectroscopy was carried out to determine the distribution of temperature and density of carbon plasma in the synthesis zone as a function of arc discharge parameters. Accurate and detailed mapping of plasma parameters elucidate the general trend governing the formation of carbon nanostructures. This work was supported by DOE contract DE-AC02-09CH11466.

  10. Hybrid carbon nanomaterials for electrochemical detection of biomolecules

    Science.gov (United States)

    Laurila, Tomi

    2015-09-01

    Electrochemical detection of different biomolecules in vivo is a promising path towards in situ monitoring of human body and its functions. However, there are several major obstacles, such as sensitivity, selectivity and biocompatiblity, which must be tackled in order to achieve reliably and safely operating sensor devices. Here we show that by utilizing hybrid carbon materials as electrodes to detect two types of neurotransmitters, dopamine and glutamate, several advantages over commonly used electrode materials can be achieved. In particular, we will demonstrate here that it is possible to combine the properties of different carbon allotropes to obtain hybrid materials with greatly improved electrochemical performance. Three following examples of the approach are given: (i) diamond-like carbon (DLC) thin film electrodes with different layer thicknesses, (ii) multi-walled carbon nanotubes grown directly on top of DLC and (iii) carbon nanofibres synthesized on top of DLC thin films. Detailed structural and electrochemical characterization is carried out to rationalize the reasons behind the observed behvior. In addition, results from the atomistic simulations are utilized to obtain more information about the properties of the amorphous carbon thin films.

  11. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water

    International Nuclear Information System (INIS)

    Desorption behavior of pyrene, phenanthrene and naphthalene from fullerene, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) was examined. Available adsorption space of carbon nanotubes (CNTs) was found to be the cylindrical external surface, neither the inner cavities nor inter-wall spaces due to impurities in the CNTs and restricted spaces (0.335 nm) of the MWCNTs, respectively. Desorption hysteresis was observed for fullerene but not for CNTs. Deformation-rearrangement was proposed to explain the hysteresis of polycyclic aromatic hydrocarbons (PAHs) for fullerene, due to the formation of closed interstitial spaces in spherical fullerene aggregates. However, long, cylindrical carbon nanotubes could not form such closed interstitial spaces in their aggregates due to their length, thus showing no significant hysteresis. High adsorption capacity and reversible adsorption of PAHs on CNTs imply the potential release of PAHs if PAH-adsorbed CNTs are inhaled by animals and humans, leading to a high environmental and public health risk. - Fullerene has PAH desorption hysteresis but not carbon nanotubes because of their distinct geometry

  12. Adsorption of Phenol from Aqueous Solutions by Carbon Nanomaterials of One and Two Dimensions: Kinetic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    M. de la Luz-Asunción

    2015-01-01

    Full Text Available Carbon nanomaterials have a great potential in environmental studies; they are considered as superior adsorbents of pollutants due to their physical and chemical properties. Functionalization and dimension play an important role in many functions of these nanomaterials including adsorption. In this research, adsorption process was achieved with one-dimension nanomaterials: single walled and multiwalled carbon nanotubes were used as received and after oxidation treatment also two-dimensional nanomaterials were used: graphene oxide and reduced graphene oxide. Carbon nanotubes were modified by hydrogen peroxide under microwave irradiation. The reduction of graphene oxide was achieved by using ascorbic acid. R2 values obtained with the pseudo-second-order model are higher than 0.99. The results demonstrate that Freundlich isotherm provides the best fit for the equilibrium data (R2>0.94. RL values are between 0 and 1; this represents favorable adsorption between carbon nanomaterials and phenol. The adsorption process occurs by π-π interactions and hydrogen bonding and not by electrostatic interactions. The results indicate that the adsorption of phenol on carbon nanomaterials depends on the adsorbents’ surface area, and it is negatively influenced by the presence of oxygenated groups.

  13. Effect of the morphology of structured carbon nanomaterials on their oxidizability

    Science.gov (United States)

    Savilov, S. V.; Ivanov, A. S.; Egorov, A. V.; Kirikova, M. N.; Arkhipova, E. A.; Lunin, V. V.

    2016-02-01

    The oxidation of multi-walled carbon nanotubes (MCNTs), nanofibers (CNFs), and few-layer graphite fragments (FLGFs) with a nitric acid solution was studied. The oxygen content in the functionalized derivatives was determined by X-ray photoelectron spectroscopy and thermal analysis. The results were correlated with the structural features of the nanomaterials revealed by high-resolution transmission electron microscopy and X-ray diffraction. The highest content of carboxyl groups was achieved by functionalization of carbon nanotubes with the conical position of graphene layers.

  14. Discharge characteristics in liquid helium, liquid nitrogen and pure water preparatory to fabrication of carbon nanomaterials

    International Nuclear Information System (INIS)

    Discharge characteristics and emission spectra of the discharges in low-temperature liquid such as liquid helium have been measured to investigate the conditions for fabrication of carbon nanomaterial by arc discharge in low-temperature liquid. Measurements of the discharge characteristics of the resulting plasma and observation of the associated optical emission spectra show that the behaviour of discharge current over time and the associated spectra depend strongly on discharge voltage and both may be related to the temperature of the carbon target. However, discharge voltage and current with time are almost the same regardless of whether the liquid is pure water, liquid nitrogen, liquid helium and superfluid liquid helium

  15. Carbon nanomaterials from pyrolysis of polydiacetylene-walled nanorods

    International Nuclear Information System (INIS)

    Pyrolysis of polydiacetylene-walled nanorods obtained from a rigid and shape-persistent macrocyclic precursor was performed. The thermogravimetric analysis showed that pyrolysis caused a loss of aliphatic chains and structural changes of PDAs to produce carbon-rich nanoarchitectures, as confirmed by Raman and UV-visible spectroscopy. The transmission electron microscopy imaging performed on the resulting material showed the formation of an entangled nanofibrils network containing various types of nanostructures. (papers)

  16. New Insights on the Influence of Organic Co-Contaminants on the Aquatic Toxicology of Carbon Nanomaterials.

    Science.gov (United States)

    Sanchís, Josep; Olmos, Mar; Vincent, Phil; Farré, Marinella; Barceló, Damià

    2016-01-19

    At present, there is a lack of understanding of the combined ecotoxicity of carbon-based nanomaterials and co-contaminants. In this paper, we report on the toxicity of three carbon nanomaterials (fullerene-soot, multiwall carbon nanotubes, and graphene). Two standardized toxicity bioassays, the immobilization of the invertebrate Daphnia magna and the bioluminescence inhibition of the marine bacteria Vibrio fischeri, have been used. Synergistic and antagonistic effects of binary mixtures composed of fullerene soot and organic co-contaminants as malathion, glyphosate, diuron, triclosan, and nonylphenol were assessed. The isobologram method was used to evaluate the concentrations producing an effect, in comparison to those effects expected by a simple additive approach. In this study, antagonism was the predominant effect. However, synergism was also observed as in the case of D. magna exposed to mixtures of malathion and fullerene soot. D. magna was shown to be the most sensitive assay when carbon nanomaterials were present. Toxicity to D. magna was as follows: fullerene soot > multiwall carbon nanotubes > graphene. These results were proportional to the size of aggregates, smaller aggregates being the most toxic. The vector function of nanomaterials aggregates and the unexpected release inside living organisms was proven for malathion. These results highlight new insights on the risks associated with the release of carbon nanomaterials into the environment. PMID:26694946

  17. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants.

    Science.gov (United States)

    Ramnani, Pankaj; Saucedo, Nuvia M; Mulchandani, Ashok

    2016-01-01

    Carbon allotropes such as graphene and carbon nanotubes, have been incorporated in electrochemical biosensors for highly sensitive and selective detection of various analytes. The superior physical and electrical properties like high carrier mobility, ambipolar electric field effect, high surface area, flexibility and their compatibility with microfabrication techniques makes these carbon nanomaterials easy to integrate in field-effect transistor (FET)/chemiresistor type configuration which is suitable for portable and point-of-use/field-deployable sensors. This review covers the synthesis of carbon nanostructures (graphene and CNTs) and their integration into devices using various fabrication methods. Finally, we discuss the recent reports showing different sensing platforms that incorporate biomolecules like enzymes, antibodies and aptamers as recognition elements for fabrication of simple, low cost, compact biosensors that can be used for on-site, rapid environmental monitoring of environmental pollutants like pathogens, heavy metals, pesticides and explosives. PMID:25956023

  18. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    Science.gov (United States)

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future. PMID:26925363

  19. Functionalized Carbon Nanomaterial Supported Palladium Nano-Catalysts for Electrocatalytic Glucose Oxidation Reaction

    International Nuclear Information System (INIS)

    Highlights: • Glucose oxidation reaction (GOR) catalyzed by Pd on carbon nano-supports. • Polyol reduction used for nano-size Pd catalyst synthesis. • Effect of carbon support’s functionality on nano-Pd GOR catalysis disclosed. • Carboxylated MWCNT found to be the best carbon nano-support. • Peak current density of 5.5 mA cm−2 attained for alkaline GOR. - Abstract: Palladium nanoparticles (nPd) are grown on six carbon nanomaterials with different functionalities by one-pot, high-pH polyol reduction of PdCl2. The nanomaterials include pristine multi-walled carbon nanotubes (pMWCNT), carboxylated MWCNT (cMWCNT), amine-modified MWCNT (nMWCNT), hydroxyl-modified MWCNT (oMWCNT), XC72 carbon black (XC72), and carboxylated graphene (cGraphene). The effects of the carbon functionality on Pd-catalyzed glucose oxidation reaction (GOR) in an alkaline medium are studied. From the experimental data of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM), it reveals that nPds with a particle size ranging from 4.5 nm to 7.4 nm are grown on carbon nanomaterials with a weight loading percentage from 11.1% to 18.6%. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis, and chronoamperomtry (CA) are used to compare the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate, and cycling stability between the six nPd/C electrocatalysts for GOR. It is found that nPd grown on a functionalized carbon nano-support had better GOR performance than that grown on pMWCNT. Compared to nPd/pMWCNT, nPd/cMWCNT shows a 6.2-fold higher peak current density (5.6 mA cm−2) and a 100 mV lower over-potential (-0.55 V vs. Hg/HgO) for GOR. Besides, the data are among the best for nPd-catalyzed GOR reported to date

  20. Carbonaceous nanomaterials immobilised mixed matrix membrane microextraction for the determination of polycyclic aromatic hydrocarbons in sewage pond water samples.

    Science.gov (United States)

    Mukhtar, Nurul Hazirah; See, Hong Heng

    2016-08-10

    In this study, the potential for carbonaceous nanomaterials to be used as adsorbents for the mixed matrix membrane (MMM) microextraction and preconcentration of organic pollutants was demonstrated. For this method, multiwall carbon nanotubes (MWCNT) and single layer graphene (SLG) nanoparticles were individually incorporated through dispersion in a cellulose triacetate (CTA) polymer matrix to form a MWCNT-MMM and SLG-MMM, respectively. The prepared membranes were evaluated for the extraction of selected polycyclic aromatic hydrocarbons (PAHs) present in sewage pond water samples. The extraction was performed by dipping a small piece of membrane (7 mm × 7 mm) in a stirred 7.5 mL sample solution to initiate the analyte adsorption. This step was followed by an analyte desorption into 60 μL of methanol prior to high performance liquid chromatography (HPLC) analysis. When the optimum SLG-MMM microextraction technique was applied to spiked sewage pond water samples, the detection limit of the method for the PAHs were in the range of 0.02-0.09 ng/mL, with relative standard deviations of between 1.4% and 7.8%. Enrichment factors of 54-100 were achieved with relative recoveries of 99%-101%. A comparison was also made between the proposed approach and standard solid phase extraction using polymeric bonded octadecyl (C18) cartridges. PMID:27282751

  1. Measuring Nanomaterial Release from Carbon Nanotube Composites: Review of the State of the Science

    Science.gov (United States)

    Harper, Stacey; Wohlleben, Wendel; Doa, Maria; Nowack, Bernd; Clancy, Shaun; Canady, Richard; Maynard, Andrew

    2015-05-01

    Hazard studies of “as-produced” nanomaterials are increasingly available, yet a critical gap exists in exposure science that may impede safe development of nanomaterials. The gap is that we do not understand what is actually released because nanomaterials can change when released in ways that are not understood. We also generally do not have methods capable of quantitatively measuring what is released to support dose assessment. This review presents a case study of multi-walled carbon nanotubes (MWCNTs) for the measurement challenge to bridge this gap. As the use and value of MWCNTs increases, methods to measure what is released in ways relevant to risk evaluation are critically needed if products containing these materials are to be economically, environmentally, and socially sustainable. This review draws on the input of over 50 experts engaged in a program of workshops and technical report writing to address the release of MWCNTs from nanocomposite materials across their life cycle. The expert analyses reveals that new and sophisticated methods are required to measure and assess MWCNT exposures for realistic exposure scenarios. Furthermore, method requirements vary with the materials and conditions of release across life cycle stages of products. While review shows that the likelihood of significant release of MWCNTs appears to be low for many stages of composite life cycle, measurement methods are needed so that exposures from MWCNT-composites are understood and managed. In addition, there is an immediate need to refocus attention from study of “as-produced” nanomaterials to coordinated research on actual release scenarios.

  2. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  3. Exposure Assessment and Inflammatory Response Among Workers Producing Calcium Carbonate Nanomaterials

    Science.gov (United States)

    Cui, Ling

    Problem: Nanotechnology is one of the most rapidly growing fields of science and engineering, and its applications have expanded to numerous research and industrial sectors, from consumer products to medicine to energy. Nano-materials and nanotechnology promise substantial benefits. However, there are many uncertainties and concerns regarding human health and the environment. Numerous toxicological studies on animals and cells in vitro have demonstrated that nanomaterials could cause various adverse health effects, including inflammation, oxidative stress, fibrosis and mutagenesis in the lungs, and cardiovascular and nervous system impairment. Objectives: The overall objective of this study was to characterize particulate exposures in a calcium carbonate nanoparticle manufacturing facility, investigate possible respiratory and cardiovascular effects, and explore the plausibility of an inflammatory mechanism. The associations between exposure level and various health outcomes were investigated. Methodology: Each job was characterized by mass, number and surface area concentration. Job classification was performed based on ranking of the exposure level and statistical models. Lung function tests, exhaled NO and blood pressure (BP) were measured before and after the workshift in the year of 2011. Inflammatory cytokines from induced sputum were measured cross-sectionally in the year of 2011. Data of lung function tests and blood pressure were collected cross-sectionally in the year of 2012. The associations between each exposure metric and health measures in 2012 were investigated. Only mass concentration was linked to both 2011 and 2012 health outcomes. Results: The sampling and analytic methodology used in the study presents the potential to characterize nanoparticle exposure for a variety of operational processes. We found the highest mass exposure occurred at bagging job whereas the highest number and surface area concentration was found at modification

  4. Microstructural analysis of carbon nanomaterials produced from pyrolysis/combustion of Styrene-Butadiene-Rubber (SBR

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2011-12-01

    Full Text Available Styrene-Butadiene-Rubber (SBR is a synthetic rubber copolymer used to fabricate several products. This study aims to demonstrate the use of SBR as feedstock for carbon nanomaterials (nanofibers and nanotubes growth, and therefore to establish a novel process for destination of waste products containing SBR. A three stage electrically heated flow reactor was used. Small pellets of rubber were pyrolyzed at a temperature of 1000 ºC. The pyrolyzates were mixed with oxygen-containing gases and were burned. The products of combustion were used to synthesize the carbon nanomaterials (CNMs at the presence of a catalyst. CNMs have a wide range of potential applications due to their extraordinary mechanical, thermal and electrical properties. Produced materials were characterized by SEM and TEM, whereas combustion products were assessed using GC. Results showed that CNMs with outer diameters of 30-100 nm and lengths of about 30 µm were formed. Therefore, it was demonstrated that waste products containing SBR can be used to generate CNMs which are value-added products of intense technological interest.

  5. High Performance and Economic Supercapacitors for Energy Storage Based on Carbon Nanomaterials

    Science.gov (United States)

    Samuilov, Vladimir; Farshid, Behzad; Frenkel, Alexander; Sensor CAT at Stony Brook Team

    2015-03-01

    We designed and manufactured very inexpensive prototypes of supercapacitors for energy storage based on carbon nanomaterials comprised of: reduced graphene oxide (RGOs) and carbon nanotubes (CNTs) as electrodes filled with polymer gel electrolytes. The electrochemical properties of supercapacitors made using these materials were compared and analyzed. A significant tradeoff between the energy density and the power density was determined; RGO electrodes demonstrated the highest energy density, while composite RGO/CNT electrodes showed the highest power density. The thickness of the RGO electrode was varied to determine its effect on the power density of the supercapacitor and results showed that with decreasing electrode thickness power density would increase. The specific capacitances of over 600 F/g were observed.

  6. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.

    Science.gov (United States)

    Fabbro, Alessandra; Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2012-08-15

    In the past decade, nanotechnology applications to the nervous system have often involved the study and the use of novel nanomaterials to improve the diagnosis and therapy of neurological diseases. In the field of nanomedicine, carbon nanotubes are evaluated as promising materials for diverse therapeutic and diagnostic applications. Besides, carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube-neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for nongenetic manipulations of neuronal performance and network signaling. PMID:22896805

  7. Influence of oxygen concentration, fuel composition, and strain rate on synthesis of carbon nanomaterials

    International Nuclear Information System (INIS)

    This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21–50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2–5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605–625 °C for CNTs and 700–800 °C for

  8. Autochthonous self-assembly of nature's nanomaterials: green, parsimonious and antibacterial carbon nanofilms on glass.

    Science.gov (United States)

    Gopal, Judy; Muthu, Manikandan; Chun, Sechul

    2016-07-28

    The development of thin film coatings has been a very important development in materials science for the modification of native material surface properties. Thin film coatings are enabled through the use of sophisticated instruments and technologies that demand expertise and huge initial and running costs. Nano-thin films are yet a furtherance of thin films which require more expertise and much more sophistication. In this work for the first time we present a one-pot straightforward carbon thin film coating methodology for glass substrates. There is novelty in every single aspect of the method, with the carbon used in the nanofilm being obtained from turmeric soot, the coating technique consisting of a basic immersion technique, a dip-dry method, in combination with the phytosoot-derived carbon's inherent ability to self-assemble to form a uniform and continuous stable coating. The carbon nanofilm has been characterized using field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray (EDAX) analysis, a goniometer and X-ray diffraction (XRD). This study for the first time opens a new school of thought of using such naturally available free nanomaterials as eco-friendly green coatings. The amorphous porous carbon film can be coated on any hydrophilic substrate and is not substrate specific. Its added advantages of being transparent and antibacterial in spite of being green and parsimonious are meant to realize its utility as ideal choices for solar panels, medical implants and other construction applications. PMID:27355696

  9. Neutron irradiation catalysis: An effective way for creation of novel carbon nanomaterials

    International Nuclear Information System (INIS)

    Sc2 doped C84 or Sc2O3 can be 'kicked' into cavities of single wall nanotubes (SWNTs) when a mixture of the scandium compounds and SWNTs is bombarded by reactor neutrons at a relatively low temperature of about 200 degree C. This new method created the first radioactivity encapsulated SWNTs (gamma-rays emitter of SWNFs). The newly generated radioactive M doped SWNTs, [oxide] doped SWNTs or [M doped C82] doped SWNTs can be a promising candidate as a safe nanoprobe for biomedical studies, medical diagnosis and probably clinic therapy at a cell-level, It was also found that the neutron irradiation can efficiently catalyze reactions of coalescing two fullerene cages via a spacer to form functionalized carbon nanomaterials (C60=C=C70) C131 and (C60=C=C60) C121. We discuss the new process of synthesizing a desired SWNT-based hybrid nanomaterials, and also consequence of interactions between subatomic particles and nanoparticles.

  10. Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes.

    Science.gov (United States)

    Cuartero, Maria; Bishop, Josiah; Walker, Raymart; Acres, Robert G; Bakker, Eric; De Marco, Roland; Crespo, Gaston A

    2016-08-11

    This paper presents the first direct spectroscopic evidence for double layer or capacitive charging of carbon nanomaterial-based solid contacts in all-solid-state polymeric ion-selective electrodes (ISEs). Here, we used synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and SR valence band (VB) spectroscopy in the elucidation of the charging mechanism of the SCs. PMID:27405722

  11. THE INFLUENCE OF THE COMPLEX CHEMICAL ADDITIVE CONTAINING THE STRUCTURED CARBON NANOMATERIAL ON PROPERTIES OF CEMENT

    Directory of Open Access Journals (Sweden)

    O. Yu. Sheyda

    2015-01-01

    Full Text Available The paper presents results of investigations on influence of domestic complex chemical additive containing structured carbon nanomaterial and characterized by a combination effect (curing acceleration and plasticizing on cement and cement stone properties. The purpose of the investigations, on the one hand, has been to confirm efficacy of УКД-1additive from the perspective for increasing the rate of gain, strength growth of cement concrete and additive influence on setting time with the purpose to preserve molding properties of concrete mixes in time, and on the other hand, that is to assess “mechanism” of the УКД-1 additive action in the cement concrete. The research results have revealed regularities in changes due to the additive of water requirements and time period of the cement setting. The reqularities are considered as a pre-requisite for relevant changes in molding properties of the concrete mixes. The paper also experimentally substantiates the possibility to decrease temperature of cement concrete heating with the УДК-1 additive. It has been done with the purpose to save energy resources under production conditions. In addition to this the paper proves the efficiency of the additive which is expressed in strength increase of cement stone up to 20–40 % in the rated age (28 days that is considered as a basis for strength growth of cement concrete. The paper confirms a hypothesis on physical nature of this phenomenon because the X-ray phase analysis method has shown that there are no changes in morphology of portland cement hydration products under the action of the additive agent containing a structured carbon nanomaterial. Results of theoretical and experimental investigations on УКД-1 additive efficiency have been proved by industrial approbation while fabricating precast concrete products and construction of monolithic structures under plant industrial conditions (Minsk, SS “Stroyprogress” JSC MAPID and on

  12. A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Shama Parveen

    2013-01-01

    Full Text Available Excellent mechanical, thermal, and electrical properties of carbon nanotubes (CNTs and nanofibers (CNFs have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. After achieving a considerable success in utilizing these unique materials in various polymeric matrices, recently tremendous interest is also being noticed on developing CNT and CNF reinforced cement-based composites. However, the problems related to nanomaterial dispersion also exist in case of cementitious composites, impairing successful transfer of nanomaterials' properties into the composites. Performance of cementitious composites also depends on their microstructure which is again strongly influenced by the presence of nanomaterials. In this context, the present paper reports a critical review of recent literature on the various strategies for dispersing CNTs and CNFs within cementitious matrices and the microstructure and mechanical properties of resulting nanocomposites.

  13. Effects of freeze drying and silver staining on carbonization of cellulose: carbon nano-materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Young; Im, Hyun Sik [Dongguk University, Seoul (Korea, Republic of)

    2012-05-15

    We investigated the effects of sulfuric acid and silver particles on the carbonization of natural cellulose from Halocynthia. We carried out thermogravimetry and used transmission electron microscopy measurements to study the yield of carbon and the structure of the carbonized nano-fiber. We found that the addition of sulfuric acid and silver particles to the cellulose fiber enhanced the yield of carbon while keeping the original structure of the carbon nano-fiber.

  14. Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Feng; Tanaka, Manabu; Choi, Sooseok [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Watanabe, Takayuki, E-mail: watanabe@chem-eng.kyushu-u.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2014-12-15

    Highlights: • We measured the temperature of anode surface by two-color pyrometry combined with a high speed camera successfully. • Growth temperature of pyrolytic graphite, MWNTs, and nano-graphite particles were in ranges of 2400–2600 K, 2600–2700 K, and 2700–3500 K, respectively. • High temperature contributes to form thermodynamically unstable material. - Abstract: Nano-graphite particles, multi-wall carbon nanotube (MWNT), and pyrolytic graphite were prepared at different positions of the anode surface in an arc discharge. Graphite electrodes were employed for the arc discharge under helium environment at atmospheric pressure. Nano-sized carbon products were characterized by scanning electron microscopy and transmission electron microscopy. During the arc discharge, two-color pyrometry combined with a high-speed camera was conducted to measure the temperature distribution of the anode surface. The growth temperature of pyrolytic graphite, MWNT, and nano-graphite particles were in the ranges of 2400–2600 K, 2600–2700 K, and 2700–3500 K, respectively. The local temperature of anode surface is a critical parameter to determine the products with different morphologies. The formation mechanism of these carbon nanomaterials is suggested based on the local temperature of anode surface and their thermodynamic stability.

  15. Engineering carbon nanomaterials for future applications: energy and bio-sensor

    Science.gov (United States)

    Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong

    2011-06-01

    This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.

  16. Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method

    International Nuclear Information System (INIS)

    Highlights: • We measured the temperature of anode surface by two-color pyrometry combined with a high speed camera successfully. • Growth temperature of pyrolytic graphite, MWNTs, and nano-graphite particles were in ranges of 2400–2600 K, 2600–2700 K, and 2700–3500 K, respectively. • High temperature contributes to form thermodynamically unstable material. - Abstract: Nano-graphite particles, multi-wall carbon nanotube (MWNT), and pyrolytic graphite were prepared at different positions of the anode surface in an arc discharge. Graphite electrodes were employed for the arc discharge under helium environment at atmospheric pressure. Nano-sized carbon products were characterized by scanning electron microscopy and transmission electron microscopy. During the arc discharge, two-color pyrometry combined with a high-speed camera was conducted to measure the temperature distribution of the anode surface. The growth temperature of pyrolytic graphite, MWNT, and nano-graphite particles were in the ranges of 2400–2600 K, 2600–2700 K, and 2700–3500 K, respectively. The local temperature of anode surface is a critical parameter to determine the products with different morphologies. The formation mechanism of these carbon nanomaterials is suggested based on the local temperature of anode surface and their thermodynamic stability

  17. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    Energy Technology Data Exchange (ETDEWEB)

    Mesarič, Tina, E-mail: tina.mesaric84@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Gambardella, Chiara, E-mail: chiara.gambardella@ge.ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Milivojević, Tamara, E-mail: milivojevictamara@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Faimali, Marco, E-mail: marco.faimali@ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Drobne, Damjana, E-mail: damjana.drobne@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Centre of Excellence in Nanoscience and Nanotechnology (CO Nanocentre), Ljubljana (Slovenia); Centre of Excellence in Advanced Materials and Technologies for the Future (CO NAMASTE), Ljubljana (Slovenia); Falugi, Carla, E-mail: carlafalugi@hotmail.it [Department of Earth, Environment and Life Sciences, University of Genova, Genova (Italy); Makovec, Darko, E-mail: darko.makovec@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jemec, Anita, E-mail: anita.jemec@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Sepčić, Kristina, E-mail: kristina.sepcic@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia)

    2015-06-15

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change.

  18. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    International Nuclear Information System (INIS)

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change

  19. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  20. Comparative study of plant responses to carbon-based nanomaterials with different morphologies.

    Science.gov (United States)

    Lahiani, Mohamed H; Dervishi, Enkeleda; Ivanov, Ilia; Chen, Jihua; Khodakovskaya, Mariya

    2016-07-01

    The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%-46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 μg ml(-1). The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by the addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. These established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta. PMID:27195934

  1. Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel

    Science.gov (United States)

    Edzatty, A. N.; Syazwan, S. M.; Norzilah, A. H.; Jamaludin, S. B.

    2016-07-01

    Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterization of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 - 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.

  2. Comparative study of plant responses to carbon-based nanomaterials with different morphologies

    Science.gov (United States)

    Lahiani, Mohamed H.; Dervishi, Enkeleda; Ivanov, Ilia; Chen, Jihua; Khodakovskaya, Mariya

    2016-07-01

    The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%–46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 μg ml‑1. The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by the addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. These established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta.

  3. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    International Nuclear Information System (INIS)

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m3. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace

  4. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jun Ho [EcoPictures Co., Ltd (Korea, Republic of); Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam, E-mail: gnbae@kist.re.kr [Korea Institute of Science and Technology, Center for Environment, Health and Welfare Research (Korea, Republic of)

    2015-02-15

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m{sup 3}. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm{sup 3} during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  5. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications.

    Science.gov (United States)

    Dang, Zhi-Min; Zheng, Ming-Sheng; Zha, Jun-Wei

    2016-04-01

    With the development of flexible electronic devices and large-scale energy storage technologies, functional polymer-matrix nanocomposites with high permittivity (high-k) are attracting more attention due to their ease of processing, flexibility, and low cost. The percolation effect is often used to explain the high-k characteristic of polymer composites when the conducting functional fillers are dispersed into polymers, which gives the polymer composite excellent flexibility due to the very low loading of fillers. Carbon nanotubes (CNTs) and graphene nanosheets (GNs), as one-dimensional (1D) and two-dimensional (2D) carbon nanomaterials respectively, have great potential for realizing flexible high-k dielectric nanocomposites. They are becoming more attractive for many fields, owing to their unique and excellent advantages. The progress in dielectric fields by using 1D/2D carbon nanomaterials as functional fillers in polymer composites is introduced, and the methods and mechanisms for improving dielectric properties, breakdown strength and energy storage density of their dielectric nanocomposites are examined. Achieving a uniform dispersion state of carbon nanomaterials and preventing the development of conductive networks in their polymer composites are the two main issues that still need to be solved in dielectric fields for power energy storage. Recent findings, current problems, and future perspectives are summarized. PMID:26865507

  6. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.

    2008-01-01

    Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

  7. Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    Science.gov (United States)

    Perepelytsina, Olena M.; Yakymchuk, Olena M.; Sydorenko, Mychailo V.; Bakalinska, Olga N.; Bloisi, Francesco; Vicari, Luciano Rosario Maria

    2016-06-01

    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/ w for OLC-DOX and 2.98 % w/ w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4-2.5 to 670-20 μg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs.

  8. Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers.

    Science.gov (United States)

    Perepelytsina, Olena M; Yakymchuk, Olena M; Sydorenko, Mychailo V; Bakalinska, Olga N; Bloisi, Francesco; Vicari, Luciano Rosario Maria

    2016-12-01

    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/w for OLC-DOX and 2.98 % w/w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4-2.5 to 670-20 μg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs. PMID:27356561

  9. Thermal Resistance across Interfaces Comprising Dimensionally Mismatched Carbon Nanotube-Graphene Junctions in 3D Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Jungkyu Park

    2014-01-01

    Full Text Available In the present study, reverse nonequilibrium molecular dynamics is employed to study thermal resistance across interfaces comprising dimensionally mismatched junctions of single layer graphene floors with (6,6 single-walled carbon nanotube (SWCNT pillars in 3D carbon nanomaterials. Results obtained from unit cell analysis indicate the presence of notable interfacial thermal resistance in the out-of-plane direction (along the longitudinal axis of the SWCNTs but negligible resistance in the in-plane direction along the graphene floor. The interfacial thermal resistance in the out-of-plane direction is understood to be due to the change in dimensionality as well as phonon spectra mismatch as the phonons propagate from SWCNTs to the graphene sheet and then back again to the SWCNTs. The thermal conductivity of the unit cells was observed to increase nearly linearly with an increase in cell size, that is, pillar height as well as interpillar distance, and approaches a plateau as the pillar height and the interpillar distance approach the critical lengths for ballistic thermal transport in SWCNT and single layer graphene. The results indicate that the thermal transport characteristics of these SWCNT-graphene hybrid structures can be tuned by controlling the SWCNT-graphene junction characteristics as well as the unit cell dimensions.

  10. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review.

    Science.gov (United States)

    Ema, Makoto; Hougaard, Karin Sørig; Kishimoto, Atsuo; Honda, Kazumasa

    2016-05-01

    We summarized the findings of reproductive and developmental toxicity studies on carbon-based nanomaterials (CNMs). Placental transfer of fullerenes in rats and single-walled (SW) and multi-walled (MW) CNTs in mice was shown after intravenous injection. SWCNTs appeared to be embryolethal and teratogenic in mice when given by intravenous injection and induced death and growth retardation in chicken embryos. In mice-administered MWCNTs, fetal malformations after intravenous and intraperitoneal injections and intratracheal instillation, fetal loss after intravenous injection, behavioral changes in offspring after intraperitoneal injection, and a delay in the delivery of the first litter after intratracheal instillation were reported. Oral gavage of MWCNTs had no developmental toxicity in mice and rats. MWCNTs produced morphological defects, developmental arrest, and death in zebrafish embryos. Intratracheal instillation of carbon black (CB) induced testicular toxicity in adult mice. Maternal airway exposure to CB in gestation had testicular toxicity and altered postnatal behavior, renal development, immune and genotoxic responses, and brain morphology in mouse offspring. Nanodiamonds and graphite nanoparticles inhibited vasculogenesis and/or angiogenesis in chicken embryos. Graphene oxide (GO) induced malformations in zebrafish embryos. Intravenous injection of reduced GO during late gestation caused maternal death and abortion in mice. Oral administration of GO during lactation caused growth retardation of offspring. Overall, the available data provide initial information on the potential reproductive and developmental toxicity of CNMs. However, confirmatory studies using well-characterized CNMs, state-of-the-art study protocol and appropriate route of exposure, are required to clarify the findings and provide information suitable for risk assessment. PMID:26375634

  11. Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery

    Directory of Open Access Journals (Sweden)

    Coyuco JC

    2011-10-01

    Full Text Available Jurja C Coyuco, Yuanjie Liu, Bee-Jen Tan, Gigi NC ChiuDepartment of Pharmacy, Faculty of Science, National University of Singapore, SingaporeAbstract: Although carbon nanomaterials (CNMs have been increasingly studied for their biomedical applications, there is limited research on these novel materials for oral drug delivery. As such, this study aimed to explore the potential of CNMs in oral drug delivery, and the objectives were to evaluate CNM cytotoxicity and their abilities to modulate paracellular transport and the P-glycoprotein (P-gp efflux pump. Three types of functionalized CNMs were studied, including polyhydroxy small-gap fullerenes (OH-fullerenes, carboxylic acid functionalized single-walled carbon nanotubes (fSWCNT-COOH and poly(ethylene glycol functionalized single-walled carbon nanotubes (fSWCNT-PEG, using the well-established Caco-2 cell monolayer to represent the intestinal epithelium. All three CNMs had minimum cytotoxicity on Caco-2 cells, as demonstrated through lactose dehydrogenase release and 3-(4,5-dimethyliazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. Of the three CNMs, fSWCNT-COOH significantly reduced transepithelial electrical resistance and enhanced transport of Lucifer Yellow across the Caco-2 monolayer. Confocal fluorescence microscopy showed that fSWCNT-COOH treated cells had the highest perturbation in the distribution of ZO-1, a protein marker of tight junction, suggesting that fSWCNT-COOH could enhance paracellular permeability via disruption of tight junctions. This modulating effect of fSWCNT-COOH can be reversed over time. Furthermore, cellular accumulation of the P-gp substrate, rhodamine-123, was significantly increased in cells treated with fSWCNT-COOH, suggestive of P-gp inhibition. Of note, fSWCNT-PEG could increase rhodamine-123 accumulation without modifying the tight junction. Collectively, these results suggest that the functionalized CNMs could be useful as modulators for oral drug

  12. Synthesis of Carbon Nanomaterials-CdSe Composites and Their Photocatalytic Activity for Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Ming-Liang Chen

    2012-01-01

    Full Text Available We use multi-walled carbon nanotube (MWCNT and graphene as carbon nanomaterials to obtain carbon nanomaterilas-CdSe composites using a facile hydrothermal method. The intrinsic characteristics of resulting composites were studied by X-ray diffraction (XRD, Scanning electron microscopy (SEM with energy dispersive X-ray (EDX analysis, transmission electron microscopy (TEM and UV-vis diffuse reflectance spectrophotometer. The as-prepared carbon nanomaterilas-CdSe composites possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously. Hence, in the photodegradation of methylene blue, a significant enhancement in the reaction rate was observed with carbon nanomaterilas-CdSe composites, compared to the CdSe compound.

  13. Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Chen, Xin-Chun Huang, Yun-Ling Luo, Yung-Chen Chang, You-Zung Hsieh and Hsin-Yun Hsu

    2013-01-01

    Full Text Available The rapid development in nanomaterials has brought great opportunities to cancer theranostics, which aims to combine diagnostics and therapy for cancer treatment and thereby improve the healthcare of patients. In this review we focus on the recent progress of several cancer theranostic strategies using mesoporous silica nanoparticles and carbon-based nanomaterials. Silicon and carbon are both group IV elements; they have been the most abundant and significant non-metallic substances in human life. Their intrinsic physical/chemical properties are of critical importance in the fabrication of multifunctional drug delivery systems. Responsive nanocarriers constructed using these nanomaterials have been promising in cancer-specific theranostics during the past decade. In all cases, either a controlled texture or the chemical functionalization is coupled with adaptive properties, such as pH-, light-, redox- and magnetic field- triggered responses. Several studies in cells and mice models have implied their underlying therapeutic efficacy; however, detailed and long-term in vivo clinical evaluations are certainly required to make these bench-made materials compatible in real bedside circumstances.

  14. The magnetic and transport properties of template-synthesized carbon-based and related nanomaterials

    Science.gov (United States)

    Friedman, Adam Louis

    The porous alumina template-assisted method of nanoscale materials preparation provides a simple, relatively inexpensive, yet highly controllable and repeatable process for nanomaterial synthesis. Various nanostructures can then be made utilizing the porous structure as a scaffold. In this dissertation we study the porous alumina anodization process, the synthesis of porous alumina-assisted materials, and the basic physical properties of these materials, primarily concentrating on the magnetic and transport properties. First, we study the porous alumina formation process as a function of anodization voltage, acid type, and acid concentration. We find that while acid type strongly affects the growth characteristics of porous alumina, pH does not. We also study the stability of pore formation. We characterize the two- and three-dimensional stability of the growth process. We find that in three dimensions, an unstable formation region as a function of pH and voltage will cause the formation of dendrite structures. Next, we study the synthesis of materials in the porous alumina templates. Through chemical self-assembly, electrodeposition is able to make a wide variety of nanowires and nanotubes and we seek to optimize this process. Third, we study the optical properties Au and Ag nanowire arrays embedded in porous alumina. We find that such materials have use as negative index metamaterials owing to the existence of both transverse and longitudinal surface plasmon resonances. Next, we study the basic magnetic properties of new PAni-ferromagnet composite nanostructures and compare these properties to the magnetic properties of the nanotubes and the nanowires alone. We find the high dielectric properties of the PAni to strongly shield the ferromagnetic nanowires from magnetostatic interactions. Fifth, we make devices out of carbon nanotubes synthesized by CVD in the alumina templates. We investigate the transport properties of these carbon nanotubes. Further, we find

  15. Multi-instrument characterization of five nanodiamond samples: a thorough example of nanomaterial characterization.

    Science.gov (United States)

    Singh, Bhupinder; Smith, Stacey J; Jensen, David S; Jones, Hodge F; Dadson, Andrew E; Farnsworth, Paul B; Vanfleet, Richard; Farrer, Jeffrey K; Linford, Matthew R

    2016-02-01

    Here, we report the most comprehensive characterization of nanodiamonds (NDs) yet undertaken. Five different samples from three different vendors were analyzed by a suite of analytical techniques, including X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), inductively coupled plasma mass spectrometry (ICP-MS), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Brunauer-Emmett-Teller (BET) surface area measurements, and particle size distribution (PSD) measurements. XPS revealed the elemental compositions of the ND surfaces (83-87 at.% carbon and 12-14 at.% oxygen) with varying amounts of nitrogen (0.4-1.8 at.%), silicon (0.1-0.7 at.%), and tungsten (0.3 at.% only in samples from one vendor). ToF-SIMS and ICP showed metal impurities (Al, Fe, Ni, Cr, etc. with unexpectedly high amounts of W in one vendor's samples: ca. 900 ppm). Principal component analyses were performed on the ToF-SIMS and ICP data. DRIFT showed key functional groups (-OH, C=O, C-O, and C=C). BET showed surface areas of 50-214 m(2)/g. XRD and TEM revealed PSD (bimodal distribution and a wide PSD, 5-100 nm, for one vendor's samples). XRD also provided particle sizes (2.7-27 nm) and showed the presence of graphite. EELS gave the sp(2)/sp(3) contents of the materials (37-88% sp(3)). PSD measurements were performed via differential sedimentation of the particles (mean particle size ca. 17-50 nm). This comprehensive understanding should allow for improved construction of nanodiamond-based materials. PMID:26700449

  16. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  17. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes.

    Science.gov (United States)

    Kadoya, Chikara; Lee, Byeong-Woo; Ogami, Akira; Oyabu, Takako; Nishi, Ken-ichiro; Yamamoto, Makoto; Todoroki, Motoi; Morimoto, Yasuo; Tanaka, Isamu; Myojo, Toshihiko

    2016-01-01

    The health risks of inhalation exposure to engineered nanomaterials in the workplace are a major concern in recent years, and hazard assessments of these materials are being conducted. The pulmonary surfactant of lung alveoli is the first biological entity to have contact with airborne nanomaterials in inhaled air. In this study, we retrospectively evaluated the pulmonary surfactant components of rat lungs after a 4-week inhalation exposure to three different nanomaterials: fullerenes, nickel oxide (NiO) nanoparticles and multi-walled carbon nanotubes (MWCNT), with similar levels of average aerosol concentration (0.13-0.37 mg/m(3)). Bronchoalveolar lavage fluid (BALF) of the rat lungs stored after previous inhalation studies was analyzed, focusing on total protein and the surfactant components, such as phospholipids and surfactant-specific SP-D (surfactant protein D) and the BALF surface tension, which is affected by SP-B and SP-C. Compared with a control group, significant changes in the BALF surface tension and the concentrations of phospholipids, total protein and SP-D were observed in rats exposed to NiO nanoparticles, but not in those exposed to fullerenes. Surface tension and the levels of surfactant phospholipids and proteins were also significantly different in rats exposed to MWCNTs. The concentrations of phospholipids, total protein and SP-D and BALF surface tension were correlated significantly with the polymorphonuclear neutrophil counts in the BALF. These results suggest that pulmonary surfactant components can be used as measures of lung inflammation. PMID:25950198

  18. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae.

