WorldWideScience

Sample records for carbon monoxide hydrogenation

  1. Hydrogenation of carbon monoxide over supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Hashimoto, H.; Kunugi, T.

    1978-03-01

    An alumina-supported 2% palladium catalyst had higher activity for carbon monoxide hydrogenation than a silica-supported 2% palladium catalyst, at 250/sup 0/-400/sup 0/C and 1 atm. The addition of lanthanum oxide or thorium oxide, but not of potassium oxide, to the silica-supported catalyst increased the conversion at 350/sup 0/C from 1.1% to 81.0% with a selectivity of 56.1% for methane, 1.4% for C/sub 2/ compounds, 0.1% for C/sub 3/ compounds, and 42.5% for carbon dioxide. Temperature-programed desorption of carbon monoxide in a hydrogen stream showed that of two desorption peaks observed for carbon monoxide, the one at higher temperature corresponded to the carbon monoxide species which hydrogenates to methane and that the area of this peak increased with increasing thorium content of the catalyst. Graphs, tables, and 12 references.

  2. Mechanism of obtaining carbon monoxide and hydrogen during brown coal radiolysis. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rustamov, V R; Kurbanov, M A; Dzantiev, B T; Kerimov, V K; Musaeva, P F

    1982-05-01

    This article analyzes effects of gamma radiation on the yield of products of coal gasification: hydrogen and carbon monoxide. Samples of brown coal from the Kansk-Achins basin were treated by gamma radiation with cobalt 60 radiation source. Analyses show that accumulation of hydrogen and carbon monoxide in brown coal under influence of gamma radiation is characterized by a constant rate. Yields of carbon monoxide and hydrogen amount to 0.16 molecule/100 electro volt and 0.21 molecule/electro volt respectively. Reducing radiation dose from 2.5 to 0.7 millirad/h reduces yields of hydrogen and carbon monoxide. Increasing temperature of vacuum brown coal pyrolysis from 200 to 600 C causes decrease of hydrogen yield. Hydrogen yield decrease during temperature increase is caused by a high content of aromatic nuclei in the samples used in the radiolysis. (5 refs.)

  3. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  4. Performance simulation of planar SOFC using mixed hydrogen and carbon monoxide gases as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Y. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)]. E-mail: inui@eee.tut.ac.jp; Urata, A. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Ito, N. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Nakajima, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Tanaka, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2006-08-15

    The authors investigate in detail the influence of the mixing ratio of hydrogen and carbon monoxide in the fuel on the cell performance of the SOFC through numerical simulations for a single cell plate of the co-flow type planar cell. It is made clear that the cell performance is almost the same and excellent, independent of the mixing ratio of hydrogen and carbon monoxide under the nominal operating condition. The electromotive force of the hydrogen rich fuel gas is a little higher than that of the carbon monoxide rich fuel gas. The internal voltage drop in the cell decreases as the fraction of carbon monoxide becomes high. Since the value of the single cell voltage is determined by the balance of these two phenomena, the lowering of the electromotive force is dominant and the single cell voltage of the hydrogen rich fuel gas is higher when the inlet gas temperature is high, whereas the voltage drop reduction is dominant and the single cell voltage of the carbon monoxide rich fuel gas is higher when the temperature is low. The effect of the additional gases of water vapor and carbon dioxide is restricted to the single cell voltage shift, and the qualitative dependence of the single cell voltage on the inlet gas temperature is determined by the mixing ratio of hydrogen and carbon monoxide.

  5. Performance simulation of planar SOFC using mixed hydrogen and carbon monoxide gases as fuel

    International Nuclear Information System (INIS)

    Inui, Y.; Urata, A.; Ito, N.; Nakajima, T.; Tanaka, T.

    2006-01-01

    The authors investigate in detail the influence of the mixing ratio of hydrogen and carbon monoxide in the fuel on the cell performance of the SOFC through numerical simulations for a single cell plate of the co-flow type planar cell. It is made clear that the cell performance is almost the same and excellent, independent of the mixing ratio of hydrogen and carbon monoxide under the nominal operating condition. The electromotive force of the hydrogen rich fuel gas is a little higher than that of the carbon monoxide rich fuel gas. The internal voltage drop in the cell decreases as the fraction of carbon monoxide becomes high. Since the value of the single cell voltage is determined by the balance of these two phenomena, the lowering of the electromotive force is dominant and the single cell voltage of the hydrogen rich fuel gas is higher when the inlet gas temperature is high, whereas the voltage drop reduction is dominant and the single cell voltage of the carbon monoxide rich fuel gas is higher when the temperature is low. The effect of the additional gases of water vapor and carbon dioxide is restricted to the single cell voltage shift, and the qualitative dependence of the single cell voltage on the inlet gas temperature is determined by the mixing ratio of hydrogen and carbon monoxide

  6. Carbon monoxide - hydrogen combustion characteristics in severe accident containment conditions. Final report

    International Nuclear Information System (INIS)

    2000-03-01

    Carbon monoxide can be produced in severe accidents from interaction of ex-vessel molten core with concrete. Depending on the particular core-melt scenario, the type of concrete and geometric factors affecting the interaction, the quantities of carbon monoxide produced can vary widely, up to several volume percent in the containment. Carbon monoxide is a combustible gas. The carbon monoxide thus produced is in addition to the hydrogen produced by metal-water reactions and by radiolysis, and represents a possibly significant contribution to the combustible gas inventory in the containment. Assessment of possible accident loads to containment thus requires knowledge of the combustion properties of both CO and H 2 in the containment atmosphere. Extensive studies have been carried out and are still continuing in the nuclear industry to assess the threat of hydrogen in a severe reactor accident. However the contribution of carbon monoxide to the combustion threat has received less attention. Assessment of scenarios involving ex-vessel interactions require additional attention to the potential contribution of carbon monoxide to combustion loads in containment, as well as the effectiveness of mitigation measures designed for hydrogen to effectively deal with particular aspects of carbon monoxide. The topic of core-concrete interactions has been extensively studied; for more complete background on the issue and on the physical/thermal-hydraulics phenomena involved, the reader is referred to Proceedings of CSNI Specialists Meetings (Ritzman, 1987; Alsmeyer, 1992) and a State-of-Art Report (European Commission, 1995). The exact amount of carbon monoxide present in a reactor pit or in various compartments (or rooms) in a containment building is specific to the type of concrete and the accident scenario considered. Generally, concrete containing limestone and sand have a high percentage of CaCO 3 . Appendix A provides an example of results of estimates of CO and CO 2

  7. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  8. Range measurements of keV hydrogen ions in solid oxygen and carbon monoxide

    International Nuclear Information System (INIS)

    Schou, J.; Soerensen, H.; Andersen, H.H.; Nielsen, M.; Rune, J.

    1984-01-01

    Ranges of 1.3-3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen. The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees with that previously found for solid nitrogen. (orig.)

  9. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  10. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  11. Ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds

    International Nuclear Information System (INIS)

    Dickman, R.L.; Rensselaer Polytechnic Institute; and The Ivan A. Getting Laboratories, The Aerospace Corporation)

    1978-01-01

    Carbon monoxide and molecular hydrogen column densities are compared at various locations within 38 interstellar dark clouds. CO column densities were obtained from radio observations of the J=1→0 transitions of the 12 C 16 O and 13 C 16 O isotopic species of the molecule. Corresponding H 2 column densities were inferred by means of visual extinctions derived from star counts, since it is argued that the standard gas-to-extinction ratio can be expected to remain valid in the clouds studied. For locations in the sources possessing line-of-sight visual extinctions in the approximate range 1.5 -2 ) = (5.0 +- 2.5) x 10 5 N 13 between molecular hydrogen and 13 CO LTE column densities. The carbon monoxide molecule can therefore be used as a quantitative ''tracer'' for the (directly unobservable) H 2 content of dark clouds. The above relationship implies that at least approx.12% of the gas-phase carbon in the clouds studied is in the form of CO, provided that the clouds are assumed to be chemically homogeneous. Langer's ion-molecule chemistry for dark clouds appears to agree well with the present work if the fractionation channel of Watson, Anicich, and Huntress is included

  12. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    OpenAIRE

    Henstra, Anne M.; Stams, Alfons J. M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently lo...

  13. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  14. Adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Etherton, B.P.

    1980-01-01

    The adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts which were examined by a scanning transmission electron microscope (STEM). The metal particle size and number of particles per area of catalyst increased with increasing metal loading. The particles were approx. 10 A. in diameter, cubo-octahedral shaped, and approx. 80-90% disperse. The STEM electron beam caused negligible damage to the samples. Hydrogen adsorption measurements showed that the hydrogen-iridium atom ratio was 1.2:1-1.3:1 and increased with decreasing metal loading. Temperature-programed desorption showed four types of adsorbed hydrogen desorbing at -90/sup 0/C (I), 15/sup 0/C (IV), 115/sup 0/C (II), and 245/sup 0/C (III). Types II and IV desorb from single atom sites and Types I and III from multiple atom sites. Type I is in rapid equilibrium with the gas phase. All desorption processes appear to be first order. Carbon monoxide adsorbed nondissociatively at 25/sup 0/C with approx. 0.7:1 CO/Ir atom ratio. It adsorbed primarily in linear forms at low coverage, but a bridged form appeared at high coverage.

  15. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  16. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul

    2012-06-01

    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  17. Toxicity of carbon monoxide hydrogen cyanide gas mixtures : exposure concentration, time to incapacitation, carboxyhemoglobin and blood cyanide parameters.

    Science.gov (United States)

    1994-04-01

    During aircraft interior fires, carbon monoxide (CO) and hydrogen cyanide (HCN) are produced in sufficient amounts to cause incapacitation and death. Time-to-incapacitation (ti) is a practical parameter for estimating escape time in fire environments...

  18. Study on radiation degradation of hydroxylamine derivatives. Pt.3: Qualitative and quantitative analyses of hydrogen and carbon monoxide produced by radiation degradation of N,N-diethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian

    2004-01-01

    The qualitative and quantitative analysis of hydrogen and carbon monoxide produced by radiation degradation of N,N-diethyl hydroxylamine is performed on a 2 m column packed with 5 Angstrom molecular sieve and equipped with a thermal conductivity detector. The analysis of hydrogen employs argon as a carrier gas, the column temperature is 85 degree C and the detector temperature is 110 degree C; the analysis of carbon monoxide employs hydrogen as a carrier gas, the column temperature is 50 degree C and the detector temperature is 80 degree C. The results show that the volume fraction of hydrogen is increased with the increase of dose, but has little relationship with the concentration of N,N-diethyl hydroxylamine. Carbon monoxide is only produced when the absorption dose is very high and the volume fraction is very low

  19. Carbon Monoxide Hydrogenation on Ice Surfaces.

    Science.gov (United States)

    Kuwahata, Kazuaki; Ohno, Kaoru

    2018-03-14

    We have performed density functional calculations to investigate the carbon monoxide hydrogenation reaction (H+CO→HCO), which is important in interstellar clouds. We found that the activation energy of the reaction on amorphous ice is lower than that on crystalline ice. In the course of this study, we demonstrated that it is roughly possible to use the excitation energy of the reactant molecule (CO) in place of the activation energy. This relationship holds also for small water clusters at the CCSD level of calculation and the two-layer-level ONIOM (CCSD : X3LYP) calculation. Generally, since it is computationally demanding to estimate activation energies of chemical reactions in a circumstance of many water molecules, this relationship enables one to determine the activation energy of this reaction on ice surfaces from the knowledge of the excitation energy of CO only. Incorporating quantum-tunneling effects, we discuss the reaction rate on ice surfaces. Our estimate that the reaction rate on amorphous ice is almost twice as large as that on crystalline ice is qualitatively consistent with the experimental evidence reported by Hidaka et al. [Chem. Phys. Lett., 2008, 456, 36.]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A comparison of hydrogen-bonded and van der Waals isomers of phenolṡṡnitrogen and phenolṡṡcarbon monoxide: An ab initio study

    Science.gov (United States)

    Chapman, Darren M.; Müller-Dethlefs, Klaus; Peel, J. Barrie

    1999-08-01

    The hydrogen-bonded and van der Waals isomers of phenolṡṡnitrogen and phenolṡṡcarbon monoxide in their neutral electronic (S0) and cation ground state (D0) were studied using ab initio HF/6-31G*, MP2/6-31G*, and B3LYP/6-31G* methods. The hydrogen-bonded isomers have the ligand bound via the hydroxyl group of the phenol ring, while the van der Waals isomers studied have the ligand located above the aromatic ring. For both complexes, the hydrogen-bonded isomer was found to be the most stable form for both the S0 and the D0 states. For phenolṡṡcarbon monoxide, twice as many isomers as compared to phenolṡṡnitrogen were found. The hydrogen-bonded isomer with the carbon end bonded to the hydroxyl group was the most stable structure for both the S0 and the D0 states.

  1. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Education Safety Education Centers Carbon Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as CO, is called the " ...

  2. A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases

    Directory of Open Access Journals (Sweden)

    A. Mishra

    2011-05-01

    Full Text Available In this review, recent works on the preferential oxidation of carbon monoxide in hydrogen rich gases for fuel cell applications are summarized. H2 is used as a fuel for polymer-electrolyte membrane fuel cell (PEMFC. It is produced by reforming of natural gas or liquid fuels followed by water gas shift reaction. The produced gas consists of H2, CO, and CO2. In which CO content is around 1%, which is highly poisonous for the Pt anode of the PEMFC so that further removal of CO is needed. Catalytic preferential oxidation of CO (CO-PROX is one of the most suitable methods of purification of H2 because of high CO conversion rate at low temperature range, which is preferable for PEMFC operating conditions. Catalysts used for COPROX are mainly noble metal based; gold based and base metal oxide catalysts among them Copper-Ceria based catalysts are the most appropriate due to its low cost, easy availability and result obtained by these catalysts are comparable with the conventional noble metal catalysts. Copyright © 2011 BCREC UNDIP. All rights reserved(Received: 22nd October 2010, Revised: 12nd January 2011, Accepted: 19th January 2011[How to Cite: A. Mishra, R. Prasad. (2011. A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (1: 1-14. doi:10.9767/bcrec.6.1.191.1-14][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.191.1-14 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/191] | View in 

  3. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Education Centers Carbon Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, ... Install one and check its batteries regularly. View Information About CO Alarms Other CO Topics Safety Tips ...

  4. Carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The document identifies the main sources of carbon monoxide (CO) in the general outdoor atmosphere, describes methods of measuring and monitoring its concentration levels in the United Kingdom, and discusses the effects of carbon monoxide on human health. Following its review, the Panel has put forward a recommendation for an air quality standard for carbon monoxide in the United Kingdom of 10 ppm, measured as a running 8-hour average. The document includes tables and graphs of emissions of CO, in total and by emission source, and on the increase in blood levels of carboxyhaemoglobin with continuing exposure to CO. 11 refs., 4 figs., 4 tabs.

  5. Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Kamal Mishra

    2016-01-01

    Full Text Available Introduction: Carbon monoxide is known as the silent killer, being colorless, odourless, and tasteless. Initially non-irritating, it is very difficult for people to detect Carbon monoxide is a product of incomplete combustion of organic matter due to insufficient oxygen supply that prevents complete oxidation of carbon to C02. During World War II, Nazis used gas vans to kill an estimated over 700,000 prisoners by carbon monoxide poisoning. This method was also used in the gas chambers ofseveral death camps. The true number of incidents of carbon monoxide poisoning is unknown, since many non-lethal exposures go undetected From the available data, carbon monoxide poisoning is the most common cause of injury and death due to poisoning worldwide. Clinical features and management: The signs of carbon monoxide poisoning vary with concentration and length of exposure. Subtle cardiovascular or neurobehavioural effects occur at low concentration. The onset of chronic poisoning is usually insidious and easily mistaken for viral prodrome, depression, or gastroenteritis in children. The classic sign of carbon monoxide poisoning which is actually more often seen in the dead than the living is appearing red-cheeked and healthy. Cherry pink colour develops in nails, skin and mucosa. In acute poisoning, common abnormalities of posture and tone are cogwheel rigidity, opisthotonus, spasticity or flaccidity and seizures. Retinal haemorrhages and the classic cherry red skin colour are seldom seen. Different people andpopulations may have different carbon monoxide tolerance levels. On average, exposures at 100ppm or greater is dangerous to human health. Treatment and prevention: The mainstay of treatment is 100% oxygen administration until the COHb level is normal When the patient is stable enough to be transported, hyperbaric oxygen (HBOT should be considered This treatment is safe and well tolerated Public education about the danger of carbon monoxide, with

  6. Influence of carbon monoxide additions on the sensitivity of the dry hydrogen-air mixtures to detonation

    International Nuclear Information System (INIS)

    Magzumov, A.E.; Kirillov, I.A.; Fridman, A.A.; Rusanov, V.D.

    1995-01-01

    Under severe accident conditions of water cooled nuclear reactors the hydrogen-air detonation represents one of the most hazardous events which can result in the reactor containment damage. An important factor related with the measure of gas mixture detonability is the detonation cell size which correlates with the critical tube diameter and detonation initiation energy. A numerical kinetic study is presented of the influence of carbon monoxide admixtures (from 0 vol.% to 40 vol.%) upon the sensitivity (detonation cell size) of the dry hydrogen-air gas mixtures to detonation in post-accident containment atmosphere. (author). 3 refs., 3 figs

  7. Carbon Monoxide Safety

    Science.gov (United States)

    ... with the Media Fire Protection Technology Carbon monoxide safety outreach materials Keep your community informed about the ... KB | Spanish PDF 592 KB Handout: carbon monoxide safety Download this handout and add your organization's logo ...

  8. Measurements on high temperature fuel cells with carbon monoxide-containing fuel gases; Messungen an Hochtemperatur-Brennstoffzellen mit kohlenmonoxidhaltigen Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Apfel, Holger

    2012-10-10

    In the present work the different power density of anode-supported high-temperature solid oxide fuel cells (ASC-SOFCs) were examined for carbon monoxide-containing fuels. In addition to wet hydrogen / carbon monoxide mixtures the cells were run with synthetic gas mixtures resembling the products of an autothermal reformer, and actual reformate generated by a 2 kW autothermal reformer. It was found that the power-voltage characteristics of an ASC depends primarily on the open circuit voltages of different gas mixtures, but is nearly independent of the hydrogen concentration of the fuel, although the reaction rates of other potential fuels within the gas mixture, namely carbon monoxide and methane, are much lower that the hydrogen reaction rate. The probable reason is that the main fuel for the electrochemical oxidation within the cell is hydrogen, while the nickel in the base layer of the anode acts as a reformer which replenishes the hydrogen by water reduction via carbon monoxide and methane oxidation.

  9. Poisoning by carbon monoxide in the hydrogen exchange reaction between deuterium gas and water preadsorbed on a platinum--alumina catalyst

    International Nuclear Information System (INIS)

    Iida, I.; Tamaru, K.

    1979-01-01

    Poisoning by carbon monoxide in the exchange reaction between deuterium and the water preadsorbed on a platinum--alumina catalyst was studied, by measuring not only the rate of reaction but also its kinetic behavior and the adsorption of reactants on the catalyst surface. The shape of the poisoning curve is closely associated with the kinetic behavior and exhibited an abrupt change on freezing the adsorbed water below 273 0 K. When the rate is proportional to deuterium pressure and independent of the amount of water adsorbed, the exchange rate dropped sharply by carbon monoxide adsorbed of a few percent coverage without any marked changes in the amount and the rate of hydrogen adsorption on the platinum surface. However, at temperatures lower than 273 0 K and at higher deuterium pressures, the rate depends not on the deuterium pressure but on the amount of water adsorbed. The migration of hydrogen in or through the adsorbed water is seemingly sufficiently suppressed by freezing to control the overall reaction rate. In this case, a small amount of adsorption of carbon monoxide did not show any toxicity, but then a steep poisoning started accompanying a change in the kinetic behavior. It was accordingly demonstrated that the mechanism of the reaction may be better understood by studying poisoning and measuring adsorption, overall rate, and kinetic behavior

  10. Carbon monoxide poisoning

    Science.gov (United States)

    ... Animals can also be poisoned by carbon monoxide. People who have pets at home may notice that their animals become ... or unresponsive from carbon monoxide exposure. Often the pets will ... these conditions. This can lead to a delay in getting help.

  11. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... main content Languages 简体中文 English Bahasa Indonesia 한국어 Español ภาษาไทย Tiếng Việt Text Size: Decrease Font Increase ... Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as ...

  12. Occult carbon monoxide poisoning.

    Science.gov (United States)

    Kirkpatrick, J N

    1987-01-01

    A syndrome of headache, fatigue, dizziness, paresthesias, chest pain, palpitations and visual disturbances was associated with chronic occult carbon monoxide exposure in 26 patients in a primary care setting. A causal association was supported by finding a source of carbon monoxide in a patient's home, workplace or vehicle; results of screening tests that ruled out other illnesses; an abnormally high carboxyhemoglobin level in 11 of 14 patients tested, and abatement or resolution of symptoms when the source of carbon monoxide was removed. Exposed household pets provided an important clue to the diagnosis in some cases. Recurrent occult carbon monoxide poisoning may be a frequently overlooked cause of persistent or recurrent headache, fatigue, dizziness, paresthesias, abdominal pain, diarrhea and unusual spells.

  13. Development of CuxFe/Al2O3 catalysts for the hydrogenation of carbon monoxide guided by magnetic methods, Moessbauer and infrared spectroscopy

    International Nuclear Information System (INIS)

    Boellaard, E.; Geus, J.W.; Bruggen, J.M. van; Kraan, A.M. van der

    1993-01-01

    A copper-iron catalyst for the hydrogenation of carbon monoxide has been prepared using a supported stoichiometric cyanide complex. Conversion of the cyanide precursor to a metallic catalyst appeared to be a precious process. Copper and iron in the bimetallic particles easily separate by thermal treatment and upon exposure to carbon monoxide, as revealed from Moessbauer and infrared spectroscopy. During Fischer-Tropsch reaction the catalyst exhibits a rapid decline of activity. Magnetisation measurements on spent catalysts indicate that the deactivation is caused by a fast conversion of metallic iron to initially unstable carbides which transform ultimately to more stable carbides. (orig.)

  14. Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Alisa Wray

    2016-07-01

    Full Text Available Audience: This oral boards case is appropriate for all emergency medicine learners (residents, interns, and medical students. Introduction: Carbon monoxide (CO is a colorless and odorless gas that typically results from combustion. It binds hemoglobin, dissociating oxygen, causing headache, weakness, confusion and possible seizure or coma. Pulse oxygen levels may be falsely elevated. Practitioners should maintain a high index of suspicion for carbon monoxide poisoning. If caught early CO poisoning is reversible with oxygen or hyperbaric oxygen therapy. Objectives: The learner will assess a patient with altered mental status and weakness, ultimately identifying that the patient has carbon monoxide poisoning. The learner will treat the patient with oxygen and admit/transfer the patient for hyperbaric oxygenation. Method: Oral boards case

  15. The Range of 1-3 keV Electrons in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Oehlenschlæger, M.; Andersen, H.H.; Schou, Jørgen

    1985-01-01

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than that in n......The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than...

  16. Inhibition of photosynthesis by carbon monoxide and suspension of the carbon monoxide inhibition by light

    Energy Technology Data Exchange (ETDEWEB)

    Gewitz, H S; Voelker, W

    1963-08-01

    The experimental subject was the autotroph Chlorella pyrenoidosa. It was found that growth conditions determine whether the alga is inhibited by carbon monoxide or not. Respiration and photosynthesis are inhibited by carbon monoxide if the cells have grown rapidly under high light intensities. The inhibition of respiration and photosynthesis found in such cells is completely reversible. The inhibition depends not only on carbon monoxide pressure, but also on the oxygen pressure prevailing at the same time. 5 references, 1 figure, 3 tables.

  17. On Estimation of Contamination from Hydrogen Cyanide in Carbon Monoxide Line-intensity Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dongwoo T.; Li, Tony Y.; Viero, Marco P.; Church, Sarah E.; Wechsler, Risa H., E-mail: dongwooc@stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States)

    2017-09-01

    Line-intensity mapping surveys probe large-scale structure through spatial variations in molecular line emission from a population of unresolved cosmological sources. Future such surveys of carbon monoxide line emission, specifically the CO(1-0) line, face potential contamination from a disjointed population of sources emitting in a hydrogen cyanide emission line, HCN(1-0). This paper explores the potential range of the strength of HCN emission and its effect on the CO auto power spectrum, using simulations with an empirical model of the CO/HCN–halo connection. We find that effects on the observed CO power spectrum depend on modeling assumptions but are very small for our fiducial model, which is based on current understanding of the galaxy–halo connection. Given the fiducial model, we expect the bias in overall CO detection significance due to HCN to be less than 1%.

  18. Catalytic hydrogenation of carbon monoxide. Progress report, December 15, 1991--December 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  19. Occult Carbon Monoxide Poisoning

    OpenAIRE

    Kirkpatrick, John N.

    1987-01-01

    A syndrome of headache, fatigue, dizziness, paresthesias, chest pain, palpitations and visual disturbances was associated with chronic occult carbon monoxide exposure in 26 patients in a primary care setting. A causal association was supported by finding a source of carbon monoxide in a patient's home, workplace or vehicle; results of screening tests that ruled out other illnesses; an abnormally high carboxyhemoglobin level in 11 of 14 patients tested, and abatement or resolution of symptoms ...

  20. An unusual case of carbon monoxide poisoning.

    Science.gov (United States)

    Auger, P L; Levesque, B; Martel, R; Prud'homme, H; Bellemare, D; Barbeau, C; Lachance, P; Rhainds, M

    1999-01-01

    Carbon monoxide, a gas originating from incomplete combustion of carbon-based fuels, is an important cause of human deaths. In this paper, we describe an unusual carbon monoxide poisoning in a dwelling without obvious sources of combustion gases, for which two adults had to be treated in a hyperbaric chamber. Carbon monoxide readings were taken in the house and in the neighboring homes. Methane gas and nitrogen oxide levels were also monitored in the house air. Soil samples were collected around the house and tested for hydrocarbon residues. The investigation revealed the presence of a pocket of carbon monoxide under the foundation of the house. The first readings revealed carbon monoxide levels of 500 ppm in the basement. The contamination lasted for a week. The investigation indicated that the probable source of contamination was the use of explosives at a nearby rain sewer construction site. The use of explosives in a residential area can constitute a major source of carbon monoxide for the neighboring populations. This must be investigated, and public health authorities, primary-care physicians, governmental authorities, and users and manufacturers of explosives must be made aware of this problem. Images Figure 1 Figure 2 PMID:10379009

  1. An unusual case of carbon monoxide poisoning.

    Science.gov (United States)

    Auger, P L; Levesque, B; Martel, R; Prud'homme, H; Bellemare, D; Barbeau, C; Lachance, P; Rhainds, M

    1999-07-01

    Carbon monoxide, a gas originating from incomplete combustion of carbon-based fuels, is an important cause of human deaths. In this paper, we describe an unusual carbon monoxide poisoning in a dwelling without obvious sources of combustion gases, for which two adults had to be treated in a hyperbaric chamber. Carbon monoxide readings were taken in the house and in the neighboring homes. Methane gas and nitrogen oxide levels were also monitored in the house air. Soil samples were collected around the house and tested for hydrocarbon residues. The investigation revealed the presence of a pocket of carbon monoxide under the foundation of the house. The first readings revealed carbon monoxide levels of 500 ppm in the basement. The contamination lasted for a week. The investigation indicated that the probable source of contamination was the use of explosives at a nearby rain sewer construction site. The use of explosives in a residential area can constitute a major source of carbon monoxide for the neighboring populations. This must be investigated, and public health authorities, primary-care physicians, governmental authorities, and users and manufacturers of explosives must be made aware of this problem.

  2. Conversion of carbon monoxide intensities tomolecular hydrogen abundances

    International Nuclear Information System (INIS)

    Kutner, M.L.; Leung, C.M.

    1985-01-01

    We present results of theoretical models (static spherical clouds with a microturbulent velocity field) to study the conversion of carbon monoxide (CO) line parameters into molecular hydrogen (H 2 ) column densities, N2. The three potential H 2 tracers that we investigate are the integrated 12 CO and 13 CO intensities, I 12 and I 13 , and the 13 CO LTE column density, N( 13 . We find that I 12 may be a reasonable tracer of N2 under conditions appropriate to the envelopes of giant molecular clouds and for studies involving cloud ensembles of different cloud sizes and velocity dispersions. However, it saturates under higher density conditions. It is important that empirical conversion factors be set using the types of objects to which they will be applied. For this reason, our analysis suggests that the conversion factor N2/I 12 for giant molecular clouds in the molecular ring of our galaxy may be a factor of 2 lower than the average used by many observers. This lower value is supported by some recent empirical determinations. The quantity I 13 is a good tracer of N2 over a wide range of densities but it is more sensitive to the actual 13 CO abundance. The quantity N( 13 is similar to I 13 as a good tracer of N2 except at low densities and temperatures. The ratio I 12 /I 13 may be used to delineate temperature and column density effects. Finally, we find a strong temperature dependence in the various conversion factors, with N2/I 12 scaling with gas temperature (T/sub k/ approximately as (T/sub k/)/sup -1.3/

  3. Three Gaseous Neurotransmitters, Nitric oxide, Carbon Monoxide, and Hydrogen Sulfide, Are Involved in the Neurogenic Relaxation Responses of the Porcine Internal Anal Sphincter.

    Science.gov (United States)

    Folasire, Oladayo; Mills, Kylie A; Sellers, Donna J; Chess-Williams, Russ

    2016-01-31

    The internal anal sphincter (IAS) plays an important role in maintaining continence and a number of neurotransmitters are known to regulate IAS tone. The aim of this study was to determine the relative importance of the neurotransmitters involved in the relaxant and contractile responses of the porcine IAS. Responses of isolated strips of IAS to electrical field stimulation (EFS) were obtained in the absence and presence of inhibitors of neurotransmitter systems. Contractile responses of the sphincter to EFS were unaffected by the muscarinic receptor antagonist, atropine (1 μM), but were almost completely abolished by the adrenergic neuron blocker guanethidine (10 μM). Contractile responses were also reduced (by 45% at 5 Hz, P 40-50% reduction), zinc protoprophyrin IX (10 μM), an inhibitor of carbon monoxide synthesis (20-40% reduction), and also propargylglycine (30 μM) and aminooxyacetic acid (30 μM), inhibitors of hydrogen sulphide synthesis (15-20% reduction). Stimulation of IAS efferent nerves releases excitatory and inhibitory neurotransmitters: noradrenaline is the predominant contractile transmitter with a smaller component from ATP, whilst 3 gases mediate relaxation responses to EFS, with the combined contributions being nitric oxide > carbon monoxide > hydrogen sulfide.

  4. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  5. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  6. Carbon monoxide and carbon dioxide interaction with tantalum

    International Nuclear Information System (INIS)

    Belov, V.D.; Ustinov, Yu.K.; Komar, A.P.

    1978-01-01

    The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T >= 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (α and β' 1 ) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal. For the β' 1 state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 X 10 12 sec -1 , and γ = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively. (Auth.)

  7. Carbon monoxide and carbon dioxide interaction with tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Belov, V D; USTINOV, YU K; KOMAR, A P [AN SSSR, LENINGRAD. FIZIKO-TEKHNICHESKIJ INST.

    1978-03-01

    The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T >= 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (..cap alpha.. and ..beta..'/sub 1/) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal. For the ..beta..'/sub 1/ state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 X 10/sup 12/ sec/sup -1/, and ..gamma.. = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively.

  8. Carbon monoxide: The 21st century poison that goes unnoticed

    International Nuclear Information System (INIS)

    Hoskins, J.A.

    1999-01-01

    This editorial article describes the effects of carbon monoxide poisoning on human beings and the mechanisms involving carbon monoxide saturation of haemoglobin that are responsible for it. The initial research done in the mid-1800s by Claude Bernard is presented. Methods of treatment for persons poisoned by carbon monoxide are discussed and the experiments made by J.B.S. Haldane on himself by breathing in carbon monoxide are described. Acclimatisation effects observed by Haldane and his co-workers and concerning persons occupationally exposed to carbon monoxide emissions are described

  9. Carbon monoxide: The 21st century poison that goes unnoticed

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, J.A. [Reigate, Surrey (United Kingdom)

    1999-07-01

    This editorial article describes the effects of carbon monoxide poisoning on human beings and the mechanisms involving carbon monoxide saturation of haemoglobin that are responsible for it. The initial research done in the mid-1800s by Claude Bernard is presented. Methods of treatment for persons poisoned by carbon monoxide are discussed and the experiments made by J.B.S. Haldane on himself by breathing in carbon monoxide are described. Acclimatisation effects observed by Haldane and his co-workers and concerning persons occupationally exposed to carbon monoxide emissions are described.

  10. Bacterium oxidizing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, A

    1953-01-01

    Present-day knowledge of the microbiological oxidation of carbon monoxide is based on doubtful observations and imperfect experimental procedures. By making use of shake cultures in contact with gas mixtures containing high concentrations of CO and by employing liquid enrichment media with a low content of organic matter and solid media of the same composition with not more than 1.2% agar, it proved possible to isolate a co-oxidizing bacterium of the genus hydrogenomonas from sewage sludge. For the first time irrefutable proof has been given of the oxidation of carbon monoxide by a pure culture of a bacterium, both in growing cultures and in resting cell suspensions. 12 references.

  11. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901.

    Science.gov (United States)

    Wu, Martin; Ren, Qinghu; Durkin, A Scott; Daugherty, Sean C; Brinkac, Lauren M; Dodson, Robert J; Madupu, Ramana; Sullivan, Steven A; Kolonay, James F; Haft, Daniel H; Nelson, William C; Tallon, Luke J; Jones, Kristine M; Ulrich, Luke E; Gonzalez, Juan M; Zhulin, Igor B; Robb, Frank T; Eisen, Jonathan A

    2005-11-01

    We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.

  12. Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.

  13. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901.

    Directory of Open Access Journals (Sweden)

    Martin Wu

    2005-11-01

    Full Text Available We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.

  14. Liquefaction of lignohemicellulosic waste by processing with carbon monoxide and water

    Energy Technology Data Exchange (ETDEWEB)

    El-Saied, H

    1977-09-01

    The liquefaction of lignohemicellulosic waste by processing with carbon monoxide and water for 10 minutes at 250/sup 0/-440/sup 0/C and 40 to 70 atm initial pressure in a rocking autoclave produced benzene-soluble heavy oil in yields up to 80%. High conversion and yields were favored by high thermal stress, short reaction times, and sufficient hydrogen to prevent radical recombination in the critical liquefaction stages. The addition of sodium or calcium hydroxide, sodium carbonate, iron oxide, etc. in small amounts gave good oil yields under less severe conditions. Lignins from rice straw, bagasse, and other grasses gave higher yields than the woody lignin obtained from cotton stalks. In products obtained by liquefying black liquor lignohemicellulose from an Eyptian rice straw pulping plant, the hydrogen-carbon atomic ratio was 1.0 to 1.3:1.

  15. Campaign to prevent carbon monoxide poisoning : fall-winter 2007-2008

    International Nuclear Information System (INIS)

    Lefebvre, B.; Chabot, L.; Gratton, J.; Lacoursiere, D.

    2009-01-01

    Quebec launched a public health campaign for the Montreal region to prevent carbon monoxide poisoning. The objectives of the campaign were to communicate the dangers of carbon monoxide poisoning, its potential sources, its effects on public health, and the means to prevent poisoning. Its purpose was to inform the public of the risks and strategies to be used in case of carbon monoxide poisoning and to lay out the merits of household carbon monoxide alarms. The communication was done by way of the media, in cooperation with community organizations and school boards. Other tools used in the campaign included the Internet, flyers and press releases. A poll taken in 2008 showed that 59 per cent of the respondents had one or more sources for carbon monoxide in their homes, including fireplaces, and that 28 per cent had a functioning alarm for carbon monoxide detection. A future survey will be held to follow-up on the evolution of the campaign. The development of various activities will help decrease the risk of carbon monoxide poisoning. tabs., figs.

  16. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb) ...

  17. Search of medical literature for indoor carbon monoxide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, T.; Ivanovich, M.

    1995-12-01

    This report documents a literature search on carbon monoxide. The search was limited to the medical and toxicological databases at the National Library of Medicine (MEDLARS). The databases searched were Medline, Toxline and TOXNET. Searches were performed using a variety of strategies. Combinations of the following keywords were used: carbon, monoxide, accidental, residential, occult, diagnosis, misdiagnosis, heating, furnace, and indoor. The literature was searched from 1966 to the present. Over 1000 references were identified and summarized using the following abbreviations: The major findings of the search are: (1) Acute and subacute carbon monoxide exposures result in a large number of symptoms affecting the brain, kidneys, respiratory system, retina, and motor functions. (2) Acute and subacute carbon monoxide (CO) poisonings have been misdiagnosed on many occasions. (3) Very few systematic investigations have been made into the frequency and consequences of carbon monoxide poisonings.

  18. Microwave interaction with nonuniform hydrogen gas in carbon nanotubes

    International Nuclear Information System (INIS)

    Babaei, S.; Babaei, Sh.

    2009-01-01

    In this paper we study the reflection, absorption, and transmission of microwave from nonuniform hydrogen gas in carbon nanotubes, grown by iron-catalyzed high-pressure carbon monoxide disproportionate (HiPco) process. A discussion on the effect of various hydrogen gas parameters on the reflected power, absorbed power, and transmitted power is presented. The nonuniform hydrogen gas slab is modeled by a series of subslabs. The overall number density profile across the whole slab follows a parabolic function. The total reflected, absorbed, and transmitted powers are then deduced and their functional dependence on the number density, collision frequency, and angle of propagation is studied

  19. Delayed encephalopathy after acute carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Mehmet İbrahim Turan

    2014-03-01

    Full Text Available Carbon monoxide poisoning is a major cause of death following attempted suicide and accidental exposures. Although clinical presentation depends on the duration and the intensity of exposure, the assessment of the severity of intoxication is difficult. A small percentage of patients who show complete initial recovery may develop delayed neurological deficits. Delayed encephalopathy after acute carbon monoxide poisoning is a rare and poor prognosis neurologic disorders and there is no specific treatment. We present a case with early onset of delayed encephalopathy after acute carbon monoxide poisoning with typical cranial imaging findings in a child with atypical history and clinical presentation.

  20. Hydrogen bonding of formamide, urea, urea monoxide and their thio

    Indian Academy of Sciences (India)

    Ab initio and DFT methods have been employed to study the hydrogen bonding ability of formamide, urea, urea monoxide, thioformamide, thiourea and thiourea monoxide with one water molecule and the homodimers of the selected molecules. The stabilization energies associated with themonohydrated adducts and ...

  1. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Import Surveillance International Recall Guidance Civil and Criminal Penalties Federal Court Orders & ... 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 ...

  2. Estimation of the molecular hydrogen soil uptake and traffic emissions at a suburban site near Paris through hydrogen, carbon monoxide, and radon-222 semicontinuous measurements

    International Nuclear Information System (INIS)

    Yver, C.; Schmidt, M.; Bousquet, P.; Ramonet, M.; Bousquet, P.; Zahorowski, W.

    2009-01-01

    Since June 2006, simultaneous semicontinuous measurements of tropospheric molecular hydrogen (H 2 ), carbon monoxide (CO), and radon-222 ( 222 Rn) have been performed at Gif-sur-Yvette (Paris region), a suburban atmospheric measurement site in France. Molecular hydrogen mixing ratios range from 500 to 1000 ppb, CO mixing ratios vary from 100 to 1400 ppb, and 222 Rn concentrations fluctuate from 0 to 20 Bq m -3 . The H 2 seasonal cycle shows the expected pattern for the Northern Hemisphere with a maximum in spring and a minimum in autumn. We inferred a mean baseline value of 533 ppb with a peak-to-peak amplitude of 30 ppb. Carbon monoxide exhibits a seasonal cycle with a maximum in winter and a minimum in summer. The mean baseline value reaches 132 ppb with a peak-to-peak amplitude of 40 ppb. Radon-222 presents weak seasonal variations with a maximum in autumn/winter and a minimum in spring/summer. The diurnal cycles of H 2 and CO are dominated by emissions from nearby traffic with two peaks during morning and evening rush hours. The typical H 2 /CO emission ratio from traffic is found to be 0.47 ± 0.08 on a molar basis (ppb/ppb). The radon tracer method is applied to nighttime H 2 observations to estimate the H 2 soil uptake of the nocturnal catchment area of our sampling site. The influences from nocturnal local anthropogenic combustion sources are estimated by parallel measurements of CO at 0.14 * 10 -5 g(H 2 ) m -2 h -1 . The mean inferred dry deposition velocity is 0.024 ± 0.013 cm s -1 with a seasonal amplitude of 40% at Gif-sur-Yvette.

  3. Use of carbon monoxide and hydrogen by a bacteria–animal symbiosis from seagrass sediments

    Science.gov (United States)

    Holler, Thomas; Lavik, Gaute; Harder, Jens; Lott, Christian; Littmann, Sten; Kuypers, Marcel M. M.; Dubilier, Nicole

    2015-01-01

    Summary The gutless marine worm O lavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO 2) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O . algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H 2) might also be used as energy sources. We provide direct evidence that the O . algarvensis symbiosis consumes CO and H 2. Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3‐symbiont, uses the energy from CO oxidation to fix CO 2. Pore water analysis revealed considerable in‐situ concentrations of CO and H 2 in the O . algarvensis environment, Mediterranean seagrass sediments. Pore water H 2 concentrations (89–2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36‐fold higher than previously known from shallow‐water marine sediments. Pore water CO concentrations (17–51 nM) were twice as high as in the overlying seawater (no literature data from other shallow‐water sediments are available for comparison). Ex‐situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments. PMID:26013766

  4. Effects of acetylene and carbon monoxide on long-term hydrogen production by Mastigocladus laminosus, a thermophilic blue-green alga

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Y; Yokoyama, H; Takahara, K; Miyamoto, K

    1982-01-01

    Long-term H/sub 2/ production by a thermophilic and heterocystous blue-green alga (cyanobacterium) Mastigocladus laminosus was studied under the conditions when acetylene and carbon monoxide were supplemented to the gas phase of the culture vessel. The addition of both gases enhanced H/sub 2/ evolution by nitrogen-starved cells. The concentrations of acetylene and carbon monoxide in the gas phase of argon/CO/sub 2/ (97.5/2.5) were 10% and 0.2 to 1%, respectively, for the maximum H/sub 2/ production. Renewals of the gas phase, in addition to the addition of acetylene and carbon monoxide, were necessary for durable H/sub 2/ production. Since the concentrations of both H/sub 2/ and O/sub 2/ accumulated in the gas phase were minimized after the renewals, the H/sub 2/ uptake activity, which was not completely inhibited by acetylene and carbon monoxide, was reduced and thereby H/sub 2/ evolution was restored. Under such conditions, H/sub 2/ production for up to 20 days was observed under argon and N/sub 2/ atmospheres with average rats of 3.9 and 3.3..mu..l/mg dry wt/h, respectively. H/sub 2/ evolution for 15 days was observed even under an air atmosphere containing acetylene and carbon monoxide. It was thus shown that prolonged production of H/sub 2/ was possible by the use of a blue-green alga which exhibits a high activity of H/sub 2/ uptake under nitrogen-starved conditions.

  5. Carbon Monoxide Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Carbon Monoxide and have...

  6. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 Annual Estimates OCTOBER 13, 2015 Incidents, Deaths, and In-Depth Investigations Associated with Non-Fire ...

  7. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Community Outreach Resource Center Toy Recall Statistics CO Poster Contest Pool Safely Business & Manufacturing Business & Manufacturing Business ... Featured Resources CPSC announces winners of carbon monoxide poster contest Video View the blog Clues You Can ...

  8. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Unites States die every year from accidental non-fire related CO poisoning associated with consumer products, including ... CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of ...

  9. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths ... 2011 Annual Estimates View All CO-Related Injury Statistics and Technical Reports Related Links Recalls Safety Education ...

  10. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... CONSUMER PRODUCT SAFETY COMMISSION Search CPSC Search Menu Home Recalls Recall List CPSC Recall API Recall Lawsuits ... and Bans Report an Unsafe Product Consumers Businesses Home Safety Education Safety Education Centers Carbon Monoxide Information ...

  11. Effect of vegetation in reducing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, J C

    1977-01-01

    Carbon monoxide is a product of incomplete combustion. Because almost all of this gas is produced by motor vehicles, it is considered to have a line rather than a stationary point source. Greatest concentrations of this lethal gas correspond to periods of peak traffic volume and congestion; therefore, there are two daily periods of maxima and minima. Carbon monoxide cannot be detected by sight or smell. For this reason, this gas is especially deadly. During the summer of 1975, a study involving carbon monoxide concentrations at selected sites in Sendai was undertaken in conjunction with an ongoing investigation of urban pollution under the directorship of Professor Toshio Noh of Tohoku University. This study was made possible by a grant from the Japan Society for the Promotion of Science. 5 references, 5 figures, 1 table.

  12. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    Directory of Open Access Journals (Sweden)

    Martijn eDiender

    2015-11-01

    Full Text Available Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  13. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.

    Science.gov (United States)

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  14. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... On Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide ... Related Links Recalls Safety Education Regulations, Laws & Standards Research & Statistics Business & Manufacturing Small Business Resources OnSafety Blogs ...