    Science.gov (United States)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-06-01

    We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration-dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5mg/mL carbon black and 0.1mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change. PMID:25889088

  19. Nanoscale interactions between engineered nanomaterials and black carbon (Biochar) in soil

    Science.gov (United States)

    Engineered nanomaterials (NMs) enter agricultural soils directly as additives in agrichemical formulations1 and indirectly as contaminants in municipal sewage sludge.2 NIFA has a vested interest in developing predictive models for the fate and nanotoxicity of NMs in agroecosystems. An understanding ...

  20. Environmental effects of engineered nanomaterials

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Hartmann, Nanna B.; Brinch, Anna;

    assessment of the environmental risk of nanomaterials in Denmark. The nine investigated nanomaterials are: Titanium Dioxide, Zinc Oxide, Silver, Carbon Nanotubes, Copper Oxide, Nano Zero Valent Iron, Cerium Dioxide, Quantum Dots and Carbon Black. To support the assessment of the data found in the peer...

  1. Nanomaterial Registry

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nanomaterial Registry compiles data from multiple databases into a single resource. The goal of this resource is to establish a curated nanomaterial registry,...

  2. Analysis of lunar samples for carbon compounds.

    Science.gov (United States)

    Kvenvolden, K. A.

    1971-01-01

    Description of one approach to the analysis for carbon compounds in lunar materials from the Apollo 11 mission. The sequential scheme followed generally accepted organic geochemical practices, but was unusual in its application to a single sample. The procedures of the scheme were designed to minimize handling of the solids and extracts or hydrolysates. The solid lunar sample was retained in all steps of the sequential analysis in the vessel in which it was originally placed. Centrifugation was used to separate solid and liquid phases after extraction or refluxing. Liquids were recovered from solids by decantation.

  3. Fundamental studies of carbon-based nanomaterials: Exploring the interface between nanotechnology and separation science

    Science.gov (United States)

    Vinci, John Cody

    A sample containing carbon nanoparticles (CNPs) was generated starting with the soot from the combustion of inexpensive paraffin oil in a flame. The complexity of the sample, however, required fractionation to isolate its components. Anion-exchange high-performance liquid chromatography (AE-HPLC) was used for the analysis and collection of soot-derived CNPs. The fractionated species were monitored by ultraviolet (UV) absorbance and laser-induced photoluminescence detection, providing the chromatographic UV absorbance and emission profiles of the separated sample. Chromatographic fractionation allowed for bulk measurements of electronic properties for individual fractions, and further analysis via transmission electron microscopy (TEM). TEM of fractionated species showed a predominant size of about 3-5 nm diameter particulates, including carbon dots (C-dots), irregularly-shaped/amorphous CNPs, and graphitic nanoribbons. A general trend between photoluminescence and elution time was observed; the later eluting species in the chromatogram exhibited photoluminescence at longer wavelengths than the early eluting species. Graphite nanofibers were shown to be effective for synthesizing C-dots exclusively but also exist as a relatively complex mixture. An unprecedented reduction in such complexity by AE-HPLC revealed fractions of C-dots with unique photoluminescence properties. The wavelength-dependent photoluminescence commonly assigned as an inherent property of C-dots was not present in fractionated samples. While UV-visible absorption profiles reported for C-dots are typically featureless, fractions of C-dots were found to possess unique absorption bands, with different fractions possessing specific emission wavelengths. Furthermore, fractionated C-dots showed profound differences in emission quantum yield, allowing for brighter C-dots to be isolated from an apparent low quantum yield mixture. These more photoluminescent fractions of C-dots displayed improved

  4. Bioengineered nanomaterials

    CERN Document Server

    Tiwari, Atul

    2013-01-01

    Many varieties of new, complex diseases are constantly being discovered, which leaves scientists with little choice but to embrace innovative methods for controlling the invasion of life-threatening problems. The use of nanotechnology has given scientists an opportunity to create nanomaterials that could help medical professionals in diagnosing and treating problems quickly and effectively. Bioengineered Nanomaterials presents in-depth information on bioengineered nanomaterials currently being developed in leading research laboratories around the world. In particular, the book focuses on nanom

  5. New cleaning strategies based on carbon nanomaterials applied to the deteriorated marble surfaces: A comparative study with enzyme based treatments

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Federica, E-mail: federica.valentini@uniroma2.it [Dipartimento di Scienze e Tecnologie Chimiche, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Diamanti, Alessia; Carbone, M. [Dipartimento di Scienze e Tecnologie Chimiche, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Bauer, E.M. [Istituto di Struttura della Materia del Consiglio Nazionale delle Ricerche (ISM-CNR), RM 1, Via Salaria km 29.3, 00015 Monterotondo (Italy); Palleschi, Giuseppe [Dipartimento di Scienze e Tecnologie Chimiche, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2012-06-01

    Pentelic marbles from Basilica Neptuni in Rome-Italy (27-25 B.C.) show the signs of deterioration phenomena, which can be identified as black crust as well as black and grey patina. The present study has the twofold objective of assessing the entity of the deterioration and proposing new cleaning strategies based on nanotechnologies. The former is achieved by performing optical microscopy, differential interference contrast (DIC), stereomicroscopy, scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) and infrared Fourier transform spectroscopy (FT-IR) analysis. The second objective of this study, involves different treatments based on a new cleaning strategy with carbon nanomaterials and bio-cleaning (used here for comparison) performed with enzymes, as glucose oxidase (GOD) and lipase. Nanomicelles assembled with functionalised carbon nano-fibres (CNF-COOH) and dispersed in Tween 20 medium show the highest cleaning performances in terms of removal of the black crust, compared with the pristine single-wall carbon nanotubes (SWCNTs) and the enzyme-based cleaning treatments. In particular, in these last two cases, the GOD-based biocleaning is efficient in removing the grey and dark patina, but works slow on the black crust. Finally, the lipase based cleaning approach is efficient in the black patina removal, though at the working temperature of 38 Degree-Sign C.

  6. Nanomaterials handbook

    CERN Document Server

    Gogotsi, Yury

    2006-01-01

    Even before it was identified as a science and given a name,  nanotechnology was the province of the most innovative inventors. In medieval times, craftsmen, ingeniously employing nanometer-sized gold particles, created the enchanting red hues found in the gold ruby glass of cathedral windows. Today, nanomaterials are being just as creatively used to improve old products, as well as usher in new ones. From tires to CRTs to sunscreens, nanomaterials are becoming a part of every industry. The Nanomaterials Handbook provides a comprehensive overview of the current state of nanomaterials. Employ

  7. Application of a Fused Carbon Nanomaterial Filter for Lunar Dust Abatement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Technologies will further test and develop its patented carbon nanotube filtration technology to NASA's Lunar Exploration challenges. This project focuses on...

  8. Application of a Fused Carbon Nanomaterial Filter for Lunar Dust Abatement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Laboratories, LLC, will apply its patented carbon nanotube filtration technology for air and nanoscale particulate engine exhaust filtration to NASA's Lunar...

  9. Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy

    Science.gov (United States)

    Johnston, Helinor J.; Mouras, Rabah; Brown, David M.; Elfick, Alistair; Stone, Vicki

    2015-12-01

    The uptake of nanomaterials (NMs) by cells is critical in determining their potential biological impact, whether beneficial or detrimental. Thus, investigation of NM internalization by cells is a common consideration in hazard and efficacy studies. There are currently a number of approaches that are routinely used to investigate NM-cell interactions, each of which have their own advantages and limitations. Ideally, imaging modalities used to investigate NM uptake by cells should not require the NM to be labelled (e.g. with fluorophores) to facilitate its detection. We present a multimodal imaging approach employing a combination of label-free microscopies that can be used to investigate NM-cell interactions. Coherent anti-Stokes Raman scattering microscopy was used in combination with either two-photon photoluminescence or four-wave mixing (FWM) to visualize the uptake of gold or titanium dioxide NMs respectively. Live and fixed cell imaging revealed that NMs were internalized by J774 macrophage and C3A hepatocyte cell lines (15-31 μg ml-1). Sprague Dawley rats were exposed to NMs (intratracheal instillation, 62 μg) and NMs were detected in blood and lung leucocytes, lung and liver tissue, demonstrating that NMs could translocate from the exposure site. Obtained data illustrate that multimodal nonlinear optical microscopy may help overcome current challenges in the assessment of NM cellular uptake and biodistribution. It is therefore a powerful tool that can be used to investigate unlabelled NM cellular and tissue uptake in three dimensions, requires minimal sample preparation, and is applicable to live and fixed cells.

  10. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  11. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.

    Science.gov (United States)

    Wang, Zhiyong; Li, Hong; Liu, Zheng; Shi, Zujin; Lu, Jing; Suenaga, Kazu; Joung, Soon-Kil; Okazaki, Toshiya; Gu, Zhennan; Zhou, Jing; Gao, Zhengxiang; Li, Guangping; Sanvito, Stefano; Wang, Enge; Iijima, Sumio

    2010-10-01

    Quasi-one-dimensional nanotubes and two-dimensional nanoribbons are two fundamental forms of nanostructures, and integrating them into a novel mixed low-dimensional nanomaterial is fascinating and challenging. We have synthesized a stable mixed low-dimensional nanomaterial consisting of MoS(2) inorganic nanoribbons encapsulated in carbon nanotubes (which we call nanoburritos). This route can be extended to the synthesis of nanoburritos composed of other ultranarrow transition-metal chalcogenide nanoribbons and carbon nanotubes. The widths of previously synthesized MoS(2) ribbons are greater than 50 nm, while the encapsulated MoS(2) nanoribbons have uniform widths down to 1-4 nm and layer numbers down to 1-3, depending on the nanotube diameter. The edges of the MoS(2) nanoribbons have been identified as zigzag-shaped using both high-resolution transmission electron microscopy and density functional theory calculations. PMID:20828123

  12. Hydrophobic End-Modulated Amino-Acid-Based Neutral Hydrogelators: Structure-Specific Inclusion of Carbon Nanomaterials.

    Science.gov (United States)

    Choudhury, Pritam; Mandal, Deep; Brahmachari, Sayanti; Das, Prasanta Kumar

    2016-04-01

    Hydrophobic end-modulated l-phenylalanine-containing triethylene glycol monomethyl ether tagged neutral hydrogelators (1-4) are developed. Investigations determine the gelators' structure-dependent inclusion of carbon nanomaterials (CNMs) in the self-assembled fibrillar network (SAFIN). The gelators (1, 3, and 4) can immobilize water and aqueous buffer (pH 3-7) with a minimum gelator concentration of 10-15 mg mL(-1) . The hydrophobic parts of the gelators are varied from a long chain (C-16) to an extended aromatic pyrenyl moiety, and their abilities to integrate 1 D and 2 D allotropes of carbon (i.e., single-walled carbon nanotubes (SWNTs) and graphene oxide (GO), respectively) within the gel are investigated. Gelator 1, containing a long alkyl chain (C-16), can include SWNTs, whereas the pyrene-containing 4 can include both SWNTs and GO. Gelator 3 fails to incorporate SWNTs or GO owing to its slow rate of gelation and possibly a mismatch between the aggregated structure and CNMs. The involvement of various forces in self-aggregated gelation and physicochemical changes occurring through CNM inclusion are examined by spectroscopic and microscopic techniques. The distinctive pattern of self-assembly of gelators 1 and 4 through J- and H-type aggregation might facilitate the structure-specific CNM inclusion. Inclusion of SWNTs/GO within the hydrogel matrix results in a reinforcement in mechanical stiffness of the composites compared with that of the native hydrogels. PMID:26916229

  13. Supercritical CO2-driven,periodic patterning on one-dimensionals carbon nanomaterials

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One-dimensional carbon nano-materials,in particular carbon nanotubes (CNTs) and carbon nanofibers (CNFs),are of scientific and technological interest due to their satisfactory properties and ability to serve as templates for directed assembly.In this work,linear high density polyethylene (PE) was periodically decorated on CNTs and CNFs using a supercritical carbon dioxide (scCO2)antisolvent-induced polymer epitaxy (SAIPE) method,leading to nano-hybrid shish-kebab (NHSK) structures.The formation mechanism of different morphologies of PE lamellae on CNTs and CNFs has been discussed.Palladium nanoparticles were synthesized and immobilized on the PE/CNF NHSK structure with the assistance of scCO2.The obtained hierarchical nano-hybrid architecture may find applications in microfabrication and other related fields.

  14. Nanomaterials application in electrochemical detection of heavy metals

    International Nuclear Information System (INIS)

    Highlights: ► We review the recent trends in the application of nanomaterials for electrochemical detection of heavy metals. ► Different types of nanomaterials including metal nanoparticles, different carbon nanomaterials or nanochannels have been applied on the electrochemical analysis of heavy metals in various sensing formats/configurations. ► The great properties of nanomaterials allow the new devices to show advantages in terms of sensing performance (i.e. increase the sensitivity, decrease the detection limits and improve the stability). ► Between the various electrochemical techniques, voltammetric and potentiometric based ones are particularly taking interesting advantages by the incorporation of new nanomaterials due to the improved electrocatalytic properties beside the increase of the sensor's transducing area. - Abstract: Recent trends in the application of nanomaterials for electrochemical detection of heavy metals are shown. Various nanomaterials such as nanoparticles, nanowires, nanotubes, nanochannels, graphene, etc. have been explored either as modifiers of electrodes or as new electrode materials with interest to be applied in electrochemical stripping analysis, ion-selective detection, field-effect transistors or other indirect heavy metals (bio)detection alternatives. The developed devices have shown increased sensitivity and decreased detection limits between other improvements of analytical performance data. The phenomena behind nanomaterials responses are also discussed and some typical responses data of the developed systems either in standard solutions or in real samples are given. The developed nanomaterials based electrochemical systems are giving new inputs to the existing devices or leading to the development of novel heavy metal detection tools with interest for applications in field such as diagnostics, environmental and safety and security controls or other industries.

  15. Nanomaterial Registry

    Data.gov (United States)

    U.S. Department of Health & Human Services — By leveraging and developing a set of Minimal Information About Nanomaterials (MIAN), ontology and standards through a community effort, it has developed a data...

  16. Nd:Yag laser irradiation of single lap joints made by polyethylene and polyethylene doped by carbon nanomaterials

    Science.gov (United States)

    Visco, A. M.; Brancato, V.; Cutroneo, M.; Torrisi, L.

    2014-04-01

    Thermoplastic polyethylene can be welded by the transmission laser welding technique (TTLW) that exhibits some process related benefits with respect other conventional joining methods. This justifies its large use in wide fields, from the automotive to medical or domestic appliances. In this research, we studied single lap joints made by polyethylene pure and filled with carbon nanomaterials (0.2% in weight) to make the polymer laser absorbent. The joints were irradiated by a Nd:YAG laser operating at 1064 nm (first harmonic) with an intensity of 107 W/cm2 and 1 ÷ 30Hz, a maximum pulse energy of 300mJ and a laser spot of ≈ 1 cm2 (no focusing lens were employed). The joints were characterized by morphological analysis, mechanical shear tests and calorimetric analysis. The results suggested that the laser exposition time must be opportunely balanced in order to avoid a poor adhesion between the polymer sheets and to realized efficient joints. In particular the mechanical test showed that the laser exposition time of 40 seconds is the best conditions to obtain the highest shear strength of the joints of 140 N. After too prolonged laser exposure times, degrading phenomena starts.

  17. Nd:Yag laser irradiation of single lap joints made by polyethylene and polyethylene doped by carbon nanomaterials

    International Nuclear Information System (INIS)

    Thermoplastic polyethylene can be welded by the transmission laser welding technique (TTLW) that exhibits some process related benefits with respect other conventional joining methods. This justifies its large use in wide fields, from the automotive to medical or domestic appliances. In this research, we studied single lap joints made by polyethylene pure and filled with carbon nanomaterials (0.2% in weight) to make the polymer laser absorbent. The joints were irradiated by a Nd:YAG laser operating at 1064 nm (first harmonic) with an intensity of 107 W/cm2 and 1 ÷ 30 Hz, a maximum pulse energy of 300 mJ and a laser spot of ≈ 1 cm2 (no focusing lens were employed). The joints were characterized by morphological analysis, mechanical shear tests and calorimetric analysis. The results suggested that the laser exposition time must be opportunely balanced in order to avoid a poor adhesion between the polymer sheets and to realized efficient joints. In particular the mechanical test showed that the laser exposition time of 40 seconds is the best conditions to obtain the highest shear strength of the joints of 140 N. After too prolonged laser exposure times, degrading phenomena starts.

  18. Investigation on carbon nanomaterials: Coaxial CNT-cylinders and CNT-polymer composite

    Indian Academy of Sciences (India)

    Kalpana Awasthi; T P Yadav; P R Mishra; S Awasthi; O N Srivastava

    2008-06-01

    The macroscopic coaxial carbon cylinders (dia. ∼ 0.5 cm with varying lengths, ∼ 7–10 cm) consisting of aligned carbon nanotube (CNT) stacks have been prepared by controlled spray pyrolysis method. The coaxial carbon cylinders of CNT stacks have been formed directly inside the quartz tube. Another study is done on multi-walled CNTs (MWNTs)–polymer (e.g. polyethylene oxide (PEO), polyacrylamide (PAM)) composite films. We have investigated the structural, electrical and mechanical properties of MWNTs–PEO composites. Composites with different wt% (between 0 and 50 wt% of MWNTs) have been prepared and characterized by the scanning electron microscopic technique. Enhanced electrical conductivity and mechanical strength were observed for the MWNTs–PEO composites. We have also studied the electrical property of MWNTs–PAM composite films.

  19. Applications of nanomaterials in sensors and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Tuantranont, Adisorn (ed.) [National Electronics and Computer Technology Center (NECTEC), Pathumthani (Thailand). Nanoelectronics and MEMS Laboratory

    2013-11-01

    Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.

  20. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    Science.gov (United States)

    Assali, Mohyeddin; Pernía Leal, Manuel; Fernández, Inmaculada; Khiar, Noureddine

    2013-03-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar-supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane.

  1. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    International Nuclear Information System (INIS)

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar–supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane. (paper)

  2. Enhancement of Nitrite Reduction Kinetics on Electrospun Pd-Carbon Nanomaterial Catalysts for Water Purification.

    Science.gov (United States)

    Ye, Tao; Durkin, David P; Hu, Maocong; Wang, Xianqin; Banek, Nathan A; Wagner, Michael J; Shuai, Danmeng

    2016-07-20

    We report a facile synthesis method for carbon nanofiber (CNF) supported Pd catalysts via one-pot electrospinning and their application for nitrite hydrogenation. A mixture of Pd acetylacetonate (Pd(acac)2), polyacrylonitrile (PAN), and nonfunctionalized multiwalled carbon nanotubes (MWCNTs) was electrospun and thermally treated to produce Pd/CNF-MWCNT catalysts. The addition of MWCNTs with a mass loading of 1.0-2.5 wt % (to PAN) significantly improved nitrite reduction activity compared to the catalyst without MWCNT addition. The results of CO chemisorption confirmed that the addition of MWCNTs increased Pd exposure on CNFs and hence improved catalytic activity. PMID:27387354

  3. Synthesis of Carbon Nanotube-Inorganic Hybrid Nanocomposites: An Instructional Experiment in Nanomaterials Chemistry

    Science.gov (United States)

    de Dios, Miguel; Salgueirino, Veronica; Perez-Lorenzo, Moises; Correa-Duarte, Miguel A.

    2012-01-01

    An experiment is described to introduce advanced undergraduate students to an exciting area of nanotechnology that incorporates nanoparticles onto carbon nanotubes to produce systems that have valuable technological applications. The synthesis of such material has been easily achieved through a simple three-step procedure. Students explore…

  4. Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization

    Science.gov (United States)

    Marmisollé, Waldemar A.; Azzaroni, Omar

    2016-05-01

    The construction of hybrid polymer-inorganic nanoarchitectures for electrochemical purposes based on the layer-by-layer assembly of conducting polymers and carbon nanomaterials has become increasingly popular over the last decade. This explosion of interest is primarily related to the increasing mastery in the design of supramolecular constructs using simple wet chemical approaches. Concomitantly, this continuous research activity paved the way to the rapid development of nanocomposites or ``nanoblends'' readily integrable into energy storage and sensing devices. In this sense, the layer-by-layer (LbL) assembly technique has allowed us to access three-dimensional (3D) multicomponent carbon-based network nanoarchitectures displaying addressable electrical, electrochemical and transport properties in which conducting polymers, such as polyaniline, and carbon nanomaterials, such as carbon nanotubes or nanographene, play unique roles without disrupting their inherent functions - complementary entities coexisting in harmony. Over the last few years the level of functional sophistication reached by LbL-assembled carbon-based 3D network nanoarchitectures, and the level of knowledge related to how to design, fabricate and optimize the properties of these 3D nanoconstructs have advanced enormously. This feature article presents and discusses not only the recent advances but also the emerging challenges in complex hybrid nanoarchitectures that result from the layer-by-layer assembly of polyaniline, a quintessential conducting polymer, and diverse carbon nanomaterials. This is a rapidly developing research area, and this work attempts to provide an overview of the diverse 3D network nanoarchitectures prepared up to now. The importance of materials processing and LbL integration is explored within each section and while the overall emphasis is on energy storage and sensing applications, the most widely-used synthetic strategies and characterization methods for ``nanoblend

  5. 碳纳米材料在环境中的转化%The environmental transformation of carbon nanomaterials

    Institute of Scientific and Technical Information of China (English)

    张礼文; 黄庆国; 毛亮

    2013-01-01

    碳纳米材料主要包括富勒烯、碳纳米管和石墨烯。随着碳纳米材料的研究和应用范围不断扩大,其对环境的影响和在环境中的行为也逐渐受到关注,而在环境中的转化是环境行为的一个重要方面。首先,环境转化会改变碳纳米材料的性质,从而影响其它行为如聚集沉降和生态毒性。同时,作为一种以碳为骨架的材料,能否被自然界转化、从而进入碳循环是评价碳纳米材料长期环境影响的必要信息。因此,本文重点总结了碳纳米材料在自然环境条件和水处理条件下可能发生的生物或非生物转化,并分析影响碳纳米材料转化的因素,和转化过程对其环境行为的影响。%Carbon nanomaterials ( CNMs ) mainly include fullerenes, carbon nanotubes ( CNTs ) and graphenes. Mass production of CNMs is rapidly growing, and their entry to the environment is inevitable. Such releases of CNMs may cause undesired/unforeseen risks to the environment and human/wildlife health. A scientific assessment of such risks requires a thorough understanding of the environmental behaviors of CNMs, such as their fate, transport and transformation. This review focused on the environmentally relevant transformation of CNMs, especially those that can change the properties of CNMs and thus influence their behaviors in and impacts to the environment. As a category of carbon-based material, whether they can fit in the carbon cycle is also an important aspect in assessing their long-term effect. Therefore, in this review we summarized the possible transformation of CNMs in natural conditions or waste treatment conditions, either biotic or abiotic. Meanwhile, the factors influencing the transformation were analyzed.

  6. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koc University, RumelifeneriYolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, 79104 Freiburg (Germany); Acar, Selcuk; Kokal, Ilkin [Pavezyum Kimya Sanayi Dış Ticaret LTD. ŞTI., Tuzla, Istanbul (Turkey); Häßler, Wolfgang [Leibniz Institute for Solid State and Materials Research Dresden (IFW), P.O. Box 270116, 01171 Dresden (Germany)

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  7. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    International Nuclear Information System (INIS)

    Undoped and carbon-doped magnesium diboride (MgB2) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp3-hybridized carbon radicals were detected. A strong reduction in the critical temperature Tc was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra

  8. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  9. Electrospun carbon nanotubes-gold nanoparticles embedded nanowebs: prosperous multi-functional nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Gyung; Gopalan, Anantha Iyengar; Lee, Kwang-Pill [Department of Nano-Science and Technology, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Ragupathy, Dhanusuraman, E-mail: kplee@knu.ac.kr [Department of Chemistry Graduate School, Kyungpook National University, Daegu, 702-701 (Korea, Republic of)

    2010-04-02

    Electrospinning was employed to prepare new multi-functional nanowebs. Cyclodextrin based inclusion complex (CD-IC) was used to disperse multiwalled carbon nanotubes (MWNT) within electrospun polyvinylidene fluoride nanofibrous membranes (PVdF-NFM). Subsequently, MWNT(CD-IC)/PVdF-NFM was loaded with gold (Au) particles. The morphology, structure and thermal properties of Au/MWNT(CD-IC)/PVdF-NFM were investigated by transmission electron microscopy, field emission scanning electron microscopy, FT-IR spectroscopy, x-ray diffraction spectroscopy and differential scanning calorimetry. The new Au/MWNT(CD-IC)/PVdF-NFM is electroactive and shows excellent electrocatalytic activity towards oxidation of ascorbic acid.

  10. Effect of incorporating carbon nanocoils on the efficiency of electromagnetic-wave shielding of carbon-nanomaterial composites

    Science.gov (United States)

    Kang, Gi-Hwan; Kim, Sung-Hoon

    2016-09-01

    Carbon nanocoils (CNCs) were deposited on Al2O3 substrates using C2H2 and H2 as source gases in a thermal chemical vapor deposition system. Composites of CNCs in polyurethane (CNC@PU) and CNCs plus other carbon-based materials, such as carbon microcoils (CMCs) and carbon nanotubes (CNTs), in polyurethane (CNC + CMC@PU, CNC + CNT@PU) was fabricated. The electromagnetic-wave-shielding effectiveness of the CNCs-incorporated composites were examined and compared with those of other carbon-based materials in the measurement-frequency range of 0.25-4.0 GHz. The incorporation of CNCs in CMC@PU composites reduced the shielding effectiveness; on the other hand, it slightly enhanced the shielding effectiveness of CNT@PU composites within the measurement frequency range of 0.5-3.0 GHz. Based on the resulting shielding effectiveness, we conclude that the incorporation of CNCs was useful for the materials that exhibited reflection-based shielding effectiveness although the CNCs themselves had poor electrical conductivity.

  11. Nanomaterials, Nanotechnology

    Science.gov (United States)

    Adlakha-Hutcheon, G.; Khaydarov, R.; Korenstein, R.; Varma, R.; Vaseashta, A.; Stamm, H.; Abdel-Mottaleb, M.

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environment and Energy. Given the large number of applications being designed that utilize nanomaterials and nanotechnologies, and the perception that nanotechnology can (or will) provide the ultimate solution for the world's problems; questions arise regarding who benefits from these technological advances. Additionally, within the popular press all nanotechnology products are generally portrayed as being beneficial to society without necessarily distinguishing between real and potential benefits of the technology. Lastly, the benefits and implications of these technological advancements in society are explored.1

  12. Nanomaterials for Space Exploration Applications

    Science.gov (United States)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  13. Potential application of carbon nanotube core as nanocontainer and nanoreactor for the encapsulated nanomaterial

    Science.gov (United States)

    Tyagi, Pawan K.; Kumari, Reetu; Bhatta, Umananda M.; Juluri, Raghavendra Rao; Rath, Ashutosh; Kumar, Sanjeev; Satyam, P. V.; Gautam, Subodh K.; Singh, Fouran

    2016-07-01

    Fe3C nanorod filled inside carbon nanotube has been irradiated inside transmission electron microscope at both room and high temperature. In-situ response of Fe3C nanorod as well as CNT walls has been studied. It has been found that when electron irradiation is performed at room temperature (RT), nanorod first bends and then tip makes at the end whereas at high temperature (∼490 °C) nanorod slides along the tube axis and then transforms into a faceting particle. Extrusion of solid particle filled in the core of CNT has also been demonstrated. It is suggested that these morphological changes in nanorod may have happened due to the compression which was generated either by shrinkage of tube or by local electron beam heating. Presented results demonstrate that CNT core could be used as nano-container or reactor.

  14. Biosensor nanomaterials

    CERN Document Server

    Li, Songjun; Li, He; Banerjee, Ipsita A

    2011-01-01

    Focusing on the materials suitable for biosensor applications, such as nanoparticles, quantum dots, meso- and nanoporous materials and nanotubes, this text enables the reader to prepare the respective nanomaterials for use in actual devices by appropriate functionalization, surface processing or directed self-assembly. The main detection methods used are electrochemical, optical, and mechanical, providing solutions to challenging tasks.The result is a reference for researchers and developers, disseminating first-hand information on which nanomaterial is best suited to a particular applicat

  15. Cs corrected STEM EELS: Analysing beam sensitive carbon nanomaterials in cellular structures

    International Nuclear Information System (INIS)

    Identification of individual single wall nanotubes (SWNTs) within a cellular structure can provide vital information towards understanding the potential mechanisms of uptake, their localisation and whether their structure is transformed within a cell. To be able to image an individual SWNT in such an environment a resolution is required that is not usually appropriate for biological sections. Standard transmission electron microscopy (TEM) techniques such as bright field imaging of these cellular structures result in very weak contrast. Traditionally, researchers have stained the cells with heavy metal stains to enhance the cellular structure, however this can lead to confusion when analysing the samples at high resolution. Subsequently, alternative methods have been investigated to allow high resolution imaging and spectroscopy to identify SWNTs within the cell; here we will concentrate on the sample preparation and experimental methods used to achieve such resolution.

  16. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  17. Nanometer-scale temperature measurements of phase change memory and carbon nanomaterials

    Science.gov (United States)

    Grosse, Kyle Lane

    This work investigates nanometer-scale thermometry and thermal transport in new electronic devices to mitigate future electronic energy consumption. Nanometer-scale thermal transport is integral to electronic energy consumption and limits current electronic performance. New electronic devices are required to improve future electronic performance and energy consumption, but heat generation is not well understood in these new technologies. Thermal transport deviates significantly at the nanometer-scale from macroscopic systems as low dimensional materials, grain structure, interfaces, and thermoelectric effects can dominate electronic performance. This work develops and implements an atomic force microscopy (AFM) based nanometer-scale thermometry technique, known as scanning Joule expansion microscopy (SJEM), to measure nanometer-scale heat generation in new graphene and phase change memory (PCM) devices, which have potential to improve performance and energy consumption of future electronics. Nanometer-scale thermometry of chemical vapor deposition (CVD) grown graphene measured the heat generation at graphene wrinkles and grain boundaries (GBs). Graphene is an atomically-thin, two dimensional (2D) carbon material with promising applications in new electronic devices. Comparing measurements and predictions of CVD graphene heating predicted the resistivity, voltage drop, and temperature rise across the one dimensional (1D) GB defects. This work measured the nanometer-scale temperature rise of thin film Ge2Sb2Te5 (GST) based PCM due to Joule, thermoelectric, interface, and grain structure effects. PCM has potential to reduce energy consumption and improve performance of future electronic memory. A new nanometer-scale thermometry technique is developed for independent and direct observation of Joule and thermoelectric effects at the nanometer-scale, and the technique is demonstrated by SJEM measurements of GST devices. Uniform heating and GST properties are observed for

  18. Carbon-covered magnetic nanomaterials and their application for the thermolysis of cancer cells

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2010-03-01

    Full Text Available Yang Xu1, Meena Mahmood1, Ashley Fejleh1, Zhongrui Li1, Fumiya Watanabe1, Steve Trigwell2, Reginald B Little3, Vasyl P Kunets4, Enkeleda Dervishi1, Alexandru R Biris5, Gregory J Salamo4, Alexandru S Biris11Nanotechnology Center and Applied Science Department, University of Arkansas at Little Rock, Little Rock, AR, USA; 2Applied Science and Technology, ASRC Aerospace, NASA Kennedy Space Center, FL, USA; 3Department of Chemistry, Elizabeth City State University, Elizabeth City, NC, USA; 4Physics Department, University of Arkansas, Fayetteville, AR, USA; 5National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RomaniaAbstract: Three types of graphitic shelled-magnetic core (Fe, Fe/Co, and Co nanoparticles (named as C-Fe, C-Fe/Co, and C-Co NPs were synthesized by radio frequency-catalytic chemical vapor deposition (RF-cCVD. X-ray diffraction and X-ray photoelectron spectroscopy analysis revealed that the cores inside the carbon shells of these NPs were preserved in their metallic states. Fluorescence microscopy images indicated effective penetrations of the NPs through the cellular membranes of cultured cancer HeLa cells, both inside the cytoplasm and the nucleus. Low RF radiation of 350 kHz induced localized heating of the magnetic NPs, which triggered cell death. Apoptosis inducement was found to be dependent on the RF irradiation time and NP concentration. It was showed that the Fe-C NPs had a much higher ability of killing the cancer cells (over 99% compared with the other types of NPs (C-Co or C-Fe/Co, even at a very low concentration of 0.83 μg/mL. The localized heating of NPs inside the cancer cells comes from the hysteresis heating and resistive heating through eddy currents generated under the RF radiation. The RF thermal ablation properties of the magnetic NPs were correlated with the analysis provided by a superconducting quantum interference device (SQUID.Keywords: graphitic shelled, magnetic

  19. Effects of total CH4/Ar gas pressure on the structures and field electron emission properties of carbon nanomaterials grown by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    The effects of total CH4/Ar gas pressure on the growth of carbon nanomaterials on Si (1 0 0) substrate covered with CoO nanoparticles, using plasma-enhanced chemical vapor deposition (PECVD), were investigated. The structures of obtained products were correlated with the total gas pressure and changed from pure carbon nanotubes (CNTs) through hybrid CNTs/graphene sheets (GSs), to pure GSs as the total gas pressure changed from 20 to 4 Torr. The total gas pressure influenced the density of hydrogen radicals and Ar ions in chamber, which in turn determined the degree of how CoO nanoparticles were deoxidized and ion bombardment energy that governed the final carbon nanomaterials. Moreover, the obtained hybrid CNTs/GSs exhibited a lower turn-on field (1.4 V/μm) emission, compared to either 2.7 V/μm for pure CNTs or 2.2 V/μm for pure GSs, at current density of 10 μA/cm2.

  20. Nanomaterial Based Sensors for NASA Missions

    Science.gov (United States)

    Koehne, Jessica E.

    2016-01-01

    Nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and metal nanowires have shown interesting electronic properties and therefore have been pursued for a variety of space applications requiring ultrasensitive and light-weight sensor and electronic devices. We have been pursuing development of chemical and biosensors using carbon nanotubes and carbon nanofibers for the last several years and this talk will present the benefits of nanomaterials these applications. More recently, printing approaches to manufacturing these devices have been explored as a strategy that is compatible to a microgravity environment. Nanomaterials are either grown in house or purchased and processed as electrical inks. Chemical modification or coatings are added to the nanomaterials to tailor the nanomaterial to the exact application. The development of printed chemical sensors and biosensors will be discussed for applications ranging from crew life support to exploration missions.

  1. Mechanical activation of graphite in air: A way to advanced carbon nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Baklanova, O.N., E-mail: baklanova@ihcp.ru; Drozdov, V.A.; Lavrenov, A.V.; Vasilevich, A.V.; Muromtsev, I.V.; Trenikhin, M.V.; Arbuzov, A.B.; Likholobov, V.A.; Gorbunova, O.V.

    2015-10-15

    A high-energy planetary mill AGO-2 was used for mechanical activation of synthetic graphite with the particle size of 25–30 μm and specific surface area S{sub BET} = 3.0 m{sup 2}/g in air for 1–60 min at a 100 g acceleration of milling bodies. The X-ray diffraction, Raman spectroscopy and electron microscopy studies showed that the 60 min mechanical activation of graphite decreases the number of graphene layers in graphite crystallites to 8–12 and induces their turbostratic disorder. The size of graphite particles decreases to 6.9 μm after 30 min of mechanical activation and increases to 12.1 μm when the time of mechanical activation is extended to 60 min. Similar changes are observed for the true density of graphite: after 60 min of mechanical activation it becomes equal to 2.48 ⋅ 10{sup 3} kg/m{sup 3}, which is by 10% higher than the true density of graphite not subjected to such treatment. The specific adsorption surface of graphite (S{sub BET}) reaches its maximum values, 427–460 m{sup 2}/g, after 7–12 min of mechanical activation. A further increase in the activation time to 30–60 min decreases S{sub BET} of graphite to 230–250 m{sup 2}/g. Due to attrition of steel milling bodies caused by mechanical activation, iron is accumulated in the samples and its content exceeds 5%. Iron is distributed uniformly in the graphite as the 30–100 and 3–5 nm particles of hematite and iron carbide. The IR spectroscopy study revealed the formation of 0.8 mEq/g of the hydroxyl, phenolic, lactone and carbonyl groups on the graphite surface in the course of mechanical activation. - Highlights: • Graphite was mechanically activated in air at a 100 g acceleration of milling bodies. • The amount of graphenes in graphite crystallites decreases to 8–12. • Graphite transforms into a nanocrystalline X-ray amorphous state. • A metal–graphite composite with the 30–100 and 3–5 nm iron particles is formed. • Oxygen-containing groups in the amount of

  2. Mechanical activation of graphite in air: A way to advanced carbon nanomaterials

    International Nuclear Information System (INIS)

    A high-energy planetary mill AGO-2 was used for mechanical activation of synthetic graphite with the particle size of 25–30 μm and specific surface area SBET = 3.0 m2/g in air for 1–60 min at a 100 g acceleration of milling bodies. The X-ray diffraction, Raman spectroscopy and electron microscopy studies showed that the 60 min mechanical activation of graphite decreases the number of graphene layers in graphite crystallites to 8–12 and induces their turbostratic disorder. The size of graphite particles decreases to 6.9 μm after 30 min of mechanical activation and increases to 12.1 μm when the time of mechanical activation is extended to 60 min. Similar changes are observed for the true density of graphite: after 60 min of mechanical activation it becomes equal to 2.48 ⋅ 103 kg/m3, which is by 10% higher than the true density of graphite not subjected to such treatment. The specific adsorption surface of graphite (SBET) reaches its maximum values, 427–460 m2/g, after 7–12 min of mechanical activation. A further increase in the activation time to 30–60 min decreases SBET of graphite to 230–250 m2/g. Due to attrition of steel milling bodies caused by mechanical activation, iron is accumulated in the samples and its content exceeds 5%. Iron is distributed uniformly in the graphite as the 30–100 and 3–5 nm particles of hematite and iron carbide. The IR spectroscopy study revealed the formation of 0.8 mEq/g of the hydroxyl, phenolic, lactone and carbonyl groups on the graphite surface in the course of mechanical activation. - Highlights: • Graphite was mechanically activated in air at a 100 g acceleration of milling bodies. • The amount of graphenes in graphite crystallites decreases to 8–12. • Graphite transforms into a nanocrystalline X-ray amorphous state. • A metal–graphite composite with the 30–100 and 3–5 nm iron particles is formed. • Oxygen-containing groups in the amount of 0.8 mEq/g are present on the graphite surface

  3. Influence of nanomaterials on cell function

    OpenAIRE

    Tian, Furong

    2006-01-01

    The intention of this work was the study of mechanisms of interactions between nanomaterials and cells. The experiments carried out during this thesis focused on two kinds of nanomaterials: single-walled carbon nanotubes (SWCNT) and nanostructured hydrogels. Chapter 1 provides a general introduction to the field of nanomaterials such as SWCNTs and nanostructured hydrogels. In chapter 2, the effects of SWCNTs on the polymerase chain reaction (PCR) are investigated via quantitative PCR produ...

  4. Porous substrates filled with nanomaterials

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  5. Carbon Nanotube Integrative Sampler (CNIS) for passive sampling of nanosilver in the aquatic environment.

    Science.gov (United States)

    Shen, Li; Fischer, Jillian; Martin, Jonathan; Hoque, Md Ehsanul; Telgmann, Lena; Hintelmann, Holger; Metcalfe, Chris D; Yargeau, Viviane

    2016-11-01

    Nanomaterials such as nanosilver (AgNP) can be released into the aquatic environment through production, usage, and disposal. Sensitive and cost-effective methods are needed to monitor AgNPs in the environment. This work is hampered by a lack of sensitive methods to detect nanomaterials in environmental matrixes. The present study focused on the development, calibration and application of a passive sampling technique for detecting AgNPs in aquatic matrixes. A Carbon Nanotube Integrative Sampler (CNIS) was developed using multi-walled carbon nanotubes (CNTs) as the sorbent for accumulating AgNPs and other Ag species from water. Sampling rates were determined in the laboratory for different sampler configurations and in different aquatic matrixes. The sampler was field tested at the Experimental Lakes Area, Canada, in lake water dosed with AgNPs. For a configuration of the CNIS consisting of CNTs bound to carbon fiber (i.e. CNT veil) placed in Chemcatcher® housing, the time weighted average (TWA) concentrations of silver estimated from deployments of the sampler in lake mesocosms dosed with AgNPs were similar to the measured concentrations of "colloidal silver" (i.e. <0.22μm in size) in the water column. For a configuration of CNIS consisting of CNTs in loose powder form placed in a custom made housing that were deployed in a whole lake dosed with AgNPs, the estimated TWA concentrations of "CNIS-labile Ag" were similar to the concentrations of total silver measured in the epilimnion of the lake. However, sampling rates for the CNIS in various matrixes are relatively low (i.e. 1-20mL/day), so deployment periods of several weeks are required to detect AgNPs at environmentally relevant concentrations, which can allow biofilms to develop on the sampler and could affect the sampling rates. With further development, this novel sampler may provide a simple and sensitive method for screening for the presence of AgNPs in surface waters. PMID:27343941

  6. EDITORIAL: Whither nanomaterials? Whither nanomaterials?

    Science.gov (United States)

    Mallouk, Thomas E.; Pinkerton, Fred; Stetson, Ned

    2009-10-01

    As the journal Nanotechnology enters its third decade it is interesting to look back on the field and to think about where it may be headed in the future. The growth of the journal over the past twenty years mirrors that of the field, with exponentially rising numbers of citations and a widening diversity of topics that we identify as nanotechnology. In the early 1990s, Nanotechnology was focused primarily on nanoscale electronics and on scanning probe tools for fabricating and characterizing nanostructures. The synthesis and assembly of nanomaterials was already an active area in chemical research; however, it did not yet intersect strongly with the activities of the physics community, which was interested primarily in new phenomena that emerged on the nanoscale and on the devices that derived from them. In the 1990s there were several key advances that began to bridge this gap. Techniques were developed for making nanocrystals of compound semiconductors, oxides, and metals with very fine control over shape and superstructure. Carbon nanotubes were discovered and their unique electronic properties were demonstrated. Research on the self-assembly of organic molecules on surfaces led to the development of soft lithography and layer-by- layer assembly of materials. The potential to use DNA and then proteins as building blocks of precise assemblies of nanoparticles was explored. These bottom-up structures could not be made by top-down techniques, and their unique properties as components of sensors, electronic devices, biological imaging agents, and drug delivery vehicles began to change the definition of the field. Ten years ago, Inelke Malsch published a study on the scientific trends and organizational dynamics of nanotechology in Europe (1999 Nanotechnology 10 1-7). Scientists from a variety of disciplines were asked which areas of research they would include in the definition of nanotechnology. Although the article concluded with forward-looking thoughts in the

  7. Total carbon measurement in whole tropical soil sample

    International Nuclear Information System (INIS)

    Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility, among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays, Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils

  8. Nanomaterials and the interface between nanotechnology and environment

    Directory of Open Access Journals (Sweden)

    Peter A Schulz

    2013-11-01

    Full Text Available Nanomaterials are the main products of nanotechnology. In this paper we describe some of these nanomaterials, particularly Carbon based systems, their properties, manipulation strategies and applications. History of nanoparticles, as well as the comple-xity in defining nanomaterials, necessary for regulation and assessment of impacts on society, are also addressed.

  9. Nanomaterials and the interface between nanotechnology and environment

    OpenAIRE

    Schulz, Peter A.

    2013-01-01

    Nanomaterials are the main products of nanotechnology. In this paper we describe some of these nanomaterials, particularly Carbon based systems, their properties, manipulation strategies and applications. History of nanoparticles, as well as the comple-xity in defining nanomaterials, necessary for regulation and assessment of impacts on society, are also addressed.

  10. Miniaturized sample preparation based on carbon nanostructures

    OpenAIRE

    Cárdenas Soledad

    2014-01-01

    The evolution of analytical methodologies has been driven by the objective to reduce the complexity of sample treatment while increasing the efficiency of the overall analytical process. For this reason, the analytical chemist takes into consideration advances in other scientific areas and systematically evaluates the potential influence that such discoveries might have on its own discipline. This is the present situation with nanostructured materials, which have alrea...

  11. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  12. Evaluation of Nanomaterial Approaches to Damping in Epoxy Resin and Carbon Fiber/Epoxy Composite Structures by Dynamic Mechanical Analysis

    Science.gov (United States)

    Miller, G.; Heimann, Paula J.; Scheiman, Daniel A.; Duffy, Kirsten P.; Johnston, J. Chris; Roberts, Gary D.

    2013-01-01

    Vibration mitigation in composite structures has been demonstrated through widely varying methods which include both active and passive damping. Recently, nanomaterials have been investigated as a viable approach to composite vibration damping due to the large surface available to generate energy dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle application as a coating resulting in up to a three-fold increase in damping.

  13. Advances in nanomaterials

    CERN Document Server

    Khan, Zishan

    2016-01-01

    This book provides a review of the latest research findings and key applications in the field of nanomaterials. The book contains twelve chapters on different aspects of nanomaterials. It begins with key fundamental concepts to aid readers new to the discipline of nanomaterials, and then moves to the different types of nanomaterials studied. The book includes chapters based on the applications of nanomaterials for nano-biotechnology and solar energy. Overall, the book comprises chapters on a variety of topics on nanomaterials from expert authors across the globe. This book will appeal to researchers and professional alike, and may also be used as a reference for courses in nanomaterials.

  14. Photoinduced toxicity of engineered nanomaterials

    Science.gov (United States)

    Jones, Philip Scott

    Engineered nanomaterials including metal, metal oxide and carbon based nanomaterials are extensively used in a wide variety of applications to the extent that their presence in the environment is expected to increase dramatically over the next century. These nanomaterials may be photodegraded by solar radiation and thereby release metal ions into the environment that can produce cytotoxic and genotoxic effects. Photoinduced toxicity experiments are performed exposing human lung epithelial carcinoma cells [H1650] to engineered semiconductor nanoparticles such as CdSe quantum dots and ZnO nanoparticles after exposure to 3, 6, and 9 hours of solar simulated radiation. Cytotoxicity and genotoxicity of the metal ions are evaluated using ZnSO4 and CdCl2 solutions for the MTT assay and Comet assay respectively. The objective of the dissertation is to obtain quantitative information about the environmental transformation of engineered nanomaterials and their mechanism of toxicity. This information is critical for addressing the environmental health and safety risks of engineered nanomaterials to workers, consumers and the environment.

  15. Deposition of carbon nanotubes in commonly used sample filter media

    Directory of Open Access Journals (Sweden)

    B.D. Smith

    2015-07-01

    Full Text Available There is no single standard technique or methodology to characterize the size, structure, number, and chemical composition of airborne carbon nanotubes.  Existing analytical instruments and analytical techniques for evaluating nanoparticle concentrations cannot simultaneously provide morphology, state of agglomeration, surface area, mass, size distribution and chemical composition data critical to making occupational health assessments.  This research utilized scanning electron microscopy and thermogravimetric analysis to assess the morphology and mass of carbon nanotubes collected using various commercial sample filters.  It illustrated carbon nanotube agglomeration, deposition and distribution in commonly used sample filter media.  It also illustrated that a sufficient mass for carbon nanotube analysis by thermogravimetric analysis is uncommon under most current research and production uses of carbon nanotubes.  Individual carbon nanotubes were found to readily agglomerate with diameters ranging from 1 – 63 µm. They were collected at the face of or within the filter.  They were not evenly distributed across the face of the filters.

  16. Semicontinuous automated measurement of organic carbon in atmospheric aerosol samples.

    Science.gov (United States)

    Lu, Chao; Rashinkar, Shilpa M; Dasgupta, Purnendu K

    2010-02-15

    A fully automated measurement system for ambient aerosol organic carbon, capable of unattended operation over extended periods, is described. Particles are collected in a cyclone with water as the collection medium. The collected sample is periodically aspirated by a syringe pump into a holding loop and then delivered to a wet oxidation reactor (WOR). Acid is added, and the WOR is purged to measure dissolved CO(2) or inorganic carbonates (IC) as evolved CO(2). The IC background can often be small and sufficiently constant to be corrected for, without separate measurement, by a blank subtraction. The organic material is now oxidized stepwise or in one step to CO(2). The one-step oxidation involves UV-persulfate treatment in the presence of ozone. This treatment converts organic carbon (OC) to CO(2), but elemental carbon is not oxidized. The CO(2) is continuously purged from solution and collected by two sequential miniature diffusion scrubbers (DSs), a short DS preceding a longer one. Each DS consists of a LiOH-filled porous hydrophobic membrane tube with terminal stainless steel tubes that function as conductance-sensing electrodes. As CO(2) is collected by the LiOH-filled DSs, hydroxide is converted into carbonate and the resulting decrease in conductivity is monitored. The simultaneous use of the dual short and long DS units bearing different concentrations of LiOH permits both good sensitivity and a large dynamic range. The limit of detection (LOD, S/N = 3) is approximately 140 ng of C. With a typical sampling period of 30 min at a sampling rate of 30 L/min, this corresponds to an LOD of 160 ng/m(3). The approach also provides information on the ease of oxidation of the carbonaceous aerosol and hence the nature of the carbon contained therein. Ambient aerosol organic carbon data are presented. PMID:20092351

  17. Occupational exposure to carbon black: a particulate sampling study.

    Science.gov (United States)

    Smith, R G; Musch, D C

    1982-12-01

    In order to determine the particulate exposure levels within carbon black production plants, a sampling survey involving workers from seven carbon black producers was initiated in late 1979. A total of 1,951 acceptable samples (1,564 total dust and 387 respirable dust) were collected from closed-face filter cassettes worn by carbon black workers performing normal work operations. A one-centimeter cyclone separator was employed for respirable dust sampling. Overall sampling distributions of the time-weighted average values generated from the survey were best described by the log-normal distribution. Characterization of the particulate exposures to workers is provided for the various areas of employment and specific jobs within these areas. Summary geometric mean time-weighted average values by area of employment and by job category are well within the carbon black permissible exposure limit (PEL) of 3.5 mg/m3. Identification of those job categories subject to relatively higher particulate exposures, and quantification of these exposures, is essential to the effective industrial hygiene monitoring and control of worker exposures. PMID:7158607

  18. Isotope analysis of carbon monoxide in atmospheric samples

    International Nuclear Information System (INIS)

    A technique was established that allows the analysis of carbon and oxygen isotope composition of CO in small air samples (250ml). The method is based on the oxidation of CO to CO2 with iodine pentoxide and the subsequent isotope analysis of CO2. Potential applications include the use of CO and its isotopes as a tracer to distinguish different pollution sources. (author)

  19. Comparison of Methods for Soil Sampling and Carbon Content Determination

    Directory of Open Access Journals (Sweden)

    Željka Zgorelec

    2011-03-01

    Full Text Available In this paper methods for sampling and analysis of total carbon in soil were compared. Soil sampling was done by sampling scheme according to agricultural soil monitoring recommendations. Soil samples were collected as single (four individual probe patterns and composite soil samples (16 individual probe patterns from agriculture soil. In soil samples mass ratio of total soil carbon was analyzed by dry combustion method (according to Dumas; HRN ISO 10694:2004 in Analytical Laboratory of Department of General Agronomy, Faculty of Agriculture University of Zagreb (FAZ and by oxidation method with chromium sulfuric acid (modified HRN ISO 14235:2004 in Analytical laboratory of Croatian Center for Agriculture, Food and Rural Affairs, Department of Soil and Land Conservation (ZZT. The observed data showed very strong correlation (r = 0.8943; n = 42 between two studied methods of analysis. Very strong correlation was also noted between different sampling procedures for single and composite samples in both laboratories, and coefficients of correlation were 0.9697 and 0.9950 (n = 8, respectively.

  20. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO2). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  1. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  2. Nanomaterials in Sensors

    OpenAIRE

    BelBruno, Joseph J.

    2013-01-01

    This Special Issue of Nanomaterials is focused on the continuing implementation of nanomaterials and nanostructures in the development of more sensitive and more specific sensing devices. As a result, these new devices employ smaller sensing elements and provide more “real time” capability. Often, the inclusion of nanomaterials leads to sensing elements for targets that were previously inaccessible.

  3. Handbook of nanomaterials properties

    CERN Document Server

    Luo, Dan; Schricker, Scott R; Sigmund, Wolfgang; Zauscher, Stefan

    2014-01-01

    Nanomaterials attract tremendous attention in recent researches. Although extensive research has been done in this field it still lacks a comprehensive reference work that presents data on properties of different Nanomaterials. This Handbook of Nanomaterials Properties will be the first single reference work that brings together the various properties with wide breadth and scope.

  4. Planar graphene oxide-based magnetic ionic liquid nanomaterial for extraction of chlorophenols from environmental water samples coupled with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cai, Mei-Qiang; Su, Jie; Hu, Jian-Qiang; Wang, Qian; Dong, Chun-Ying; Pan, Sheng-Dong; Jin, Mi-Cong

    2016-08-12

    A planar graphene oxide-based magnetic ionic liquid nanomaterial (PGO-MILN) was synthesized. The prepared PGO-MILN was characterized by transmission electronmicroscopy (TEM) and Fourier-transform infrared spectrometry (FTIR). The results of adsorption experiments showed that the PGO-MILN had great adsorption capacity for 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Based on the adsorption experimental data, a sensitive magnetic method for determination of the five CPs in environmental water samples was developed by an effective magnetic solid-phase extraction (MSPE) procedure coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of main MSPE parameters including the solution pH, extraction time, desorption time, and volume of desorption solution on the extraction efficiencies had been investigated in detail. The recoveries ranged from 85.3 to 99.3% with correlation coefficients (r) higher than 0.9994 and the linear ranges were between 10 and 500ngL(-1). The limits of detection (LODs) and limits of quantification (LOQs) of the five CPs ranged from 0.2 to 2.6ngL(-1) and 0.6 to 8.7ngL(-1), respectively. The intra- and inter- day relative standard deviations (RSDs) were in the range from 0.6% to 7.4% and from 0.7% to 8.4%, respectively. It was confirmed that the PGO-MILN was a kind of highly effective MSPE materials used for enrichment of trace CPs in the environmental water. PMID:27425762

  5. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    Science.gov (United States)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  6. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    Science.gov (United States)

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  7. Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study

    Science.gov (United States)

    Zhou, Cuifeng; Liu, Zongwen; Du, Xusheng; Mitchell, David Richard Graham; Mai, Yiu-Wing; Yan, Yushan; Ringer, Simon

    2012-03-01

    Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.

  8. Effects of carbon nanomaterials fullerene C60 and fullerol C60(OH)18–22 on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation

    International Nuclear Information System (INIS)

    In consequence of their growing use and demand, the inevitable environmental presence of nanomaterials (NMs) has raised concerns about their potential deleterious effects to aquatic environments. The carbon NM fullerene (C60), which forms colloidal aggregates in water, and its water-soluble derivative fullerol (C60(OH)18–22), which possesses antioxidant properties, are known to be photo-excited by ultraviolet (UV) or visible light. To investigate their potential hazards to aquatic organisms upon exposure to UV sunlight, this study analyzed (a) the in vitro behavior of fullerene and fullerol against peroxyl radicals (ROO·) under UV-A radiation and (b) the effects of these photo-excited NMs on oxidative stress parameters in functional gills extracted from the fish Cyprinus carpio (Cyprinidae). The variables measured were the total antioxidant capacity, lipid peroxidation (TBARS), the activities of the antioxidant enzymes glutathione reductase (GR) and glutamate cysteine ligase (GCL), and the levels of the non-enzymatic antioxidant glutathione (GSH). The obtained results revealed the following: (1) both NMs behaved in vitro as antioxidants against ROO· in the dark and as pro-oxidants in presence of UV-A, the latter effect being reversed by the addition of sodium azide, which is a singlet oxygen (1O2) quencher; (2) fullerene induced toxicity with or without UV-A incidence, with a significant (p 1O2 generation; and (3) fullerol also decreased GCL activity and GSH formation (p 1O2 formation.

  9. Estimation of carbon and sulphur in MDU samples by combustion method using carbon sulphur analyser

    International Nuclear Information System (INIS)

    Full text: The present paper describes an analytical method followed at Control Laboratory, Nuclear Fuel Complex (NFC) for the determination of carbon and sulphur content in Magnesium Diuranate (MDU) which is the starting material for the production of Nuclear grade Uranium Dioxide (UO2) pellets. The knowledge of carbon and sulphur content in MDU is prerequisite since it poses process related problems during the conversion process of MDU to UO2 powder. A high content of carbon in MDU causes frothing during its dissolution in nitric acid before the solvent extraction step. Likewise high sulphur in the form of sulphate affects the efficiency of solvent extraction where-in uranium forms complex with sulphate which will not be extracted into the aqueous phase. This leads to retention of high quantity of uranium in raffinate affecting the overall production of UO2 powder. Hence, estimation of carbon and sulphur in MDU is vital for production process of UO2 powder. The sample under test is burnt in a pre-degassed ceramic crucible with tungsten and iron as accelerators in a stream of oxygen. During this process, the carbon and sulphur present in the sample gets converted to their respective oxides and detected by a non-dispersive infrared absorption detector. The complete experimental details are discussed in the paper. Also the paper presents comparison of carbon and sulphur content in MDU samples obtained from Turamdih and Jaduguda mines. In addition, the effect of heating of MDU samples to different temperatures on their carbon and sulphur contents is also studied. The sulphur content as sulphate obtained from Carbon-Sulphur Analyzer (CSA) is compared with those obtained from Wave Length Dispersive X-Ray Fluorescence Spectrometer (WD-XRFS)

  10. Thermoelectric properties of carbon nanotube and nanofiber based ethylene-octene copolymer composites for thermoelectric devices, Journal of Nanomaterials

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, J.; Kovář, M.; Svoboda, P.

    2013-01-01

    Roč. 2013, August (2013). ISSN 1687-4110 Grant ostatní: TBU Zlin(CZ) iga/ft/2013/018; GA MŠk(CZ) EE.2.3.20.0104; GA MŠk(CZ) ED2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : CNF * carbon nanotubes * carbon nanofibers * power-factor * nanocomposites * behavior * network Subject RIV: BK - Fluid Dynamics Impact factor: 1.611, year: 2013 http://www.hindawi.com/journals/jnm/2013/792875/

  11. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    Directory of Open Access Journals (Sweden)

    Hurt Robert H

    2011-05-01

    Full Text Available Abstract Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90 and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs. Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2 of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1 as well as profibrotic (M2 phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model

  12. Facile and green approach to prepare fluorescent carbon dots: Emergent nanomaterial for cell imaging and detection of vitamin B2.

    Science.gov (United States)

    Kundu, Aniruddha; Nandi, Sudipta; Das, Pradip; Nandi, Arun K

    2016-04-15

    Carbon dots (CDs) are a new representative in carbonaceous family and have initiated remarkable research interests over the past one decade in a large variety of fields. Herein, we have utilized a facile, one-step carbonization method to prepare fluorescent carbon dots using poly(vinyl alcohol) (PVA) both as a carbon source and as a surface passivating agent. The as prepared CDs emit bright blue fluorescence under ultraviolet illumination. The structure and optical properties of the CDs are thoroughly investigated by several methods such as high-resolution transmission electron microscopy; dynamic light scattering; UV-vis, fluorescence and Fourier transform infrared spectroscopy. The CDs exhibit excellent water solubility and demonstrate average hydrodynamic diameter of 11.3 nm, holding great promise for biological applications. The biocompatibility evaluation and in vitro imaging study reveals that the synthesized CDs can be used as effective fluorescent probes in bio-imaging without noticeable cytotoxicity. In addition, a unique sensor for the detection of vitamin B2 in aqueous solution is proposed on the basis of spontaneous fluorescence resonance energy transfer from CD to vitamin B2. These findings therefore suggest that the CDs can find potential applications in cellular imaging along with sensing of vitamin B2. PMID:26852351

  13. Assessment of the toxic potential of graphene family nanomaterials

    OpenAIRE

    Xiaoqing Guo; Nan Mei

    2014-01-01

    Graphene, a single-atom-thick carbon nanosheet, has attracted great interest as a promising nanomaterial for a variety of bioapplications because of its extraordinary properties. However, the potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene-family nanomaterials. This review summarizes recent findings on the toxicological effects and the potential toxicity mechanisms of graphene-family nanomaterials in bacteria, mammalia...

  14. On the Mechanical Modeling, Visco-Elasticity and Application of Aerographite, a 3D Carbon Nano-Material

    OpenAIRE

    Schuchardt, Arnim

    2015-01-01

    A three dimensional carbon network material of seamless interconnected and hollow tubes, featuring a graphitic structure and an extremely low density has been designed and fabricated in cm3 volumes. The synthesis of this foam like material, named Aerographite, is based on highly-porous three dimensional networks from zinc oxide (ZnO) which are utilized as sacrifcial templates in a chemical vapor deposition (CVD) process. Such type of ZnO templates are produced by the flame transport synthesis...

  15. Transparent conductors composed of nanomaterials.

    Science.gov (United States)

    Layani, Michael; Kamyshny, Alexander; Magdassi, Shlomo

    2014-06-01

    This is a review on recent developments in the field of transparent conductive coatings (TCCs) for ITO replacement. The review describes the basic properties of conductive nanomaterials suitable for fabrication of such TCCs (metallic nanoparticles and nanowires, carbon nanotubes and graphene sheets), various methods of patterning the metal nanoparticles with formation of conductive transparent metallic grids, honeycomb structures and 2D arrays of interconnected rings as well as fabrication of TCCs based on graphene and carbon nanotubes. Applications of TCCs in electronic and optoelectronic devices, such as solar cells, electroluminescent and electrochromic devices, touch screens and displays, and transparent EMI shielders, are discussed. PMID:24777332

  16. Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Fabricated a nanostructured hybrid material of GNPs/neutral red/MWCNTs. • GNPs decorated on MWCNT template by using neutral red as interlinker for first time. • Nanocomposite modified electrode employed successfully as sensor for NADH. • The electrode has high stability as it does not involve any biological entity. - Abstract: A novel nanocomposite of gold nanoparticles/neutral red/MWCNTs was prepared which was used to modify glassy carbon electrode. The prepared nanocomposite was physically characterized by scanning electron microscopy, transmission electron microscopy, zeta potential measurement, energy dispersive X-ray, FTIR spectroscopy, UV–visible spectroscopy. Electrochemical characterization was done using cyclic voltammetry technique. The modified glassy carbon electrode showed electrocatalytic activity toward the oxidation of NADH in 0.1 M phosphate buffer solution, pH 5.0. The modified electrode has better adhesion over the electrode surface, good stability as no leaching of neutral red based nanocomposite was observed. The oxidation of NADH started at 0.37 V and reached maxima at 0.52 V at the modified electrode surface. So the prepared composite modified electrode can be applied as electrochemical sensor for NADH. The sensitivity and detection limits of the modified glassy carbon electrode were found to be 0.588 μA/mM and 5 × 10−7 at signal to noise ratio 3

  17. Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Ida, E-mail: sensorsbhu@yahoo.co.in; Gupta, Mandakini

    2014-01-01

    Graphical abstract: - Highlights: • Fabricated a nanostructured hybrid material of GNPs/neutral red/MWCNTs. • GNPs decorated on MWCNT template by using neutral red as interlinker for first time. • Nanocomposite modified electrode employed successfully as sensor for NADH. • The electrode has high stability as it does not involve any biological entity. - Abstract: A novel nanocomposite of gold nanoparticles/neutral red/MWCNTs was prepared which was used to modify glassy carbon electrode. The prepared nanocomposite was physically characterized by scanning electron microscopy, transmission electron microscopy, zeta potential measurement, energy dispersive X-ray, FTIR spectroscopy, UV–visible spectroscopy. Electrochemical characterization was done using cyclic voltammetry technique. The modified glassy carbon electrode showed electrocatalytic activity toward the oxidation of NADH in 0.1 M phosphate buffer solution, pH 5.0. The modified electrode has better adhesion over the electrode surface, good stability as no leaching of neutral red based nanocomposite was observed. The oxidation of NADH started at 0.37 V and reached maxima at 0.52 V at the modified electrode surface. So the prepared composite modified electrode can be applied as electrochemical sensor for NADH. The sensitivity and detection limits of the modified glassy carbon electrode were found to be 0.588 μA/mM and 5 × 10{sup −7} at signal to noise ratio 3.

  18. Nanomaterial cytotoxicity is composition, size, and cell type dependent

    Directory of Open Access Journals (Sweden)

    Sohaebuddin Syed K

    2010-08-01

    Full Text Available Abstract Background Despite intensive research efforts, reports of cellular responses to nanomaterials are often inconsistent and even contradictory. Additionally, relationships between the responding cell type and nanomaterial properties are not well understood. Using three model cell lines representing different physiological compartments and nanomaterials of different compositions and sizes, we have systematically investigated the influence of nanomaterial properties on the degrees and pathways of cytotoxicity. In this study, we selected nanomaterials of different compositions (TiO2 and SiO2 nanoparticles, and multi-wall carbon nanotubes [MWCNTs] with differing size (MWCNTs of different diameters 50 nm; but same length 0.5-2 μm to analyze the effects of composition and size on toxicity to 3T3 fibroblasts, RAW 264.7 macrophages, and telomerase-immortalized (hT bronchiolar epithelial cells. Results Following characterization of nanomaterial properties in PBS and serum containing solutions, cells were exposed to nanomaterials of differing compositions and sizes, with cytotoxicity monitored through reduction in mitochondrial activity. In addition to cytotoxicity, the cellular response to nanomaterials was characterized by quantifying generation of reactive oxygen species, lysosomal membrane destabilization and mitochondrial permeability. The effect of these responses on cellular fate - apoptosis or necrosis - was then analyzed. Nanomaterial toxicity was variable based on exposed cell type and dependent on nanomaterial composition and size. In addition, nanomaterial exposure led to cell type dependent intracellular responses resulting in unique breakdown of cellular functions for each nanomaterial: cell combination. Conclusions Nanomaterials induce cell specific responses resulting in variable toxicity and subsequent cell fate based on the type of exposed cell. Our results indicate that the composition and size of nanomaterials as well as the

  19. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    Science.gov (United States)

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  20. Preparation and electrochemistry of graphene nanosheets–multiwalled carbon nanotubes hybrid nanomaterials as Pd electrocatalyst support for formic acid oxidation

    International Nuclear Information System (INIS)

    Highlights: ► Graphene nanosheets–MWCNTs (GNS–CNTs) composites as Pd electrocatalysts support were synthesized by in situ reduction method. ► The direct electrooxidation of HCOOH is improved on the GNS–CNTs based catalyst. ► Both activity and durability of GNS–CNTs based catalyst are improved greatly. ► Pd/GNS–CNTs catalysts exhibit excellent performance when the mass ratio of GO to CNTs is 5:1. - Abstract: Graphene nanosheets–MWCNTs (GNS–CNTs) composites were synthesized by in situ reduction method, and then palladium nanoparticles (NPs) were supported on the GNS–CNTs by a microwave-assisted polyol process. Microstructure measurements showed that the graphene nanosheets and the CNTs formed a uniform nanocomposite with CNTs absorbed on the graphene nanosheets surface and/or filled between the graphene nanosheets. Compared to Pd/Vulcan XC-72R carbon, Pd/GNS, or Pd/CNTs catalysts, the Pd/GNS–CNTs catalysts exhibit excellent electrocatalytic activity and stability for formic acid electro-oxidation when the mass ratio of GO to CNTs is 5:1. The superior performance of Pd/GNS–CNTs catalysts may arise from large surface area utilization for NPs and enhanced electronic conductivity of the supports. Therefore, the GNS–CNTs composite should be a promising carbon material for application as electrocatalyst support in fuel cells.

  1. Highly thermal conductivity and infrared emissivity of flexible transparent film heaters utilizing silver-decorated carbon nanomaterials as fillers

    International Nuclear Information System (INIS)

    A flexible transparent film heater using functionalized few-walled carbon nanotubes and graphene nanosheets decorated with silver nanoparticles as fillers and poly(3,4-ethylenedioxythiophene)- poly(4-stryrenesulfonate) (PEDOT:PSS) as a dispersant possesses excellent optoelectronic and electrothermal properties. The film possesses a low sheet resistance of 53.0 ± 4.2 ohm · sq−1, a transmittance of 80.2 ± 0.8% at a wavelength of 550 nm, a high thermal conductivity of 142.0 ± 9.6 W · m−1 · K−1, a quick response time of less than 60 s, stable heating performance, good reliability, low power consumption, flexibility, and uniform heat diffusion. Besides, the film shows an average infrared emissivity of 0.53 in the wavelength range of 4 to 14 μm, which shows an outstanding heat release performance by radiation. The flexible transparent film heaters adopting graphene and carbon nanotubes as fillers boast excellent electrothermal performance through heat conduction and infrared radiation, suggesting that they are good substitutes for traditional metallic and indium tin oxide film heaters. (papers)

  2. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Taner [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  3. Digital Rock Simulation of Flow in Carbonate Samples

    Science.gov (United States)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  4. Nanomaterials in preventive dentistry

    Science.gov (United States)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  5. Nanomaterials science

    Directory of Open Access Journals (Sweden)

    Heinrich Rohrer

    2010-01-01

    interesting and daring research proposal, even if it interprets 'nano' somewhat too generously. After all, we want to promote top-class research and not average research just for the sake of 'nano'.Interfaces, material growth at given nano positions, shaping materials to a given nanosize and form, and bistability are key elements for functionalizing materials.InterfacesThe role of interfaces is rapidly increasing in science and technology. The number of interfaces increases with the square of the number of phases of materials. Even if the majority of them are impractical or useless, they are still much more abundant than the materials themselves, and they are the key to new functions. Think of the simple 'mechanical' interface responsible for the lotus effect where wetting is prevented by the rapidly changing surface curvature due to nanoparticles. Think of all the connections of a nanometer-sized area between very different materials, for example, for electron or spin transport. Think of the delicate interfaces that protect nanofunctional units from the environment but allow for communication of various types with other nanocomponents or with the macroscopic world. The solid–liquid interface plays a special role here. For me, it is the interface of the future, both for local growth and removal of nm3 quantities and for working with biological specimens requiring a liquid environment. Interfaces are the 'faces of action' and nanoscale materials science will be, to a great extent, 'interface science'. There is no need to change the name; attentive awareness suffices.Material growth at given nano positionsThis is the second central challenge in nanoscale materials science, but maybe still a futuristic one. We have heard much about the extraordinary properties of carbon nanotubes. They do a great job in certain applications, like tips of scanning tunneling and atomic force microscopes or nanoinjection needles or as bundles for electron emission or electron transport. As single

  6. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide–Au nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhuo, E-mail: guozhuochina@syuct.edu.cn [Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); Wang, Ze-yu [Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); Wang, Hui-hua, E-mail: hhwang@suda.edu.cn [Shagang School of Iron and Steel, Soochow University, Suzhou 215021 (China); Huang, Guo-qing; Li, Meng-meng [Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China)

    2015-12-01

    A sensitive electrochemical sensor has been fabricated to detect Isoniazid (INZ) using reduced graphene oxide (RGO) and Au nanocomposites (RGO–Au). RGO–Au nanocomposites were synthesized by a solution-based approach of chemical co-reduction of Au(III) and graphene oxide (GO), and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Fourier transform infrared (FT-IR). The Au nanoparticles separate the RGO sheets in the precipitate and prevent RGO sheets from aggregation upon π–π stacking interactions. RGO–Au nanocomposites were used to modify the glassy carbon electrode (GCE). The electrochemical properties of RGO–Au/GCE were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the RGO–Au/GCE exhibited remarkably strong electrocatalytic activities towards INZ. Under the optimized conditions, there was linear relationships between the peak currents and the concentrations in the range of 1.0 × 10{sup −7} M to 1.0 × 10{sup −3} M for INZ, with the limit of detection (LOD) (based on S/N = 3) of 1.0 × 10{sup −8} M for INZ. - Highlights: • RGO–Au nanocomposites were synthesized and characterized by chemical co-reduction of Au (III) and GO. • RGO–Au/GCE was used as a sensitive electrochemical sensor to detect Isoniazid. • RGO–Au/GCE exhibited strong electrocatalytic activities towards Isoniazid.

  7. Barium carbonate sediment sampling for inorganic dissolved carbon using isotope mass ratio spectrometer

    International Nuclear Information System (INIS)

    This paperwork explain the method of water sampling to obtain the precipitate of BaCO3 solutions that will be used to analyze 13C from field work in Kelana Jaya, Selangor, Langkawi, Kedah and Taiping, Perak. The sampling involves collecting of water samples for groundwater from boreholes and surface water from canal, river, pond and ex-mining pond from several locations at the study sites. This study also elaborates the instruments and chemicals used. The main purpose of this sampling is to obtain the precipitate of BaCO3 for 13C analysis of dissolved inorganic carbon (DIC). A correct sampling method according to standard is very important to ensure an accurate and precise result. With this, the data from the laboratory analysis result can be fully utilized to make the interpretation of the pollutants movement. (Author)

  8. Nanomaterial Induced Immune Responses and Cytotoxicity.

    Science.gov (United States)

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines. PMID:27398432

  9. Use of the small proportional counter for carbon 14 measurement in 10 milligram carbon samples

    International Nuclear Information System (INIS)

    Ten years ago, the measurement of C-14/C-12 ratios in 10 milligram carbon samples seemed to be technically out of reach. However, two developments that make this goal possible have recently occurred: the first is an entirely new mass-spectrometric separation of C-14 and C-12 ions and their subsequent estimation by counting, while the second is simply the extension of conventional proportional counter operation (using CO2 as counter gas) to very small size carbon samples. The first method is very fast, precise, and capable of treating samples of even sub-milligram size, but requires an expensive installation. The second method is slow (counting times of two months or more are necessary), can probably be made sufficiently precise to handle most problems, works down to sample sizes of 10 mg carbon, and is relatively inexpensive, especially to install in already existing radiocarbon laboratories. It is this second method and its implications that are discussed in the present paper

  10. FOREWORD Nanomaterials science Nanomaterials science

    Science.gov (United States)

    Rohrer, Heinrich

    2010-10-01

    daring research proposal, even if it interprets 'nano' somewhat too generously. After all, we want to promote top-class research and not average research just for the sake of 'nano'. Interfaces, material growth at given nano positions, shaping materials to a given nanosize and form, and bistability are key elements for functionalizing materials. InterfacesThe role of interfaces is rapidly increasing in science and technology. The number of interfaces increases with the square of the number of phases of materials. Even if the majority of them are impractical or useless, they are still much more abundant than the materials themselves, and they are the key to new functions. Think of the simple 'mechanical' interface responsible for the lotus effect where wetting is prevented by the rapidly changing surface curvature due to nanoparticles. Think of all the connections of a nanometer-sized area between very different materials, for example, for electron or spin transport. Think of the delicate interfaces that protect nanofunctional units from the environment but allow for communication of various types with other nanocomponents or with the macroscopic world. The solid-liquid interface plays a special role here. For me, it is the interface of the future, both for local growth and removal of nm3 quantities and for working with biological specimens requiring a liquid environment. Interfaces are the 'faces of action' and nanoscale materials science will be, to a great extent, 'interface science'. There is no need to change the name; attentive awareness suffices. Material growth at given nano positionsThis is the second central challenge in nanoscale materials science, but maybe still a futuristic one. We have heard much about the extraordinary properties of carbon nanotubes. They do a great job in certain applications, like tips of scanning tunneling and atomic force microscopes or nanoinjection needles or as bundles for electron emission or electron transport. As single carbon

  11. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  12. Investigating the Toxicity and Environmental Fate of Graphene Nanomaterials

    Science.gov (United States)

    The Hersam Laboratory at Northwestern University works with the Center for Environmental Implications of Nanotechnology and the United States Environmental Protection Agency to study the toxicity and environmental fate of emergent nanomaterials, specifically carbon-based nanomate...

  13. Optical Characterization of Natural Nontoxic Nanomaterials

    Science.gov (United States)

    Rao, Devulapalli; Yelleswarapu, Chandra

    2013-03-01

    Synthetic nanomaterials - carbon nanotubes, semiconductor nanoparticles, nanowires and nanorods, metal clusters in polymer films - are extensively studied for potential photonic applications. Naturally occurring halloysite nanotubes offer additional advantages of high tensile strength, nontoxcity and biocompatibility. Halloysite is receiving lot of attention for application as low cost nanoscale container for encapsulation of biologically active molecules, drugs, and anticorrosion agents. We studied the optical properties of halloysite nanotube samples of length ~1000 nm with 50 nm external diameter and 15 nm internal diameter. The hollysite sample was provided by Prof. Yuri Lvov, Institute for Micromanufacturing, Louisiana Tech. The sample suspended in water at a concentration 2.5 mg/ml exhibits a broad optical absorption band in the visible region with a peak ~600 nm. Z-scan studies are carried out, with 3 nsec laser pulses of frequency doubled Nd:YAG laser, using 1 mm glass cell containing the sample suspended in acetone at a concentration 0.66 mg/ml. Open aperture z-scan measurements indicate two-photon absorption. Closed aperture z-scan measurements exhibit a positive nonlinear refractive index. Results of photoacoustic z-scan currently in progress will also be presented.

  14. Preparation of carbon-nitride bulk samples in the presence of seed carbon-nitride films

    International Nuclear Information System (INIS)

    A procedure was developed for preparing bulk carbon-nitride crystals from polymeric α-C3N4.2 at high pressure and high temperature in the presence of seeds of crystalline carbon-nitride films prepared by using a high-voltage discharge plasma combined with pulsed laser ablation of a graphite target. The samples were evaluated by using X-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrated that the nitrogen composition in the α-C3N4.2 material, which initially contained more than 58 % nitrogen, decreased during the annealing process and reached a common, stable composition of ∼ 45 %. The thermobaric experiments were performed at 10 - 77 kbar and 350 - 1200 .deg. C.

  15. Nanomaterial-based biosensors for food toxin detection.

    Science.gov (United States)

    Malhotra, Bansi D; Srivastava, Saurabh; Ali, Md Azahar; Singh, Chandan

    2014-10-01

    There is an increased interest toward the development of bioelectronic devices for food toxin (mycotoxins) detection. Mycotoxins are highly toxic secondary metabolites produced by fungi like Fusarium, Aspergillus, and Penicillium that are frequently found in crops or during storage of food including cereals, nuts, fruits, etc. The contamination of food by mycotoxins has become a matter of increasing concern. High levels of mycotoxins in the diet can cause adverse, acute, and chronic effects on human health and a variety of animal species. Side effects may particularly affect the liver, kidney, nervous system, endocrine system, and immune system. Among 300 mycotoxins known till date, there are a few that are considered to play an important part in food safety, and for these, a range of analytical methods have been developed. Some of the important mycotoxins include aflatoxins, ochratoxins, fumonisins, citreoviridin, patulin, citrinin, and zearalenon. The conventional methods of analysis of mycotoxins normally require sophisticated instrumentation, e.g., liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. Hence, new analysis tools are necessary to attain more sensitive, specific, rapid, and reliable information about the desired toxin. For the last about two decades, the research and development of simpler and faster analytical procedures based on affinity biosensors has aroused much interest due to their simplicity and sensitivity. The nanomaterials have recently had a great impact on the development of biosensors. The functionalized nanomaterials are used as catalytic tools, immobilization platforms, or as optical or electroactive labels to improve the biosensing performance to obtain higher sensitivity, stability, and selectivity. Nanomaterials, such as carbon nanomaterials (carbon nanotubes and graphene), metal nanoparticles, nanowires, nanocomposites, and nanostructured metal oxide nanoparticles

  16. Nanomaterials for electrochemical sensing and biosensing

    CERN Document Server

    Pumera, Martin

    2014-01-01

    Part 1: Nanomaterial-Based ElectrodesCarbon Nanotube-Based Electrochemical Sensors and Biosensors, Martin Pumera, National Institute for Materials Science, JapanElectrochemistry on Single Carbon Nanotube, Pat Collier, Caltech, USATheory of Voltammetry at Nanoparticle-Modified Electrodes, Richard G. Compton, Oxford University, UKMetal Oxide Nanoparticle-Modified Electrodes, Frank Marken, University of Bath, UKSemiconductor Quantum Dots for Electrochemical Bioanalysis, Eugenii Katz, Clarkson University, USAN

  17. Carbon monoxide stability in stored postmortem blood samples.

    Science.gov (United States)

    Kunsman, G W; Presses, C L; Rodriguez, P

    2000-10-01

    Carbon monoxide (CO) poisoning remains a common cause of both suicidal and accidental deaths in the United States. As a consequence, determination of the percent carboxyhemoglobin (%COHb) level in postmortem blood is a common analysis performed in toxicology laboratories. The blood specimens analyzed are generally preserved with either EDTA or sodium fluoride. Potentially problematic scenarios that may arise in conjunction with CO analysis are a first analysis or a reanalysis requested months or years after the initial toxicology testing is completed; both raise the issue of the stability of carboxyhemoglobin in stored postmortem blood specimens. A study was conducted at the Bexar County Medical Examiner's Office to evaluate the stability of CO in blood samples collected in red-, gray-, and purple-top tubes by comparing results obtained at the time of the autopsy and after two years of storage at 3 degrees C using either an IL 282 or 682 CO-Oximeter. The results from this study suggest that carboxyhemoglobin is stable in blood specimens collected in vacutainer tubes, with or without preservative, and stored refrigerated for up to two years. PMID:11043662

  18. Nanomaterials and Nanochemistry

    CERN Document Server

    Bréchignac, Catherine; Lahmani, Marcel

    2007-01-01

    Nanomaterials are a fast developing field of research and applications lie in many separate domains, such as in hi-tech (optics, electronics, biology, aeronautics), but also in consumer industries (automotive, concrete, surface treatments (including paints), cosmetics, etc.).

  19. Characterization of nanomaterials

    International Nuclear Information System (INIS)

    This paper provides an overview of the main techniques used for the characterization of nanomaterials. The knowledge of some basic characteristics, inherent morphology, microstructure, the distribution phase and chemical composition, it is essential to evaluate the functional properties of nanomaterials and make predictions about their behavior in operation. For the characterization of nanomaterials can be used in both imaging techniques both analytic techniques. Among the first found wide application optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Among the latter some types of spectroscopy and X-ray diffraction (XRD). For each type of material to characterize the choice of the most appropriate technique it is based on the type of details that you want to obtain, and on their scale. In this paper are discussed in detail some examples and the main methods used for the characterization of nanomaterials.

  20. Food decontamination using nanomaterials

    Science.gov (United States)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  1. Towards Safer Nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Baun, Anders

    2014-01-01

    As nanomaterials become more widespread in everything from industrial processes to consumer products, concerns about human and environmental safety are being taken increasingly more seriously. In our research we are working with minimizing the impact and risks of engineered nanomaterials by looking...... into how the design of nanomaterials can be optimized to minimize their toxicity while still preserving their beneficial or wanted properties. Current efforts in this field are focusing on identifying design rules or parameters that can be adjusted to obtain a risk reduction, either by reducing the...... hazard or the exposure and optimally both. Examples include the 5 SAFER principles (Morose, 2010) or screenings of early warning signs (Hansen et al., 2013). Taking the full life cycle of nanomaterials into account, the principles of Green chemistry and Green engineering could also prove useful to reduce...