  15. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Español The Invisible Killer Carbon monoxide, also known as CO, is called the "Invisible Killer" because it's ... used or incorrectly-vented fuel-burning appliances such as furnaces, stoves, water heaters and fireplaces. Watch This ...

  16. Mobile Carbon Monoxide Monitoring System Based on Arduino-Matlab for Environmental Monitoring Application

    Science.gov (United States)

    Azieda Mohd Bakri, Nur; Junid, Syed Abdul Mutalib Al; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2015-11-01

    Nowadays, the increasing level of carbon monoxide globally has become a serious environmental issue which has been highlighted in most of the country globally. The monitoring of carbon monoxide content is one of the approaches to identify the level of carbon monoxide pollution towards providing the solution for control the level of carbon monoxide produced. Thus, this paper proposed a mobile carbon monoxide monitoring system for measuring the carbon monoxide content based on Arduino-Matlab General User Interface (GUI). The objective of this project is to design, develop and implement the real-time mobile carbon monoxide sensor system and interfacing for measuring the level of carbon monoxide contamination in real environment. Four phases or stages of work have been carried out for the accomplishment of the project, which classified as sensor development, controlling and integrating sensor, data collection and data analysis. As a result, a complete design and developed system has been verified with the handheld industrial standard carbon monoxide sensor for calibrating the sensor sensitivity and measurement in the laboratory. Moreover, the system has been tested in real environments by measuring the level of carbon monoxide in three different lands used location; industrial area; residential area and main road (commercial area). In this real environment test, the industrial area recorded the highest reading with 71.23 ppm and 82.59 ppm for sensor 1 and sensor 2 respectively. As a conclusion, the mobile realtime carbon monoxide system based on the Arduino-Matlab is the best approach to measure the carbon monoxide concentration in different land-used since it does not require a manual data collection and reduce the complexity of the existing carbon monoxide level concentration measurement practise at the same time with a complete data analysis facilities.

  17. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Investigations Associated with Non-Fire Carbon Monoxide from Engine-Driven Generators and Other Engine-Driven Tools, 2004–2014 JANUARY 08, 2015 Non- ... outside of the Federal Government. CPSC does not control this external site or its privacy policy and ...

  18. Polyketones as alternating copolymers of carbon monoxide

    International Nuclear Information System (INIS)

    Belov, Gennady P; Novikova, Elena V

    2004-01-01

    Characteristic features of the catalytic synthesis of alternating copolymers of carbon monoxide with various olefins, dienes, styrene and its derivatives are considered. The diversity of catalyst systems used for the copolymerisation of carbon monoxide is demonstrated and their influence on the structure and the molecular mass of the resulting copolymers is analysed. The data on the structure and physicochemical and mechanical properties of this new generation of functional copolymers are generalised and described systematically for the first time.

  19. Hearing Loss due to Carbon Monoxide Poisoning

    DEFF Research Database (Denmark)

    Mehrparvar, Amir Houshang; Davari, Mohammad Hossein; Mollasadeghi, Abolfazl

    2013-01-01

    Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker...... after an acute exposure to carbon monoxide. This complication was diagnosed by pure-tone audiometry and confirmed by transient evoked otoacoustic emissions. Hearing loss has not improved after 3 months of followup....

  20. An interesting cause of pulmonary emboli: Acute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sevinc, A.; Savli, H.; Atmaca, H. [Gaziantep University, Gaziantep (Turkey). School of Medicine

    2005-07-01

    Carbon monoxide poisoning, a public health problem of considerable significance, is a relatively frequent event today, resulting in thousands of hospitalizations annually. A 70-year-old lady was seen in the emergency department with a provisional diagnosis of carbon monoxide poisoning. The previous night, she slept in a tightly closed room heated with coal ember. She was found unconscious in the morning with poor ventilation. She had a rare presentation of popliteal vein thrombosis, pulmonary emboli, and possible tissue necrosis with carbon monoxide poisoning. Oxygen treatment with low-molecular-weight heparin (nadroparine) and warfarin therapy resulted in an improvement in both popliteal and pulmonary circulations. In conclusion, the presence of pulmonary emboli should be sought in patients with carbon monoxide poisoning.

  1. Development of an enzymatic sensor for carbon monoxide

    International Nuclear Information System (INIS)

    Hurtado, Clara; Gomez, Diana; Larmat, Fernando; Torres, Walter; Cuervo, Raul; Bravo, Enrique; Benitez, Neyla

    2003-01-01

    The detection and the pursuit of gases that contribute in the increase of the atmospheric contamination are a necessity, for what the electrochemical sensors have potential industrial applications for the control of the quality of the air. The development of amperometric sensor based on enzymes offers advantages, since the use of the biological component provides him high selectivity due to the great specificity of the substrate of the enzyme. The monoxide of carbon (CO) it is a polluting, poisonous gas, taken place during the incomplete combustion of organic materials (natural gas, petroleum, gasoline, coal and vegetable material). The determination of monoxide of carbon (CO) it can be reached by electrochemical mediums using the methylene blue like the electronic mediator for the enzyme monoxide of carbon oxidase (COx)

  2. Atmospheric analyzer, carbon monoxide monitor and toluene diisocyanate monitor

    Science.gov (United States)

    Shannon, A. V.

    1977-01-01

    The purpose of the atmospheric analyzer and the carbon monoxide and toluene diisocyanate monitors is to analyze the atmospheric volatiles and to monitor carbon monoxide and toluene diisocyanate levels in the cabin atmosphere of Skylab. The carbon monoxide monitor was used on Skylab 2, 3, and 4 to detect any carbon monoxide levels above 25 ppm. Air samples were taken once each week. The toluene diisocyanate monitor was used only on Skylab 2. The loss of a micrometeoroid shield following the launch of Skylab 1 resulted in overheating of the interior walls of the Orbital Workshop. A potential hazard existed from outgassing of an isocyanate derivative resulting from heat-decomposition of the rigid polyurethane wall insulation. The toluene diisocyanate monitor was used to detect any polymer decomposition. The atmospheric analyzer was used on Skylab 4 because of a suspected leak in the Skylab cabin. An air sample was taken at the beginning, middle, and the end of the mission.

  3. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb) ......) in arterial blood. The objectives were to determine the level of correlation and to determine whether the methods showed agreement and evaluate them as diagnostic tests in discriminating between heavy and light smokers....

  4. Carbon monoxide exposure in households in Ciudad Juárez, México.

    Science.gov (United States)

    Montoya, Teresa; Gurian, Patrick L; Velázquez-Angulo, Gilberto; Corella-Barud, Verónica; Rojo, Analila; Graham, Jay P

    2008-03-01

    This study assessed exposure to carbon monoxide from gas and wood heater emissions in a sample of 64 households in peri-urban residential areas in Ciudad Juárez, Chihuahua, México. Indoor and outdoor carbon monoxide concentrations and temperatures were monitored for a continuous period of 1 week at 1 and 6-min intervals, respectively. The moving average carbon monoxide concentrations were compared to the World Health Organization (WHO) standards for carbon monoxide. Sixty-seven percent of households with gas heaters and 60% of households with wood heaters exceeded a health-based standard at some point during the monitoring. The difference between indoor and outdoor temperatures was modestly correlated with average carbon monoxide exposure (r=0.35, p-value h standard of 9ppm (odds ratio=5.1, p-value=0.031). These results highlight the need for further efforts to identify and mitigate potentially hazardous carbon monoxide exposures, particularly in moderate-income countries with cooler climates.

  5. CARBON MONOXIDE AND THE NERVOUS SYSTEM

    Science.gov (United States)

    Carbon monoxide (CO) is a colorless, tasteless, odorless, and non-irritating gas formed when carbon in fuel is not burned completely. It enters the bloodstream through the lungs and attaches to hemoglobin (Hb), the body's oxygen carrier, forming carboxyhemoglobin (COHb) and there...

  6. 40 CFR 86.1322-84 - Carbon monoxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... be used. (2) Zero the carbon monoxide analyzer with either zero-grade air or zero-grade nitrogen. (3... columns is one form of corrective action which may be taken.) (b) Initial and periodic calibration. Prior... calibrated. (1) Adjust the analyzer to optimize performance. (2) Zero the carbon monoxide analyzer with...

  7. Occupational medicine effects of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, W.M. [South African Society of Occupational Medicine (South Africa)

    1998-10-01

    Carbon monoxide can affect the body if it is inhaled or if liquid carbon monoxide comes in contact with the eyes or skin. The effects of overexposure are discussed and a brief explanation of the toxicological effects of CO given. Methods of control of CO from common operations (exhaust fumes of internal combustion engines, the chemical industry and foundries, welding, mines or tunnels, fire damp explosions, industrial heating) are by local exhaust ventilation or use of a respiratory protective device. The South African hazardous chemical substance regulation NO. R. 1179 of 25 August 1995 stipulates maximum safe levels of CO concentration. 4 refs., 1 photo.

  8. Carbon monoxide poisoning from waterpipe smoking: a retrospective cohort study.

    Science.gov (United States)

    Eichhorn, Lars; Michaelis, Dirk; Kemmerer, Michael; Jüttner, Björn; Tetzlaff, Kay

    2018-04-01

    Waterpipe smoking may increasingly account for unintentional carbon monoxide poisoning, a serious health hazard with high morbidity and mortality. We aimed at identifying waterpipe smoking as a cause for carbon monoxide poisoning in a large critical care database of a specialty care referral center. This retrospective cohort study included patients with a history of exposure to waterpipe smoking and carbon monoxide blood gas levels >10% or presence of clinical symptoms compatible with CO poisoning admitted between January 2013 and December 2016. Patients' initial symptoms and carbon monoxide blood levels were retrieved from records and neurologic status was assessed before and after hyperbaric oxygen treatment. Sixty-one subjects with carbon monoxide poisoning were included [41 males, 20 females; mean age 23 (SD ± 6) years; range 13-45] with an initial mean carboxyhemoglobin of 26.93% (SD ± 9.72). Most common symptoms included syncope, dizziness, headache, and nausea; 75% had temporary syncope. Symptoms were not closely associated with blood COHb levels. CO poisoning after waterpipe smoking may present in young adults with a wide variability of symptoms from none to unconsciousness. Therefore diagnosis should be suspected even in the absence of symptoms.

  9. Carbon monoxide poisoning - Immediate diagnosis and treatment are crucial to avoid complications.

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, L.D. [Case Western Reserve University, Cleveland, OH (United States)

    2006-03-15

    Carbon monoxide is an odorless, colorless, tasteless gas produced by the incomplete combustion of carbon-containing fuels (oil, kerosene, coal, wood) or the inadequate ventilation of natural gas. When carbon monoxide is introduced into the bloodstream, it binds to hemoglobin, reducing the number of binding sites available for oxygen. Carbon monoxide also changes the structure of the hemoglobin molecule, which makes it even more difficult for oxygen that has attached to be released into tissues. The resulting tissue ischemia can lead to organ failure, permanent changes in cognition, or death. Carbon monoxide poisoning is the leading cause of death by poisoning in industrialized countries.

  10. Carbon monoxide and methane adsorption of crude oil refinery using activated carbon from palm shells as biosorbent

    Science.gov (United States)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo

    2018-03-01

    Carbon monoxide and methane gas are widely present in oil refineries. Off-potential gas is used as raw material for the petrochemical industry. In order for this off-gas to be utilized, carbon monoxide and methane must be removed from off-gas. This study aims to adsorb carbon monoxide and methane using activated carbon of palm shells and commercial activated carbon simultaneously. This research was conducted in 2 stages: 1) Preparation and characterization of activated carbon, 2) Carbon monoxide and methane adsorption test. The activation experiments using carbon dioxide at a flow rate of 150 ml/min yielded a surface area of 978.29 m2/g, Nitrogen at flow rate 150 ml/min yielded surface area 1241.48 m2/g, and carbon dioxide and nitrogen at a flow rate 200 ml/min yielded a surface area 300.37 m2/g. Adsorption of carbon monoxide and methane on activated carbon of palm shell systems yielded results in the amount of 0.5485 mg/g and 0.0649 mg/g and using commercial activated carbon yielded results in the amount of 0.5480 mg/g and 0.0650 mg/g

  11. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    Science.gov (United States)

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  12. Carbon monoxide and COHb concentration in blood in various circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Modic, J. [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia)

    2003-07-01

    On the basis of known medical experiments we find out the correlation between the concentration of carbon monoxide (CO) in inhaling air and the concentration of carboxihemoglobyne (COHb) in human blood. All internal combustion engines produce exhaust gases containing noxious compounds: carbon monoxide, nitrogen oxides (NO{sub x}), carbon oxides (CxHy) and smoke. In a living room is important the smoke of cigarettes, smoke of furnaces, improper ventilation. In tunnel is most dangerous the carbon monoxide if it exceeds an allowable level. In human blood the carbon monoxide causes increasing the concentration of carboxihemoglobyne and in this case the hypoxia of web. With help of mathematical model the concentrations of some dangerous substances at the end of tunnel were calculated. For this case a differential equation also was developed and it shows the correlation between concentration of carbon monoxide in the air and concentration of carboxihemoglobyne in the blood. The constructed mathematical model shows circumstances in the tunnel (velocity of air moving as effect of induction, concentration of noxious substances and criterial number). Also a corresponding computer program was developed, which makes possible a quick and simple calculation. All the results are proved by experiments. Finally the differential equation was done, which shows a temporal connection between both parameters as a function of tunnel characteristics. (author)

  13. Occupational carbon monoxide violations in the State of Washington, 1994-1999.

    Science.gov (United States)

    Lofgren, Don J

    2002-07-01

    Occupational exposure to carbon monoxide continues to cause a number of injuries and deaths. This study reviewed the State of Washington OSHA inspection records for occupational safety or health violations related to carbon monoxide for the time period 1994-1999 to assess the agency's efforts and further identify and characterize causative factors. Inspection data were also compared with carbon monoxide claims data from a companion study to determine if the agency was visiting the most at risk work operations. Inspections were identified by searching computerized violation texts for "carbon monoxide" or "CO." The study found 142 inspections with one or more carbon monoxide violations. Inspections were spread over 84 different 4-digit Standard Industrial Classification codes. Most inspections were initiated as a result of a complaint or other informant. Inspections were predominantly in construction and manufacturing, whereas carbon monoxide claims were mores evenly distributed between the major industries. Inspections also may have failed to find violations for some types of equipment responsible for carbon monoxide claims. Forklifts were the source of carbon monoxide most often associated with a violation, followed by compressors for respirators, auto/truck/bus, and temporary heating devices. Inspections in response to poisonings found common factors associated with lack of recognition and failure to use or maintain equipment and ventilation. Some work sites with one or more poisonings were not being inspected. Only 10 of the 51 incidents with industrial insurance claim reports of carboxyhemoglobin at or above 20 percent were inspected. Further, it was found more preventive efforts should be targeted at cold storage operations and certain warehouse and construction activities. It is proposed that more specific standards, both consensus and regulatory, would provide additional risk reduction. Reliance upon safe work practices as a primary method of control in the

  14. Pulmonary edema in acute carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Kim, Kun Sang; Chang, Kee Hyun; Lee, Myung Uk

    1974-01-01

    Acute carbon monoxide poisoning has frequently occurred in Korean, because of the coal briquette being widely used as fuel in Korean residences. Carbon monoxide poisoning has been extensively studied, but it has been sparsely reported that pulmonary edema may develop in acute CO poisoning. We have noticed nine cases of pulmonary edema in acute CO poisoning last year. Other possible causes of pulmonary edema could be exclude in all cases but one. The purpose of this paper is to describe nine cases of pulmonary edema complicated in acute CO poisoning and discuss the pathogenesis and the prognosis

  15. Pulmonary edema in acute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Chang, Kee Hyun; Lee, Myung Uk [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-10-15

    Acute carbon monoxide poisoning has frequently occurred in Korean, because of the coal briquette being widely used as fuel in Korean residences. Carbon monoxide poisoning has been extensively studied, but it has been sparsely reported that pulmonary edema may develop in acute CO poisoning. We have noticed nine cases of pulmonary edema in acute CO poisoning last year. Other possible causes of pulmonary edema could be exclude in all cases but one. The purpose of this paper is to describe nine cases of pulmonary edema complicated in acute CO poisoning and discuss the pathogenesis and the prognosis.

  16. On the nature of gallium species in gallium-modified mordenite and MFI zeolites. A comparative DRIFT study of carbon monoxide adsorption and hydrogen dissociation.

    Science.gov (United States)

    Serykh, Alexander I; Kolesnikov, Stanislav P

    2011-04-21

    The results of a DRIFT study of carbon monoxide molecular adsorption and hydrogen dissociative adsorption on gallium-modified mordenite and MFI (ZSM-5) zeolites are presented. It was found that in the reduced gallium-modified mordenite (Ga-MOR) both Ga(3+) and Ga(+) exchanged cations are present and can be detected by CO adsorption. Ga(3+) cations in Ga-MOR dissociatively adsorb molecular hydrogen at elevated temperatures, resulting in the formation of gallium hydride species and acidic hydroxyl groups. In the reduced Ga-MFI evacuated at 823 K under medium vacuum conditions only Ga(+) exchanged intrazeolite cations were detected. It was found, however, that Ga(3+) intrazeolite exchanged cations which form upon high-temperature disproportionation of Ga(+) cations in the reduced Ga-MFI and Ga-MOR can be stabilized by high-temperature oxidation of these zeolites.

  17. Carbon monoxide, smoking, and atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, P

    1973-10-01

    Studies on the effects of carbon monoxide and smoking on atherosclerosis are reviewed. Nonsmokers do not run the risk of getting significantly elevated carboxyhemoglobin levels from automobile exhaust in the streets, however, they do run the risk of getting elevated carboxyhemoglobin levels from exposure to CO in closed areas such as garages and tunnels. Carboxyhemoglobin levels up to 20 percent may also be found in smokers. The central nervous system seems to be influenced by carboxyhemoglobin concentrations up to 20 percent. The myocardium may also be affected. Experimental work with rabbits exposed to carbon monoxide and cholesterol is described which proved that CO has a damaging effect on arterial walls, leading to increased permeability for various plasma components, to the formation of subendothelial edema, and to increased atheromatosis. The results indicate that the much higher risk of smokers of developing arterial disease in comparison to nonsmokers is mainly due to the inhaled CO in the tobacco smoke and not to nicotine. (Air Pollut. Abstr.)

  18. Poisoning by carbon monoxide in Morocco from 1991 to 2008.

    Science.gov (United States)

    Aghandous, Rachida; Chaoui, Hanane; Rhalem, Naima; Semllali, Ilham; Badri, Mohamed; Soulaymani, Abdelmajid; Ouammi, Lahcen; Soulaymani-Bencheikh, Rachida

    2012-04-01

    To describe the characteristics relating to the provenance of statements, patients and to evaluate the spatiotemporal evolution of carbon monoxide poisoning reported to Poison Control Center and Pharmacovigilance of Morocco (CAPM). This is a retrospective study over a period of 18 years from 1991 to 2008, for all cases of poisoning by carbon monoxide reported to CAPM. The epidemiological study focused on 12 976 cases of carbon monoxide poisoning reported to CAPM between 1991 and 2008. The average age of patients was 25.5 +/- 15.6 years, sex ratio was 0.5. The poisoning occurred by accident in 98.7% of cases, especially at home (96.7%) and in cold months. The urban population was the most affected (89.0%). The region of Meknes Tafilalt was the most concerned with 16.6% of cases. The symptomatology was characterized by the predominance of gastrointestinal tract diseases (37.1%). Deaths have reached a percentage of 0.9%. These qualitative and quantitative information is useful to highlight warnings and plan a strategy against carbon monoxide poisoning in Morocco.

  19. Protect Yourself from Carbon Monoxide Poisoning

    Centers for Disease Control (CDC) Podcasts

    2007-11-20

    Learn about carbon monoxide - a colorless, odorless gas - and how to protect yourself and your family.  Created: 11/20/2007 by CDC National Center for Environmental Health.   Date Released: 12/4/2007.

  20. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    Science.gov (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  1. 40 CFR 51.241 - Nonattainment areas for carbon monoxide and ozone.

    Science.gov (United States)

    2010-07-01

    ... Intergovernmental Consultation Agency Designation § 51.241 Nonattainment areas for carbon monoxide and ozone. (a... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Nonattainment areas for carbon monoxide and ozone. 51.241 Section 51.241 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  2. [Protective effects of endogenous carbon monoxide against myocardial ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Zhou, Zhen; Ma, Shuang; Liu, Jie; Ji, Qiao-Rong; Cao, Cheng-Zhu; Li, Xiao-Na; Tang, Feng; Zhang, Wei

    2018-04-25

    The present study is aimed to explore the effects of endogenous carbon monoxide on the ischemia-reperfusion in rats. Wistar rats were intraperitoneally injected with protoporphyrin cobalt chloride (CoPP, an endogenous carbon monoxide agonist, 5 mg/kg), zinc protoporphyrin (ZnPP, an endogenous carbon monoxide inhibitor, 5 mg/kg) or saline. Twenty-four hours after injection, the myocardial ischemia-reperfusion model was made by Langendorff isolated cardiac perfusion system, and cardiac function parameters were collected. Myocardial cGMP content was measured by ELISA, and the endogenous carbon monoxide in plasma and myocardial enzymes in perfusate at 10 min after reperfusion were measured by colorimetry. The results showed that before ischemia the cardiac functions of CoPP, ZnPP and control groups were stable, and there were no significant differences. After reperfusion, cardiac functions had significant differences among the three groups (P endogenous carbon monoxide can maintain cardiac function, shorten the time of cardiac function recovery, and play a protective role in cardiac ischemia-reperfusion.

  3. Occupational carbon monoxide poisoning in the State of Washington, 1994-1999.

    Science.gov (United States)

    Lofgren, Don J

    2002-04-01

    Carbon monoxide poisonings continue to be significant and preventable for a number of work operations. This study assesses occupational carbon monoxide morbidity and mortality for the state of Washington based on a review of workers' compensation records for the years 1994-1999. The study characterizes sources, industries, and causative factors, and further attempts to identify work operations most at risk. Records were identified by both injury source and diagnostic codes. The study limits itself to non-fire-related carbon monoxide poisonings and primarily those from acute exposure. A decline in the number of claims was not evident, but the number of incidents per year showed a slight decline. Carbon monoxide poisonings were found to occur throughout all types of industries. The greatest number of claims was found in agriculture, followed by construction and wholesale trade, with these three accounting for more than half the claims and nearly half of the incidents. The more severe poisonings did not necessarily occur in industries with the greatest number of incidents. The major source for carbon monoxide poisoning was forklift trucks, followed by auto/truck/bus, portable saws, and more than 20 other sources. Fruit packing and storage had the highest number of incidents mostly due to fuel-powered forklift activity, with nearly half of the incidents occurring in cold rooms. Adverse health effects as measured by carboxyhemoglobin, hyperbaric oxygen treatment, unconsciousness, and number and cost of claims were indexed by source. Though several specific work operations were identified, the episodic nature of carbon monoxide poisonings, as well as the diverse industries and sources, and the opportunity for a severe poisoning in any number of operations, poses challenges for effective intervention.

  4. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  5. The Effect of Carbon Monoxide Poisoning on Platelet Volume in Children

    Directory of Open Access Journals (Sweden)

    Halise Akça

    2017-04-01

    Full Text Available Introduction: Carbon monoxide poisoning is one of the most important causes of morbidity and mortality. There is increasing evidence supporting the important role of mean platelet volume (MPV as a marker of hypoxia and inflammation. In this study, we aimed to determine changes in MPV values in pediatric patients with carbon monoxide poisoning. Methods: We retrospectively evaluated children who were diagnosed with carbon monoxide poisoning in our hospital between January 2005 and 2014. Results: We included 228 children with carbon monoxide poisoning (49% male in this retrospective, controlled study. The mean age of the patients was 88±56 months. Control group consisted of 200 age-matched healthy children. There was no statistically significant difference in MPV levels between the study and control groups (8.43±1.1 fL and 8.26±0.7 fL, respectively. No correlation of MPV and platelet count with carboxyhemoglobin (COHb was found. Conclusion: In our study, it was determined that MPV value was not a helpful parameter for predicting the diagnosis of acute carbon monoxide poisoning in childhood. The difference between the MPV values and the lack of significance and the absence of correlation between MPV value and COHb level led to the fact that MPV was not a guide indicating the clinical severity of the condition.

  6. Dispersive oxidation of rhodium clusters in Na-Y by the combined action of zeolite protons and carbon monoxide

    International Nuclear Information System (INIS)

    Wong, T.T.T.; Sachtler, W.M.H.; Stakheev, A.Yu.

    1992-01-01

    This paper uses x-ray photoelectron spectroscopy, fourier transform infrared spectroscopy and temperature programmed mass-spectrometric analysis to study the interaction of Na-Y supported rhodium with hydrogen, carbon monoxide, and zeolite protons. This report attempts to clarify the mechanism of dispersive oxidation of reduced Rh particles in the presence of CO, leading to the formation of Rh + (CO) 2 cations

  7. Carbon monoxide toxicity. (Latest citations from the Life Sciences Collection database). NewSearch

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide (CO) exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include studies of the carbon monoxide binding affinity with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels resulting from tobacco and marijuana smoke, occupational exposure and the NIOSH (National Institute for Occupational Safety and Health) biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (Contains a minimum of 137 citations and includes a subject term index and title list.)

  8. Carbon monoxide may be an important molecule in migraine and other headaches

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Schytz, Henrik W; Hauge, Mette K

    2014-01-01

    INTRODUCTION: Carbon monoxide was previously considered to just be a toxic gas. A wealth of recent information has, however, shown that it is also an important endogenously produced signalling molecule involved in multiple biological processes. Endogenously produced carbon monoxide may thus play...

  9. Cyclic process for producing methane from carbon monoxide with heat removal

    Science.gov (United States)

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  10. Carbon Monoxide Exposure in Youth Ice Hockey.

    Science.gov (United States)

    Macnow, Theodore; Mannix, Rebekah; Meehan, William P

    2017-11-01

    To examine the effect of ice resurfacer type on carboxyhemoglobin levels in youth hockey players. We hypothesized that players in arenas with electric resurfacers would have normal, stable carboxyhemoglobin levels during games, whereas those in arenas with internal combustion engine (IC) resurfacers would have an increase in carboxyhemoglobin levels. Prospective cohort study. Enclosed ice arenas in the northeastern United States. Convenience sample of players aged 8 to 18 years old in 16 games at different arenas. Eight arenas (37 players) used an IC ice resurfacer and 8 arenas (36 players) an electric resurfacer. Carboxyhemoglobin levels (SpCO) were measured using a pulse CO-oximeter before and after the game. Arena air was tested for carbon monoxide (CO) using a metered gas detector. Players completed symptom questionnaires. The change in SpCO from pregame to postgame was compared between players at arenas with electric versus IC resurfacers. Carbon monoxide was present at 6 of 8 arenas using IC resurfacers, levels ranged from 4 to 42 parts per million. Carbon monoxide was not found at arenas with electric resurfacers. Players at arenas with IC resurfacers had higher median pregame SpCO levels compared with those at electric arenas (4.3% vs 1%, P carboxyhemoglobin during games and have elevated baseline carboxyhemoglobin levels compared with players at arenas with electric resurfacers. Electric resurfacers decrease the risk of CO exposure.

  11. Optimization of Treatment Policy for Acute Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    R. N. Akalayev

    2012-01-01

    Full Text Available Objective: to evaluate the efficiency of combination use of hyperbaric oxygenation, succinate-containing solutions, and anti-edematous agents in patients with acute carbon monoxide poisoning. Subjects and methods. The results of treatment were analyzed in 32 patients admitted in 2009—2011 for severe acute carbon monoxide poisoning and a Glasgow coma score of 6—8. The patients were divided into 2 groups: 1 patients whose combination therapy involved hyperbaric oxygenation, Succinasol infusions, and L-lysine-aescinate injections; 2 those who received traditional therapy. All the patients underwent complex clinical, laboratory, and neurophysiologic examinations. Results. Just 24 hours after the combination use of Succinasol and L-lysine-aescinate, Group I patients were observed to have substantially reduced lactate, the content of the latter approached the normal value following 48 hours, which was much below the values in the control group. The similar pattern was observed when endogenous intoxication parameters were examined. During the performed therapy, the level of consciousness and that of intellect according to the MMSE and FAB scales were restored more rapidly in the study group patients than in Group 2. Conclusion. The combination use of hyperbaric oxygenation, the succinate-containing solution Succinasol, and the anti-edematous agent L-lysine-aescinate considerably enhances the efficiency of intensive therapy for acute carbon monoxide poisoning. Key words: carbon monoxide, toxic hypoxic encephalopathy, combination therapy, hyperbaric oxygenation, succinic acid, L-lysine-aescinate.

  12. Catalytic Copolymerization of Ethene and Carbon Monoxide on Nickel Complexes.

    Science.gov (United States)

    Domhöver, Bernd; Kläui, Wolfgang; Kremer-Aach, Andreas; Bell, Ralf; Mootz, Dietrich

    1998-11-16

    Can palladium be replaced by nickel? For the industrial copolymerization of carbon monoxide and ethene a palladium catalyst is used which cannot be recovered-a cheaper procedure would be desirable. The presented complex 1 is the first structurally characterized nickel compound which does not polymerize ethene but a mixture from carbon monoxide and ethene unter mild conditions to give a perfectly alternating polyketone. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  13. Carbon monoxide toxicity. (Latest citations from the Life Sciences Collection database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide (CO) exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include studies of the carbon monoxide binding affinity with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels resulting from tobacco and marijuana smoke, occupational exposure and the NIOSH (National Institute for Occupational Safety and Health) biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Carbon monoxide toxicity. (Latest citations from the Life Sciences Collection database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide (CO) exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include studies of the carbon monoxide binding affinity with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels resulting from tobacco and marijuana smoke, occupational exposure and the NIOSH (National Institute for Occupational Safety and Health) biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda

    2010-01-01

    Hydrogen cyanide (HCN) and carbon monoxide (CO) may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN) intoxication results in cytotoxic hypoxia leading to organ dysfunction...... and animal experiments have shown that in rats exposed to CN intoxication, HBO can increase the concentration of CN in whole blood....

  16. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  17. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  18. Campaign to prevent carbon monoxide poisoning : fall-winter 2007-2008; Campagne de prevention des intoxications au monoxyde de carbone : automne-hiver 2007-2008

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, B.; Chabot, L.; Gratton, J. [Direction de sante publique de Montreal, Montreal, PQ (Canada); Lacoursiere, D. [Quebec Ministere de la Sante et des Services sociaux du Quebec, Quebec, PQ (Canada)

    2009-07-01

    Quebec launched a public health campaign for the Montreal region to prevent carbon monoxide poisoning. The objectives of the campaign were to communicate the dangers of carbon monoxide poisoning, its potential sources, its effects on public health, and the means to prevent poisoning. Its purpose was to inform the public of the risks and strategies to be used in case of carbon monoxide poisoning and to lay out the merits of household carbon monoxide alarms. The communication was done by way of the media, in cooperation with community organizations and school boards. Other tools used in the campaign included the Internet, flyers and press releases. A poll taken in 2008 showed that 59 per cent of the respondents had one or more sources for carbon monoxide in their homes, including fireplaces, and that 28 per cent had a functioning alarm for carbon monoxide detection. A future survey will be held to follow-up on the evolution of the campaign. The development of various activities will help decrease the risk of carbon monoxide poisoning. tabs., figs.

  19. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    Science.gov (United States)

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  20. Carbon monoxide toxicity. (Latest citations from the Life Sciences Collection data base). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide (CO) exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include studies of the carbon monoxide binding affinity with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels resulting from tobacco and marijuana smoke, occupational exposure and the NIOSH (National Institute for Occupational Safety and Health) biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (Contains a minimum of 172 citations and includes a subject term index and title list.)

  1. Study on the surface oxidation resistance of uranium metal in the atmosphere of carbon monoxide

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1999-01-01

    The surface reactions of different layers on uranium metal with carbon monoxide at 25, 80 and 200 degree C are studied by X-ray photoelectron spectroscopy (XPS). The experimental results show that the carbon monoxide is adsorbed on the surface oxide layer of uranium and interacted each other. The content of oxygen in the surface oxide and O/U ratio are decreased with increasing the exposure of carbon monoxide to the surface layer. The effect of reduction on the metal surface is more obviously with a higher temperature and increasing of layer thickness. The investigation indicates the uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide

  2. Selected constituents in the smokes of foreign commercial cigaretts: tar, nicotine, carbon monoxide, and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.

    1979-05-01

    The tar, nicotine, carbon monoxide, and carbon dioxide contents of the smokes of 220 brands of foreign commercial cigarettes are reported. In some instances, filter cigarettes of certain brands were found to deliver as much or more smoke constituents than their nonfilter counterparts. Also, data indicated that there can be a great variation in the tar, nicotine, or carbon monoxide content of the smoke of samples of a given brand of cigarettes, depending on the nation in which they are purchased. 24 tables.

  3. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-12-01

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  4. [Carboxyhemoglobin concentration in carbon monoxide poisoning. Critical appraisal of the predictive value].

    Science.gov (United States)

    Köthe, L; Radke, J

    2010-06-01

    In cases of unclear depression of conciousness, arrhythmia and symptoms of cardiac insufficiency inadvertent carbon monoxide intoxication should always be taken into consideration. Rapid diagnosis of acute carbon monoxide intoxication with mostly unspecific symptoms requires an immediate supply of high dose oxygen which enables a distinct reduction of mortality and long-term morbidity. Levels of carboxyhemoglobin, however, should not be used as a parameter to decide whether to supply normobaric or the more efficient hyperbaric oxygen. There is no sufficient coherence between carboxyhemoglobin blood levels and clinical symptoms. Increased carboxyhemoglobin concentrations help to diagnose acute carbon monoxide intoxication but do not allow conclusions to be drawn about possible long-term neuropsychiatric or cardiac consequences.

  5. Rhodium based clusters for oxygen reduction and hydrogen oxidation in 0.5 M H2SO4, tolerant to methanol and carbon monoxide, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Uribe-Godinez, J.; Jimenez-Sandoval, O.; Borja-Arco, E.; Altamirano-Gutierrez, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Queritaro (Mexico); Castellanos, R.H. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Queretaro, Queretaro (Mexico)

    2008-07-01

    Rhodium (Rh6(CO)16) and novel Rh-based clusters were prepared using thermolysis techniques under different conditions in N2 and H2 reaction media, as well as in n-nonane, o-xylene, 1,2-dichlorobenzene and dimethylsulfoxide. The clusters were used as novel electrocatalysts for oxygen reduction reaction (ORR) in the absence and presence of 1.0 and 2.0 M methanol solutions. The catalysts were also used for hydrogen oxidation reaction (HOR) with pure hydrogen (H2) and in the presence of carbon monoxide (CO). Rotating disk electrode measurements were used to analyze the materials. The study showed that the electrocatalyst support ratio plays a significant role in the electrochemical behaviour of the materials. Rh6(CO)16 and Rh2(1,2-DCB) presented the best electrocatalytic behaviour for ORR and HOR in the absence and presence of methanol and CO. The study demonstrated that the rhodium-based materials are capable of performing ORR and HOR while being tolerant of both methanol and CO. 3 refs., 3 figs.

  6. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    Directory of Open Access Journals (Sweden)

    Makoto Onodera

    2016-01-01

    Full Text Available Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p=0.021, but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  7. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas.

    Science.gov (United States)

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p = 0.021), but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  8. Modeling chemisorption kinetics of carbon monoxide on polycrystalline platinum

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, R.G.; Modell, M.; Baddour, R.F.

    1978-04-01

    Seven distinct desorption surface states of carbon monoxide on polycrystalline platinum were detected by deconvoluting temperature-programed desorption spectra of 4-100% carbon monoxide monolayer coverage. The adstates had fixed activation energies of desorption (22.5-32.6 kcal/mole) over the entire coverage range. Rates of formation and populations were derived. The chemisorption was modeled by a Hinshelwood-type expression which allowed for site creation and suggested that adsorbed molecules are sufficiently mobile during desorption heating to fill ordered states of minimum energy and that chemisorption into these states is noncompetitive and determined by the surface. Spectra, diagrams, graphs, tables, and 49 references.

  9. Carbon monoxide poisoning-induced cardiomyopathy from charcoal at a barbecue restaurant: a case report.

    Science.gov (United States)

    Kim, Hyun-Jun; Chung, Yun Kyung; Kwak, Kyeong Min; Ahn, Se-Jin; Kim, Yong-Hyun; Ju, Young-Su; Kwon, Young-Jun; Kim, Eun-A

    2015-01-01

    Acute carbon monoxide poisoning has important clinical value because it can cause severe adverse cardiovascular effects and sudden death. Acute carbon monoxide poisoning due to charcoal is well reported worldwide, and increased use of charcoal in the restaurant industry raises concern for an increase in occupational health problems. We present a case of carbon monoxide poisoning induced cardiomyopathy in a 47-year-old restaurant worker. A male patient was brought to the emergency department to syncope and complained of left chest pain. Cardiac angiography and electrocardiography were performed to rule out acute ischemic heart disease, and cardiac markers were checked. After relief of the symptoms and stabilization of the cardiac markers, the patient was discharged without any complications. Electrocardiography was normal, but cardiac angiography showed up to a 40% midsegmental stenosis of the right coronary artery with thrombotic plaque. The level of cardiac markers was elevated at least 5 to 10 times higher than the normal value, and the carboxyhemoglobin concentration was 35% measured at one hour after syncope. Following the diagnosis of acute carbon monoxide poisoning induced cardiomyopathy, the patient's medical history and work exposure history were examined. He was found to have been exposed to burning charcoal constantly during his work hours. Severe exposure to carbon monoxide was evident in the patient because of high carboxyhemoglobin concentration and highly elevated cardiac enzymes. We concluded that this exposure led to subsequent cardiac injury. He was diagnosed with acute carbon monoxide poisoning-induced cardiomyopathy due to an unsafe working environment. According to the results, the risk of exposure to noxious chemicals such as carbon monoxide by workers in the food service industry is potentially high, and workers in this sector should be educated and monitored by the occupational health service to prevent adverse effects.

  10. Carbon Monoxide Hazards from Small Gasoline Powered Engines

    Science.gov (United States)

    ... DHHS (NIOSH) Publication No. 96-118 (1996) Describes health effects and current standards and guidelines relating to carbon monoxide, as well as recommendations for workers, employers, and manufacturers regarding small gasoline powered engine ...

  11. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    OpenAIRE

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been o...

  12. Conversion of no-carrier-added [11C]carbon dioxide to [11C]carbon monoxide on molybdenum for the synthesis of 11C-labelled aromatic ketones

    International Nuclear Information System (INIS)

    Zeisler, S.K.; Nader, M.; Theobald, A.; Oberdorfer, F.

    1997-01-01

    A new method for the efficient conversion of no-carrier-added [ 11 C]carbon dioxide into [ 11 C]carbon monoxide is described. [ 11 C]Carbon dioxide produced by proton bombardment of ultra high purity nitrogen is pre-concentrated in a cryo trap and then passed through a quartz tube filled with a mesh of thin molybdenum wire heated to 850 o C. [ 11 C]Carbon dioxide readily reacts with molybdenum to form [ 11 C]carbon monoxide and molybdenum(IV) oxide. The latter also reduces carbon dioxide to carbon monoxide and helps improve the performance of the converter. [ 11 C]Carbon monoxide is purified from remaining [ 11 C]carbon dioxide and collected in a small silica trap from which it is eluted into a reaction mixture for the palladium-mediated synthesis of a 11 C-labelled aromatic ketone. Radiochemical yields of up to 81% (decay-corrected) for [ 11 C]carbon monoxide were obtained. Radiochemical purity and specific radioactivity of both [ 11 C]carbon monoxide and the 11 C-labelled ketone are sufficient for nuclear medical studies with PET. (Author)

  13. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-09-01

    The surface structures of uranium metal and triuranium octaoxide (U 3 O 8 ) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U 3 O 8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  14. Hearing Loss due to Carbon Monoxide Poisoning

    DEFF Research Database (Denmark)

    Mehrparvar, Amir Houshang; Davari, Mohammad Hossein; Mollasadeghi, Abolfazl

    2013-01-01

    Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker a...

  15. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation

    Science.gov (United States)

    Guo, Li-Wen; Du, Pei-Pei; Fu, Xin-Pu; Ma, Chao; Zeng, Jie; Si, Rui; Huang, Yu-Ying; Jia, Chun-Jiang; Zhang, Ya-Wen; Yan, Chun-Hua

    2016-11-01

    Small-size (carbon monoxide at room temperature, by the aid of in situ X-ray absorption fine structure analysis and in situ diffuse reflectance infrared Fourier transform spectroscopy. We find that the metallic gold component in clusters or particles plays a much more critical role as the active site than the cationic single-atom gold species for the room-temperature carbon monoxide oxidation reaction.

  16. CT and clinical patterns in suicidal carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Grobovschek, M.; Geretsegger, C.; Weinberger, R.; Fartacek, R.

    1988-12-01

    Cranial CT is important to exclude the presence of a mass in the cavum cranii in case of an unclear suicide attempt, particularly a traumatic mass. It can be helpful also in cases of carbon monoxide intoxications.

  17. Study on the influence of carbon monoxide to the surface oxide layer of uranium metal

    International Nuclear Information System (INIS)

    Wang Xiaolin; Duan Rongliang; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1997-01-01

    The influence of carbon monoxide to the surface oxide layer of uranium metal has been studied by X-ray photoelectron spectroscopy (XPS) and gas chromatography (GC). Carbon monoxide adsorption on the oxide layer resulted in U4f peak shifting to the lower binding energy. The content of oxygen in the oxide is decreased and the atomic ratio (O/U) is decreased by 7.2%. The amount of carbon dioxide in the atmosphere after the surface reaction is increased by 11.0%. The investigation indicates that the surface layer can prevent the further oxidation uranium metal in the atmosphere of carbon monoxide

  18. Vibrationally Excited Carbon Monoxide Produced via a Chemical Reaction Between Carbon Vapor and Oxygen

    Science.gov (United States)

    Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.

    2017-06-01

    Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.

  19. Kinetics of heterogeneous catalysis oxidation of carbon monoxide

    International Nuclear Information System (INIS)

    Khawaja, Y.; Sadiq, A.

    1987-10-01

    An irreversible kinetic surface-reaction model, based upon the reaction of carbon monoxide nd oxygen on a catalyst surface is investigated by means of Monte Carlo simulation. The adsorbed molecules/atoms on the surface undergo both first and second order kinetic phase transitions. The first order transition is found to occur at x/sub/co=x/sub/2=0.5255 with an error bar of 0.0003, where x/sub/co is the concentration of carbon monoxide in the gas phase. The time evolution of this catalytic reaction is studied both analytically and by computer simulation. Slightly above x/sub/2, the oxygen coverage relaxation time for the oxygen is found to diverage as the inverse of 3.54 times the absolute of the difference of x/sub/2 and x/sub/co. (orig./A.B.)

  20. CT and clinical patterns in suicidal carbon monoxide

    International Nuclear Information System (INIS)

    Grobovschek, M.; Geretsegger, C.; Weinberger, R.; Fartacek, R.

    1988-01-01

    Cranial CT is important to exclude the presence of a mass in the cavum cranii in case of an unclear suicide attempt, particularly a traumatic mass. It can be helpful also in cases of carbon monoxide intoxications. (orig.) [de

  1. Correlation of computed tomography, magnetic resonance imaging and clinical outcome in acute carbon monoxide poisoning.

    Science.gov (United States)

    Ozcan, Namik; Ozcam, Giray; Kosar, Pinar; Ozcan, Ayse; Basar, Hulya; Kaymak, Cetin

    2016-01-01

    Carbon monoxide is a toxic gas for humans and is still a silent killer in both developed and developing countries. The aim of this case series was to evaluate early radiological images as a predictor of subsequent neuropsychological sequelae, following carbon monoxide poisoning. After carbon monoxide exposure, early computed tomography scans and magnetic resonance imaging findings of a 52-year-old woman showed bilateral lesions in the globus pallidus. This patient was discharged and followed for 90 days. The patient recovered without any neurological sequela. In a 58-year-old woman exposed to carbon monoxide, computed tomography showed lesions in bilateral globus pallidus and periventricular white matter. Early magnetic resonance imaging revealed changes similar to that like in early tomography images. The patient recovered and was discharged from hospital. On the 27th day of exposure, the patient developed disorientation and memory impairment. Late magnetic resonance imaging showed diffuse hyperintensity in the cerebral white matter. White matter lesions which progress to demyelination and end up in neuropsychological sequelae cannot always be diagnosed by early computed tomography and magnetic resonance imaging in carbon monoxide poisoning. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Environmental variables and levels of exhaled carbon monoxide and carboxyhemoglobin in elderly people taking exercise.