  2. Center for Functional Nanomaterials

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Functional Nanomaterials (CFN) explores the unique properties of materials and processes at the nanoscale. The CFN is a user-oriented research center...

  3. Safe use of nanomaterials

    CERN Multimedia

    2013-01-01

    The use of nanomaterials  is on the increase worldwide, including at CERN. The HSE Unit has established a safety guideline to inform you of the main requirements for the safe handling and disposal of nanomaterials at CERN.   A risk assessment tool has also been developed which guides the user through the process of evaluating the risk for his or her activity. Based on the calculated risk level, the tool provides a list of recommended control measures.   We would therefore like to draw your attention to: Safety Guideline C-0-0-5 - Safe handling and disposal of nanomaterials; and Safety Form C-0-0-2 - Nanomaterial Risk Assessment   You can consult all of CERN’s safety rules and guidelines here. Please contact the HSE Unit for any questions you may have.   The HSE Unit

  4. 3rd International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2016-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engine...

  5. NANOMATERIALS AND COSMETICS

    OpenAIRE

    E. ALĞIN YAPAR1,*, Ö. İNAL2, E. ALĞIN YAPAR1,*, Ö. İNAL2

    2014-01-01

    SUMMARYThis review has overviewed the nanotechnology approaches and safety concerns in cosmetics. Nanotechnology based nanomaterials have been widely use in cosmetics for recent few years such as in sunscreens, hair products, skincare products, etc. However debate on their definition and insufficient quantification methods are major problems still occur in the nanomaterial field. Moreover the frequent use of cosmetics, safety of nanoscale ingredients of them has gain importance mainly by mean...

  6. Emulsion droplets as a dynamic interface for the direct and large-scale synthesis of ultrathin free-standing mesoporous silica films as well as 2D polymeric and carbon nanomaterials

    Science.gov (United States)

    Li, Jian; Zhu, Wei; Ji, Jingwei; Wang, Peng; Wang, Chen; Yin, Xianpeng; Wang, Hui; Lan, Yue; Gao, Ning; Li, Guangtao

    2016-01-01

    The efficient synthesis of free-standing mesostructured two-dimensional (2D) nanofilms with high-yield as well as good control of composite, mesophase structure, orientation of the pore channel and thickness represents a big challenge. In this work, it was serendipitously found that microemulsion droplets of tetraethylorthosilicate (TEOS) could serve as a novel dynamic interface for continuous growth of nanofilms. Based on this finding, a general, efficient strategy for the direct and large-scale synthesis of free-standing mesoporous silica films (FSMSFs) was developed. Remarkably, with the careful control of the synthesis conditions, the FSMSFs with high-yield as well as good control of composite, mesophase structure, orientation of the pore channel and thickness could be efficiently achievable. More importantly, by using polymerizable surfactants the preorganized monomers in the nanochannels of the resultant silica films could be further converted into 2D polymers and carbon nanomaterials as well as metal particle-decorated forms, as exemplified by using pyrrole-terminated surfactants, demonstrating a powerful method to create 2D inorganic, organic or hybrid functional nanomaterials.The efficient synthesis of free-standing mesostructured two-dimensional (2D) nanofilms with high-yield as well as good control of composite, mesophase structure, orientation of the pore channel and thickness represents a big challenge. In this work, it was serendipitously found that microemulsion droplets of tetraethylorthosilicate (TEOS) could serve as a novel dynamic interface for continuous growth of nanofilms. Based on this finding, a general, efficient strategy for the direct and large-scale synthesis of free-standing mesoporous silica films (FSMSFs) was developed. Remarkably, with the careful control of the synthesis conditions, the FSMSFs with high-yield as well as good control of composite, mesophase structure, orientation of the pore channel and thickness could be efficiently

  7. Nanomaterials for Electronics and Optoelectronics

    Science.gov (United States)

    Koehne, Jessica E.; Meyyappan, M.

    2011-01-01

    Nanomaterials such as carbon nanotubes(CNTs), graphene, and inorganic nanowires(INWs) have shown interesting electronic, mechanical, optical, thermal, and other properties and therefore have been pursued for a variety of applications by the nanotechnology community ranging from electronics to nanocomposites. While the first two are carbon-based materials, the INWs in the literature include silicon, germanium, III-V, II-VI, a variety of oxides, nitrides, antimonides and others. In this talk, first an overview of growth of these three classes of materials by CVD and PECVD will be presented along with results from characterization. Then applications in development of chemical sensors, biosensors, energy storage devices and novel memory architectures will be discussed.

  8. Computational Studies about the Interactions of Nanomaterials with Proteins and their Impacts

    CERN Document Server

    An, Deyi; Li, Chunhua; Li, Jingyuan

    2015-01-01

    Intensive concerns about the biosafety of nanomaterials demand the systematic study of the mechanisms about their biological effects. Many biological effects can be attributed to the interaction of nanomaterials with protein and their impacts on protein function. On the other hand, nanomaterials exhibit the potential in a variety of biomedical applications, many of which also involve the direct interaction with protein. In this paper, we review some recent computational studies about this subject, especially the interaction of carbon and gold nanomaterials. Besides the hydrophobic and {\\pi}-stacking interactions, the interaction mode of carbon nanomaterials can be regulated by their functional groups. And the coating of gold nanomaterials also adjusts their interaction mode, in addition to the coordination interaction with cysteine's sulfur group and histidine's imidazole group. Moreover, nanomaterials can interact with multiple proteins and the impacts on protein activity are attributed to a wide spectrum of...

  9. Emulsion droplets as a dynamic interface for the direct and large-scale synthesis of ultrathin free-standing mesoporous silica films as well as 2D polymeric and carbon nanomaterials.

    Science.gov (United States)

    Li, Jian; Zhu, Wei; Ji, Jingwei; Wang, Peng; Wang, Chen; Yin, Xianpeng; Wang, Hui; Lan, Yue; Gao, Ning; Li, Guangtao

    2016-01-28

    The efficient synthesis of free-standing mesostructured two-dimensional (2D) nanofilms with high-yield as well as good control of composite, mesophase structure, orientation of the pore channel and thickness represents a big challenge. In this work, it was serendipitously found that microemulsion droplets of tetraethylorthosilicate (TEOS) could serve as a novel dynamic interface for continuous growth of nanofilms. Based on this finding, a general, efficient strategy for the direct and large-scale synthesis of free-standing mesoporous silica films (FSMSFs) was developed. Remarkably, with the careful control of the synthesis conditions, the FSMSFs with high-yield as well as good control of composite, mesophase structure, orientation of the pore channel and thickness could be efficiently achievable. More importantly, by using polymerizable surfactants the preorganized monomers in the nanochannels of the resultant silica films could be further converted into 2D polymers and carbon nanomaterials as well as metal particle-decorated forms, as exemplified by using pyrrole-terminated surfactants, demonstrating a powerful method to create 2D inorganic, organic or hybrid functional nanomaterials. PMID:26785674

  10. Aggregation, Deposition and Release of Graphene Oxide Nanomaterials in the Aquatic Environment

    Science.gov (United States)

    Graphene is an atomically thin two dimensional carbon-based nanomaterial that is composed of a single layer of sp2 – hybridized carbon atoms as found in graphite.1, 2 Usage of graphene-based nanomaterials is increasing rapidly and these materials are predicted to be the most abun...

  11. Effect of pressure on nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Uma D. [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar-263145 (India); Kumar, M., E-mail: munish_dixit@yahoo.co [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar-263145 (India)

    2010-07-01

    A simple theory is proposed to predict the effect of pressure on nanomaterials, which gets support from the Mie-Gruneisen theory of thermal expansivity as formulated by Born and Huang. We considered LiAlSi{sub 2}O{sub 6} to study the effect of pressure in the light of other formulations, viz. Murnaghan, Birch-Murnaghan, Vinet and Kumar. The results obtained are found to present a good agreement with the experimental data as well as other formulations. To confirm the validity of the formulation, we applied the method to study the compression behaviour of a number of nanomaterials, viz. CdSe, Rb{sub 3}C{sub 60}, Ni(20 nm), carbon nanotube, {gamma}-Fe{sub 2}O{sub 3}, {epsilon}-Fe (Hexagonal iron), MgO, CuO, {gamma}-Al{sub 2}O{sub 3} (67 nm), {alpha}-Fe{sub 2}O{sub 3}, {alpha}-Fe (filled nanotube), TiO{sub 2} (anatase), 3C-SiC (30 nm), TiO{sub 2} (rutile phase), Zr{sub 0.1}Ti{sub 0.9}O{sub 2}, AlN (hexagonal), {gamma}-Si{sub 3}N{sub 4}, Ni-filled MWCNT and Fe-filled MWCNT. The results obtained are compared with the experimental data. A good agreement between theory and experiment demonstrates the validity of the present approach.

  12. Application of nanotechnologies and nanomaterials

    International Nuclear Information System (INIS)

    Full text: In the present report, we give a brief description of the present state, development, and application of nanotechnologies (NT) and nanomaterials (NM) in some key industries, such as chemical industry and power industry (nanocatalysts, and nanocatalysis, hydrogen storage and fuel cells, artificial photosynthesis and Gratzel's cell, energy efficiency, energy storage); fabrication of consolidated nanostructures (ceramic nano-materials, nanostructured coatings, production of low-combustibility plastics, nanostructured hard materials, nanostructures with colossal magnetoresistance); fabrication of ultra-high strength carbon fibres; nano-technologies for environmental protection (adsorption of heavy metals by self-ordered self-organized nano-structure ensembles, photocatalyric purification of liquids, fabrication of mesoporous materials, application of nanoporous polymers for water purification, nanoparticles and environment); medical applications; military applications and fight against terrorism; household applications; energetic and some other [1-7].; In 2010, the European Union and the governments of the USA and Japan each invested over $ 2 billion in nanoscience, which is ample evidence to substantiate the claim that the 21st century will be the century of nanotechnologies. Some of the optimistic forecasts predict that in 2014 the total revenues from NT will exceed those brought by the information technologies and telecommunications combined. At present, more than 800 companies are involved in R&TD in this field (including giants such as Intel, IBM, Samsung, and Mitsubishi) while more than ten Nobel prizes were awarded for research in nanoscience

  13. Biological and Pharmaceutical Nanomaterials

    Science.gov (United States)

    Kumar, Challa S. S. R.

    2006-01-01

    This first comprehensive yet concise overview of all important classes of biological and pharmaceutical nanomaterials presents in one volume the different kinds of natural biological compounds that form nanomaterials or that may be used to purposefully create them. This unique single source of information brings together the many articles published in specialized journals, which often remain unseen by members of other, related disciplines. Covering pharmaceutical, nucleic acid, peptide and DNA-Chitosan nanoparticles, the book focuses on those innovative materials and technologies needed for the continued growth of medicine, healthcare, pharmaceuticals and human wellness. For chemists, biochemists, cell biologists, materials scientists, biologists, and those working in the pharmaceutical and chemical industries.

  14. Magnetic Nanomaterials and Their Applications

    Directory of Open Access Journals (Sweden)

    Yurii K. Gun'ko

    2014-06-01

    Full Text Available This Special Issue of Nanomaterials is dedicated to the development of new magnetic nanomaterials and their applications in biomedicine, catalysis, spintronics and other areas. The publications in this Issue demonstrate that the interest in magnetic nanomaterials is continuously growing and their realm is expanding rapidly. Some highlights of the publications in this issue are discussed below. [...

  15. Manipulation and behavior modeling of one-dimensional nanomaterials on a structured surface

    International Nuclear Information System (INIS)

    Different diameters of multiwall carbon nanotubes (CNTs) are manipulated by a cantilever tip of an atomic force microscope (AFM) to investigate the motion properties of one-dimensional nanomaterials on a structured surface. To describe the mechanical behaviors of this kind of samples, two mechanical models based on continuum mechanics are proposed. Through foreseeable manipulation procedures, we are able to position the tubes onto pre-etched micro trenches, and then measure their Young's moduli by the three-point bending method. Both string-like and beam-like deformation forms are observed on the tested samples. Additionally, we present a reparable 'collapse' phenomenon of the nanotube bridges.

  16. Photocatalyst Nanomaterials for Environmental Challenges and Opportunities

    OpenAIRE

    Koo Y; Collins B; Sankar J; Yun Y

    2012-01-01

    Climate change caused by fossil-fuel use and other natural causes as well as Western and Asian economic growth driven by excessive consumption is among the biggest environmental challenges of the 21st century. Advances in nanotechnology bring a new tool set to remediate environmental challenges such as pollutant removal, anti-terror, air/liquid/soil filtration, and carbon dioxide conversion to hydrocarbons. As innovative engineered nanomaterials emerge, it is ...

  17. Toxicity of nanomaterials

    NARCIS (Netherlands)

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There

  18. Effects of alkaline precipitating agents on synthesis of magnetite nanomaterials by hydrothermal d-glucose method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei, E-mail: zhangwei.hebut@gmail.com [Hebei University of Technology, Engineering Research Center of Seawater Utilization Technology, Ministry of Education (China); Jia Shaoyi; Wu Songhai [Tianjin University, School of Chemical Engineering and Technology (China); Zhang Shaofeng; Liu Yan [Hebei University of Technology, Engineering Research Center of Seawater Utilization Technology, Ministry of Education (China)

    2013-06-15

    Pure magnetite (Fe{sub 3}O{sub 4}) nanoparticles and carbon-coated magnetite (Fe{sub 3}O{sub 4}/C) nanocomposites were facilely synthesized in a hydrothermal reaction system by changing sodium hydroxide and sodium acetate as the precipitating agents, respectively. The sizes of pure Fe{sub 3}O{sub 4} nanoparticles and Fe{sub 3}O{sub 4}/C nanocomposites with core-shell structure were varied from 10 to 120 nm, and the magnetic properties of these two samples performed as superparamagnetic and ferrimagnetic. A possible formation mechanism for these two types of magnetite nanomaterials was discussed. It was the different alkali environments provided by the precipitating agents that led to the varieties in morphology, structure, and property of the final magnetite nanomaterials.

  19. Effects of alkaline precipitating agents on synthesis of magnetite nanomaterials by hydrothermal d-glucose method

    International Nuclear Information System (INIS)

    Pure magnetite (Fe3O4) nanoparticles and carbon-coated magnetite (Fe3O4/C) nanocomposites were facilely synthesized in a hydrothermal reaction system by changing sodium hydroxide and sodium acetate as the precipitating agents, respectively. The sizes of pure Fe3O4 nanoparticles and Fe3O4/C nanocomposites with core–shell structure were varied from 10 to 120 nm, and the magnetic properties of these two samples performed as superparamagnetic and ferrimagnetic. A possible formation mechanism for these two types of magnetite nanomaterials was discussed. It was the different alkali environments provided by the precipitating agents that led to the varieties in morphology, structure, and property of the final magnetite nanomaterials.

  20. Research on determining organic carbon in rock and mineral samples by gas chromatography

    International Nuclear Information System (INIS)

    The authors introduce results of research on transformation mechanism, temperature and time of organic carbon during analysis of rock and mineral samples by gas chromatography, as well as conditions for eliminating carbonate constituent that may produce carbon dioxide gas. The research has solved the problem of connecting the chemical processing and instrument determination. The newly-established method is characterized by high sensitivity, good exactitude, simple and fast operation, and may be applied to the determination of organic carbon in rock, mineral, as well as sediment samples

  1. Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors

    Directory of Open Access Journals (Sweden)

    Honglan Qi

    2009-01-01

    Full Text Available Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL involves the generation of species at electrode surfaces that then undergo electron-transfer reactions to form excited states that emit light. ECL biosensor, combining advantages offered by the selectivity of the biological recognition elements and the sensitivity of ECL technique, is a powerful device for ultrasensitive biomolecule detection and quantification. Nanomaterials are of considerable interest in the biosensor field owing to their unique physical and chemical properties, which have led to novel biosensors that have exhibited high sensitivity and stability. Nanomaterials including nanoparticles and nanotubes, prepared from metals, semiconductor, carbon or polymeric species, have been widely investigated for their ability to enhance the efficiencies of ECL biosensors, such as taking as modification electrode materials, or as carrier of ECL labels and ECL-emitting species. Particularly useful application of nanomaterials in ECL biosensors with emphasis on the years 2004-2008 is reviewed. Remarks on application of nanomaterials in ECL biosensors are also surveyed.

  2. Inorganic nanomaterials for tumor angiogenesis imaging

    International Nuclear Information System (INIS)

    Tumor angiogenesis plays an important role in cancer development and metastasis. Noninvasive detection of angiogenic activities is thus of great importance in cancer diagnosis as well as evaluation of cancer therapeutic responses. Various angiogenesis-related molecular targets have been identified and used in tumor vasculature targeting and imaging. Recently, inorganic nanomaterials with various unique intrinsic physical properties have attracted growing interest in biomedical imaging applications. This article will review current progresses in the applications of inorganic nanoprobes in molecular angiogenesis imaging. Several types of nanomaterials with various optical properties, including semiconductor quantum dots (QDs), single-walled carbon nanotubes (SWNTs), upconversion nanoparticles (UCNPs), and surface-enhanced Raman scattering (SERS) nanoparticles, have been used as novel optical probes to image angiogenic events. Besides optical imaging, magnetic resonance imaging (MRI) of angiogenesis using magnetic nanoparticles has also been intensively investigated. Moreover, nanomaterials provide unique platforms for the integration of various imaging modalities together with therapeutic functionalities for multi-modality imaging and therapy. Although the application of inorganic nanomaterials in clinical imaging and diagnosis is still facing many challenges, the unique properties and functions of these novel nanoprobes make them very promising agents in angiogenesis imaging and could bring great opportunities to this fast-growing field. (orig.)

  3. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  4. Interaction of engineered nanomaterials with hydrophobic organic pollutants

    Science.gov (United States)

    Sahle-Demessie, E.; Han, Changseok; Zhao, Amy; Hahn, Bill; Grecsek, Heidi

    2016-07-01

    As nanomaterials become an increasing part of everyday consumer products, it is imperative to monitor their potential release during production, use and disposal, and to assess their impact on the health of humans and the ecosystem. This necessitates research to better understand how the properties of engineered nanomaterials (ENMs) lead to their accumulation and redistribution in the environment, and to assess whether they could become novel pollutants or if they can affect the mobility and bioavailability of other toxins. This study focuses on understanding the influence of nanostructured-TiO2 and the interaction of multi-walled carbon nanotubes with organic pollutants in water. We studied the adsorption and water phase dispersion of model pollutants with relatively small water solubility (i.e., two- and three-ring polyaromatic hydrocarbons and insecticides) with respect to ENMs. The sorption of pollutants was measured based on water phase analysis, and by separating suspended particles from the water phase and analyzing dried samples using integrated thermal–chromatographic–mass spectroscopic (TGA/GC/MS) techniques. Solid phase analysis using a combination of TGA/GC/MS is a novel technique that can provide real-time quantitative analysis and which helps to understand the interaction of hydrophobic organic pollutants and ENMs. The adsorption of these contaminants to nanomaterials increased the concentration of the contaminants in the aqueous phase as compared to the ‘real’ partitioning due to the octanol–water partitioning. The study showed that ENMs can significantly influence the adsorption and dispersion of hydrophobic/low water soluble contaminants. The type of ENM, the exposure to light, and the water pH have a significant influence on the partitioning of pollutants.

  5. Asphalt in carbon-14-dated archaeological samples from Terqa, Syria

    International Nuclear Information System (INIS)

    The results are reported of an organic geochemical study to verify contamination in 14C dated archaeological samples, which could account for much older apparent ages than expected. The data indicate that ancient asphalt must be the source of contamination, showing that caution should be exercised, in interpreting 14C dates of archaeological samples from areas containing asphalt or other fossil fuel deposits. (U.K.)

  6. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM).

    Science.gov (United States)

    Miodek, Anna; Mejri, Nawel; Gomgnimbou, Michel; Sola, Christophe; Korri-Youssoufi, Hafsa

    2015-09-15

    Two-step electrochemical patterning methods have been employed to elaborate composite nanomaterials formed with multiwalled carbon nanotubes (MWCNTs) coated with polypyrrole (PPy) and redox PAMAM dendrimers. The nanomaterial has been demonstrated as a molecular transducer for electrochemical DNA detection. The nanocomposite MWCNTs-PPy has been formed by wrapping the PPy film on MWCNTs during electrochemical polymerization of pyrrole on the gold electrode. The MWCNTs-PPy layer was modified with PAMAM dendrimers of fourth generation (PAMAM G4) with covalent bonding by electro-oxidation method. Ferrocenyl groups were then attached to the surface as a redox marker. The electrochemical properties of the nanomaterial (MWCNTs-PPy-PAMAM-Fc) were studied using both square wave voltammetry and cyclic voltammetry to demonstrate efficient electron transfer. The nanomaterial shows high performance in the electrochemical detection of DNA hybridization leading to a variation in the electrochemical signal of ferrocene with a detection limit of 0.3 fM. Furthermore, the biosensor demonstrates ability for sensing DNA of rpoB gene of Mycobacterium tuberculosis in real PCR samples. Developed biosensor was suitable for detection of sequences with a single nucleotide polymorphism (SNP) T (TCG/TTG), responsible for resistance of M. tuberculosis to rifampicin drug, and discriminating them from wild-type samples without such mutation. This shows potential of such systems for further application in pathogens diagnostic and therapeutic purpose. PMID:26313137

  7. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP;

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store...... internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths,vith trichomes in......) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol...

  8. Environmental behavior of engineered nanomaterials in porous media: a review.

    Science.gov (United States)

    Park, Chang Min; Chu, Kyoung Hoon; Heo, Jiyong; Her, Namguk; Jang, Min; Son, Ahjeong; Yoon, Yeomin

    2016-05-15

    A pronounced increase in the use of nanotechnology has resulted in nanomaterials being released into the environment. Environmental exposure to the most common engineered nanomaterials (ENMs), such as carbon-based and metal-based nanomaterials, can occur directly via intentional injection for remediation purposes, release during the use of nanomaterial-containing consumer goods, or indirectly via different routes. Recent reviews have outlined potential risks assessments, toxicity, and life cycle analyses regarding ENM emission. In this review, inevitable release of ENMs and their environmental behaviors in aqueous porous media are discussed with an emphasis on influencing factors, including the physicochemical properties of ENMs, solution chemistry, soil hydraulic properties, and soil matrices. Major findings of laboratory column studies and numerical approaches for the transport of ENMs are addressed, and studies on the interaction between ENMs and heavy metal ions in aqueous soil environments are examined. Future research is also presented with specific research directions and outlooks. PMID:26882524

  9. Assessment of the toxic potential of graphene family nanomaterials

    Directory of Open Access Journals (Sweden)

    Xiaoqing Guo

    2014-03-01

    Full Text Available Graphene, a single-atom-thick carbon nanosheet, has attracted great interest as a promising nanomaterial for a variety of bioapplications because of its extraordinary properties. However, the potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene-family nanomaterials. This review summarizes recent findings on the toxicological effects and the potential toxicity mechanisms of graphene-family nanomaterials in bacteria, mammalian cells, and animal models. Graphene, graphene oxide, and reduced graphene oxide elicit toxic effects both in vitro and in vivo, whereas surface modifications can significantly reduce their toxic interactions with living systems. Standardization of terminology and the fabrication methods of graphene-family nanomaterials are warranted for further investigations designed to decrease their adverse effects and explore their biomedical applications.

  10. An Overview of Nanomaterials for Water and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Haijiao Lu

    2016-01-01

    Full Text Available Due to the exceptional characteristics which resulted from nanoscale size, such as improved catalysis and adsorption properties as well as high reactivity, nanomaterials have been the subject of active research and development worldwide in recent years. Numerous studies have shown that nanomaterials can effectively remove various pollutants in water and thus have been successfully applied in water and wastewater treatment. In this paper, the most extensively studied nanomaterials, zero-valent metal nanoparticles (Ag, Fe, and Zn, metal oxide nanoparticles (TiO2, ZnO, and iron oxides, carbon nanotubes (CNTs, and nanocomposites are discussed and highlighted in detail. Besides, future aspects of nanomaterials in water and wastewater treatment are discussed.

  11. Determination of carbon-14 environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discused and compared. The method of collection of atmospheric samples is also described. (Author)

  12. Determination of Carbon-14 in environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discussed and compared. The method of collection of atmospheric samples is also described. (Author) 10 refs

  13. Nanomaterials and nanofabrication for biomedical applications

    Science.gov (United States)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    carriers (e.g. polymers, gold nanoparticles, Prussian blue nanoparticles, mesoporous silica nanoparticles and carbon-based nanomaterials). Here, we would like to show our deep appreciation to all authors and reviewers. Without their great help and contributions, this focus issue, including the review and original papers, would not have been published on schedule. This focus issue may not cover all issues in this emerging scientific field; however, we believe that our efforts have great potential 'to hurl a boulder to draw a jade' and ignite innovation and challenging discussion in the relevant scientific communities.

  14. Nanomaterials for Photocatalytic Reactions

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Spáčilová, Lucie; Maléterová, Ywetta; Matějková, Martina; Morozová, Magdalena

    Maribor : Inštitut za okoljevarstvo in senzorje d.o.o, 2013 - (Lobnik, A.; Gutmaher, A.), s. 121 ISBN 978-961-92863-2-6. [International Scientific Conference on Nanomaterials and Applications NANOAPP /1./. Portorož (SI), 22.09.2013-26.09.2013] Grant ostatní: NATO(US) SPS(NUKR.SFPP) 984398 Institutional support: RVO:67985858 Keywords : photocatalysis * endocrine disruptors * wastewater decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. Nanomaterials in ecotoxicology

    DEFF Research Database (Denmark)

    Scott-Fordsmand, Janeck James; Krogh, Paul Henning; Lead, Jamie M

    2008-01-01

    In ecotoxicology, a problem exists of quantifying real exposure and corresponding effects, especially in complex environments such as the soil. Hence, for a given total soil concentration to which the organism is exposed, the effect level depends on the available fraction and the chemical status ...... ion activity models (FlAM) and biotic ligand models (BLM). Quantification and characterization of actual exposure is also of concern for nanomaterial and nanoparticle (NP) terrestrial ecotoxicology...

  16. Sustainable nanomaterials? – How to apply “early warning signs” to screen nanomaterials for harmful properties

    DEFF Research Database (Denmark)

    Baun, Anders; Hansen, Steffen Foss

    2014-01-01

    endeavors. This presentation explores how the first lesson – “Acknowledge and respond to ignorance, uncertainty and risk in technology appraisal” could be applied to screen nanomaterials. In cases of ignorance, uncertainty and risk, the EEA recommends paying particular attention to important warning signs...... such as novelty, persistency, whether materials are readily dispersed in the environment, and whether they bioaccumulate or lead to potentially irreversible action. Through an analysis of these criteria using five well‐known nanomaterials (titanium dioxide, carbon nanotubes, liposomes, poly...... how these warning signs can be used by different stakeholders such as nanomaterial researchers and developers, companies and regulators to design benign nanomaterials, communicate what is known about nano‐risks and decide on whether to implement precautionary regulatory measures....

  17. Influence of sample composition on aerosol organic and black carbon determinations

    International Nuclear Information System (INIS)

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550 degrees C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations

  18. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  19. Toxicology of Nanomaterials: Permanent interactive learning

    Directory of Open Access Journals (Sweden)

    Castranova Vince

    2009-10-01

    Full Text Available Abstract Particle and Fibre Toxicology wants to play a decisive role in a time where particle research is challenged and driven by the developments and applications of nanomaterials. This aim is not merely quantitative in publishing a given number of papers on nanomaterials, but also qualitatively since the field of nanotoxicology is rapidly emerging and benchmarks for good science are needed. Since then a number of things have happened that merit further analysis. The interactive learning issue is best shown by report and communications on the toxicology of multi-wall carbon nanotubes (CNT. A special workshop on the CNT has now been organized twice in Nagano (Japan and this editorial contains a summary of the most important outcomes. Finally, we take the opportunity discuss some recent reports from the nanotech literature, and more specifically a Chinese study that claims severe consequences of nanoparticle exposure.

  20. Sample distillation/graphitization system for carbon pool analysis by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    A facility at the Naval Research Laboratory (NRL), Washington, DC, has been developed to extract, trap, cryogenically distill and graphitize carbon from a suite of organic and inorganic carbon pools for analysis by accelerator mass spectrometry (AMS). The system was developed to investigate carbon pools associated with the formation and stability of methane hydrates. However, since the carbon compounds found in hydrate fields are ubiquitous in aquatic ecosystems, this apparatus is applicable to a number of oceanographic and environmental sample types. Targeted pools are dissolved methane, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), solid organic matrices (e.g., seston, tissue and sediments), biomarkers and short chained (C1-C5) hydrocarbons from methane hydrates. In most instances, the extraction, distillation and graphitization events are continuous within the system, thus, minimizing the possibility of fractionation or contamination during sample processing. A variety of methods are employed to extract carbon compounds and convert them to CO2 for graphitization. Dissolved methane and DIC from the same sample are sparged and cryogenically separated before the methane is oxidized in a high temperature oxygen stream. DOC is oxidized to CO2 by 1200 W ultraviolet photo-oxidation lamp, and solids oxidized in sealed, evacuated tubes. Hydrocarbons liberated from the disassociation of gas hydrates are cryogenically separated with a cryogenic temperature control unit, and biomarkers separated and concentrated by preparative capillary gas chromatography (PCGC). With this system, up to 20 samples, standards or blanks can be processed per day

  1. β-Cyclodextrin anchoring onto pericarpium granati-derived magnetic mesoporous carbon for selective capture of lopid in human serum and pharmaceutical wastewater samples.

    Science.gov (United States)

    Liu, Rui-Lin; Zhang, Zhi-Qi; Jing, Wang-Hui; Wang, Lu; Luo, Zhi-Min; Chang, Rui-Miao; Zeng, Ai-Guo; Du, Wei; Chang, Chun; Fu, Qiang

    2016-05-01

    Functionalized magnetic carbonaceous nanomaterials, which are important materials with many practical and research applications in biomedical, pharmaceutical and biological fields, have recently attracted much attention. In this study, a magnetic mesoporous carbon coated with β-cyclodextrin (MMC@β-CD) was synthesized for the first time from natural pericarpium granati (PG). The as-obtained MMC@β-CD has high surface areas (203m(2)g(-1)), large pore volumes (0.16cm(3)g(-1)), relatively broad mesoporous sizes (6.8nm) and a high saturation magnetization of 26.2emug(-1), which is sufficient for magnetic separation by an external magnetic field. The MMC@β-CD was used as an innovative adsorbent for magnetic solid-phase extraction of lopid via host-guest interaction prior to spectrofluorometric analysis. The proposed method was successfully applied to analyze lopid in human serum and pharmaceutical wastewater samples with recoveries in the range of 85.0-103.5% for the spiked samples. Overall, this work not only provides an inexpensive and eco-friendly method to fabricate MMC@β-CD (or MMC) from PG, but also develops a highly selective approach for capture of lopid in biological samples and environmental substances. PMID:26952464

  2. Energetics of Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Frances

    2004-12-13

    This project, ''Energetics of Nanomaterials'', represents a three-year collaboration among Alexandra Navrotsky (University of California at Davis), Brian Woodfield and Juliana Boerio-Goates (Brigham Young University) and Frances Hellman (University of California at San Diego). Its purpose has been to explore the differences between bulk materials, nanoparticles, and thin films in terms of their thermodynamic properties, with an emphasis on heat capacities and entropies, as well as enthalpies. We used our combined experimental techniques to address the following questions: How does energy and entropy depend on particle size and crystal structure? Do entropic differences have their origins in changes in vibrational densities of states or configurational (including surface configuration) effects? Do material preparation and sample geometry, i.e., nanoparticles versus thin films, change these quantities? How do the thermodynamics of magnetic and structural transitions change in nanoparticles and thin films? Are different crystal structures stabilized for a given composition at the nanoscale, and are the responsible factors energetic, entropic, or both? How do adsorption energies (for water and other gases) depend on particle size and crystal structure in the nanoregime? What are the energetics of formation and strain energies in artificially layered thin films? Do the differing structures of grain boundaries in films and nanocomposites alter the energetics of nanoscale materials? Of the several directions we first proposed, we initially concentrated on a few systems: TiO(sub 2), CoO, and CoO-MgO. In these systems, we were able to clearly identify particle size-dependent effects on energy and vibrational entropy, and to separate out the effect of particle size and water content on the enthalpy of formation of the various TiO(sub 2) polymorphs. With CoO, we were able to directly compare nanoparticle films and bulk materials; this comparison is

  3. Center for Functional Nanomaterials (CFN)

    Data.gov (United States)

    Federal Laboratory Consortium — The CFN at Brookhaven National Laboratory focuses on understanding the chemical and physical response of nanomaterials to make functional materials such as sensors,...

  4. Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The neutralization method has been used for synthesis of silver-doped fluorapatite powders. • Particles of silver-doped fluorapatite samples are of nano size and homogenous in composition. • The Ag+-doped fluorapatite samples showed antibacterial effect against Kllebsiela pneumoniae, Staphylococcus aureus and Micrococcus luteus. • AFM studies showed that silver-doped sample causes considerable morphological changes of tested bacterial cells. - Abstract: Silver doped fluorapatite nanopowders were synthesised by neutralization method, which consists of dissolving Ag2O in solution of HF and H3PO4 and addition to suspension of Ca(OH)2. The powder XRD, SEM and FTIR studies indicated the formation of a fluorapatite nanomaterials with average length of the particles is about 80 nm and a width of about 15 nm. The FTIR studies show that carbonate content in samples is very small and carbonte ions substitute both phosphate and hydroxyl groups in the crystal structure of samples, forming AB-type fluorapatite. Antibacterial studies have demonstrated that all Ag+-doped fluorapatite samples exhibit bactericidal effect against pathogens: Staphylococcus aureus, Micrococcus luteus and Kllebsiela pneumoniae. Antibacterial activity increased with the increase of Ag+ in the samples. The atomic force microscopy studies revealed extensive damage to the bacterial cell envelops in the presence of Ag+-doped fluorapatite particles which may lead to their death. The synthesized Ag+-doped fluorapatite nanomaterials are promising as antibacterial biomaterials in orthopedics and dentistry

  5. Synthesis and Characterization of Bio-based Nanomaterials from Jabon (Anthocephalus cadamba (Roxb. Miq Wood Bark: an Organic Waste Material from Community Forest

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2015-06-01

    Full Text Available The application of nanotechnology to produce nanomaterials from renewable bio-based materials, like wood bark, has great potential to benefit the wood processing industry. To support this issue, we investigated the production of bio-based nanomaterials using conventional balls milling. Jabon (Anthocephalus cadamba(Roxb. Miq wood bark (JWB, an organic waste material from a community forest was subjected to conventional balls milling for 96 h and was converted into bio-based nanomaterial. The morphology and particle size, chemical components, functional groups and crystallinity of the bio-based nanomaterial were evaluated using scanning electron microscopy (SEM, scanning electron microscopy extended with energy dispersive X-ray spectroscopy (SEM-EDS, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The particle-sizes obtained for the JWB bio-based nanomaterial were between 43 nm to 469 nm and the functional groups were detected as cellulose. The chemical components found were carbon, oxygen, chloride, potassium and calcium, except for the sample produced from sieve type T14, which did not contain chloride. The crystalline structure was calcium oxalate hydrate (C2CaO4.H2O with crystalline sizes 21 nm and 15 nm, produced from sieve types T14 and T200 respectively.

  6. Developing Korean Standard for Nanomaterial Exposure Assessment

    OpenAIRE

    Lee, Ji Hyun; Lee, Jun Yeob; Yu, Il Je

    2011-01-01

    Nanotechnology is now applied to many industries, resulting in wide range of nanomaterial-containing products, such as electronic components, cosmetic, medicines, vehicles, and home appliances. Nanoparticles can be released throughout the life cycle of nanoproducts, including the manufacture, consumer use, and disposal, thereby involving workers, consumers, and the environment in potential exposure. However, there is no current consensus on the best sampling method for characterizing manufact...

  7. Computational studies on the interactions of nanomaterials with proteins and their impacts

    Science.gov (United States)

    An, De-Yi; Su, Ji-Guo; Li, Chun-Hua; Li, Jing-Yuan

    2015-12-01

    The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomaterials show potential for a variety of biomedical applications, many of which also involve direct interactions with proteins. In this paper, we review some recent computational studies on this subject, especially those investigating the interactions of carbon and gold nanomaterials. Beside hydrophobic and π-stacking interactions, the mode of interaction of carbon nanomaterials can also be regulated by their functional groups. The coatings of gold nanomaterials similarly adjust their mode of interaction, in addition to coordination interactions with the sulfur groups of cysteine residues and the imidazole groups of histidine residues. Nanomaterials can interact with multiple proteins and their impacts on protein activity are attributed to a wide spectrum of mechanisms. These findings on the mechanisms of nanomaterial-protein interactions can further guide the design and development of nanomaterials to realize their application in disease diagnosis and treatment. Project supported by the National Natural Science Foundation of China (Grant Nos. 21273240, 11204267, and 11474013).

  8. Electrocatalysis at metal nanomaterials

    Science.gov (United States)

    Dai, Lin

    Direct liquid fuel cells, such as direct methanol fuel cells and direct formic acid fuel cells, have attracted much attention in the past decades due to the need of clean and efficient power sources. One of the most critical issues in the development of highly efficient fuel cells is to increase the rates of fuel-cell reactions as a commercial product. As a result, the topic of electrocatalysis plays a significant role in the investigations of fuel cell reactions. For methanol oxidation, platinum based nanomaterials are the most important catalysts. For formic acid oxidation, both platinum and palladium based nanomaterials are widely employed as the catalysts. Recently, shape-control of the nanoparticles has become an imperative task due to the fact that most of the reactions in fuel cells are sensitive to the surface structure of the catalysts. Though numerous studies have been conducted in past to elucidate the catalytic activity on the nanomaterials with different shapes, the results are inconclusive. Herein, systematic comparison of catalytic activity toward methanol and formic acid oxidation on shape-controlled cubic platinum-based alloy nanoparticles with different alloy element are reported in this dissertation. Methanol and formic acid oxidation reactions on spherical and cubic Pt-Cu nanoparticles are also studied. Cu-Pd nanoparticles are synthesized through galvanic redox reactions to provide significantly higher and much more stable formic acid oxidation activities. Interparticle distance effect is investigated on two dimensional nanoparticle array electrodes with controlled particle size, which is ideal model system for exploring the interparticle distance effects on the voltammetric behavior and reaction mechanisms.

  9. Nanomaterials design and simulation

    CERN Document Server

    Balbuena, Perla

    2006-01-01

    Over the past few decades, several approaches have been developed for designing nano-structured or molecularly-structured materials. These advances have revolutionized practically all fields of science and engineering, providing an additional design variable, the feature size of the nano-structures, which can be tailored to provide new materials with very special characteristics. Nanomaterials: Design and Simulation explores the role that such advances have made toward a rational design of nanostructures and covers a variety of methods from ab initio electronic structure techniques, ab initio

  10. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  11. Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulation of the autophagic flux with the release of nanomaterial in autophagic vesicles

    Czech Academy of Sciences Publication Activity Database

    Orecna, M.; De Paoli, S. H.; Janoušková, Olga; Tegegn, T. Z.; Filipová, M.; Bonevich, J. E.; Holada, K.; Simak, J.

    2014-01-01

    Roč. 10, č. 5 (2014), s. 939-948. ISSN 1549-9634 Institutional support: RVO:61389013 Keywords : carbon nanotubes * autophagy * bafilomycin A1 Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.155, year: 2014

  12. LCA of metal nanomaterial production

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Diaz, Elsa Gabriela Alvarado; Olsen, Stig Irving

    The use of engineered nanomaterials (ENMs) in commercial product has reached a new stage, where consumers in their daily life are frequently encountered with products containing this new material class. Metal and metal-oxide nanomaterials are among the most commonly used ENMs in products. Potential...

  13. Analysis of equation of state for nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Uma D., E-mail: uma_sharma18@yahoo.co [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar 263145 (India); Kumar, Munish, E-mail: munish_dixit@yahoo.co [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar 263145 (India)

    2011-02-15

    An equation of state (EOS) recently proposed for nanomaterials is discussed critically. Different possible forms of the EOS are discussed with their correlations. We have considered 20 nanomaterials for this purpose, viz. CdSe, Rb{sub 3}C{sub 60}, carbon nanotube, {gamma}-Fe{sub 2}O{sub 3}, {epsilon}-Fe (hexagonal iron), MgO, {gamma}-Al{sub 2}O{sub 3} (67 nm), {alpha}-Fe{sub 2}O{sub 3}, {alpha}-Fe (filled nanotube), TiO{sub 2} (anatase), 3C-SiC (30 nm), TiO{sub 2} (rutile phase), Zr{sub 0.1}Ti{sub 0.9}O{sub 2}, {gamma}-Si{sub 3}N{sub 4}, Ni-filled MWCNT, Fe-filled MWCNT, CeO{sub 2} (cubic fluorite phase and orthorhombic phase), germanium (49 nm), GaN (wurtzite phase) and SnO{sub 2} (rutile phase) (14 nm). It is found that the change in the form of EOS does not improve the results. This demonstrates the validity of the EOS proposed for nanomaterials. The EOS is also used to study the effect of temperature on compression of Ni (20 nm). It is found that there is small shift in isotherm due to increase in the temperature. The results have been found to present a good agreement with the available experimental data.

  14. Nanomaterials for biosensing applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael eHolzinger

    2014-08-01

    Full Text Available A biosensor device is defined by its biological, or bioinspired receptor unit with unique specificities towards corresponding analytes. These analytes are often of biological origin like DNAs or proteins from the immune system (antibodies, antigens of diseases or infections. Such analytes can also be simple molecules like glucose or pollutants when a biological receptor unit with particular specificity is available. One of many other challenges in biosensor development is the efficient signal capture of the biological recognition event (transduction. Such transducers translate the interaction of the analyte with the biological element into electrochemical, electrochemiluminescent, magnetic, gravimetric, or optical signals. In order to increase sensitivities and to lower detection limits down to even individual molecules, nanomaterials are promising candidates due to the possibility to immobilize an enhanced quantity of bioreceptor units at reduced volumes and even to act itself as transduction element. Among such nanomaterials, gold nanoparticles, semi-conductor quantum dots, polymer nanoparticles, carbon nanotubes, nanodiamonds, and graphene are intensively studied. Due to the vast evolution of this research field, this review summarizes in a non-exhaustive way the advantages of nanomaterials by focusing on nano-objects which provide further beneficial properties than just an enhanced surface area.

  15. Nanomaterials for biosensing applications: A Review

    Science.gov (United States)

    Holzinger, Michael; Le Goff, Alan; Cosnier, Serge

    2014-08-01

    A biosensor device is defined by its biological, or bioinspired receptor unit with unique specificities towards corresponding analytes. These analytes are often of biological origin like DNAs or proteins from the immune system (antibodies, antigens) of diseases or infections. Such analytes can also be simple molecules like glucose or pollutants when a biological receptor unit with particular specificity is available. One of many other challenges in biosensor development is the efficient signal capture of the biological recognition event (transduction). Such transducers translate the interaction of the analyte with the biological element into electrochemical, electrochemiluminescent, magnetic, gravimetric, or optical signals. In order to increase sensitivities and to lower detection limits down to even individual molecules, nanomaterials are promising candidates due to the possibility to immobilize an enhanced quantity of bioreceptor units at reduced volumes and even to act itself as transduction element. Among such nanomaterials, gold nanoparticles, semi-conductor quantum dots, polymer nanoparticles, carbon nanotubes, nanodiamonds, and graphene are intensively studied. Due to the vast evolution of this research field, this review summarizes in a non-exhaustive way the advantages of nanomaterials by focusing on nano-objects which provide further beneficial properties than “just” an enhanced surface area.

  16. Nanomaterials - What energy landscapes can tell us

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2015-09-01

    Full Text Available Nanomaterials bridge the gaps between crystalline materials, thin films, and molecules, and are of great importance in the design of new classes of materials, since the existence of many modifications of a nano-object for the same overall composition allows us to tune the properties of the nanomaterial. However, the structural analysis of nano-size systems is often difficult and their structural stability is frequently relatively low. Thus, a study of their energy landscape is needed to determine or predict possible structures, and analyse their stability, via the determination of the minima on the landscape and the generalized barriers separating them. In this contribution, we introduce the major concepts of energy landscapes for chemical systems, and present summaries of four applications to nano-materials: a MgO monolayer on a sapphire substrate, possible quasitwo-dimensional carbon-silicon networks, the ab initio energy landscape of Cu4Ag4-clusters, and the possible arrangements of ethane molecules on an ideally smooth substrate.

  17. Health effects of nanomaterials.

    Science.gov (United States)

    Tetley, T D

    2007-06-01

    With the rapid growth of nanotechnology and future bulk manufacture of nanomaterials comes the need to determine, understand and counteract any adverse health effects of these materials that may occur during manufacture, during use, or accidentally. Nanotechnology is expanding rapidly and will affect many aspects of everyday life; there are already hundreds of products that utilize nanoparticles. Paradoxically, the unique properties that are being exploited (e.g. high surface reactivity and ability to cross cell membranes) might have negative health impacts. The rapid progress in development and use of nanomaterials is not yet matched by toxicological investigations. Epidemiological studies implicate the ultrafine (nano-sized) fraction of particulate air pollution in the exacerbation of cardiorespiratory disease and increased morbidity. Experimental animal studies suggest that the increased concentration of nanoparticles and higher reactive surface area per unit mass, alongside unique chemistry and functionality, is important in the acute inflammatory and chronic response. Some animal models have shown that nanoparticles which are deposited in one organ (e.g. lung and gut) may access the vasculature and target other organs (e.g. brain and liver). The exact relationship between the physicochemistry of a nanoparticle, its cellular reactivity, and its biological and systemic consequences cannot be predicted. It is important to understand such relationships to enjoy the benefits of nanotechnology without being exposed to the hazards. PMID:17511644

  18. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  19. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    CERN Document Server

    Rhinow, Daniel; Weber, Nils-Eike; Beyer, André; Gölzhäuser, Armin; Kühlbrandt, Werner; Hampp, Norbert; Turchanin, Andrey; 10.1016/j.ultramic.2011.01.028

    2011-01-01

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ~ 1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, sus...

  20. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    International Nuclear Information System (INIS)

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ∼1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, suspended over the holes of a conventional holey carbon film, while backed by ultrathin cCNM. -- Research highlights: → We examine ultrathin carbon nanomembranes (CNM) as supports for biological TEM. → CNM comprise crosslinked biphenyl precursors. → CNM supports enable background-free elemental mapping of heavy and light elements. → We perform cryoEM of ice-embedded biological samples on graphene-like conductive CNM.

  1. Response of Heterogeneous and Fractured Carbonate Samples to CO2-Brine Exposure

    Science.gov (United States)

    Smith, M. M.; Mason, H. E.; Hao, Y.; Carroll, S.

    2014-12-01

    Carbonate rock units are often considered as candidate sites for storage of carbon dioxide (CO2), whether as stand-alone reservoirs or coupled with enhanced oil recovery efforts. In order to accept injected carbon dioxide, carbonate reservoirs must either possess sufficient preexisting connected void space, or react with CO2-acidified fluids to produce more pore space and improve permeability. However, upward migration of CO2 through barrier zones or seal layers must be minimized for effective safe storage. Therefore, prediction of the changes to porosity and permeability in these systems over time is a key component of reservoir management. Towards this goal, we present the results of several experiments on carbonate core samples from the Wellington, Kansas 1-32 well, conducted under reservoir temperature, pressure, and CO2 conditions. These samples were imaged by X-ray computed tomography (XRCT) and analyzed with nuclear magnetic resonance (NMR) spectroscopy both prior to and after reaction with CO2-enriched brines. The carbonate samples each displayed distinct responses to CO2 exposure in terms of permeability change with time and relative abundance of calcite versus dolomite dissolution. The measured permeability of each sample was also much lower than that estimated by downhole NMR logging, with samples with larger fractured regions possessing higher permeability values. We present also our modeling approach and preliminary simulation results for a specific sample from the targeted injection zone. The heterogeneous composition as well as the presence of large fractured zones within the rock necessitated the use of a nested three-region approach to represent the range of void space observed via tomography. Currently, the physical response to CO2-brine flow (i.e., pressure declines with time) is reproduced well but the extent of chemical reaction is overestimated by the model.

  2. A new hydrogen peroxide biosensor based on synergy of Au-Au2S2O3 core–shell nanomaterials and multi-walled carbon nanotubes towards hemoglobin

    International Nuclear Information System (INIS)

    A new H2O2 biosensor was constructed by immobilizing Hb in the Chit-MWNTs/Au-Au2S2O3 composite membrane. Owing to the superior performance of novel Au-Au2S2O3 core–shell nanomaterials and its synergy with multi-walled carbon nanotubes (MWNTs), the direct electron transfer of Hb in composite membrane was easily achieved. The Chit-MWNTs/Hb/Au-Au2S2O3/GCE displayed a pair of well-defined and reversible redox peaks in 0.1 M pH 7.0 PBS. The electrocatalytic reduction to H2O2 of Chit-MWNTs/Hb/Au-Au2S2O3/GCE was also studied. Its apparent Michaelis–Menten constant for H2O2 was 0.014 mM, showing a good affinity. The experimental results showed that the linear dependence of the biosensor was from 4.0 × 10−5 to 7.2 × 10−4 M, and the detection limit of the sensor was 3.2 × 10−6 M (S/N = 3). Moreover, the biosensor showed a rapid response to H2O2, a good stability and reproducibility.

  3. The determination of chromium in water samples by neutron activation analysis after preconcentration on activated carbon

    International Nuclear Information System (INIS)

    A method is presented for the determination of chromium in sea- and fresh water. Chromium is concentrated on activated carbon from a neutral solution after a previous reduction of chromate with sodium sulfite at pH 1.5. The adsorption conditions, acidity, concentrations, amount of carbon, stirring-time, sample-volume, salinity, the influence of storage on the ratio of tervalent to hexavalent chromium, were investigated. The final determination of the total chromium content is performed by instrumental neutron-activation analysis. By preconcentration on activated carbon, a differentiation between tervalent and hexavalent chromium is possible. A separate determination of both species is not yet feasible due to the high carbon blank and to the necessity of measuring the adsorption percentage on carbon. The lower limit of determination, which depends on the value of the carbon blank, is 0.05 μg Cr/l with a precision of 20%. The determination is hampered by the considerable blank from the carbon. The use of activated carbon prepared from recrystallized sugar will probably improve the lower limit of determination and possibly allow the determination of chromate. (T.G.)

  4. Nanomechanics of Fiber-like Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Property characterization of nanomaterials is challenged by the small size of the structure because of the difficulties in manipulation. Here we demonstrate a novel approach that allows a direct measurement of the mechanical properties of individual nanotube-like structures by in-situ transmission electron microscopy(TEM).The technique is powerful in a way that it can directly correlate the atomic-scale microstructure of the carbon nanotube with its physical properties,providing a one-to-one correspondence in structure-property characterization. Applications of the technique will be demonstrated on mechanical properties, the electron field emission and the ballistic quantum conductance in individual nanotubes.

  5. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling.

    Science.gov (United States)

    Tansel, Berrin; Surita, Sharon C

    2016-06-01

    Siloxane levels in biogas can jeopardize the warranties of the engines used at the biogas to energy facilities. The chemical structure of siloxanes consists of silicon and oxygen atoms, alternating in position, with hydrocarbon groups attached to the silicon side chain. Siloxanes can be either in cyclic (D) or linear (L) configuration and referred with a letter corresponding to their structure followed by a number corresponding to the number of silicon atoms present. When siloxanes are burned, the hydrocarbon fraction is lost and silicon is converted to silicates. The purpose of this study was to evaluate the adequacy of activated carbon gas samplers for quantitative analysis of siloxanes in biogas samples. Biogas samples were collected from a landfill and an anaerobic digester using multiple carbon sorbent tubes assembled in series. One set of samples was collected for 30min (sampling 6-L gas), and the second set was collected for 60min (sampling 12-L gas). Carbon particles were thermally desorbed and analyzed by Gas Chromatography Mass Spectrometry (GC/MS). The results showed that biogas sampling using a single tube would not adequately capture octamethyltrisiloxane (L3), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). Even with 4 tubes were used in series, D5 was not captured effectively. The single sorbent tube sampling method was adequate only for capturing trimethylsilanol (TMS) and hexamethyldisiloxane (L2). Affinity of siloxanes for activated carbon decreased with increasing molecular weight. Using multiple carbon sorbent tubes in series can be an appropriate method for developing a standard procedure for determining siloxane levels for low molecular weight siloxanes (up to D3). Appropriate quality assurance and quality control procedures should be developed for adequately quantifying the levels of the higher molecular weight siloxanes in biogas with sorbent tubes

  6. Distribution of hydrogen peroxide-dependent reaction in a gelatin sample irradiated by carbon ion beam

    International Nuclear Information System (INIS)

    We investigated the amount and distribution of hydrogen peroxide (H2O2) generated in a solid gelatin sample irradiated by heavy ion (carbon) beam. We irradiated the gelatin sample, which contained a nitroxyl radical (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TEMPOL), with a 290-MeV/nucleon carbon beam (-128 Gy). To verify the distribution of H2O2 generation in the irradiated sample, we employed both electron paramagnetic resonance (EPR) spectroscopic and magnetic resonance (MR) imaging methods based on H2O2-dependent paramagnetic loss of TEMPOL. We obtained a distribution profile of the H2O2-dependent reaction in the gelatin sample when we irradiated gelatin samples with carbon beams with several different linear energy transfer (LET) values. Because the profiles of oxygen consumption in the gelatin sample measured by L-band EPR oxymetry and of the H2O2-dependent reaction have almost the same shape, the profile of the H2O2-dependent reaction can be used as an estimation of the profile of the generation of H2O2. The H2O2 profile in one intact gelatin sample scanned by 7-tesla MR imaging showed a similar shape as a result of the EPR experiment. We obtained several hundreds of micromolars of H2O2 generated in a gelatin sample irradiated by carbon beam when 200 Gy was given at the surface of the sample. H2O2 distribution was almost flat, with only a slight peak just before the end of the beam. (author)

  7. Nanomaterials for renewable energy

    International Nuclear Information System (INIS)

    With demand for sustainable energy, resource, and environment protection, new material technologies are constantly expanding during the last few couple of decades. An intensive attention has been given by the scientific communities. In particular, nanomaterials are increasingly playing an active role either by increasing the efficiency of the energy storage and conversion processes or by improving the device design and performance. This special issue presents recent research advances in various aspects of energy storage technologies, advanced batteries, fuel cells, solar cell, biofuels, and so on. Design and synthesis of novel materials have demonstrated great impact on the utilization of the sustainable energy, which need to solve the increasing shortage of resource and the issues of environmental pollution

  8. Biofunctionalization of Nanomaterials

    Science.gov (United States)

    Kumar, Challa S. S. R.

    2005-11-01

    The new book series 'Nanotechnologies for the Life Sciences' is the first comprehensive source on the topics where materials science and life sciences meet on the nanoscale. Each volume provides a concise overview of the underlying nanotechnologies for the design, creation and characterization of biomedical applications, collating the many articles found in the relevant specialized journals but as yet unseen by those working in other disciplines. Written by international experts describing the various facets of nanofabrication, the ten volumes of this single source of information cover the complete range of synthetic methods, tools and techniques being developed towards medical, biological and cybernetic applications. This volume covers the synthetic and materials aspects of instilling biocompatibility into nanomaterials with properties desirable for advanced medical and biological applications. Essential reading for anyone working in the various related disciplines: from medicine and biology through chemistry, materials science and physics to engineering.

  9. Radiation damage tolerant nanomaterials

    Directory of Open Access Journals (Sweden)

    I.J. Beyerlein

    2013-11-01

    Full Text Available Designing a material from the atomic level to achieve a tailored response in extreme conditions is a grand challenge in materials research. Nanostructured metals and composites provide a path to this goal because they contain interfaces that attract, absorb and annihilate point and line defects. These interfaces recover and control defects produced in materials subjected to extremes of displacement damage, impurity implantation, stress and temperature. Controlling radiation-induced-defects via interfaces is shown to be the key factor in reducing the damage and imparting stability in certain nanomaterials under conditions where bulk materials exhibit void swelling and/or embrittlement. We review the recovery of radiation-induced point defects at free surfaces and grain boundaries and stabilization of helium bubbles at interphase boundaries and present an approach for processing bulk nanocomposites containing interfaces that are stable under irradiation.

  10. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS

    International Nuclear Information System (INIS)

    I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to be

  11. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-04-01

    I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to

  12. Low Dimension Semiconducting Composite Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    WANG Mang; CHEN Hong-zheng; SUN Jing-zhi

    2004-01-01

    Recently, low dimension nanostructures have gained considerable attention due to their technological potential as unique types of nanoscale building blocks for future optoelectronic devices and systems. Semiconducting composite nanomaterials, which can combine the advantages of two or more components, have been the focus in the area of nanomaterials synthesis and device application.In this paper, we report our work on the preparation of composite nanomaterials based on CNTs.CNTs were coated by organic or inorganic species via novel and facile methods (Fig. 1 and Fig.2).These functional CNTs based composites show eminent prospects and opportunities for new applications in a wide variation of areas.

  13. Determination and Mitigation of Artifacts in Sampling Particulate Organic Carbon Across Europe

    Czech Academy of Sciences Publication Activity Database

    Putaud, J.-P.; Cavalli, F.; Alastuey, A.; Bourcier, L.; Ceburnis, D.; Ondráčková, Lucie; Fors, E.; Genberg, J.; Hoffer, A.; Kiss, G.; Schwarz, Jaroslav; Sellegri, K.; Vianna, M.; Yttri, K.E.

    Helsinki : -, 2010, 3A1. ISBN N. [International Aerosol Conference IAC 2010. Helsinki (FI), 29.08.2010-03.09.2010] Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol * carbon * sampling Subject RIV: CF - Physical ; Theoretical Chemistry www.iac2010.fi

  14. CARBONIZED FIBROUS RESIN AS A NEW SORBENT FOR SAMPLING POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) IN AMBIENT AIR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new sampling method of ambient air analysis using carbonized fibrous resin as asorbent for polycyclic aromatic hydrocarbons (PAHs) was reported.The physical and chemical properties of the carbonized fibrous resins were measured. Thesample pretreatment with ultrasonic extraction and subsequent clean-up ehition through a silica gelcolumn was optimized. The suitable ultrasonic extraction conditions were selected as follows: resinweight was 1.5 g, ultrasonic extraction time 20 min, volume of extraction solvent 100 mi andextraction operation times 2~3. The concentrated extractable organic matter was submitted to nextstep of clean-up procedure of adsorption chromatography on silica gel column/n-hexane and amixture of dichloromethene:n-hexane solution 2:3 (v/v). The PAHs fractions in the real samplesfrom Changzhou, China were particularly analyzed using GC-MS data system and the data of massspectra, retention times and scan numbers of the real samples were compared with that of thestandards of 16 PAHs listed by the US EPA as "priority pollutants" of the environment. Theanalysis of the real samples indicates that the carbonized fibrous resin is a good sorbent. Thepretreatment of samples of ambient air with carbonized fibrous resin as a sorbent for P,AHs isproved to be reliable and might be used for the procedure of the determination of PAHs inatmospheric environment.

  15. EMERGING MODALITIES FOR SOIL CARBON ANALYSIS: SAMPLING STATISTICS AND ECONOMICS WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2006-04-01

    The workshop's main objectives are (1) to present the emerging modalities for analyzing carbon in soil, (2) to assess their error propagation, (3) to recommend new protocols and sampling strategies for the new instrumentation, and, (4) to compare the costs of the new methods with traditional chemical ones.

  16. Measurement of the carbon 14 activity at natural level in air samples

    International Nuclear Information System (INIS)

    The aim of the study was to measure the carbon 14 activity at natural level in air samples using classical methods of radiochemistry and beta counting. Three different methods have been tested in order to minimise the detection limit. In the three methods, the first step consists in trapping the atmospheric carbon 14 into NaOH (1N) using a bubbling chamber. The atmospheric carbon dioxide reacts with NaOH to form Na2CO3. In the first method the Na2CO3 solution is mixed with a liquid scintillate and is directly analysed by liquid scintillation counting (LSC). The detection limit is approximately 1 Bq/m3 of air samples. The second method consists in evaporating the carbonate solution and then counting the solid residue with a proportional gas circulation counter. The detection limit obtained is lower than the first method (0.4 Bq/m3 of air samples). In the third method, Na2CO3 is precipitated into CaCO3 in presence of CaCl2. CaCO3 is then analysed by LSC. This method appear to be the most appropriate, the detection limit is 0.05 Bq/m3 of air samples. (author)

  17. Palladium based nanomaterials for enhanced hydrogen spillover and storage

    Directory of Open Access Journals (Sweden)

    Suresh K. Konda

    2016-03-01

    Full Text Available Hydrogen storage remains one of the most challenging prerequisites to overcome toward the realization of a hydrogen based economy. The use of hydrogen as an energy carrier for fuel cell applications has been limited by the lack of safe and effective hydrogen storage materials. Palladium has high affinity for hydrogen sorption and has been extensively studied, both in the gas phase and under electrochemical conditions. In this review, recent advancements are highlighted and discussed in regard to palladium based nanomaterials for hydrogen storage, as well as the effects of hydrogen spillover on various adsorbents including carbons, metal organic frameworks, covalent organic frameworks, and other nanomaterials.

  18. Predictive modeling of nanomaterial exposure effects in biological systems

    Directory of Open Access Journals (Sweden)

    Liu X

    2013-09-01

    nanomaterials. Sample prediction models can be found at http://neiminer.i-a-i.com/nei_models. Conclusion: The EZ Metric-based data mining approach has been shown to have predictive power. The results provide valuable insights into the modeling and understanding of nanomaterial exposure effects. Keywords: nanomaterial exposure effects, biological response, toxicity, embryonic zebrafish, data mining, numerical prediction

  19. Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics

    Science.gov (United States)

    van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.

    2013-04-01

    In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.

  20. Exploring release and recovery of nanomaterials from commercial polymeric nanocomposites

    International Nuclear Information System (INIS)

    Much concern has been raised about the risks associated with the broad use of polymers containing nanomaterials. Much is known about degradation and aging of polymers and nanomaterials independently, but very few studies have been done in order to understand degradation of polymeric nanocomposites containing nanomaterials and the fate of these nanomaterials, which may occur in suffering many processes such as migration, release and physicochemical modifications. Throughout the UE funded FP7 project NANOPOLYTOX, studies on the migration, release and alteration of mechanical properties of commercial nanocomposites due to ageing and weathering have been performed along with studies on the feasibility of recovery and recycling of the nanomaterials. The project includes the use as model nanocomposites of Polyamide-6 (PA), Polypropylene (PP) and Ethyl Vinyl Acetate (EVA) as polymeric matrix filled with a 3% in mass of a set of selected broadly used nanomaterials; from inorganic metal oxides nanoparticles (SiO2, TiO2 and ZnO) to multi-walled carbon nanotubes (MWCNT) and Nanoclays. These model nanocomposites were then treated under accelerated ageing conditions in climatic chamber. To determine the degree of degradation of the whole nanocomposite and possible processes of migration, release and modification of the nanofillers, nanocomposites were characterized by different techniques. Additionally, recovery of the nanomaterials fro m the polymeric matrix was addressed, being successfully achieved for PA and PP based nanocomposites. In the case of PA, dissolution of the polymeric matrix using formic acid and further centrifugation steps was the chosen approach, while for PP based nanocomposites calcination was performed.

  1. Regional Knowledge Production in Nanomaterials

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Patuelli, Roberto

    2011-01-01

    Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still in their...... distance being detrimental to the extent that spillovers can be realised. Due to the technological complexity, however, proximity could also be less important as relevant nanomaterials research is globally dispersed. Hence in this paper, we analyse the effects of co-location of R&D activities on...... nanomaterial patenting. Based on European Patent Office data at the German district level (NUTS-3), we estimate two negative binomial models in a knowledge production function framework and include a spatial filtering approach to adjust for spatial autocorrelation. Our results indicate that there is a...

  2. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas

    International Nuclear Information System (INIS)

    Most laboratories prepare carbonates samples for radiocarbon analysis by acid decomposition in evacuated glass tubes and subsequent reduction of the evolved CO2 to graphite in self-made reduction manifolds. This process is time consuming and labor intensive. In this work, we have tested a new approach for the preparation of carbonate samples, where any high-vacuum system is avoided and helium is used as a carrier gas. The liberation of CO2 from carbonates with phosphoric acid is performed in a similar way as it is often done in stable isotope ratio mass spectrometry where CO2 is released with acid in septum sealed tube under helium atmosphere. The formed CO2 is later flushed in a helium flow by means of a double-walled needle mounted from the tubes to the zeolite trap of the automated graphitization equipment (AGE). It essentially replaces the elemental analyzer normally used for the combustion of organic samples. The process can be fully automated from sampling the released CO2 in the septum-sealed tubes with a commercially available auto-sampler to the graphitization with the automated graphitization. The new method yields in low sample blanks of about 50000 years. Results of processed reference materials (IAEA-C2, FIRI-C) are in agreement with their consensus values.

  3. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters

    International Nuclear Information System (INIS)

    Nanomaterial-modified detection systems represent a chief driver towards the adoption of electrochemical methods, since nanomaterials enable functional tunability, ability to self-assemble, and novel electrical, optical and catalytic properties that emerge at this scale. This results in tremendous gains in terms of sensitivity, selectivity and versatility. We review the electrochemical methods and mechanisms that may be applied to the detection of neurological drugs. We focus on understanding how specific nano-sized modifiers may be applied to influence the electron transfer event to result in gains in sensitivity, selectivity and versatility of the detection system. This critical review is structured on the basis of the Anatomical Therapeutic Chemical (ATC) Classification System, specifically ATC Code N (neurotransmitters). Specific sections are dedicated to the widely used electrodes based on the carbon materials, supporting electrolytes, and on electrochemical detection paradigms for neurological drugs and neurotransmitters within the groups referred to as ATC codes N01 to N07. We finally discuss emerging trends and future challenges such as the development of strategies for simultaneous detection of multiple targets with high spatial and temporal resolutions, the integration of microfluidic strategies for selective and localized analyte pre-concentration, the real-time monitoring of neurotransmitter secretions from active cell cultures under electro- and chemotactic cues, aptamer-based biosensors, and the miniaturization of the sensing system for detection in small sample volumes and for enabling cost savings due to manufacturing scale-up. The Electronic Supporting Material (ESM) includes review articles dealing with the review topic in last 40 years, as well as key properties of the analytes, viz., pKa values, half-life of drugs and their electrochemical mechanisms. The ESM also defines analytical figures of merit of the drugs and neurotransmitters. The

  4. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

    Science.gov (United States)

    Yao, Shanshan; Zhu, Yong

    2016-04-01

    Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode-skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode-skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.

  5. Introduction to nanoparticles, nanocomposites, nanomaterials an introduction for beginners

    CERN Document Server

    Vollath, Dieter

    2013-01-01

    Meeting the demand for a readily understandable introduction to nanomaterials and nanotechnology, this textbook specifically addresses the needs of students - and engineers - who need to get the gist of nanoscale phenomena in materials without having to delve too deeply into the physical and chemical details. The book begins with an overview of the consequences of small particle size, such as the growing importance of surface effects, and covers successful, field-tested synthesis techniques of nanomaterials. The largest part of the book is devoted to the particular magnetic, optical, electrical and mechanical properties of materials at the nanoscale, leading on to emerging and already commercialized applications, such as nanofluids in magnetic resonance imaging, high-performance nanocomposites and carbon nanotube-based electronics. Based on the author's experience in teaching nanomaterials courses and adapted, in style and level, for students with only limited background knowledge, the textbook includes fur...

  6. Nanomaterials for membranes and catalysts

    OpenAIRE

    Nassos, Stylianos

    2005-01-01

    Nanotechnology is a relatively new research topic that attracts increasing interest from scientists and engineers all over the world, due to its novel applications. The use of nanomaterials has extended to a broad range of applications, for example chemical synthesis, microporous media synthesis and catalytic combustion, contributing to achievement of improved or promising results. Microemulsion (ME) is considered a powerful tool for synthesis of nanomaterials, due to its unique properties. T...

  7. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    Oezcimen, Didem; Ersoy-Mericboyu, Ayseguel [Istanbul Technical University, Chemical-Metallurgical Engineering Faculty, Department of Chemical Engineering, Maslak 34469, Istanbul (Turkey)

    2010-06-15

    Apricot stone, hazelnut shell, grapeseed and chestnut shell are important biomass residues obtained from the food processing industry in Turkey and they have a great importance as being a source of energy. In this study, the characteristics of bio-oil and biochar samples obtained from the carbonization of apricot stone, hazelnut shell, grapeseed and chestnut shell were investigated. It was found that the biochar products can be characterized as carbon rich, high heating value and relatively pollution-free potential solid biofuels. The bio-oil products were also presented as environmentally friendly green biofuel candidates. (author)

  8. Radioactive Nanomaterials for Multimodality Imaging

    Science.gov (United States)

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases.

  9. Plasma nanofabrication and nanomaterials safety

    International Nuclear Information System (INIS)

    The fast advances in nanotechnology have raised increasing concerns related to the safety of nanomaterials when exposed to humans, animals and the environment. However, despite several years of research, the nanomaterials safety field is still in its infancy owing to the complexities of structural and surface properties of these nanomaterials and organism-specific responses to them. Recently, plasma-based technology has been demonstrated as a versatile and effective way for nanofabrication, yet its health and environment-benign nature has not been widely recognized. Here we address the environmental and occupational health and safety effects of various zero- and one-dimensional nanomaterials and elaborate the advantages of using plasmas as a safe nanofabrication tool. These advantages include but are not limited to the production of substrate-bound nanomaterials, the isolation of humans from harmful nanomaterials, and the effective reforming of toxic and flammable gases. It is concluded that plasma nanofabrication can minimize the hazards in the workplace and represents a safe way for future nanofabrication technologies.

  10. Plasma nanofabrication and nanomaterials safety

    Science.gov (United States)

    Han, Z. J.; Levchenko, I.; Kumar, S.; Yajadda, M. M. A.; Yick, S.; Seo, D. H.; Martin, P. J.; Peel, S.; Kuncic, Z.; Ostrikov, K.

    2011-05-01

    The fast advances in nanotechnology have raised increasing concerns related to the safety of nanomaterials when exposed to humans, animals and the environment. However, despite several years of research, the nanomaterials safety field is still in its infancy owing to the complexities of structural and surface properties of these nanomaterials and organism-specific responses to them. Recently, plasma-based technology has been demonstrated as a versatile and effective way for nanofabrication, yet its health and environment-benign nature has not been widely recognized. Here we address the environmental and occupational health and safety effects of various zero- and one-dimensional nanomaterials and elaborate the advantages of using plasmas as a safe nanofabrication tool. These advantages include but are not limited to the production of substrate-bound nanomaterials, the isolation of humans from harmful nanomaterials, and the effective reforming of toxic and flammable gases. It is concluded that plasma nanofabrication can minimize the hazards in the workplace and represents a safe way for future nanofabrication technologies.

  11. Deformable devices with integrated functional nanomaterials for wearable electronics

    Science.gov (United States)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-03-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  12. [Comparative Sensitivity of the Luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis Strains to Toxic Effects of Carbon-Based Nanomaterials and Metal Nanoparticles].

    Science.gov (United States)

    Deryabina, D G; Efremova, L V; Karimov, I F; Manukhov, I V; Gnuchikh, E Yu; Miroshnikov, S A

    2016-01-01

    A comparative analysis of the four commercially available and laboratory luminescent sensor strains to the toxic effect of 10 carbon-based nanomatherials (CBNs) and 10 metal nanoparticles (MNPs) was carried out in this study. The bioluminescence inhibition assays with marine Photobacterium phosphoreum and recombinant Escherichia coli strains were varied in minimal toxic concentrations and EC50 values but led to well correlated biotoxicity evaluation for the most active compounds were ranked as Cu > (MgO, CuO) > (fullerenol, graphene oxide). The novel sensor strain Bacillus subtilis EG 168-1 exhibited the highest sensitivity to CBNs and MNPs that increased significantly number of toxic compounds causing the bacterial bioluminescence inhibition effect. PMID:27476206

  13. Review of available fluid sampling tools and sample recovery techniques for groundwater and unconventional geothermal research as well as carbon storage in deep sedimentary aquifers

    Science.gov (United States)

    Wolff-Boenisch, Domenik; Evans, Katy

    2014-05-01

    Sampling fluids from deep wells and subsequent sample treatment prior to gas and liquid analysis requires special equipment and sampling techniques to account for the relatively high temperatures, pressures, and potential gas content present at depth. This paper reviews five major sampling methodologies, ranging from different in situ wireline samplers to producing pumps and the U-tube and discusses their advantages and drawbacks in the light of three principal applications, deep groundwater research, unconventional geothermal exploration, and carbon storage. Geochemical modelling is used to investigate the probability of decarbonation and concomitant carbonate scaling during sampling in geothermal and carbon sequestration applications. The two principal sample recovery techniques associated with the fluid samplers are also presented.

  14. Applications of radiotracer techniques for the pharmacology and toxicology studies of nanomaterials

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZhiYong; ZHAO YuLiang; CHAI ZhiFang

    2009-01-01

    With the rapid development of nanosciences and nanotechnology, a wide variety of manufactured nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and in-dustries. While nanomaterials possess more novel and unique physicochemical properties than bulk materials, they also have an unpredictable impact on human health. In the pharmacology and toxicol-ogy studies of nanomaterials, it is essential to know the basic behavior in vivo, i.e. absorption, distri-bution, metabolism, and excretion (ADME) of these newly designed materials. Radiotracer techniques are especially well suited to such studies and have got the chance to demonstrate their enchantment.In this paper, radiolabeling methods for carbon nanomaterials, metallic and metal oxide nanoparticles,etc. are summarized and the applications of the radiolabeled nanomaterials in pharmacology and toxicology studies are outlined.

  15. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials.

    Science.gov (United States)

    Fan, Zhanxi; Zhang, Hua

    2016-01-01

    The functional properties of noble metal nanomaterials are determined by their size, shape, composition, architecture and crystal structure/phase. In recent years, the crystal phase control of noble metal nanomaterials has emerged as an efficient and versatile strategy to tune their properties. In this tutorial review, we will give an overview of the latest research progress in the crystal phase-controlled synthesis of noble metal nanomaterials. Moreover, the crystal phase-dependent chemical and physical properties (e.g. chemical stability, magnetic, electrical and optical properties) and catalytic applications (e.g. oxygen reduction reaction, and oxidation reactions of formic acid, methanol and carbon monoxide) of noble metal nanomaterials are also briefly introduced. Finally, based on the current research status of the crystal phase-controlled synthesis of noble metal nanomaterials, we will provide some perspectives on the challenges and opportunities in this emerging research field. PMID:26584059

  16. Ionic liquid-assisted bidirectional regulation strategy for carbon quantum dots (CQDs)/Bi4O5I2 nanomaterials and enhanced photocatalytic properties.

    Science.gov (United States)

    Ji, Mengxia; Xia, Jiexiang; Di, Jun; Wang, Bin; Yin, Sheng; Xu, Li; Zhao, Junze; Li, Huaming

    2016-09-15

    In this study, novel visible-light-driven carbon quantum dots (CQDs)/Bi4O5I2 material has been prepared via a reactable ionic liquid 1-hexyl-3-methylimidazolium iodide ([Hmim]I) assisted bidirectional regulation solvothermal method. This is the first time for the preparation of CQDs/Bi4O5I2 material with halogen and CQDs bidirectional regulation at the same time. With CQDs modified on the surface of Bi4O5I2, fast transfer of photogenerated charges and low recombination of photo-induced electron-hole pairs facilitated the enhancement of photodegradation activity. At the same time, the introduction of CQDs made the electrons occupied in high-energy potential on the conduction band of Bi4O5I2 transfer to the reaction center CQDs and the molecular oxygen can be thus activated. The enhanced mechanisms for the active species (holes, hydroxyl and superoxide radicals) during the photocatalytic reaction under visible irradiation were analyzed using DRS analysis, electron spin resonance (ESR) technique and free radicals trapping experiments. PMID:27318012

  17. STUDY OF DEPENDENCE OF POLYETHYLENE AND CARBON FIBERS COMPOSITES PROPERNIES ON SURFACE CHARACTERISTICS OF FIBER AND TYPE OF SAMPLES

    Directory of Open Access Journals (Sweden)

    Petukhova E. S.

    2015-06-01

    Full Text Available PE2NT11 and chopped carbon fibers and PE2NT11 and modified carbon fibers composites were investigated. It was shown that the mechanical properties depend on the surface characteristics of fibers. It was found that laboratory and tube samples have some difference in mechanical properties that connected with specific distribution of fibers in samples

  18. STUDY OF DEPENDENCE OF POLYETHYLENE AND CARBON FIBERS COMPOSITES PROPERNIES ON SURFACE CHARACTERISTICS OF FIBER AND TYPE OF SAMPLES

    OpenAIRE

    Petukhova E. S.

    2015-01-01

    PE2NT11 and chopped carbon fibers and PE2NT11 and modified carbon fibers composites were investigated. It was shown that the mechanical properties depend on the surface characteristics of fibers. It was found that laboratory and tube samples have some difference in mechanical properties that connected with specific distribution of fibers in samples

  19. Influence of Nanomaterial Compatibilization Strategies on Polyamide Nanocomposites Properties and Nanomaterial Release during the Use Phase.

    Science.gov (United States)

    Fernández-Rosas, Elisabet; Vilar, Gemma; Janer, Gemma; González-Gálvez, David; Puntes, Victor; Jamier, Vincent; Aubouy, Laurent; Vázquez-Campos, Socorro

    2016-03-01

    The incorporation of small amounts of nanofillers in polymeric matrices has enabled new applications in several industrial sectors. The nanofiller dispersion can be improved by modifying the nanomaterial (NM) surface or predispersing the NMs to enhance compatibility. This study evaluates the effect of these compatibilization strategies on migration/release of the nanofiller and transformation of polyamide-6 (PA6), a thermoplastic polymer widely used in industry during simulated outdoors use. Two nanocomposites (NCs) containing SiO2 nanoparticles (NPs) with different surface properties and two multiwalled carbon nanotube (MWCNT) NCs obtained by different addition methods were produced and characterized, before and after accelerated wet aging conditions. Octyl-modified SiO2 NPs, though initially more aggregated than uncoated SiO2 NPs, reduced PA6 hydrolysis and, consequently, NM release. Although no clear differences in dispersion were observed between the two types of MWCNT NCs (masterbatch vs direct addition) after manufacture, the use of the MWCNT masterbatch reduced PA6 degradation during aging, preventing MWCNT accumulation on the surface and further release or potential exposure by direct contact. The amounts of NM released were lower for MWCNTs (36 and 108 mg/m(2)) than for SiO2 NPs (167 and 730 mg/m(2)), being lower in those samples where the NC was designed to improve the nanofiller-matrix interaction. Hence, this study shows that optimal compatibilization between NM and matrix can improve NC performance, reducing polymer degradation and exposure and/or release of the nanofiller. PMID:26830469

  20. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities

    International Nuclear Information System (INIS)

    This study reviews the possibilities from sampling and monitoring C-14 in gaseous effluents from nuclear facilities. After oxidation of various forms of carbon-14 in the off-gas into CO2 three main processes for trapping are used either separately or in combination. These are sorption, freezing and chemical processes. Absorption in alkaline solutions or solids or molecular sieve adsorption are the most frequently used methods. The main counting methods used are gas proportional counting and liquid scintillation counting

  1. Radiation does response of calcium carbonate crystal in marine shells samples

    OpenAIRE

    Changkian, S.; Kaewtubtim, P.

    2002-01-01

    A study of the evolution of element, crystal structure and thermoluminescence signal versus gamma irradiation dose were carried out for calcite shells samples. The composition of element was studied by X-ray fluorescence spectrometer. As identified by X-ray diffraction and SEM/EDS analysis, two polymorphs of calcium-carbonate were extracted: calcite and aragonite. The evolution of TL signal versus gamma irradiation dose using the TL reader (Harshaw 2000) was initially dependent on crystal str...

  2. Carbon cost of pragmatic randomised controlled trials: retrospective analysis of sample of trials

    OpenAIRE

    Lyle, Katy; Dent, Louise; Bailey, Sally; Kerridge, Lynn; Roberts, Ian; Milne, Ruairidh

    2009-01-01

    Objective To calculate the global warming potential, in carbon dioxide (CO2) equivalent emissions, from a sample of pragmatic randomised controlled trials. Design Retrospective analysis. Data source Internal data held by NIHR Evaluation, Trials and Studies Coordinating Centre. Studies included All eligible pragmatic randomised controlled trials funded by the NIHR Health Technology Assessment programme during 2002 and 2003. Main outcome measure CO2 equivalents for trial activities calculated w...

  3. Evidence of a bacterial carbonate coating on plaster samples subjected to the Calcite Bioconcept biomineralization technique

    OpenAIRE

    Anne, Séverinne; Rozenbaum, Olivier; Andreazza, Pascal; Rouet, Jean-Louis

    2010-01-01

    International audience Degradation of historical buildings is mainly due to the intrusion of water which is the main vector of pollutants. Different types of surface treatment have been proposed to avoid or limit this effect. One alternative to chemical treatments is the use of the carbonatogenesis property of some bacteria. This bacterial production has been evidenced on concrete and on limestone samples in an aqueous environment. However, the carbonate production was measured indirectly ...