    Science.gov (United States)

    Salicio, Marcos Adriano; Mana, Viviane Aparecida Martins; Fett, Waléria Christiane Rezende; Gomes, Luciano Teixeira; Botelho, Clovis

    2016-04-01

    This article aims to analyze levels of exhaled carbon monoxide, carboxyhemoglobinand cardiopulmonary variables in old people practicing exercise in external environments, and correlate them with climate and pollution factors. Temporal ecological study with118 active elderly people in the city of Cuiabá, in the state of Mato Grosso, Brazil. Data were obtained on use of medication, smoking, anthropometric measurements, spirometry, peak flow, oxygen saturation, heart rate, exhaled carbon monoxide, carboxyhemoglobin, climate, number of farm fires and pollution. Correlations were found between on the one hand environmental temperature, relative humidity of the air and number of farmers' fires, and on the other hand levels of carbon monoxide exhaled and carboxyhemoglobin (p carboxyhemoglobin and heart rate. There is thus a need for these to be monitored during exercise. The use of a carbon monoxide monitor to evaluate exposure to pollutants is suggested.

  3. Mechanistic studies related to the metal catalyzed reduction of carbon monoxide to hydrocarbons. Final report, April 1, 1977-June 30, 1985

    International Nuclear Information System (INIS)

    Casey, C.P.

    1985-02-01

    Studies of compounds related to proposed intermediates in the hydrogenation of carbon monoxide over homogeneous and heterogeneous catalysts have been carried out. The synthesis, structure, and reactions of metal formyl compounds have been investigated. The synthesis and desproportionation reactions of hydroxymethyl metal compounds have been explored. Reactions involving interconversion of n 5 - and n'-C 5 H 5 organometallic compounds have been discovered. New synthetic routes to bimetallic compounds with bridging hydrocarbon ligands have been developed. The first bimetallic compound with a budging CH ligand has been prepared. The hydrocarbation reaction in which the CH bond of a bridging methylidyne complex adds across a carbon-carbon double bond has been discovered. New heterobimetallic compounds linked by a heterodifunctional ligand and heterobimetallic compounds with directly bonded early and late transition metals have been synthesized in a search for new CO hydrogenation catalysts. 36 refs

  4. Hydrogen enriched gas production in a multi-stage downdraft gasification process

    International Nuclear Information System (INIS)

    Dutta, A.; Jarungthammachote, S.

    2009-01-01

    To achieve hydrogen enriched and low-tar producer gas, multi-stage air-blown and air-steam gasification were studied in this research. Results showed that the tar content from multi-stage air-blown and air-steam gasification was lower compared to the average value of that from downdraft gasification. It was also seen that an air-steam gasification process could potentially increase the hydrogen concentration in the producer gas in the expense of carbon monoxide; however, the summation of hydrogen and carbon monoxide in the producer gas was increased. (author)

  5. Environmental tobacco smoke exposure among non-smoking waiters: measurement of expired carbon monoxide levels

    Directory of Open Access Journals (Sweden)

    Ronaldo Laranjeira

    2000-07-01

    Full Text Available CONTEXT: Exposure to environmental tobacco smoke is a health risk that is of concern to patrons and of particular concern to employees of restaurants and bars. OBJECTIVE: To assess environmental tobacco smoke exposure (using expired carbon monoxide levels in non-smoking waiters before and after a normal day's shift and to compare pre-exposure levels with non-smoking medical students. DESIGN: An observational study. SETTING: Restaurants with more than 50 tables or 100 places in São Paulo. SUBJECTS: 100 non-smoking restaurant waiters and 100 non-smoking medical students in São Paulo, Brazil. MAIN MEASUREMENTS: Levels of expired carbon monoxide, measured with a Smokerlyser (Bedfont EC 50 Scientific, before and after a normal day's work. RESULTS: Waiters' pre-exposure expired carbon monoxide levels were similar to those of medical students, but after a mean of 9 hours exposure in the workplace, median levels more than doubled (2.0 ppm vs. 5.0 ppm, P <0.001. Post-exposure carbon monoxide levels were correlated with the number of tables available for smokers (Kendall's tau = 0.2, P <0.0001. CONCLUSIONS: Exposure to environmental tobacco smoke is the most likely explanation for the increase in carbon monoxide levels among these non-smoking waiters. These findings can be used to inform the ongoing public health debate on passive smoking.

  6. A Retrospective Analysis of Pediatric Patients Admitted to the Pediatric Emergency Service for Carbon Monoxide Intoxication

    OpenAIRE

    Metin Uysalol; Ezgi Paslı Uysalol; Gamze Varol Saraçoğlu; Semra Kayaoğlu

    2011-01-01

    Objective: The aim of the study is to analyze the general aspects of cases with carbon monoxide intoxication in order to improve the approach to future patients. Material and Methods: The hospital records of 84 children (mean age 4.71±2.64 years; 48 male, 36 female) who had been admitted to Paediatric Emergency Department for carbon monoxide intoxication between October 2007 and February 2009, were retrospectively evaluated in a descriptive analysis.Results: The source of carbon monoxide into...

  7. Assessment of exposure to carbon monoxide group of firefighters from fire fighting and rescue units

    Directory of Open Access Journals (Sweden)

    Jadwiga Lembas-Bogaczyk

    2011-03-01

    Full Text Available Firemen threat during fire burning of chemical substances indicated presence of carbon monoxide (CO in all cases. Carbon monoxide causes death of fire. Inhaled through respiratory system, links with hemoglobin, thus blocking transport and distribution of oxygen in the body. This leads to tissue anoxia, which is a direct threat to firefighters’ life. The purpose of this study was to assess the exposure to carbon monoxide of participating firefighters extinguishing fire. Estimation of carbon monoxide quantity absorbed by firefighters was isolated in a group of 40 firefighters from Fire Extinguishing and Rescue Unit of State Fire in Nysa. The study was conducted by measuring carbon monoxide in exhaled air. For measurement of carbon monoxide concentration in exhaled air Micro CO meter was used. Results were demonstrated separately for nonsmokers (n425 and smokers (n415. Mean COHb[%] levels in nonsmokers, measured prior the rescue action was 0,3950,3% and increased statistically significant after the action to 0,6150,34%, while in the group smokers, this level was 2,1750,64% before the action and increased insignificantly after the action to 2,3350,63%. The average COHb level in the same groups before and after exercise, was respectively: for nonsmokers prior to exercise was 0,4850,28% and after exercise decreased statistically significant to 0,3050,27%. In the group of smokers before exercise was 2,2350,61% and decreased statistically significant up to 1,5450,71%. It was no difference between the group of age and time of employment.

  8. Production of Ethylene and Carbon Monoxide by Microorganisms

    Science.gov (United States)

    T. H. Filer; L. R. Brown; S. Brown-Sarobot; S. Martin

    1984-01-01

    Various quantities of ethylene and carbon monoxide were produced on PDA by Fusicladium effusum, Pestilotia nucicola, Alternaria tenuis, and Fusarium oxysporum subcultured from diseased pecan shucks. Repeated subculturing of these fungi on potato dextrose broth supplemented with iron powder produced ethylene. The production of...

  9. Cardiological aspects of carbon monoxide poisoning.

    Science.gov (United States)

    Marchewka, Jakub; Gawlik, Iwona; Dębski, Grzegorz; Popiołek, Lech; Marchewka, Wojciech; Hydzik, Piotr

    2017-01-01

    The aim of this study was to assess cardiological manifestations of carbon monoxide (CO) poisoning. Background/introduction: Carbon monoxide intoxication is one of the most important toxicological causes of morbidity and mortality worldwide. Early clinical manifestation of CO poisoning is cardiotoxicity. We enrolled 75 patients (34 males and 41 females, mean age 37.6 ± 17.7 y/o) hospitalized due to CO poisoning. Laboratory tests including troponin I, blood pressure measurements, HR and electrocardiograms (ECG) were collected. Pach's scale scoring and grading system was used to establish severity of poisoning. Grade of poisoning is positively correlated with troponin I levels and systolic blood pressure. Moreover, troponin levels are significantly correlated with exposition time, lactates and are higher in tachycardiac, hypertensive and positive ECG subpopulations. COHb levels are indicative of exposure but do not correlate with grade of poisoning. The main cause of CO poisoning were bathroom heaters - 83%, only 11% of examined intoxicated population were equipped with CO detectors. Complex cardiological screening covering troponin levels, ECG, blood pressure and heart rate measurements as well as complete blood count with particular attention to platelet parameters should be performed in each case where CO intoxication is suspected. More emphasis on education on CO poisoning is needed.

  10. Low-cost process for hydrogen production

    Science.gov (United States)

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  11. Influence of cation size and surface coverage upon the infrared spectrum of carbon monoxide

    OpenAIRE

    Huang, Jimin

    1991-01-01

    Adsorbed carbon monoxide is utilized as a double layer probe molecule because of its strong absorption in infrared region and because of the high sensitivity of the carbon-oxygen bond to changes in the environment local to the electrode surface. Potential Difference Infrared Spectroscopy was used to investigate the structural behavior of CO adsorbed on a platinum electrode. Carbon monoxide was found to be exclusively linear-bonded on platinum electrode in the presence of tetran...

  12. Digit and letter alexia in carbon monoxide poisoning

    Institute of Scientific and Technical Information of China (English)

    Qingyu Shen; Xiaoming Rong; Rui Pan; Ying Peng; Wei Peng; Yamei Tang

    2012-01-01

    This study examined a 24-year-old patient with delayed encephalopathy, who was admitted to hospital with complaints of headache and visual impairment 1 week after acute carbon monoxide poisoning. The results of a visual field assessment, electroencephalography and head magnetic resonance imaging indicated damage to the cerebral cortex. After a 2-week treatment period, the patient had recovered from the visual impairment, but exhibited digit- and letter-reading difficulty. The Chinese aphasia battery and the number and letter battery supplement were conducted. The results revealed that the patient exhibited digit and letter alexia, while the ability to read Chinese characters was preserved. In contrast, the patient exhibited a deficit in Chinese character writing, while number and letter writing remained intact. Following treatment, reading and writing ability was improved and electroencephalographic abnormalities were ameliorated. Overall, our experimental findings demonstrated that delayed encephalopathy following acute carbon monoxide poisoning was characterized by digit and letter alexia.

  13. Ambient carbon monoxide and cardiovascular mortality: a nationwide time-series analysis in 272 cities in China.

    Science.gov (United States)

    Liu, Cong; Yin, Peng; Chen, Renjie; Meng, Xia; Wang, Lijun; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Kan, Haidong; Zhou, Maigeng

    2018-01-01

    Evidence of the acute health effects of ambient carbon monoxide air pollution in developing countries is scarce and mixed. We aimed to evaluate short-term associations between carbon monoxide and daily cardiovascular disease mortality in China. We did a nationwide time-series analysis in 272 major cities in China from January, 2013, to December, 2015. We extracted daily cardiovascular disease mortality data from China's Disease Surveillance Points system. Data on daily carbon monoxide concentrations for each city were obtained from the National Urban Air Quality Real-time Publishing Platform. City-specific associations between carbon monoxide concentrations and daily mortality from cardiovascular disease, coronary heart disease, and stroke were estimated with over-dispersed generalised linear models. Bayesian hierarchical models were used to obtain national and regional average associations. Exposure-response association curves and potential effect modifiers were evaluated. Two-pollutant models were fit to evaluate the robustness of the effects of carbon monoxide on cardiovascular mortality. The average annual mean carbon monoxide concentration in these cities from 2013 to 2015 was 1·20 mg/m 3 , ranging from 0·43 mg/m 3 to 2·45 mg/m 3 . For a 1 mg/m 3 increase in average carbon monoxide concentrations on the present day and previous day (lag 0-1), we observed significant increments in mortality of 1·12% (95% posterior interval [PI] 0·42-1·83) from cardiovascular disease, 1·75% (0·85-2·66) from coronary heart disease, and 0·88% (0·07-1·69) from stroke. These associations did not vary substantially by city, region, and demographic characteristics (age, sex, and level of education), and the associations for cardiovascular disease and coronary heart disease were robust to the adjustment of criteria co-pollutants. We did not find a threshold below which carbon monoxide exposure had no effect on cardiovascular disease mortality. This analysis is, to our

  14. Optimization of mass flow rate in RGTT200K coolant purification for Carbon Monoxide conversion process

    International Nuclear Information System (INIS)

    Sumijanto; Sriyono

    2016-01-01

    Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)

  15. Effect of N-Acetylcysteine in Protecting from Simultaneous Noise and Carbon Monoxide Induced Hair Cell Loss

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2011-06-01

    Full Text Available Background and Aim: N-acetylcysteine, a glutathione precursor and reactive oxygen species scavenger, is reported to be effective in reducing noise-induced hearing loss. Many workers in industry are exposed simultaneously to noise and chemical pollutants such as carbon monoxide. We investigated effectiveness of N-acetylcysteine in protecting the cochlea from simultaneous noise and carbon monoxide damages.Methods: Twelve rabbits were exposed simeltaneously to 100 dB sound pressure level of broad band noise and carbon monoxide 8 hours a day for 5 days. One hour before exposure, experimental group received 325 mg/kg of N-acetylcysteine while normal saline was administered for the control group. The protective effect of N-acetylcysteine was evaluated 3 weeks after exposure by histological assessment of the hair cells.Results: Simultaneous exposure to noise and carbon monoxide resulted in a considerable damage to the outer hair cells; however, the inner hair cells and the pillar cells remained intact. Use of N-acetylcysteine in the experimental group significantly reduced the extent of outer hair cell loss.Conclusion: N-acetylcysteine attenuates simultaneous noise and carbon monoxide induced hair cell damage in rabbits.

  16. Treatment in carbon monoxide poisoning patients with headache: a prospective, multicenter, double-blind, controlled clinical trial.

    Science.gov (United States)

    Ocak, Tarik; Tekin, Erdal; Basturk, Mustafa; Duran, Arif; Serinken, Mustafa; Emet, Mucahit

    2016-11-01

    There is a lack of specificity of the analgesic agents used to treat headache and underlying acute carbon monoxide poisoning. To compare effectiveness of "oxygen alone" vs "metoclopramide plus oxygen" vs "metamizole plus oxygen" therapy in treating carbon monoxide-induced headache. A prospective, multicenter, double-blind, controlled trial. Three emergency departments in Turkey. Adult carbon monoxide poisoning patients with headache. A total of 117 carbon monoxide-intoxicated patients with headache were randomized into 3 groups and assessed at baseline, 30 minutes, 90 minutes, and 4 hours. The primary outcome was patient-reported improvement rates for headache. Secondary end points included nausea, need for rescue medication during treatment, and reduction in carboxyhemoglobin levels. During observation, there was no statistical difference between drug type and visual analog scale score change at 30 minutes, 90 minutes, or 4 hours, for either headache or nausea. No rescue medication was needed during the study period. The reduction in carboxyhemoglobin levels did not differ among the 3 groups. The use of "oxygen alone" is as efficacious as "oxygen plus metoclopramide" or "oxygen plus metamizole sodium" in the treatment of carbon monoxide-induced headache. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ethylene and Carbon Monoxide Production by Septoria musiva

    Science.gov (United States)

    S. Brown-Skrobot; L. R. Brown; T. H. Filer

    1984-01-01

    An investigation into the mechanism by which Septoria musiva causes the premature defoliation of cottonwood trees was undertaken. Gas-chromatograpic analysis of the atmosphere overlying the original culture indicated that this fungus produced significant quantities of ethylene and carbon monoxide. Subcultures failed to produce either gas on a variety...

  18. Pathways and bioenergetics of anaerobic carbon monoxide fermentation

    NARCIS (Netherlands)

    Diender, Martijn; Stams, Fons; Machado de Sousa, Diana

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the

  19. Selected constituents in the smokes of U. S. commercial cigaretts: tar, nicotine, carbon monoxide and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.

    1979-05-01

    One hundred twenty-one brands of United States commercial cigarettes were analyzed for their deliveries of tar, nicotine, carbon monoxide, and carbon dioxide under standard analytical smoking conditions. The sample included both filter and nonfilter cigarettes. Comparisons of carbon monoxide deliveries over the range of observed tar deliveries indicated a very high correlation between CO and tar for filter cigarettes, but nonfilter cigarettes tended to produce much less CO than would have been predicted from their tar deliveries. Comparison of ORNL nicotine values for specific brands with those determined by the Federal Trade Commission yield no statistically significant differences between laboratories. 4 figures, 6 tables.

  20. Interactions of carbon monoxide and hemoglobin at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Collier, C.R. (Univ. of Southern California Medical Center, Los Angeles); Goldsmith, J.R.

    1983-01-01

    The health risks to U.S. populations who are exposed to ambient carbon monoxide and live at altitudes (such as Denver, Salt Lake City, and Albuquerque) were evaluated using a set of mathematical models. The assumption that a given increase in carboxyhemoglobin would require a more stringent volumetric air quality standard was tested. The results using the model predict that the 8-h or 1-h standards adopted for sea level condition need not be altered to protect individuals against health risks at altitude, if the standards are in volumetric terms. They would need to be reduced if the standards are left in gravimetric terms. If the guideline is to be based on a given decrement of oxygen tension, many other variables must be specified, but expected differences in ambient carbon monoxide have a small impact compared to the effect of altitude itself.

  1. The indigenous Sea Gypsy divers of Thailand's west coast: measurement of carbon monoxide in the breathing air.

    Science.gov (United States)

    Gold, D; Geater, A; Aiyarak, S; Juengpraert, W

    1999-07-01

    Approximately 400 indigenous divers live and work on Thailand's west coast. They dive with surface supplied air from primitive compressor units mounted on open boats which measure from seven to 11 meters in length. It was suspected that carbon monoxide was present in the breathing air of at least the gasoline-driven compressor units. To determine the presence of carbon monoxide gas in the breathing air, compressed air from the compressor was pumped through the diver air supply hose through a plenum (monitoring) chamber established on the boat. After a compressor warm-up of 15 minutes, the diving air was measured with the boat at eight different bearings to the wind, each 45 degrees apart at intervals of five minutes. Three of the four gasoline-driven compressor units tested showed presence of carbon monoxide in the breathing air. One diesel-driven unit showed a very low concentration of carbon monoxide (3-4 ppm) and six diesel-driven units showed no detectable carbon monoxide. Although not tested, diesel exhaust emissions could also enter the breathing air by the same route. A locally made modification to the compressor air intake was designed and successfully tested on one gasoline-driven compressor unit. An information sheet on the hazards of carbon monoxide as well as on the modification has been developed for distribution among the villages.

  2. [Carbon monoxide poisoning by a heating system].

    Science.gov (United States)

    Dietz, Eric; Gehl, Axel; Friedrich, Peter; Kappus, Stefan; Petter, Franz; Maurer, Klaus; Püschel, Klaus

    2016-01-01

    A case of accidental carbon monoxide poisoning in several occupants of two neighboring residential buildings in Hamburg-Harburg (Germany) caused by a defective gas central heating system is described. Because of leaks in one of the residential buildings and the directly adjacent wall of the neighboring house, the gas could spread and accumulated in both residential buildings, which resulted in a highly dangerous situation. Exposure to the toxic gas caused mild to severe intoxication in 15 persons. Three victims died still at the site of the accident. Measures to protect the occupants were taken only with a great delay. As symptoms were unspecific, it was not realized that the various alarms given by persons involved in the accident were related to the same cause. In order to take appropriate measures in time it is indispensible to recognize, assess and check potential risks, which can be done by using carbon monoxide warning devices and performing immediate COHb measurements with special pulse oximeters on site. Moreover, the COHb content in the blood should be routinely determined in all patients admitted to an emergency department with unspecific symptoms.

  3. Accidental carbon monoxide poisoning during yagya for faith healing--a case report.

    Science.gov (United States)

    Behera, C; Millo, T M; Jaiswal, A; Dogra, T D

    2013-03-01

    A 20-year-old female and a 45-year-old male were found lying dead on the floor with frothand vomitus stain present over mouth, nose and face in a closed room. An earthen bowl with incomplete burnt woods, flowers, food materials, agarbati, etc, was also found lying near the body of the two deceased. The cause of death, established by autopsy and toxicological examination was carbon monoxide poisoning in both victims. The source of carbon monoxide was incomplete burnt woods used for yagya during puja (a faith healing practice) for bearing children.

  4. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda

    2010-01-01

    Hydrogen cyanide (HCN) and carbon monoxide (CO) may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN) intoxication results in cytotoxic hypoxia leading to organ dysfunction...... and possibly death. While several reports support the use of hyperbaric oxygen therapy (HBO) for the treatment of severe CO poisoning, limited data exist on the effect of HBO during CN poisoning. HBO increases the elimination rate of CO haemoglobin in proportion to the increased oxygen partial pressure...

  5. Absorption of nicotine and carbon monoxide from passive smoking under natural conditions of exposure.

    Science.gov (United States)

    Jarvis, M J; Russell, M A; Feyerabend, C

    1983-01-01

    Seven non-smokers were exposed to tobacco smoke under natural conditions for two hours in a public house. Measures of nicotine and cotinine in plasma, saliva, and urine and expired air carbon monoxide all showed reliable increases. The concentrations of carbon monoxide and nicotine after exposure averaged 15.7% and 7.5% respectively of the values found in heavy smokers. Although the increase in expired air carbon monoxide of 5.9 ppm was similar to increases in smokers after a single cigarette, the amount of nicotine absorbed was between a tenth and a third of the amount taken in from one cigarette. Since this represented a relatively extreme acute natural exposure, any health risks of passive smoking probably depend less on quantitative factors than on qualitative differences between sidestream and mainstream smoke. PMID:6648864

  6. Hydrogenation of carbon monoxide on WO/sub 3/-Supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, Tomohiro; Suganuma, Fujio; Sera, Chikara

    1988-01-01

    In this study, a WO/sub 3/-supported catalyst was prepared to conduct hydrogenation of CO for examining the product distribution and composition of hydrocarbons, using a gamma-alumina-supported catalyst for comparison. These catalysts were used under pressure to conduct a distributive reaction and the desorbing behavior of CO or H/sub 2/ at elevated temperature was measured to examine the influence of the type of carrier or the method of preparation on the activity and the distribution of products formed. The WO/sub 3/-supported catalyst gave a carbon chain length distribution that did not comply with the rule of Schulz-Flory, giving a composition richer in the isomers. Carbon number distribution is affected by Ru-dispersion, and the selectivity of isomers depends on the acidity of the carrier. Formed products distribution of the WO/sub 3/-supported reaction is attributable to the secondary reaction, which relates to the acidic point of the carrier, of the primary product formed on the metal. (7 figs, 4 tabs, 18 refs)

  7. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    Science.gov (United States)

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-08

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mixing ratios of carbon monoxide in the troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.; Steele, L.P. (Univ. of Colorado, Boulder (United States)); Tans, P.P. (NOAA, Boulder, CO (United States))

    1992-12-20

    Carbon monoxide (CO) mixing ratios were measured in air samples collected weekly at eight locations. The air was collected as part of the CMDL/NOAA cooperative flask sampling program (Climate Monitoring and Diagnostics Laboratory, formerly Geophysical Monitoring for Climatic Change, Air Resources Laboratory/National Oceanic and Atmospheric Administration) at Point Barrow, Alaska, Niwot Ridge, Colorado, Mauna Loa and Cape Kumakahi, Hawaii, Guam, Marianas Islands, Christmas Island, Ascension Island and American Samoa. Half-liter or 3-L glass flasks fitted with glass piston stopcocks holding teflon O rings were used for sample collection. CO levels were determined within several weeks of collection using gas chromatography followed by mercuric oxide reduction detection, and mixing ratios were referenced against the CMDL/NOAA carbon monoxide standard scale. During the period of study (mid-1988 through December 1990) CO levels were greatest in the high latitudes of the northern hemisphere (mean mixing ratio from January 1989 to December 1990 at Point Barrow was approximately 154 ppb) and decreased towards the south (mean mixing ratio at Samoa over a similar period was 65 ppb). Mixing ratios varied seasonally, the amplitude of the seasonal cycle was greatest in the north and decreased to the south. Carbon monoxide levels were affected by both local and regional scale processes. The difference in CO levels between northern and southern latitudes also varied seasonally. The greatest difference in CO mixing ratios between Barrow and Samoa was observed during the northern winter (about 150 ppb). The smallest difference, 40 ppb, occurred during the austral winter. The annually averaged CO difference between 71[degrees]N and 14[degrees]S was approximately 90 ppb in both 1989 and 1990; the annually averaged interhemispheric gradient from 71[degrees]N to 41[degrees]S is estimated as approximately 95 ppb. 66 refs., 5 figs., 5 tabs.

  9. Acute wood or coal exposure with carbon monoxide intoxication induces sister chromatid exchange

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, S.; Vatansever, S.; Cefle, K.; Palanduz, S.; Guler, K.; Erten, N.; Erk, O.; Karan, M.A.; Tascioglu, C. [University of Istanbul, Istanbul (Turkey). Istanbul Faculty of Medicine

    2002-07-01

    The object of this study was to investigate the genotoxic effect of acute overexposure to combustion products originating from coal or wood stoves in patients presenting with acute carbon monoxide intoxication. The authors analyzed the frequency of sister chromatid exchange and the carboxyhemoglobin concentration in 20 consecutive patients without a history of smoking or drug use who had been treated in the Emergency Care Unit of Istanbul Medical Faculty due to acute carbon monoxide intoxication. All of these cases were domestic accidents due to dysfunctioning coal or wood stoves. The results were compared with a control group of 20 nonsmoking, nondrug-using healthy individuals matched for age, sex, and absence of other chemical exposure. It was concluded that acute exposure to combustion products of wood or coal is genotoxic to DNA. Potential causes of genotoxicity include known mutagenic compounds present in coal or wood smoke and ash, oxygen radicals formed during combustion, as well as hypoxic and reperfusion injury mechanisms initiated by carbon monoxide intoxication.

  10. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Gerrit Jan Schut

    2016-01-01

    Full Text Available Carbon monoxide (CO is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a carbon monoxide dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally-relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.

  11. Characteristics of exogenous carbon monoxide deliveries

    Directory of Open Access Journals (Sweden)

    Hui-jun Hu

    2016-01-01

    Full Text Available Carbon monoxide (CO has long been considered an environmental pollutant and a poison. Exogenous exposure to amounts of CO beyond the physiologic level of the body can result in a protective or adaptive response. However, as a gasotransmitter, endogenous CO is important for multiple physiologic functions. To date, at least seven distinct methods of delivering CO have been utilized in animal and clinical studies. In this mini-review, we summarize the exogenous CO delivery methods and compare their advantages and disadvantages.

  12. Carbon monoxide oxidation using Zn-Cu-Ti hydrotalcite-derived ...

    Indian Academy of Sciences (India)

    Multioxide catalysts of zinc, copper and titanium with different ratios obtained from layered double hydroxide (LDH) precursors were used in the oxidation of carbon monoxide. The catalysts were characterized by energy-dispersive X-ray spectrometry, X-ray diffraction, thermal analyses (TG, DTG and DTA) and scanning ...

  13. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    International Nuclear Information System (INIS)

    Outka, D.A.; Foltz, G.W.

    1991-01-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor

  14. Less sensitive electrocatalysts towards carbon monoxide for PEMFC fed by hydrogen produced from reforming gas; Recherche de catalyseurs peu sensibles a la presence de monoxyde de carbone pour piles a combustible PEMFC alimentees en gaz de reformage

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, A.C.

    2002-11-15

    The aim of this work was to prepare bimetallic catalysts based on platinum to elaborate anodes for fuel cells fed by hydrogen produced from reforming gas and containing thus some ppm of carbon monoxide. In order to avoid platinum poisoning, another metal, such as tin, was added. This leads to a more tolerant material to CO. A Pt-Sn catalyst supported on Vulcan XC-72 carbon was prepared by a chemical route, using a platinum carbonyl complex. This material was characterized by physical and chemical methods which indicate that it is formed by nano-structured Pt{sub 3}Sn particles. These particles have a narrow size distribution with a mean diameter of approximately 2 nm. Its activity towards CO, particularly under fuel cell conditions, was compared with a similar commercial E-TEK catalyst. This study shows that the catalyst prepared from the carbonyl precursor is less sensitive to CO than the commercial one. (author)

  15. Sensorineural Hearing Loss following Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Joseph P. Pillion

    2012-01-01

    Full Text Available A case study is presented of a 17-year-old male who sustained an anoxic brain injury and sensorineural hearing loss secondary to carbon monoxide poisoning. Audiological data is presented showing a slightly asymmetrical hearing loss of sensorineural origin and mild-to-severe degree for both ears. Word recognition performance was fair to poor bilaterally for speech presented at normal conversational levels in quiet. Management considerations of the hearing loss are discussed.

  16. Carbon monoxide poisoning in children riding in the back of pickup trucks.

    Science.gov (United States)

    Hampson, N B; Norkool, D M

    OBJECTIVE - To describe the case characteristics of a series of children poisoned with carbon monoxide while traveling in the back of pickup trucks. DESIGN - Pediatric cases referred for treatment of carbon monoxide poisoning with hyperbaric oxygen between 1986 and 1991 were reviewed. Those cases that occurred during travel in the back of pickup trucks were selected. Clinical follow-up by telephone interview ranged from 2 to 55 months. SETTING - A private, urban, tertiary care center in Seattle, Wash. PATIENTS - Twenty children ranging from 4 to 16 years of age. INTERVENTION - All patients were treated with hyperbaric oxygen. MAIN OUTCOME MEASURES - Characteristics of the poisoning incident and clinical patient outcome. RESULTS - Of 68 pediatric patients treated for accidental carbon monoxide poisoning, 20 cases occurred as children rode in the back of pickup trucks. In 17 of these, the children were riding under a rigid closed canopy on the rear of the truck, while three episodes occurred as children rode beneath a tarpaulin. Average carboxyhemoglobin level on emergency department presentation was 18.2% +/- 2.4% (mean +/- SEM; range, 1.6% to 37.0%). Loss of consciousness occurred in 15 of the 20 children. One child died of cerebral edema, one had permanent neurologic deficits, and 18 had no recognizable sequelae related to the episode. In all cases, the truck exhaust system had a previously known leak or a tail pipe that exited at the rear rather than at the side of the pickup truck. CONCLUSIONS - Carbon monoxide poisoning is a significant hazard for children who ride in the back of pickup trucks. If possible, this practice should be avoided.

  17. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts

    NARCIS (Netherlands)

    Ma, Ming; Trześniewski, Bartek J.; Xie, Jie; Smith, Wilson A.

    2016-01-01

    In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a

  18. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  19. Methanol as a High Purity Hydrogen Source for Fuel Cells: A Brief Review of Catalysts and Rate Expressions

    Directory of Open Access Journals (Sweden)

    Madej-Lachowska Maria

    2017-03-01

    Full Text Available Hydrogen is the fuel of the future, therefore many hydrogen production methods are developed. At present, fuel cells are of great interest due to their energy efficiency and environmental benefits. A brief review of effective formation methods of hydrogen was conducted. It seems that hydrogen from steam reforming of methanol process is the best fuel source to be applied in fuel cells. In this process Cu-based complex catalysts proved to be the best. In presented work kinetic equations from available literature and catalysts are reported. However, hydrogen produced even in the presence of the most selective catalysts in this process is not pure enough for fuel cells and should be purified from CO. Currently, catalysts for hydrogen production are not sufficiently active in oxidation of carbon monoxide. A simple and effective method to lower CO level and obtain clean H2 is the preferential oxidation of monoxide carbon (CO-PROX. Over new CO-PROX catalysts the level of carbon monoxide can be lowered to a sufficient level of 10 ppm.

  20. Dual Gas Treatment With Hydrogen and Carbon Monoxide Attenuates Oxidative Stress and Protects From Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Nishida, T; Hayashi, T; Inamoto, T; Kato, R; Ibuki, N; Takahara, K; Takai, T; Yoshikawa, Y; Uchimoto, T; Saito, K; Tanda, N; Kouno, J; Minami, K; Uehara, H; Hirano, H; Nomi, H; Okada, Y; Azuma, H

    Hydrogen (H 2 ) and carbon monoxide (CO) gas are both reported to reduce reactive oxygen species and alleviate tissue ischemia-reperfusion (I-R) injury. The present study was conducted to evaluate the effects of a mixture of H 2 gas and CO gas (dual gas) in comparison with hydrogen gas (H 2 : 2%) alone on I-R renal injury (composition of dual gas; N 2 : 77.8%; O 2 : 20.9%; H 2 : 1.30%; CO: 250 parts per million). Adult male Sprague-Dawley rats (body weight 250-280 g) were divided into 5 groups: (1) sham operation control, (2) dual gas inhalation (dual treatment) without I-R treatment, (3) I-R renal injury, (4) H 2 gas alone inhalation (H 2 treatment) with I-R renal injury, and (5) dual treatment with I-R renal injury. I-R renal injury was induced by clamping the left renal artery and vein for 45 minutes followed by reperfusion, and then contralateral nephrectomy was performed 2 weeks later. Renal function was markedly decreased at 24 hours after reperfusion, and thereafter the effects of dual gas were assessed by histologic examination and determination of the superoxide radical, together with functional and molecular analyses. Pathologic examination of the kidney of I-R rats revealed severe renal damage. Importantly, cytoprotective effects of the dual treatment in comparison with H 2 treatment and I-R renal injury were observed in terms of superoxide radical scavenging activity and histochemical features. Rats given dual treatment and I-R renal injury showed significant decreases in blood urea nitrogen. Increased expression of several inflammatory cytokines (tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, nuclear factor-κB, hypoxia inducible factor-1α, and heme oxygenase-1) was attenuated by the dual treatment. Dual gas inhalation decreases oxidative stress and markedly improves I-R-induced renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cumulative exposure to carbon monoxide during the day

    Energy Technology Data Exchange (ETDEWEB)

    Joumard, R. (INRETS, 69 - Bron (FR))

    The carbon monoxide, CO, has the advantage of being very easily and accurately measured under various conditions. In addition, it allows the translation of CO concentrations into their biological effects. The cumulative CO exposure should be considered according to current environment conditions during a given period of life, e.g. the day. In addition, the translation of concentrations and exposure times of CO fixed on blood haemoglobine (carboxyhaemoglobine) depends on physiological factors such as age, size, sex, or physical activity. This paper gives some examples of CO exposure translated into curves of carboxyhaemoglobine: case of 92 persons whose schedule was studied in details, of customs officers whose exposure was measured during one week, or other theoretical cases. In all the cases studied, smoking is by far the first factor of pollution by carbon monoxide. If not considering this case, the CO contents observed are preoccupying for sensitive subjects (in particular children) only in very rare cases. Furthermore, this approach allows the assessment of maximal allowable concentrations during specific exposures (work, e.g. in a tunnel) by integrating them into normal life conditions and population current exposure.

  2. Pathology of carbon monoxide poisoning in two cats.

    Science.gov (United States)

    Sobhakumari, Arya; Poppenga, Robert H; Pesavento, J Brad; Uzal, Francisco A

    2018-03-05

    Carbon monoxide (CO), a common cause of poisoning in human beings has also been implicated in the death of animals. Though there are multiple studies on CO poisoning and relevant lethal blood COHb concentrations in humans, there are no reliable reports of diagnostic lethal carboxyhemoglobin percentage of saturation (COHb%) in cats. Additionally, due to shared housing environments, exposures to companion animals can be a surrogate for lethal exposures in human beings and provide valuable information in concurrent forensic investigations. Two adult Singapura brown ticked cats were submitted to the California Animal Health and Food Safety Laboratory (CAHFS) for necropsy and diagnostic work-up. These animals were found dead along with their two deceased owners. Similar lesions were observed in both cats. At necropsy, gross lesions consisted of multifocal, large, irregular, bright red spots on the skin of the abdomen and the inner surface of ear pinnae, bright red muscles and blood. The carcasses, and tissues fixed in formalin retained the bright red discoloration for up to two weeks. Microscopic lesions included diffuse pulmonary congestion and edema, and multifocal intense basophilia of cardiomyocytes mostly affecting whole fibers or occasionally a portion of the fiber. Based on the clinical history,gross and microscopic changes, cyanide or carbon monoxide poisoning was suspected. Blood samples analyzed for carbon monoxide showed 57 and 41% carboxyhemoglobin COHb%. Muscle samples were negative for cyanide. There are no established reference values for lethal COHb concentration in cats. The COHb % values detected in this case which fell within the lethal range reported for other species, along with the gross lesions and unique histological findings in the heart suggest a helpful criteria for diagnosis of CO intoxication associated death in cats. This case demonstrates that since pets share the same environment as human beings and often are a part of their activities

  3. Catalytic production of hydrogen from methanol for mobile, stationary and portable fuel-cell power plants

    International Nuclear Information System (INIS)

    Lukyanov, Boris N

    2008-01-01

    Main catalytic processes for hydrogen production from methanol are considered. Various schemes of fuel processors for hydrogen production in stationary, mobile and portable power plants based on fuel cells are analysed. The attention is focussed on the design of catalytic reactors of fuel processors and on the state-of-the-art in the design of catalysts for methanol conversion, carbon monoxide steam conversion and carbon monoxide selective oxidation. Prospects for the use of methanol in on-board fuel processors are discussed.

  4. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  5. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  6. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  7. Characteristic and Prediction of Carbon Monoxide Concentration using Time Series Analysis in Selected Urban Area in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdul Hamid Hazrul

    2017-01-01

    Full Text Available Carbon monoxide (CO is a poisonous, colorless, odourless and tasteless gas. The main source of carbon monoxide is from motor vehicles and carbon monoxide levels in residential areas closely reflect the traffic density. Prediction of carbon monoxide is important to give an early warning to sufferer of respiratory problems and also can help the related authorities to be more prepared to prevent and take suitable action to overcome the problem. This research was carried out using secondary data from Department of Environment Malaysia from 2013 to 2014. The main objectives of this research is to understand the characteristic of CO concentration and also to find the most suitable time series model to predict the CO concentration in Bachang, Melaka and Kuala Terengganu. Based on the lowest AIC value and several error measure, the results show that ARMA (1,1 is the most appropriate model to predict CO concentration level in Bachang, Melaka while ARMA (1,2 is the most suitable model with smallest error to predict the CO concentration level for residential area in Kuala Terengganu.

  8. Carbon Monoxide Poisoning: Death on Mount McKinley,

    Science.gov (United States)

    1987-05-08

    Additionally, studies by Astrup(5) and Thomas(6) have reported decreased erythrocytic 2, 3- diphosphoglycerate (2, 3-DPG) concentrations with acute...Halebian, et al found no significant difference in measured 02 consumption or extraction between dogs subjected to CO poisoning vs nitrogen anoxia .(9...Astrup P: Intraerythrocytic 2,3- diphosphoglycerate and carbon monoxide exposure. Ann NY Acad Sci 1970;174:252-254. 6. Thomas MF, Penny DG: Hematologic

  9. Hydrogen adsorption in new carbon materials

    International Nuclear Information System (INIS)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2006-01-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO 3 ) 2 to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO 2 adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  10. Carbon Monoxide Poisoning in a Child: A Case Report | Asani ...

    African Journals Online (AJOL)

    The exact incidence of carbon monoxide (CO) poisoning in Nigeria is unknown. Globally, CO poisoning is frequently unrecognized and under-reported since the clinical presentation is relatively non-specific. The circumstances usually involve an unsuspected increase of CO in an enclosed environment. We present the ...

  11. Spectroscopic investigations of high-power laser-induced dielectric breakdown in gas mixtures containing carbon monoxide.

    Science.gov (United States)

    Civis, Svatopluk; Babánková, Dagmar; Cihelka, Jaroslav; Sazama, Petr; Juha, Libor

    2008-08-07

    Large-scale plasma was created in gas mixtures containing carbon monoxide by high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures used corresponded to a cometary and/or meteoritic impact into the Earth's early atmosphere. A multiple-centimeter-sized fireball was created by focusing a single 85 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell. The excited reaction intermediates that formed in various stages of the LIDB plasma chemical evolution were investigated by optical emission spectroscopy (OES) with temporal resolution. Special attention was paid to any OES signs of molecular ions. However, carbon monoxide cations were registered only if their production was enhanced by Penning ionization, i.e., excess He was added to the CO. The chemical consequences of laser-produced plasma generation in a CO-N 2-H 2O mixture were investigated using high resolution Fourier-transform infrared absorption spectroscopy (FTIR) and gas chromatography (GC). Several simple inorganic and organic compounds were identified in the reaction mixture exposed to ten laser sparks. H 2 (18)O was used to avoid possible contamination. The large laser spark triggered more complex reactivity originating in carbon monoxide than expected, when taking into account the strong triple bond of carbon monoxide causing typically inefficient dissociation of this molecule in electrical discharges.

  12. Carbon monoxide toxicity. January 1978-March 1989 (Citations from the Life Sciences Collection data base). Report for January 1978-March 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-03-01

    This bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include carbon monoxide binding affinity studies with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels as related to tobacco and marijuana smoke, occupational exposure and the NIOSH biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (This updated bibliography contains 221 citations, 19 of which are new entries to the previous edition.)

  13. Unique case of fatal carbon monoxide poisoning in the absence of a combustible fossil fuel.

    Science.gov (United States)

    Morgan, D R; Poon, P; Titley, J; Jagger, S F; Rutty, G N

    2001-09-01

    A 37-year-old man died as a result of exposure to carbon monoxide within an apartment. An investigation of the apartment showed no gas appliances or gas supply to the apartment and no evidence of any combustion event to any part of the apartment or roof space. Inhalation of dichloromethane was excluded. Heating to the apartment was found to be via an electrical storage heater, the examination of which revealed that the cast-iron core and insulating material showed evidence of heat damage with significant areas devoid of carbon. This electric storage heater is hypothesized to be the source of carbon for the fatal production of carbon monoxide within the apartment.

  14. Hydrogen adsorption in new carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2006-07-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO{sub 3}){sub 2} to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO{sub 2} adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  15. Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises

    Science.gov (United States)

    Litvinova, N. A.

    2017-11-01

    The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.

  16. Theoretical studies on the catalytic oxidation of carbon monoxide on nickel clusters

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Kojima, I.; Miyazaki, E.

    1986-01-01

    Complete neglect of differential overlap (CNDO) molecular orbital calculations using the method of Anno and Sakai for the evaluation of the valence orbital ionization potential (VOIP) were performed with the aim of studying the oxidation of carbon monoxide on nickel clusters. A cluster surface was assumed to be preadsorbed with oxygen and the variation of various bond energies with the approach of a carbon monoxide molecule was studied for different models. Various possibilities for the reaction path are discussed in the light of the theoretical findings and it is suggested that at a low coverage of oxygen the reaction may follow a Langmuir-Hinshelwood path, whereas at a high coverage, an Eley-Rideal path might be more probable. 55 references, 13 figures.

  17. Hydrogen uptake by Azolla-Anabaena

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Silva, P.M.

    1984-01-01

    The hydrogen uptake in the Azolla-Anabaena system is studied. Tritium is used as tracer. Plants are incubated under different atmosphere composition: a) Air + 3 H 2 ; b) Air + CO 2 + 3 H 2 + CO; c) Air + 3 H 2 + CO; d) Air + CO 2 + 3 H 2 + CO to study the pathway of absorbed hydrogen in the Azolla - Anabaena system. Azolla-Anabaena showed greater hydrogen uptake under argonium atmosphere than under air. Carbon monoxide decreased hydrogen uptake. There are evidences of recycling of the hydrogen evolved through notrogenease. (Author) [pt

  18. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    OpenAIRE

    Martijn eDiender; Alfons J.M. Stams; Alfons J.M. Stams; Diana Z. Sousa

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, ...

  19. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Tong, Liping; Yu, K.N.; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Highlights: • We show the possibility of modulate proliferation induced by radiation-induced bystander effect with low concentration carbon monoxide. • Carbon monoxide inhibited proliferation via modulating the transforming growth factor β1 (TGF-β1)/nitric oxide (NO) signaling pathway. • Exogenous carbon monoxide has potential application in clinical radiotherapy. - Abstract: Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy

  20. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Liping [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Han, Wei, E-mail: hanw@hfcas.cn [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-01-15

    Highlights: • We show the possibility of modulate proliferation induced by radiation-induced bystander effect with low concentration carbon monoxide. • Carbon monoxide inhibited proliferation via modulating the transforming growth factor β1 (TGF-β1)/nitric oxide (NO) signaling pathway. • Exogenous carbon monoxide has potential application in clinical radiotherapy. - Abstract: Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy.

  1. Acute Compartment Syndrome Which Causes Rhabdomyolysis by Carbon Monoxide Poisoning and Sciatic Nerve Injury Associated with It: A Case Report.

    Science.gov (United States)

    Ji, Jung-Woo

    2017-09-01

    Rhabdomyolysis is most frequently caused by soft tissue injury with trauma to the extremities. Non-traumatic rhabdomyolysis may be caused by alcohol or drug abuse, infection, collagen disease, or intensive exercise, but incidence is low. In particular, rhabdomyolysis resulting from carbon monoxide poisoning is especially rare. If caught before death, carbon monoxide poisoning has been shown to cause severe muscle necrosis and severe muscle damage leading to acute renal failure. In cases of carbon-monoxide-induced rhabdomyolsis leading to acute compartment syndrome in the buttocks and sciatic nerve injury are rare. We have experience treating patients with acute compartment syndrome due to rhabdomyolysis following carbon monoxide poisoning. We report the characteristic features of muscle necrosis observed during a decompression operation and magnetic resonance imaging findings with a one-year follow-up in addition to a review of the literature.

  2. Gene expression in rat striatum following carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Shuichi Hara

    2017-06-01

    Full Text Available Carbon monoxide (CO poisoning causes brain damage, which is attenuated by treatment with hydrogen [1,2], a scavenger selective to hydroxyl radical (·≡OH [3]. This suggests a role of ·≡OH in brain damage due to CO poisoning. Studies have shown strong enhancement of ·≡OH production in rat striatum by severe CO poisoning with a blood carboxyhemoglobin (COHb level >70% due to 3000 ppm CO, but not less severe CO poisoning with a blood COHb level at approximately 50% due to 1000 ppm CO [4]. Interestingly, 5% O2 causes hypoxia comparable with that by 3000 ppm CO and produces much less •OH than 3000 ppm CO does [4]. In addition, cAMP production in parallel with ·≡OH production [5] might contribute to ·≡OH production [6]. It is likely that mechanisms other than hypoxia contribute to brain damage due to CO poisoning [7]. To search for the mechanisms, we examined the effects of 1000 ppm CO, 3000 ppm CO and 5% O2 on gene expression in rat striatum. All array data have been deposited in the Gene Expression Omnibus (GEO database under accession number GSE94780.

  3. Carbon monoxide hydrogenation over ruthenium zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P.A.; Nijs, H.H.; Verdonck, J.J.; Uytterhoeven, J.B.

    1978-03-01

    Ru zeolites are active and stable methanation catalysts. Under Fischer--Tropsch conditions they show a narrow product distribution. Further work is needed to assign this to a possible effect exerted by the zeolite cages. When the size of the Ru particles enclosed in the zeolite cages is increased, a lower methanation activity is found and a higher amount of C/sub 2/ and C/sub 3/ products are formed under Fischer--Tropsch conditions. This effect has not been reported until now on other supports. The less acidic zeolites act as promoters of the CO hydrogenation: under methanation conditions the activity is increased; under Fischer--Tropsch conditions, the selectivity is shifted toward higher hydrocarbons. This is explained by the particular zeolite property that electron deficient metal agglomerates seem to be formed on the acidic zeolites. With respect to kinetic behavior, relative activity of different metals, influence of reaction temperature on product distribution, the zeolite behaves in the same way a conventional alumina support. 4 figs., 4 tables.

  4. Hydrogen adsorption in carbon nanostructures compared

    NARCIS (Netherlands)

    Schimmel, H.G.; Nijkamp, M.G.; Kearley, G.J.; Rivera, A.; de Jong, K.P.; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam ‘opened’

  5. Carbon monoxide toxicity. April 1978-November 1989 (A Bibliography from the Life Sciences Collection data base). Report for April 1978-November 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include carbon monoxide binding affinity studies with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels as related to tobacco and marijuana smoke, occupational exposure and the NIOSH biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (This updated bibliography contains 237 citations, 16 of which are new entries to the previous edition.)

  6. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  7. Kinetics, isotope effects, and mechanism for the hydrogenation of carbon monoxide on supported nickel catalysts

    International Nuclear Information System (INIS)

    Mori, T.; Masuda, H.; Imai, H.; Miyamoto, A.; Baba, S.; Murakami, Y.

    1982-01-01

    Kinetics and hydrogen-deuterium isotope effects in the methanation of adsorbed CO molecules on a Ni/SiO 2 catalyst were precisely measured by using pulse surface reaction rate analysis (PSRA). When a CO pulse was injected into flowing hydrogen, it was immediately adsorbed on the catalyst and gradually hydrogenated to CH 4 and H 2 O. The amounts of CH 4 and H 2 O produced by the hydrogenation of the adsorbed CO were determined up to various times, and it was found that CH 4 and H 2 O were produced at the same rate. When O 2 instead of CO was injected, H 2 O was immediately produced. From these results, the rate-determining step of the reaction was found to be C-O bond dissociation of an adsorbed CO molecule or a partially hydrogenated CO species. By PSRA, the rate constant for the C-O bond dissocition process per adsorbed CO molecule (k/sub H/) was determined at various temperatures, and the Arrhenius parameters of the rate constant were obtained. The rate constant in flowing deuterium (k/sub D/) was also determined. it was found that k/sub D/ is considerably larger than k/sub H/, indicating an inverse isotope effect. The average value of k/sub H//k/sub D/ was 0.75. From these results, it was concluded that adsorbed CO is not directly dissociated to surface carbon and oxygen atoms but it is partially hydrogenated before C-O bond dissociation under the conditions of the PSRA experiment. 8 figures

  8. Systemic Administration of Carbon Monoxide-Releasing Molecule-3 Protects the Skeletal Muscle in Porcine Model of Compartment Syndrome.

    Science.gov (United States)

    Bihari, Aurelia; Cepinskas, Gediminas; Sanders, David; Lawendy, Abdel-Rahman

    2018-05-01

    Acute limb compartment syndrome, a complication of musculoskeletal trauma, results in muscle necrosis and cell death. Carbon monoxide, liberated from the carbon monoxide-releasing molecule-3, has been shown protective in a rat model of compartment syndrome. The purpose of this study was to test the effect of carbon monoxide-releasing molecule-3 in a preclinical large animal model of compartment syndrome, with the ultimate goal of developing a pharmacologic adjunct treatment for compartment syndrome. Animal research study. Basic research laboratory in a hospital setting. Male Yorkshire-Landrace pigs (50-60 kg). Pigs underwent 6 hours of intracompartmental pressure elevation by infusing fluid into the anterior compartment of the right hind limb. Carbon monoxide-releasing molecule-3 was administered systemically (2 mg/kg, IV) at fasciotomy, followed by 3-hour reperfusion. Muscle perfusion, inflammation, injury, and apoptosis were assessed in the skeletal muscle. Systemic leukocyte activation was assessed during compartment syndrome and reperfusion. Elevation of hind limb intracompartmental pressure resulted in significant microvascular perfusion deficits (44% ± 1% continuously perfused capillaries in compartment syndrome vs 76% ± 4% in sham; p molecule-3 at fasciotomy increased the number of continuously perfused capillaries (68% ± 3%; p molecule-3 at fasciotomy offered protection against compartment syndrome-induced microvascular perfusion deficit, tissue injury, and systemic leukocyte activation. The data suggest the potential therapeutic application of carbon monoxide-releasing molecule-3 to patients at risk of developing compartment syndrome.

  9. Atomic hydrogen and diatomic titanium-monoxide molecular spectroscopy in laser-induced plasma

    Science.gov (United States)

    Parigger, Christian G.; Woods, Alexander C.

    2017-03-01

    This article gives a brief review of experimental studies of hydrogen Balmer series emission spectra. Ongoing research aims to evaluate early plasma evolution following optical breakdown in laboratory air. Of interest is as well laser ablation of metallic titanium and characterization of plasma evolution. Emission of titanium monoxide is discussed together with modeling of diatomic spectra to infer temperature. The behavior of titanium particles in plasma draws research interests ranging from the modeling of stellar atmospheres to the enhancement of thin film production via pulsed laser deposition.

  10. The sticking probability for H-2 in presence of CO on some transition metals at a hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2008-01-01

    The sticking probability for H-2 on Ni, Co, Cu, Rh, Ru, Pd, it and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 degrees C. Carbon monoxide inhibits the stic......The sticking probability for H-2 on Ni, Co, Cu, Rh, Ru, Pd, it and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 degrees C. Carbon monoxide inhibits...... the sticking probability significantly for all the metals, even at 200 degrees C. In the presence of 10 ppm CO, the sticking probability increases in the order It, Pt, Ni, Co, Pd, Rh, Ru, whereas for Cu, it is below the detection limit of the measurement, even in pure H2. The sticking probability for H2...

  11. A Retrospective Analysis of Pediatric Patients Admitted to the Pediatric Emergency Service for Carbon Monoxide Intoxication

    Directory of Open Access Journals (Sweden)

    Metin Uysalol

    2011-09-01

    Full Text Available Objective: The aim of the study is to analyze the general aspects of cases with carbon monoxide intoxication in order to improve the approach to future patients. Material and Methods: The hospital records of 84 children (mean age 4.71±2.64 years; 48 male, 36 female who had been admitted to Paediatric Emergency Department for carbon monoxide intoxication between October 2007 and February 2009, were retrospectively evaluated in a descriptive analysis.Results: The source of carbon monoxide intoxication was heaters, waterheaters and fi re in 82.1%, 7.1% and 6% of cases, respectively. There was a statistically signifi cant difference between the carboxyhemoglobin levels of the patients according to the clinical classifi cation (p<0.05. The intoxication caused by heaters was observed signifi cantly in November, December and January (p<0.001, between 16:00-24:00 hours (p<0.001 and among more than one member of a family (p<0.001. A medium level correlation was detected between the treatment approach and clinical classifi cation (r=0.50, p<0.001. Conclusion: Carbon monoxide intoxication, in the presented series, was found to develop accidentally; mostly in the Winter season; during night hours when the family members gathered together. The carboxyhemoglobin levels were appropriate with the developing clinical findings. Carboxyhemoglobin level solely was not enough for achieving the diagnosis and planning the treatment.

  12. Effects of Tai Chi exercise on blood pressure and plasma levels of nitric oxide, carbon monoxide and hydrogen sulfide in real-world patients with essential hypertension.

    Science.gov (United States)

    Pan, Xiaogui; Zhang, Yi; Tao, Sai

    2015-01-01

    Objective was to investigate the effects of Tai Chi exercise on nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) levels, and blood pressure (BP) in patients with essential hypertension (EH). EH patients were assigned to the Tai Chi exercise group (HTC, n = 24), and hypertension group (HP, n = 16) by patients' willingness. Healthy volunteers matched for age and gender were recruited as control (NP, n = 16). HTC group performed Tai Chi (60 min/d, 6 d/week) for 12 weeks. Measurements (blood glucose, cholesterol, NO, CO, H2S and BP) were obtained at week 0, 6, and 12. SBP, MAP, and low-density lipoprotein cholesterol levels decreased, and high-density lipoprotein cholesterol levels increased by week 12 in the HTC group (all p exercise seems to have beneficial effects on BP and gaseous signaling molecules in EH patients. However, further investigation is required to understand the exact mechanisms underlying these observations, and to confirm these results in a larger cohort.

  13. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Carbon Monoxide Emission Limits for New... Pt. 60, Subpt. AAAA, Table 2 Table 2 to Subpart AAAA of Part 60—Carbon Monoxide Emission Limits for.... Compliance is determined by continuous emission monitoring systems. b Block averages, arithmetic mean. See...

  14. Optimization of the vapor/carbon rate in the project of a hydrogen generation unit from naphtha; Otimizacao da relacao vapor/carbono no projeto de uma unidade de geracao de hidrogenio a partir de nafta

    Energy Technology Data Exchange (ETDEWEB)

    Baleroni, Dirceu; Silva, Mauro [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1993-12-31

    This paper presents a study of the economic optimization of the steam to carbon ratio in the design of a 550,000 Nm{sup 3}/day plant producing hydrogen from naphtha. The effect of the steam to carbon ratio on the production cost and on the plant operational flexibility was taken into account. The process includes feed desulfurization, steal reforming, carbon monoxide conversion and pressure swing adsorption purification. The paper analyzes the influence of the steam to carbon ratio on the purity of the hydrogen product and on the operational cost of an existing 212,000 Nm{sup 3}/day hydrogen from naphtha unit. (author) 17 refs., 2 figs., 11 tabs

  15. Fetal brain damage following maternal carbon monoxide intoxication: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, M D; Myers, R E

    1974-01-01

    Techniques of fetal monitoring, including fetal blood sampling in utero, were employed to study the physiological effects of acute maternal carbon monoxide intoxication on nine term-pregnant female rhesus monkeys exposed to 0.1 to 0.3% inspired carbon monoxide over 1 to 3 hr. The mothers tolerated carboxyhemoglobin levels exceeding 60% without clinical sequelae, whereas the fetuses promptly developed profound hypoxia upon exposure of the mothers to CO. The fetal COHb levels rose only gradually over 1 to 3 hr, and thus contributed only slightly to the development of early fetal hypoxia. The fetal hypoxia was associated with bradycardia, hypotension, and metabolic and respiratory acidosis. Severity of intrauterine hypoxia was closely correlated with the appearance of brain damage. Brain swelling associated with hemorrhagic necrosis of the cerebral hemispheres (severe brain damage) appeared only in fetuses whose arterial oxygen content was reduced below 1.0 ml/100 ml for at least 45 min during the maternal CO intoxication.

  16. Diffusion-weighted MR imaging findings in carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Teksam, M.; Casey, S.O.; Michel, E.; Liu, H.; Truwit, C.L.

    2002-01-01

    Diffusion-weighted MR imaging (DWI) of two patients with carbon monoxide (CO) poisoning demonstrated white matter and cortical hyperintensities. In one patient, the changes on the FLAIR sequence were more subtle than those on DWI. The DWI abnormality in this patient represented true restriction. In the second patient, repeated exposure to CO caused restricted diffusion. DWI may be helpful for earlier identification of the changes of acute CO poisoning. (orig.)

  17. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  18. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  19. Reaction of hydrogen atoms with acrylaldehyde

    International Nuclear Information System (INIS)

    Koda, Seiichiro; Nakamura, Kazumoto; Hoshino, Takashi; Hikita, Tsutomu

    1978-01-01

    The reaction of hydrogen atoms with acrylaldehyde was investigated in a fast flow reactor equipped with a time-of-flight type mass spectrometer under reduced pressure. Main reaction products were carbon monoxide, ethylene, ethane, methane, and propanal. Consideration of the distributions of the reaction products under various reaction conditions showed that hydrogen atoms attacked the C=C double bond, especially its inner carbon side under reduced pressure. Resulting hot radicals caused subsequent reactions. The relative value of the apparent bimolecular rate constant of the reaction against that of trans-2-butene with hydrogen atoms was 1.6+-0.2, which supported the above-mentioned initial reaction. (auth.)

  20. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  1. Carbon monoxide poisoning in Nigeria - it is time to pay attention ...

    African Journals Online (AJOL)

    Background: Carbon monoxide (CO) is a colourless, odourless gas and a cause of thousands of deaths across the world annually but its lethal consequences often go unrecognized, especially in developing countries. Aim: To discuss the subject of CO poisoning using local examples. Methods: Information was drawn from ...

  2. Study of the reduction of sulfur dioxide to elemental sulfur by carbon monoxide on a La/sub 0/ /sub 5/ Sr/sub 0/ /sub 5/ CoO/sub 3/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hibbert, D B; Tseung, A C.C.

    1979-12-01

    A study of the reduction of sulfur dioxide to elemental sulfur by carbon monoxide on a La/sub 0/ /sub 5/ Sr/sub 0/ /sub 5/ CoO/sub 3/ catalyst a perovskite oxide, to determine the effects of oxygen and water on SO2 reduction showed that in the presence of 5 to 16% oxygen, the reaction between sulfur dioxide and carbon monoxide still occurred if there was sufficient carbon monoxide in the gas to react with all the oxygen. At 600C, all the sulfur dioxide was removed at 5 to 16% oxygen levels. Water vapor at 2% did not adversely affect the reaction. The unwanted by-products, hydrogen disulfide and carbonyl sulfide, were reduced at contact times below 0.25 sec. During the reaction, the catalyst itself reacted with sulfur to give metal sulfides. When reagent grade CO/sub 2/O/sub 3/ was substituted for perovskite oxide, the maximum conversion of 98% of sulfur dioxide was attained at 550C, but an unacceptably high concentration of carbonyl sulfide was formed; within 1 hr, the sulfur dioxide conversion fell to 60%. The perovskite oxide reaction may be useful in removing sulfur dioxide from fosill fuel stack gases.

  3. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    Science.gov (United States)

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  4. A carbon monoxide passive sampler: Research and development needs

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, G.W.; Apte, M.G.; Diamond, R.C.; Woods, A.L.

    1991-11-01

    In rare instances, carbon monoxide (CO) levels in houses can reach dangerously high concentrations, causing adverse health effects ranging from mild headaches to, under extreme conditions, death. Hundreds of fatal accidental carbon monoxide poisonings occur each year primarily due to the indoor operation of motor vehicles, the indoor use of charcoal for cooking, the operation of malfunctioning vented and unvented combustion appliances, and the misuse combustion appliances. Because there is a lack of simple, inexpensive, and accurate field sampling instrumentation, it is difficult for gas utilities and researchers to conduct field research studies designed to quantify the concentrations of CO in residences. Determining the concentration of CO in residences is the first step towards identifying the high risk appliances and high-CO environments which pose health risks. Thus, there exists an urgent need to develop and field-validate a CO-quantifying technique suitable for affordable field research. A CO passive sampler, if developed, could fulfill these requirements. Existing CO monitoring techniques are discussed as well as three potential CO-detection methods for use in a CO passive sampler. Laboratory and field research needed for the development and validation of an effective and cost-efficient CO passive sampler are also discussed.

  5. [Cerebellar Infarction After Carbon Monoxide Poisoning and Hyperbaric Oxygen Therapy].

    Science.gov (United States)

    Wick, Matthias; Schneiker, André; Bele, Sylvia; Pawlik, Michael; Meyringer, Helmut; Graf, Bernhard; Wendl, Christina; Kieninger, Martin

    2017-06-01

    We report on a patient who developed a space-occupying cerebellar infarction with occlusive hydrocephalus after a poisoning with carbon monoxide with the intention to commit suicide. A neurosurgical and intensive care therapy were needed. The patient's survival without severe neurological deficits could be secured due to the early detection of the intracerebral lesions. Georg Thieme Verlag KG Stuttgart · New York.

  6. Recent changes in carbon dioxide, carbon monoxide and methane and the implications for global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.; Conway, T.J.; Dlugokencky, E.J.; Tans, P.P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Lab.

    1995-01-01

    The article reviews figures for published data on recent changes of atmospheric levels of carbon dioxide, carbon monoxide and methane in terms of their sources and sinks. The largest source of CO{sub 2} is the combustion of fossil fuels, followed by emissions from deforestation and the oxidation of CO to CO{sub 2}. Carbon monoxide has an indirect influence on the earth`s radiative balance, as if levels of CO increase, levels of OH radicals decline which affects removal of other gases oxidised by this radical, notably CH{sub 4}. Major sources of CO are fossil fuel combustion, emissions from biomass, and oxidation of atmospheric CH{sub 4} and other non-methane hydrocarbons. The latest measurements suggest the depressed growth rates of CO{sub 2}, CO and CH{sub 4} have began to recover. Reasons for this are suggested. Future monitoring of atmospheric species in laboratories around the world, coupled with information on the isotopic signature of the trace gases, will improve our understanding of possible causes for trends in these gases. This will be invaluable in making policy decisions regarding future climate change. 34 refs., 4 figs.

  7. Conditions determining the oxidation of carbon monoxide and of hydrogen by Hydrogenomonas carboxydovorans. [Hydogenomonas carboxydovorans

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, A

    1954-01-01

    Bacteria of the genus Hydrogenomonas, which are widely distributed in soil, have in common the ability to grow autotrophically by oxidizing hydrogen with simultaneous reduction of carbon dioxide, and heterotrophically on common nutrient media. A survey of the literature shows that this ability is due to a specific hydrogen activating enzyme system, a hydrogenase. Apparently in most species this enzyme has a typically adaptive character to such a degree that cells grown in the absence of hydrogen as a rule do not produce it in measurable quantities. Also the ability to produce the hydrogenase under suitable conditions may be lost. Experimental studies were conducted to investigate the behavior of Hydrogenomonas carboxydovorans in this respect, and in addition, to determine whether or not the ability to oxidize CO should be considered an adaptive property. The stock culture was maintained in a mineral medium with an atmosphere of 80% CO and 20% O/sub 2/. Ways in which the culture conditions influenced the behavior of resting cells of H. carboxydovorans in the presence of H, CO, and lactate were investigated. Also studied was what would happen, if either H or CO were offered to the bacteria simultaneously with lactate.

  8. The Future of Carbon Monoxide Measurements from Space

    Science.gov (United States)

    Drummond, J.

    It is now over 20 years since the Measurements of Air Pollution from Space MAPS instrument made the first measurements of tropospheric carbon monoxide from the shuttle Since that time a number of instruments have flown including the Measurements Of Pollution In The Troposphere MOPITT Tropospheric Emission Spectrometer TES and SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY SCIAMCHY to name only three of many Each of these instruments has a unique observing method and unique mission characteristics It is accepted that measurements of carbon monoxide provide a useful proxy of the pollution of the troposphere and contribute significantly to studies of various phenomena in the atmosphere and atmosphere-surface interactions These measurements should therefore be continued -- but in what form Technology has progresses significantly since the current generation of instruments was designed and our ability to interpret the data from such instrumentation has likewise expanded It is therefore fruitful to consider what is the best set of measurements that can be made which parameters should be emphasized and which compromised on the way to the next generation of sensors The Measurements of Air Pollution Levels in the Environment MAPLE instrument is a study financed by the Canadian Space Agency to design a next-generation instrument and since instrument spacecraft and mission are now intimately linked a consideration of the whole mission is appropriate This talk will outline some potential developments in the hardware

  9. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and carbon containing alloys

  10. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  11. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Model Rule-Carbon Monoxide Emission... BBBB of Part 60—Model Rule—Carbon Monoxide Emission Limits for Existing Small Municipal Waste... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste...

  12. Carbon monoxide is not responsible for the cigarette smokeinduced changes in the pulmonary metabolism of arachidonic acid and prostaglandin E2

    International Nuclear Information System (INIS)

    Maennistoe, J.; Puustinen, T.; Uotila, P.

    1985-01-01

    Cigarette smoke is known to interfere with the pulmonary metabolism of arachidomic acid and prostaglandin E 2 (PGE 2 ). We investigated the possible role of carbon monoxide in these cigarette smoke-infuced alterations. 4 C-Arachidonic acid (50 nmol) was indused into the pulmonary circulation of isolated perfused hamster lungs and the radioactive metabolites in the perfusion effluent, as well as the distribution of incorporated radioactive arachidonic acid within the lung lipids, were analysed. Carbon monoxide, added into the ventilatory air, had no effect on the oxidative metabolism of arachidonic acid or on the distribution of radioactive arachidonic acid within the lung. In addition, carbon monoxide had no effect on the metabolism of PGE 2 following infusion of 100 nmol of 14 C-PGE 2 into the rat pulmonary circulation. The present study suggests that carbon monoxide is not responsible for the cigarette smoke-induced changes in the pulmonary metabolism of arachidonic acid and PGE 2 . (author)

  13. High Resolution Spectra of Carbon Monoxide, Propane and Ammonia for Atmospheric Remote Sensing

    Science.gov (United States)

    Beale, Christopher Andrew

    Spectroscopy is a critical tool for analyzing atmospheric data. Identification of atmospheric parameters such as temperature, pressure and the existence and concentrations of constituent gases via remote sensing techniques are only possible with spectroscopic data. These form the basis of model atmospheres which may be compared to observations to determine such parameters. To this end, this dissertation explores the spectroscopy of three molecules: ammonia, propane and carbon monoxide. Infrared spectra have been recorded for ammonia in the region 2400-9000 cm-1. These spectra were recorded at elevated temperatures (from 293-973 K) using a Fourier Transform Spectrometer (FTS). Comparison between the spectra recorded at different temperatures yielded experimental lower state energies. These spectra resulted in the measurement of roughly 30000 lines and about 3000 quantum assignments. In addition spectra of propane were recorded at elevated temperatures (296-700 K) using an FTS. Atmospheres with high temperatures require molecular data at appropriate conditions. This dissertation describes collection of such data and the potential application to atmospheres in our solar system, such as auroral regions in Jupiter, to those of planets orbiting around other stars and cool sub-stellar objects known as brown dwarfs. The spectra of propane and ammonia provide the highest resolution and most complete experimental study of these gases in their respective spectral regions at elevated temperatures. Detection of ammonia in an exoplanet or detection of propane in the atmosphere of Jupiter will most likely rely on the work presented here. The best laboratory that we have to study atmospheres is our own planet. The same techniques that are applied to these alien atmospheres originated on Earth. As such it is appropriate to discuss remote sensing of our own atmosphere. This idea is explored through analysis of spectroscopic data recorded by an FTS on the Atmospheric Chemistry

  14. Influence of carbon monoxide poisoning on the fetal heart monitor tracing: a report of 3 cases.

    Science.gov (United States)

    Towers, Craig V; Corcoran, Vincent A

    2009-03-01

    The diagnosis of carbon monoxide poisoning in the third trimester of pregnancy requires an index of suspicion, and the appearance of the fetal heart monitor tracing may help in this regard. Three cases of third-trimester acute carbon monoxide poisoning occurred. In each pregnancy, the fetal heart monitor tracing on admission was correlated with the maternal carboxyhemoglobin level, and how the pattern changed following the institution of therapy was analyzed. In all 3 cases, the initial fetal heart rate pattern demonstrated decreased variability with an elevated baseline and an absence of accelerations and decelerations. Within 45-90 minutes of treatment onset, the baseline fetal heart rate dropped by 20-40 beats per minute, the variability became moderate, and accelerations occurred. Absent accelerations with minimal variability, if caused by uteroplacental insufficiency, are usually preceded by recurrent decelerations. Absent accelerations with minimal variability in the absence of recurrent decelerations may suggest another cause, of which carbon monoxide intoxication can be added to the differential, especially since this disorder often has nonspecific clinical symptoms.

  15. Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites

    Science.gov (United States)

    White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.

    2010-01-01

    Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629

  16. Carbon monoxide in clouds at low metallicity in the dwarf irregular galaxy WLM.

    Science.gov (United States)

    Elmegreen, Bruce G; Rubio, Monica; Hunter, Deidre A; Verdugo, Celia; Brinks, Elias; Schruba, Andreas

    2013-03-28

    Carbon monoxide (CO) is the primary tracer for interstellar clouds where stars form, but it has never been detected in galaxies in which the oxygen abundance relative to hydrogen is less than 20 per cent of that of the Sun, even though such 'low-metallicity' galaxies often form stars. This raises the question of whether stars can form in dense gas without molecules, cooling to the required near-zero temperatures by atomic transitions and dust radiation rather than by molecular line emission; and it highlights uncertainties about star formation in the early Universe, when the metallicity was generally low. Here we report the detection of CO in two regions of a local dwarf irregular galaxy, WLM, where the metallicity is 13 per cent of the solar value. We use new submillimetre observations and archival far-infrared observations to estimate the cloud masses, which are both slightly greater than 100,000 solar masses. The clouds have produced stars at a rate per molecule equal to 10 per cent of that in the local Orion nebula cloud. The CO fraction of the molecular gas is also low, about 3 per cent of the Milky Way value. These results suggest that in small galaxies both star-forming cores and CO molecules become increasingly rare in molecular hydrogen clouds as the metallicity decreases.

  17. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  18. Geostatistical modelling of carbon monoxide levels in Khartoum State (Sudan) - GIS pilot based study

    Energy Technology Data Exchange (ETDEWEB)

    Alhuseen, A [Comenius University in Bratislava, Faculty of Natural Sciences, Dept. of Landscape Ecology, 84215 Bratislava (Slovakia); Madani, M [Ministry of Environment and Physical Development, 1111 Khartoum (Sudan)

    2012-04-25

    The objective of this study is to develop a digital GIS model; that can evaluate, predict and visualize carbon monoxide (CO) levels in Khartoum state. To achieve this aim, sample data had been collected, processed and managed to generate a dynamic GIS model of carbon monoxide levels in the study area. Parametric data collected from the field and analysis carried throughout this study show that (CO) emissions were lower than the allowable ambient air quality standards released by National Environment Protection Council (NEPC-USA) for 1998. However, this pilot study has found emissions of (CO) in Omdurman city were the highest. This pilot study shows that GIS and geostatistical modeling can be used as a powerful tool to produce maps of exposure. (authors)

  19. Measurements of Carbon Dioxide, Carbon Monoxide, and Other Related Tracers at High Spatial and Temporal Resolution in an Urban Environment

    Science.gov (United States)

    Rella, C.; Jacobson, G.

    2012-04-01

    The ability to quantify the sources and sinks of carbon dioxide on the urban scale is essential for understanding the atmospheric drivers to global climate change. In the 'top-down' approach, overall carbon fluxes are determined by combining remote measurements of carbon dioxide concentrations with complex atmospheric transport models, and these emissions measurements are compared to "bottoms-up" predictions based on detailed inventories of the sources and sinks of carbon, both anthropogenic and biogenic in nature. This approach, which has been proven to be effective at continental scales, becomes challenging to implement at the urban scale, due to poorly understood micrometeorological atmospheric transport models and high variability of the emissions sources in space (e.g., factories, highways, residences) and time (rush hours, factory shifts and shutdowns, residential energy usage variability during the day and over the year). New measurement and analysis techniques are required to make sense of the carbon dioxide signal in cities. Here we present detailed, high spatial- and temporal-resolution greenhouse gas measurements in Silicon Valley in California. The synthesis of two experimental campaigns is presented: real-time measurements from two ten-meter urban 'towers,' and ground-based mobile mapping measurements. Real-time carbon dioxide data from a nine-month period are combined with real-time carbon monoxide, methane, acetylene, and carbon 13 measurements to partition the observed CO2 concentrations between different anthropogenic sectors (e.g., transport, residential) and biogenic sources. The carbon monoxide to carbon dioxide ratio is shown to vary over more than a factor of two from season to season or even from day to night, indicating rapid and frequent shifts in the balance between different carbon dioxide sources. Clear differences are seen between the two urban sites, which are separated by 7 km. Further information is given by the carbon 13 signature

  20. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O' Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  1. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  2. Intra-pulse Cavity Enhanced Measurements of Carbon Monoxide in a Rapid Compression Machine

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2018-01-01

    A laser absorption sensor for carbon monoxide concentration was developed for combustion studies in a rapid compression machine using a pulsed quantum cascade laser near 4.89 μm. Cavity enhancement reduced minimum detection limit down to 2.4 ppm

  3. Carbon monoxide measurement by gas chromatography; Mesure du monoxyde de carbone par chromatographie en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Gros, V.; Sarda-Esteve, R.; Bonsang, B.; Ramonet, M.

    1998-09-01

    Although carbon monoxide (CO) is present in trace quantities in the atmosphere (0.1 ppm -or parts per million in volume- on average), the study of this gas is important. Indeed, its impact on human can be dangerous at high level of concentration on the hand and it constitutes one of the main precursor of ozone in presence of concentration on the one hand and it constitutes one of the main precursor of ozone in presence of other pollutants on the other hand. Finally, CO affects the levels of several important greenhouse gases, through its reaction with hydroxyl radicals (OH). CO is measured in the atmosphere since the mid 60's by various methods. Among them, gas chromatography has the advantage to combine a low detection limit with a high precision. This report details the improvements made on the measurement analyser which allowed to perform automatic CO measurements in remote areas with low mixing ratios of carbon monoxide. This report describes some quality tests and the results of various applications. (authors)

  4. Hydrogen storage in carbon nanostruc

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Quintel, A.; Skakalova, V.; Choi, M.; Dettlaff-Weglikowska, U.; Roth, S.; Stepanek, I.; Bernier, P.; Leonhardt, A.; Fink, J.

    2002-01-01

    The paper gives a critical review of the literature on hydrogen storage in carbon nanostructures. Furthermore, the hydrogen storage of graphite, graphite nanofibers (GNFs), and single-walled carbon nanotubes (SWNTs) was measured by thermal desorption spectroscopy (TDS). The samples were ball milled

  5. Health effects of carbon monoxide environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    Carbon monoxide's (CO) chronic effects on man, its sources, and measuring methods are reviewed, and guidelines to determine health criteria are considered. The European data exchange included CO measuring methods in air and blood and their use in survey and experimental work, atmospheric CO pollution and sampling methods in urban thoroughfares and road tunnels in the European countries, a population survey of carboxyhemoglobin levels from cigarette smoking and atmospheric exposure, and physiological kinetics (uptake, distribution, and elimination) of CO inhalation. Additional topics are CO and the central nervous system, effects of moderate CO exposure on the cardiovascular system and on fetal development, and the current views on existing air quality criteria for CO.

  6. New Class of Hybrid Materials for Detection, Capture, and "On-Demand" Release of Carbon Monoxide.

    Science.gov (United States)

    Pitto-Barry, Anaïs; Lupan, Alexandru; Ellingford, Christopher; Attia, Amr A A; Barry, Nicolas P E

    2018-04-25

    Carbon monoxide (CO) is both a substance hazardous to health and a side product of a number of industrial processes, such as methanol steam reforming and large-scale oxidation reactions. The separation of CO from nitrogen (N 2 ) in industrial processes is considered to be difficult because of the similarities of their electronic structures, sizes, and physicochemical properties (e.g., boiling points). Carbon monoxide is also a major poison in fuel cells because of its adsorption onto the active sites of the catalysts. It is therefore of the utmost economic importance to discover new materials that enable effective CO capture and release under mild conditions. However, methods to specifically absorb and easily release CO in the presence of contaminants, such as water, nitrogen, carbon dioxide, and oxygen, at ambient temperature are not available. Here, we report the simple and versatile fabrication of a new class of hybrid materials that allows capture and release of carbon monoxide under mild conditions. We found that carborane-containing metal complexes encapsulated in networks made of poly(dimethylsiloxane) react with CO, even when immersed in water, leading to dramatic color and infrared signature changes. Furthermore, we found that the CO can be easily released from the materials by simply dipping the networks into an organic solvent for less than 1 min, at ambient temperature and pressure, which not only offers a straightforward recycling method, but also a new method for the "on-demand" release of carbon monoxide. We illustrated the utilization of the on-demand release of CO from the networks by carrying out a carbonylation reaction on an electron-deficient metal complex that led to the formation of the CO-adduct, with concomitant recycling of the gel. We anticipate that our sponge-like materials and scalable methodology will open up new avenues for the storage, transport, and controlled release of CO, the silent killer and a major industrial poison.

  7. Integrated Science Assessment (ISA) for Carbon Monoxide (Second External Review Draft, Sep 2009)

    Science.gov (United States)

    EPA announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Carbon Monoxide (CO) and related Annexes was made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of t...

  8. Development of new and improved labelling procedures for introducing isotopic hydrogen and carbon-11 into organic compounds

    International Nuclear Information System (INIS)

    Al-Qahtani, M.H.S.

    1999-10-01

    New and improved methods for introducing radioisotopic hydrogen (tritium) and carbon (positron-emitting short-lived carbon-11, t 1/ 2 = 20.4 min) into organic molecules for application in biological research have been explored. In Chapter 1 the applications of radioactive isotopes in biological and clinical research is surveyed, with particular emphasis on the value of β-emitting tritium and positron-emitting carbon-11. In Chapter 2 we report the use of the non-radioactive hydrogen isotope, deuterium, as a surrogate for tritium in the development of microwave-enhanced labelling procedures, based on catalytic hydrogen transfer to olefins (e.g. styrene, styrene derivatives, cinnamic acid and its derivatives). Hydrogen or deuterium donors (e.g. formate salts) were used alone or in combination with other sources (e.g. D 2 O). The method was found to give fully hydrogenated products using very short microwave irradiation times (∼ 2 min) and was highly reproducible. Importantly, the method is environmentally clean, as when extended to tritiated formates little or no radioactive waste is produced. In Chapter 3 we explored the labelling of CGP 62349 {3-[1-(R)-[3-(4-methoxybenzyl)phosphinyl-2-(S)-hydroxy-propyl- amino]ethyl]benzoic acid}, a γ-aminobutyric acid type B (GABA B ) receptor antagonist, with carbon-11 in order to provide a prospective radioligand for medical imaging with positron emission tomography (PET). Labelling agents, [ 11 C]iodomethane and [ 11 C]methyl triflate, prepared by improved methods, were used in the rapid methylation of desmethyl-CGP 62349. Substantially higher radiochemical yields (78%) of [ 11 C]CGP 62349 were achieved by the new methods compared to that produced in a previously published procedure (9%). In addition, the use of [ 11 C]methyl triflate rather than [ 11 C]iodomethane has the advantage of giving a high radiochemical yield and a lower amount of carrier. In Chapter 4 we report on the use of [ 11 C]carbon monoxide as a labelling

  9. Vertical observation of molecular hydrogen and carbon monoxide: Implication for non-photochemical H2 production at ocean surface and subsurface

    Science.gov (United States)

    Kawagucci, S.; Narita, T.; Obata, H.; Ogawa, H.; Gamo, T.

    2009-12-01

    Biological nitrogen fixation is a key metabolism controlling marine N-cycling and also known as a main H2 source. Recently, it was proposed that a monitoring of surface H2 concentration could be used quickly to figure out the spatial extent of biological nitrogen fixation activity without onboard incubation required for currently used methods for detecting the activity. However, H2 behavior in ocean water was still unresolved. This study carried out vertical observation of H2 and CO concentrations in south of Japan, western North Pacific. Because carbon monoxide, CO, in seawater has no relation with nitrogen fixation metabolism and is produced dominantly by the photochemical reaction, which is an altanative H2 source, simultaneous observation and comparison of H2 and CO concentration is helpful to investigate H2 behavior in ocean water. Reductive gases in seawater were observed during the R/V Tansei-maru KT-08-14 cruise by using a wired CTD-CMS (CTD-carousel multiple sampling) system to conduct vertical sampling (at most 200 m depth) and by using a plastic bucket for sampling surface seawater. The sample in the Niskin-X bottle was directed to the bottom of a 120 mL brown-colored glass vial allowed to overflow by 2 volumes before the tube was slowly withdrawn. After the addition of 0.5 mL HgCl2-saturated solution for poisoning, the PTFE-lined butyl-gum septum was used to cap the vials. Molecular hydrogen (H2) and carbon monoxide (CO) were analyzed at an onboard laboratory within 6 hours after subsampling. 20 mL of sample water was substituted by 20 mL of H2- and CO-free air using a gas-tight syringe; then the vial was put on an automatic shaker and shaken upside down for 6 minutes to achieve a complete equilibrium between the dissolved and head space gases in the vial. The equilibrated headspace was taken by another gas-tight syringe and then injected into a gas chromatograph equipped with a trace reduced gas detector. Vertical distribution of dissolved H2 and CO

  10. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  11. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  12. Hydrogen adsorption in carbon nanostructures compared

    International Nuclear Information System (INIS)

    Schimmel, H.G.; Nijkamp, G.; Kearley, G.J.; Rivera, A.; Jong, K.P. de; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam 'opened' SWNT are compared and shown to be similar. The storage capacity below 77 K of these materials correlates with the surface area of the material with the activated charcoal having the largest. SWNT and 'opened' SWNT have a relatively low accessible surface area due to bundling of the tubes. Pressure-temperature curves give the interaction potential, which was found to be ∼580 K or 50 meV in all samples, leading to significant adsorption below ∼50 K. Using the inelastic neutron scattering signal associated with rotation of the hydrogen molecule as a sensitive probe for the surroundings of the molecule, no difference was found between the hydrogen molecules adsorbed in the investigated materials. These combined spectroscopic and macroscopic results show that SWNT, nanofibers and activated carbons store molecular hydrogen due to their graphitic nature and not because they possess special morphologies. Results from a density functional theory computer calculation suggest molecular hydrogen bonding to an aromatic C-C bond of graphite, irrespective of the surface morphology farther away

  13. Factors determining the activity of catalysts of various chemical types in the oxidation of hydrogen. I. Oxidation and isotope exchange of hydrogen on cobalt monoxide-oxide

    International Nuclear Information System (INIS)

    Polgikh, L.Y.; Golodets, G.I.; Il'chenko, N.I.

    1985-01-01

    On the basis of data on the kinetics of the reaction 2H 2 + O 2 = 2H 2 O isotope exchange H 2 + D 2 = 2HD under the conditions of oxidative catalysis, and the kinetic isotope effect, a mechanism is proposed for the oxidation of hydrogen on cobalt monoxide-oxide. At low temperatures the reaction proceeds according to a mechanism of alternating reduction-reoxidation of the surface with the participation of hydrogen adsorbed in molecular form; at increased temperature and low P 02 /P /SUB H2/ ratios, a significant contribution to the observed rate is made by a mechanism including dissociative chemisorption of hydrogen

  14. Multimodel simulations of carbon monoxide: comparison with observations and projected near-future changes

    NARCIS (Netherlands)

    Shindell, D.T.; Krol, M.C.

    2006-01-01

    We analyze present-day and future carbon monoxide (CO) simulations in 26 state-ofthe- art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show

  15. Analysis of patients presenting to the emergency department with carbon monoxide intoxication

    Directory of Open Access Journals (Sweden)

    Selim Yurtseven

    2015-12-01

    Full Text Available Objectives: Carbon monoxide is a potentially fatal form of poisoning. The exact incidence is unclear, due to cases being undiagnosed or reported as fewer than the real number. Hyperbaric oxygen therapy (HBOT is of proven efficacy in the treatment of CO intoxication.The purpose of this study was to describe the general characteristics of carbon monoxide (CO intoxications presenting to the emergency department and to investigate troponin I values and the effectiveness of hyperbaric oxygen therapy (HBOT in these patients. Material and methods: Patients presenting to the emergency department with CO intoxication over one year and patients with such intoxications receiving HBOT were examined retrospectively. Results: One hundred seventy-one patients were included; 140 (81.9% were poisoned by stoves, 18 (10.5% by hot water boilers and 10 in (5.8% by fires. COHb levels were normal in 49 of the 163 patients whose values were investigated, and were elevated in 114 patients. Mean COHb value was 16.6. Troponin I values were investigated in 112 patients. These were normal in 86 patients and elevated in 26. Mean troponin I value was 0.38 ng/ml. One hundred twenty-three of the 171 patients in the study were discharged in a healthy condition after receiving normobaric oxygen therapy, while 48 patients received HBOT. Forty-two (87.5% of the patients receiving HBOT were discharged in a healthy condition while sequelae persisted in five (10.4%. One patient died after 15 session of HBOT. Conclusion: Although elevated carboxyhemoglobin confirms diagnosis of CO intoxication, normal levels do not exclude it. Troponin I levels may rise in CO intoxication. No significant relation was observed between carboxyhemoglobin and receipt of HBOT. A significant correlation was seen, however, between troponin I levels and receipt of HBOT. Keywords: Carbon monoxide intoxication, Hyperbaric oxygen, Troponin I, Echocardiography

  16. Hydrogen production through allothermal ethanol reforming for fuel cells application: first generation prototype; Producao de hidrogenio atraves da reforma-vapor do etanol para aplicacoes em celulas a combustivel: prototipo de primeira geracao

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Silva, Ennio Peres da; Camargo, Joao Carlos; Neves Junior, Newton Pimenta; Pinto, Cristiano da Silva [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Lab. de Hidrogenio; Pinto, Cristiano da Silva [Centro Nacional de Referencia em Energia do Hidrogenio, Campinas, SP (Brazil)

    2004-07-01

    This paper describes preliminary results obtained with the allothermal ethanol reforming system for synthesis gas (syn-gas) production and hydrogen upgrading and purification for fuel cell applications. The system was designed to supply hydrogen to a 500 W PEM (Proton Exchange Membrane) fuel cell, with an electrical efficiency of 45%, which requires approximately 0.45 m3.h-1 of hydrogen, with a maximum carbon monoxide concentration of 20 {mu}mol.mol-1 (ppm). The study was performed changing the operation temperature and analyzing the resulting syn-gas through gas chromatography for a specific catalyst. This catalyst was tested up to 700 deg C, 1 bar and fixed stoichiometric steam to carbon ratio. The syn-gas, before carbon monoxide shift reactor implementation, was submitted to a two-bed-three-segments purification step composed of chemical and physical molecular sieves for hydrogen purification. The carbon monoxide shift reactor (water gas shift reactor) is under development to improve the efficiency-to-hydrogen and maximize the life of the purification bed. The final results also include a discussion about possible reactions involved in ethanol steam-reforming for such catalyst. (author)

  17. Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes

    NARCIS (Netherlands)

    Shindell, D.T.; Faluvegi, G.; Stevenson, D.S.; Krol, M.C.; Emmons, L.K.; Lamarque, J.F.; Petron, G.; Dentener, F.J.; Ellingsen, K.; Schultz, M.G.; Wild, O.; Amann, M.; Atherton, C.S.; Bergmann, D.J.; Bey, I.; Butler, T.; Cofala, J.; Collins, W.J.; Derwent, R.G.; Doherty, R.M.; Drevet, J.; Eskes, H.J.; Fiore, A.M.; Gauss, M.; Hauglustaine, D.A.; Horowitz, L.W.; Isaksen, I.S.A.; Lawrence, M.G.; Montanaro, V.; Muller, J.F.; Pitari, G.; Prather, M.J.; Pyle, J.A.; Rast, S.; Rodriguez, J.M.; Sanderson, M.G.; Savage, N.H.; Strahan, S.E.; Sudo, K.; Szopa, S.; Unger, N.; Noije, van T.P.C.; Zeng, G.

    2006-01-01

    We analyze present-day and future carbon monoxide (CO) simulations in 26 state-of-the-art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show

  18. Carbon: Hydrogen carrier or disappearing skeleton?

    International Nuclear Information System (INIS)

    De Jong, K.P.; Van Wechem, H.M.H.