  4. Instrumental neutron activation analysis of Malaysian off-shore carbonate samples irradiated in a nuclear reactor

    International Nuclear Information System (INIS)

    The elemental abudances of the USGS standard rock AGV-1 and two Malaysian off-shore drill core carbonate samples (off Sarawak) are studied by the method of Neutron Activation Analysis. One major element (Fe) and 23 trace elements (Sc, Cr, Co, Rb, Sr, Zr, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Ho, Yb, Lu, Hf, Ta, Au, Th and U) have been determined using reactor irradiations and high-resolution gamma-ray spectrometry. (author)

  5. Effects of carbon nanomaterials fullerene C{sub 60} and fullerol C{sub 60}(OH){sub 18-22} on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Socoowski Britto, Roberta; Longaray Garcia, Marcia; Martins da Rocha, Alessandra [Universidade Federal do Rio Grande - FURG, Instituto de Ciencias Biologicas, Campus Carreiros, Av. Italia km 8 s/n, Rio Grande, RS (Brazil); Programa de Pos Graduacao em Fisiologia Animal Comparada - Fisiologia Animal Comparada, FURG (Brazil); Artigas Flores, Juliana [Universidade Federal do Rio Grande - FURG, Instituto de Ciencias Biologicas, Campus Carreiros, Av. Italia km 8 s/n, Rio Grande, RS (Brazil); Pinheiro, Mauricio V. Brant [Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, MG (Brazil); Monserrat, Jose Maria [Universidade Federal do Rio Grande - FURG, Instituto de Ciencias Biologicas, Campus Carreiros, Av. Italia km 8 s/n, Rio Grande, RS (Brazil); Programa de Pos Graduacao em Fisiologia Animal Comparada - Fisiologia Animal Comparada, FURG (Brazil); Ribas Ferreira, Josencler L., E-mail: josenclerf@gmail.com [Universidade Federal do Rio Grande - FURG, Instituto de Ciencias Biologicas, Campus Carreiros, Av. Italia km 8 s/n, Rio Grande, RS (Brazil); Programa de Pos Graduacao em Fisiologia Animal Comparada - Fisiologia Animal Comparada, FURG (Brazil)

    2012-06-15

    In consequence of their growing use and demand, the inevitable environmental presence of nanomaterials (NMs) has raised concerns about their potential deleterious effects to aquatic environments. The carbon NM fullerene (C{sub 60}), which forms colloidal aggregates in water, and its water-soluble derivative fullerol (C{sub 60}(OH){sub 18-22}), which possesses antioxidant properties, are known to be photo-excited by ultraviolet (UV) or visible light. To investigate their potential hazards to aquatic organisms upon exposure to UV sunlight, this study analyzed (a) the in vitro behavior of fullerene and fullerol against peroxyl radicals (ROO{center_dot}) under UV-A radiation and (b) the effects of these photo-excited NMs on oxidative stress parameters in functional gills extracted from the fish Cyprinus carpio (Cyprinidae). The variables measured were the total antioxidant capacity, lipid peroxidation (TBARS), the activities of the antioxidant enzymes glutathione reductase (GR) and glutamate cysteine ligase (GCL), and the levels of the non-enzymatic antioxidant glutathione (GSH). The obtained results revealed the following: (1) both NMs behaved in vitro as antioxidants against ROO{center_dot} in the dark and as pro-oxidants in presence of UV-A, the latter effect being reversed by the addition of sodium azide, which is a singlet oxygen ({sup 1}O{sub 2}) quencher; (2) fullerene induced toxicity with or without UV-A incidence, with a significant (p < 0.05) increase in lipid peroxidation (with greater damage under illumination), a decrease in GCL activity, and the depletion of GSH stocks (under illumination), all of which were attributed to {sup 1}O{sub 2} generation; and (3) fullerol also decreased GCL activity and GSH formation (p < 0.05) but without lipid damage. The overall results show that fullerene can be toxic with or without light incidence, whereas UV radiation seems to play a key role in the environmental toxicity of carbon NMs through {sup 1}O{sub 2} formation.

  6. Thin Films for Coating Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    S.M.Mukhopadhyay; P.Joshi; R.V.Pulikollu

    2005-01-01

    For nano-structured solids (those with one or more dimensions in the 1-100 nm range), attempts of surface modification can pose significant and new challenges. In traditional materials, the surface coating could be several hundreds nanometers in thickness, or even microns and millimeters. In a nano-structured material, such as particle or nanofibers, the coating thickness has to be substantially smaller than the bulk dimensions (100 nm or less), yet be durable and effective. In this paper, some aspects of effective nanometer scale coatings have been discussed. These films have been deposited by a non-line of sight (plasma)techniques; and therefore, they are capable of modifying nanofibers, near net shape cellular foams, and other high porosity materials. Two types of coatings will be focused upon: (a) those that make the surface inert and (b) those designed to enhance surface reactivity and bonding. The former has been achieved by forming 1-2 nm layer of -CF2- (and/or CF3) groups on the surface, and the latter by creating a nanolayer of SiO2-type compound. Nucleation and growth studies of the plasma-generated film indicate that they start forming as 2-3 nm high islands that grow laterally, and eventually completely cover the surface with 2-3nm film. Contact angle measurements indicate that these nano-coatings are fully functional even before they have achieved complete coverage of 2-3 nm. They should therefore be applicable to nano-structural solids.This is corroborated by application of these films on vapor grown nanofibers of carbon, and on graphitic foams. Coated and uncoated materials are infiltrated with epoxy matrix to form composites and their microstructure, as well as mechanical behaviors are compared. The results show that the nano-oxide coating can significantly enhance bond formation between carbon and organic phases, thereby enhancing wettability,dispersion, and composite behavior. The fluorocarbon coating, as expected, reduces bond formation, and

  7. Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods

    DEFF Research Database (Denmark)

    Dudkiewicz, Agnieszka; Boxall, Alistair B. A.; Chaudhry, Qasim;

    2015-01-01

    Electron microscopy is a recognized standard tool for nanomaterial characterization, and recommended by the European Food Safety Authority for the size measurement of nanomaterials in food. Despite this, little data have been published assessing the reliability of the method, especially for size...... measurement of nanomaterials characterized by a broad size distribution and/or added to food matrices. This study is a thorough investigation of the measurement uncertainty when applying electron microscopy for size measurement of engineered nanomaterials in foods. Our results show that the number of measured...... particles was only a minor source of measurement uncertainty for nanomaterials in food, compared to the combined influence of sampling, sample preparation prior to imaging and the image analysis. The main conclusion is that to improve the measurement reliability, care should be taken to consider...

  8. STEREOLOGY OF NANO-MATERIALS

    Directory of Open Access Journals (Sweden)

    Tomasz Wejrzanowski

    2011-05-01

    Full Text Available Nano-structured materials attract a growing attention due to their superior mechanical and physical properties. Such properties are inherently related to the unique structure which is controlled at the nano-scale. In the early stage of their development, the structural characterization of nano-materials was limited to the average grain/particle size. However, nano-grains/particles form stochastic populations with diverse size and shape. The recent experimental and theoretical results show that in addition to the average size, size diversity of grains/particles has a significant effect on the properties of nano-materials. This rationalizes more advanced description of the structures of nano-materials. Advanced microscopic methods are now available to image microstructure of nano-materials, e.g., HRSTEM and AFM. The ultra-high resolution images can be efficiently processed to obtain quantitative description of the nano-grains/particles. Examples are shown how such a description can be used for optimizing the microstructures of modern engineering nano-materials.

  9. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon.

    Science.gov (United States)

    Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K

    2011-12-01

    Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components. PMID:21626190

  10. Towards application of one- and two-dimensional nanomaterials for reinforcement of polymeric nanocomposite bone grafts

    Science.gov (United States)

    Farrshid, Behzad

    One- and two-dimensional (1-D and 2-D) nanomaterials possess extraordinary physiochemical properties such as large surface area, excellent mechanical properties, high surface energy and good dispersivity in organic and biological solvents, therefore, they have been extensively used as reinforcing agents to improve the mechanical properties of polymeric scaffolds for bone tissue engineering applications. Carbon nanomaterials such as carbon nanotubes and graphene have been used as reinforcing agents for biodegradable polymeric scaffolds and composites, however, their short- and long-term in vitro cytotoxicity and in vivo biocompatibility is an area of extensive debate. In this study, we have systematically investigated the effects of addition of low concentrations (0.01-0.2 wt. %) of 1-D and 2-D carbon nanomaterials (graphene oxide nanoplatelets, graphene oxide nanoribbons and carbon nanotubes) and inorganic nanomaterials (boron nitride nanotubes, boron nitride nanoplatelers, tungsten disulfide nanotubes and molybdenum disulfide nanoplatelets) on the mechanical properties, cytocompatibility, and bioactivity of poly(propylene fumarate) (PPF) nanocomposites towards their potential applications as porous and nonporous implants for bone tissue engineering. Addition of nanomaterials in the PPF matrix improved the compressive and flexural mechanical properties of non-porous crosslinked PPF nanocomposites and porous PPF scaffolds. Our results suggest that in addition to high surface roughness and surface area of the nanomaterials, the presence of functional groups on the surface of nanomaterials leads to an increased nanomaterial-polymer interaction and a uniform dispersion of nanomaterials in polymer matrix which may be the key factors responsible for an improved mechanical reinforcement. The in vitro studies showed an excellent cytocompatibility for both carbon and inorganic nanomaterial reinforced PPF nanocomposites and scaffolds. Protein adsorption studies and in vitro

  11. Applied spectroscopy and the science of nanomaterials

    CERN Document Server

    2015-01-01

    This book focuses on several areas of intense topical interest related to applied spectroscopy and the science of nanomaterials. The eleven chapters in the book cover the following areas of interest relating to applied spectroscopy and nanoscience: ·         Raman spectroscopic characterization, modeling and simulation studies of carbon nanotubes, ·         Characterization of plasma discharges using laser optogalvanic spectroscopy, ·         Fluorescence anisotropy in understanding protein conformational disorder and aggregation, ·         Nuclear magnetic resonance spectroscopy in nanomedicine, ·         Calculation of Van der Waals interactions at the nanoscale, ·         Theory and simulation associated with adsorption of gases in nanomaterials, ·         Atom-precise metal nanoclusters, ·         Plasmonic properties of metallic nanostructures, two-dimensional materials, and their composites, ·         Applications of graphe...

  12. Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions

    Science.gov (United States)

    Shen, Guofeng; Chen, Yuanchen; Wei, Siye; Fu, Xiaofang; Zhu, Ying; Tao, Shu

    2013-11-01

    Optical properties of particulate matter are of growing concern due to their complex effects on atmospheric visibility and local/regional climate change. In this study, mass absorption efficiency (MAE) of elemental carbon (EC) was measured for source emission samples obtained from the residential combustions of solid fuels using a thermal-optical carbon analyzer. For source samples from residential wood, crop straw, biomass pellet and coal combustions, MAE of EC measured at 650 nm, were 3.1 (2.4-3.7 as 95% Confidence Interval), 6.6 (5.5-7.6), 9.5 (6.7-12), and 7.9 (4.8-11) m2 g-1, respectively. MAE of EC for source sample from the wood combustion was significantly lower than those for the other fuels, and MAE of EC for coal briquette appeared to be different from that of raw chunk. MAE values of the investigated source emission samples were found to correlate with OC/EC ratio, and a significantly positive correlation was found between MAE and particle-bound polycyclic aromatic hydrocarbons (pPAHs), though pPAHs contributed a relatively small fraction of OC.

  13. Nanomaterials: Regulation and Risk Assessment

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Grieger, Khara Deanne; Baun, Anders

    2013-01-01

    The topics of regulation and risk assessment of nanomaterials have never been more relevant and controversial in Europe than they are at this point in time. In this entry, we present and discuss a number of major pieces of legislation relevant for the regulation of nanomaterials, including REACH...... Foods Regulation. Chemical risk assessment provides a fundamental element in support of existing legislation. Risk assessment is normally said to consist of four elements, i.e., hazard identification, dose–response assessment, exposure assessment, and risk characterization. Each of these four elements......, the Water Framework Directive, pharmaceuticals regulation, and the Novel Foods Regulation. Current regulation of nanomaterials entail three overall challenges: 1) limitations in regard to terminology and definitions of key terms such as a “substance,” “novel food,” etc.; 2) safety assessment...

  14. Characterization of nanomaterials in food by electron microscopy

    DEFF Research Database (Denmark)

    Dudkiewicz, Agnieszka; Tiede, Karen; Löschner, Katrin;

    2011-01-01

    Engineered nanomaterials (ENMs) are increasingly being used in the food industry. In order to assess the efficacy and the risks of these materials, it is essential to have access to methods that not only detect the nanomaterials, but also provide information on the characteristics of the materials...... (e.g., size and shape).This review presents an overview of electron microscopy (EM)-based methods that have been, or have the potential to be, applied to imaging ENMs in foodstuffs. We provide an overview of approaches to sample preparation, including drying, chemical treatment, fixation...

  15. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    Science.gov (United States)

    Ghiazza, Mara; Carella, Emanuele; Oliaro-Bosso, Simonetta; Corazzari, Ingrid; Viola, Franca; Fenoglio, Ivana

    2013-04-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  16. Assessment of exposure to composite nanomaterials and development of a personal respiratory deposition sampler for nanoparticles

    Science.gov (United States)

    Cena, Lorenzo

    2011-12-01

    The overall goals of this doctoral dissertation are to provide knowledge of workers' exposure to nanomaterials and to assist in the development of standard methods to measure personal exposure to nanomaterials in workplace environments. To achieve the first goal, a field study investigated airborne particles generated from the weighing of bulk carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. This study also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood and biosafety cabinet) for control of exposure to particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured with direct-read instruments, and particle morphology was determined by electron microscopy. Sanding of CNT-epoxy nanocomposites released respirable size airborne particles with protruding CNTs very different in morphology from bulk CNTs that tended to remain in clusters (>1mum). Respirable mass concentrations in the operator's breathing zone were significantly greater when sanding took place in the custom hood (p workplace levels was found to have no significant effect (2-way ANOVA, p=0.257) on the performance of the impactor. The effective deposition of particles onto the diffusion stage was found to match the NPM criterion, showing that a sample collected with the NRD sampler represents the concentration of nanoparticles deposited in the human respiratory system.

  17. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    Science.gov (United States)

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. PMID:26580726

  18. Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples

    International Nuclear Information System (INIS)

    Highlights: • Sulfisoxazole was grafted onto glassy carbon electrode. • The electrode was characterized by spectroscopic and electrochemical methods. • It has been used for the determination of Cd(II) ions in real samples in very low concentrations. -- Abstract: Sulfisoxazole (SO) was grafted to glassy carbon electrode (GCE) via the electrochemical oxidation of SO in acetonitrile solution containing 0.1 M tetrabutylammoniumtetra-fluoroborate (TBATFB). The prepared electrode was characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), reflection–absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). The ellipsometric thickness of SO nanofilm at the glassy carbon surface was obtained as 14.48 ± 0.11 nm. The stability of the SO modified GCE was studied. The SO modified GCE was also utilized for the determination of Cd(II) ions in water samples in the presence of Pb(II) and Fe(II) by adsorptive stripping voltammetry. The linearity range and the detection limit of Cd(II) ions were 1.0 × 10−10 to 5.0 × 10−8 M and 3.3 × 10−11 M (S/N = 3), respectively

  19. Exploiting polymer single crystals to assemble and functionalize nanomaterials

    Science.gov (United States)

    Li, Bing

    Nanomaterials are fundamental building blocks for nanoscience and nanotechnology. They can generally be categorized into three classes: zero-dimensional (0D) (e.g. nanoparticles), one-dimensional (1D) (e.g. carbon nanotubes) and two-dimensional (2D) (e.g. thin films) nanomaterials. Assembly of nanomaterials is the key step to transfer their fascinating mechanical, electronic and optical properties from nano- to micro- or macro-scale. Among all types of assemblies, assembling across different nanomaterial classes is of particular interest. For example, assembling 0D nanoparticles with 1D nanotubes or 2D thin films. These assembled structures have the advantage of possessing properties from both classes of nanomaterials. Functionalization of nanomaterials is important from both scientific and technological points of view. A newly developed field of functionalization is called "patchy particles". Multiple types of functional molecules form different domains on particle surface. Each domain contains only one type of functional molecules. These domains are called patches. These patchy particles are advanced building blocks, which may assemble into useful complex structures. In this thesis, polymer single crystals are exploited to assemble and functionalize nanomaterials. Polymer single crystals have a lamellar structure. Since the thickness of these lamellae is ˜10 nm, polymer single crystals are introduced as a new type of 2D nanomaterials. Different from the traditional 2D nanomaterials such as Langmuir-Blodgett films, self-assembled monolayers and thin films made by Layer-by-Layer technique, these polymer single crystals are free-standing, which means no substrate is needed. Furthermore, the surface of these polymer single crystals can be readily functionalized by crystallizing end-functionalized polymers. Based on the studied polymers, this thesis is divided into two parts. The first part is focused on single crystals of poly(ethylene oxide) (PEO). Thiol

  20. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2015-10-01

    Full Text Available A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA. The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV and characterized using CV and scanning electron microscope (SEM. The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3. The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality.

  1. Effectiveness of Micro- and Nanomaterials in Asphalt Mixtures through Dynamic Modulus and Rutting Tests

    OpenAIRE

    Hui Yao; Zhanping You

    2016-01-01

    The objectives of this research are to use micro- and nanomaterials to modify the asphalt mixture and to evaluate the mechanical performance of asphalt mixtures. These micro- and nanomaterials, including carbon microfiber, Nanomer material, nanosilica, nonmodified nanoclay, and polymer modified nanoclay, were selected to blend with the control asphalt to improve the overall performance of the modified asphalt binders and mixtures. The microstructures of original materials and asphalt binders ...

  2. Electrode materials for microbial fuel cells: nanomaterial approach

    KAUST Repository

    Mustakeem, Mustakeem

    2015-11-05

    Microbial fuel cell (MFC) technology has the potential to become a major renewable energy resource by degrading organic pollutants in wastewater. The performance of MFC directly depends on the kinetics of the electrode reactions within the fuel cell, with the performance of the electrodes heavily influenced by the materials they are made from. A wide range of materials have been tested to improve the performance of MFCs. In the past decade, carbon-based nanomaterials have emerged as promising materials for both anode and cathode construction. Composite materials have also shown to have the potential to become materials of choice for electrode manufacture. Various transition metal oxides have been investigated as alternatives to conventional expensive metals like platinum for oxygen reduction reaction. In this review, different carbon-based nanomaterials and composite materials are discussed for their potential use as MFC electrodes.

  3. Adsorption of DDT and PCB by Nanomaterials from Residual Soil

    OpenAIRE

    Taha, Mohd Raihan; Mobasser, Shariat

    2015-01-01

    This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-a...

  4. Radiation does response of calcium carbonate crystal in marine shells samples

    Directory of Open Access Journals (Sweden)

    Changkian, S.

    2002-01-01

    Full Text Available A study of the evolution of element, crystal structure and thermoluminescence signal versus gamma irradiation dose were carried out for calcite shells samples. The composition of element was studied by X-ray fluorescence spectrometer. As identified by X-ray diffraction and SEM/EDS analysis, two polymorphs of calcium-carbonate were extracted: calcite and aragonite. The evolution of TL signal versus gamma irradiation dose using the TL reader (Harshaw 2000 was initially dependent on crystal structure and fading effect of the thermoluminescence signal .

  5. Chemical Design of Functional Nanomaterials

    DEFF Research Database (Denmark)

    Egeblad, Kresten

    This thesis deals with a very specific class of functional nanomaterials known as mesoporous zeolites. Zeolites are a class of crystalline aluminosilicate minerals characterized by featuring pores or cavities of molecular dimensions as part of their crystal structure. Mesoporous zeolites are...

  6. Raman spectroscopy for nanomaterials characterization

    CERN Document Server

    2012-01-01

    First volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Raman spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry.

  7. Computational design of safer nanomaterials

    NARCIS (Netherlands)

    Burello, E.

    2015-01-01

    Nanomaterials are expected to find applications in numerous consumer products, posing the challenge to guarantee their safety and environmental sustainability before they can be transferred from research labs to end-consumer products. One emerging solution, called safe design, relies on the implemen

  8. Functionalization of nanomaterials with aryldiazonium salts.

    Science.gov (United States)

    Mohamed, Ahmed A; Salmi, Zakaria; Dahoumane, Si Amar; Mekki, Ahmed; Carbonnier, Benjamin; Chehimi, Mohamed M

    2015-11-01

    This paper reviews the surface modification strategies of a wide range of nanomaterials using aryldiazonium salts. After a brief history of diazonium salts since their discovery by Peter Griess in 1858, we will tackle the surface chemistry using these compounds since the first trials in the 1950s. We will then focus on the modern surface chemistry of aryldiazonium salts for the modification of materials, particularly metallic, semiconductors, metal oxide nanoparticles, carbon-based nanostructures, diamond and clays. The successful modification of sp(2) carbon materials and metals by aryldiazonium salts paved the way to innovative strategies for the attachment of aryl layers to metal oxide nanoparticles and nanodiamonds, and intercalation of clays. Interestingly, diazotized surfaces can easily trap nanoparticles and nanotubes while diazotized nanoparticles can be (electro)chemically reduced on electrode/materials surfaces as molecular compounds. Both strategies provided organized 2D surface assembled nanoparticles. In this review, aryldiazonium salts are highlighted as efficient coupling agents for many types of molecular, macromolecular and nanoparticulate species, therefore ensuring stability to colloids on the one hand, and the construction of composite materials and hybrid systems with robust and durable interfaces/interphases, on the other hand. The last section is dedicated to a selection of patents and industrial products based on aryldiazonium-modified nanomaterials. After nearly 160 years of organic chemistry, diazonium salts have entered a new, long and thriving era for the benefit of materials, colloids, and surface scientists. This tempts us to introduce the terminology of "diazonics" we define as the science and technology of aryldiazonium salt-derived materials. PMID:26299313

  9. Constructed Wetlands for Treatment of Organic and Engineered Nanomaterial Contaminants of Emerging Concerns (WaterRF Report 4334)

    Science.gov (United States)

    The goal of this project was to determine hydraulic and carbon loading rates for constructed wetlands required for achieving different levels of organic and nanomaterial contaminants of emerging concern (CECs) removal in constructed wetlands. Specific research objectives included...

  10. Length-dependent optical properties of single-walled carbon nanotube samples

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, Anton V. [Department of Chemistry and Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Ensysce Biosciences, Inc., 7000 Fannin St., Houston, TX 77030 (United States); Tsyboulski, Dmitri A.; Bachilo, Sergei M. [Department of Chemistry and Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Weisman, R. Bruce, E-mail: weisman@rice.edu [Department of Chemistry and Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2013-08-30

    Highlights: ► Length-independent absorption per atom in single-walled carbon nanotubes. ► Reduced fluorescence quantum yield for short nanotubes. ► Exciton quenching at nanotube ends, sidewall defects probably limits quantum yield. - Abstract: Contradictory findings have been reported on the length dependence of optical absorption cross sections and fluorescence quantum yields in single-walled carbon nanotubes (SWCNTs). To clarify these points, studies have been made on bulk SWCNT dispersions subjected to length fractionation by electrophoretic separation or by ultrasonication-induced scission. Fractions ranged from ca. 120 to 760 nm in mean length. Samples prepared by shear-assisted dispersion were subsequently shortened by ultrasonic processing. After accounting for processing-induced changes in the surfactant absorption background, SWCNT absorption was found constant within ±11% as average nanotube length changed by a factor of 3.8. This indicates that the absorption cross-section per carbon atom is not length dependent. By contrast, in length fractions prepared by both methods, the bulk fluorescence efficiency or average quantum yield increased with SWCNT average length and approached an apparent asymptotic limit near 1 μm. This result is interpreted as reflecting the combined contributions of exciton quenching by sidewall defects and by the ends of shorter nanotubes.

  11. Quantitative monitoring of the removal of non-encapsulated material external to filled carbon nanotube samples.

    Science.gov (United States)

    Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Tobias, Gerard

    2015-12-21

    The endohedral functionalization of carbon nanotubes with both organic and inorganic materials allows the development of tailored functional hybrids whose properties benefit from the synergistic effects of the constituent compounds. Bulk filling of carbon nanotubes (CNTs) results in samples that contain a large amount of non-encapsulated material external to the CNTs. The presence of the external material is detrimental to the processing and application of the resulting hybrids. Here we introduce the use of UV-Vis spectroscopy to monitor the cleaning process, i.e. the elimination of non-encapsulated compounds. Chrome azurol S has been employed to assess the bulk removal of external samarium(iii) chloride from filled single-walled carbon nanotubes. Chrome azurol S is of interest since it can be used to quantify a large variety of materials in a fast, accurate and reliable manner. The parameters that control the cleaning process have been optimized, including the time, temperature, volume and sonication, to achieve a fast and complete removal of the external material. PMID:26556303

  12. Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples.

    Science.gov (United States)

    Xu, Hua; Yang, Xiupei; Li, Gu; Zhao, Chuan; Liao, Xiangjun

    2015-08-01

    A simple, economical, and green method for the preparation of water-soluble, high-fluorescent carbon quantum dots (C-dots) has been developed via hydrothermal process using aloe as a carbon source. The synthesized C-dots were characterized by atomic force microscope (AFM), transmission electron microscopy (TEM), fluorescence spectrophotometer, UV-vis absorption spectra as well as Fourier transform infrared spectroscopy (FTIR). The results reveal that the as-prepared C-dots were spherical shape with an average diameter of 5 nm and emit bright yellow photoluminescence (PL) with a quantum yield of approximately 10.37%. The surface of the C-dots was rich in hydroxyl groups and presented various merits including high fluorescent quantum yield, excellent photostability, low toxicity and satisfactory solubility. Additionally, we found that one of the widely used synthetic food colorants, tartrazine, could result in a strong fluorescence quenching of the C-dots through a static quenching process. The decrease of fluorescence intensity made it possible to determine tartrazine in the linear range extending from 0.25 to 32.50 μM, This observation was further successfully applied for the determination of tartrazine in food samples collected from local markets, suggesting its great potential toward food routine analysis. Results from our study may shed light on the production of fluorescent and biocompatible nanocarbons due to our simple and environmental benign strategy to synthesize C-dots in which aloe was used as a carbon source. PMID:26154603

  13. Porous media investigation before and after hydrochloric acid injection on a pre-salt carbonate coquinas sample.

    Science.gov (United States)

    Machado, A C; Teles, A P; Pepin, A; Bize-Forest, N; Lima, I; Lopes, R T

    2016-04-01

    Porous space characterization of carbonate rocks is an important aid in petroleum exploration from carbonate reservoir. In this study, X-ray microtomography technique was applied to evaluate total porosity of a coquina sample extracted from pre-salt reservoir, in Brazil, before and after acid injection. Two image processing program were used in order to assess performance. The results showed that microtomography has potential to compute porosity of coquina samples and provides information about rock porous network. PMID:26794261

  14. Multiwavelength Raman spectroscopy analysis of a large sampling of disordered carbons extracted from the Tore Supra tokamak

    CERN Document Server

    Pardanaud, Cedric; Roubin, P

    2014-01-01

    Disordered carbon often exhibit a complex Raman spectrum, with four to six components. Here, a large variety of disordered carbons, forming a collection of samples with a great variety of structures, are analysed using multi-wavelength Raman microscopy (325.0, 514.5, 785.0 nm). They allow us to extend Raman behaviour known for nano-crystalline graphite to amorphous carbons, (dependence with the excitation wavelength) and other known for amorphous carbons to nano-crystalline graphite, (differentiation of the smallest cluster size probed using different excitation wavelengths). Experimental spectra were compared to simulated spectra, built using known laws, to evidence a new source of broadening.

  15. Differences on soil organic carbon stock estimation according to sampling type in Mediterranean areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2016-04-01

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Consequently, the scientific community is researching the fate of the organic carbon in the ecosystems. In this line, soil organic matter configuration plays an important role in the Soil System (Parras-Alcántara and Lozano García, 2014). Internationally it is known that soil C sequestration is a strategy to mitigate climate change. In this sense, many soil researchers have studied this parameter (SOC). However, many of these studies were carried out arbitrarily using entire soil profiles (ESP) by pedogenetic horizons or soil control sections (SCS) (edaphic controls to different thickness). As a result, the indiscriminate use of both methodologies implies differences with respect to SOC stock (SOCS) quantification. This scenario has been indicated and warned for different researchers (Parras-Alcántara et al., 2015a; Parras-Alcántara et al., 2015b). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in the Cardeña and Montoro Natural Park (Spain). This nature reserve is a forested area with 385 km2 in southern Spain. Thirty-seven sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The results obtained show an overestimation of SOCS when SCS sampling approach is used compared to ESP. This supports that methodology selection is very important to SOCS quantification. This research is an assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Parras-Alcántara, L., Lozano-García, B., 2014

  16. Novel Techniques for Optical Characterization of Single-Walled Carbon Nanotube Samples

    Science.gov (United States)

    Streit, Jason K.

    Photoluminescence spectroscopy has emerged as a powerful tool for characterizing the structure and optical properties of single-walled carbon nanotube (SWCNT) samples. This thesis will discuss the development and application of new fluorescence-based methods designed to fully characterize bulk SWCNT suspensions by length and structural composition. An efficient new method is demonstrated to measure length distributions of aqueous SWCNT samples by analyzing the diffusional motions of many individual nanotubes captured in sequences of short-wave infrared (SWIR) fluorescence images. This method, termed length analysis by nanotube diffusion (LAND), provides distributions in very good agreement with those obtained by conventional atomic force microscopy analysis. A novel microscopy technique is described to measure the peak emission wavelengths of many individual nanotubes without the use of a spectrometer. We exploit the chromatic aberration of an objective lens to deduce emission wavelength from focal depth. Spectral measurements successfully reproduce bulk emission spectra and also provide relative abundances of specific SWCNT structures. A new approach is applied to find nanotube concentrations by directly counting SWCNTs in SWIR fluorescence images. Concentrations are used to rigorously determine absolute absorption cross sections for the E11 and E22 electronic transitions of the (6,5), (7,5), (7,6), (8,6), (8,7) and (9,7) SWCNT species. It is found that the absorption cross section per carbon atom decreases with increasing nanotube diameter. Finally, the spectral analysis of fluorescence fluctuations (SAFF) method is developed and used to characterize SWCNT samples by structural composition, sample quality, and aggregation state. Fluorescence spectra are sequentially measured from small volumes of slowly flowing dilute samples and the intensity fluctuations resulting from small statistical variations in nanotube concentration are analyzed. The ratio of the squared

  17. Transport Properties of Carbonate and Sandstone Samples: Digital Rock Physics and Laboratory Measurements

    Science.gov (United States)

    Alabbad, A. A.; Dvorkin, J. P.

    2015-12-01

    We examined six carbonate samples that included three pairs, each pair cut from the same core, normal and parallel to the bedding. We also examined three sandstone samples comprised of a pair, cur normal and parallel to the bedding, and one sample cut normal to the bedding. For each of these samples, we obtained dual energy digital images with the resolution approximately 0.004 mm, coarser than the pore-scale resolution. As a result, we did not resolve the pore structure. Still, these images provided us with the bulk density (ρb) and photoelectric factor (Pf) at each voxel in 3D. The Pf volumes were used to estimate the mineralogy at each voxel by partitioning the carbonate mineralogy between calcite and dolomite and partitioning the sandstone mineralogy between pure quartz and "dirty sandstone" (Plumb et al., 1991) for one scenario and between pure quartz and illite for the other scenario. From this mineralogy we obtained the grain (matrix) density (ρs) at each voxel. Next, by using ρb and ρs and assuming that the pores were filled with air, we computed the total porosity (ϕt) at each voxel from mass balance. Porosity thus obtained was used to estimate the electrical formation factor (F) at each voxel by assuming that F relates to ft according to Archie's equation (Archie, 1942). We also computed the absolute permeability (k) at each voxel by assuming that k relates to ϕt according to the Kozeny-Carman equation (Carman, 1956). Next, by employing a Darcy simulator, these 3D resistivity and permeability volumes were used to compute the effective permeability and electrical formation factor of the whole samples along the three axial directions to assess the anisotropy of these transport properties. These computational results were compared to laboratory measurements. The computed effective bulk density, grain density, and porosity appeared to closely match the laboratory values. So did the formation factor. By selecting an appropriate grain size, we also

  18. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    Science.gov (United States)

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. PMID:25088794

  19. Nanomaterial-Assisted Signal Enhancement of Hybridization for DNA Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Minqiang Li

    2009-09-01

    Full Text Available Detection of DNA sequences has received broad attention due to its potential applications in a variety of fields. As sensitivity of DNA biosensors is determined by signal variation of hybridization events, the signal enhancement is of great significance for improving the sensitivity in DNA detection, which still remains a great challenge. Nanomaterials, which possess some unique chemical and physical properties caused by nanoscale effects, provide a new opportunity for developing novel nanomaterial-based signal-enhancers for DNA biosensors. In this review, recent progress concerning this field, including some newly-developed signal enhancement approaches using quantum-dots, carbon nanotubes and their composites reported by our group and other researchers are comprehensively summarized. Reports on signal enhancement of DNA biosensors by non-nanomaterials, such as enzymes and polymer reagents, are also reviewed for comparison. Furthermore, the prospects for developing DNA biosensors using nanomaterials as signal-enhancers in future are also indicated.

  20. Introduction to nanoscience and nanomaterials

    CERN Document Server

    Agrawal, Dinesh C

    2013-01-01

    This textbook is aimed primarily at the senior undergraduate and first year graduate students from the various engineering and sciences departments including physics, chemistry, materials engineering, chemical engineering, electrical engineering, mechanical engineering, bioengineering, and biology. Researchers in the areas of nanomaterials and nanoscience will also find the book useful for building the background necessary to understand the current literature and as a reference book. The text assumes only a basic level of competency in physics, chemistry and mathematics. Some of the background material and introductory matter are included in the first few chapters and as appendices. Although this material may be familiar to some of the students, it is the author's experience after teaching such a course for many years that this can not be taken for granted and moreover, serves as a ready reference to understand the text. As the area of nanoscience, nanotechnology and nanomaterials is a fast developing one, a...

  1. Editorial: Nanomaterials at the Biointerface

    Directory of Open Access Journals (Sweden)

    Zhi Ping (Gordon Xu

    2014-06-01

    Full Text Available Bioapplication of nanomaterials involves several key processes that occurat the biointerface, such as internalization of nanoparticles by various cells, attachment of nanomaterials onto the bacteria to form granulates, and penetration of nutrient elements on the leaf surface from the nutrient reservoir – nanocrystals. This special issue therefore presents the most recent research development of nanomaterials at the biointerface, as summarized by a multidisciplinary team of international experts in these broad fields. Biomedical applications of various nanomaterials are intensively investigated in the recent decades. For example, many efforts have been made to develop functional mesoporous silica nanoparticles (MSNs to enhance the biocompatibility, drug loading efficacy, drug delivery efficiency, drug control releaseproperties and cancer treatment effectiveness. In this issue, Zhang et al. (Tianjin University, China [1]briefly review the recent progresses in this particular area. Another example is utilization of nanoparticles as biomarkers. So this special issue also includes a mini-review paper by Centeno and Xie (University Technology Malaysia [2] thatconcisely presents the principle and simulation results of dye molecules’ fluorescence enhancement by the nearby nanostructured metals through their coupling effect. Nanomaterials can alsobe used as effective antimicrobial agents. For example, Liu et al. (Curtin University of Technology, Australia [3] briefly review the recent progress of silver nanoparticles (AgNPs, andin particular, their efforts to modify AgNPs by conjugating antimicrobial cell penetration peptide to selectively bind to microorganism and improve the therapeutic index. More interestingly, nanomaterialsare increasingly investigated as effective foliar fertilizers to provide micronutrient elements for a longer term. This particularly takes the advantage of nanocrystals’sheet-like morphology as sheet-like crystals have the

  2. Nanomaterials – the driving force

    Directory of Open Access Journals (Sweden)

    Michael J. Pitkethly

    2004-12-01

    Full Text Available The growth in activity surrounding nanomaterials continues unabated as more R&D funds are poured into nanotechnology and companies look to exploit the expanding range of novel properties that are being discovered. Advances in existing production techniques are improving the quality and yields, providing a clear prospect of commercially viable volume production. There is still a wide range of processes being used, and it is clear those that will be commercially successful will be those for which the materials have been developed at the same time as the application. Recent reports from a number of working groups have highlighted the need for increased examination of the health, environmental, and ethical aspects of nanotechnology, and this is an area that the industry will need to understand more fully and take appropriate action on if the benefits of nanomaterials are to be realized.

  3. Microporous Carbon Spheres Solid Phase Membrane Tip Extraction for the Analysis of Nitrosamines in Water Samples

    International Nuclear Information System (INIS)

    A simple solid phase membrane tip extraction (SPMTE) utilizing microporous carbon spheres (MCS) was developed for the analysis of nitrosamines in aqueous samples. The method termed MCS-SPMTE was optimized for various important extraction parameters namely conditioning organic solvent, extraction time, effects of salt addition and pH change, desorption time, desorption solvent and sample volume. Under the optimized conditions, the method indicated good linearity in the range of 10-100 μg/ L with coefficients of determination, r2≥0.9984. The method also demonstrated good reproducibility with % RSDs values ranging from 2.2 - 8.9 (n = 3). Limit of detection (LOD) and limit of quantification (LOQ) for the method ranged from 3.2 - 4.8 μg/ L and 10.9 - 15.9 μg/L respectively. Recoveries for both tap-water and lake water samples spiked at 10 μg/L were in the range of 83.2 - 107.5 %. (author)

  4. Synoptic Sampling of Dissolved Nitrogen Species and Organic Carbon in the Rio Grande Basin

    Science.gov (United States)

    Villinski, J. E.; Hogan, J. F.; Brooks, P. D.; Haas, P. A.; Mills, S. K.

    2002-12-01

    Synoptic sampling has been performed along the Rio Grande from the headwaters in Colorado to Fort Quitman, Texas, south of El Paso. Samples from August 2001 and January 2002 were analyzed for nitrate (NO3-), ammonium (NH_{4}$+), total dissolved nitrogen (TDN), and dissolved organic carbon (DOC). DOC concentrations increase slowly between Colorado and southern New Mexico and then approximately double in Texas. Large sources of N during both sampling periods were the urban areas around Albuquerque and El Paso, Texas and Ciudad Juarez, Mexico, and agricultural regions in the Rincon and Mesilla valleys of southern New Mexico. Nitrate-N concentrations remained high south of Albuquerque to Elephant Butte reservoir in the summer, presumably due to lack of primary production. Inorganic N concentrations generally are higher in the winter than in the summer. During the summer, ammonium concentrations were greater than 100 mg N/l only at the outlet of Elephant Butte Reservoir, and in Texas. However, winter concentrations were on average an order of magnitude greater, again with the largest ammonium values (5000 \\mug N/l) in Texas. These patterns are consistent with a reduction in biological nutrient demand during the non-growing season.

  5. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities - a literature survey

    International Nuclear Information System (INIS)

    C-14 compounds produced in the coolant may be released mainly together with off-gas and waste water from the coolant purification and treatment system. In reactors the release of C-14 will occur mainly in gaseous effluents and only a few percent in liquid effluents. Reported releases from BWRs range from 260 to 670 GBq/GW(e) x year and from 90 to 430 GBq/GW(e) x year for PWRs. At BWRs the condenser air ejector contributes the main inplant release pathway, whereas in PWRs the off-gas treatment vents are the main pathway for C-14 release. C-14 sampling methods depend generally on the C-14 being in the form of CO2. The off-gas discharges from BWRs are mainly in the form of CO2 whereas in PWRs a major fraction of the released C-14 is in the form of hydrocarbons or carbon monoxide (generally 80-100%). Sampling systems in PWRs should therefore be equipped with a catalytic oxidizer to convert all C-14 to CO2 before trapping. The purpose of this study is to provide information on the techniques available for sampling and monitoring C-14

  6. New nanomaterials for photonic application

    Science.gov (United States)

    Minh, Le Quoc; Anh, Tran Kim; Binh, Nguyen Thanh; Mien, Vu Doan

    2012-06-01

    A brief survey of the development of new nanomaterials for photonic application will be presented. Based on the photoresponsive sol gel nanohybrid of polymethamethyl acrylate, silica, and zirconia (ASZ) or titania (AST) have been fabricated some planar light guiding structures and devices. The lanthanide containing nanosphere with core/shell structures have been synthesized in using a modified solgel process. The opal like photonic crystal structures have been fabricated by self assembling technique.

  7. Electrospun nanomaterials for ultrasensitive sensors

    OpenAIRE

    Bin Ding; Moran Wang; Xianfeng Wang; Jianyong Yu; Gang Sun

    2010-01-01

    Increasing demands for ever more sensitive sensors for global environmental monitoring, food inspection and medical diagnostics have led to an upsurge of interests in nanostructured materials such as nanofibers and nanowebs. Electrospinning exhibits the unique ability to produce diverse forms of fibrous assemblies. The remarkable specific surface area and high porosity bring electrospun nanomaterials highly attractive to ultrasensitive sensors and increasing importance in other nanotechnologi...

  8. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  9. Evaluation Of ARG-1 Samples Prepared By Cesium Carbonate Dissolution During The Isolok SME Acceptability Testing

    International Nuclear Information System (INIS)

    Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems and Custom Equipment Development (MS and CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs2CO3) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs2CO3 method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting from this work was

  10. EVALUATION OF ARG-1 SAMPLES PREPARED BY CESIUM CARBONATE DISSOLUTION DURING THE ISOLOK SME ACCEPTABILITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Hera, K.; Coleman, C.

    2011-12-05

    Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs{sub 2}CO{sub 3}) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs{sub 2}CO{sub 3} method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting

  11. REACH and nanomaterials: current status

    International Nuclear Information System (INIS)

    New challenges for regulators are emerging about a specific assessment and appropriate management of the potential risks of nanomaterials. In the framework of European legislation on chemicals, Regulation (EC) No. 1907/2006 REACH aims to ensure the safety of human health and the environment through the collection of information on the physico-chemical characteristics of the substances and on their profile (eco) toxicological and the identification of appropriate risk management linked to 'exposure to these substances without impeding scientific progress and the competitiveness of industry. In order to cover the current shortage of information on the safety of nanomaterials and tackle the acknowledged legal vacuum, are being a rich activities, carried out both by regulators both by stake holders, and discussions on the proposals for adapting the European regulatory framework for chemicals . The European Commission is geared to strengthen the REACH Regulation by means of updates of its annexes. The importance of responding to the regulatory requirements has highlighted the need for cooperation between European organizations, scientists and industries to promote and ensure the safe use of nanomaterials.

  12. Nanomaterial-Enabled Neural Stimulation.

    Science.gov (United States)

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  13. Nanomaterial-enabled neural stimulation

    Directory of Open Access Journals (Sweden)

    Yongchen eWang

    2016-03-01

    Full Text Available Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  14. Field evaluation of carbon dioxide baits for sampling Ornithodoros turicata (Acari: Argasidae) in gopher tortoise burrows.