    1994-01-01

    The use of liquid hydrocarbons as energy carriers implies the use of carbon as a carrier for hydrogen to facilitate hydrogen transport and storage. The current trend for liquid energy carriers used in the transport sector is to maximize the load of hydrogen on the carbon carrier. The recently developed Shell Middle Distillate Hydrogenation process for the manufacture of high quality diesel from aromatic refinery streams fits this picture. In the future, the hydrogen required to raise the product H/C ratio will be increasingly produced via gasification of large amounts of heavy residues. In the light of the strong preference towards using liquid fuels in the transport sector, the Shell Middle Distillate Synthesis process to convert natural gas into diesel of very high quality is discussed. Finally, a few comments on the use of hydrogen without a carbon carrier are made. Long lead times and the likelihood of producing the 'first' hydrogen from fossil fuel are highlighted. 13 figs., 6 tabs., 5 refs

  19. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma

    Science.gov (United States)

    Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin

    2017-01-01

    The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).

  20. Toxicological Investigation of Acute Carbon Monoxide Poisoning in Four Occupants of a Fuming Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    Martin Nnoli

    2014-11-01

    Full Text Available Background: This toxicological investigation involves a report on the death of four occupants of a sport utility vehicle on one of the major busy Federal roads of Nigeria where they were held for up to three hours in a traffic jam while the car was steaming. Methods: Autopsy was executed using the standard procedure and toxicological analysis was done using simple spectrophotometric method to establish the level of carboxyhaemoglobin (HbCO in peripheral blood in the four occupants. Results: The autopsy report indicated generalized cyanosis, sub-conjuctival hemorrhages, marked laryngo-trachea edema with severe hyperemia with frothy fluid discharges characteristic of carbon monoxide poisoning. Toxicological report of the level of HbCO in part per million (ppm in the peripheral blood of the four occupants was A= 650 ppm; B= 500 ppm; C= 480 ppm, and D= 495 ppm against the maximum permissible level of 50 ppm. Conclusion: The sudden death of the four occupants was due to excessive inhalation of the carbon monoxide gas from the exhaust fumes leaking into the cabin of the car. The poor road network, numerous potholes, and traffic jam in most of roads in Nigeria could have exacerbated a leaky exhaust of the smoky second hand SUV car leading to the acute carbon monoxide poisoning.

  1. Carbon monoxide and respiratory symptoms in young adult passive smokers: A pilot study comparing waterpipe to cigarette

    Directory of Open Access Journals (Sweden)

    Rouba Zeidan

    2014-08-01

    Full Text Available Objectives: Studies have correlated second hand smoke (SHS with many diseases, especially respiratory effects. The goal of this study was to measure the impact of SHS on the respiratory symptoms and exhaled carbon monoxide. Material and Methods: The study population consisted of 50 young workers in restaurants serving waterpipes, 48 university students who sit frequently in the university cafeteria where cigarette smoking is allowed and 49 university students spending time in places where smoking is not allowed. Subjects completed questionnaires on socio-demographic characteristics, respiratory symptoms and exposure to SHS. Exhaled carbon monoxide levels were measured. ANOVA and Chi-square tests were used when applicable as well as linear and logistic regression analysis. Results: Exposure to cigarette smoke in university (adjusted odds ratio (ORa = 6.06 and occupational exposure to waterpipe smoke (ORa = 7.08 were predictors of chronic cough. Being married (ORa = 6.40, living near a heavy traffic road (ORa = 9.49 or near a local power generator (ORa = 7.54 appeared responsible for chronic sputum production. Moreover, predictors of chronic allergies were: being male (ORa = 7.81, living near a local power generator (ORa = 5.52 and having a family history of chronic respiratory diseases (ORa = 17.01. Carbon monoxide levels were augmented by the number of weekly hours of occupational exposure to waterpipe smoke (β = 1.46 and the number of daily hours of exposure to cigarette smoke (β = 1.14. Conclusions: In summary, young non-smoker subjects demonstrated more chronic cough and elevated carbon monoxide levels when exposed to SHS while the effect of waterpipe was even more evident.

  2. Gas-phase studies of AunOm+ interacting with carbon monoxide

    Science.gov (United States)

    Kimble, M. L.; Castleman, A. W.

    2004-04-01

    The results of reactions between preformed cationic gold oxide clusters and carbon monoxide have been investigated utilizing a fast-flow reactor mass spectrometer. From these studies, it was found that all AunOm+ produced in the cluster source disappeared with CO addition at the reactant gas inlet. Furthermore, with CO addition, intermediate peaks of the form AunOm(CO)x+ (n=1-2, m=0-3, x=0-2) were produced, with some of the species continuing to react at higher CO flows.

  3. Forensic aspects of carbon monoxide poisoning by charcoal burning in Denmark, 2008-2012

    DEFF Research Database (Denmark)

    Nielsen, Pia Rude; Gheorghe, Alexandra; Lynnerup, Niels

    2014-01-01

    Carbon monoxide (CO) inhalation is a well-known method of committing suicide. There has been a drastic increase in suicide by inhalation of CO, produced from burning charcoal, in some parts of Asia, and a few studies have reported an increased number of these deaths in Europe. CO-related deaths c...

  4. Post Hartree–Fock and DFT Studies on Pyrrole···Nitrogen and Pyrrole···Carbon Monoxide Molecules

    Directory of Open Access Journals (Sweden)

    P. Kolandaivel

    2002-07-01

    Full Text Available Abstract: The hydrogen bonded and van der Waals isomers of pyrrole···nitrogen and pyrrole···carbon monoxide have been studied using ab initio and density functional theory methods. Complex geometries and total energies of the isomers have been determined at HF, MP2, B3LYP and B3PW91 levels of theory employing 6-31G* basis set. For pyrrole···nitrogen complex, only two isomers have stable structure and the more stable one is found to be the hydrogen bonded isomer. Among the five isomers of pyrrole···carbon monoxide complex, the hydrogen bonded isomer is found to be the most stable form. The interaction energy for all these isomers have been calculated after eliminating the basis set superposition errors by using the full counterpoise correction method. Chemical hardness, chemical potential have been calculated and are used to study the stability of the molecules.

  5. Carbon compound used in hydrogen storage

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.

    2004-01-01

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  6. Residential indoor air quality guideline : carbon monoxide

    International Nuclear Information System (INIS)

    2010-01-01

    Carbon monoxide (CO) is a tasteless, odourless, and colourless gas that can be produced by both natural and anthropogenic processes, but is most often formed during the incomplete combustion of organic materials. In the indoor environment, CO occurs directly as a result of emissions from indoor sources or as a result of infiltration from outdoor air containing CO. Studies have shown that the use of specific sources can lead to increased concentrations of CO indoors. This residential indoor air quality guideline examined the factors influencing the introduction, dispersion and removal of CO indoors. The health effects of exposure to low and higher concentrations of CO were discussed. Residential maximum exposure limits for CO were presented. Sources and concentrations in indoor environments were also examined. 17 refs., 2 tabs.

  7. A Rare Cause of Chronic Headache that May Be Misdiagnosed as Migraine: Chronic Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Mehmet Kenan KANBUROGLU

    2014-09-01

    Full Text Available SUMMARY: Differential diagnosis of primary headache disorders can be challenging for physicians. Although the association of headache with acute carbon monoxide intoxication is very well-defined, in refractory nonspecific headaches associated with chronic low dose exposure to carbon monoxide, CO intoxication is usually overlooked, mostly due to vague symptoms. Herein we present a 15-year-old female patient with chronic carbon monoxide poisoning who was undergoing two years of follow-up care for migraines. Chronic carbon monoxide intoxication may mimic the episodic nature and familial predisposition of migraine attacks. Normal carboxyhemoglobin levels do not exclude the diagnosis, and smoking is a confounding factor. In emergency rooms, patients presenting with headaches had higher levels of carboxyhemoglobin, but, as far as we know, there have been no studies investigating carboxyhemoglobin levels in migraine patients. Chronic carbon monoxide poisoning should be suspected in migraine patients, especially if the attacks occur during winter months. ÖZET: Primer baş ağrısında ayırıcı tanının yapılması bazen doktorlar açısından zor olabilmektedir. Literatürde karbon monoksit ile baş ağrısı arasındaki ilişki çok iyi ortaya konulmuş olmasına karşın, dirençli ve nonspesifik başağrısı nedenlerinden biri olan kronik düşük doz karbon monoksit maruziyeti kendine özgü bulgusu olmadığından sıklıkla atlanmaktadır. Bu yazıda, iki yıl migren tanısı ile takip ve tedavi edilen kronik karbon monoksit zehirlenmesi olan bir olgu sunuldu. Kronik karbon monoksit zehirlenmesi epizodik paterni ve aile fertlerinde benzer şikayetlerin olması nedeniyle migren ataklarını andırabilmektedir. Karboksihemoglobin konsantrasyonlarının normal saptanması tanıyı ekarte ettirmemekte, ayrıca sigara kullanımı da karıştırıcı bir faktör olabilmektedir. Acil servislerine baş ağrısı ile başvuran hastalar

  8. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    Crewe, Maria Teresa I.; Lopes, Paula Corain; Moura, Sergio C.; Sampaio, Jessica A.G.; Bustillos, Oscar V.

    2011-01-01

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO 2 , U 3 O 8 , U 3 Si 2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO 2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO 2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen

  9. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  10. Non-intentional motor vehicle-related carbon monoxide deaths-revisited

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, A.R.

    1986-01-01

    A study of non-intentional, motor vehicle-related, carbon monoxide-related deaths was performed on the case files of the Office of the Medical Examiner of Metropolitan Dade Country in Miami, FL (USA) during the years 1980-1984. A total of 15 cases were collected during that time period. These are presented in some detail. A discussion ensues that compares the similar circumstances of these cases, notably running the engine of an automobile in an enclosed space, with older reports in the literature which emphasized defective vehicle exhaust systems as the leading etiology for these deaths.

  11. Study of photoionization and dissociative photoionization of carbon monoxide from ionization threshold to 38 eV by using synchrotron radiation

    International Nuclear Information System (INIS)

    Zhao, Yujie; Cao, Maoqi; Li, Yuquan; Shan, Xiaobin; Liu, Fuyi; Sheng, Liusi; Li, Li; Liu, Wanfang

    2014-01-01

    Highlights: • The high resolution photoionization spectrum of carbon monoxide has been investigated using tunable synchrotron radiation. • This work has investigated comprehensively almost all kinds of photo excitation processes of CO in wide photon region. • The mechanisms of photoionization and dissociative photoionization of CO have been researched in detail. - Abstract: The vacuum-ultraviolet photoionization and dissociative photoionization of carbon monoxide in a region 14–38 eV have been investigated with time-of-flight (TOF) photoionization mass spectrometry (PIMS) using tunable synchrotron radiation (SR). The adiabatic ionization energy (IE) of carbon monoxide and appearance energies (AE) for its fragment ions in different states are determined by measurements of photoionization efficiency spectra (PIES). Ab initio calculations have been performed to investigate the reaction mechanism of dissociative photoionization of carbon monoxide. On the basis of experimental and predicted theoretical results, the mechanisms of photoionization and dissociative photoionization of molecular CO are discussed, and sixteen dissociative photoionization processes are proposed. The equilibrium geometries and harmonic vibrational frequencies of CO molecule, and its parent cation were calculated by using MP2 (full) method. The differences of configurations between them are also discussed on the basis of theoretical calculations. According to our results, the experimental IE of CO molecule, and dissociation energies (E d ) of possible dissociative channels are in reasonable agreement with the calculated values of the proposed photodissociation channels

  12. Hydrogen retention in carbon-tungsten co-deposition layer formed by hydrogen RF plasma

    International Nuclear Information System (INIS)

    Katayama, K.; Kawasaki, T.; Manabe, Y.; Nagase, H.; Takeishi, T.; Nishikawa, M.

    2006-01-01

    Carbon-tungsten co-deposition layers (C-W layers) were formed by sputtering method using hydrogen or deuterium RF plasma. The deposition rate of the C-W layer by deuterium plasma was faster than that by hydrogen plasma, where the increase of deposition rate of tungsten was larger than that of carbon. This indicates that the isotope effect on sputtering-depositing process for tungsten is larger than that for carbon. The release curve of hydrogen from the C-W layer showed two peaks at 400 deg. C and 700 deg. C. Comparing the hydrogen release from the carbon deposition layer and the tungsten deposition layer, it is considered that the increase of the release rate at 400 deg. C is affected by tungsten and that at 700 deg. C is affected by carbon. The obtained hydrogen retention in the C-W layers which have over 60 at.% of carbon was in the range between 0.45 and 0.16 as H/(C + W)

  13. Recent changes in atmospheric carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.; Masarie, K.A. (Univ. of Colorado, Boulder, CO (United States)); Tans, P.P.; Lang, P.M. (National Oceanic and Atmospheric Administration, Boulder, CO (United States))

    1994-03-18

    Measurements of carbon monoxide (CO) in air samples collected from 27 locations between 71[degrees]N and 41[degrees]S show that atmospheric levels of this gas have decreased worldwide over the past 2 to 5 years. During this period, CO decreased at nearly a constant rate in the high northern latitudes. In contrast, in the tropics an abrupt decrease occurred beginning at the end of 1991. In the Northern Hemisphere, CO decreased at a spatially and temporally averaged rate of 7.3 ([+-]0.9) parts per billion per year (6.1 percent per year) from June 1990 to June 1993, whereas in the Southern Hemisphere, CO decreased 4.2 ([+-]0.5) parts per billion per year (7.0 percent per year). This recent change is opposite a long-term trend of a 1 to 2 percent per year increase inferred from measurements made in the Northern Hemisphere during the past 30 years.

  14. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  15. Experimental reduction of simulated lunar glass by carbon and hydrogen and implications for lunar base oxygen production

    International Nuclear Information System (INIS)

    Mckay, D.S.; Morris, R.V.; Jurewicz, A.J.

    1991-01-01

    The most abundant element in lunar rocks and soils is oxygen which makes up approximately 45 percent by weight of the typical lunar samples returned during the Apollo missions. This oxygen is not present as a gas but is tightly bound to other elements in mineral or glass. When people return to the Moon to explore and live, the extraction of this oxygen at a lunar outpost may be a major goal during the early years of operation. Among the most studied processes for oxygen extraction is the reduction of ilmenite by hydrogen gas to form metallic iron, titanium oxide, and oxygen. A related process is proposed which overcomes some of the disadvantages of ilmenite reduction. It is proposed that oxygen can be extracted by direct reduction of native lunar pyroclactic glass using either carbon, carbon monoxide, or hydrogen. In order to evaluate the feasibility of this proposed process a series of experiments on synthetic lunar glass are presented. The results and a discussion of the experiments are presented

  16. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. London atmospheric Hydrogen and Carbon Monoxide: 12 year record, fluxes, and diurnal studies.

    Science.gov (United States)

    Lanoisellé, M.; Fisher, R. E.; Sriskantharajah, S.; Lowry, D.; Fowler, C. M. R.; Nisbet, E. G.

    2009-04-01

    Atmospheric hydrogen (H2) and carbon monoxide (CO) have been measured at the Royal Holloway site, 30km WSW of London, for 12 years. This site receives air that has passed over London when there are easterly winds and cleaner, background air when the wind comes from the SW. H2 and CO mixing ratios are measured continuously at 30 minute intervals on a Trace Analytical Reduction Gas Detector coupled to a HP5890 GC since September 1996, and on a Peak Performer I (or PP1) since July 2007 at 5 minute intervals. Both instruments use 2 1/8" packed columns in series: a Unibeads 1S and a Molecular Sieve 5A. The PP1 detector (Reduced Compound Photometer) is an updated version of the old RGD2, and both use zero air as the carrier gas. CO is calibrated twice a month against NOAA-CMDL standards (mixing ratios range: 186 to 300 ppb). H2 was uncalibrated until 2006, but is now calibrated monthly against internal standards (range 530 to 750 ppb) measured at MPI-Jena as part of the Eurohydros project. A linearity correction is applied to each instrument, based on the standard measurements. A secondary standard is measured before each sample on the GC-RGD and another one is measured 4 to 6 times in a row twice a day on the PP1. A target gas is measured daily on both instruments since September 2008. The secondary standards and the target gas are dry ambient air in 70L stainless steel tanks filled to a pressure of 8 bars. Comparison of results from the two instruments suggests that for the most part the data are in good agreement, but an interlaboratory round robin comparison exercise for the Eurohydros project showed that the RGD is not linear at low values of CO. This is particularly noticeable for CO levels below 150 ppb. The long-term record of CO at Royal Holloway shows a significant decline since the start of the record: the annual mean CO mixing ratio in 2008 was three times lower than in 1997. Flux calculations, by ratio against 222Rn, CH4 and CO2, suggest CO emissions

  18. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.

    Science.gov (United States)

    Khadka, Nimesh; Dean, Dennis R; Smith, Dayle; Hoffman, Brian M; Raugei, Simone; Seefeldt, Lance C

    2016-09-06

    The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild-type nitrogenase and a nitrogenase with amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by two or eight electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it is demonstrated that nitrogenase preferentially reduces CO2 by two electrons/protons to formate (HCOO(-)) at rates >10 times higher than rates of CO2 reduction to CO and CH4. Quantum mechanical calculations on the doubly reduced FeMo-cofactor with a Fe-bound hydride and S-bound proton (E2(2H) state) favor a direct reaction of CO2 with the hydride ("direct hydride transfer" reaction pathway), with facile hydride transfer to CO2 yielding formate. In contrast, a significant barrier is observed for reaction of Fe-bound CO2 with the hydride ("associative" reaction pathway), which leads to CO and CH4. Remarkably, in the direct hydride transfer pathway, the Fe-H behaves as a hydridic hydrogen, whereas in the associative pathway it acts as a protic hydrogen. MoFe proteins with amino acid substitutions near FeMo-cofactor (α-70(Val→Ala), α-195(His→Gln)) are found to significantly alter the distribution of products between formate and CO/CH4.

  19. The chest X-ray in pulmonary capillary haemorrhage: correlation with carbon monoxide uptake

    International Nuclear Information System (INIS)

    Bowley, N.B.; Hughes, J.M.B.; Steiner, R.E.

    1979-01-01

    Serial changes in carbon monoxide uptake (Ksub(CO) or Dsub(L)CO/VA) were used to monitor episodes of pulmonary capillary haemorrhage in Goodpasture's syndrome (13 cases), immune complex nephritis (three cases) and idiopathic haemosiderosis (one case). Air-space shadowing on the chest X-ray (on a scoring system 0 to 12) was assessed in the light of the changes of Ksub(CO). In 14 out of 27 episodes of bleeding, the rise and fall of Ksub(CO) was matched in time by the appearance and disappearance of air-space shadowing on the chest X-ray. In six episodes the chest X-ray remained normal despite a rise of Ksub(CO). In two cases air-space shadowing appeared up to 48 h after the rise of Ksub(CO). On five occasions chest X-ray abnormalities preceded the rise of Ksub(CO) but chest infection or fluid overload accounted for three of these. In cases with suspected pulmonary capillary haemorrhage, measurements of carbon monoxide uptake will provide additional information and will assist in the interpretation of the chest X-ray. (author)

  20. Computed tomography of delayed encephalopathy of acute carbon monoxide poisoning - correlation with clinical findings -

    International Nuclear Information System (INIS)

    Suh, Chang Hae; Chung, Sung Hoon; Choo, In Wook; Chang, Kee Hyun

    1986-01-01

    Cerebral computed tomography (CT) findings were described in twenty-six cases with the late sequelae of acute carbon monoxide poisoning and were computed with the neurological symptoms and signs. The CT findings include symmetrical periventricular white matter low density in five cases, globes pallidus low density in six cases, ventricular dilatation in seven cases, ventricular dilatation and sulci widening in three cases, and normal findings in ten cases. Only one case showed low densities in both periventricular white matter and globes pallidus. Late sequelae of the interval from of carbon monoxide poisoning were clinically categorized as cortical dysfunction, parkinsonian feature, and cerebella dysfunction. The severity of the clinical symptoms and signs of neurological sequelae is generally correlated with presence and multiplicity of abnormal brain CT findings. But of fourteen cases showing the parkinsonian feature, only five cases had low density of globes pallidus in brain CT. Another case showing small unilateral low density of globes pallidus had no parkinsonian feature but showed mild cortical dysfunction.

  1. Serum bilirubin value predicts hospital admission in carbon monoxide-poisoned patients. Active player or simple bystander?

    Directory of Open Access Journals (Sweden)

    Gianfranco Cervellin

    Full Text Available OBJECTIVES: Although carbon monoxide poisoning is a major medical emergency, the armamentarium of recognized prognostic biomarkers displays unsatisfactory diagnostic performance for predicting cumulative endpoints. METHODS: We performed a retrospective and observational study to identify all patients admitted for carbon monoxide poisoning during a 2-year period. Complete demographical and clinical information, along with the laboratory data regarding arterial carboxyhemoglobin, hemoglobin, blood lactate and total serum bilirubin, was retrieved. RESULTS: The study population consisted of 38 poisoned patients (23 females and 15 males; mean age 39±21 years. Compared with discharged subjects, hospitalized patients displayed significantly higher values for blood lactate and total serum bilirubin, whereas arterial carboxyhemoglobin and hemoglobin did not differ. In a univariate analysis, hospitalization was significantly associated with blood lactate and total serum bilirubin, but not with age, sex, hemoglobin or carboxyhemoglobin. The diagnostic performance obtained after combining the blood lactate and total serum bilirubin results (area under the curve, 0.90; 95% CI, 0.81-0.99; p<0.001 was better than that obtained for either parameter alone. CONCLUSION: Although it remains unclear whether total serum bilirubin acts as an active player or a bystander, we conclude that the systematic assessment of bilirubin may, alongside lactate levels, provide useful information for clinical decision making regarding carbon monoxide poisoning.

  2. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Falconer, J.L.; Zagli, A.E.

    1980-04-01

    Temperature-programed desorption and reaction studies showed that increasing amounts of CO/sub 2/ adsorbed on silica-supported 6.9% nickel with increasing temperature to a maximum adsorption at approx. 443/sup 0/K, i.e., that the adsorption was activated; that CO/sub 2/ desorbed partly as CO/sub 2/ with the peak at 543/sup 0/K, and partly as CO with several peaks; that in the presence of hydrogen, nearly all adsorbed CO/sub 2/ desorbed as methane, and a small amount as CO; and that the methane desorption peaks from adsorbed CO and CO/sub 2/ both occurred at 473/sup 0/K. These results suggested that carbon dioxide adsorbed dissociatively as a carbon monoxide and an oxygen species. An observed absence of higher hydrocarbons in the methanation products of carbon dioxide was attributed to a high hydrogen/carbon monoxide surface ratio caused by the activated carbon dioxide adsorption.

  3. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  4. Ion beam analysis of hydrogen retained in carbon nanotubes and carbon films

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Holland, O.W.; Naab, F.U.; Mitchell, L.J.; Dhoubhadel, M.; Duggan, J.L.

    2006-01-01

    Carbon nanotubes (CNTs) are studied as a possible hydrogen storage medium for future energy needs. Typically, hydrogen is stored in the CNTs by exposure of the material to a high-pressure H 2 atmosphere at different temperatures. The maximum hydrogen concentrations stored following this method and measured using ion beam analysis do not exceed 1 wt.%. Introduction of defects by ion irradiation (i.e. implantation) prior to high-pressure H 2 treatment, offers an alternative method to activate H adsorption and enhance the chemisorption of hydrogen. This is a preliminary work where hydrogen was introduced into single-wall nanotubes and carbon films by low-energy (13.6 keV) hydrogen ion implantation. Elastic recoil detection was used to measure the quantity and depth distribution of hydrogen retained in the carbonaceous materials. Results show that there are substantial differences in the measured profiles between the CNT samples and the vitreous carbon. On another hand, only ∼43% of the implanted hydrogen in the CNTs is retained in the region where it should be located according to the SRIM simulations for a solid carbon sample

  5. Air pollution and climate-forcing impacts of a global hydrogen economy.

    Science.gov (United States)

    Schultz, Martin G; Diehl, Thomas; Brasseur, Guy P; Zittel, Werner

    2003-10-24

    If today's surface traffic fleet were powered entirely by hydrogen fuel cell technology, anthropogenic emissions of the ozone precursors nitrogen oxide (NOx) and carbon monoxide could be reduced by up to 50%, leading to significant improvements in air quality throughout the Northern Hemisphere. Model simulations of such a scenario predict a decrease in global OH and an increased lifetime of methane, caused primarily by the reduction of the NOx emissions. The sign of the change in climate forcing caused by carbon dioxide and methane depends on the technology used to generate the molecular hydrogen. A possible rise in atmospheric hydrogen concentrations is unlikely to cause significant perturbations of the climate system.

  6. Acute carbon monoxide intoxication : the relation between MR findings and clinical outcome

    International Nuclear Information System (INIS)

    Chang, Jin Bae; Jeong, Hae Woong; Kim, Ki Nam; Kim, Dong Wook; Kim, Chang Soo

    1999-01-01

    To analyse MR findings of various involving sites and the relation between such findings and clinical outcome, the authors retrospectively reviewed MR images of acute carbon monoxide intoxication. In 12 patients, MR images obtained from several hours to 12 days after acute carbon monoxide intoxication were reviewed. The images were analysed with regard to involved sites, symmetricity, signal intensity, and the presence or absence of hemorrhage, and the relationship between MR findings and clinical outcome; the presence of delayed encephalopathy was then determined. The globus pallidus(n=9), white matter(n=3), [centrum semiovale(n=2), periventricular white matter(n=1)] and gyrus(n=6) [inferior temporal gyrus(n=2), cingulate gyrus(n=1), precentral gyrus(n=1), hippocampal gyrus(n=1), parahippocampal gyrus(n=1)] were typically involved, and there was also involvenent of the corpus callosum(n=3), thalamus(n=2) and midbrain(n=2). All lesions of the globus pallidus, thalamus, midbrain and temporal lobe were bilaterally symmetric. In all these cases, subtle or prominent low signal intensity was seen on spin-echo T1WI, and high signal intensity on PDWI and T2WI. Some lesions of the globus pallidus(n=1), thalamus(n=1) and midbrain(n=1) were associated with hemorrhage, which occurred during the early subacute stage and was seen on high/low signal intensity T1/T2WI images. Acute cerebral(n=1) and cerebellar(n=1) infarctions were also seen. Cerebral white matter involvement correlated with poor clinical outcome, and in two cases, delayed encephalopathy developed. In these cases of acute carbon monoxide intoxication, the globus pallidus, white matter, cortex and hippocampus were frequently involved, and there was also involvement of various sites such as the corpus callosum, thalamus and midbrain. Lesions of the temporal lobe, thalamus and midbrain were bilaterally symmetric. The involvement of cerebral white matter and the presence of delayed encephalopathy can influence

  7. Status epilepticus and cardiopulmonary arrest in a patient with carbon monoxide poisoning with full recovery after using a neuroprotective strategy: a case report

    Directory of Open Access Journals (Sweden)

    Abdulaziz Salman

    2012-12-01

    Full Text Available Abstract Introduction Carbon monoxide poisoning can be associated with life-threatening complications, including significant and disabling cardiovascular and neurological sequelae. Case presentation We report a case of carbon monoxide poisoning in a 25-year-old Saudi woman who presented to our facility with status epilepticus and cardiopulmonary arrest. Her carboxyhemoglobin level was 21.4 percent. She made a full recovery after we utilized a neuroprotective strategy and normobaric oxygen therapy, with no delayed neurological sequelae. Conclusions Brain protective modalities are very important for the treatment of complicated cases of carbon monoxide poisoning when they present with neurological toxicities or cardiac arrest. They can be adjunctive to normobaric oxygen therapy when the use of hyperbaric oxygen is not feasible.

  8. Room-temperature cold-welding of gold nanoparticles for enhancing the electrooxidation of carbon monoxide.

    Science.gov (United States)

    Liu, Cai; Li, Yong-Jun; Sun, Shi-Gang; Yeung, Edward S

    2011-04-21

    A cold-welding strategy is proposed to rapidly join together Au nanoparticles (AuNPs) into two-dimensional continuous structures for enhancing the electrooxidation of carbon monoxide by injecting a mixture of ethanol and tolulene into the bottom of a AuNP solution. © The Royal Society of Chemistry 2011

  9. Chlorination of niobium oxide in the presence of carbon monoxide

    International Nuclear Information System (INIS)

    Freitas, L.R. de

    1984-01-01

    The chlorination kinetics of niobium pentoxide in the presence of carbon monoxide between 500-800 0 C of temperature is studied. The following variable that influences on the reaction rate are analysed: gas flow, geometry and volume of the Nb 2 O 5 samples, reaction temperature and composition of the chlorinated mixture. At the same time, two other materials were studied: the CaO.Nb 2 O 5 (synthetized in laboratory) and pyrochlorine concentrates. The three materials are compared for the chlorination method used. (M.A.C.) [pt

  10. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Yi

    2018-01-01

    This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm...... increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on...

  11. Effect of multi-walled carbon nanotubes aspect ratio and temperature on the dielectric behavior of alternating alkene-carbon monoxide polyketone nanocomposites

    Science.gov (United States)

    Abu-Surrah, Adnan S.; Abdul Jawad, Saadi; Al-Ramahi, Esraa; Hallak, Awni B.; Khattari, Z.

    2015-04-01

    New alternating poly(propylene-alt-carbon monoxide/ethylene-alt-carbon monoxide) (PECO)/multiwalled carbon nanotubes (MWCNTs) composites have been prepared. Dielectric permittivity, electric modulus and ac conductivity of the isolated materials were investigated as a function of fiber aspect ratio, frequency and temperature. For aspect ratio of 30 and 200, a transition from insulator to semiconductor was observed at frequency 1×104. However, for high aspect ratio sample (660), no transition was observed and the conductivity is frequency independent in the measured frequency range of 10-106 Hz. The conductivity increases from about 1×10-4 for the sample that contain fibers of aspect ratio 30 and reaches 5×10-2 (Ω m)-1 for aspect ratio was 660. This behavior can be modeled by a circuit that consists of a contact resistance in series with a parallel combination of resistance (R) and capacitance (C). The calculated activation energy for sample filled with fibers having aspect ratio 30 is about 0.26 eV and decreases to about 0.16 eV when the aspect ratio is 660.

  12. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized at 300 to 900 0 C and 5 x 10 -7 torr. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C, preceded by desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface. The sticking coefficients were plotted as a function of Langmuirs of carbon dioxide exposure. Between 400 and 600 0 C, the length of the exposure was found to be more important than the temperature of the exposure in determining the sticking coefficient. Some evolution of carbon monoxide was noted particularly in the 400 to 500 0 C region. An 80% conversion of carbon dioxide to carbon monoxide was measured at 500 0 C. The film pumping speeds were compared with published vapor pressure data for erbium. This comparison indicated that a significant portion of the pumping action observed at temperatures of 800 0 C and above was due to evaporation of erbium metal

  13. Evidence for long-range transport of carbon monoxide in the Southern Hemisphere from SCIAMACHY observations

    NARCIS (Netherlands)

    Gloudemans, A.M.S.; Krol, M.C.; Meirink, J.F.; de Laat, A.T.J.; van der Werf, G.R.; Schrijver, H.; van den Broek, M.M.P.; Aben, I.

    2006-01-01

    The SCIAMACHY satellite instrument shows enhanced carbon monoxide (CO) columns in the Southern Hemisphere during the local Spring. Chemistry-transport model simulations using the new GFEDv2 biomass-burning emission database show a similar temporal and spatial CO distribution, indicating that the

  14. 77 FR 8252 - Adequacy Status of the Anchorage, Alaska, Carbon Monoxide Maintenance Plan for Transportation...

    Science.gov (United States)

    2012-02-14

    ... a SIP means that transportation activities will not produce new air quality violations, worsen... Anchorage, Alaska, Carbon Monoxide Maintenance Plan for Transportation Conformity Purposes AGENCY... Transportation & Public Facilities, and the U.S. Department of Transportation will be required to use [[Page 8253...

  15. UV-induced carbon monoxide emission from living vegetation

    DEFF Research Database (Denmark)

    Bruhn, Dan; Albert, Kristian Rost; Mikkelsen, Teis Nørgaard

    2013-01-01

    The global burden of carbon monoxide (CO) is rather uncertain. In this paper we address the potential for UV-induced CO emission by living terrestrial vegetation surfaces. Real-time measurements of CO concentrations were made with a cavity enhanced laser spectrometer connected in closed loop...... to either an ecosystem chamber or a plant-leaf scale chamber. Leaves of all examined plant species exhibited emission of CO in response to artificial UV-radiation as well as the UV-component of natural solar radiation. The UV-induced rate of CO emission exhibited a rather low dependence on temperature......, indicating an abiotic process. The emission of CO in response to the UV-component of natural solar radiation was also evident at the ecosystem scale....

  16. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  17. [Estimation of carbon monoxide poisonings frequency, based on carboxyhemoglobin determinations performed in Toxicology Laboratory in Krakow in years 2002-2010].

    Science.gov (United States)

    Gomółka, Ewa; Gawlikowski, Tomasz

    2011-01-01

    Carboxyhemoglobin is a specific biomarker of carbon monoxide (CO) exposition. The source of CO indoors are most often gas, oil or carbon furnaces and stoves or bathroom gas heaters. CO intoxication during fire or exposition to car fumes are sporadic. The aim of the study was: to present the frequency of CO intoxications diagnosed in Laboratory of Analytical Toxicology UJ Collegium Medicum in years 2002 - 2010, to present the season trends of CO intoxications, show sex and age structure of CO intoxicated patients. Material were Laboratory of Analytical Toxicology and Drug Monitoring data records from years 2002 - 2010. CO intoxication was confirmed and recognized when COHb blood concentration was higher than 10%. Annual number of CO poisonings was stable in the period of time, varied from 209 to 296 (mean 256,2 CO poisonings per year). Sex structure of CO poisoned patients showed little female dominance (54.6%). Carbon monoxide poisonings distribution was seasonal. The season of intensified CO intoxications lasted from October to March, the highest intensity was in December and January. The CO poisoning problem is still actual. Society education about security, recognition, diagnosis and practice in carbon monoxide exposition is still needful.

  18. Storage of hydrogen in nanostructured carbon materials

    OpenAIRE

    Yürüm, Yuda; Yurum, Yuda; Taralp, Alpay; Veziroğlu, T. Nejat; Veziroglu, T. Nejat

    2009-01-01

    Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hydrogen. Accordingly, the main goal of this report is to overview the challenges, distinguishing trait...

  19. Intra-pulse Cavity Enhanced Measurements of Carbon Monoxide in a Rapid Compression Machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-07

    A laser absorption sensor for carbon monoxide concentration was developed for combustion studies in a rapid compression machine using a pulsed quantum cascade laser near 4.89 μm. Cavity enhancement reduced minimum detection limit down to 2.4 ppm at combustion relevant conditions. Off-axis alignment and rapid intra-pulse down-chirp resulted in effective suppression of cavity noise.

  20. Catalytic Reduction of Nitrous Oxide with Carbon Monoxide over Calcined Co–Mn–Al Hydrotalcite

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Obalová, L.; Kovanda, F.; Jirátová, Květa

    2008-01-01

    Roč. 137, 2-4 (2008), s. 358-389 ISSN 0920-5861 R&D Projects: GA ČR(CZ) GA106/05/0366 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * carbon monoxide * mixed oxide catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.004, year: 2008

  1. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  2. Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity

    KAUST Repository

    Savagatrup, Suchol

    2017-09-27

    Carbon monoxide (CO) outcompetes oxygen when binding to the iron center of hemeproteins, leading to a reduction in blood oxygen level and acute poisoning. Harvesting the strong specific interaction between CO and the iron porphyrin provides a highly selective and customizable sensor. We report the development of chemiresistive sensors with voltage-activated sensitivity for the detection of CO comprising iron porphyrin and functionalized single-walled carbon nanotubes (F-SWCNTs). Modulation of the gate voltage offers a predicted extra dimension for sensing. Specifically, the sensors show a significant increase in sensitivity toward CO when negative gate voltage is applied. The dosimetric sensors are selective to ppm levels of CO and functional in air. UV/Vis spectroscopy, differential pulse voltammetry, and density functional theory reveal that the in situ reduction of FeIII to FeII enhances the interaction between the F-SWCNTs and CO. Our results illustrate a new mode of sensors wherein redox active recognition units are voltage-activated to give enhanced and highly specific responses.

  3. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  4. Carbon deposition and hydrogen retention in tokamak

    International Nuclear Information System (INIS)

    Tanabe, Tetsuo

    2006-01-01

    The results of measurements on co-deposition of hydrogen isotopes and wall materials, hydrogen retention, redeposition of carbon and deposition of hydrogen on PMI of JT-60U are described. From above results, selection of plasma facing material and ability of carbon wall is discussed. Selection of plasma facing materials in fusion reactor, characteristics of carbon materials as the plasma facing materials, erosion, transport and deposition of carbon impurity, deposition of tritium in JET, results of PMI in JT-60, application of carbon materials to PFM of ITER, and future problems are stated. Tritium co-deposition in ITER, erosion and transport of carbon in tokamak, distribution of tritium deposition on graphite tile used as bumper limiter of TFTR, and measurement results of deposition of tritium on the Mark-IIA divertor tile and comparison between them are described. (S.Y.)

  5. Carbon monoxide budget in the northern hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Bakwin, P.S.; Tans, P.P. (Climate Monitoring and Diagnostics Lab., Boulder, CO (United States)); Novelli, P.C. (Univ. of Colorado, Boulder, CO (United States))

    1994-03-15

    To improve urban air quality the major industrialized nations of the West took steps during the 1970s and 1980s to reduce carbon monoxide (CO) emissions from automobiles and other industrial sources. Overall, CO/CO[sub 2] emission ratios from the mix of fossil fuel combustion sources have been reduced by about half during 1976-1990. Also, the tropospheric abundance of hydroxyl radical (OH), which is the main sink for CO, is proposed to have increased globally by about 1.0 [+-] 0.8% yr[sup [minus]1]. The authors use a simple two-box model to examine the impact of shrinking emissions and increasing OH on the global abundance of CO. They find that these factors contribute about equally in reducing CO levels in the Northern Hemisphere troposphere by about 1.8 [+-] 0.8 ppb yr[sup [minus]1] on average. 19 refs., 1 fig.

  6. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    International Nuclear Information System (INIS)

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil; Lee, Seunghwan; Moon, Dong Ju

    2014-01-01

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station

  7. Determining the diagnostic value of endogenous carbon monoxide in Chronic Obstructive Pulmonary Disease exacerbations

    International Nuclear Information System (INIS)

    Dogan, N. O.; Corbacioglu, S. K.; Bildik, F.; Kilicaslan, I.; Hakoglu, O.; Gunaydin, G. P.; Cevik, Y.; Ulker, V.; Gokcen, E.

    2014-01-01

    Objective: To determine whether endogenous carbon monoxide levels in exacerbations of Chronic Obstructive Pulmonary Disease patients were higher compared to healthy individuals and to investigate alteration of carbon monoxide levels across the three different severity stages of Global Initiative for Chronic Obstructive Lung Disease criteria related to Chronic Obstructive Pulmonary Disease exacerbations. Methods: The prospective study was conducted from January to March 2011 at two medical institutions in Ankara, Turkey, and comprised patients of acute Chronic Obstructive Pulmonary Disease exacerbations. The severity of the exacerbations was based on the Global Initiative for Chronic Obstructive Lung Disease criteria. Patients with active tobacco smoking, suspicious carbon monoxide poisoning and uncertain diagnosis were excluded. healthy control subjects who did not have any comorbid diseases and smoking habitus were also enrolled to compare the differences between carboxyhaemoglobin levels A two-tailed Mann-Whitney U test with Bonferroni correction was done following a Kruskal-Wallis test for statistical purposes. Results: There were 90 patients and 81 controls in the study. Carboxyhaemoglobin levels were higher in the patients than the controls (p<0.001). As for the three severity stages, Group 1 had a median carboxyhaemoglobin of 1.6 (0.95-2.00). The corresponding levels in Group 2 (1.8 (1.38-2.20)) and Group 3 (1.9 (1.5-3.0)) were higher than the controls (p<0.001 and p<0.005 respectively). No statistically significant difference between Group 1 and the controls (1.30 (1.10-1.55)) was observed (p<0.434). Conclusion: Carboxyhaemoglobin levels were significantly higher in exacerbations compared with the normal population. Also, in more serious exacerbations, carboxyhaemoglobin levels were significantly increased compared with healthy individuals and mild exacerbations. (author)

  8. Electrocatalytic oxidation of carbon monoxide

    Directory of Open Access Journals (Sweden)

    Manuel de Jesus Santiago Farias

    2009-01-01

    Full Text Available Este trabalho discute alguns aspectos importantes relacionados à reação de eletrooxidação do monóxido de carbono sobre monocristais de platina, em meio ácido. Aspectos mecanísticos são discutidos em termos da formação das estruturas compactas que o CO forma quando este é adsorvido. As principais idéias aqui apresentadas, levam em consideração as existências dessas estruturas. Os clássicos mecanismos Lagmuir-Hinshelwood e Eley-Rideal são aqui discutidos, especialmente o primeiro considerando a mobilidade do CO e também a nucleação e crescimento de ilhas formadas por espécies adsorvidas contendo oxigênio.////////// This work discusses some important aspects related to the carbon monoxide electrooxidation reaction on Pt single crystal electrodes in acidic media. The mechanistic aspects are discussed in terms of the formation of compact structures developed when CO is adsorbed. The main ideas presented here are focused on the mechanistic aspects that take into account the existence of such structures. The classical kinetic mechanisms of Lagmuir-Hinshelwood and Eley-Rideal are discussed considering the superficial mobility of CO or nucleation-growing of islands formed by oxygen-containing adsorbates.

  9. Variations of time-to-incapacitation and carboxyhemoglobin values in rats exposed to two carbon monoxide concentrations.

    Science.gov (United States)

    1993-05-01

    It has been suggested that passenger protective breathing equipment protect aircraft passengers from smoke for 5 min during an evacuation phase and for 35 min during an in-flight-plus-evacuation phase. Carbon monoxide (CO) is one of the most abundant...

  10. Effect of Carbon Monoxide on Active Oxygen Metabolism of Postharvest Jujube

    OpenAIRE

    Shaoying Zhang; Qin Li; Yulan Mao

    2014-01-01

    To prolong the shelf life postharvest jujube, the effect of carbon monoxide (CO) on senescence of postharvest jujube in relation to active oxygen metabolism was investigated. Jujubes were fumigated with CO gas at 5, 10, 20 or 40μmol/L for 1 h, and then stored for 30 days at room temperature. Changes in membrane permeability, malonaldehyde (MDA), H2O2, O2•− content, and activities of active oxygen metabolism associated enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase...

  11. The effect of modified atmosphere packaging with carbon monoxide on the storage quality of master-packaged fresh pork

    NARCIS (Netherlands)

    Wilkinson, B.H.P.; Janz, J.A.M.; Morel, P.C.H.; Purchas, R.W.; Hendriks, W.H.

    2006-01-01

    Modified atmosphere packaging with carbon dioxide is effective for prolonging shelf-life of fresh meat. Addition of carbon monoxide to the system provides the advantage of enhancing meat colour. The study objective was to determine the effect of CO2-MAP + 0.4% CO, vs. 100% CO2-MAP, on the

  12. Carbon monoxide (CO) intoxication: Computerized tomography and magnetic resonance

    International Nuclear Information System (INIS)

    Benitez Gomez, S.; Aguilera Navarro, J.M.; Gonzalez Garcia, A.; Gonzalez Marcos, J.R.; Fernandez Cruz, J.

    1993-01-01

    We present a case of acute carbon monoxide (CO) intoxication in a previously healthy 13-year-old girl, who was found in the bathroom, unconscious and with the gas-burning hot water thank operating. The neuroradiological study showed bilateral, symmetrical cortical and subcortical parietooccipital and temporal lesions as well as damage to the basal lymph nodes. These lesions were related to the anoxic situation induced by this type of intoxication. Clinicoradiological follow-up included CT and MR sequences over a period of 10 months. In this cases, we stress the greater sensitivity of MR in the early detection of the characteristic lesions in this situation and we analyze the evolution of the process. (Author)

  13. Hydrothermal Synthesis of Pt-, Fe-, and Zn-doped SnO2 Nanospheres and Carbon Monoxide Sensing Properties

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Pure and M-doped (M = Pt, Fe, and Zn SnO2 nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based on the as-synthesized nanostructures, and carbon monoxide sensing properties were systematically measured. Compared to pure, Fe-, and Zn-doped SnO2 nanospheres, the Pt-doped SnO2 nanospheres sensor exhibits higher sensitivity, lower operating temperature, more rapid response and recovery, better stability, and excellent selectivity. In addition, a theoretical study based on the first principles calculation was conducted. All results demonstrate the potential of Pt dopant for improving the gas sensing properties of SnO2-based sensors to carbon monoxide.

  14. Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs

    International Nuclear Information System (INIS)

    Jiao, Kui; Zhou, Yibo; Du, Qing; Yin, Yan; Yu, Shuhai; Li, Xianguo

    2013-01-01

    Highlights: ► Simulations of CO poisoning in HT-PEMFC with different flow channels are conducted. ► Parallel and serpentine designs result in least and most CO effects, respectively. ► General CO distributions in CLs are similar with different flow channel designs. - Abstract: The performance of high temperature proton exchange membrane fuel cell (HT-PEMFC) is significantly affected by the carbon monoxide (CO) in hydrogen fuel, and the flow channel design may influence the CO poisoning characteristics by changing the reactant flow. In this study, three-dimensional non-isothermal simulations are carried out to investigate the comprehensive flow channel design and CO poisoning effects on the performance of HT-PEMFCs. The numerical results show that when pure hydrogen is supplied, the interdigitated design produces the highest power output, the power output with serpentine design is higher than the two parallel designs, and the parallel-Z and parallel-U designs have similar power outputs. The performance degradation caused by CO poisoning is the least significant with parallel flow channel design, but the most significant with serpentine and interdigitated designs because the cross flow through the electrode is stronger. At low cell voltages (high current densities), the highest power outputs are with interdigitated and parallel flow channel designs at low and high CO fractions in the supplied hydrogen, respectively. The general distributions of absorbed hydrogen and CO coverage fractions in anode catalyst layer (CL) are similar for the different flow channel designs. The hydrogen coverage fraction is higher under the channel than under the land, and is also higher on the gas diffusion layer (GDL) side than on the membrane side; and the CO coverage distribution is opposite to the hydrogen coverage distribution

  15. A Southern Hemisphere atmospheric history of carbon monoxide from South Pole firn air

    Science.gov (United States)

    Verhulst, K. R.; Aydin, M.; Novelli, P. C.; Holmes, C. D.; Prather, M. J.; Saltzman, E. S.

    2013-12-01

    Carbon monoxide (CO) is a reactive trace gas and is important to tropospheric photochemistry as a major sink of hydroxyl radicals (OH). Major sources of CO are fossil fuel combustion, linked mostly to automotive emissions, biomass burning, and oxidation of atmospheric methane. Understanding changes in carbon monoxide over the past century will improve our understanding of man's influence on the reactivity of the atmosphere. Little observational information is available about CO levels and emissions prior to the 1990s, particularly for the Southern Hemisphere. The NOAA global flask network provides the most complete instrumental record of CO, extending back to 1988. Annually averaged surface flask measurements suggest atmospheric CO levels at South Pole were relatively stable from 2004-2009 at about 51 nmol mol-1 [Novelli and Masarie, 2013]. In this study, a 20th century atmospheric history of CO is reconstructed from South Pole firn air measurements, using a 1-D firn air diffusion model. Firn air samples were collected in glass flasks from two adjacent holes drilled from the surface to 118 m at South Pole, Antarctica during the 2008/2009 field season and CO analysis was carried out by NOAA/CCG. Carbon monoxide levels increase from about 45 nmol mol-1 in the deepest firn sample at 116 m to 52 nmol mol-1 at 107 m, and remain constant at about 51-52 nmol mol-1 at shallower depths. Atmospheric histories based on the firn air reconstructions suggest that CO levels over Antarctica increased by roughly 40% (from about 36 to 50 nmol mol-1) between 1930-1990, at a rate of about 0.18 nmol mol-1 yr-1. Firn air and surface air results suggest the rate of CO increase at South Pole slowed considerably after 1990. The firn air-based atmospheric history is used to infer changes in Southern Hemisphere CO emissions over the 20th century.

  16. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  17. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  18. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  19. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    B Buczek; E Wolak

    2005-01-01

    temperatures than liquefaction. Last years have brought the interest in hydrogen storage in porous carbon materials, caused by the design and accessibility of new materials, such as fullerenes, carbon nano-tubes and nano-fibers. In particular the tubular carbon structures are perspective highly adsorbing materials, for their surface adsorption (on the internal and external surface of the nano-tubes), and for the effect of capillary condensation. Data presented in Table 1 show that the amount of hydrogen adsorbed on these new materials depends of their modification and on the type of carbon precursor. In this work the concept of hydrogen storage by adsorption was analyzed. The discussion is based on measurements of hydrogen adsorption on commercial active carbon in the temperature range 77 - 298 K at pressures up to 4 MPa. The amount of gas that can be stored in an adsorption system depends on the adsorbent characteristics and the operating conditions. Adsorption method was compared with another one taking into account both technical and economical aspects. The results show that the adsorption technique could provide a viable method for hydrogen storage

  20. Hydrogen adsorption on partially oxidised microporous carbons

    International Nuclear Information System (INIS)

    J B Parra; C O Ania; C J Duran Valle; M L Sanchez; C Otero Arean

    2005-01-01

    The search for cost effective adsorbents for large scale gas separation, storage and transport constitutes a present day strategic issue in the energy sector, propelled mainly by the potential use of hydrogen as an energy vector in a sustainable (and cleaner) energy scenario. Both, activated carbons and carbon based nano-structured materials have been proposed as potential candidates for reversible hydrogen storage in cryogenically cooled vessels. For that purpose, surface modification so as to enhance the gas solid interaction energy is desirable. We report on hydrogen adsorption on microporous (active) carbons which have been partially oxidised with nitric acid and ammonium persulfate. From the corresponding hydrogen adsorption isotherms (Fig. 1) an isosteric heat of about 3 kJ mol -1 was derived. This value is in agreement with that of about 3 to 4 kJ mol -1 obtained by quantum chemical calculations on the interaction between the hydrogen molecule and simple model systems (Fig. 2) of both, hydroxyl and carboxyl groups. Further research is in progress with a view to further increases the gas solid interaction energy. However, the values so far obtained are significantly larger than the liquefaction enthalpy of hydrogen: 0.90 kJ mol -1 ; and this is relevant to both, hydrogen separation from gas mixtures and cryogenic hydrogen storage. (authors)

  1. An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper particles

    NARCIS (Netherlands)

    Jong, K.P. de; Geus, John W.; Joziasse, J.

    Infrared spectroscopy is used to study the adsorption of carbon monoxide (20°C; 0.1– 100 Torr) on copper-on-silica catalysts differently prepared and pretreated. As determined by electron microscopy and X-ray line broadening, the catalysts contain copper particles having sizes of 60 to 5000 Å

  2. Content of carbon monoxide in the tissues of rats intoxicated with carbon monoxide in various conditions of acute exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sokal, J.A.; Majka, J.; Palus, J.

    1984-12-01

    Tissue carbon monoxide (CO) content was investigated in rats severely intoxicated with CO under various exposure conditions: 1% CO for 4 min, 0.4% CO for 40 min and 0.12% CO for 12 h. Extravascular CO was determined in the heart and skeletal muscles immediately after termination of exposure, and carboxymyoglobin (MbCO) percent saturation was calculated. Total brain CO was estimated immediately after termination of exposure and after the time periods of restitution. After the same exposure conditions, MbCO percent saturation was higher in the heart than in skeletal muscle. In both types of muscle, saturation on myoglobin (Mb) with CO depended on blood carboxyhemoglobin (HbCO) level and not on the duration of exposure. The time course of CO elimination was the same for blood and brain, irrespective of CO exposure conditions. The results obtained showed that acute CO intoxication induced by long duration exposures did not involve CO accumulation in the tissues.

  3. Ambient carbon monoxide associated with alleviated respiratory inflammation in healthy young adults

    International Nuclear Information System (INIS)

    Zhao, Zhuohui; Chen, Renjie; Lin, Zhijing; Cai, Jing; Yang, Yingying; Yang, Dandan; Norback, Dan; Kan, Haidong

    2016-01-01

    There is increasing controversy on whether acute exposure to ambient carbon monoxide (CO) is hazardous on respiratory health. We therefore performed a longitudinal panel study to evaluate the acute effects of ambient CO on fractional exhaled nitric oxide (FeNO), a well-established biomarker of airway inflammation. We completed 4–6 rounds of health examinations among 75 healthy young adults during April to June in 2013 in Shanghai, China. We applied the linear mixed-effect model to investigate the short-term associations between CO and FeNO. CO exposure during 2–72 h preceding health tests was significantly associated with decreased FeNO levels. For example, an interquartile range increase (0.3 mg/m"3) of 2-h CO exposure corresponded to 10.6% decrease in FeNO. This association remained when controlling for the concomitant exposure to co-pollutants. This study provided support that short-term exposure to ambient CO might be related with reduced levels of FeNO, a biomarker of lower airway inflammation. - Highlights: • We completed 4–6 rounds of health examinations among 75 healthy young adults. • Short-term CO exposure was significantly associated with decreased FeNO levels. • The inverse association between CO and FeNO was robust controlling for co-pollutants. - Short-term exposure to ambient carbon monoxide may alleviate the respiratory inflammation.

  4. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  5. Thermodynamic properties of liquid mixtures of carbon monoxide and methane

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Guedes, H.J.R.; Nunes da Ponte, M.; Streett, W.B.

    1984-04-01

    Researchers conducted pressure-volume-temperature measurements of liquid methane at -230/sup 0/F and of six liquid mixtures of carbon monoxide and methane at -250/sup 0/, -240/sup 0/, and -230/sup 0/F from just above the saturation vapor pressure to the freezing pressure of methane. The excess volume proved to be large and negative at low pressures but less negative as the pressure increased, being almost zero at the highest pressure. Of the thermodynamic functions, excess enthalpy and excess entropy were much more sensitive to pressure than excess Gibbs energy. Conformal solution theory in the van der Waals one-fluid form reproduced the experimental results very successfully.

  6. Analysis of carbon monoxide production in multihundred-watt heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Mulford, R.N.R.

    1976-05-01

    The production of carbon monoxide observed within Multihundred Watt heat sources placed under storage conditions was analyzed. Results of compositional and isotopic analyses of gas taps performed on eight heat sources are summarized and interpreted. Several proposed CO generation mechanisms are examined theoretically and assessed by applying thermodynamic principles. Outgassing of the heat source graphite followed by oxygen isotopic exchange through the vent assemblies appears to explain the CO production at storage temperatures. Reduction of the plutonia fuel sphere by the CO is examined as a function of temperature and stoichiometry. Experiments that could be performed to investigate possible CO generation mechanisms are discussed

  7. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper

    Science.gov (United States)

    Li, Christina W.; Ciston, Jim; Kanan, Matthew W.

    2014-04-01

    The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O (`oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

  9. Carbon strategy and management in the hydrogen economy

    International Nuclear Information System (INIS)

    Snyder, C.

    2006-01-01

    Greenhouse gas (carbon) emission reduction related to the beneficial use of hydrogen is an important aspect in the development and public acceptance of a greater role for hydrogen in the economy. This presentation is an overview of potential effects of the evolving regulatory framework for carbon emissions management in Canada on hydrogen infrastructure development and compare it with activities in other jurisdictions

  10. Carbon monoxide and coronary heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Scheidemandel, V

    1974-01-01

    Studies on the relationship between increased carboxyhemoglobin levels in the blood and coronary heart disease in smokers and city dwellers are reviewed. The evidence of myocardial infarction is significantly higher in smokers than in nonsmokers which is due, apart from nicotine which promotes coronary arteriosclerosis, to inhaled carbon monoxide which leads to increased carboxyhemoglobin levels and most likely plays a role in the risk of arteriosclerosis and the coronary heart disease. Apart from combining with hemoglobin, CO increases the circulation rate and the coronary blood flow, and reduces the coronary arteriovenous oxygen difference, which is indicative of a reduced rate of oxygen extraction by the myocardium against an increased myocardial oxygen demand. The reduction of the oxygen extraction correlates with the increased COHb level. Inhaled CO lowers the threshold of angina pectoris due to the reduced myocardial oxygen tension. Also, considerable reduction of the oxygen diffusion from the capillaries toward the mitochondria due to the combination of CO with myoglobin is observed. Chronically increased CO levels in the blood and tissues not only accelerate the development of arteriosclerosis, but also induce a process directly injurious to the myocardial metabolism. (Air Pollut. Abstr.)

  11. Carbon Monoxide: An Essential Signalling Molecule

    Science.gov (United States)

    Mann, Brian E.

    Carbon monoxide (CO), like nitric oxide (NO), is an essential signalling molecule in humans. It is active in the cardiovascular system as a vasodilator. In addition, CO possesses anti-inflammatory, anti-apoptotic and anti-proliferative properties and protects tissues from hypoxia and reperfusion injury. Some of its applications in animal models include suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. CO also suppresses arteriosclerotic lesions following angioplasty, reverses established pulmonary hypertension and mitigates the development of post-operative ileus in the murine small intestine and the development of cerebral malaria in mice as well as graft-induced intimal hyperplasia in pigs. There have been several clinical trials using air-CO mixtures for the treatment of lung-, heart-, kidney- and abdominal-related diseases. This review examines the research involving the development of classes of compounds (with particular emphasis on metal carbonyls) that release CO, which could be used in clinically relevant conditions. The review is drawn not only from published papers in the chemical literature but also from the extensive biological literature and patents on CO-releasing molecules (CO-RMs).

  12. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  13. Modelling hydrogen permeation in a hydrogen effusion probe for monitoring corrosion of carbon steels

    International Nuclear Information System (INIS)

    Santiwiparat, P.; Rirksomboon, T.; Steward, F.R.; Lister, D.H.; Cook, W.G.

    2015-01-01

    Hydrogen accumulation inside carbon steel and stainless steel devices shaped like cylindrical cups attached to a pipe containing hydrogen gas was modelled with MATLAB software. Hydrogen transfer around the bottom of the cups (edge effect) and diffusion through the cup walls (material effect) were accounted for. The variation of hydrogen pressure with time was similar for both materials, but the hydrogen plateau pressures in stainless steel cups were significantly higher than those in carbon steel cups. The geometry of the cup also affected the plateau pressure inside the cup. (author)

  14. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    L Balan; L Duclaux; S Los

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7-8]. Presently, the best performance of hydrogen adsorption was found in super-activated microporous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physi-sorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field at the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  15. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    Balan, L.; Duchaux, L.; Los, S.

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7- 8]. Presently, the best performance of hydrogen adsorption was found in super-activated micro-porous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physisorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field al the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  16. Hydrogen fuel injection - the bridge to fuel cells

    International Nuclear Information System (INIS)

    Gilchrist, J.S.

    2004-01-01

    'Full text:' For over a century, industry has embraced a wide variety of applications for hydrogen. Since the mid-1970's, the focus of the bulk of hydrogen research has been in the area of fuel cells. Unfortunately, there is limited awareness of more immediate applications for hydrogen as a catalyst designed to improve the performance of existing hydro-carbon fuelled internal combustion engines. Canadian Hydrogen Energy Company manufactures a patented Hydrogen Fuel Injection System (HFI) that produces hydrogen and oxygen from distilled water and injects them, in measured amounts, into the air intake system on any heavy-duty diesel or gasoline application including trucks, buses, stationary generators, etc. In use on over 30 fleets, research is supported by over 40 million miles of field data. The hydrogen acts as a catalyst to promote more complete combustion, with remarkable results. Dramatically reduce emissions, particularly Carbon Monoxide and Particulate Matter. Increase horsepower and torque. Improved fuel efficiency (a minimum 10% improvement is guaranteed). Reduced oil degradation The HFI system offers the first large-scale application of the use of hydrogen and an excellent bridge to the fuel-cell technologies of the future. (author)

  17. Carbon monoxide inhibits omega-oxidation of leukotriene B4 by human polymorphonuclear leukocytes: evidence that catabolism of leukotriene B4 is mediated by a cytochrome P-450 enzyme.

    Science.gov (United States)

    Shak, S; Goldstein, I M

    1984-09-17

    Carbon monoxide significantly inhibits omega-oxidation of exogenous leukotriene B4 to 20-OH-leukotriene B4 and 20-COOH-leukotriene B4 by unstimulated polymorphonuclear leukocytes as well as omega-oxidation of leukotriene B4 that is generated when cells are stimulated with the calcium ionophore, A23187. Inhibition of omega-oxidation by carbon monoxide is concentration-dependent, completely reversible, and specific. Carbon monoxide does not affect synthesis of leukotriene B4 by stimulated polymorphonuclear leukocytes or other cell functions (i.e., degranulation, superoxide anion generation). These findings suggest that a cytochrome P-450 enzyme in human polymorphonuclear leukocytes is responsible for catabolizing leukotriene B4 by omega-oxidation.

  18. An Unusual Cause of Supraventricular Tachycardia: Acute Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Suat Zengin

    2014-03-01

    Full Text Available      Carbon monoxide (CO is a toxic gas produced by the incomplete combustion of carbon-containing compounds. Exposure to high concentrations of CO can be letha and is the most common cause of death from poisoning worldwide. Cardiac manifestations after exposure to CO, including myocardial ischemia, heart failure, and arrhythmias, have been reported. A 28-year-old a patient was admitted to our emergency department with altered consciousness as a consequence of acute domestic exposure to CO from a stove. His carboxyhemoglobin level was 39%. The oxygen treatment was started promptly, and therapeutic red cell exchange was performed. An electrocardiogram revealed supraventricular tachycardia (SVT, and an echocardiographic examination demonstrated normal cardiac functions. To the best of our knowledge, this study is the second to report a case of SVT attack due to acute CO intoxication. This paper discusses the management of this complication in patients poisoned with CO.

  19. Measurement of Air Pollution from Satellites (MAPS) Space Radar Laboratory - 1 (SRL1) Carbon Monoxide Second by Second data

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPS Overview The MAPS experiment measures the global distribution of carbon monoxide (CO) mixing ratios in the free troposphere. Because of MAPS' previous flights...

  20. Measurement of Air Pollution from Satellites (MAPS) Space Radar Laboratory - 2 (SRL2) Carbon Monoxide Second by Second data

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPS Overview The MAPS experiment measures the global distribution of carbon monoxide (CO) mixing ratios in the free troposphere. Because of MAPS' previous flights...

  1. Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US

    Science.gov (United States)

    Interannual variability in baseline carbon monoxide (CO) and ozone (O3), defined as mixing ratios under minimal influence of recent and local emissions, was studied for seven rural sites in the Northeast US over 2001–2010. Annual baseline CO exhibited statistically signific...

  2. Satellite observations of tropospheric ammonia and carbon monoxide: Global distributions, regional correlations and comparisons to model simulations

    Science.gov (United States)

    Ammonia (NH3) and carbon monoxide (CO) are primary pollutants emitted to the Earth's atmosphere from common as well as distinct sources associated with anthropogenic and natural activities. The seasonal and global distributions and correlations of NH3 and CO from the Tropospheric...

  3. Metal cluster cation reactions: Carbon monoxide association to Cu + n ions

    Science.gov (United States)

    Leuchtner, R. E.; Harms, A. C.; Castleman, A. W., Jr.

    1990-06-01

    Copper cluster cations (Cu+n,n=1-14) were produced in a laser vaporization/flow tube apparatus and equilibrated to room temperature. The association rate constants of carbon monoxide onto these ions were measured; low-pressure, termolecular behavior was observed for the smaller species while for clusters greater than Cu+7, the longer lifetimes due to the increased number of degrees of freedom leads to pressure independence (>0.3 Torr) of the effective bimolecular rates. Unimolecular decay theory (RRKM) is used to explain the overall trend and when intrinsic surface site reactivity is taken into account, excellent agreement with measured reactivity is obtained.

  4. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    Buczek, B.; Wolak, E.

    2005-01-01

    higher temperatures than liquefaction [3]. Last years have brought the interest in hydrogen storage in porous carbon materials, caused by the design and accessibility of new materials, such as fullerenes, carbon nano-tubes and nano-fibers. In particular the tubular carbon structures are perspective highly adsorbing materials, for their surface adsorption (on the internal and external surface of the nano-tubes), and for the effect of capillary condensation [4]. Data presented in Table 1 show that the amount of hydrogen adsorbed on these new materials depends of their modification and on the type of carbon precursor [5]. In this work the concept of hydrogen storage by adsorption was analyzed. The discussion is based on measurements of hydrogen adsorption on commercial active carbon in the temperature range 77 - 298 K at pressures up to 4 MPa. The amount of gas that can be stored in an adsorption system depends on the adsorbent characteristics and the operating conditions. Adsorption method was compared with another one taking into account both technical and economical aspects. The results show that the adsorption technique could provide a viable method for hydrogen storage. [1]G. D. Berry, A. D. Pastemak, G. D. Rambach, J. R. Smith, N. Schock, Energy. 21, 289, 1996; [2]L. Czepirski, Przem. Chem. 70, 129, 1991 (in Polish); [3]B. Buczek, L. Czepirski, Inz. Chem. Proc., 24, 545, 2003; [4]U. Huczko, Przem. Chem. 81, 19, 2002 (in Polish); [5]U. Buenger, W. Zittel, Appl. Phys. A 72, 147, 2001. (authors)

  5. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  6. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    Science.gov (United States)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  7. Zatrucie tlenkiem węgla – drogi narażenia, obraz kliniczny, metody leczenia = Carbon monoxide poisoning, routes of exposure, clinical manifestation, treatment

    Directory of Open Access Journals (Sweden)

    Magdalena Sowa

    2015-04-01

    owa kluczowe: tlenek węgla, zatrucie, hipoksja.   Abstract   Introduction: Carbon monoxide (CO is a colorless, odorless, non-irritating and toxic gas, undetectable by the sense organs. CO is a product of incomplete combustion of substances containing hydrocarbon products (industrial gas, coal, wood. Carbon monoxide is one of the most common causes of poisoning inhalation in the world. Aim of the study: The aim of this study was to analyze the routes of exposure, clinical manifestation and treatment of carbon monoxide poisoning. Brief overview of the state of knowledge: The toxicity of carbon monoxide is strongly associated with its high affinity for hemoglobin (approximately 200 times greater than the oxygen. The heart and central nervous system (CNS are the most vulnerable to CO. Pathomechanism of action involves binding of carbon monoxide with iron atom in the heme molecule to form a compound called carboxyhemoglobin (COHb. Inhaling carbon monoxide-rich air may cause anoxia. The oxidative metabolic processes are inhibited. Accumulation of acidic metabolites cause the enlargement of the cerebral arteries and consequently hyperemia of the brain. Summary: The amount of carbon monoxide poisoning in Poland is higher than in other European countries. Significant decrease mortality for carbon monoxide poisoning has observed over the last few years. Thousands of patients who lose their health and  their lives, should cause the attention to the effectiveness of preventive measures.   Keywords: carbon monoxide, poisoning, hypoxia.

  8. Lethal carbon monoxide toxicity in a concrete shower unit.

    Science.gov (United States)

    Heath, Karen; Byard, Roger W

    2018-05-23

    A 47-year-old previously-well woman was found dead on the floor of a shower cubicle on a property in rural South Australia. The impression of the attending doctor and police was of collapse due to natural disease. Although there was significant stenosing coronary artery atherosclerosis found at autopsy, cherry pink discoloration of tissues prompted measurement of the blood carboxyhemoglobin level which was found to be 55%. The source of the gas was a poorly-maintained hot water heater that was mounted on the inside wall of the shower. Construction of the shower using an impermeable concrete rain water tank had caused gas accumulation when the water heater malfunctioned. Had lethal carbon monoxide exposure not been identified others using the same shower unit would also have been at risk.

  9. Development of a high-efficiency hydrogen generator for fuel cells for distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Duraiswamy, K.; Chellappa, Anand [Intelligent Energy, 2955 Redondo Ave., Long Beach, CA 90806 (United States); Smith, Gregory; Liu, Yi; Li, Mingheng [Department of Chemical and Materials Engineering, California State Polytechnic University, Pomona, CA 91768 (United States)

    2010-09-15

    A collaborative effort between Intelligent Energy and Cal Poly Pomona has developed an adsorption enhanced reformer (AER) for hydrogen generation for use in conjunction with fuel cells in small sizes. The AER operates at a lower temperature (about 500 C) and has a higher hydrogen yield and purity than those in the conventional steam reforming. It employs ceria supported rhodium as the catalyst and potassium-promoted hydrotalcites to remove carbon dioxide from the products. A novel pulsing feed concept is developed for the AER operation to allow a deeper conversion of the feedstock to hydrogen. Continuous production of near fuel-cell grade hydrogen is demonstrated in the AER with four packed beds running alternately. In the best case of methane reforming, the overall conversion to hydrogen is 92% while the carbon dioxide and carbon monoxide concentrations in the production stream are on the ppm level. The ratio of carbon dioxide in the regeneration exhaust to the one in the product stream is on the order of 10{sup 3}. (author)

  10. Diiridium Bimetallic Complexes Function as a Redox Switch To Directly Split Carbonate into Carbon Monoxide and Oxygen.

    Science.gov (United States)

    Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C

    2016-03-23

    A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.

  11. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  12. Structure of a carbon monoxide adduct of cobalt-exchanged zeolite A (Co/sub 5.25/Na/sub 1.5/-A x 1.5CO) by neutron profile refinement

    International Nuclear Information System (INIS)

    Adams, J.M.; Haselden, D.A.

    1984-01-01

    The structure of a carbon monoxide adduct of cobalt-exchanged zeolite A, Co/sub 5.25/Na/sub 1.5/-A x 1.5CO, has been determined by Rietveld neutron profile refinement. All exchangeable cations are located in sites adjacent to the 6-ring; 3.75 of the cobalt cations sit 0.4 A inside the β-cage (Co(2)) and are arranged tetrahedrally about the eight 6-rings sites in the β-cage. The sodium cations (Na(1)) reside just inside the α-cage in sites similar to those found previously for zeolites 3A, 4A, and 5A. The remaining 1.5 cobalt cations (Co(1)) are located in sites similar to those for sodium, but they are also coordinated to the carbon monoxide molecules, which lie on, or close-to, the threefold axis which passes through the 6-ring. Inside the β-cage there is a tetrahedral aluminum complex of AlO 4 type, the oxygen atoms (O*) of which point toward six rings not occupied by cobalt cations, Co(2). Each of the oxygen atoms of this complex is involved in a hydrogen bond (2.83 A) to the 6-ring oxygen O(3). Approximately 2/3 of these bonds are of type O*-H ... O(3) and 1/3 of type O* ...H-O(3)

  13. Electrocardiographic Findings and Serum Troponin I in Carbon Monoxide Poisoned Patients

    Directory of Open Access Journals (Sweden)

    Scott Reza Jafarian Kerman

    2012-03-01

    Full Text Available Carbon monoxide (CO poisoning, though with different sources, is one of the most deadly emergencies in all countries. CO can threaten men's life by several paths especially cardiac complications, which can mimic other cardiac problems such as myocardial infarction. The objective of this study was to determine ECG findings and serum troponin I levels in CO poisoned patients. In this analytical cross-sectional study, 63 CO poisoning patients were consecutively included from hospital's emergency departments. CO content was measured by a CO-oximeter and an electrocardiography was taken first thing on admission. Arterial blood gas (ABG, troponin I and other data was collected afterwards. Data were divided by age groups (adults and children and gender. CO content was significantly higher only in subjects with normal T wave compared to patients with inverted T wave in their initial ECG (P=0.016. No other significant difference was noticed. None of the ABG findings correlated significantly with CO content. Also no significant correlation was found with CO content after stratification by gender and age groups, but pH in children (r=-0.484, P=0.026. CO content was significantly higher in adults (P=0.023, but other ABG data were not significantly different. Only 3 patients had elevated troponin I. Receiver operating characteristic (ROC analysis showed no significant cutoff points in CO content for ECG changes. No significant specific change in electrocardiograms (ECG could contribute carboxyhemoglobin content in carbon monoxide poisoned patients. In addition, no specific difference was found between adults and pediatric subjects' ECGs. All other findings seemed to be accidental.

  14. Subclinical carbon monoxide poisoning in our health area

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, I.G.; Testa, A.F.; Sangrador, C.O.; Garcia, M.T.A.; Berrocal, J.L.S.; Pastor, N.R.; Martin, J.M.; Garcia, L.S.; Garcia, M.C.F.; Maire-Richard, E.G. [Hospital of Virgen Concha, Zamora (Spain)

    2003-08-01

    We present an observation study on the relationship between high levels of carboxyhemoglobin (COHB) and subclinical poisoning by carbon monoxide (CO) in our health area. The study was carried out in February and March 2000 in 228 over 18-year-old patients of both sexes who went to the Emergency Room for various reasons. After an informed consent was conceded, a venous blood sample was obtained in order to determine the level of COHB; later, we collected the anthropometric data, the data relative to the tobacco use, and the data of the type of heating at home. The values limit of the COHB obtained were the following: in non smokers, 1.9%; in 1-10 cigarettes/day smokers, 5.2%; in 11-20 cigarettes/day smokers, 6.9%; in {gt}20 cigarettes/day smokers, 9.6%. A COHB high level was observed in 25% of the patients regardless of the smoking habits, being the coal-dust slack brazier the source of most frequent exposure to CO.

  15. Comparison of measurement capability with 100 μmol/mol of carbon monoxide in nitrogen

    Science.gov (United States)

    Lee, Jeongsoon; Lee, JinBok; Lim, Jeongsik; Tarhan, Tanıl; Liu, Hsin-Wang; Aggarwal, Shankar G.

    2018-01-01

    Carbon monoxide (CO) in nitrogen was one of the first types of gas mixtures used in an international key comparison. The comparison dates back to 1998 (CCQMK1a) [1]. Since then, many National Metrology Institutes (NMIs) have developed calibration and measurement capabilities (CMCs) for these mixtures. Recently, NMIs in the APMP region have actively participated in international comparisons to provide domestic services. At the 2013 APMP meeting, several NMIs requested a CO comparison to establish CO/N2 certification for industrial applications, which was to be coordinated by KRISS. Consequently, this comparison provides an opportunity for APMP regional NMIs to develop CO/N2 CMC claims. The goal of this supplementary comparison is to support CMC claim for carbon monoxide in the N2 range of 50–2000 μmol/mol. An extended range may be supported as described in the GAWG strategy for comparisons and CMC claims. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Convective Influence and Transport Pathways Controlling the Tropical Distribution of Carbon Monoxide at 100 Hpa

    Science.gov (United States)

    Jensen, Eric; Bergman, John; Pfister, Leonard; Ueyama, Rei; Kinnison, Doug

    2014-01-01

    Trajectory calculations with convective influence diagnosed from geostationary-satellite cloud measurements are used to evaluate the relative importance of different Tropical Tropopause Layer (TTL) transport pathways for establishing the distribution of carbon monoxide (CO) at 100 hPa as observed by the Microwave Limb Sounder (MLS) on board the Aura satellite. Carbon monoxide is a useful tracer for investigating TTL transport and convective influence because the CO lifetime is comparable to the time require for slow ascent through the TTL (a couple of months). Offline calculations of TTL radiative heating are used to determine the vertical motion field. The simple trajectory model does a reasonable job of reproducing the MLS CO distributions during Boreal wintertime and summertime. The broad maximum in CO concentration over the Pacific is primarily a result of the strong radiative heating (indicating upward vertical motion) associated with the abundant TTL cirrus in this region. Sensitivity tests indicate that the distinct CO maximum in the Asian monsoon anticyclone is strongly impacted by extreme convective systems with detrainment of polluted air above 360 K potential temperature. The relative importance of different CO source regions will also be discussed.

  17. Nickel foam/polyaniline-based carbon/palladium composite electrodes for hydrogen storage

    International Nuclear Information System (INIS)

    Skowronski, Jan M.; Urbaniak, Jan

    2008-01-01

    The sandwich-like nickel/palladium/carbon electrodes exhibiting ability to absorb hydrogen in alkaline solution are presented. Electrodes were prepared by successive deposition of palladium and polyaniline layers on nickel foam substrate followed by heat treatment to give Ni/Pd/C electrode. It was shown that thermal conversion of polymer into carbon layer and subsequent thermal activation of carbon component bring about the modification of the mechanism of reversible hydrogen sorption. It was proven that carbon layer, interacting with Pd catalyst, plays a considerable role in the process of hydrogen storage. In the other series of experiments, Pd particles were dispersed electrochemically on carbon coating leading to Ni/C/Pd system. The adding of the next carbon layer resulted in Ni/C/Pd/C electrodes. Electrochemical properties of the electrodes depend on both the sequence of Pd and C layers and the preparation/activation of carbon coating. Electrochemical behavior of sandwich-like electrodes in the reaction of hydrogen sorption/desorption was characterized in 6 M KOH using the cyclic voltammetry method and the results obtained were compared to those for Ni/Pd electrode. The anodic desorption of hydrogen from electrodes free and containing carbon layer was considered after the potentiodynamic as well as potentiostatic sorption of hydrogen. The influence of the sorption potential and the time of rest of electrodes at a cut-off circuit on the kinetics of hydrogen recovery were examined. The results obtained for Ni/Pd/C electrodes indicate that the displacement of hydrogen between C and Pd phase takes place during the rest at a cut-off circuit. Electrodes containing carbon layer require longer time for hydrogen electrosorption. On the other hand, the presence of carbon layer in electrodes is advantageous because a considerable longer retention of hydrogen is possible, as compared to Pd/Ni electrode. Hydrogen stored in sandwich-like electrodes can instantly be

  18. A study on hydrogen storage through adsorption in nano-structured carbons; Etude du stockage d'hydrogene par adsorption dans des carbones nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Langohr, D

    2004-10-15

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  19. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  20. Decoration of carbon nano surfaces with hydrogen and hydrogen rich molecules

    International Nuclear Information System (INIS)

    Zöttl, S.

    2013-01-01

    The use of helium nano droplets as a matrix to investigate different atomic and molecular samples is a well established experimental technique. The unique properties of helium allow for different analytical methods and at the same time provide a stable ambient temperature. Cluster growth inside helium nano droplets can be accomplished by repeatedly doping the droplets with sample particles in a controlled environment. The experimental work represented in this thesis was performed using helium nano droplets to create clusters of fullerenes like C 60 and C 70 . The adsorption properties of these fullerene clusters regarding hydrogen and hydrogen rich molecules have been subject to investigation. The observed results suggest that curved carbon nano surfaces offer higher storage densities than planar graphite surfaces. The use of C 60 as a model carbon nano structure provides a well understood molecule for testing and evaluating computational methods to calculate surface properties of various carbon nano materials. The cost effective storage of hydrogen for mobile applications plays a key role in the development of alternatives to fossil fuels. For that reason, the application of carbon nano materials to store hydrogen by adsorption has attracted much scientific attention lately. The insights gained in the presented thesis contribute to the collective efforts and deliver more refined tools to estimate the adsorption properties of future carbon nano materials. In addition to the aforementioned, a time-of-flight mass spectrometer for educational purpose has been designed and constructed in the framework of my PhD thesis. The instrument is successfully used in various lab courses and information on the setup can be found in the Appendix of this work. (author) [de

  1. Detection of the J = 6→5 transition of carbon monoxide

    International Nuclear Information System (INIS)

    Goldsmith, P.F.; Erickson, N.R.; Fetterman, H.R.; Clifton, B.J.; Peck, D.D.; Tannenwald, P.E.; Koepf, G.A.; Buhl, D.; McAvoy, N.

    1981-01-01

    The J = 6→5 rotational transition of carbon monoxide has been detected in emission from the KL ''plateau source'' in the Orion molecular cloud. The corrected peak antenna temperature is 100 K, and the FWHM line width is 26 km s -1 . These observations were carried out using the 3 m telescope of the NASA IRTF (Infrared Telescope Facility) on Mauna Kea, Hawaii, and constitute the first astronomical data obtained at submillimeter wavelengths with a heterodyne system using a laser local oscillator. Our data support the idea that the high-velocity dispersion CO in Orion is optically thin and set a lower limit to its temperature of approx.180 K

  2. Influence of solvent on the infared spectrum of carbon monoxide adsorbed on platinum electrodes

    OpenAIRE

    Feltovich, Susanne D.

    1993-01-01

    The behavior of adsorbed carbon monoxide on platinum was studied using potential difference infrared spectroscopy. Three solvents and three electrolytes were chosen, and data gathered at both high and low adsorbate coverages. The rate of change of IR peak position with applied potential, the Stark tuning rate, was used as an indicator of the local electric field strength at the interface. It was determined that neither solvated cation size nor bulk dielectric constant accoun...

  3. Four deaths due to carbon monoxide poisoning in car washes.

    Science.gov (United States)

    Carson, H J; Stephens, P J

    1999-09-01

    In a period of 13 months, three separate incidents of lethal carbon monoxide (CO) poisoning in closed car wash bays resulted in the deaths of 4 white men aged 20 to 36 years. Each man appears to have been intoxicated with mind-altering substances, which may impair judgment, perception of outside conditions, and self-awareness. All four died in winter months. For three men, the deaths were ruled accidental, and for the remaining man, the previous deaths appear to have provided a model for suicide. Warning signs may not be effective to prevent future CO deaths in car washes because of the possible role of intoxication. Mechanical or electronic methods to prevent a bay door from closing completely may be preferable.

  4. Exhaled carbon monoxide: a non-invasive biomarker of short-term exposure to outdoor air pollution

    Directory of Open Access Journals (Sweden)

    Herve Lawin

    2017-04-01

    Full Text Available Abstract Background In urban settings of Africa with rapidly increasing population, traffic-related air pollution is a major contributor to outdoor air pollution (OAP. Although OAP has been identified as a leading cause of global morbidity and mortality, there is however, lack of a simple biomarker to assess levels of exposure to OAP in resource-poor settings. This study evaluated the role of exhaled carbon monoxide (exhCO as a potential biomarker of exposure to ambient carbon monoxide (ambCO from OAP. Methods This was a descriptive study conducted among male commercial motorcycle riders in Cotonou – the economic capital of Benin. The participants’ AmbCO was measured using a portable carbon monoxide (CO data logger for 8 h during the period of their shift. ExhCO was measured just before and immediately after their shift (8-h Participants were asked not to cook or to smoke during the day of the measurements. Linear regression analysis was used to assess the association between ambCO and exhCO for the last 2, 4 and 6 h of their shift. Results Of 170 participants who completed the study, their mean ± SD age was 42.2 ± 8.4 years, and their mean ± SD daily income was 7.3 ± 2.7$. Also, 95% of the participants’ used solid fuels for cooking and only 2% had ever smoked. Average exhCO increased by 5.1 ppm at the end of the shift (p = 0.004. Post-shift exhCO was significantly associated to ambCO, this association was strongest for the last 2 h of OAP exposure before exhCO measurement (β = 0.34, p < 0.001. Conclusion ExhCO level was associated with recent exposure to ambCO from OAP with measurable increase after 8 h of exposure. These findings suggest that ExhCO may be a potential biomarker of short-term exposure to OAP.

  5. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  6. Simulations of exercise and brain effects of acute exposure to carbon monoxide in normal and vascular-diseased persons.

    Science.gov (United States)

    At some level, carboxyhemoglobin (RbCO) due to inhalation of carbon monoxide (CO) reduces maximum exercise duration in normal and ischemic heart patients. At high RbCO levels in normal subjects, brain function is also affected and behavioral performance is impaired. These are fin...

  7. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  8. Carbon compound used in hydrogen storage; Compuesto de carbon utilizado en almacenamiento de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J L; Lopez M, B E [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  9. 1H MR spectroscopy of gray and white matter in carbon monoxide poisoning

    DEFF Research Database (Denmark)

    Kondziella, D.; Danielsen, E.R.; Hansen, K.

    2009-01-01

    Carbon monoxide (CO) intoxication leads to acute and chronic neurological deficits, but little is known about the specific noxious mechanisms. (1)H magnetic resonance spectroscopy (MRS) may allow insight into the pathophysiology of CO poisoning by monitoring neurochemical disturbances, yet only......, magnetic resonance imaging (MRI) and neuropsychological testing. Five patients suffered from acute high-dose CO intoxication and were in coma for 1-6 days. In these patients, MRI revealed hyperintensities of the white matter and globus pallidus and also showed increased choline (Cho) and decreased N...

  10. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  11. Electrocatalytic studies of osmium-ruthenium carbonyl cluster compounds for their application as methanol-tolerant cathodes for oxygen reduction reaction and carbon monoxide-tolerant anodes for hydrogen oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Arco, E.; Uribe-Godinez, J.; Castellanos, R.H. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Escobedo (Mexico); Altamirano-Gutierrez, A.; Jimenez-Sandoval, O. [Centro de Investigacion y de Estudios Avanzados del Inst. Politecnico Nacional, Querataro (Mexico)

    2006-07-01

    This paper provided details of an electrokinetic study of novel electrocatalytic materials capable of performing both the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR). Osmium-ruthenium carbonyl cluster compounds (Os{sub x}Ru{sub 3}(CO){sub n}) were synthesized by chemical condensation in non-polar organic solvents at different boiling points and refluxing temperatures. Three different non-polar organic solvents were used: (1) n-nonane; o-xylene; and 1,2-dichlorobenzene. The electrocatalysts were characterized by Fourier Transform Infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A rotating disk electrode technique was used to analyze the materials. Results of the analysis showed that the materials performed ORR in both the presence and absence of carbon monoxide (CO), and that electrocatalysts were not poisoned by the presence of CO. Cyclic voltamperometry for the disk electrodes showed that the electrochemical behaviour of the compounds in the acid electrolyte was similar in the presence or absence of methanol. The Tafel slope, exchange current density and the transfer coefficient were also investigated. The electrokinetic parameters for the ORR indicated that the materials with the highest electrocatalytic activity were synthesized in 1,2-dichlorobenzene. Electrocatalytic activity during HOR were prepared in n-nonane. It was concluded that the new materials are good candidates for use as both a cathode and an anode in proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). 7 refs., 2 tabs., 7 figs.

  12. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  13. Copolymerization of carbon monoxide and styrene catalyzed by resin-supported palladium polymer

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Polyketone was prepared by the copolymerization of carbon monoxide (CO and styrene (ST catalyzed by o-phenylenediamine resin-supported palladium acetate. Effects of each catalytic system component such as 2,2’-bipyridine, 1,4-quinone and p-toluene-sulphonate on the copolymerization were investigated. The resin-supported catalyst and the copolymerization product were characterized by infrared spectroscopy (IR, differential scanning calorimetry (DSC, thermogravimetry (TG, X-ray photoelectron spectroscopy (XPS, Scanning Electron Microscopy (SEM. Results indicated that the resin-supported catalyst has excellent catalytic property. Furthermore, partial catalytic activity was maintained after the catalyst was used for five times.

  14. Investigation of four carbon monoxide isotopomers in natural abundance by laser-induced fluorescence in a supersonic jet

    CSIR Research Space (South Africa)

    Du Plessis, A

    2007-01-01

    Full Text Available The four carbon monoxide (CO) isotopomers 12C16O, 13C16O, 12C18O and 12C17O have been detected simultaneously in a CO gas sample of natural isotopic abundance by measuring rovibronic excitation spectra of six vibronic bands in the Fourth Positive...

  15. Carbon monoxide measurements at Mace Head, Ireland

    Science.gov (United States)

    Doddridge, Bruce G.; Dickerson, Russell R.; Spain, T. Gerard; Oltmans, Samuel J.; Novelli, Paul C.

    1994-01-01

    The North Atlantic Ocean is bordered by continents which may each, under the influence of seasonal weather patterns, act as sources of natural and anthropogenic trace gas and particulate species. Photochemically active species such as carbon monoxide (CO) react to form ozone (O3), a species of critical importance in global climate change. CO is sparingly soluble in water, and the relatively long lifetime of CO in the troposphere makes this species an ideal tracer of air masses with origin over land. We have measured CO using a nondispersive infrared gas filter correlation analyzer at Mace Head on the west coast of Ireland nearly continuously since August 9, 1991. Measurements of CO were acquired at 20-sec resolution and recorded as 60-sec averages. Daily, monthly, and diurnal variation data characteristics of CO mixing ratios observed at this site are reported. Depending on source regions of air parcels passing over this site, 60-min concentrations of CO range from clean air values of approximately 90 ppbv to values in excess of 300 ppbv. Data characterizing the correlation between 60-min CO and O3 mixing ratio data observed at this site are reported also.

  16. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  17. Hydrogenation of surface carbon on alumina-supported nickel

    Energy Technology Data Exchange (ETDEWEB)

    Mccarthy, J.G.; Wise, H.

    1979-05-01

    The methanation of carbon deposited by CO or ethylene decomposition on Girdler G-65 catalyst (25Vertical Bar3< nickel, 8Vertical Bar3< alkali, mostly CaO, 4Vertical Bar3< C as graphite, on alumina) was studied by temperature-programed desorption and temperature-programed surface reaction. Four types of carbon were identified: ..cap alpha..-carbon consisted of isolated carbon atoms bonded to nickel and reacting with hydrogen at 470/sup 0/ +/- 20/sup 0/K; ..gamma..-carbon was probably a bulk carbide, most likely Ni/sub 3/C, which had a reaction peak at 550/sup 0/K; ..beta..-carbon consisted of amorphous, polymerized carbon, which had a reaction peak at 680/sup 0/K; and an unreactive crystalline graphite-like species. The ..cap alpha..-form was thermally unstable and transformed into the ..beta..-form above 600/sup 0/K. Both ..cap alpha..- and ..beta..-forms slowly converted to inert graphite above 600/sup 0/K. The evidence suggested that synthesis gas methanation proceeds by dissociative adsorption of CO as the rate-determining step which forms a very reactive carbon adatom state (..cap alpha..') which converts to the ..cap alpha..-state in the absence of hydrogen and to methane in the presence of hydrogen.