    Science.gov (United States)

    Adeyeye, O A; Butler, J F

    1991-01-01

    Field studies were conducted to assess the reliability of carbon dioxide baits in sampling Ornithodoros turicata Duges. Tick response to about 50 g of dry ice placed at various distances away from tick-infested burrows was monitored over a 2-h period. In addition, tick attraction to different flow rates of carbon dioxide was monitored. Tests were conducted over a 15-mo period, during which seasonal effects on O. turicata response to CO2 were assessed. The efficacy of the baits was evaluated at night and in daytime. Ticks responded to dry ice baits placed up to 8 m away from the burrows. There was no significant difference in the total number of ticks attracted in a 1-h period using 500 to 2,000 ml CO2/min. At night, ticks were attracted to CO2 bits throughout the year except in December and January. By contrast, ticks were attracted to CO2 baits during daytime only between May and mid-December. PMID:1903452

  15. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    Science.gov (United States)

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities. PMID:26298339

  16. Toxicity of nanomaterials; an undermined issue.

    Science.gov (United States)

    Mogharabi, Mehdi; Abdollahi, Mohammad; Faramarzi, Mohammad Ali

    2014-01-01

    Nanomaterials are employed in extensive variety of commercial products such as electronic components, cosmetics, food, sports equipment, biomedical applications, and medicine. With the increasing utilization of engineered nanomaterials, the potential exposure of human to nanoparticles is rapidly increasing. Nowadays when new nanomaterials with new applications are introduced, mostly good and positive effects are mentioned whereas possible hazards arising from nanosize of the compounds are undermined. Toxicology studies of nanomaterials demonstrate some adverse effects in some human organs such as central nerve system, immune system, and lung. There is lack of complete information about human toxicity and environmental waste of nanomaterials. We aimed to highlight current toxicological concerns of potentially useful nanomaterials which are now used in pharmaceutical and biomedical sciences. PMID:25123555

  17. Modeling of nanotoxicity molecular interactions of nanomaterials with bionanomachines

    CERN Document Server

    Zhou, Ruhong

    2015-01-01

    This book provides a comprehensive overview of the fundamentals of nanotoxicity modeling and its implications for the development of novel nanomedicines. It lays out the fundamentals of nanotoxicity modeling for an array of nanomaterial systems, ranging from carbon-based nanoparticles to noble metals, metal oxides, and quantum dots. The author illustrates how molecular (classical mechanics) and atomic (quantum mechanics) modeling approaches can be applied to bolster our understanding of many important aspects of this critical nanotoxicity issue. Each chapter is organized by types of nanomaterials for practicality, making this an ideal book for senior undergraduate students, graduate students, and researchers in nanotechnology, chemistry, physics, molecular biology, and computer science. It is also of interest to academic and industry professionals who work on nanodrug delivery and related biomedical applications, and aids readers in their biocompatibility assessment efforts in the coming age of nanotechnology...

  18. Extensive Sampling of Forest Carbon using High Density Power Line Lidar

    Science.gov (United States)

    Hampton, H. M.; Chen, Q.; Dye, D. G.; Hungate, B. A.

    2013-12-01

    Estimating carbon sequestration and greenhouse gas emissions from forest management, natural processes, and disturbance is of growing interest for mitigating global warming. Ponderosa pine is common at mid-elevations throughout the western United States and is a dominant tree species in southwestern forests. Existing unmanaged "relict" sites and stand reconstructions of southwestern ponderosa pine forests from before European settlement (late 1800s) provide evidence of forests of larger trees of lower density and less vulnerability to severe fires than today's typical conditions of high densities of small trees that have resulted from a century of fire suppression. Forest treatments to improve forest health in the region include tree cutting focused on small-diameter trees (thinning), low-intensity prescribed burning, and monitoring rather than suppressing wildfires. Stimulated by several uncharacteristically-intense fires in the last decade, a collaborative process found strong stakeholder agreement to accelerate forest treatments to reduce fire risk and restore ecological conditions. Land use planning to ramp up management is underway and could benefit from quick and inexpensive techniques to inventory tree-level carbon because existing inventory data are not adequate to capture the range of forest structural conditions. Our approach overcomes these shortcomings by employing recent breakthroughs in estimating aboveground biomass from high resolution light detection and ranging (lidar) remote sensing. Lidar is an active remote sensing technique, analogous to radar, which measures the time required for a transmitted pulse of laser light to return to the sensor after reflection from a target. Lidar data can capture 3-dimensional forest structure with greater detail and broader spatial coverage than is feasible with conventional field measurements. We developed a novel methodology for extensive sampling and field validation of forest carbon, applicable to managed and

  19. Handbook of immunological properties of engineered nanomaterials

    CERN Document Server

    Dobrovolskaia, Marina A

    2012-01-01

    The Handbook of Immunological Properties of Engineered Nanomaterials provides a comprehensive overview of the current literature, methodologies, and translational and regulatory considerations in the field of nanoimmunotoxicology. The main subject is the immunological properties of engineered nanomaterials. Focus areas include interactions between engineered nanomaterials and red blood cells, platelets, endothelial cells, professional phagocytes, T cells, B cells, dendritic cells, complement and coagulation systems, and plasma proteins, with discussions on nanoparticle sterility and sterilizat

  20. FORMING AND PRECISION MACHINING TO NANOMATERIALS LUMP

    Institute of Scientific and Technical Information of China (English)

    Zhan Jie; Zhang Jin; Chen Bingkui; Chen Xiaoan

    2004-01-01

    The technology of forming and machining lump nano-materials has been investigated. Grinding, abrasive machining test has been conducted to Fe, Co, Ni and Al lump nano-materials. Experiments have been done to measure grinding force, grinding thermal, machining roughness and micro-hardness. Image analysis is carried out by metallographic and scanning tunnel microscopic microscope. Researches provide the basis data for forming and machining lump nano-materials.

  1. Toxicity of nanomaterials; an undermined issue

    OpenAIRE

    Mogharabi, Mehdi; Abdollahi, Mohammad; Faramarzi, Mohammad Ali

    2014-01-01

    Nanomaterials are employed in extensive variety of commercial products such as electronic components, cosmetics, food, sports equipment, biomedical applications, and medicine. With the increasing utilization of engineered nanomaterials, the potential exposure of human to nanoparticles is rapidly increasing. Nowadays when new nanomaterials with new applications are introduced, mostly good and positive effects are mentioned whereas possible hazards arising from nanosize of the compounds are und...

  2. Sampling strategy to obtain data used in models of global annual CO2 increase and global carbon cycle

    International Nuclear Information System (INIS)

    Simple models were constructed to assess with somewhat limited CO2 data the effects of both frequency of sampling and spatial distribution of sampling locations on the variance of estimates of interest to the global carbon cycle. The CO2 data for use in these models were obtained from seven air flask sampling locations, globally distributed in latitude but restricted to the longitude sector 800W to 1700W, during the period 1977--1979. The results of analysis with these models show (1) that locations north of 300N are quite important in possibly providing information on carbon cycle exchange processes and that (2) improved sampling techniques including greater sampling frequency would be desirable for sampling locations in the southern hemisphere

  3. Nano-material and method of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  4. Optimization of liquid scintillation counting techniques for the determination of carbon-14 in environmental samples

    International Nuclear Information System (INIS)

    The goal of this work was to optimize the liquid scintillation counting techniques for the determination of 14C in stack effluent gases and in environmental samples such as biological and air samples. Carbon-14 activities in most environmental samples were measured with the direct CO2 absorption method. The highest figures of merit were found through the variation of Carbosorb E and Permafluor V ratio, and measurement windows. The best condition was an 1:1 volume ratio. Average 2.35 g of CO2 was reproducibly absorbed in the 20 ml mixture within 40 minutes. The counting efficiency determined by repeated analysis of NIST oxalic acid standard and the background count rate were measured to be 58.8±1.4% and 1.88±0.06 cpm, respectively, in case of saturated solution. The correction curves of counting efficiency for partially saturated solutions and for saturated solutions with quenching were prepared, respectively. The overall uncertainty of the sample specific activity for near background levels was estimated to be about 7% for 4 hours counting at 95% confidence level. Stack effluent gas samples were measured by a gel suspension counting method. After precipitation of CO2 in the form of BaCO3, 140 mg of which was mixed with 6 ml H2O and 12 ml of Instagel XF. The counting efficiency was measured to be 71.5±1.7% and the typical sensitivity of this technique was about 510 mBq/m3 for a 100 min count at a background count rate of 4.7 cpm. For the benzene counting method measurements were performed with a mixture of 3 ml benzene and 1 ml of scintillation cocktail (5 g of butyl-PBD in 100 ml of scintillation-grade toluene) in a low potassium 7 ml borosilicate glass vial. The counting efficiency and the background count rate were measured to be 64.3±1.0% and 0.51±0.05 cpm, respectively. The long-term stability of samples has been checked for all the counting techniques over a two week period, during which no apparent change in counting efficiency and background level was

  5. Hydrogen isotope depth profiling in carbon samples from the erosion dominated inner vessel walls of JET

    International Nuclear Information System (INIS)

    In order to investigate the hydrogen isotope accumulation at the erosion dominated inner walls of fusion experiments, several small carbon samples have been mounted in the inner wall tiles of the torus of the JET Joint Undertaking. After about 2.5 years of JET operation, including the extended D/T phase and the D/D cleaning phase, the samples have been removed and analysed by RBS, ERDA and AMS. In the near surface region only small T concentrations are measured. A much larger T concentration is found at depths between about 1 and 2 μm. This may originate from energetic (∼1 MeV) T which is produced during the D/D discharges and implanted to large depth. The lower energy (keV) T which is implanted during the D/T discharges became effectively removed from the inner wall, by isotope exchange with implanted D or H and/or by erosion of the wall. The total amount of T within a depth of about 2 μm was found to be about 1-3x1013 T/cm2, while in a surface layer of about 0.5 μm about 1-3x1012 T/cm2, about 2-4x1016 D/cm2 and about 4-9x1016 H/cm2 were measured

  6. Spectral absorption of unpolarized light through nano-materials in the absence of a magnetic field

    OpenAIRE

    Luminosu I.; Popov D.; Zaharie I.

    2008-01-01

    A study of optical properties, such as light absorption, of a colloidal nano-material, provides information on the biphasic, solid - liquid system microstructure. The nano-material under study is a magnetic liquid (ferrofluid). The disperser agent is petroleum mineral oil and the dispersed material is a brown spar powder (nano-particles). The stabilizer is oleic acid. Light absorption through ferrofluid samples reveals the tendency of solid particles in a colloidal solution to form aggregates...

  7. A simple approach for fabricating solid-contact ion-selective electrodes using nanomaterials as transducers

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Rongning; Yin, Tanji; Qin, Wei, E-mail: wqin@yic.ac.cn

    2015-01-01

    Highlights: • A general method for fabricating nanomaterials based solid-contact ISEs is developed. • The mixture of an ionic liquid and a nanomaterial is used as intermediate layer. • The detection limits of the proposed sensors are in the nanomolar range. • The developed electrodes exhibit a good response time and excellent stability. - Abstract: A simple and robust approach for the development of solid-state ion-selective electrodes (ISEs) using nanomaterials as solid contacts is described. The electrodes are fabricated by using the mixture of an ionic liquid (IL) and a nanomaterial as intermediate layer, formed by melting the IL. Tetradodecylammonium tetrakis(4-chlorophenyl)borate (ETH 500) is chosen as an model of IL to provide strong adhesion between the inner glassy carbon electrode and the intermediate layer. Nanomaterials including single-walled carbon nanotubes (SWCNTs) and graphene were used as active ion-to-electron transducers between the glassy carbon electrode and the ionophore-doped ISE membrane. By using the proposed approach, the solid-contact Cu{sup 2+}- and Pb{sup 2+}-selective electrodes based on ETH 500/SWCNTs and ETH 500/graphene as transducers, respectively, have been fabricated. The proposed electrodes show detection limits in the nanomolar range and exhibit a good response time and excellent stability.

  8. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment

    Directory of Open Access Journals (Sweden)

    Vega-Alvarez S

    2014-04-01

    Full Text Available Sasha Vega-Alvarez,1 Adriana Herrera,2 Carlos Rinaldi,2–4 Franklin A Carrero-Martínez1,5 1Department of Biology, 2Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico; 3J Crayton Pruitt Family Department of Biomedical Engineering, 4Department of Chemical Engineering, University of Florida, Gainesville, FL, USA; 5Department of Anatomy and Neuroscience, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Abstract: Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays requiring minimal amounts of materials are needed to establish both their biomedical potential and environmental safety standards. Drosophila exemplifies an efficient and cost-effective model organism with a vast repertoire of in vivo tools and techniques, all with high-throughput scalability and screening feasibility throughout its life cycle. Here we report tissue specific nanomaterial assessment through direct microtransfer into target tissues. We tested several nanomaterials with potential biomedical applications such as single-wall carbon nanotubes, multiwall carbon nanotubes, silver, gold, titanium dioxide, and iron oxide nanoparticles. Assessment of nanomaterial toxicity was conducted by evaluating progression through developmental morphological milestones in Drosophila. This cost-effective assessment method is amenable to high-throughput screening. Keywords: nanotoxicity, Drosophila, microtransfer, nanoparticle, iron oxide, silver, gold, titanium dioxide, carbon nanotube

  9. Influence of aggregate shapes on drying and carbonation phenomena in 3D concrete numerical samples

    International Nuclear Information System (INIS)

    This study aims at generating numerical 3D samples of concrete so as to study the effects of the granular inclusions shape on the macroscopic kinetics of reactive transport phenomena. Two types of meso-structure configurations are considered: the first one is composed of a matrix of mortar in which are randomly distributed inclusions corresponding to the concrete coarse aggregates, and the second one also includes a steel rebar. The choice of a mesoscopic modeling for the mortar matrix is based on the need to obtain numerical structures of reasonable size. In particular, the Interfacial Transition Zones (ITZs) are assumed to be incorporated into the homogenized mortar properties. This study is applied to the case of drying and atmospheric carbonation by using simplified models solved by the finite element code Cast3M. The purpose is to quantify the influence of the aggregate shape on the kinetics of macroscopic transfer and the iso-value lines for some physical variables representative of the reactive transport problems: saturation degree for drying, and porosity, calcite and portlandite concentrations for carbonation. Basic aggregates shapes are studied (spheres, cubes), as well as more complex ones (Voronoi particles) which are supposed to be more representative of real aggregates. The effects of 'non-isotropic' shapes (oblate and prolate ones) are also investigated. It is shown that the influence of the aggregate shapes appears negligibly small on macroscopic indicators, except for oblate shapes with aspect ratios of 3. This latter case also exhibits substantial local delayed effects and a more important variability, which may have some importance for a precise description and estimation of degradation processes related to steel rebar corrosion. (authors)

  10. Revisiting soil carbon and nitrogen sampling: quantitative pits versus rotary cores

    Science.gov (United States)

    Increasing atmospheric carbon dioxide and its feedbacks with global climate have sparked renewed interest in quantifying ecosystem carbon (C) budgets, including quantifying belowground pools. Belowground nutrient budgets require accurate estimates of soil mass, coarse fragment content, and nutrient ...

  11. Measurement of Carbon Fixation Rates in Leaf Samples — Use of carbon-14 labeled sodium bicarbonate to estimate photosynthetic rates

    OpenAIRE

    sprotocols

    2014-01-01

    Author: David R. Caprette ### Generation of a Light Curve To address the hypothesis concerning photosynthetic efficiency it is necessary to expose sun and shade leaves to a range of light intensities long enough for them to fix significant amounts of carbon. It is necessary to expose identical surface areas under favorable conditions which are identical for all leaves except for light intensity (the experimental variable). A means of measuring the rate of carbon fixation is also neces...

  12. Synthesis and Characterisation of Nanomaterials

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2008-07-01

    Full Text Available Development of synthesis protocols for realising nanomaterials over a range of sizes, shapes,and chemical compositions is an important aspect of nanotechnology. The remarkable size-dependent physico-chemical properties of nanoparticles have fascinated and inspired researchactivity in this direction. This paper describes some aspects on synthesis and characterisationof nanoparticles of metals, metal alloys, and oxides, either in the form of thin films or bulk shapes.A brief discussion on processing of two-phase nanocomposite magnets is also presented.Defence Science Journal, 2008, 58(4, pp.504-516, DOI:http://dx.doi.org/10.14429/dsj.58.1671

  13. Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates.

    Science.gov (United States)

    Butt, Nathalie; Slade, Eleanor; Thompson, Jill; Malhi, Yadvinder; Riutta, Terhi

    2013-06-01

    A typical way to quantify aboveground carbon in forests is to measure tree diameters and use species-specific allometric equations to estimate biomass and carbon stocks. Using "citizen scientists" to collect data that are usually time-consuming and labor-intensive can play a valuable role in ecological research. However, data validation, such as establishing the sampling error in volunteer measurements, is a crucial, but little studied, part of utilizing citizen science data. The aims of this study were to (1) evaluate the quality of tree diameter and height measurements carried out by volunteers compared to expert scientists and (2) estimate how sensitive carbon stock estimates are to these measurement sampling errors. Using all diameter data measured with a diameter tape, the volunteer mean sampling error (difference between repeated measurements of the same stem) was 9.9 mm, and the expert sampling error was 1.8 mm. Excluding those sampling errors > 1 cm, the mean sampling errors were 2.3 mm (volunteers) and 1.4 mm (experts) (this excluded 14% [volunteer] and 3% [expert] of the data). The sampling error in diameter measurements had a small effect on the biomass estimates of the plots: a volunteer (expert) diameter sampling error of 2.3 mm (1.4 mm) translated into 1.7% (0.9%) change in the biomass estimates calculated from species-specific allometric equations based upon diameter. Height sampling error had a dependent relationship with tree height. Including height measurements in biomass calculations compounded the sampling error markedly; the impact of volunteer sampling error on biomass estimates was +/- 15%, and the expert range was +/- 9%. Using dendrometer bands, used to measure growth rates, we calculated that the volunteer (vs. expert) sampling error was 0.6 mm (vs. 0.3 mm), which is equivalent to a difference in carbon storage of +/- 0.011 kg C/yr (vs. +/- 0.002 kg C/yr) per stem. Using a citizen science model for monitoring carbon stocks not only has

  14. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants.

    Science.gov (United States)

    Wild, Edward; Jones, Kevin C

    2009-07-15

    The increasing use of nanomaterials in almost all sectors of society (e.g., health or energy to agriculture and transport) has generated a need for innovative detection methods for nanomaterials, to enable their continued development, environmental and toxicological monitoring, and risk assessment. In vivo nanoparticle visualization is needed to support applications in drug delivery to plant biology where real-time monitoring is essential. Techniques are sought that do not require the addition of molecular tags or nanotags to enhance detection, because these may modify the surface properties or behavior of the nanomaterials. Here two-photon excitation microscopy coupled with plant nanomaterial, or chemical autofluorescence is used to detect and visualize multiwalled carbon nanotubes (MWCNTs), titanium dioxide, and cerium dioxide in living wheat tissues. The potential of the technique to track chemical-nanomaterial interactions in living tissues is then demonstrated, using phenanthrene as a model compound. MWCNTs were observed to pierce wheat root cell walls and enhance the transport of phenanthrene into the living cells. The ability of this technique to monitor real-time in vivo nanomaterial behavior and its potential applications and limitations for use in various disciplines is highlighted. PMID:19708355

  15. A comparative study of lung toxicity in rats induced by three types of nanomaterials

    Science.gov (United States)

    Lin, Zhiqing; Ma, Li; X, Zhu-ge; Zhang, Huashan; Lin, Bencheng

    2013-12-01

    The public is increasingly exposed to various engineered nanomaterials because of their mass production and wide application. Even when the biological effects of nanomaterials have been assessed, the underlying mechanisms of action in vivo are poorly understood. The present study was designed to seek a simple, effective, and oxidative stress-based biomarker system used for screening toxicity of nanomaterials. Nano-ferroso-ferric oxide (nano-Fe3O4), nano-silicon dioxide (nano-SiO2), and single-walled carbon nanotubes (SWCNTs) were dispersed in corn oil and characterized using transmission electron microscopy (TEM). Rats were exposed to the three nanomaterials by intratracheal instillation once every 2 days for 5 weeks. We investigated their lung oxidative and inflammatory damage by bronchoalveolar lavage fluid (BALF) detection and comparative proteomics by lung tissue. Two-dimensional electrophoresis (2-DE) of proteins isolated from the lung tissue, followed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry, was performed. In the present study, we chose to detect lactate dehydrogenase, total antioxidant capacity, superoxide dismutase, and malondialdehyde as the biomarker system for screening the oxidative stress of nanomaterials and IL-6 as the inflammatory biomarker in BALF. Proteomics analysis revealed 17 differentially expressed proteins compared with the control group: nine were upregulated and eight were downregulated. Our results indicated that exposure by intratracheal instillation to any of the three typical nanomaterials may cause lung damage through oxidative damage and/or an inflammatory reaction.

  16. Moessbauer spectroscopy of Fe-based nanomaterials

    International Nuclear Information System (INIS)

    There are two opinions concerning the effect of the nanosized grains on magnetic properties and Moessbauer spectra. One of them testifies that nanomaterials have a grain boundary phase (interface region) which decreases the specific saturation magnetization and leads to the additional sextet in the Moessbauer spectrum. The second one treats the changes in spectra by the impurities. In this work the results on a-Fe, Fe90Ge10 and Fe77,5Al22.5 nanocrystalline alloys are presented. The nanostructured (8 nm) powders of Fe, bcc disordered Fe90Ge10 and Fe77,5Al22.5 were produced by mechanical grinding and alloying. The samples were studied by X-ray diffraction, Moessbauer spectroscopy, magnetic measurements and then compared with microstructured ones. With the absence of contamination no changes have been found in the specific saturation magnetization, Curie temperature and hyperfine interaction parameters of the nanomaterials. No additional sextet in the Moessbauer spectra and peculiarities in the temperature dependences of a.c. magnetic susceptibility were found either. We have registered a slight lines broadening (∼ 20%) in Moessbauer spectrum of the nanocrystalline pure Fe. The broadening observed is explained by random in sign and in magnitude anisotropic contribution to the hyperfine magnetic field from the Fe atoms in the interfaces. The conclusion drawn is that the interface of the nanostructure (boundary and close-to-boundary distorted zones) of 1 nm width considerably have the same magnetic properties and hyperfine interaction parameters in comparison with those in the bulk.

  17. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Niina J. Ronkainen

    2013-04-01

    Full Text Available The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  18. Focus on the nanomaterial-based biosensor papers in Chinese Journal of Analytical Chemistry of the year 2010

    Institute of Scientific and Technical Information of China (English)

    LIU Xia; MA LiNa; WANG ZhenXin

    2011-01-01

    Because of their unique physical and chemical properties,nanomaterials have been widely used to develop biosensing systems for bioanalytical and biomedical applications.The journal Chinese Journal of Analytical Chemistry published 35 papers on nanomaterial-based biosensors in 2010,including 5 reviews [1-5] and 29 research articles [6-34].These biosensing systems were fabricated by a broad range of nanomaterials (e.g.,carbon nanotube,gold nanoparticle,magnetic nanoparticle,silica nanoparticle,quantum dot,and so forth,Figure 1),some of them have high quality and get great achievements.

  19. Risk-based classification system of nanomaterials

    International Nuclear Information System (INIS)

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  20. Thermal stability of consolidated metallic nanomaterials

    International Nuclear Information System (INIS)

    The results of applications of theoretical kinetic and thermodynamic approaches to estimation of thermal stability of consolidated nanomaterials based on various metals, alloys and refractory compounds are considered. The principal experimental data concerning the stability of the nanomaterials, including radiation stability, abnormal grain growth and oxidation, are analyzed. The bibliography includes 82 references

  1. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss;

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  2. EU and Swiss regulatory action on Nanomaterials

    OpenAIRE

    Jost, Dannie

    2012-01-01

    Dannie Jost lectured on EU and Swiss regulatory action on nanomaterials as one of 16 speakers at the interdisciplinary seminar for young scientists was aimed at doctoral students from NRP 62 "Smart Materials" and NRP 64 "Opportunities and Risks of Nanomaterials".

  3. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging. PMID:26757620

  4. Multi-metal oxide ceramic nanomaterial

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  5. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    Science.gov (United States)

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  6. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  7. Management of nanomaterials safety in research environment

    OpenAIRE

    Riediker Michael; Magrez Arnaud; Petri-Fink Alke; Groso Amela; Meyer Thierry

    2010-01-01

    Abstract Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the...

  8. Probing mechanical principles of cell-nanomaterial interactions

    Science.gov (United States)

    Gao, Huajian

    2014-01-01

    With the rapid development of nanotechnology, various types of nanoparticles, nanowires, nanofibers, nanotubes, and atomically thin plates and sheets have emerged as candidates for an ever increasing list of potential applications for next generation electronics, microchips, composites, barrier coatings, biosensors, drug delivery, and energy harvesting and conversion systems. There is now an urgent societal need to understand both beneficial and hazardous effects of nanotechnology which is projected to produce and release thousands of tons of nanomaterials into the environment in the coming decades. This paper aims to present an overview of some recent studies conducted at Brown University on the mechanics of cell-nanomaterial interactions, including the modeling of nanoparticles entering cells by receptor-mediated endocytosis and coarse-grained molecular dynamics simulations of nanoparticles interacting with cell membranes. The discussions will be organized around the following questions: Why and how does cellular uptake of nanoparticles depend on particle size, shape, elasticity and surface structure? In particular, we will discuss the effect of nanoparticle size on receptor-mediated endocytosis, the effect of elastic stiffness on cell-particle interactions, how high aspect ratio nanomaterials such as carbon nanotubes and graphenes enter cells and how different geometrical patterns of ligands on a nanoparticle can be designed to control the rate of particle uptake.

  9. Recent trends in nanomaterials applications in environmental monitoring and remediation.

    Science.gov (United States)

    Das, Sumistha; Sen, Biswarup; Debnath, Nitai

    2015-12-01

    Environmental pollution is one of the greatest problems that the world is facing today, and it is increasing with every passing year and causing grave and irreparable damage to the earth. Nanomaterials, because of their novel physical and chemical characteristics, have great promise to combat environment pollution. Nanotechnology is being used to devise pollution sensor. A variety of materials in their nano form like iron, titanium dioxide, silica, zinc oxide, carbon nanotube, dendrimers, polymers, etc. are increasingly being used to make the air clean, to purify water, and to decontaminate soil. Nanotechnology is also being used to make renewable energy cheaper and more efficient. The use of nanotechnology in agriculture sector will reduce the indiscriminate use of agrochemicals and thus will reduce the load of chemical pollutant. While remediating environment pollution with nanomaterials, it should also be monitored that these materials do not contribute further degradation of the environment. This review will focus broadly on the applications of nanotechnology in the sustainable development with particular emphasis on renewable energy, air-, water-, and soil-remediation. Besides, the review highlights the recent developments in various types of nanomaterials and nanodevices oriented toward pollution monitoring and remediation. PMID:26490920

  10. Characterisation of black carbon-rich samples by (13)C solid-state nuclear magnetic resonance.

    Science.gov (United States)

    Novotny, Etelvino H; Hayes, Michael H B; Deazevedo, Eduardo R; Bonagamba, Tito J

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Indio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. (13)C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, (1)H-(13)C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the pi pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp--variable amplitude CP (VACP)--VACP/MAS pulse sequence, and composite pi pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins. PMID:16688435

  11. Characterisation of black carbon-rich samples by 13C solid-state nuclear magnetic resonance

    Science.gov (United States)

    Novotny, Etelvino H.; Hayes, Michael H. B.; Deazevedo, Eduardo R.; Bonagamba, Tito J.

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Índio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. 13C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, 1H-13C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the π pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp—variable amplitude CP (VACP)—VACP/MAS pulse sequence, and composite π pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins.

  12. Environmental assessment of nanomaterial use in Denmark

    DEFF Research Database (Denmark)

    Kjølholt, Jesper; Gottschalk, Fadri; Brinch, Anna;

    This is the concluding report of the project "Nanomaterials – occurrence and effects in the Danish environment" (abbreviated NanoDEN), which part the Danish Government's initiative "Better Control of Nanomaterials" (“Bedre styr på nanomaterialer”) which is administered by the Danish Environmental...... Protection Agency. The projects in NanoDEN have aimed to investigate and generate new environmentally relevant knowledge on of nanomaterials on the Danish market and to assess the possible associated risks to the environment. The results from the sub-projects are summarized in the current report and it is...... assessed whether and how nanomaterials may pose a risk for the environment in Denmark. The assessment is based on investigations of nine selected nanomaterials, which are expected to be environmentally relevant based on knowledge of consumption quantities or how they are used. These data contribute to an...

  13. Tiny Medicine: Nanomaterial-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Nelson Watts

    2009-11-01

    Full Text Available Tiny medicine refers to the development of small easy to use devices that can help in the early diagnosis and treatment of disease. Early diagnosis is the key to successfully treating many diseases. Nanomaterial-based biosensors utilize the unique properties of biological and physical nanomaterials to recognize a target molecule and effect transduction of an electronic signal. In general, the advantages of nanomaterial-based biosensors are fast response, small size, high sensitivity, and portability compared to existing large electrodes and sensors. Systems integration is the core technology that enables tiny medicine. Integration of nanomaterials, microfluidics, automatic samplers, and transduction devices on a single chip provides many advantages for point of care devices such as biosensors. Biosensors are also being used as new analytical tools to study medicine. Thus this paper reviews how nanomaterials can be used to build biosensors and how these biosensors can help now and in the future to detect disease and monitor therapies.

  14. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    Science.gov (United States)

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods. PMID:27319209

  15. Synthesis, structural characterisation and antibacterial activity of Ag{sup +}-doped fluorapatite nanomaterials prepared by neutralization method

    Energy Technology Data Exchange (ETDEWEB)

    Stanić, Vojislav, E-mail: voyo@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Radosavljević-Mihajlović, Ana S. [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Živković-Radovanović, Vukosava [University of Belgrade, Faculty of Chemistry, P.O. Box 51, 11158 Belgrade (Serbia); Nastasijević, Branislav; Marinović-Cincović, Milena; Marković, Jelena P.; Budimir, Milica D. [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2015-05-15

    Graphical abstract: - Highlights: • The neutralization method has been used for synthesis of silver-doped fluorapatite powders. • Particles of silver-doped fluorapatite samples are of nano size and homogenous in composition. • The Ag{sup +}-doped fluorapatite samples showed antibacterial effect against Kllebsiela pneumoniae, Staphylococcus aureus and Micrococcus luteus. • AFM studies showed that silver-doped sample causes considerable morphological changes of tested bacterial cells. - Abstract: Silver doped fluorapatite nanopowders were synthesised by neutralization method, which consists of dissolving Ag{sub 2}O in solution of HF and H{sub 3}PO{sub 4} and addition to suspension of Ca(OH){sub 2}. The powder XRD, SEM and FTIR studies indicated the formation of a fluorapatite nanomaterials with average length of the particles is about 80 nm and a width of about 15 nm. The FTIR studies show that carbonate content in samples is very small and carbonte ions substitute both phosphate and hydroxyl groups in the crystal structure of samples, forming AB-type fluorapatite. Antibacterial studies have demonstrated that all Ag{sup +}-doped fluorapatite samples exhibit bactericidal effect against pathogens: Staphylococcus aureus, Micrococcus luteus and Kllebsiela pneumoniae. Antibacterial activity increased with the increase of Ag{sup +} in the samples. The atomic force microscopy studies revealed extensive damage to the bacterial cell envelops in the presence of Ag{sup +}-doped fluorapatite particles which may lead to their death. The synthesized Ag{sup +}-doped fluorapatite nanomaterials are promising as antibacterial biomaterials in orthopedics and dentistry.

  16. Nanomaterial Synthesis Using Plasma Generation in Liquid

    Directory of Open Access Journals (Sweden)

    Genki Saito

    2015-01-01

    Full Text Available Over the past few decades, the research field of nanomaterials (NMs has developed rapidly because of the unique electrical, optical, magnetic, and catalytic properties of these materials. Among the various methods available today for NM synthesis, techniques for plasma generation in liquid are relatively new. Various types of plasma such as arc discharge and glow discharge can be applied to produce metal, alloy, oxide, inorganic, carbonaceous, and composite NMs. Many experimental setups have been reported, in which various parameters such as the liquid, electrode material, electrode configuration, and electric power source are varied. By examining the various electrode configurations and power sources available in the literature, this review classifies all available plasma in liquid setups into four main groups: (i gas discharge between an electrode and the electrolyte surface, (ii direct discharge between two electrodes, (iii contact discharge between an electrode and the surface of surrounding electrolyte, and (iv radio frequency and microwave plasma in liquid. After discussion of the techniques, NMs of metal, alloy, oxide, silicon, carbon, and composite produced by techniques for plasma generation in liquid are presented, where the source materials, reaction media, and electrode configurations are discussed in detail.

  17. Nanomaterials for Advanced Life Support in Advanced Life Support in Space systems

    Science.gov (United States)

    Allada, Rama Kumar; Moloney, Padraig; Yowell, Leonard

    2006-01-01

    A viewgraph presentation describing nanomaterial research at NASA Johnson Space Center with a focus on advanced life support in space systems is shown. The topics include: 1) Introduction; 2) Research and accomplishments in Carbon Dioxide Removal; 3) Research and Accomplishments in Water Purification; and 4) Next Steps

  18. "Sugarcoated haws on a stick"-like MWNTs-Fe3O4-C coaxial nanomaterial: synthesis, characterization and application in electrochemiluminescence immunoassays.

    Science.gov (United States)

    Chu, Chengchao; Li, Meng; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang; Li, Long; Han, Baohai; Li, Jianxiu

    2013-09-15

    In this paper, a carbon coated magnetic nanoparticle (Fe3O4-C) was first synthesized via solvothermal reaction and carbonization of glucose under hydrothermal condition. The electrochemiluminescence (ECL) property of Fe3O4-C was studied, and exhibited a peak at 1.21V. In the goal to amplify the ECL intensity for sensitive detection, a novel coaxial carbon coated magnetic nanomaterial (MWNTs-Fe3O4-C) was synthesized. Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), powder X-ray diffraction (XRD) and powder X-ray photoelectron spectrometry (XPS) were applied as powerful tools to characterize and to demonstrate the named nanomaterial. MWNTs-Fe3O4-C showed better ECL property than Fe3O4-C. Furthermore, an ultrasensitive ECL immunosensor based on MWNTs-Fe3O4-C was developed for the determination of carcinoembryonic antigen (CEA). The prepared ECL immunosensor exhibited high sensitivity, good reproducibility, long-term stability, and acceptable precision on the detection of CEA in clinical human serum samples. PMID:23557979

  19. Comparison of ORNL Low Cost Carbon Fiber with Commercially Available Industrial Grade Carbon Fiber in Pultrusion Samples

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McCay, Jeff A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Connie D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    Composite Applications Group LLC in collaboration with Heil Trailer International partnered in a project to design and develop solutions for light weighting of aluminum dry bulk tank trailers. The project approach was to utilize pultruded composite sections in place of aluminum components to reduce weight thereby saving energy through more efficient transport. Low cost carbon fiber was evaluated as a potential cost saving option that could enhance weight savings at reduced cost versus current commercial material.

  20. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    Science.gov (United States)

    Zhang, Zhiqiang; Lockwood, Frances E.

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  1. MCNP ESTIMATE OF THE SAMPLED VOLUME IN A NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.; DIOSZEGI, I.; MITRA, S.

    2004-05-03

    Global warming, promoted by anthropogenic CO{sub 2} emission into the atmosphere, is partially mitigated by the photosynthesis processes of the terrestrial echo systems that act as atmospheric CO{sub 2} scrubbers and sequester carbon in soil. Switching from till to no till soils management practices in agriculture further augments this process. Carbon sequestration is also advanced by putting forward a carbon ''credit'' system whereby these can be traded between CO{sub 2} producers and sequesters. Implementation of carbon ''credit'' trade will be further promulgated by recent development of a non-destructive in situ carbon monitoring system based on inelastic neutron scattering (INS). Volumes and depth distributions defined by the 0.1, 1.0, 10, 50, and 90 percent neutron isofluxes, from a point source located at either 5 or 30 cm above the surface, were estimated using Monte Carlo calculations.

  2. CARBONIZED FIBROUS RESIN AS A NEW SORBENT FOR SAMPLING POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)IN AMBIENT AIR

    Institute of Scientific and Technical Information of China (English)

    LINGDaren; LIUBing; 等

    2002-01-01

    A new sampling method of ambient air analysis using carbonized fibrous resin as a sorbent for polycyclic aromatic hydrocarbons(PAHs) was reported.The physical and chemical properties of the carbonized fibrous resins were measured.The sample pretreatment with ultrasonic extraction and subsequent clean-up elution through a silica gel column was optimized.The suitable ultrasonic extraction conditions were selected as follows:resin weight was 1.5g,ultrasonic extraction time 20min,volume of extraction solvent 100 ml and extraction operation times 2-3.The concentrated extractable organic matter was submitted to next step of clean-up procedure of adsorption chromatography on silica gel column/n-hexane and a mixture of dichloromethene:n-hexane solution 2:3(v/v).The PAHs fractions in the real samples from Changzhou,China were particularly analyzed using GC-MS data system and the data of mass spectra,retention times and scan numbers of the real samples were compared with that of the standards of 16 PAHs listed by the US EPA as “priority pollutants” of the environment. The pretreatment of samples of ambient air with carbonized fibrous resin as a sorbent for PAHs is proved to be reliable and might be used for the procedure of the determination of PAHs in atmospheric environment.

  3. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  4. Carbon XANES Data from Six Aerogel Picokeystones Cut from the Top and Bottom Sides of the Stardust Comet Sample Tray

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Tsou, P.; Peltzer, C.; Jacobsen, C.

    2009-01-01

    Great care and a large effort was made to minimize the amount of organic matter contained within the flight aerogel used to collect Comet 81P/Wild 2 samples. Even so, by the very nature of the production process and silica aerogel s affinity for volatile organics keeping silica aerogel free from organics is a monumental task. Silica aerogel from three production batches was flown on the Stardust sample return mission. All 3 types had layered densities varying from 5mg/ml to 50 mg/ml where the densest aerogel was farthest away from the collection area. A 2 step gelation process was used to make the flight aerogel and organics used in this process were tetraethylorthosilicate, ethanol and acetonitrile. Both ammonium hydroxide and nitric acid were also used in the aerogel production process. The flight aerogel was baked at JPL at 300 C for 72 hours, most of the baking was done at atmosphere but twice a day the oven was pumped to 10 torr for hour [1]. After the aerogel was baked it was stored in a nitrogen purged cabinet until flight time. One aerogel cell was located in the SRC away from any sample collection area as a witness to possible contamination from out gassing of the space craft, re-entry gases and any other organic encounter. This aerogel was aerogel used in the interstellar collection sample tray and is the least dense of the 3 batches of aerogel flown. Organics found in the witness tile include organics containing Si-CH3 bonds, amines and PAHS. Besides organic contamination, hot spots of calcium were reported in the flight aerogel. Carbonates have been detected in comet 81P/Wild2 samples . During preflight analyses, no technique was used to analyze for carbonates in aerogel. To determine if the carbonates found in 81P/Wild2 samples were from the comet, it is necessary to analyze the flight aerogel for carbonate as well as for organics.

  5. Microscopic and mesoscopic structural features of an activated carbon sample, prepared from sorghum via activation by phosphoric acid

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: ► Preparation of a new activated carbon sample from sorghum. ► Characterization by adsorption/desorption methods. ► Determination of the structure by synchrotron X-ray diffraction. ► The sample is amorphous and contains distorted graphene fragments. ► A characteristic nanoscale distance is established from the radial distribution function. -- Abstract: An acidic chemical activation procedure has been used for preparing activated carbon with a surface area exceeding 1000 m2/g from sorghum. In order to reveal structural features, synchrotron X-ray diffraction measurements have been performed. The structure of the material has been characterized by the total scattering structure factor and the radial distribution function describing short-range arrangement of atoms at distances of the order of a few atomic diameters as well as correlations at a longer scale, of the order of nanometers. The atomic arrangement has been found to be consistent with that of amorphous graphite-like carbon. As far as the mesoscopic structure is concerned, the presence of a characteristic distance is suggested on the basis of the clear nanometer scale oscillations of the radial distribution function, which distance may be assigned as the mesopore size in the material. It is suggested that the approach devized here may later be applied routinely for other activated carbon samples, too, for characterizing atomic and nanoscale order simultaneously.

  6. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family

    OpenAIRE

    Roberts, Jenny R; Mercer, Robert R; Stefaniak, Aleksandr B; Seehra, Mohindar S.; Geddam, Usha K.; Chaudhuri, Ishrat S.; Kyrlidis, Angelos; Kodali, Vamsi K.; Sager, Tina; Kenyon, Allison; Bilgesu, Suzan A; Eye, Tracy; Scabilloni, James F; Leonard, Stephen S.; Natalie R. Fix

    2016-01-01

    Background Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size. Methods Three sizes of graphite nanoplates [20 μm lateral (Gr20), 5 μm lateral (Gr5), an...

  7. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  8. Understanding the biological and environmental implications of nanomaterials

    Science.gov (United States)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  9. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples

    OpenAIRE

    Gerrit eVoordouw; Priyesh eMenon; Tijan ePinnock; Mohita eSharma; Yin eShen; Amanda eVenturelli; Johanna eVoordouw; Aoife eSexton

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs ba...

  10. Identifying Minimum Detectable Change in US Forest Soil Carbon under the Forest Inventory Analysis (FIA) Sampling Strategy

    Science.gov (United States)

    Wu, A. M.; Nater, E. A.; Perry, C. H.; Dalzell, B. J.; Wilson, B.