  18. Hydrogen storage in carbon nano-tubes; Stockage d'hydrogene dans les nanotubes de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Becher, M.; Haluska, M.; Hirscher, M. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Quintel, A.; Skakalova, V.; Dettlaff-Weglikovska, U.; Chen, X.; Hulman, M.; Choi, Y.; Roth, S.; Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Strobel, R.; Jorissen, L. [Zentrum fur Sonnenenergie und Wasserstoff-Forschung, Ulm (Germany); Kappes, M.M. [Karlsruhe Univ., Institut fur Physikalische Chemie(Germany); Fink, J. [Institut fur Festkorper-Und Werkstoffforschun, Dresden (Germany); Zuttel, A. [Fribourg Univ., Dept. Physique (Switzerland); Stepanek, I.; Bernier, P. [Montpellier-2 Univ., GDPC, 34 (France)

    2003-11-01

    Hydrogen storage in new nano-structured carbonic materials is a topic for lively discussion. The measured storage capacities of these materials, which have been announced in the literature during the last ten years are spread over an enormous range from about 0.1 wt% up to 67 wt%. This paper will give a report on the state of the art of hydrogen storage in carbon nano-structures. We shall critically review the recent 'key publications' on this topic, which claim storage capacities clearly above the technological bench mark set by the US Department of Energy, and we shall report new results which have been obtained in a joint project sponsored by the Federal Ministry for Education and Research in Germany (BMBF). (authors)

  19. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    D Cazorla Amoros; D Lozano Castello; F Suarez Garcia; M Jorda Beneytoa; A Linares Solano

    2005-01-01

    Full text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ). [1] A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous carbons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  20. Unintentional carbon monoxide poisoning hospitalization and emergency department counts and rates by county, year, and fire-relatedness among California residents,2000-2007

    Data.gov (United States)

    California Environmental Health Tracking Program — This dataset contains case counts, rates, and confidence intervals of unintentional carbon monoxide poisoning (CO) inpatient hospitalizations and emergency...

  1. A study on hydrogen storage through adsorption in nano-structured carbons; Etude du stockage d'hydrogene par adsorption dans des carbones nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Langohr, D

    2004-10-15

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  2. Thermal degradation kinetics of polyketone based on styrene and carbon monoxide

    International Nuclear Information System (INIS)

    Mu, Jiali; Fan, Wenjun; Shan, Shaoyun; Su, Hongying; Wu, Shuisheng; Jia, Qingming

    2014-01-01

    Highlights: • The PK were synthesized from carbon monoxide and styrene in the presence of PANI-PdCl 2 catalyst and PdCl 2 catalyst. • The structures and thermal behaviors of PK prepared by homogenous and the supported catalyst were investigated. • The microstructures of PK were changed in the supported catalyst system. • The alternating PK copolymer (PANI-PdCl 2 catalyst) was more thermally stable than PK (PdCl 2 catalyst). • The degradation activation energy values were estimated by Flynn–Wall–Ozawa method and Kissinger method. - Abstract: Copolymerization of styrene with carbon monoxide to give polyketones (PK) was carried out under homogeneous palladium catalyst and polyaniline (PANI) supported palladium(II) catalyst, respectively. The copolymers were characterized by 1 H NMR, 13 C NMR and GPC. The results indicated that the PK catalyzed by the supported catalyst has narrow molecular weight distribution (PDI = 1.18). For comparison purpose of thermal behaviors of PK prepared by the homogeneous and the supported catalyst, thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) were conducted at different heating rates. The peak temperatures (396–402 °C) for PK prepared by the supported catalyst are higher than those (387–395 °C) of PK prepared by the homogeneous catalyst. The degradation activation energy (E k ) values were estimated by Flynn–Wall–Ozawa method and Kissinger method, respectively. The E k values, as determined by two methods, were found to be in the range 270.72 ± 0.03–297.55 ± 0.10 kJ mol −1 . Structures analysis and thermal degradation analysis revealed that the supported catalyst changed the microstructures of PK, resulting in improving thermal stability of PK

  3. Thermal degradation kinetics of polyketone based on styrene and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jiali, E-mail: jiaqm411@163.com; Fan, Wenjun; Shan, Shaoyun; Su, Hongying; Wu, Shuisheng; Jia, Qingming

    2014-03-01

    Highlights: • The PK were synthesized from carbon monoxide and styrene in the presence of PANI-PdCl{sub 2} catalyst and PdCl{sub 2} catalyst. • The structures and thermal behaviors of PK prepared by homogenous and the supported catalyst were investigated. • The microstructures of PK were changed in the supported catalyst system. • The alternating PK copolymer (PANI-PdCl{sub 2} catalyst) was more thermally stable than PK (PdCl{sub 2} catalyst). • The degradation activation energy values were estimated by Flynn–Wall–Ozawa method and Kissinger method. - Abstract: Copolymerization of styrene with carbon monoxide to give polyketones (PK) was carried out under homogeneous palladium catalyst and polyaniline (PANI) supported palladium(II) catalyst, respectively. The copolymers were characterized by {sup 1}H NMR, {sup 13}C NMR and GPC. The results indicated that the PK catalyzed by the supported catalyst has narrow molecular weight distribution (PDI = 1.18). For comparison purpose of thermal behaviors of PK prepared by the homogeneous and the supported catalyst, thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) were conducted at different heating rates. The peak temperatures (396–402 °C) for PK prepared by the supported catalyst are higher than those (387–395 °C) of PK prepared by the homogeneous catalyst. The degradation activation energy (E{sub k}) values were estimated by Flynn–Wall–Ozawa method and Kissinger method, respectively. The E{sub k} values, as determined by two methods, were found to be in the range 270.72 ± 0.03–297.55 ± 0.10 kJ mol{sup −1}. Structures analysis and thermal degradation analysis revealed that the supported catalyst changed the microstructures of PK, resulting in improving thermal stability of PK.

  4. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    in the case, than the same volume of ethanol-water mixture can be prepared. The renewal of alcohol, the alcohol-water mixture is then passed through the catalytic reformer into a preheater. The exhaust gas contains a relatively large number of carbon monoxide, which would spoil the fuel cell, so the carbon monoxide concentration to a high and a low temperature water-gas reaction is reduced. This increases the hydrogen production. The last step of the carbon monoxide content to eliminate preferential oxidation. The alcohol reforming catalyst for the precious metals spread most of what arose from high activity and stability. However, the precious metals are very expensive, so a non-precious metal catalysts is the design and development of objective activity and stability which reaches the precious metal catalysts of. Using the new reaction catalysts opportunities are created, which are smaller than the activation energy than the non-catalytic process. The basic objective of the technological developments more active at lower temperatures, the selective target product, long-life, low cost design catalysts.

  5. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    Science.gov (United States)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  6. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1998-01-01

    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  7. Review: hemodynamic response to carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Penney, D.G.

    1988-04-01

    Historically, and at present, carbon monoxide is a major gaseous poison responsible for widespread morbidity and mortality. From threshold to maximal nonlethal levels, a variety of cardiovascular changes occur, both immediately and in the long term, whose homeostatic function it is to renormalize tissue oxygen delivery. However, notwithstanding numerous studies over the past century, the literature remains equivocal regarding the hemodynamic responses in animals and humans, although CO hypoxia is clearly different in several respects from hypoxic hypoxia. Factors complicating interpretation of experimental findings include species, CO dose level and rate, route of CO delivery, duration, level of exertion, state of consciousness, and anesthetic agent used. Augmented cardiac output usually observed with moderate COHb may be compromised in more sever poisoning for the same reasons, such that regional or global ischemia result. The hypotension usually seen in most animal studies is thought to be a primary cause of CNS damage resulting from acute CO poisoning, yet the exact mechanism(s) remains unproven in both animals and humans, as does the way in which CO produces hypotension. This review briefly summarizes the literature relevant to the short- and long-term hemodynamic responses reported in animals and humans. It concludes by presenting an overview using data from a single species in which the most complete work has been done to date.

  8. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus

    International Nuclear Information System (INIS)

    Ayres, T.R.; Moos, H.W.; Linsky, J.L.

    1981-01-01

    We present evidence that many of the weak features observed with the International Ultraviolet Explorer (IUE) in the far-ultraviolet (1150--2000 A) spectrum of the archetype red giant Arcturus (K2 III) are A--X fourth positive bands of carbon monoxide excited by chromospheric emissions of O I, C I, and H I. The appearance of fluorescent CO bands near the wavelengths of commonly used indicators of high-temperature (T>2 x 10 4 K) plasma, such as C II lambda1335 and C IV lambda1548, introduces a serious ambiguity in diagnosing the presence of hot material in the outer atmospheres of the cool giants by means of low-dispersion IUE spectra

  9. Action of carbon monoxide on the affinity of hemoglobin for oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Vanuxem, D.; Weiller, P.J.; Guillot, C.; Grimaud, C.

    1982-01-01

    The authors have studied the action of carbon monoxide on the affinity of hemoglobin for oxygen by measuring P50 in whole blood and in stripped hemoglobin before and after exposition of blood samples from heavy smokers and polycythemic patients with high levels of HbCO to hyperbaric oxygen (2.2 ata). The concentration of 2,3-diphosphoglycerate was normal although P50 was significantly lowered, not only in whole blood but also in stripped hemoglobin. Hyperbaric oxygen normalized P50 by removing CO radicals from stripped hemoglobin. This may indicate that CO radicals exert a direct action on the hemoglobin molecule, at least at the HbCO levels studied in this work.

  10. Hydrogen storage in engineered carbon nanospaces.

    Science.gov (United States)

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  11. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane

    OpenAIRE

    Khadka, Nimesh; Dean, Dennis R.; Smith, Dayle; Hoffman, Brian M.; Raugei, Simone; Seefeldt, Lance C.

    2016-01-01

    The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination (re) of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild type nitrogenase and a nitrogenase having amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by 2 or 8 electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it i...

  12. Determination of contents of carbonate and hydrogen carbonate in solutions for alkaline leading of uranium ores

    International Nuclear Information System (INIS)

    Radil, V.

    1988-01-01

    The new analytical method is based on the determination of the molar ratio carbonate - hydrogen carbonate using the measured concentration of hydrogen ions, the determination of the dissociation constant of carbonic acid for different values of ionic strength. The concentration of hydrogen ions was measured with a Metrohm 632 pH meter with the use of a combined glass electrode. The content of total carbonate carbon was determined coulometrically and the uranium content was determined by extraction with tributyl phosphate and by spectrometry of the complex of uranyl ions with Arsenazo III. Model solutions were used for the experiments which contained a high concentration of sulfate ions, thiosulfate ions, uranium and various proportions of carbonate and hydrogen carbonate. The composition of the individual samples of the extraction solutions are tabulated. The calibration was made of the glass combined electrode at different ionic strength, the values determined of dissociation constants of carbonic acid for different ionic strength. The mathematical procedure is described for the calculation of molar concentrations of carbonate and hudrogen carbonate and the results are presented of the analysis of model solutions. (E.S.). 5 tabs., 1 fig., 5 refs

  13. Measurement of Air Pollution from Satellites (MAPS) Space Radar Laboratory - 2 (SRL2) Carbon Monoxide 5 degree by 5 degree data

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPS OverviewThe MAPS experiment measures the global distribution of carbon monoxide (CO) mixing ratios in the free troposphere. Because of MAPS' previous flights on...

  14. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  15. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    Cazorla-Amoros, D.; Lozano-Castello, D.; Suarez-Garcia, F.; Jorda-Beneyto, M.; Linares-Solano, A.

    2005-01-01

    Complete text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ) [1]. A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous cartons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  16. [Etiology of combined inhalational hydrocyanic acid and carbon monoxide poisoning].

    Science.gov (United States)

    Sigrist, T; Dirnhofer, R

    1979-01-01

    A young man was found dead in a kitchen, that was partly burnt. Autopsy revealed, as cause of death, a combined intoxication following inhalation of carbon monoxide and hydrocyanic acid. Own investigations on the pyrolysis of pieces of furniture found in the kitchen (plastic plates containing melamine and plates containing formaldehyde) showed, that hydrocyanic acid was liberated through combustion of such substances and inhaled by the victim. The poisoning picture is discussed, and discussion includes especially considerations on the peculiar sensitivity of the brain toward the action of hydrocyanic acid and the relative insensitivity of the heart muscle. It is thought that the cause of such sensitivity difference lies in the physiological differences of the intracellular energy production. Finally the dangers of combustion gases developing from burning plastic materials are reemphasized.

  17. Retinal venous blood carbon monoxide response to bright light in male pigs: A preliminary study.

    Science.gov (United States)

    Oren, Dan A; Duda, Magdalena; Kozioł, Katarzyna; Romerowicz-Misielak, Maria; Koziorowska, Anna; Sołek, Przemysław; Nowak, Sławomir; Kulpa, Magdalena; Koziorowski, Marek

    2017-03-01

    The physical mechanism by which light is absorbed in the eye and has antidepressant and energizing effects in Seasonal Affective Disorder and other forms of psychiatric major depression is of scientific interest. This study was designed to explore one specific aspect of a proposed humoral phototransduction mechanism, namely that carbon monoxide (CO) levels increase in retinal venous blood in response to bright light. Eleven mature male pigs approximately six months of age were kept for 7days in darkness and fasted for 12h prior to surgery. Following mild sedation, anesthesia was induced. Silastic catheters were inserted into the dorsal nasal vein through the angular vein of the eye to reach the ophthalmic sinus, from which venous blood outflowing from the eye area was collected. The animals were exposed to 5000lx of fluorescent-generated white light. CO levels in the blood were analyzed by gas chromatography before and after 80min of light exposure. At baseline, mean CO levels in the retinal venous blood were 0.43±0.05(SE)nmol/ml. After bright light, mean CO levels increased to 0.54±0.06nmol/ml (two-tailed t-test plight exposure raises carbon monoxide levels in ophthalmic venous blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Wireless and Batteryless Intelligent Carbon Monoxide Sensor.

    Science.gov (United States)

    Chen, Chen-Chia; Sung, Gang-Neng; Chen, Wen-Ching; Kuo, Chih-Ting; Chue, Jin-Ju; Wu, Chieh-Ming; Huang, Chun-Ming

    2016-09-23

    Carbon monoxide (CO) poisoning from natural gas water heaters is a common household accident in Taiwan. We propose a wireless and batteryless intelligent CO sensor for improving the safety of operating natural gas water heaters. A micro-hydropower generator supplies power to a CO sensor without battery (COSWOB) (2.5 W at a flow rate of 4.2 L/min), and the power consumption of the COSWOB is only ~13 mW. The COSWOB monitors the CO concentration in ambient conditions around natural gas water heaters and transmits it to an intelligent gateway. When the CO level reaches a dangerous level, the COSWOB alarm sounds loudly. Meanwhile, the intelligent gateway also sends a trigger to activate Wi-Fi alarms and sends notifications to the mobile device through the Internet. Our strategy can warn people indoors and outdoors, thereby reducing CO poisoning accidents. We also believe that our technique not only can be used for home security but also can be used in industrial applications (for example, to monitor leak occurrence in a pipeline).

  19. The immunomodulatory role of carbon monoxide during transplantation

    Directory of Open Access Journals (Sweden)

    Amano Mariane

    2013-01-01

    Full Text Available Abstract The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection, infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns. Carbon monoxide (CO had long been regarded solely as a poisonous gas. Ultimately, physiological studies unveiled the endogenous production of CO, particularly by the heme oxygenase (HO-1 enzyme, recognizing CO as a beneficial gas when used at therapeutic doses. The protective properties of CO led researchers to develop uses for it, resulting in devices and molecules that can deliver CO in vitro and in vivo. The resulting interest in clinical investigations was immediate. Studies regarding the CO/HO-1 modulation of immune responses and their effects on various immune disorders gave rise to transplantation research, where CO was shown to be essential in the protection against organ rejection in animal models. This review provides a perspective of how CO modulates the immune system to improve transplantation and suggests its use as a therapy in the field.

  20. Brain CT scan in acute carbon monoxide poisoning

    International Nuclear Information System (INIS)

    We, En-Huei

    1986-01-01

    The brain CT findings in 19 patients with acute carbon monoxide poisoning was analysed and the emphasis was placed on the relationship between CT findings and prognosis. Five had a normal manifestation in CT ; eight had the findings of ovoid or patchy low density area in globus pallidus, bilateral or unlateral, during the second day to fifth week after poisoning, and the low density areas were decreasing and blurring in edge in follow up and at last disappeared during 3 - 14 weeks in three cases of them ; nine showed the appearance of diffuse low density of white matter and of globus pallidus in some of them ; two had an appearance of brain atrophy. The pathology of CT findings mentioned above may be brain edema, necrosis, malacia and degeneration in gray matter and globus pallidus. The result suggested the cases with normal CT manifestation, cerebral edema and decreasing and disappearing low density area had a good prognosis, in contrary, the cases with persistant low density in globus pallidus had a poorer prognosis. (author)

  1. General circulation model study of atmospheric carbon monoxide

    International Nuclear Information System (INIS)

    Pinto, J.P.; Yung, Y.L.; Rind, D.; Russell, G.L.; Lerner, J.A.; Hansen, J.E.; Hameed, S.

    1983-01-01

    The carbon monoxide cycle is studied by incorporating the known and hypothetical sources and sinks in a tracer model that uses the winds generated by a general circulation model. Photochemical production and loss terms, which depend on OH radical concentrations, are calculated in an interactive fashion. The computed global distribution and seasonal variations of CO are compared with observations to obtain constraints on the distribution and magnitude of the sources and sinks of CO, and on the tropospheric abundance of OH. The simplest model that accounts for available observations requires a low latitude plant source of about 1.3 x 10 15 g yr -1 , in addition to sources from incomplete combustion of fossil fuels and oxidation of methane. The globally averaged OH concentration calculated in the model is 7 x 10 5 cm -3 . Models that calculate globally averaged OH concentrations much lower than our nominal value are not consistent with the observed variability of CO. Such models are also inconsistent with measurements of CO isotopic abundances, which imply the existence of plant sources

  2. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    Science.gov (United States)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  3. Multiple Victims of Carbon Monoxide Poisoning in the Aftermath of a Wildfire: A Case Series

    Directory of Open Access Journals (Sweden)

    Luís Ramos dos Santos

    2018-03-01

    Conclusion: Use of hyperbaric oxygen appears to have reduced the incidence of the syndrome. This seems to be the first Portuguese series reporting use of hyperbaric oxygen in carbon monoxide poisoning due to wildfires. The authors intend to alert to the importance of referral of these patients because the indications and benefits of this treatment are well documented. This is especially important given the ever-growing issue of wildfires in Portugal.

  4. Amorphous carbon enhancement of hydrogen penetration into UO2

    International Nuclear Information System (INIS)

    Zalkind, S.; Shamir, N.; Gouder, T.; Akhvlediani, R.; Hoffman, A.

    2014-01-01

    In a previous study, it was demonstrated that an amorphous carbon layer, deposited on a native oxide covered uranium surface, significantly enhances the interaction of hydrogen with the uranium metal. Fig. 1[2], demonstrates the preferential hydrogen attack (forming uranium hydride) on the carbon covered area of the naturally oxidized uranium metal

  5. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  6. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities

    Science.gov (United States)

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-01-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time. PMID:26201827

  7. Deteriorations of pulmonary function, elevated carbon monoxide levels and increased oxidative stress amongst water-pipe smokers

    Directory of Open Access Journals (Sweden)

    Funda Karaduman Yalcin

    2017-10-01

    Full Text Available Objectives: A water pipe (hookah is a tobacco smoking tool which is thought to be more harmless than a cigarette, and there are no adequate studies about its hazards to health. Water-pipe smoking is threatening health of the youth in the world today. The objective of this study has been to investigate the carbon monoxide (CO levels in breath, examine the changes in pulmonary function tests (PFT and to assess the change of the oxidative stress parameters in blood after smoking a water pipe. Material and Methods: This study is a cross-sectional analytical study that has included 50 volunteers who smoke a water pipe and the control group of 50 volunteers who smoke neither a cigarette nor a water pipe. Carbon monoxide levels were measured in the breath and pulmonary function tests (PFTs were performed before and after smoking a water pipe. Blood samples were taken from either the volunteer control group or water-pipe smokers group after smoking a water pipe for the purpose of evaluation of the parameters of oxidative stress. Results: Carbon monoxide values were measured to be 8.08±7.4 ppm and 28.08±16.5 ppm before and after smoking a water pipe, respectively. This increment was found statistically significant. There were also significant reductions in PFTs after smoking a water pipe. Total oxidative status (TOS, total antioxidant status (TAS and oxidative stress index (OSI were found prominently higher after smoking a water pipe for the group of water-pipe smokers than for the control group. Conclusions: This study has shown that water-pipe smoking leads to deterioration in pulmonary function and increases oxidative stress. To the best of our knowledge this study is the only one that has shown the effect of water-pipe smoking on oxidative stress. More studies must be planned to show the side effects of water-pipe habit and protective policies should be planned especially for young people in Europe. Int J Occup Med Environ Health 2017;30(5:731

  8. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    DEFF Research Database (Denmark)

    Xie, Li; Wang, Lei; Zhou, Qi

    2013-01-01

    The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... amended anazrobic seguencs batch reactor (ASBRs) was more stable than that of ASBRs without activated carbon addition regarding on hydrogen production and pH. Higher hydrogen yield(HY) and hydrogen producing rate(HPR) were observed in the activated carbon amended ASBRs, with 65%, 63%, 54%, 56% enhancement...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  9. Carbon monoxide production from five volatile anesthetics in dry sodalime in a patient model: halothane and sevoflurane do produce carbon monoxide; temperature is a poor predictor of carbon monoxide production

    Directory of Open Access Journals (Sweden)

    Perez Roberto SGM

    2005-06-01

    Full Text Available Abstract Background Desflurane and enflurane have been reported to produce substantial amounts of carbon monoxide (CO in desiccated sodalime. Isoflurane is said to produce less CO and sevoflurane and halothane should produce no CO at all. The purpose of this study is to measure the maximum amounts of CO production for all modern volatile anesthetics, with completely dry sodalime. We also tried to establish a relationship between CO production and temperature increase inside the sodalime. Methods A patient model was simulated using a circle anesthesia system connected to an artificial lung. Completely desiccated sodalime (950 grams was used in this system. A low flow anesthesia (500 ml/min was maintained using nitrous oxide with desflurane, enflurane, isoflurane, halothane or sevoflurane. For immediate quantification of CO production a portable gas chromatograph was used. Temperature was measured within the sodalime container. Results Peak concentrations of CO were very high with desflurane and enflurane (14262 and 10654 ppm respectively. It was lower with isoflurane (2512 ppm. We also measured small concentrations of CO for sevoflurane and halothane. No significant temperature increases were detected with high CO productions. Conclusion All modern volatile anesthetics produce CO in desiccated sodalime. Sodalime temperature increase is a poor predictor of CO production.

  10. Autumn photoproduction of carbon monoxide in Jiaozhou Bay, China

    Science.gov (United States)

    Ren, Chunyan; Yang, Guipeng; Lu, Xiaolan

    2014-06-01

    Carbon monoxide (CO) plays a significant role in global warming and atmospheric chemistry. Global oceans are net natural sources of atmospheric CO. CO at surface ocean is primarily produced from the photochemical degradation of chromophoric dissolved organic matter (CDOM). In this study, the effects of photobleaching, temperature and the origin (terrestrial or marine) of CDOM on the apparent quantum yields (AQY) of CO were studied for seawater samples collected from Jiaozhou Bay. Our results demonstrat that photobleaching, temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The concentration, absorbance and fluorescence of CDOM exponentially decreased with increasing light dose. Terrestrial riverine organic matter could be more prone to photodegradation than the marine algae-derived one. The relationships between CO AQY and the dissolved organic carbon-specific absorption coefficient at 254 nm for the photobleaching study were nonlinear, whereas those of the original samples were strongly linear. This suggests that: 1) terrestrial riverine CDOM was more efficient than marine algae-derived CDOM for CO photoproduction; 2) aromatic and olefinic moieties of the CDOM pool were affected more strongly by degradation processes than by aliphatic ones. Water temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The photoproduction rate of CO in autumn was estimated to be 31.98 μmol m-2 d-1 and the total DOC photomineralization was equivalent to 3.25%-6.35% of primary production in Jiaozhou Bay. Our results indicate that CO photochemistry in coastal areas is important for oceanic carbon cycle.

  11. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  12. Nitric oxide and carbon monoxide diffusing capacity after a 1-h oxygen dive to 9 m of sea water

    NARCIS (Netherlands)

    van Ooij, P. J. A. M.; van Hulst, R. A.; Houtkooper, A.; Sterk, P. J.

    2014-01-01

    To prevent extensive pulmonary lesions in submerged oxygen divers lung function like the forced vital capacity (FVC) or the diffusing capacity for carbon monoxide (DL,co) are used to monitor pulmonary oxygen toxicity (POT). As the diffusing capacity for nitric oxide (DL,no) measures more accurately

  13. THE ROLE OF CARBON MONOXIDE IN THE REGULATION OF ELECTRICAL AND CONTRACTILE PROPERTIES OF SMOOTH MUSCLE CELLS OF THE GUINEA PIG URETER

    Directory of Open Access Journals (Sweden)

    I. V. Kovalyov

    2014-01-01

    Full Text Available Carbon monoxide CO, as well as nitric oxide and hydrogen sulfide, make up the family of labile biological mediators termed gasotransmitters. We hypothesized that CO may be involved in the mechanisms of regulation electrical and contractile properties of smooth muscles.The effects of carbon monoxide donor CORM II (tricarbonyldichlororuthenium(II-dimer on the electrical and contractile activities of smooth muscles of the guinea pig ureter were studied by the method of the double sucrose bridge. This method allows to register simultaneously the parameters of the action potential (AP and the contraction of smooth muscle cells (SMCs, caused by an electrical stimulus.CORM II in a concentration of 10 mmol has reduced the amplitude of contractions SMCs to (86.5 ± 9.7% (n = 6, p < 0.05, the amplitude of the AP to (88.9 ± 4.2% (n = 6, p < 0.05 and the duration of the plateau of the AP to (91.7 ± 6.0% (n = 6, p < 0.05. On the background of the action of biologically active substances (phenylephrine, 10 µmol or histamine, 10 µmol, these effects of CORM II amplified. The inhibitory action of СORM II on the parameters of the contractile and electrical activities of the smooth muscles of guinea pig ureter has been decreased by blocking potassium channels in membrane of SMCs by tetraethylammonium chloride (TEA оr inhibition of soluble guanylate cyclase (ODQ [1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-l-one]. On the background of TEA (5 mmol, a donor of CO (10 mmol caused a reduction the amplitude of contraction SMCs to (87.0 ± 10.8% (n = 6, p < 0.05, the amplitude of the AP to (91.7 ± 6.4% (n = 6, p < 0.05 and the duration of the plateau of the AP to (93.4 ± 7.5% (n = 6, p < 0.05. After the pretreatment of ODQ (1 µmol adding CORM II (10 mmol in solution has resulted to augment of the amplitude of contraction ureteral smooth muscle strips to (90.9 ± 4.2% (n = 6, p < 0.05, the amplitude of the AP to (97.2 ± 10.3% (n = 6, p < 0.05 and the duration of the

  14. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  15. Studies on closed-cycle processes for hydrogen production, 3

    International Nuclear Information System (INIS)

    Sato, Shoichi; Ikezoe, Yasumasa; Shimizu, Saburo; Nakajima, Hayato; Kobayashi, Toshiaki

    1978-10-01

    Studies made in fiscal 1977 on the thermochemical and radiation chemical processes for hydrogen production are reported. In the thermochemical process, cerium (III) carbonate was used as an intermediate, and a workable process was found, which consisted of eight reaction steps. In other feasible processes, carbon dioxide was made to react with iron (II) chloride or iodide at high temperature to form carbon monoxide, and three or four reaction steps ensued. Also, an improved process of the sulfur cycle was studied. In this process, nickel salts were separated by solvent extraction. Estimated thermal efficiency (HHV) of the process was 30 - 40%, assuming 70 - 80% heat recovery. In the radiation chemical process, carbon dioxide was added with propane or nitrogen dioxide and radiolyzed: reaction mechanisms are discussed. (author)

  16. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  17. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, R. (Max-Planck-Institut fuer Chemie, Mainz, Germany); Meyer, O.; Seiler, W.

    1981-08-01

    The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 ..mu..l liter/sup -1/) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. At low cell densities the CO comsumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. Considering the difference of the K/sub m/, values and the observed V/sub max/ values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.

  18. Reactivity of niobium cluster anions with nitrogen and carbon monoxide

    Science.gov (United States)

    Mwakapumba, Joseph; Ervin, Kent M.

    1997-02-01

    Reactions of small niobium cluster anions, Nbn-(n = 2-7), with CO and N2 are investigated using a flow tube reactor (flowing afterglow) apparatus. Carbon monoxide chemisorption on niobium cluster anions occurs with faster reaction rates than nitrogen chemisorption on corresponding cluster sizes. N2 addition to niobium cluster anions is much more size-selective than is CO addition. These general trends follow those reported in the literature for reactions of neutral and cationic niobium clusters with CO and N2. Extensive fragmentation of the clusters is observed upon chemisorption. A small fraction of the larger clusters survive and sequentially add multiple CO or N2 units without fragmentation. However, chemisorption saturation is not reached at the experimentally accessible pressure and reagent concentration ranges. The thermochemistry of the adsorption processes and the nature of the adsorbed species, molecular or dissociated, are discussed.

  19. A 60-yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Science.gov (United States)

    Petrenko, V. V.; Martinerie, P.; Novelli, P.; Etheridge, D. M.; Levin, I.; Wang, Z.; Blunier, T.; Chappellaz, J.; Kaiser, J.; Lang, P.; Steele, L. P.; Hammer, S.; Mak, J.; Langenfelds, R. L.; Schwander, J.; Severinghaus, J. P.; Witrant, E.; Petron, G.; Battle, M. O.; Forster, G.; Sturges, W. T.; Lamarque, J.-F.; Steffen, K.; White, J. W. C.

    2012-08-01

    We present a reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO was already higher in 1950 than it is today. CO mole fractions rose gradually until the 1970s and peaked in the 1970s or early 1980s, followed by a decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radical (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless large changes in OH are assumed. We argue that the available CO emission inventories chronically underestimate NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

  20. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    Science.gov (United States)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  1. Carbon monoxide migratory insertion - A comparison of cationic and neutral palladium(II) complexes

    International Nuclear Information System (INIS)

    Frankcombe, K.; Cavell, K.J.; Yates, B.F.; Knott, R.B.

    1998-01-01

    With the use of ANSTO's resources and expertise and with support from AINSE, we have carried out extensive computer modelling on the mechanism of the palladium catalysed carbonylation reaction, a process which is used industrially in the conversion of carbon monoxide into biodegradable polymers. In this project, experimental and theoretical work has focussed on using Pd(II) complexes containing pyridine carboxylate ligands (NC 5 H 4 COO ) to explore the fundamental mechanistic steps. The results for subsequent steps in the catalytic cycle are presented and their implication for the design of more efficient catalysts are discussed

  2. The relation between carbon monoxide emission and visual extinction in cloud L134

    International Nuclear Information System (INIS)

    Tucker, K.D.; Dickman, R.L.; Encrenaz, P.J.; Kutner, M.L.

    1976-01-01

    Emission from the J=1→0 transition of carbon monoxide has been mapped over an area of 40' x 55' in cloud L134, and visual extinctions over the entire cloud have been obtained by means of star counts. Line intensities of > or =2 K are observable down to an extinction level of about one magnitude. From observations of the J=1→0 transition of the 13 CO isotopic species at 18 locations in the cloud, we have found a linear correlation between the local thermodynamic equilibrium (LTE) column densities of 13 CO and magnitudes of visual extinction

  3. Use of pulse co-oximetry as a screening and monitoring tool in mass carbon monoxide poisoning.

    Science.gov (United States)

    Bledsoe, Bryan E; Nowicki, Kevin; Creel, James H; Carrison, Dale; Severance, Harry W

    2010-01-01

    Carbon monoxide (CO) poisoning remains a common cause of poisoning in the United States. We describe a case where responding fire department personnel encountered a sick employee with a headache at an automotive brake manufacturing plant. Using both atmospheric CO monitoring and pulse CO-oximetry technology, fire department personnel were able to diagnose the cause of the patient's illness and later identify the source of CO in the plant.

  4. Extension of the code COCOSYS to a dispersion code for smoke and carbon monoxide

    International Nuclear Information System (INIS)

    Sdouz, Gert; Mayrhofer, Robert

    2009-01-01

    The code COCOSYS (Containment Code SYStem) was developed by GRS in Germany to simulate processes and nuclear plant states during severe accidents in the containments of light water reactors. It contains several physical models, especially a module for aerosol behaviour. The goal of this work was to extend COCOSYS for applications in more general geometries mainly for complex public buildings. For the application in public buildings models for air condition systems and different boundary conditions according to different environments were developed. The principal application of the extended code COCOSYS is in the area of emergency situations especially in the simulation for carbon monoxide and smoke dispersion. After developing and implementing the new models several test calculations were performed to evaluate the functionality of the extended code. The comparison of the results with those of the original COCOSYS code showed no discrepancies. For the first realistic application several fire emergency scenarios in the Vienna General Hospital (AKH) were selected in agreement with the fire department of the hospital. One of the scenarios addresses the danger of carbon monoxide (CO) and smoke leaking into a fire protection section through a damaged fire protection flap. As a result of the dispersion simulation the CO-concentration in all of the rooms is obtained. Together with additional results as deposition and smoke dispersion the outcome of the simulation can be used for training. Among the next steps are the validation of the new models and the selection of critical scenarios. (author)

  5. Evaluation of carbon monoxide in blood samples from the second health and nutrition survey. Progress report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Radford, E.P.

    1976-01-01

    This is a study of carbon monoxide (CO) in the blood of human subjects participating in the Second National Health and Nutrition Survey (HANES II), a detailed study of health indicators in sample populations of many communities throughout the U.S. The purpose of this aspect of the survey is to evaluate the levels of blood carboxyhemoglobin in normal individuals of all ages in typical U.S. communities, from whom accurate histories and clinical studies are available. This report gives results of the first of three years of analyses. A careful calibration of the analytical method has been completed, and more than 3000 blood samples have been analyzed. Although smoking histories are not yet available to permit evaluation of carboxyhemoglobin in non-smokers, in children under 12 years of age, blood COHb has been found to be consistently low, with less than 3% greater than 1.5% COHb. These preliminary results suggest that urban exposure to carbon monoxide among the general population is not now significant in the U.S., at least during the period of these early examinations.

  6. A study of diesel-hydrogen fuel exhaust emissions in a compression ignition engine/generator assembly

    International Nuclear Information System (INIS)

    Karri, V.; Hafez, H.A.; Kirkegaard, J.F.

    2006-01-01

    A compression engine and duel-fuel supply system was studied in order to determine the influence of hydrogen gas on a diesel engine's exhaust system. Commercially available solenoid valves and pulse actuators were used in a customized mechatronic control unit (MICU) to inject the hydrogen gas into the cylinders during the experiments. The MICU was designed as a generic external attachment. Diesel fuel was used to ignite the hydrogen gas-air mixture after compression. Various different electrical loads were then applied using an alternator in order to stimulate the engine governor and control diesel flow. Results of the study showed that measured carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO x ) loads of exhaust emissions increased, while emissions of carbon dioxide (CO 2 ) decreased. Results also showed that higher temperatures and levels of NO x occurred when hydrogen was mixed with the induced air. It was concluded that higher levels of hydrogen may be needed to reduce emissions. 17 refs., 5 tabs., 2 figs

  7. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    Science.gov (United States)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  8. Clinical and neuropathological findings of acute carbon monoxide toxicity in chihuahuas following smoke inhalation.

    Science.gov (United States)

    Kent, Marc; Creevy, Kate E; Delahunta, Alexander

    2010-01-01

    Three adult Chihuahuas were presented for evaluation after smoke inhalation during a house fire. All three dogs received supportive care and supplemental oxygen. After initial improvement, the dogs developed seizures. Despite anticonvulsant therapy and supportive care, the dogs died. The brains of two dogs were examined. Lesions were identified that were compatible with acute carbon monoxide (CO) toxicity. Lesions were confined to the caudate nucleus, the globus pallidus, and the substantia nigra bilaterally, as well as the cerebellum, cerebral cortex, and dorsal thalamus. This case report describes the clinicopathological sequelae in acute CO toxicity.

  9. Oxygen permeation flux through La1-ySryFeO3 limited by the carbon monoxide oxidation rate

    NARCIS (Netherlands)

    van Hassel, B.A.; van Hassel, B.A.; ten Elshof, Johan E.; Bouwmeester, Henricus J.M.

    1995-01-01

    The oxygen permeation flux through La1-ySryFeO3-δ (y = 0.1, 0.2) in a large oxygen partial pressure gradient (air/CO, CO2 mixture) was found to be limited by the carbon monoxide oxidation rate at the low oxygen partial pressure side of the membrane. The oxygen permeation flux through the membrane

  10. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    International Nuclear Information System (INIS)

    Cermak, J.; Kral, L.

    2013-01-01

    Highlights: ► Beneficial effect of graphitic carbon was observed. ► The effect is optimal up to c opt . ► Above c opt , phase decomposition occurs. ► Indium in studied Mg–Ni-based alloys prevents oxidation. - Abstract: In the present paper, hydrogen desorption kinetics from hydrided Mg–Ni–In–C alloys was investigated. A chemical composition that substantially accelerates hydrogen desorption was found. It was observed that carbon improves the hydrogen desorption kinetics significantly. Its beneficial effect was found to be optimum close to the carbon concentration of about c C ≅ 5 wt.%. With this composition, stored hydrogen can be desorbed readily at temperatures down to about 485 K, immediately after hydrogen charging. This can substantially shorten the hydrogen charging/discharging cycle of storage tanks using Mg–Ni-based alloys as hydrogen storage medium. For higher carbon concentrations, unwanted phases precipitated, likely resulting in deceleration of hydrogen desorption and lower hydrogen storage capacity.

  11. Study of electrocatalytic properties of iridium carbonyl cluster and rhodium carbonyl cluster compounds for the oxygen reduction and hydrogen oxidation reactions in 0.5 MH{sub 2}SO{sub 4} in presence and absence of methanol and carbon monoxide, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Uribe-Godinez, J.; Borja-Arco, E.; Castellanos, R.H. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Escobedo (Mexico); Jimenez-Sandoval, O. [Centro de Investigacion y de Estudios Avanzados del Inst. Politecnico Nacional, Querataro (Mexico)

    2006-07-01

    The suitability of carbonyl cluster compounds as a substitute to platinum (Pt) in fuel cell catalysts was investigated. Iridium (Ir{sub 4}(CO){sub 12} and rhodium (Rh{sub 6}(CO){sub 116}) cluster compounds were investigated as potential new electrocatalysts for oxygen reduction reaction (ORR) in the presence and absence of methanol at different concentrations, as well as for the hydrogen oxidation reaction (HOR) with pure hydrogen and a hydrogen/carbon monoxide mixture. The materials were studied using room temperature rotating disk electrode (RDE) measurements and cyclic and linear sweep voltammetry techniques (LSV). Tafel slope and exchange current density were calculated using the LSV polarization curves. Cyclic voltamperometry results suggested that the electrocatalysts were tolerant to methanol. However, electrochemical behaviour of the materials altered in the presence of CO, and peaks corresponding to CO oxidation were observed in both cases. The rhodium carbonyl showed a higher current density for the ORR than the iridium carbonyl. The current potential curves in the presence of methanol were similar to those obtained without methanol. Results confirmed the tolerance properties of the materials to perform the ORR. Decreased current density values were observed during HOR, and were attributed to changes in the hydrogen solubility and diffusion coefficient due to the presence of CO. The Tafel slopes indicated that the mechanics of the HOR were Heyrovsky-Volmer. Results showed that the materials are capable of performing both ORR and HOR in an acid medium. It was noted that the iridium carbonyl cluster followed a 4-electron transfer mechanism towards the formation of water. It was concluded that the compounds are suitable for use as both cathodes and anodes in proton exchange membrane fuel cells (PEMFCs) and as cathodes in direct methanol fuel cells (DMFCs). 3 refs., 2 tabs., 3 figs.

  12. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    International Nuclear Information System (INIS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-01-01

    A simple hydrogen adsorption measurement system utilizing the volumetric differential pressure technique has been designed, fabricated and calibrated. Hydrogen adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will be helpful in understanding the adsorption property of the studied carbon materials using the fundamentals of adsorption theory. The principle of the system follows the Sievert-type method. The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range, R1, S1, S2, and S3 having known fixed volume. The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operating pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. High purity hydrogen is being used in the system and the amount of samples for the study is between 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of the adsorption process by eliminating the errors caused by temperature expansion effects and other non-adsorption related phenomena. The ideal gas equation of state is applied to calculate the hydrogen adsorption capacity based on the differential pressure measurements. Activated carbon with a surface area of 644.87 m 2 /g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m 2 /g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption

  13. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Weber, J. [Technische Universität Dresden, Institut für Angewandte Physik, 01062 Dresden (Germany)

    2015-08-07

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.

  14. Regional air-quality forecasting for the Pacific Northwest using MOPITT/TERRA assimilated carbon monoxide MOZART-4 forecasts as a near real-time boundary condition

    Directory of Open Access Journals (Sweden)

    F. L. Herron-Thorpe

    2012-06-01

    Full Text Available Results from a regional air quality forecast model, AIRPACT-3, were compared to AIRS carbon monoxide column densities for the spring of 2010 over the Pacific Northwest. AIRPACT-3 column densities showed high correlation (R > 0.9 but were significantly biased (~25% with consistent under-predictions for spring months when there is significant transport from Asia. The AIRPACT-3 CO bias relative to AIRS was eliminated by incorporating dynamic boundary conditions derived from NCAR's MOZART forecasts with assimilated MOPITT carbon monoxide. Changes in ozone-related boundary conditions derived from MOZART forecasts are also discussed and found to affect background levels by ± 10 ppb but not found to significantly affect peak ozone surface concentrations.

  15. The effect of atomic hydrogen adsorption on single-walled carbon nano tubes properties

    International Nuclear Information System (INIS)

    Jalili, S.; Majidi, R.

    2007-01-01

    We investigated the adsorption of hydrogen atoms on metallic single-walled carbon nano tubes using ab initio molecular dynamics method. It was found that the geometric structures and the electronic properties of hydrogenated SWNTs can be strongly changed by varying hydrogen coverage. The circular cross sections of the CNTs were changed with different hydrogen coverage. When hydrogen is chemisorbed on the surface of the carbon nano tube, the energy gap will be appeared. This is due to the degree of the Sp 3 hybridization, and the hydrogen coverage can control the band gap of the carbon nano tube

  16. Investigation of Carbon Monoxide Adsorption on Cationic Gold- Palladium Clusters

    Science.gov (United States)

    Chen, Yang-Mei; Kuang, Xiao-Yu; Sheng, Xiao-Wei; Wang, Huai-Qian; Shao, Peng; Zhong, Min-Ming

    2013-11-01

    Density functional calculations have been performed for the carbon monoxide molecule adsorption on AunPd+m(n+m ≤ 6) clusters. In the process of CO adsorption, small Au clusters and Pd clusters tend to be an Au atom and three Pd atoms adsorption, respectively. For the mixed Au-Pd clusters, an Au atom, a Pd atom, two atoms consisted of an Au atom and a Pd atom, two Pd atoms, and three Pd atoms adsorption structures are displayed. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and natural bond orbital charge population are calculated. Moreover, CO adsorption energy, CO stretching frequency, and CO bond length (upon adsorption) are also analysed in detail. The results predict that the adsorption strength of Au clusters with CO and the C-O vibration strength is enhanced and reduced after doping of Pd in the AunPdmCO+ complexes, respectively

  17. Carbon monoxide exposure and information processing during perceptual-motor performance

    Energy Technology Data Exchange (ETDEWEB)

    Mihevic, P.M.; Gliner, J.A.; Horvath, S.M.

    1983-01-01

    This study examined the influence of exposure to ambient carbon monoxide resulting in final carboxyhemoglobin (COHb) levels of approximately 5.0% on the ability to process information during motor performance. Subjects (n . 16) performed a primary reciprocal tapping task and a secondary digit manipulation task singly and/or concurrently during 2.5 h exposure to room air (0 ppm CO) or 100 ppm CO. Five levels of tapping difficulty and two levels of digit manipulation were employed. Tapping performance was unaffected when COHb levels were as high as 5%. However, at this level of COHb it was noted that CO exposure interacted with task difficulty of both tasks to influence reaction time on the digit manipulation task. It was concluded that motor performance was not influenced by exposure to CO leading to COHb concentrations of 5%. Task difficulty was a significant factor mediating behavioral effects of CO exposure.

  18. Carbon monoxide exposure and information processing during perceptual-motor performance

    Energy Technology Data Exchange (ETDEWEB)

    Mihevic, P.M.; Gliner, J.A.; Horvath, S.M.

    1983-04-01

    This study examined the influence of exposure to ambient carbon monoxide resulting in final carboxyhemoglobin (COHb) levels of approximately 5.0% on the ability to process information during motor performance. Subjects (n = 16) performed a primary reciprocal tapping task and a secondary digit manipulation task singly and/or concurrently during 2.5 h exposure to room air (0 ppm CO) or 100 ppm CO. Five levels of tapping difficulty and two levels of digit manipulation were employed. Tapping performance was unaffected when COHb levels were as high as 5%. However, at this level of COHb it was noted that CO exposure interacted with task difficulty of both tasks to influence reaction time on the digit manipulation task. It was concluded that motor performance was not influenced by exposure to CO leading to COHb concentrations of 5%. Task difficulty was a significant factor mediating behavioral effects of CO exposure.

  19. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    Science.gov (United States)

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  20. Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING

    International Nuclear Information System (INIS)

    Wiesberg, Igor L.; Medeiros, José Luiz de; Alves, Rita M.B.; Coutinho, Paulo L.A.; Araújo, Ofélia Q.F.