    2015-12-01

    Estimates of carbon stocks and stock changes in the U.S. Department of Agriculture Forest Service's Forest Inventory and Analysis (FIA) Program are reported as the official United States submission to the UN Framework Convention on Climate Change. Soil, as a critical component of the forest carbon stocks, has been sampled in about 10-year intervals in FIA with the re-measurement underway. However, the magnitude of detectable change in soil organic carbon (SOC) with the current sampling scheme is unknown. We aim to identify SOC variability and to best determine minimum detectable changes in SOC under the current sampling scheme. The project seeks to: identify statistical relationships between SOC and environmental covariates; normalize SOC data for main forest-type groups (FTGs) using identified covariates; and determine the minimum detectable change in the normalized SOC using power analysis. We investigated SOC variability for 8 FTGs: Oak-Hickory, Maple-Beech-Birch, Pinyon-Juniper, Loblolly-Shortleaf Pine, Aspen-Birch, Douglas-Fir, Fir-Spruce-Mountain Hemlock and Woodland Hardwoods. Relationships between SOC and environmental covariates (biomass/soil properties in FIA, PRISM climate data, and DEM-derived terrain attributes) are determined by multiple linear regression and are used to normalize SOC variability. The results showed that terrain attributes were not significant in explaining SOC in the FIA dataset and climate data were only significant in certain FTGs locations. Except for Oak-Hickory, Maple-Beech-Birch and Pinyon-Juniper groups, sample numbers are insufficient to detect a change in SOC less than 10 percent (%) of the mean. To guide future sampling efforts, we will continue our study on detecting minimal change in SOC and to explore sample number and sampling frequency scenarios to inform future soil sampling protocols.

  11. Electrical properties of carbon nanotubes in flowing vapor

    Institute of Scientific and Technical Information of China (English)

    XIAO Peng; WANG Xin-qiang; ZHANG Yun-huai

    2006-01-01

    Electric potentials were generated from carbon nanotubes immersed in flowing vapors.The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders.These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water,ethanol and KCl.The potentials generated from these samples were measured by a voltmeter.Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes,and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors.The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors.This property of MWCNTs can advantage their application to nanoscale sensors,detectors and power cells.

  12. Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices

    International Nuclear Information System (INIS)

    The aim of this paper is to describe the process and challenges in building exposure scenarios for engineered nanomaterials (ENM), using an exposure scenario format similar to that used for the European Chemicals regulation (REACH). Over 60 exposure scenarios were developed based on information from publicly available sources (literature, books, and reports), publicly available exposure estimation models, occupational sampling campaign data from partnering institutions, and industrial partners regarding their own facilities. The primary focus was on carbon-based nanomaterials, nano-silver (nano-Ag) and nano-titanium dioxide (nano-TiO2), and included occupational and consumer uses of these materials with consideration of the associated environmental release. The process of building exposure scenarios illustrated the availability and limitations of existing information and exposure assessment tools for characterizing exposure to ENM, particularly as it relates to risk assessment. This article describes the gaps in the information reviewed, recommends future areas of ENM exposure research, and proposes types of information that should, at a minimum, be included when reporting the results of such research, so that the information is useful in a wider context.

  13. The review of patents in the area of nanotechnologies and nanomaterials. Part 3

    OpenAIRE

    VLASOV Vladimir Alexeevich

    2015-01-01

    The inventions in the area of nanotechnologies and nanomaterials produce a profound effect in construction, housing and communal services and adjacent economic fields. The invention «The method to produce body of oriented carbon nanotubes on the surface of base plate (RU 2561616)» refers to the technologies for production of body of carbon nanotubes on the surface of base plate. The flow of actuation gas is formed in the reaction chamber. The flow contains carrying gas, gas hydrocarbon and...

  14. Mechanical characterization of low dimensional nanomaterials and polymer nanocomposites

    Science.gov (United States)

    Gao, Hongsheng

    This research was aimed to characterize the mechanical properties of low dimensional nanomaterials and polymer nanocomposites, and to study the reinforcing mechanisms of nanoscale reinforcements. The nanomaterials studied were zero-dimensional nanomaterial--cuprous oxide (Cu2O) nanocubes, one-dimensional nanomaterials--silver nanowires and silicon oxide (SiO2) nanowires, and two-dimensional nanomaterial--nanometer-thick montmorillonite clay platelets. The hardness and elastic moduli of solid Cu 2O nanocubes and silver nanowires were measured by directly indenting individual cubes/wires using a nanoindenter. The elastic modulus of amorphous SiO2 nanowires was measured by performing three-point bending on suspended wires with an atomic force microscope (AFM) tip. The elastic modulus of the nanometer-thick clay platelets was assessed by the modulus mapping technique. An array of nanoscale indents was successfully made on a nanowire. The nanowires were cut to the length as needed. The nanoindentation approach permits the direct machining of individual nanowires without complications of conventional lithography. The nanomechanical properties of single-walled carbon nanotube (SWCNT)-reinforced epoxy composites with varying nanotube concentrations were measured by nanoindentation/nanoscratch techniques. Hardness and elastic modulus were measured using a nanoindenter. Viscoelastic properties of the nanocomposites were measured using nanoindentation dynamic mechanical analysis tests. The SWCNT reinforcing mechanisms were further studied by both Halpin-Tsai and Mori-Tanaka theories, which were found applicable to SWCNT-reinforced, amorphous-polymer composites. The possible reinforcing mechanisms that work in polymer-SWCNT composites and reasons responsible for SWCNTs' low mechanical reinforcement were analyzed. Nanoclay-reinforced agarose nanocomposites with varying clay concentrations were structurally and mechanically characterized. Structural characterization was carried

  15. Monitoring Grassland Seasonal Carbon Dynamics, by Integrating MODIS NDVI, Proximal Optical Sampling, and Eddy Covariance Measurements

    Directory of Open Access Journals (Sweden)

    Enrica Nestola

    2016-03-01

    Full Text Available This study evaluated the seasonal productivity of a prairie grassland (Mattheis Ranch, in Alberta, Canada using a combination of remote sensing, eddy covariance, and field sampling collected in 2012–2013. A primary objective was to evaluate different ways of parameterizing the light-use efficiency (LUE model for assessing net ecosystem fluxes at two sites with contrasting productivity. Three variations on the NDVI (Normalized Difference Vegetation Index, differing by formula and footprint, were derived: (1 a narrow-band NDVI (NDVI680,800, derived from mobile field spectrometer readings; (2 a broad-band proxy NDVI (derived from an automated optical phenology station consisting of broad-band radiometers; and (3 a satellite NDVI (derived from MODIS AQUA and TERRA sensors. Harvested biomass, net CO2 flux, and NDVI values were compared to provide a basis for assessing seasonal ecosystem productivity and gap filling of tower flux data. All three NDVIs provided good estimates of dry green biomass and were able to clearly show seasonal changes in vegetation growth and senescence, confirming their utility as metrics of productivity. When relating fluxes and optical measurements, temporal aggregation periods were considered to determine the impact of aggregation on model accuracy. NDVI values from the different methods were also calibrated against fAPARgreen (the fraction of photosynthetically active radiation absorbed by green vegetation values to parameterize the APARgreen (absorbed PAR term of the LUE (light use efficiency model for comparison with measured fluxes. While efficiency was assumed to be constant in the model, this analysis revealed hysteresis in the seasonal relationships between fluxes and optical measurements, suggesting a slight change in efficiency between the first and second half of the growing season. Consequently, the best results were obtained by splitting the data into two stages, a greening phase and a senescence phase, and

  16. Engineered nanomaterials for solar energy conversion

    International Nuclear Information System (INIS)

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna–rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p–n junction, intermediate band, multiple exciton generation, and antenna–rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions. (topical review)

  17. Recent Applications of Nanomaterials in Prosthodontics

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-01-01

    Full Text Available In recent years, lots of researches have been launched on nanomaterials for biomedical applications. It has been shown that the performances of many biomaterials used in prosthodontics have been significantly enhanced after their scales were reduced by nanotechnology, from micron-size into nanosize. On the other hand, many nanocomposites composed of nanomaterials and traditional metals, ceramics, resin, or other matrix materials have been widely used in prosthodontics because their properties, such as modulus elasticity, surface hardness, polymerization shrinkage, and filler loading, were significantly increased after the addition of the nanomaterials. In this paper, the latest research progress on the applications of nanometals, nanoceramic materials, nanoresin materials, and other nanomaterials in prosthodontics was reviewed, which not only gives a detailed description of the new related investigations, but also hopefully provides important elicitation for future researches in this field.

  18. Assessing the Environmental Risks of Nanomaterials

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Hansen, Steffen Foss; Baun, Anders

    Assessing the environmental risks of engineered nanomaterials (NM) is currently an intensely contested subject among scientists, organizations, governments, and policymakers. The shear number, variety, and market penetration of NM in consumer goods and other applications, including environmental...

  19. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  20. A global view of regulations affecting nanomaterials

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss

    2010-01-01

    The 2000s have been characterized by an unprecedented exploration into research and development of nanotechnology and nanomaterials. Despite a slow start, new regulatory initiatives are popping up like mushrooms internationally. Many of these initiatives have yet to materialize themselves...

  1. Determination of cadmium and lead in urine samples after dispersive solid–liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.; Herrero Latorre, C., E-mail: carlos.herrero@usc.es

    2015-04-01

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L{sup −1}, respectively, and for Pb these limits were 0.13 and 0.43 μg L{sup −1}. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96–102% obtained for Cd and 97–101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE–SS–ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained. - Highlights: • Cd and Pb determination based on the combination of DSP, SS and ETAAS • Urine matrix was eliminated using DSPE based on multiwalled carbon nanotubes. • Slurry sampling technique permitted the direct injection of sample into the ETAAS atomizer.

  2. Determination of cadmium and lead in urine samples after dispersive solid–liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L−1, respectively, and for Pb these limits were 0.13 and 0.43 μg L−1. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96–102% obtained for Cd and 97–101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE–SS–ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained. - Highlights: • Cd and Pb determination based on the combination of DSP, SS and ETAAS • Urine matrix was eliminated using DSPE based on multiwalled carbon nanotubes. • Slurry sampling technique permitted the direct injection of sample into the ETAAS atomizer. • Appropriate

  3. Elemental Analysis of Nanomaterial Using Photon-Atom Interaction Based EDXRF Technique

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar

    2013-08-01

    Full Text Available Presence of trace amount of foreign impurities (both metallic and non-metallic in standard salts used for sample preparation and during the synthesis process can alter the physical and chemical behavior of the pure and doped nano-materials. Therefore, it becomes important to determine concentration of various elements present in synthesized nano-material sample. In present work, the elemental and compositional analysis of nano-materials synthesized using various methods has been performed using photon-atom interaction based energy dispersive x-ray fluorescence (EDXRF technique. This technique due to its multielement analytical capability, lower detection limit, capability to analyze metals and non-metals alike and almost no sample preparation requirements can be utilized for analysis of nano-materials. The EDXRF spectrometer involves a 2.4 kW Mo anode x-ray tube (Pananalytic, Netherland equipped with selective absorbers as an excitation source and an LEGe detector (FWHM = 150 eV at 5.895 keV, Canberra, US coupled with PC based multichannel analyzer used to collect the fluorescentx-ray spectra. The analytical results showed good agreements with the expected values calculated on the basis of the precursor used in preparation of nano-materials.

  4. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities.

    Science.gov (United States)

    Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D

    2012-10-01

    Scientific publications and patents on nanomaterials (NM) used in plant protection or fertilizer products have exponentially increased since the millennium shift. While the United States and Germany have published the highest number of patents, Asian countries released most scientific articles. About 40% of all contributions deal with carbon-based NM, followed by titanium dioxide, silver, silica, and alumina. Nanomaterials come in many diverse forms (surprisingly often ≫100 nm), from solid doped particles to (often nonpersistent) polymer and oil-water based structures. Nanomaterials serve equally as additives (mostly for controlled release) and active constituents. Product efficiencies possibly increased by NM should be balanced against enhanced environmental NM input fluxes. The dynamic development in research and its considerable public perception are in contrast with the currently still very small number of NM-containing products on the market. Nanorisk assessment and legislation are largely in their infancies. PMID:22963545

  5. radiolabeling of metallic and metal oxide nanomaterials

    International Nuclear Information System (INIS)

    Nanobiology, nanomedicine, and naontoxicology are newly developed interdisciplinary research fields accompanied by the development of nanotechnology. Quantitative determination of nanomaterials in vivo is the common problem that is experienced by these disciplines. Radiotracer techniques had the advantage of high sensitivity, good accuracy, simplicity and low interference. This review describes radiolabeling methods of 6 important metallic and metal oxide nanomaterials, such as gold, silver, iron oxide, titanium oxide, and zinc oxide nanoparticles. Advantage, disadvantage, and caution of each method are summarized. (authors)

  6. Systemic Absorption of Nanomaterials by Oral Exposure

    DEFF Research Database (Denmark)

    Binderup, Mona-Lise; Bredsdorff, Lea; Beltoft, Vibe Meister;

    This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches.......This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches....

  7. Nanomaterials for Cardiac Myocyte Tissue Engineering

    OpenAIRE

    Rodolfo Amezcua; Ajay Shirolkar; Carolyn Fraze; David A. Stout

    2016-01-01

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possib...

  8. Computational modeling of nanomaterials for biomedical applications

    OpenAIRE

    Verkhovtsev, Alexey

    2016-01-01

    Nanomaterials, i.e., materials that are manufactured at a very small spatial scale, can possess unique physical and chemical properties and exhibit novel characteristics as compared to the same material without nanoscale features. The reduction of size down to the nanometer scale leads to the abundance of potential applications in different fields of technology. For instance, tailoring the physicochemical properties of nanomaterials for modification of their interaction with a biological envi...

  9. Toxicology of Nanomaterials: Permanent interactive learning

    OpenAIRE

    Castranova Vince; Borm Paul

    2009-01-01

    Abstract Particle and Fibre Toxicology wants to play a decisive role in a time where particle research is challenged and driven by the developments and applications of nanomaterials. This aim is not merely quantitative in publishing a given number of papers on nanomaterials, but also qualitatively since the field of nanotoxicology is rapidly emerging and benchmarks for good science are needed. Since then a number of things have happened that merit further analysis. The interactive learning is...

  10. Recent Applications of Nanomaterials in Prosthodontics

    OpenAIRE

    Wei Wang,; Susan Liao; Yuhe Zhu; Ming Liu; Qian Zhao; Yating Fu

    2015-01-01

    In recent years, lots of researches have been launched on nanomaterials for biomedical applications. It has been shown that the performances of many biomaterials used in prosthodontics have been significantly enhanced after their scales were reduced by nanotechnology, from micron-size into nanosize. On the other hand, many nanocomposites composed of nanomaterials and traditional metals, ceramics, resin, or other matrix materials have been widely used in prosthodontics because their properties...

  11. [Safety assessment of nanomaterials in reproductive developmental field].

    Science.gov (United States)

    Yamashita, Kohei; Yoshioka, Yasuo

    2012-01-01

    A diverse array of nanomaterials (NMs) such as amorphous nanosilica and carbon nanotubes have become widespread in use due to the development of nanotechnology. NMs are already being applied in universal fields because they have unique physicochemical properties. On the other hand, the increasing use of NMs has raised public concern about their potential risks to human health. In particular, recent reports indicated that carbon nanotubes induced mesothelioma-like lesions in mice, in a way similar to those induced by crocidolite asbestos. However, current knowledge of the potential risk of nanomaterials is considered insufficient. Because NMs have the potential to improve the quality of human life, it is essential to ensure the safety of NMs and provide information for designing NMs with safety. Especially, few studies have examined the effect of NMs on maintenance of pregnancy. Similar to the cases of thalidomide, a lot of evidence shows that fetuses are affected more than adults by a variety of environmental toxins because of physiological immaturity. Therefore it is essential to examine the effect of NMs on fetuses and pregnancies. Here we introduce the potential risk of amorphous nanosilica, most widely used NMs in food and the cosmetics field, to induce fetotoxicity and useful information for developing NMs with safety. PMID:22382838

  12. An efficient analysis of nanomaterial cytotoxicity based on bioimpedance

    International Nuclear Information System (INIS)

    In the emerging nanotechnology field, there is an urgent need for the development of a significant and sensitive method that can be used to analyse and compare the cytotoxicities of nanomaterials such as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs), since such materials can be applied as contrast agents or drug delivery carriers. The bioimpedance system possesses great potential in many medical research fields including nanotechnology. Electric cell-substrate impedance sensing (ECIS) is a particular bioimpedance system that offers a real-time, non-invasive, and quantitative measurement method for the cytotoxicity of various materials. The present work compared the cytotoxicity of AuNPs to that of purchased single-walled carbon nanotubes (SWCNTs). The size-controlled and monodispersed AuNPs were synthesized under autoclaved conditions and reduced by ascorbic acid (AA) whereas the purchased SWCNTs were used without any surface modifications. Bioimpedance results were validated by conventional WST-1 and trypan blue assays, and transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) were performed to examine nanomaterials inside the VERO cells. This research evaluates the ability of the ECIS system compared to those of conventional methods in analyzing the cytotoxicity of AuNPs and SWCNTs with higher sensitivity under real-time conditions.

  13. An efficient analysis of nanomaterial cytotoxicity based on bioimpedance

    Science.gov (United States)

    Kandasamy, Karthikeyan; Choi, Cheol Soo; Kim, Sanghyo

    2010-09-01

    In the emerging nanotechnology field, there is an urgent need for the development of a significant and sensitive method that can be used to analyse and compare the cytotoxicities of nanomaterials such as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs), since such materials can be applied as contrast agents or drug delivery carriers. The bioimpedance system possesses great potential in many medical research fields including nanotechnology. Electric cell-substrate impedance sensing (ECIS) is a particular bioimpedance system that offers a real-time, non-invasive, and quantitative measurement method for the cytotoxicity of various materials. The present work compared the cytotoxicity of AuNPs to that of purchased single-walled carbon nanotubes (SWCNTs). The size-controlled and monodispersed AuNPs were synthesized under autoclaved conditions and reduced by ascorbic acid (AA) whereas the purchased SWCNTs were used without any surface modifications. Bioimpedance results were validated by conventional WST-1 and trypan blue assays, and transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) were performed to examine nanomaterials inside the VERO cells. This research evaluates the ability of the ECIS system compared to those of conventional methods in analyzing the cytotoxicity of AuNPs and SWCNTs with higher sensitivity under real-time conditions.

  14. An efficient analysis of nanomaterial cytotoxicity based on bioimpedance

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Karthikeyan; Kim, Sanghyo [College of Bionanotechnology, Kyungwon University, Gyeonggi-do (Korea, Republic of); Choi, Cheol Soo, E-mail: samkim@kyungwon.ac.kr [Lee Gil Ya Diabetes and Cancer Institute, Gachon University of Medicine and Science, Incheon (Korea, Republic of)

    2010-09-17

    In the emerging nanotechnology field, there is an urgent need for the development of a significant and sensitive method that can be used to analyse and compare the cytotoxicities of nanomaterials such as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs), since such materials can be applied as contrast agents or drug delivery carriers. The bioimpedance system possesses great potential in many medical research fields including nanotechnology. Electric cell-substrate impedance sensing (ECIS) is a particular bioimpedance system that offers a real-time, non-invasive, and quantitative measurement method for the cytotoxicity of various materials. The present work compared the cytotoxicity of AuNPs to that of purchased single-walled carbon nanotubes (SWCNTs). The size-controlled and monodispersed AuNPs were synthesized under autoclaved conditions and reduced by ascorbic acid (AA) whereas the purchased SWCNTs were used without any surface modifications. Bioimpedance results were validated by conventional WST-1 and trypan blue assays, and transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) were performed to examine nanomaterials inside the VERO cells. This research evaluates the ability of the ECIS system compared to those of conventional methods in analyzing the cytotoxicity of AuNPs and SWCNTs with higher sensitivity under real-time conditions.

  15. Electrostatic Assembly of Nanomaterials for Hybrid Electrodes and Supercapacitors

    Science.gov (United States)

    Hammond, Paula

    2015-03-01

    Electrostatic assembly methods have been used to generate a range of new materials systems of interest for electrochemical energy and storage applications. Over the past several years, it has been demonstrated that carbon nanotubes, metals, metal oxides, polymeric nanomaterials, and biotemplated materials systems can be incorporated into ultrathin films to generate supercapacitors and battery electrodes that illustrate significant energy density and power. The unique ability to control the incorporation of such a broad range of materials at the nanometer length scale allows tailoring of the final properties of these unique composite systems, as well as the capability of creating complex micron-scale to nanoporous morphologies based on the scale of the nanomaterial that is absorbed within the structure, or the conditions of self-assembly. Recently we have expanded these capabilities to achieve new electrodes that are templated atop electrospun polmer fiber scaffolds, in which the polymer can be selectively removed to achieve highly porous materials. Spray-layer-by-layer and filtration methods of functionalized multiwall carbon nanotubes and polyaniline nanofibers enable the generation of electrode systems with unusually high surface. Incorporation of psuedocapacitive nanoparticles can enhance capacitive properties, and other catalytic or metallic nanoparticles can be implemented to enhance electrochemical or catalytic function.

  16. Supercritical fluid carbon dioxide extraction and liquid chromatographic separation with electrochemical detection of methylmercury from biological samples

    Science.gov (United States)

    Simon, N.S.

    1997-01-01

    Using the coupled methods presented in this paper, methylmercury can be accurately and rapidly extracted from biological samples by modified supercritical fluid carbon dioxide and quantitated using liquid chromatography with reductive electrochemical detection. Supercritical fluid carbon dioxide modified with methanol effectively extracts underivatized methylmercury from certified reference materials Dorm-1 (dogfish muscle) and Dolt-2 (dogfish liver). Calcium chloride and water, with a ratio of 5:2 (by weight), provide the acid environment required for extracting methylmercury from sample matrices. Methylmercury chloride is separated from other organomercury chloride compounds using HPLC. The acidic eluent, containing 0.06 mol L-1 NaCl, insures the presence of methylmercury chloride and facilitates the reduction of mercury on a glassy carbon electrode. If dual glassy carbon electrodes are used, a positive peak is observed at -0.65 to -0.70 V and a negative peak is observed at -0.90V with the organomercury compounds that were tested. The practical detection limit for methylmercury is 5 X 10-8 mol L-1 (1 X 10-12 tool injected) when a 20 ??L injection loop is used.

  17. Rational design of nanomaterials for water treatment.

    Science.gov (United States)

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-11-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on 'design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review. PMID:26437738

  18. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  19. Rational design of nanomaterials for water treatment

    Science.gov (United States)

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-10-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on `design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review.

  20. Screen-Printed Resistive Pressure Sensors Containing Graphene Nanoplatelets and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel Janczak

    2014-09-01

    Full Text Available Polymer composites with nanomaterials such as graphene nanoplatelets and carbon nanotubes are a new group of materials with high application possibilities in printed and flexible electronics. In this study such carbon nanomaterials were used as a conductive phase in polymer composites. Pastes with dispersed nanomaterials in PMMA and PVDF vehicles were screen printed on flexible substrates, and used as an active layer in pressure sensors, exploiting contact resistance phenomena. The relationship between resistance and pressure is nearly linear on a logarithmic scale for selected types of samples, and their response is several times higher than for similar sensors with graphite layers. The use of surfactants allowed us to fabricate evenly dispersed nanomaterials with different amount of nanoplatelets and nanotubes in the composites. The samples contained from 1.25 wt.% to 2 wt.% of graphene and 1 wt.% to 0.5 wt.% of nanotubes and exhibited diverse sheet resistivity. Experiments revealed the relationship between morphology and loading of functional phase in the polymer matrix and the sensors’ sensitivity.

  1. Nanomaterials - Acetylcholinesterase Enzyme Matrices for Organophosphorus Pesticides Electrochemical Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2009-05-01

    Full Text Available Acetylcholinesterase (AChE is an important cholinesterase enzyme present in the synaptic clefts of living organisms. It maintains the levels of the neurotransmitter acetylcholine by catalyzing the hydrolysis reaction of acetylcholine to thiocholine. This catalytic activity of AChE is drastically inhibited by trace amounts of organophosphorus (OP pesticides present in the environment. As a result, effective monitoring of OP pesticides in the environment is very desirable and has been done successfully in recent years with the use of nanomaterial-based AChE sensors. In such sensors, the enzyme AChE has been immobilized onto nanomaterials like multiwalled carbon nanotubes, gold nanoparticles, zirconia nanoparticles, cadmium sulphide nano particles or quantum dots. These nanomaterial matrices promote significant enhancements of OP pesticide determinations, with the thiocholine oxidation occurring at much lower oxidation potentials. Moreover, nanomaterial-based AChE sensors with rapid response, increased operational and long storage stability are extremely well suited for OP pesticide determination over a wide concentration range. In this review, the unique advantages of using nanomaterials as AChE immobilization matrices are discussed. Further, detection limits, sensitivities and correlation coefficients obtained using various electroanalytical techniques have also been compared with chromatographic techniques.

  2. Determination of mutagenic amines in water and food samples by high pressure liquid chromatography with amperometric detection using a multiwall carbon nanotubes-glassy carbon electrode.

    Science.gov (United States)

    Bueno, Ana María; Marín, Miguel Ángel; Contento, Ana María; Ríos, Ángel

    2016-02-01

    A chromatographic method, using amperometric detection, for the sensitive determination of six representative mutagenic amines was developed. A glassy carbon electrode (GCE), modified with multiwall carbon nanotubes (GCE-CNTs), was prepared and its response compared to a conventional glassy carbon electrode. The chromatographic method (HPLC-GCE-CNTs) allowed the separation and the determination of heterocyclic aromatic amines (HAAs) classified as mutagenic amines by the International Agency for Research of Cancer. The new electrode was systematically studied in terms of stability, sensitivity, and reproducibility. Statistical analysis of the obtained data demonstrated that the modified electrode provided better sensitivity than the conventional unmodified ones. Detection limits were in the 3.0 and 7.5 ng/mL range, whereas quantification limits ranged between 9.5 and 25.0 ng/mL were obtained. The applicability of the method was demonstrated by the determination of the amines in several types of samples (water and food samples). Recoveries indicate very good agreement between amounts added and those found for all HAAs (recoveries in the 92% and 105% range). PMID:26304357

  3. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Directory of Open Access Journals (Sweden)

    R. Zhu

    2014-01-01

    Full Text Available Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from δ13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.

  4. Estimation model of Cs-137 activity in soil samples derives from percentage of organic carbon and silt-clay

    International Nuclear Information System (INIS)

    Estimation of Cs-137 activity in soil samples was conducted at Nganjuk area through its soil organic carbon and silt-clay percentage. Twenty-six soil samples taken from Nganjuk area have been used to establish the relationship of Cs-137 activity and its soil samples quality parameters by using SPSS (Statistical Product and Service Solutions) software. Chemical parameters of samples have higher variation compared to the physical. Estimated of Cs-137 activity in soil samples can be established by two parameters, those are percent of total organic carbon and percent of silt-clay contents. However, these two parameters could only explained 69.3 % of Cs-137 activity, the remaining 30.7 % potentially could be due to 10 % of error measurement, run-on redistribution of soil, farming as well as tillage system. By using the soil quality parameters, the Cs-137 activity under the limit detection could be estimated, hence, its usefulness to estimate the erosion rate through applying the Cs-model. (author)

  5. Health implications of engineered nanomaterials

    Science.gov (United States)

    Pietroiusti, Antonio

    2012-02-01

    With the development of nanotechnology, a growing number of people are expected to be exposed to its products, the engineered nanomaterials (ENMs). Some physico-chemical properties of ENMs, linked to their size in the nanoscale (1-100 nm), make them potentially more reactive, and therefore raise concern about possible adverse effects in humans. In this article, I discuss human diseases which may be predicted after exposure to ENMs, and how their pathogenetic mechanisms may be linked to exposure; in this regard, special emphasis has been given to the triad of oxidative stress/inflammation/genotoxicity and to the interaction of ENMs/proteins in different biological compartments. The analysis of possible adverse effects has been made on an organ-by-organ basis, starting from the skin, respiratory system and gastrointestinal tract. These sites are in fact not only those exposed to the highest amounts of ENMs, but are also the portals of entry to internal organs for possible systemic effects. Although the list and the relevance of possible human disorders linked to ENM exposure are at least as impressive as that of their direct or indirect beneficial effects for human health, we must be clear that ENM-linked diseases belong to the realm of possible risk (i.e. cannot be excluded, but are unlikely), whereas ENMs with proven beneficial effects are on the market. Therefore, the mandatory awareness about possible adverse effects of ENMs should in no way be interpreted as a motivation to disregard the great opportunity represented by nanotechnology.

  6. Hybrid upconversion nanomaterials for optogenetic neuronal control

    Science.gov (United States)

    Shah, Shreyas; Liu, Jing-Jing; Pasquale, Nicholas; Lai, Jinping; McGowan, Heather; Pang, Zhiping P.; Lee, Ki-Bum

    2015-10-01

    Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by embedding upconversion nanomaterials, which can convert NIR light to blue luminescence, into polymeric scaffolds. These hybrid nanomaterial scaffolds allowed for NIR-mediated neuronal stimulation, with comparable efficiency as that of 470 nm blue light. Our platform was optimized for NIR-mediated optogenetic control by balancing multiple physicochemical properties of the nanomaterial (e.g. size, morphology, structure, emission spectra, concentration), thus providing an early demonstration of rationally-designing nanomaterial-based strategies for advanced neural applications.Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by

  7. EMERGING MODALITES FOR SOIL CARBON ANALYSIS: SAMPLING STATISTICS AND ECONOMICS WORKSHOP

    Science.gov (United States)

    Carbon is an integral part of the global C cycle and plays an important role in soil quality and productivity. In the last 20-30 years detailed knowledge of C balances and transport in the soil, on local, regional, and global scales emerged as being critically important for quantification of soil C ...

  8. Enhanced wear resistance of production tools and steel samples by implantation of nitrogen and carbon ions

    International Nuclear Information System (INIS)

    In recent years ion implantation has become a feasible technique for obtaining improved wear resistance of production tools. However, basic knowledge of how and in which cases ion implantation is working at its best is still needed. The present paper discusses structural and tribological investigations of carbon and nitrogen implanted steels. The nitrogen data were obtained mainly from field tests and the investigation of carbon implantations took place mainly in the laboratory. A study was made of how the tribological behaviour of implanted steels changes with different implantation parameters. The tribological laboratory investigations were carried out using pin-on-disc equipment under controlled test conditions, and deal with high dose carbon implantation (approximately (1-2)x1018 ions cm-2). The wear resistance of steels was enhanced dramatically, by up to several orders of magnitude. The field test results cover a broad range of ion implanted production tools, which showed a marked improvement in wear resistance. Nitrogen implanted tools are also compared with carbon and titanium implanted tools. (orig.)

  9. Comparision of carbon dioxide-baited trapping systems for sampling outdoor mosquito populations in Tanzania

    NARCIS (Netherlands)

    Mboera, L.E.G.; Knols, B.G.J.; Braks, M.A.H.; Takken, W.

    2000-01-01

    For collecting mosquitoes (Diptera: Culicidae) the outdoor catching efficiency of four types of trapping devices baited with carbon dioxide (CO2, 300 ml/min) was evaluated and compared in two areas of Tanzania. The types of traps employed were: the CDC miniature trap with the incandescent light bulb

  10. Uncertainties in forest soil carbon and nitrogen estimates related to soil sampling methods in the Delaware River Basin

    Science.gov (United States)

    Xu, B.; Plante, A. F.; Johnson, A. H.; Pan, Y.

    2014-12-01

    Estimating forest soil carbon and nitrogen (CN) is critical to understanding ecosystem responses to changing climate, disturbance and forest management practices. Most of the uncertainty in soil CN cycling is associated with the difficulty in characterizing soil properties in field sampling because forest soils can be rocky, inaccessible and spatially heterogeneous. A composite coring technique is broadly applied as the standard FIA soil sampling protocol. However, the accuracy of this method might be limited by soil compaction, rock obstruction and plot selection problems during sampling. In contrast, the quantitative soil pit sampling method may avoid these problems and provides direct measurements of soil mass, rock volume and CN concentration representative of a larger ground surface area. In this study, the two sampling methods were applied in 60 forest plots, randomly located in three research areas in the Delaware River Basin in the U.S. Mid-Atlantic region. In each of the plots, one quantitative soil pit was excavated and three soil cores were collected. Our results show that average soil bulk density in the top 20 cm mineral soil measured from the soil cores was consistently lower than bulk density measured by soil pits. However, the volume percentage of coarse fragments measured by the core method was also significantly lower than the pit method. Conversely, CN concentrations were greater in core samples compared to pit samples. The resulting soil carbon content (0-20 cm) was estimated to be 4.1 ± 0.4 kg m-2 in the core method compared to 4.5 ± 0.4 kg m-2 in the pit method. Lower bulk density but higher CN concentration and lower coarse fragments content from the cores have offset each other, resulting in no significant differences in CN content from the soil pit method. Deeper soil (20-40 cm), which is not accessible in the core method, accounted for 29% of the total soil carbon stock (0-40 cm) in the pit method. Our results suggest that, although soil

  11. Impairments of cells and genomic DNA by environmentally transformed engineered nanomaterials

    Science.gov (United States)

    Jones, Philip; Sugino, Sakiko; Yamamura, Shohei; Lacy, Fred; Biju, Vasudevanpillai

    2013-09-01

    Enormous increase in the production of nanomaterials and their growing applications in the device technology, biotechnology and biomedical areas suggest the need for developing models for predicting the environmental health and safety (EHS) risks posed by such nanomaterials. We hypothesize that CdSe quantum dots (QDs) and ZnO nanoparticles (NPs) encompassed in liposomes or not and transformed by simulated solar UV light can be model systems for studying the environmental toxicity of engineered nanomaterials. In this study, human lung epithelial adenocarcinoma cells (H1650) are exposed to photoirradiated CdSe QDs or ZnO nanopowder included or not in liposomes. The release of cadmium and zinc ions from the nanomaterials exposed to solar simulated UV radiation is detected and quantified by measuring the steady-state and time resolved fluorescence of the metal ion sensor tetracarboxyphenylporphyrin (TCPP) or the commercial Measure iT Pd/Cd sensor. Viability of cells treated with nanomaterials exposed to solar simulated UV radiation for different durations is measured by MTT assay. Enhanced etching of the nanoparticles exposed to solar simulated UV radiation results in the release of toxic levels of heavy metal ions, which considerably lower the viability of H1650 cells is due to the deactivation of DNA repair enzymes as evidenced by the pinching off of nuclear DNA in comet assays and DNA samples in electrophoresis. Results from this study highlight the need to obtain not only quantitative information about the environmental risks posed by engineered nanomaterials but also environment friendly nanomaterials for practical applications.Enormous increase in the production of nanomaterials and their growing applications in the device technology, biotechnology and biomedical areas suggest the need for developing models for predicting the environmental health and safety (EHS) risks posed by such nanomaterials. We hypothesize that CdSe quantum dots (QDs) and ZnO nanoparticles

  12. Sensors for breath testing: from nanomaterials to comprehensive disease detection.

    Science.gov (United States)

    Konvalina, Gady; Haick, Hossam

    2014-01-21

    The analysis of volatile organic compounds in exhaled breath samples represents a new frontier in medical diagnostics because it is a noninvasive and potentially inexpensive way to detect illnesses. Clinical trials with spectrometry and spectroscopy techniques, the standard volatile-compound detection methods, have shown the potential for diagnosing illnesses including cancer, multiple sclerosis, Parkinson's disease, tuberculosis, diabetes, and more via breath tests. Unfortunately, this approach requires expensive equipment and high levels of expertise to operate the necessary instruments, and the tests must be done quickly and use preconcentration techniques, all of which impede its adoption. Sensing matrices based on nanomaterials are likely to become a clinical and laboratory diagnostic tool because they are significantly smaller, easier-to-use, and less expensive than spectrometry or spectroscopy. An ideal nanomaterial-based sensor for breath testing should be sensitive at very low concentrations of volatile organic compounds, even in the presence of environmental or physiological confounding factors. It should also respond rapidly and proportionately to small changes in concentration and provide a consistent output that is specific to a given volatile organic compound. When not in contact with the volatile organic compounds, the sensor should quickly return to its baseline state or be simple and inexpensive enough to be disposable. Several reviews have focused on the methodological, biochemical, and clinical aspects of breath analysis in attempts to bring breath testing closer to practice for comprehensive disease detection. This Account pays particular attention to the technological gaps and confounding factors that impede nanomaterial-sensor-based breath testing, in the hope of directing future research and development efforts towards the best possible approaches to overcome these obstacles. We discuss breath testing as a complex process involving numerous

  13. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  14. Investigation into the enhancement of polycarbonate with conductive nanomaterials

    Science.gov (United States)

    Via, Michael D., Jr.

    Polymers are typically electrically and thermally insulating materials. The electrical and thermal conductivities of polymers can be increased by the addition conductive fillers such as carbons. Once the polymer composites have been made electrically and thermally conductive, they can be used in applications where these conductivities are desired such as electromagnetic shielding and static dissipation. In this project, three carbon nanomaterials are added to polycarbonate to enhance the electrical and thermal conductivity of the resulting composite. Hyperion Catalysis FIBRILs carbon nanotubes were added to a maximum loading of 8 wt%. Ketjenblack EC-600 JD carbon black was added to a maximum loading of 10 wt%. XG Sciences xGnP(TM) graphene nanoplatelets were added to a maximum loading of 15 wt%. These three materials have drastically different morphologies and will have varying effects on the various properties of polycarbonate composites. It was determined that carbon nanotubes have the largest effect on electrical conductivity with an 8 wt% carbon nanotube in polycarbonate composite having an electrical conductivity of 0.128 S/cm (from a pure polycarbonate value of 10-17 S/cm). Carbon black has the next largest effect with an 8 wt% carbon black in polycarbonate composite having an electrical conductivity of 0.008 S/cm. Graphene nanoplatelets have the least effect with an 8 wt% graphene nanoplatelet in polycarbonate having an electrical conductivity of 2.53 x 10-8 S/cm. Graphene nanoplatelets show a significantly higher effect on increasing thermal conductivity than either carbon nanotubes or carbon black. Mechanically, all three materials have similar effects with graphene nanoplatelets being somewhat more effective at increasing the tensile modulus of the composite than the other fillers. Carbon black and graphene nanoplatelets show standard carbon-filler rheology where the addition of filler increases the viscosity of the resulting composite. Carbon nanotubes

  15. Low-carbon steel samples deformed by cold rolling - analysis by the magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Vértesy, G.; Kobayashi, S.; Kadlecová, Jana; Stupakov, Oleksandr

    2009-01-01

    Roč. 321, č. 17 (2009), s. 2670-2676. ISSN 0304-8853 R&D Projects: GA MŠk MEB040702; GA ČR GA102/06/0866; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * plastic deformation * ow-carbon steel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.204, year: 2009

  16. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review

    International Nuclear Information System (INIS)

    Highlights: • Analytical techniques for characterization of CNTs: classification, description and examples. • Determination methods for CNTs in biological and environmental samples. • Future trends and perspectives for characterization and determination of CNTs. - Abstract: In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented

  17. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Latorre, C., E-mail: carlos.herrero@usc.es; Álvarez-Méndez, J.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.

    2015-01-01

    Highlights: • Analytical techniques for characterization of CNTs: classification, description and examples. • Determination methods for CNTs in biological and environmental samples. • Future trends and perspectives for characterization and determination of CNTs. - Abstract: In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented.

  18. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells

    International Nuclear Information System (INIS)

    Nanomaterials improve everyday products but their safety for human health is poorly known. In this study we explored immunological effects of five different nanomaterials on antigen presenting cells (APC) in vitro. Nanomaterials studied were rutile titanium dioxide (TiO2), amorphous silica-coated rutile titanium dioxide (TiO2-silica), zinc oxide (ZnO), single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT). APCs included mouse macrophages (RAW 264.7 cell line) and murine bone marrow-derived dendritic cells (bmDC). All studied particles were cytotoxic to bmDCs, and ZnO, TiO2 and TiO2-silica-induced dose-dependently cell death also in macrophages. ZnO had the most drastic immunological effects leading to high expression of proinflammatory cytokine, IL-1β, and enhanced production of neutrophil chemoattractant CXCL-9 on both cell types. TiO2 and TiO2-silica stimulated the expression of IL-6, MIP-1α and TNF-α in macrophages, and increased their maturation, antigen presentation and co-stimulation activity. In contrast, SWCNT or MWCNT did not seem to have any significant immunological effects on the cell types studied suggesting that APCs might not be the target cells for carbon nanotubes. Due to diverse effects on different nanomaterials on immune cells we suggest that each new nanomaterial should be extensively studied in vitro and in vivo for risk assessment before their use in final products.

  19. Selected manufacturing techniques of nanomaterials

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-01-01

    Full Text Available Purpose: Enabling nanofabrication techniques as tools for experiments to understand the underlying scienceand engineering in the nanometer scale are required. This paper is a resume a range of technology andcharacterization tools relevant for nanoeletronics devices.Design/methodology/approach: An overview on bottom – up and bottom – down fabrication techniques arepresented in this paper. As an alternative to the continually increasing cost of nanotechnology for manufacturingelectronic devices, new strategies are examined in research, which are based on basic principles of physics andchemistry. For example, molecular self-organization mechanisms are developed in order to manufacture welldefinednanostructures with desired properties.Findings: This paper includes description of three methods of production nanolayers and monolayers molecularself-organization, Langmuir – Blodget films and Nanoimprint Lithography.Research limitations/implications: The most extreme approach is to build nanostructures atom by atomwith the help of scanning tunneling microscope at low temperatures. This is very slow method to buildnanostructures, usually a couple of hours. An alternative approach for the formation of nanostructures is self– organization of atoms.Practical implications: The greatest advantage of litographic patterning is very large variety of differentstructures which can be defined by lithographic methods, Langmuir – Blodget (LB films is another unpopularmethod to produce nanomaterials.Originality/value: Materials engineering technology stands today at the edge of a huge challenge: produce cheapnanomaterials for nanoelectronics. Building materials from the bottom up requires a multidisciplinary approach.This arena is unquestionably in the nano-dimension, where all fields of science and engineering meet.

  20. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    Science.gov (United States)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.