    2016-01-01

    Highlights: • Evaluation of carbon dioxide conversion to methanol by two chemical routes. • HYDROGENATION: conversion via catalytic hydrogenation at high pressure. • BI-REFORMING: conversion via syngas from bi-reforming of natural gas. • HYDROGENATION is viable for hydrogen price inferior to 1000 US$/t. • BI-REFORMING is unable to avoid emissions; viable only if gas price is very low. - Abstract: Chemical conversion of carbon dioxide to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of carbon dioxide is a challenging impediment to conversion requiring severe reaction conditions at the expense of increased energy input, therefore adding capital, operation and environmental costs, which could result in partial or total override of its potential sustainability as feedstock to the chemical and energy industries. This work investigates two innovative chemical destinations of carbon dioxide to methanol, namely a direct conversion through carbon dioxide hydrogenation (HYDROGENATION), and an indirect via carbon dioxide conversion to syngas through bi-reforming (BI-REFORMING). Process simulation is used to obtain mass and energy balances needed to support assessment of economic and environmental performance. A business scenario is considered where an industrial source of nearly pure carbon dioxide exists and an investment decision for utilization of carbon dioxide is faced. Due to uncertainties in prices of the raw materials, hydrogen (HYDROGENATION) and natural gas (BI-REFORMING), the decision procedure includes the definition of price thresholds to reach profitability. Sensitivity analyses are performed varying costs with greater uncertainty, i.e., carbon dioxide and methanol, and recalculating maximum allowable prices of raw materials. The analyses show that in a Brazilian scenario, BI-REFORMING is unlikely

  1. Development and Evaluation of a Hyperbaric Toxic Gas Monitor (SubTox) for Disabled Submarines

    Science.gov (United States)

    2013-08-01

    air near the CO2 scrubbers was sampled, the common amine/ ammonia smell was present. And while no NH3 sensor was installed in the SubTox, no monitored...under pressure, the eight gases — ammonia , carbon monoxide, chlorine, hydrogen chloride, hydrogen cyanide, hydrogen sulfide, nitrogen dioxide, and...gases for which SEALs have been defined: ammonia (NH3), carbon monoxide (CO), chlorine (Cl2), hydrogen chloride (HCl), hydrogen cyanide (HCN

  2. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  3. Modeling of hydrogen behaviour in a PWR nuclear power plant containment with the CONTAIN code

    International Nuclear Information System (INIS)

    Bobovnik, G.; Kljenak, I.

    2001-01-01

    Hydrogen behavior in the containment during a severe accident in a two-loop Westinghouse-type PWR nuclear power plant was simulated with the CONTAIN code. The accident was initiated with a cold-leg break of the reactor coolant system in a steam generator compartment. In the input model, the containment is represented with 34 cells. Beside hydrogen concentration, the containment atmosphere temperature and pressure and the carbon monoxide concentration were observed as well. Simulations were carried out for two different scenarios: with and without successful actuation of the containment spray system. The highest hydrogen concentration occurs in the containment dome and near the hydrogen release location in the early stages of the accident. Containment sprays do not have a significant effect on hydrogen stratification.(author)

  4. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  5. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Rosalba eJuarez Mosqueda

    2015-02-01

    Full Text Available The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory. Our simulation model includes a Pt4 cluster for the catalyst nanoparticle and curved and planar circumcoronene for two exemplary single-walled carbon nanotubes (CNT, the (10,10 CNT and one of large diameter, respectively. Our results show that the H2 molecule dissociates spontaneously on the Pt4 cluster. However, the dissociated H atoms have to overcome a barrier of more than 2 eV to migrate from the catalyst to the CNT, even if the Pt4 cluster is at full saturation with six adsorbed and dissociated hydrogen molecules. Previous investigations have shown that the mobility of hydrogen atoms on the CNT surface is hindered by a barrier. We find that instead the Pt4 catalyst may move along the outer surface of the CNT with activation energy of only 0.16 eV, and that this effect offers the possibility of full hydrogenation of the CNT. Thus, although we have not found a low-energy pathway to spillover onto the CNT, we suggest, based on our calculations and calculated data reported in the literature, that in the hydrogen-spillover process the observed saturation of the CNT at hydrogen background pressure occurs through mobile Pt nanoclusters, which move on the substrate more easily than the substrate-chemisorbed hydrogens, and deposit or reattach hydrogens in the process. Initial hydrogenation of the carbon substrate, however, is thermodynamically unfavoured, suggesting that defects should play a significant role.

  6. Hydrogen-enriched natural gas; Bridge to an ultra low carbon world

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Joshua; Oliver, Mike

    2010-09-15

    Natural gas is recognized as an important part of the solution to climate change, as it has the smallest carbon footprint among fossil fuels and can be used with high efficiency. This alone is not enough. Supplementing natural gas with hydrogen creating hydrogen-enriched natural gas (HENG), where the hydrogen comes from a low- or zero-carbon energy source. HENG, the subject of this paper, can leverage existing natural gas infrastructure to reduce CO2 and NOx, improve the efficiency of end-use equipment, and lower the overall carbon intensity of energy consumption.

  7. Effective utilization technology of carbon dioxide. CO sub 2 no yuko riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibusuki, T. (National Research Inst. for pollution and Resources, Tsukuba (Japan))

    1991-03-12

    As carbon dioxide-related environmental measures, method was explained to chemically convert and utilize carbon dioxide. Synthesis is possible of methanol, carbon monoxide, different carbohydrates, etc. by catalytic hydrogenation of carbon dioxide, using hydrogen produced by the electrolysis of water. Task consists of heightening in both convertibility and selectivity, and abundant supply of low cost hydrogen. Methane, alcohol, etc. can be synthesized by electrochemical reducion of carbon dioxide. Because of effectively inserting multiple electron, discssion is being made of catalyst, intergrated with electrode, and electron transmitter. The photoelectrochemical reduction of carbon dioxide can be also made by utilizing photoelectric current, generated upon photoradiation on the semiconductive electrode. However, task consists of heightening in both efficiency and selectivity. Photochemical reduction of carbon dioxide, actually made by green plant, consists of oxidationlike decomposition of water and reduction of carbon dioxide. Both those reactions are skillfully separated by intermediation of very quick electron transmission system. Reduction is being studied with semiconductor, metallic colloid, enzyme, metallic complex and other various catalysts. 10 refs., 3 figs., 4 tabs.

  8. How to optimize hydrogen plant designs

    Energy Technology Data Exchange (ETDEWEB)

    van Weenen, W F; Tielrooy, J

    1983-01-01

    In a typical hydrogen plant of the type which will be discussed, methane or higher hydrocarbons are reformed with steam in a steam hydrocarbon reformer operating at a pressure of 250 to 400 psig, a temperature of 1500 to 1600/sup 0/F, and with a ratio of steam to carbon in the feed of about 3.0. Following the reformer and cooling, there is a single stage of high temperature carbon monoxide shift conversion. Optionally, after further cooling, this may be followed by a second stage of carbon monoxide shift conversion operating at a lower temperature to obtain a more favourable equilibrium; this is called low temperature shift conversion. After cooling to ambient temperature, and separation of the condensate, the gas is passed through a Pressure Swing Adsorption (PSA)l unit which removes all the impurities along with a small amount of hydrogen. The waste gas from the PSA unit containing all the impurities is used as fuel to the reformer. Heat is recovered from the reformer flue gas, reformer product, high temperature shift converter product and low temperature shift converter product. This paper discusses some of the process variables and design variables which must be considered in arriving at an optimized design. Seven different flow schemes are discussed in the light of the objectives they are designed for. The seven schemes and their objectives are: Flow Scheme 1 - lowest first cost; moderate efficiency, Flow Scheme 2 - high efficiency, low cost; Flow Scheme 3 - low feed plus fuel, moderately high efficiency; Flow Scheme 4 - lowest feed plus fuel; Flow Scheme 5 - lowest feed, low fuel; Flow Scheme 6 -lowest feed, highest efficiency; and Flow Scheme 7 - lowest feed plus fuel, export electric power instead of export electric power instead of export steam. 15 figures, 1 table.

  9. The Cd 5 3P0 state in the cadmium-photosensitized reaction and the quenching of the resonance radiation at 326.1 nm by nitrogen, carbon monoxide, and carbon dioxide

    International Nuclear Information System (INIS)

    Yamamoto, Shunzo; Takaoka, Motoaki; Tsunashima, Shigeru; Sato, Shin

    1975-01-01

    The emission of the resonance line at 326.1 nm (5 3 P 1 →5 1 S 0 ) and the absorptions of Cd ( 3 P 0 ) at 340.4 nm (5 3 P 0 →5 3 D 1 ) and of Cd ( 3 P 1 ) at 346.6 nm (5 3 P 1 →5 3 D 2 ) have been measured as functions of the pressure of foreign gases at 250 0 C. At the pressures higher than 1 Torr of any rare gas, an equilibrium was established between 5 3 P 1 and 5 3 P 0 states. The efficiency of nitrogen in producing the 5 3 P 0 state from the 5 3 P 1 state was found to be more than 10 3 times those of rare gases. The quenching efficiencies of nitrogen, carbon monoxide, and carbon dioxide for the resonance radiation at 326.1 nm were also measured by using argon as the diluent gas. The half-quenching pressures obtained were 73+-3, 0.47+-0.01, and 0.096+-0.003 Torr for nitrogen, carbon monoxide, and carbon dioxide respectively. (auth.)

  10. Residential carbon monoxide poisoning from motor vehicles.

    Science.gov (United States)

    Hampson, Neil B

    2011-01-01

    Although morbidity and mortality from accidental carbon monoxide (CO) poisoning are high in the United States, identification of common but poorly recognized sources should help prevention efforts. The study aimed to describe CO poisoning of home occupants due to a vehicle left running in an attached garage. News stories reporting incidents of US CO poisoning were collected daily from March 2007 to September 2009 via a news.Google.com search and data extracted. Patients were individuals reported in the media to have been poisoned with CO in their home by a vehicle running in the attached garage. Main outcome measures were frequency of occurrence, geographic distribution, patient demographics, and mortality. Of 837 CO poisoning incidents reported in US news media over 2 and a half years, 59 (8%) were the result of a vehicle left running in the garage. The elderly were disproportionately affected, with incidents most common in states with larger elderly populations and 29% of cases with age specified occurring in individuals older than 80 years. Among those older than 80 years, 15 of 17 were found dead at the scene. Residential CO poisoning from a vehicle running in the garage is common, disproportionately affects the elderly, has a high mortality rate, and should be preventable with a residential CO alarm. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Hydrogen adsorption in the series of carbon nanostructures: Graphenes-graphene nanotubes-nanocrystallites

    Science.gov (United States)

    Soldatov, A. P.; Kirichenko, A. N.; Tat'yanin, E. V.

    2016-07-01

    A comparative analysis of hydrogen absorption capability is performed for the first time for three types of carbon nanostructures: graphenes, oriented carbon nanotubes with graphene walls (OCNTGs), and pyrocarbon nanocrystallites (PCNs) synthesized in the pores of TRUMEM ultrafiltration membranes with mean diameters ( D m) of 50 and 90 nm, using methane as the pyrolized gas. The morphology of the carbon nanostructures is studied by means of powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM). Hydrogen adsorption is investigated via thermogravimetric analysis (TGA) in combination with mass-spectrometry. It is shown that only OCNTGs can adsorb and store hydrogen, the desorption of which under atmospheric pressure occurs at a temperature of around 175°C. Hydrogen adsorption by OCNTGs is quantitatively determined and found to be about 1.5% of their mass. Applying certain assumptions, the relationship between the mass of carbon required for the formation of single-wall OCNTGs in membrane pores and the surface area of pores is established. Numerical factor Ψ = m dep/ m calc, where m dep is the actual mass of carbon deposited upon the formation of OCNTGs and mcalc is the calculated mass of carbon necessary for the formation of OCNTGs is introduced. It is found that the dependence of specific hydrogen adsorption on the magnitude of the factor has a maximum at Ψ = 1.2, and OCNTGs can adsorb and store hydrogen in the interval 0.4 to 0.6 hydrogen adsorption and its relationship to the structure of carbon nanoformations are examined.

  12. CT of the brain in acute carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Ohno, Masato; Uchino, Akira; Hayashi, Kazuji; Nakata, Hajime.

    1988-01-01

    Cerebral computed tomographic (CT) findings of acute carbon monoxide (Co) poisoning were analized in thirty-six cases treated with hyperbraric oxygen therapy and their relationship with prognosis was evaluated. The cases were classified into there groups, early stage, interval form, and non-interval form groups. In all groups, the initial abnormality was low density areas presumably due to edema, demyelination and/or softening. It was seen in the globus pallidus and/or white matter. Following these initial changes, cerebral hemorrhage, ventricular dilatation, and cerebral atrophy developed in a few cases. The frequency of abnormal CT findings was higher in the interval form group (85 %) or non-interval group (83 %) than the early stage group (41 %). The prognosis was good in most cases with normal CT findings. The possibility of recovery diminished in the patients with abnormal CT findings. The prognosis was particularly poor in cases showing abnormality both in globus pallidus and white matter. We conclude that CT is useful not only for detecting the pathologic change but also for predicting the prognosis of the patient with acute Co poisoning. (author)

  13. DNA pooling base genome-wide association study identifies variants at NRXN3 associated with delayed encephalopathy after acute carbon monoxide poisoning.

    Directory of Open Access Journals (Sweden)

    Wenqiang Li

    Full Text Available Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP is more characteristic of anoxic encephalopathy than of other types of anoxia. Those who have the same poisoning degree and are of similar age and gender have a greater risk of getting DEACMP. This has made it clear that there are obvious personal differences. Genetic factors may play a very important role. The authors performed a genome-wide association study involving pooling of DNA obtained from 175 patients and 244 matched acute carbon monoxide poisoning without delayed encephalopathy controls. The Illumina HumanHap 660 Chip array was used for DNA pools. Allele frequencies of all SNPs were compared between delayed encephalopathy after acute carbon monoxide poisoning and control groups and ranked. A total of 123 SNPs gave an OR >1.4. Of these, 46 mapped in or close to known genes. Forty-eight SNPs located in 19 genes were associated with DEACMP after correction for 5% FDR in the genome-wide association of pooled DNA. Two SNPs (rs11845632 and rs2196447 locate in the Neurexin 3 gene were selected for individual genotyping in all samples and another cohort consisted of 234 and 271 controls. There were significant differences in the genotype and allele frequencies of rs11845632 and rs2196447 between the DEACMP group and controls group (all P-values <0.05. This study describes a positive association between Neurexin 3 and controls in the Han Chinese population, and provides genetic evidence to support the susceptibility of DEACMP, which may be the resulting interaction of environmental and genetic factors.

  14. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  15. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  16. Conversion from carbon dioxide to organic materials by RF impulse discharges with hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, G.; Kano, M.; Iizuka, S. [Tohoku Univ., Sendai (Japan). Dept. of Electrical Engineering

    2010-07-01

    Carbon dioxide (CO{sub 2}) is among the most serious greenhouse gases emitted from the burning of fossil fuels. The objective of this study was to investigate the fundamental process of reducing CO{sub 2} to generate beneficial and reusable organic materials like methane (CH{sub 4}) and alcohol (CH{sub 3}OH) by using RF impulse discharges in a low gas pressure regime. A low-pressure glow discharge was used to investigate the fundamental processes without catalysts. The discharge took place inside a glass tube by changing the discharge parameters such as voltage, gas flow rate and gas residence time, where the CO{sub 2} was reduced by hydrogen (H{sub 2}). Fourier transform infrared spectroscopy (FTIR) was used to analyze the gas species. Several organic materials were observed, including methane and methanol. The study focused primarily on the reduction of CO{sub 2} by using only H{sub 2}. Carbon monoxide (CO) was clearly a major product from CO{sub 2}, but CH{sub 4} was the most dominant organic species in this experiment. The density of CH{sub 4} increased with the discharge power, and eventually its volume ratio was about 20 percent among the gas species containing carbon via decomposition of CO{sub 2}. This ratio was dependent on the mixing ratio of CO{sub 2} and H{sub 2}. It was concluded that the total pressure is an important factor for efficient production. CH{sub 3}OH formation was observed, but its concentration was low in comparison to CH{sub 4}. 5 refs., 6 figs.

  17. Compressed hydrogen fuelled vehicle at ENEA: Status and development

    International Nuclear Information System (INIS)

    Pede, G.; Ciancia, A.

    1993-01-01

    The world's 500 million road vehicles using internal combustion engines account for roughly half of global oil consumption and, in Italy, for about 50% of all nitrogen oxide and 90% of carbon monoxide emissions. In efforts to conserve petroleum reserves and reduce air pollution, research programs are being conducted to develop hydrogen fueled automotive engines. Hydrogen combustion products are carbon dioxide free, and when burned with a large excess of air, this fuel produces water vapour and only small amounts of nitrogen oxides. Hydrogen fueled vehicles can be made to operate in a dual fuel mode so as to allow the use of petrol or diesel fuel in travel over long distances. Currently, because technical and economic difficulties relevant to hydrogen fuel storage limit driving range and payload (there are bulk and weight problems in compressed gas and metal hydride storage systems, and cost problems in cryogenic storage), only limited research programs are being performed, mainly in Germany (by Mercedes Benz) and Japan. Some recent advances, however, relevant to research in gas storage and gaseous mixtures have been made by ENEA (the Italian Agency for New Technology, Energy and the Environment). This paper outlines the progress being made in ENEA's research efforts which include the development of an electronically controlled hydrogen fuel injection system prototype

  18. Thermal stability of hydrogenated small-diameter carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Podlivaev, A. I., E-mail: AIPodlivayev@mephi.ru; Openov, L. A. [National Research Nuclear University “MEPhI” (Russian Federation)

    2017-02-15

    The initial stage of hydrogen desorption from fully hydrogenated carbon nanotubes (3.0) and (2.2) is numerically studied by the molecular dynamics method. The temperature dependence of the desorption rate is directly determined at T = 1800–2500 K. The characteristic desorption times are determined at temperatures outside this range by extrapolation. It is shown that hydrogen desorption leads to the appearance of electronic states in the band gap.

  19. A study on hydrogen storage through adsorption in nano-structured carbons

    International Nuclear Information System (INIS)

    Langohr, D.

    2004-10-01

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  20. A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Science.gov (United States)

    Petrenko, V. V.; Martinerie, P.; Novelli, P.; Etheridge, D. M.; Levin, I.; Wang, Z.; Blunier, T.; Chappellaz, J.; Kaiser, J.; Lang, P.; Steele, L. P.; Hammer, S.; Mak, J.; Langenfelds, R. L.; Schwander, J.; Severinghaus, J. P.; Witrant, E.; Petron, G.; Battle, M. O.; Forster, G.; Sturges, W. T.; Lamarque, J.-F.; Steffen, K.; White, J. W. C.

    2013-08-01

    We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140-150 nmol mol-1, which is higher than today's values. CO mole fractions rose by 10-15 nmol mol-1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ≈ 30 nmol mol-1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

  1. A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Directory of Open Access Journals (Sweden)

    V. V. Petrenko

    2013-08-01

    Full Text Available We present the first reconstruction of the Northern Hemisphere (NH high latitude atmospheric carbon monoxide (CO mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008. CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol−1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol−1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ≈ 30 nmol mol−1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH, as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

  2. Performance of CVD and CVR coated carbon-carbon in high temperature hydrogen

    Science.gov (United States)

    Adams, J. W.; Barletta, R. E.; Svandrlik, J.; Vanier, P. E.

    As a part of the component development process for the particle bed reactor (PBR), it is necessary to develop coatings which will be time and temperature stable at extremely high temperatures in flowing hydrogen. These coatings must protect the underlying carbon structure from attack by the hydrogen coolant. Degradation which causes small changes in the reactor component, e.g. hole diameter in the hot frit, can have a profound effect on operation. The ability of a component to withstand repeated temperature cycles is also a coating development issue. Coatings which crack or spall under these conditions would be unacceptable. While refractory carbides appear to be the coating material of choice for carbon substrates being used in PBR components, the method of applying these coatings can have a large effect on their performance. Two deposition processes for these refractory carbides, chemical vapor deposition (CVD) and chemical vapor reaction (CVR), have been evaluated. Screening tests for these coatings consisted of testing of coated 2-D and 3-D weave carbon-carbon in flowing hot hydrogen at one atmosphere. Carbon loss from these samples was measured as a function of time. Exposure temperatures up to 3,000 K were used, and samples were exposed in a cyclical fashion cooling to room temperature between exposures. The results of these measurements are presented along with an evaluation of the relative merits of CVR and CVD coatings for this application.

  3. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  4. Foucault, surveillance, and carbon monoxide testing within stop-smoking services.

    Science.gov (United States)

    Grant, Aimee; Ashton, Kathryn; Phillips, Rhiannon

    2015-07-01

    Health professionals have adopted proactive testing for early evidence of disease. Researchers have identified that this leads to enumerated understandings and shapes behavior in productive ways. Smoking-cessation advisors regularly test clients for carbon monoxide (CO), but client views of this had not previously been explored. We interviewed 23 clients of a United Kingdom-based stop-smoking service regarding their experiences of CO testing. The majority of participants were successful quitters. We used ATLAS.ti 7 as a data-management tool during structured qualitative analysis. Our findings reveal that clients believed the results of their CO tests. Many became enumerated in their understanding, and thus placed themselves in a hierarchy with other members of their group. Almost all clients found that knowing their CO test score was motivating. We conclude that additional research is needed to understand the experiences of CO testing among clients who do not quit. © The Author(s) 2014.

  5. UV-induced carbon monoxide emission from sand and living vegetation

    DEFF Research Database (Denmark)

    Bruhn, Dan; Albert, Kristian Rost; Mikkelsen, Teis Nørgaard

    2012-01-01

    The global burden of carbon monoxide, CO, is rather uncertain. In this paper we address the potential of UV-induced CO emission by terrestrial surfaces. Real-time measurements of [CO] were made with a cavity enhanced laser connected in closed loop to either an ecosystem chamber or a leaf scale...... chamber. Sand and leaves of all examined plant species exhibited emission of CO in response to artificial UV-radiation and the UV-component of natural solar radiation. The UV-induced rate of CO emission exhibited a rather low dependence on temperature, indicating an abiotic process. The emission of CO...... in response to the UV-component of natural solar radiation was also evident at the ecosystem scale. When scaled to the global level, the UV-induced emission of CO by the major types of terrestrial surfaces, living leaves and soil (here represented by sand), amounts up to 28 Tg yr−1. This source has...

  6. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  7. Investigate of analysis for hydrogen contents in carbon films

    International Nuclear Information System (INIS)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko; Awazu, Kaoru; Naramoto, Hiroshi

    2001-01-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV γ-rays from the resonant nuclear reactions 1 H( 15 N, α γ) 12 C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B 4 C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  8. Investigate of analysis for hydrogen contents in carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ., Kanazawa, Ishikawa (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa, Kanazawa, Ishikawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha} {gamma}){sup 12}C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  9. Monte-Carlo Simulation of Hydrogen Adsorption in Single-Wall Carbon Nano-Cones

    Directory of Open Access Journals (Sweden)

    Zohreh Ahadi

    2011-01-01

    Full Text Available The properties of hydrogen adsorption in single-walled carbon nano-cones are investigated in detail by Monte Carlo simulations. A great deal of our computational results show that the hydrogen storage capacity in single-walled carbon nano-cones is slightly smaller than the capacity of single-walled carbon nanotubes at any time at the same conditions. This indicates that the hydrogen storage capacity of single-walled carbon nano-cones is related to angles of carbon nano-cones. It seems that these type of nanotubes could not exceed the 2010 goal of 6 wt%, which is presented by the U.S. Department of Energy. In addition, these results are discussed in theory.

  10. Hydrogen storage in porous carbons: modelling and performance improvements

    International Nuclear Information System (INIS)

    Pellenq, R.J.M.; Maresca, O.; Marinelli, F.; Duclaux, L.; Azais, P.; Conard, J.

    2006-01-01

    In this work, we aim at exploring using ab initio calculations, the various ways allowing for an efficient hydrogen docking in carbon porous materials. Firstly, the influence of surface curvature on the chemisorption of atomic hydrogen is considered. Then it is shown that electro-donor elements such as lithium or potassium used as dopant of the carbon substrate induce a strong physi-sorption for H 2 , allowing its storage at ambient temperature under moderate pressure. (authors)

  11. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei, E-mail: limei.xu@pku.edu.cn [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Tangpanitanon, Jirawat [University of Cambridge, Cambridge, Cambridgeshire CB2 1TP (United Kingdom); Wen, Bo [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Beijing Computational Science Research Center, Heqing Street, Haidian District, Beijing 100084 (China); Xue, Jianming [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-05-28

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

  12. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    Science.gov (United States)

    Sun, Gang; Tangpanitanon, Jirawat; Shen, Huaze; Wen, Bo; Xue, Jianming; Wang, Enge; Xu, Limei

    2014-05-01

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

  13. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    International Nuclear Information System (INIS)

    Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei; Tangpanitanon, Jirawat; Wen, Bo; Xue, Jianming

    2014-01-01

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT

  14. Carbon monoxide poisoning: a five year review at Tan Tock Seng Hospital, Singapore.

    Science.gov (United States)

    Handa, P K; Tai, D Y H

    2005-11-01

    Carbon monoxide poisoning (COP) is one of the leading causes of death from poisoning worldwide. There is no published study of COP in Singapore so far. All patients admitted with the diagnosis of COP to Tan Tock Seng Hospital (TTSH) over 5 years from 1999 to 2003 were retrospectively reviewed. The diagnosis was based on a history of potential exposure to carbon monoxide (CO) and elevated levels of carboxyhaemoglobin (COHb). The causes, demographic data, clinical presentations, management and complications were analysed. There were 12 patients with COP. Their average age was 38.9 (+/-11.8) years, with a male-to-female ratio of 3:1. Accidental COP (58.3%) was more common than intentional COP (41.7%). The most common cause of accidental COP was smoke inhalation from a faulty vehicle. Gas stove was the most preferred source for intentional poisoning. Presenting features were headache (83.3%), confusion (83.3%), coma (12.7%) and agitation (8.3%). The mean COHb level on admission was 35.9% (+/-13.6). All were treated with 100% oxygen. All the patients achieved normal levels of COHb within 24 hours of admission. Two (16.7%) required intubation for airway protection as they were comatose on arrival, of which 1 presented with very high level of COHb (48.1%) and was the only patient to be treated with hyperbaric oxygen. Acute complications were globus pallidus infarction (16.6%), acute respiratory distress syndrome (8.3%) and myocardial ischaemia (8.3%). Most of the patients (91.7%) were discharged well from the hospital. One patient developed parkinsonism after a follow-up of 2 years. There were no deaths. COP is relatively uncommon in Singapore. It has a low rate of short- and long-term complications.

  15. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  16. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  17. Hydrogenation of carbon to methane in reduced sponge iron, chromium, and ferrochromium

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, M A; Reeve, D A

    1976-01-01

    Hydrogenation of excess carbon to methane in reduced sponge iron, chromium and ferrochromium under isothermal and temperature-programmed conditions indicates that it is possible to control the residual carbon content of the metallized products which may be an advantage if further processing of the products is contemplated. Hydrogenation starts above 800/sup 0/C and a shrinking-core kinetic model fits the experimental data. The mean apparent activation energy for the hydrogenation of residual carbon to methane in sponge iron, chromium and ferrochromium is 21 kcal/mole.

  18. Robust, Reliable Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret Stacy [Univ. of Michigan, Ann Arbor, MI (United States); Im, Hong Geum [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-12-16

    The effects of high hydrogen content fuels were studied using experimental, computational and theoretical approaches to understand the effects of mixture and state conditions on the ignition behavior of the fuels. A rapid compression facility (RCF) was used to measure the ignition delay time of hydrogen and carbon monoxide mixtures. The data were combined with results of previous studies to develop ignition regime criteria. Analytical theory and direct numerical simulation were used to validate and interpret the RCF ignition data. Based on the integrated information the ignition regime criteria were extended to non-dimensional metrics which enable application of the results to practical gas turbine combustion systems.

  19. Formation of hydrogen during heterogeneous thermoradiolysis of water

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Bugaenko, L.T.; Kerimov, V.K.; Kurbanov, M.A.; Mamedov, S.G.; Ali-Zade, Sh.N.

    1986-01-01

    At fairly high temperatures, the action of ionizing radiation on water should lead to chain decomposition of water, if in the system there is an acceptor for hydroxyl radical, which transforms it into a hydrogen atom by the reaction OH + X → XO + H, followed by the reaction of hydrogen atoms with a water molecule and formation of molecular hydrogen H + H 2 O → OH. This sequence has been realized in a homogeneous system containing carbon monoxide as an acceptor-transformer. It has been suggested that the same reactions can take place on the surface of solid bodies as in the gaseous phase. In the present work, results are reported of a study of radiational-chemical processes in water at 400 0 C in the presence of a highly dispersed iron(III) oxide with a specific surface of 5 x 10 3 m 2 /kg

  20. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    Science.gov (United States)

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  1. Extraction of Carbon Dioxide and Hydrogen from Seawater and Hydrocarbon Production Therefrom

    Science.gov (United States)

    2016-04-05

    acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H.sup. ions for Na.sup. ions. Carbon dioxide may be...extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide . The carbon dioxide and hydrogen may be used to produce hydrocarbons.

  2. Cogeneration (hydrogen and electrical power) using the Texaco Gasification Power Systems (TGPS) technology

    International Nuclear Information System (INIS)

    Gardner, J.

    1994-01-01

    The information herein presents preliminary technical and cost data for an actual case study using Texaco Gasification Power Systems (TGPS) technology, incorporated as part of an overall refinery upgrade project. This study is based on gasification of asphalt and vacuum residue (see Table 1, feedstock properties) to produce hydrogen plus carbon monoxide (synthesis gas) for the ultimate production of high purity hydrogen and power at a major refinery in Eastern Europe. A hydrogen production of 101,000 Nm 3 /hr (9.1 tons/hr) at 99.9 (wt.%) purity plus 50 MW (net) power slated to be used by the refinery was considered for this study. Figure I shows a block diagram depicting the general refinery configuration upgrade as envisioned by the owner operator; included in the configuration as shown in the shaded area is the TGPS plant. Figure II shows a block flow diagram depicting the TGPS unit and its battery limits as defined for this project. The technology best suited to meet the demand for clean and efficient electric power generation and hydrogen production is the Texaco Gasification Power Systems (TGPS) process. This technology is based upon Texaco's proprietary gasification technology which is well proven with over 40 years of gasification experience. There are currently 37 operating units in the world today which have licensed the Texaco gasification process technology, with another 12 in design/construction. Total synthesis gas (hydrogen + carbon monoxide) production capacity is over 2,8 billion standard cubic feet per day. The TGPS, which is basically the Integrated Gasification Combined Cycle (IGCC) based upon the Texaco gasification technology, was developed by combining and integrating gasification with power generation facilities. (author). 3 figs., 9 tabs., 4 refs

  3. Human umbilical cord blood mononuclear cell transplantation for delayed encephalopathy after carbon monoxide intoxication

    Directory of Open Access Journals (Sweden)

    Gong D

    2013-08-01

    Full Text Available Dianrong Gong,1 Haiyan Yu,1 Weihua Wang,2 Haixin Yang,1 Fabin Han1,21Department of Neurology, 2Centre for Stem Cells and Regenerative Medicine, Liaocheng People's Hospital, The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of ChinaAbstract: Stem cell transplantation is one of the potential treatments for neurological disorders. Since human umbilical cord stem cells have been shown to provide neuroprotection and promote neural regeneration, we have attempted to transplant the human umbilical cord blood mononuclear cells (hUCB-MNCs to treat patients with delayed encephalopathy after carbon monoxide intoxication (DEACOI. The hUCB-MNCs were isolated from fresh umbilical cord blood and were given to patients subarachnoidally. Physical examinations, mini-mental state examination scores, and computed tomography scans were used to evaluate the improvement of symptoms, signs, and pathological changes of the patient's brain before and after hUCB-MNC transplantation. A total of 12 patients with DEACOI were treated with hUCB-MNCs in this study. We found that most of the patients have shown significant improvements in movement, behavior, and cognitive function, and improved brain images in 1–4 months from the first transplantation of hUCB-MNCs. None of these patients have been observed to have any severe adverse effects. Our study suggests that the hUCB-MNC transplantation may be a safe and effective treatment for DEACOI. Further studies and clinical trials with more cases, using more systematic scoring methods, are needed to evaluate brain structural and functional improvements in patients with DEACOI after hUCB-MNC therapy.Keywords: human umbilical cord blood mononuclear cells, transplantation, delayed encephalopathy after carbon monoxide intoxication, MMSE

  4. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    Science.gov (United States)

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-16

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring.

  5. Elevated carboxyhemoglobin: sources of carbon monoxide exposure.

    Science.gov (United States)

    Buchelli Ramirez, Herminia; Fernández Alvarez, Ramón; Rubinos Cuadrado, Gemma; Martinez Gonzalez, Cristina; Rodriguez Jerez, Francisco; Casan Clara, Pere

    2014-11-01

    Inhalation of carbon monoxide (CO) can result in poisoning, with symptoms ranging from mild and nonspecific to severe, or even death. CO poisoning is often underdiagnosed because exposure to low concentrations goes unnoticed, and threshold values for normal carboxyhemoglobin vary according to different authors. The aim of our study was to analyze carboxyhemoglobin (COHb) levels in an unselected population and detect sources of CO exposure In a cross-sectional descriptive study, we analyzed consecutive arterial blood gas levels processed in our laboratory. We selected those with COHb≥2.5% in nonsmokers and ≥5% in smokers. In these cases a structured telephone interview was conducted. Elevated levels of COHb were found in 64 (20%) of 306 initial determinations. Of these, data from 51 subjects aged 65±12 years, 31 (60%) of which were men, were obtained. Mean COHb was 4.0%. Forty patients (78%) were non-smokers with mean COHb of 3.2%, and 11 were smokers with COHb of 6.7%. In 45 patients (88.2%) we detected exposure to at least one source of ambient CO other than cigarette smoke. A significant proportion of individuals from an unselected sample had elevated levels of COHb. The main sources of CO exposure were probably the home, so this possibility should be explored. The population should be warned about the risks and encouraged to take preventive measures. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  6. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  7. Effects of continuous exposure to carbon monoxide on auditory vigilance in man

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.M.; Jolly, E.J.; Pethybridge, R.J.; Colquhoun, W.P.

    1981-02-01

    Six different groups of non-smoking young male subjcts were stutied separately for 18 consecutive days each in a closed controlled-environment human exposure chamber. Each group was subjected to a 5-day control period in fresh air followed successively by an 8-day period of continuous exposure to 50 ppm, 15 ppm or 0 ppm (controll) by volume of carbon monoxide (CO) in air, and a 5-day recovery period in fresh air. The subjects performed a 1-h auditory vigilance task every day at the same time of day in a fixed qualitative, quantitative, and temporal relationship with food intake, consumption of stimulating beverages, physical activity, and sleep. It was concluded that such CO exposure, involving the continuous carriage of carboxyhaemoglobin loads up to 70%, was without significant effect on auditory vigilance.

  8. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem...... cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...... in Parkinson's disease....

  9. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  10. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  11. A population-based exposure assessment methodology for carbon monoxide: Development of a carbon monoxide passive sampler and occupational dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G. [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    Two devices, an occupational carbon monoxide (CO) dosimeter (LOCD), and an indoor air quality (IAQ) passive sampler were developed for use in population-based CO exposure assessment studies. CO exposure is a serious public health problem in the U.S., causing both morbidity and mortality (lifetime mortality risk approximately 10{sup -4}). Sparse data from population-based CO exposure assessments indicate that approximately 10% of the U.S. population is exposed to CO above the national ambient air quality standard. No CO exposure measurement technology is presently available for affordable population-based CO exposure assessment studies. The LOCD and IAQ Passive Sampler were tested in the laboratory and field. The palladium-molybdenum based CO sensor was designed into a compact diffusion tube sampler that can be worn. Time-weighted-average (TWA) CO exposure of the device is quantified by a simple spectrophotometric measurement. The LOCD and IAQ Passive Sampler were tested over an exposure range of 40 to 700 ppm-hours and 200 to 4200 ppm-hours, respectively. Both devices were capable of measuring precisely (relative standard deviation <20%), with low bias (<10%). The LOCD was screened for interferences by temperature, humidity, and organic and inorganic gases. Temperature effects were small in the range of 10°C to 30°C. Humidity effects were low between 20% and 90% RH. Ethylene (200 ppm) caused a positive interference and nitric oxide (50 ppm) caused a negative response without the presence of CO but not with CO.

  12. Carbon monoxide gas sensing using zinc oxide deposited by successive ionic layer adhesion and reaction

    Science.gov (United States)

    Florido, E. A.; Dagaas, N. A. C.

    2017-05-01

    This study was aimed to determine the carbon monoxide (CO) gas sensing capability of zinc oxide (ZnO) film fabricated by successive ionic layer adsorption and reaction (SILAR) on glass substrate. Films consisting of a mixture of flower-like clusters of ZnO nanorods and nanowires were observed using scanning electron microscopy (SEM). Current-voltage characterization of the samples showed an average resistivity of 13.0 Ω-m. Carbon monoxide gas was synthesized by mixing the required amount of formic acid and excess sulfuric acid to produce CO gas concentrations of 100, 200, 300, 400, and 500 parts per million (ppm) v/v with five trials for each concentration. Two sets of data were obtained. One set consisted of the voltage response of the single film sensor while the other set were obtained from the double film sensor. The voltage response for the single film sensor and the double film sensor showed an average sensitivity of 0.0038 volts per ppm and 0.0024 volts per ppm, respectively. The concentration the single film can detect with a 2V output is 526 ppm while the double film sensor can detect up to 833 ppm with a 2V output. This shows that using the double film sensor is advantageous compared to single film sensor, because of its higher concentration range due to the larger surface area for the gas to interact. Moreover, the measured average resistance for the single film sensor was 10 MΩ while for the double film sensor the average resistance was 5 MΩ.

  13. Multi-objective optimisation in carbon monoxide gas management at TRONOX KXN Sands

    Directory of Open Access Journals (Sweden)

    Stadler, Johan

    2014-08-01

    Full Text Available Carbon monoxide (CO is a by-product of the ilmenite smelting process from which titania slag and pig iron are produced. Prior to this project, the CO at Tronox KZN Sands in South Africa was burnt to get rid of it, producing carbon dioxide (CO2. At this plant, unprocessed materials are pre-heated using methane gas from an external supplier. The price of methane gas has increased significantly; and so this research considers the possibility of recycling CO gas and using it as an energy source to reduce methane gas demand. It is not possible to eliminate the methane gas consumption completely due to the energy demand fluctuation, and sub-plants have been assigned either CO gas or methane gas over time. Switching the gas supply between CO and methane gas involves production downtime to purge supply lines. Minimising the loss of production time while maximising the use of CO arose as a multi-objective optimisation problem (MOP with seven decision variables, and computer simulation was used to evaluate scenarios. We applied computer simulation and the multi-objective optimisation cross-entropy method (MOO CEM to find good solutions while evaluating the minimum number of scenarios. The proposals in this paper, which are in the process of being implemented, could save the company operational expenditure while reducing the carbon footprint of the smelter.

  14. Retrieval of tropospheric carbon monoxide for the MOPITT experiment

    Science.gov (United States)

    Pan, Liwen; Gille, John C.; Edwards, David P.; Bailey, Paul L.; Rodgers, Clive D.

    1998-12-01

    A retrieval method for deriving the tropospheric carbon monoxide (CO) profile and column amount under clear sky conditions has been developed for the Measurements of Pollution In The Troposphere (MOPITT) instrument, scheduled for launch in 1998 onboard the EOS-AM1 satellite. This paper presents a description of the method along with analyses of retrieval information content. These analyses characterize the forward measurement sensitivity, the contribution of a priori information, and the retrieval vertical resolution. Ensembles of tropospheric CO profiles were compiled both from aircraft in situ measurements and from chemical model results and were used in retrieval experiments to characterize the method and to study the sensitivity to different parameters. Linear error analyses were carried out in parallel with the ensemble experiments. Results of these experiments and analyses indicate that MOPITT CO column measurements will have better than 10% precision, and CO profile measurement will have approximately three pieces of independent information that will resolve 3-5 tropospheric layers to approximately 10% precision. These analyses are important for understanding MOPITT data, both for application of data in tropospheric chemistry studies and for comparison with in situ measurements.

  15. Monitoring of carbon monoxide in residences with bulk wood pellet storage in the Northeast United States.

    Science.gov (United States)

    Rossner, Alan; Jordan, Carolyn E; Wake, Cameron; Soto-Garcia, Lydia

    2017-10-01

    The interest in biomass fuel is continuing to expand globally and in the northeastern United States as wood pellets are becoming a primary source of fuel for residential and small commercial systems. Wood pellets for boilers are often stored in basement storage rooms or large bag-type containers. Due to the enclosed nature of these storage areas, the atmosphere may exhibit increased levels of carbon monoxide. Serious accidents in Europe have been reported over the last decade in which high concentrations of carbon monoxide (CO) have been found in or near bulk pellet storage containers. The aim of this study was to characterize the CO concentrations in areas with indoor storage of bulk wood pellets. Data was obtained over approximately 7 months (December 2013 to June 2014) at 25 sites in New Hampshire and Massachusetts: 16 homes using wood pellet boilers with indoor pellet storage containers greater than or equal to 3 ton capacity; 4 homes with wood pellet heating systems with outdoor pellet storage; 4 homes using other heating fuels; and a university laboratory site. CO monitors were set up in homes to collect concentrations of CO in the immediate vicinity of wood pellet storage containers, and data were then compared to those of homes using fossil fuel systems. The homes monitored in this study provided a diverse set of housing stock spanning two and a half centuries of construction, with homes built from 1774 to 2013, representing a range of air exchange rates. The CO concentration data from each home was averaged hourly and then compared to a threshold of 9 ppm. While concentrations of CO were generally low for the homes studied, the need to properly design storage locations for pellets is and will remain a necessary component of wood pellet heating systems to minimize the risk of CO exposure. This paper is an assessment of carbon monoxide (CO) exposure from bulk wood pellet storage in homes in New Hampshire and Massachusetts. Understanding the CO concentrations

  16. Bioreactor design studies for a hydrogen-producing bacterium.

    Science.gov (United States)

    Wolfrum, Edward J; Watt, Andrew S

    2002-01-01

    Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.

  17. Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians.

    Science.gov (United States)

    Stanojevic, Sanja; Graham, Brian L; Cooper, Brendan G; Thompson, Bruce R; Carter, Kim W; Francis, Richard W; Hall, Graham L

    2017-09-01

    There are numerous reference equations available for the single-breath transfer factor of the lung for carbon monoxide ( T  LCO ); however, it is not always clear which reference set should be used in clinical practice. The aim of the study was to develop the Global Lung Function Initiative (GLI) all-age reference values for T  LCO Data from 19 centres in 14 countries were collected to define T  LCO reference values. Similar to the GLI spirometry project, reference values were derived using the LMS (lambda, mu, sigma) method and the GAMLSS (generalised additive models for location, scale and shape) programme in R.12 660 T  LCO measurements from asymptomatic, lifetime nonsmokers were submitted; 85% of the submitted data were from Caucasians. All data were uncorrected for haemoglobin concentration. Following adjustments for elevation above sea level, gas concentration and assumptions used for calculating the anatomic dead space volume, there was a high degree of overlap between the datasets. Reference values for Caucasians aged 5-85 years were derived for T  LCO , transfer coefficient of the lung for carbon monoxide and alveolar volume.This is the largest collection of normative T  LCO data, and the first global reference values available for T  LCO . Copyright ©ERS 2017.

  18. Measurement of exhaled breath carbon monoxide in clinical practice: A study of levels in Central Pennsylvania community members.

    Science.gov (United States)

    Hrabovsky, Shari; Yingst, Jessica M; Veldheer, Susan; Hammett, Erin; Foulds, Jonathan

    2017-06-01

    Exhaled breath carbon monoxide (eBCO) reading is a useful tool for nurse practitioners to evaluate smoking status and other exposures to carbon monoxide (CO) to identify risk for cancer and chronic disease. This study aimed to measure one community's eBCO and identify potential environmental factors that may affect eBCO among nonsmokers. Data collected by convenience sampling at community health events included self-reported tobacco use and potential CO exposure. Means and frequency calculations describe the sample, two-sided t-tests determine differences in continuous variables, and chi-square tests determine differences in frequencies of CO levels between nontobacco users exposed to additional CO from their environment and nontobacco users who were not. As expected, smokers have significantly higher mean eBCO than nonsmokers (20.1 ppm vs. 4.4 ppm, p 6 ppm), although there were no environmental factors that explained a higher eBCO. Measuring eBCO provides an opportunity for the nurse practitioner to engage in a conversation about the impact of smoking and other environmental factors that contribute to eBCO and health. Keeping record of patients' smoking status and eBCO in their medical record is a valuable measure of the nurse practitioner's delivery of this care. ©2017 American Association of Nurse Practitioners.

  19. Hydrogen recombiner catalyst test supporting data

    International Nuclear Information System (INIS)

    Britton, M.D.

    1995-01-01

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs

  20. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of